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Abstract

Perforated metal sheets are frequently used in electric and electronic devices, and in most

cases, these metal structures should comply with some electromagnetic compatibility

constraints which impose certain conditions on penetrating electromagnetic radiation,

quality of shielding, and other characteristics. Currently, many issues in electronic

system design could be handled with advanced mathematical and computer models;

however, direct reproduction of perforation in these models may result in a significantly

increased computational cost.

This work is concerned with modeling perforated metal sheets whose apertures have

diameters significantly smaller than the wavelength of radiation. We suggest an original

approach for computation of intrinsic impedance from the reflection and transmission

coefficients obtained by FDTD simulation of the perforated sheet placed in a rectangular

waveguide. The calculated impedance can be used to characterize the perforated segment

as a solid metal plate which has the same effective material parameters, including electric

conductivity.

Functionality of the proposed technique is illustrated with a model of a microwave oven

that has two perforated wall segments necessary for ventilation and lighting. After com-

puting the impedance of these segments, they are replaced in the model by solid metal

with equivalent effective conductivity, which allows for practical simulation of electro-

magnetic processes in the oven without any increase in the computational resources

required. Computations show that the presence of perforated segments on the walls of

this microwave oven makes a negligible impact on the frequency characteristics of the

system—so in corresponding full-wave models, the segments can be replaced by solid

metal walls without compromising accuracy of simulation.
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Chapter 1

Introduction

Perforated thin metal plates (see Figure 1.1) have been extensively used in various

electric and electronic devices for reduction of weight, cooling, and ventilation. A familiar

example of the use of perforation to aid visual monitoring and lighting is in domestic

microwave ovens (Figure 1.2), where perforation is used in multiple capacities, appearing

as segments of oven walls and in thin layers of metal foil on glass doors.

The development of various technologies has fostered more widespread use of equip-

ment, resulting in an environment increasingly dense with electric and electronic devices

[1]. This may allow electromagnetic interference to affect the operation of such equip-

ment, potentially leading to malfunctions. This motivates the application of a variety

of standards of electromagnetic compatibility (EMC) which control the level of inter-

ference generated by electronic devices. One tool which could assist design engineers in

ensuring compliance with increasingly strict standards is advanced mathematical and

Figure 1.1: Examples of perforation pattern in thin metal plates used in various
electrical and electronic devices.
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(a) (b)

Figure 1.2: Examples of metal perforation used on the walls (a) and door (b) of a
domestic microwave oven.

computer modeling. As a consequence of this and the prevalence of perforated segments

in devices, it is imperative that mathematical and computer models used in design have

the ability to accurately describe the effect of perforated metal sheets.

Direct modeling of perforation may be impractical in most EMC scenarios, because

characterization of small holes spaced closely together as part of a much larger system

would require a mesh so fine in such a large problem, that it would make the model

intractable. Modeling techniques based on rigorous explicit [2] and numerical [3] char-

acterization of electromagnetic field scattering on one hole and subsequent integration

of the effect of multiple holes have been proposed to analyze wide band transmission

and reflection caused by the perforated metal sheets. Special consideration has also

been given to narrow band (so-called “extraordinary”) transmission through a series of

similar holes or slots [4, 5]. These techniques do not, however, provide suitable char-

acterization of perforated metal sheets for full-wave, three-dimensional electromagnetic

models representing entire large devices.

Homogenization techniques based on mathematical considerations and physical approx-

imations, including mixture models (e.g., [6–8]), can be viewed as a powerful alternative

to the approaches described above; however, similarly, no development of these tech-

niques for characterizing perforated metal sheets by the parameters used in 3D modeling

have been reported in literature.

In this project, we suggest a technique applicable to arbitrary perforation comprised by

holes or slots smaller than the wavelength of microwave radiation. Our technique is built

as a combination of analytical consideration with a numerical model, and is capable of

determining the intrinsic impedance η of perforated metal sheets.

Our approach is based on a finite-difference time-domain (FDTD) model determining the

reflection (S11) and transmission (S21) coefficients in a section of a rectangular single-

mode waveguide containing a perforated metal sheet oriented perpendicularly to the
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direction of wave propagation. On the other hand, we deal with a classical two-media

model of plane wave propagation leading to a formula expressing the impedance of a

lossy medium in terms of the reflection and transmission coefficients R and T .

Because the structure of the plane wave of perpendicular polarization is equivalent to

that of the TEM modes into which the considered TE10 mode is decomposed, we estab-

lish equivalence of R and S11, and T and S21. This leads us to an explicit dependence

of the impedance (and thus the electric conductivity σ) of the lossy medium on the

reflection and transmission coefficients of the waveguide system, which are determined

from the FDTD model. Therefore, when modeling an electromagnetic system with a

perforated wall, one can deal, instead of with multiple holes or slots requiring a very fine

mesh and increased computational resources, with a solid metal sheet characterized by

the effective electric conductivity σeff found with the use of the proposed computational

scheme.

This approach is clearly different from the homogenization techniques, as despite its

being associated with the same concept of effective material parameters, it is focused on

particular circumstances concerning interaction of perforated metal sheets with the elec-

tromagnetic field. On the other hand, the developed approach may recall the principles

of FDTD modeling of susceptors [9, 10] whose thickness (usually less than 1 µm) cannot

be accounted for with the use of conventional FDTD modeling. These susceptors are

replaced in FDTD models by metallic layers of equivalent effective conductivity σeff, but

with greater thickness, making the model more tractable. However, in the referenced

papers, σeff is determined through the resistivity Rs, which is experimentally measured

prior to modeling. In this project, we suppose that instrumentation required for measure-

ment of resistivity or conductivity may not be available for engineers designing systems

with perforated metal sheets, and with this in mind, we develop a fully computational

technique for determination and verification of η, which can be subsequently used to

determine σeff.

We then apply the developed approach to modeling a microwave oven with two segments

of perforated wall, as a test of the effect of perforated walls on the frequency response of

the reflection coefficient—the characteristic responsible for energy efficiency of microwave

heating systems [11, 12]. In the oven studied, the two segments have different spacing

between the holes, so we calculate η of each sheet separately, and then replace those

segments in FDTD models of the microwave oven by solid metal with equivalent σeff.

Finally, we simulate the reflection coefficient of the oven with a cylindrical load imitating

different food products, and compare the frequency response of the reflection coefficient

in this scenario to the response in a separate model, where the perforated segments are

replaced by solid metal surfaces that are perfect electric conductors (PEC). The result



Chapter 1. Introduction 4

of this comparison shows that the perforated segments make a negligible impact, and

so they can be replaced in the model by solid PEC segments without compromising the

accuracy of the model.



Chapter 2

Theoretical Background

This chapter provides the underlying theory behind our proposed principle of charac-

terizing perforated metal sheets by solid surfaces with equivalent effective electric con-

ductivity (which should be different from the conductivity of PEC). First, we introduce

relevant background from the classical problem of propagation of a plane wave near the

boundary of two infinite half-spaces, and derive an expression for the impedance of the

second medium in terms of the reflection and transmission coefficients of the plane wave.

We then describe a numerical model of a single-mode rectangular waveguide containing

the perforated metal sheet as a “shorting” wall, introducing an FDTD mesh sufficiently

fine to ensure adequate representation of the perforated apertures. Using the decomposi-

tion of the structure of an elementary TEM component of the TE10 mode and the plane

wave of perpendicular polarization, we link the two scenarios and derive an explicit for-

mula expressing the impedance of the perforated sheet as a lossy solid medium in terms

of the reflection and transmission coefficients simulated by the waveguide FDTD model.

The key assumption accepted in the proposed computational approach—validity of the

two-media model of plane wave propagation when it is used with the parameters of

what is naturally a three-media waveguide problem—is then discussed. The approach

is made fully rigorous through the introduction of the scenario involving a layer of lossy

medium and derivation of the formulas for the reflection and transmission coefficients of

the arbitrarily incident plane wave in a three-media model.

5
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2.1 Characterization of Perforated Sheets by Effective

Electric Conductivity

Electric conductivity σ is one of the fundamental characteristics of a lossy medium and,

as such, is widely used in electromagnetic modeling. It is known to be dependent on the

intrinsic impedance η of the medium as follows [13, 14]:

σ =

(
1 + j

η

)2 ωµ

2
, (2.1)

where ω = 2πf , f is the frequency, and µ is permeability, under the condition that the

phase angle of the impedance is 45 degrees. This is the case for good conductors, which

are the materials considered.

The electromagnetic field in good conductors (such as metals) attenuates very quickly;

the skin depth, or characteristic depth of penetration (which indicates the decay of the

magnitude of the field in the conductor by an amount of 1/e after traveling a distance

of δs), depends on σ and is defined as

δs =

√
2

ωµσ
.

For example, for such solid metals as aluminum and copper, the skin depth is equal to

8.1× 10−7 m and 6.6× 10−7 m respectively [14].

When a thin metal plate contains perforation, propagation of the electromagnetic field

through the plate depends on the diameter D of the apertures. If

D << λ, (2.2)

where λ = c/f is the wavelength of the incident plane wave and c is the speed of

light, then D is also much smaller than the cutoff wavelength of the aperture when it is

considered as a waveguide; as a result, waveguide-type propagation along the perforation

holes is not possible. Yet, the electromagnetic field penetrates through the perforated

sheet, though undergoing substantial decay in magnitude, which could be considered

comparable with attenuation in solid metals.

This consideration implies that thin perforated metal plates could be characterized, in

terms of field penetration through them, by some effective electric conductivity σeff.

Furthermore, Formula (2.1) suggests that a perforated sheet in a suitable model can be

completely characterized through its impedance. To determine η, we consider propaga-

tion of a plane wave through the interface of two semi-infinite media.
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Figure 2.1: Plane wave of perpendicular polarization obliquely incident at the inter-
face between two semi-infinite media.

2.2 Impedance of a Lossy Medium in a Two-media Model

The reflection and transmission coefficients R and T for the obliquely incident plane

wave hitting the plane interface between two media (Figure 2.1) are introduced here for

free space (medium 1) and lossy material (medium 2) [14]:

R =
η2 cos θ1 − η1 cos θ2

η2 cos θ1 + η1 cos θ2
, T =

2η2 cos θ1

η2 cos θ1 + η1 cos θ2
, (2.3)

where θ1 and θ2 are the angles of the incident and transmitted waves, respectively. The

angle θ1 in (2.3) can be expressed in terms of θ2 using Snell’s law:

sin θ2 =
η2

η1
sin θ1, (2.4)

where η1 and η2 are the impedances of free space and the lossy medium, respectively.

Combining (2.3) and (2.4), η2 can be expressed for the plane wave with perpendicular

polarization as

η2 = η1
T cos θ2

T cos θ1 − 2R cos θ1
. (2.5)

Since, in accordance with (2.3), the relation between the angles of the incident and

transmitted waves is predetermined for the chosen media, we conclude from (2.4) that,

for fixed θ1, determination of the impedance of the lossy media is reduced to finding the

reflection and transmission coefficients.
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!
Figure 2.2: The concept of an FDTD model simulating reflection and transmission

through a perforated metal sheet.

2.3 Impedance as a Function of Waveguide Reflection and

Transmission

The above observations suggest the scenario (constructed for a perforated metal plate) in

which the angle of the incident wave is known and the reflection and transmission charac-

teristics can be computed numerically. We consider a rectangular waveguide containing

a perforated metal sheet oriented perpendicularly to the direction of wave propagation,

as shown in Figure 2.2. The wide wall of the waveguide a is chosen to guarantee a

single-mode regime and ensure condition (2.2). With the use of an appropriate numeri-

cal technique applied over a sufficiently small mesh discretizing the perforation, one can

compute the reflection and transmission coefficients (S11 and S21) of the system in Ports

1 and 2 respectively.

We consider decomposition of the dominant TE10 mode into the sum of two TEM waves

propagating at the speed of light at oblique angles φ with respect to the z-axis (Figure

2.3) [13, 15]. The x-component of the velocity vector of the TEM wave is shown in

Figure 2.4. The superposition of the two waves along the x-axis produces a standing

wave between the narrow walls of the waveguide, and the phase velocity in this direction

is given by

vx =
2ac

λ
,

and thus the angle φ can be determined from

sinφ =
λ

2a
. (2.6)

Since the orientation of the field components of the TEM modes is identical to the

orientation of the components of the plane wave with perpendicular polarization, the

angle of the incident wave θ1 in (2.5) can be considered equal to the angle φ associated
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Figure 2.3: A partial TEM mode in a rectangular waveguide.

Figure 2.4: TE10 mode decomposed into two TEM modes.

with waveguide propagation of the TEM modes:

θ1 = φ. (2.7)

Therefore, combination of (2.6) with (2.4) yields

cos θ1 =

√
1−

(
λ

2a

)2

and cos θ2 =

√
1−

(
η2

η1

)2( λ

2a

)2

. (2.8)

In the numerical model of the considered waveguide system, S21 is determined in the

port positioned on the far side of the perforated sheet in air. However, because of the

inevitable substantial attenuation of the electromagnetic field penetrating through the

perforated sheet, we assume that the influence of the second interface (medium-air)

can be ignored, and thus the computed S21 is identical to the one determined in the

medium (prior to that interface—similar to the two-media scenario considered in Section

2.2). This leads to equivalence of the reflection and transmission characteristics in the

waveguide model and in the two-media consideration of the plane wave.

Substitution of (2.8) into (2.5) and interpretation of R and T as S11 and S21 respectively

leads to a formula for the intrinsic impedance η of the perforated metal sheet,

η =
η1S21√

(S21 − 2S11)2 + S11S21

(
λ
a

)2 − (S11)2
(
λ
a

)2 , (2.9)
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(a) (b)

Figure 2.5: Square (a) and equilateral triangular (b) lattices of circular apertures in
perforated sheets.

in terms of S11 and S21 determined through numerical modeling of the waveguide sce-

nario. Effective conductivity of the perforated sheet can then be computed with the use

of (2.1). The Matlab code carrying out the corresponding computation is presented in

Appendix A.1.

2.4 Numerical Modeling of a Waveguide Scenario

The proposed computational approach to finding the intrinsic impedance of perforated

metal sheets combines analytical consideration with numerical modeling needed for de-

termination of waveguide reflection and transmission. With numerical simulation used

as a part of the technique, this approach is independent of the geometrical character-

istics of perforation, and is thus applicable to various patterns of holes and slots (for

example, any of those shown in Figure 1.1).

In this work, we consider two patterns of perforation apertures which are popular in

practice—those of square and equilateral triangular lattices of circular holes (with inter-

hole spacing d and hole diameter D) shown in Figure 2.5. To ensure high accuracy

of numerical simulation with minimal computational resources, we use a 3D conformal

FDTD technique which has proven very efficient in modeling electrically large structure

with small geometrical elements [16–19].

Geometry of the FDTD-simulated waveguide scenario is shown in Figure 2.2. In ac-

cordance with FDTD principles, to ensure adequacy and accuracy of computation, the

model is meshed with sufficiently small cells (chosen so that the cell size is sufficiently

smaller than λ, and so that it is in accordance with the Courant stability criterion—that

is, the number of cells should be consistent with the size of the time step, which should



Chapter 2. Theoretical Background 11

not be too small in order to control the number of iterations needed). A suitable mesh

should have cells in the x- and y-directions small enough to ensure accurate geometri-

cal representation of the circular apertures. In the model, the system is excited by a

pulse of spectrum, and simulations are run until the energy in the system dissipates to

a sufficiently low level.

Use of this FDTD model in determination of η also provides a convenient mechanism for

verification of the output of the proposed computational technique. In this verification,

the values of S11 and S21 obtained from the model of the waveguide scenario (Figure 2.2)

are compared with S11 and S21 resulting from a similar model in which the perforated

sheet is replaced by a solid plate characterized by σeff computed from (2.1) and (2.9).

2.5 Impedance of a Lossy Medium in a Three-media Model

As mentioned in Section 2.3, the considered computational approach operates under the

assumption that, due to the substantial attenuation of the field penetrating through

the perforation in a thin metal plate, the second interface in the direction of waveguide

propagation (the medium-air interface in Figure 2.2) makes an insignificant impact on

the value of S21 and this characteristic can thus be considered identical with T of a plane

wave in the two-media consideration (Figure 2.1). Since this assumption is induced from

a rather qualitative assessment, here we consider the waveguide scenario in combination

with a more general three-media (air-medium-air) model for the plane wave and evaluate

the conditions of its reduction to the two-media analysis.

For the case of a three-media model of an obliquely incident plane wave and a thin layer

sandwiched between two semi-infinite spaces occupied by the same medium (Figure 2.6),

the reflection and transmission coefficients R and T can be expressed on the basis of the

related analysis in [20]:

R =
η2

2 − η2
1

η2
2 + η2

1 + 2iη2η1 cot(k2zt)
, T =

2η1η2

η2
2 + η2

1 + 2iη2η1 cot(k2zt)
, (2.10)

where t is the thickness of medium 2, k2z = k2 cos θ2, and k2 is the wavenumber in

medium 2.

Rearrangement of the formulas in (2.10) results in the following relation:

η2
2 − η2

1 =
2iRη1η2

T sin(k2zt)
,

and η2 can thus be found from the quadratic equation
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Figure 2.6: Plane wave of perpendicular polarization obliquely incident at the surface
of a lossy medium of finite thickness.

η2
2 − η2

[
2i
R

T
η1 csc(k2t cos θ2)

]
− η2

1 = 0. (2.11)

From (2.6) and Snell’s law (2.4), we obtain that

cos θ2 =

√
1−

(
λη2

2aη1

)2

. (2.12)

Substituting (2.12) into (2.11) and replacing R and T by S11 and S21, the equivalents

of reflection and transmission in a waveguide respectively, we obtain

η2
2 − η2

1 −
2iη1η2S11

S21 sin

[
k2t

√
1−

(
λη2
2aη1

)2
] = 0. (2.13)

Note that the right-hand side of (2.13) is a nonlinear function of η2, and as such, we

would like to use numerical solvers to find its roots. Special attention must be paid,

however, to the fact that it is a complex function of a complex variable, and in order to

be differentiable as such, it must satisfy the Cauchy-Riemann conditions. As shown in

Appendix B, the function does not, in fact, satisfy these conditions, and so numerical

methods relying on the derivative cannot be considered accurate for this scenario.

Despite the fact that (2.13) has not been used as an analytical verification of the

impedance resulting from (2.9), this equation is still valuable as a theoretical part of

the model resulting in a complete computational technique.



Chapter 3

Computational Implementation

Here we outline important details of the computational realization of the technique

described in the previous chapter. First, we review key parameters of the considered

waveguide scenario, its corresponding FDTD model, and required computational re-

sources. Illustrative computations of the reflection and transmission coefficients in the

waveguide system are then validated by a separate FDTD model, in which a perforated

sheet is replaced by a solid plate with effective conductivity equivalent to that of the

perforated plate.

3.1 Waveguide Scenario and Computational Details

We apply the computational technique of Chapter 2 to determine the impedance and

the effective electric conductivity of perforated metal sheets with square and equilateral

triangular lattices of circular apertures (Figure 2.5). With particular interest in results

obtained at the frequency f = 2.45 GHz, and with an obligation to satisfy condition

(2.2), we study sheets with 1 ≤ t ≤ 4 mm, 1 ≤ D ≤ 4 mm, and 1 ≤ d ≤ 3 mm, choosing

a rectangular waveguide with relevant cross-sectional dimensions of 86×43 mm.

The numerical model of the waveguide scenario is constructed for the 3D conformal

FDTD simulator QuickWave-3D, ver. 7.5 (QW-3D) [21]. The code used to characterize

the geometry of systems containing plates with square and triangular lattices of circular

apertures are shown in the QW-3D UDO files in Appendices C.1 and C.2 respectively.

The waveguide structure is meshed in accordance with the conditions described in Sec-

tion 2.4, with 20 cells per wavelength, so that the total number of cells in the project

is approximately 300,000, both for the case of a triangular lattice and for the case of

a square lattice. An example of a suitable nonuniform mesh (with larger cells in the

13
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(a)

(b)

Figure 3.1: The xy-plane (a) and xz-plane (b) views of an FDTD mesh in a waveguide
scenario.

Table 3.1: Computational Results for the Perforated Sheet with Equilateral
Triangular Lattice (d = 4 mm)

D, mm t, mm |S11| < S11, ◦ |S21| < S21, ◦ σeff, S/m

3.0
2.0 0.9999 -94.49 0.0005 178.6 9.2×105

1.0 0.9999 -94.57 0.0013 177.0 1.7×105

3.6
2.0 0.9999 -94.04 0.0007 179.0 4.9×105

1.0 0.9962 -95.31 0.0015 176.6 1.2×105

z-direction and smaller cells in the x- and y-directions) adequate to ensure accurate

geometrical representation of circular apertures in perforation is shown in Figure 3.1.

To ensure high accuracy of computation, FDTD simulations using this model were run

until they reached steady state, determined by monitoring the energy in the system,

which was expected to dissipate to the level of 10−9–10−10 [nJ].

Since all types of modeling projects involving perforated metal sheets are computation-

ally expensive, the computations were performed using an OMP version of the multi-

thread implementation of the QW-3D simulator found particularly efficient in acceler-

ating FDTD computations. Simulations were run on a Dell T-4700 workstation (64-bit

Windows XP) with 16 GB of RAM and two quad-core Intel Xeon 3.20 GHz processors.

The entire procedure was hastened using the Acceleware A30 card (NVIDIA Quadro



Chapter 3. Computational Implementation 15

Table 3.2: Verification of the Computed σeff (2.45 GHz, d = 4 mm, t = 1 mm)

Waveguide model
D = 3.0 mm D = 3.6 mm
|S11| < S11 |S11| < S11

Perforated Sheet 0.9999 -94.57 0.9962 -95.31

Solid Plate with Equivalent σeff 0.9991 -94.26 0.9995 -94.24

FX 5600) implementing GPU technology in the form of integrated FDTD hardware

accelerators.

Typical results of computations aiming to determine η and σeff of perforated metal sheets

are presented in Table 3.1, which also includes the magnitude and phase of complex re-

flection and transmission coefficients. The results make sense from a physical viewpoint:

transmission through the perforated sheets becomes higher for larger D, smaller d, and

smaller t, and the same trend is observed for effective conductivity. For t & 2 mm,

the values of |S11| and |S21| are so close to 1 and 0 respectively, that they are identical

to the fourth significant digit, which seems to correspond to the conditions in which

propagation through the perforated sheet becomes too weak due to the large thickness

of the metal plate. The situations in which |S11| → 1 and |S21| → 0 may be therefore

considered a computational limit of the presented technique and its implementation.

3.2 Numerical Validation of the Technique

Computational output of the developed technique can be verified using a similar model

in which the perforated sheet is replaced by a solid plate with the computed σeff (Table

3.2). It can be seen that the results obtained by both of the models are close, which

confirms our computational approach as a technique sufficiently accurate to be used in

practice.

We also perform here a special, qualitative validation of the physical concept in the

background of the developed technique, carried out by numerical computation of the

electric field pattern in the waveguide with a thin perforated metal plate. The field

patterns in this structure are shown in Figure 3.2 in all three coordinate planes. More

specifically, patterns (a) and (b) display the field in the center slices on the xz- and

yz-planes respectively. Column (c) shows the field patterns in selected slices of the xy-

planes in the segment adjacent to Port 1 and in four successive layers of the FDTD

cells around the perforated sheet—counting downward (from Port 1 to Port 2), two

layers prior to the sheet, one layer through the sheet and two layers after the sheet.

The slices are scaled independently of one another, and the magnitude of the field

at the central point of each xy-pattern is provided. The field of the TE10 mode is
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(a) (b) (c)

Figure 3.2: Electric field patterns in the rectangular waveguide containing a thin
metal sheet.

clearly visible in the waveguide segment adjacent to Port 1, whereas the field on the

other side of the perforated sheet is characterized by a very low magnitude, with the

structure of the TE10 mode destroyed. When passing through the perforated sheet, the

field substantially decays. This qualitatively confirms the principles of the developed

technique relying on computation of both S11 and S21 and assuming strong attenuation

of the field penetrating through the small apertures in the perforation.

Finally, it is worth mentioning that in the particular case of a normally incident wave,

analytical formulas exist for the reflection and transmission coefficients of a perforated

metal sheet with circular (or square) apertures, which depend only on the geometrical

characteristics of the sheet and the waveguide [2]. However, these formulas are not

applicable to our results, as our computational model considers the more general case

of oblique incidence.



Chapter 4

A Practical Computational

Example

The technique outlined in Chapter 2 and tested and verified in Chapter 3 has been ap-

plied to check for the effect of perforated walls on the frequency response of the reflection

coefficient in the 600 W Sanyo Direct Access (Figure 4.1), a domestic microwave oven

with two segments of perforation on its metal walls.

4.1 Modeling the Sanyo Direct Access MW Oven

All important details of the geometrical configuration of the Sanyo Direct Access oven

are shown in Figure 4.2. The cavity measures a× b× c = 290× 300× 185 mm, operates

at 2.45 GHz, and is excited by a waveguide (ga × gb = 86× 43 mm), located at s = 35

mm and p = 152 mm from the cavity’s edges. The oven is modeled with a cylindrical

Figure 4.1: The Sanyo Direct Access microwave oven.

17
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!

Figure 4.2: Geometrical characterization of the Sanyo Direct Access microwave oven,
with perforated wall segments A and B.

!

Figure 4.3: Perforated segment A (Figure 4.2) in the Sanyo Direct Access microwave
oven.

Table 4.1: Dielectric Properties of the Loads (2.45 GHz, 20◦C) [22].

Food product Dielectric constant ε′ Conductivity σ (S/m)

Water 78.7 1.465
White bread 4.14 0.211

Corn oil 2.63 0.020

0.1 l load (R = 25 mm, H = 51 mm) placed on the center of a turntable (a cylindrical

disk of r = 136 mm and t = 5 mm) at a height of l = 5 mm from the bottom.

Simulations are performed for three food products (Table 4.1) very different in their

dielectric properties, and with glass (ε′ = 6.0, σ = 0) as the medium of the turntable.

The oven contains two perforated wall segments, each having a square lattice of circular

apertures: A (220×35 mm) with D = 3.0 mm and d = 4.0 mm, and B (60×80 mm)

with D = 3.6 mm and d = 4.0 mm. Segment A is shown in Figure 4.3.

In the FDTD model developed for the entire system, the space inside the resonant cavity

and waveguide is discretized with a non-uniform mesh (the maximum cell sizes are 6 mm

in air, 3.5 mm in glass, 4 mm in corn oil, 3.5 mm in white bread, and 1.2 mm in water)

with approximately 365,000 to 1,072,000 cells, depending on the type of load. Code

characterizing the geometry of the oven is shown in the QW-3D UDO file in Appendix
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!

Figure 4.4: Frequency response characteristics of the magnitude of reflection coeffi-
cient in the Sanyo Direct Access microwave oven loaded with different food products;
each curve represents two characteristics–first, with segments A and B taken to be PEC,

and second with A and B taken to be solid metal surfaces characterized by σeff.

C.3. FDTD simulation using this model reaches steady state in about 120,000 (corn oil)

to 230,000 (water) iterations, so a single computation takes from 22 to 90 min.

4.2 Calculating Impedance of Perforated Segments

Simulations performed using the technique described in Chapter 3 show that the values

of the effective conductivity of segments A and B are 1.2 × 105 and 1.7 × 105 S/m

respectively. These values are used to characterize the solid metal surfaces which replace

segments A and B. FDTD simulation is subsequently run on the entire microwave oven

after replacing A and B by these surfaces and by PEC, with the resulting frequency

response of the reflection coefficient described in the following section.

4.3 FDTD Modeling Results

Our simulations (Figure 4.4) show that the frequency characteristics of the microwave

oven, loaded with any of the three materials considered, before and after replacing the

perforated segments A and B by solid segments with corresponding σeff for each region,

are indistinguishable. This provides a direct answer to an important practical question—

whether the presence of perforated segments of microwave oven walls should be taken

into account when modeling electromagnetic processes occurring in the system. Our

results demonstrate that the perforated segments do not have any visible influence on
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!
(a)

!
(b)

Figure 4.5: The reflection coefficient in the Sanyo Direct Access microwave oven for
different effective conductivity of Segments A and B; loads are water (a) and corn oil

(b).

the frequency responses of the reflection coefficients—the characteristics responsible for

the energy efficiency of microwave ovens [11, 12].

As seen from the curves in Figure 4.5, a notable effect from perforation in segments A

and B occurs only when σeff is artificially decreased by 4-5 orders of magnitude. However,

these levels of effective conductivity are attainable only with geometrical characteristics

of perforations which appear impractical for microwave ovens. It therefore may not

be an exaggeration to state that when modeling microwave ovens, any relatively small

perforated wall regions could be safely considered as solid PEC segments. These results

do not, however, preclude a more significant effect from larger regions of perforation in

different systems, such as resonant cavities with the walls made entirely of perforated

metal sheets.
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Conclusions

This work has devised and implemented an original computational technique for deter-

mining the intrinsic impedance of perforated metal sheets used in many applied electric

and electronic devices. The technique relies on an FDTD model of a single-mode, rect-

angular waveguide containing a perforated metal sheet oriented perpendicularly to the

direction of field propagation. Analytical formulas for the impedance have been derived

from the established equivalence of the reflection and transmission coefficients in the

waveguide with the reflection and transmission coefficients characterizing propagation

of a plane wave through the interface of two semi-infinite media. A more general scenario

associated with propagation of a plane wave in a three-media model has also been con-

sidered. It has been suggested that, in numerical models describing systems involving

thin perforated metal segments, the segments could be replaced by solid metal surfaces

characterized by effective conductivity determined from the formula for the intrinsic

impedance.

The developed technique has been implemented as a battery of computer codes in

QuickWave-3D, Matlab, and Maple, and has been used for computation of impedance

and effective conductivity of perforated sheets with square and equilateral triangular

lattices of circular apertures—two commonly used structures of perforated segments

in devices. The computational output has been verified by a similar FDTD model of

the waveguide structure containing a solid metal plate with the determined effective

conductivity, which has allowed us to estimate the limits of the constructed computer

implementation.

Computational tests have been performed to study the influence of perforation in the

walls of a particular microwave oven on the characteristics responsible for its operating

efficiency. In a special FDTD model developed for the Sanyo Direct Access microwave

oven, small perforated metal wall segments were replaced by solid PEC sheets, and

21



Chapter 5. Conclusions 22

it has been demonstrated that this replacement does not compromise accuracy of the

simulation. It has therefore been concluded that in corresponding numerical models,

typically small perforated segments in the walls of microwave ovens can be ignored.

The proposed technique can also be used for characterization of perforated metal sheets

and screens employed in various practical pieces of equipment to address related EMC

problems.

Future work may include an analytical validation of the two-layer model via reduction

from a three-layer or multi-layer model, and implementation of the algorithm on a more

advanced (in terms of productivity) hardware, allowing for quicker computation of the

model with finer a FDTD mesh, which may extend the computational limits of the

current version. The sensitivity of the frequency response of the reflection coefficient to

the size of the region of perforation may also be studied.



Appendix A

MATLAB Codes

A.1 Calculation of Electric Conductivity from Known

Reflection and Transmission: Two-Media Model

1 function [eta ,sigma ]= conduct2(a,lambda ,omega ,mu,R,T,p)

2 % function [eta ,sigma ]= conduct2(a,lambda ,omega ,mu,R,T,p)

3 %

4 % Calculates the electric conductivity of a metal sheet given its

5 % transmission and reflection characteristics. Uses the two -layer

model.

6 %

7 % Inputs: a - position of waveguide wall

8 % lambda - wavelength

9 % omega - angular frequency

10 % mu - permeability

11 % R - reflection coefficient (S11)

12 % T - transmission coefficient (S21)

13 % p - p is 1 for parallel polarization , 0 for

perpendicular

14 % Outputs: sigma - electric conductivity

15 % eta - electric impedance

16

17 eta1 =377; %impedance of free space (ohms)

18

19 if p==1 %parallel polarization

20 c4= -0.25*( lambda*lambda/a*a*eta1*eta1);

21 c3=0;

22 c2=T*T-4*R*R*(1 -0.25*( lambda*lambda /(a*a)));

23 c1=-4*R*T*(1 -0.25*( lambda*lambda /(a*a)));

23
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24 c0=0;

25

26 etavals=roots([c4 c3 c2 c1 c0]); %impedance is root of a

quartic polynomial

27 fprintf(’Four possible impedances found: %g, %g, %g, and %g\n’

,etavals (1), etavals (2), etavals (3), etavals (4));

28 etacoord =50;

29 while etacoord ~=1 && etacoord ~=2 && etacoord ~=3 && etacoord ~=4

30 etacoord=input(’Please enter 1, 2, 3, or 4 to use the

corresponding above impedance value .\n>’);

31 end

32 eta=etavals(etacoord);

33

34 elseif p==0 %perpendicular polarization

35 eta=eta1*T/sqrt((T-2*R)*(T-2*R)+...

36 (R*T*( lambda*lambda /(a*a))) -(R*R*lambda*lambda /(a*a))); %

impedance

37 % fprintf(’Two possible impedances found: %g or %g\n’,eta ,-eta)

;

38 % posneg =50;

39 % while posneg ~=1 && posneg ~=2

40 % posneg=input(’Please enter 1 or 2 to use the corresponding

above impedance value .\n>’);

41 % end

42

43 % if posneg ==2

44 % eta=-eta;

45 % end

46

47 else %huh?

48 error(’p should be 0 or 1’);

49 end

50

51 %fprintf(’eta=%s\n’,num2str(eta));

52 sigma =0.5*( omega*mu)*((1+1j)*(1+1j)/(eta*eta));

53 %fprintf(’sigma =%s\n’,num2str(sigma));

54

55 sigma=abs(sigma);

56

57 end
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Appendix B

Maple Worksheet

B.1 The Three-Media Function and the Cauchy-Riemann

Condition

(5)(5)

(3)(3)

(2)(2)

(1)(1)

(4)(4)

The three-media model is described by the formula

where  is impedance of free space,  is the thickness of the plate,  is the length of the waveguide in the 
direction of propagation,  is the wavelength,  is the wavenumber in the sheet, and  and  are the 
reflection and transmission coefficients in the waveguide.

Note that we are solving for the complex impedance  which gives . To do this using 
an iterative method such as Newton's or the Broyden update, we need to differentiate ; that is, we should
find its Jacobian. In order that this is a valid derivative, we must confirm that the Cauchy-Riemann 
conditions are satisfied; that is, we need  and , where  and  are the real and imagnary 
parts, respectively, of . We carry out the following calculations to see whether the first condition 
holds:

false
So the first Cauchy-Riemann condition does not, in fact, hold.



Appendix C

QW-3D UDO Scripts

C.1 Model of a Waveguide Containing a Sheet with a Square

Lattice of Circular Holes

1 name=" square ";

2 comment ="Test system; holes in square arrangement ";

3 bitmap =" square.bmp";

4

5 PAR(" object name",oname ," testsystem ");

6 PAR(" cavity medium",cavitymed ,metal);

7 PAR(" cavity height (x-dir)",cavityx ,30);

8 PAR(" cavity width (y-dir)",cavityy ,50);

9 PAR(" cavity length (z-dir)",cavityz ,200);

10

11 PAR(" distance of holey wall from input port (z-dir)",wallportz

,100);

12 PAR(" thickness of holey wall (z-dir)",wallz ,2);

13

14 PAR(" diameter of holes",holediam ,2);

15 PAR(" distance between hole centers (y-dir)",holespacey ,3);

16 PAR(" distance between hole centers (x-dir)",holespacex ,3);

17

18 PAR(" Maximum cell size in x-dir",cx ,4);

19 PAR(" Maximum cell size in y-dir",cy ,4);

20 PAR(" Maximum cell size in z-dir",cz ,4);

21

22 PAR(" Maximum cell size in x-dir within mesh restricted zone",sx ,1)

;

23 PAR(" Maximum cell size in y-dir within mesh restricted zone",sy ,1)

;

27
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24 PAR(" Maximum cell size in z-dir within mesh restricted zone",sz ,1)

;

25

26 ENDHEADER;

27 OPENOBJECT(oname);

28

29 TEST(holespacex >holediam ," Spacing must be greater than diameter ");

30 TEST(holespacey >holediam ," Spacing must be greater than diameter ");

31 TEST(wallportz+wallz <cavityz ,"Wall distance must be smaller than

cavity length ");

32

33 #draw cavity

34 CALL(" elements/cubic.udo",cavity ,cavityx ,cavityy ,cavityz ,cavitymed

,x,y,z,9);

35 #draw wall

36 CALL(" elements/cubic.udo",wall ,cavityx ,cavityy ,wallz ,cavitymed ,x,y

,z+cavityz -wallportz -wallz ,9);

37

38 #cut holes from wall

39 dx=holespacex;

40 dy=holespacey;

41 r=holediam /2;

42 ly=cavityy;

43 lx=cavityx;

44

45 fy=dy+2*r;

46 ny=((ly -fy)/(dy))+1;

47 ay =0.5*(ly -2*r-(int(ny) -1)*dy);

48

49 fx=dx+2*r;

50 nx=((lx -fx)/(dx))+1;

51 ax =0.5*(lx -2*r-(int(nx) -1)*dx);

52

53 i=1;

54 while i<=int(nx) do

55 j=1;

56 while j<=int(ny) do

57 holename =(" hole"@STR(i)@"and"@STR(j));

58 CALL(" elements/cyv.udo",holename ,r,wallz ,16,air ,E,x -0.5* cavityx

+ax+r+(i-1)*dx,y-0.5* cavityy+ay+r+(j-1)*dy,z+cavityz -wallportz -

wallz ,10);

59 # MARK(ELEM ,ALL ,RESET);

60 # MARKFJ(ELEM ,wall ,PASSIVE);

61 # MARKFJ(ELEM ,holename ,ACTIVE);



Appendix C. Model of a Waveguide Containing a Sheet with a Square Lattice of
Circular Holes 29

62 # JOIN(CUT);

63 # MARK(ELEM ,ALL ,RESET);

64 j=j+1;

65 endwhile;

66 #x-snapping planes

67 CALL(" elements/specx.udo",spx@STR(i)@top ,1,x -0.5* cavityx+ax+2*r+(i

-1)*dx ,y,z,6);

68 CALL(" elements/specx.udo",spx@STR(i)@bot ,1,x -0.5* cavityx+ax+(i-1)*

dx,y,z,6);

69 i=i+1;

70 endwhile;

71

72 #y-snapping planes

73 j=0;

74 while j<=ny do

75 CALL(" elements/specy.udo",spy@STR(i)@top ,1,x,y -0.5* cavityy+ay+2*r

+(j-1)*dy,z,6);

76 CALL(" elements/specy.udo",spy@STR(i)@top ,1,x,y -0.5* cavityy+ay+(j

-1)*dy ,z,6);

77 j=j+1;

78 endwhile

79

80

81

82 #port

83 CALL(" elements/portz.udo",port ,cavityx ,cavityy ,DOWN ,1,3,NO ,x,y,z+

cavityz ,11);

84

85 #MESHPAR(cx,cy,cz ,0,0,0,0,0,0,1);

86 MESHPAR(sx ,sy ,sz ,x -0.5* cavityx ,x+0.5* cavityx ,y -0.5* cavityy ,y+0.5*

cavityy ,z+cavityz -wallportz -wallz ,z+cavityz -wallportz ,1);

87 CLOSEOBJ;
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C.2 Model of a Waveguide Containing a Sheet with a

Triangular Lattice of Circular Holes

1 name=" triangular ";

2 comment ="Test system; holes in equitriangular arrangement ";

3 bitmap =" triangular.bmp";

4

5 PAR(" object name",oname ," testsystem ");

6 PAR(" cavity height (x-dir)",cavityx ,86);

7 PAR(" cavity width (y-dir)",cavityy ,43);

8 PAR(" cavity length (z-dir)",cavityz ,174.4);

9

10 PAR(" distance of holey wall from input port (z-dir)",wallportz

,87.2);

11 PAR(" thickness of holey wall (z-dir)",wallz ,2);

12

13 PAR(" diameter of holes",holediam ,2.5);

14 PAR(" distance between hole centers (x-dir)",dx ,4);

15

16 #PAR(" Maximum cell size in x-dir",cx ,4);

17 #PAR(" Maximum cell size in y-dir",cy ,4);

18 #PAR(" Maximum cell size in z-dir",cz ,4);

19

20 PAR(" Maximum cell size in x-dir within mesh restricted zone",sx ,1)

;

21 PAR(" Maximum cell size in y-dir within mesh restricted zone",sy ,1)

;

22 PAR(" Maximum cell size in z-dir within mesh restricted zone",sz ,1)

;

23

24 ENDHEADER;

25 OPENOBJECT(oname);

26

27 TEST(dx >holediam ," Spacing must be greater than diameter ");

28 TEST(wallportz+wallz <cavityz ,"Wall distance must be smaller than

cavity length ");

29

30 #draw cavity

31 CALL(" elements/cubic.udo",cavitybot ,cavityx ,cavityy ,cavityz -

wallportz -wallz ,air ,x,y,z,9);

32 CALL(" elements/cubic.udo",cavitytop ,cavityx ,cavityy ,wallportz ,air ,

x,y,z+cavityz -wallportz ,9);

33
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34 #cut holes from wall

35 r=holediam /2;

36 dy =0.5*dx*sqrt (3);

37

38 nx=(1/dx)*(cavityx -2*r-dx)+1;

39 ax =0.5*( cavityx -2*r-dx*(int(nx) -1));

40

41 ny=(1/dy)*(cavityy -2*r-dy)+1;

42 ay =0.5*( cavityy -2*r-dy*(int(ny) -1));

43

44 zpos=z+cavityz -wallportz -wallz;

45 i=1;

46 offrow =0;

47 while i<=ny do

48 j=1;

49 ypos=y -0.5* cavityy+ay+r+(i-1)*dy;

50 while j<=(nx-offrow) do

51 holename =(" hole"@STR(i)@"and"@STR(j));

52 CALL(" elements/cyv.udo",holename ,r,wallz ,16,air ,E,x -0.5* cavityx

+ax+r+(j-1)*dx+offrow *0.5*dx,ypos ,zpos ,10);

53 # MARK(ELEM ,ALL ,RESET);

54 # MARKFJ(ELEM ,wall ,PASSIVE);

55 # MARKFJ(ELEM ,holename ,ACTIVE);

56 # JOIN(CUT);

57 # MARK(ELEM ,ALL ,RESET);

58 j=j+1;

59 endwhile;

60 offrow=1-offrow;

61 #y-snapping planes

62 CALL(" elements/specy.udo",spy@STR(i)@top ,1,x,ypos+r,z,6);

63 CALL(" elements/specy.udo",spy@STR(i)@bot ,1,x,ypos -r,z,6);

64 i=i+1;

65 endwhile;

66

67 #x-snapping planes

68 j=1;

69 while j<=nx -1 do

70 CALL(" elements/specx.udo",spx@STR(j)@top ,1,x -0.5* cavityx+ax+2*r

+(j-1)*dx,y,z,6);

71 CALL(" elements/specx.udo",spx@STR(j)@bot ,1,x -0.5* cavityx+ax+(j

-1)*dx ,y,z,6);

72 CALL(" elements/specx.udo",spx@STR(j)@offsettop ,1,x -0.5* cavityx+

ax+2*r+(j-1)*dx +0.5*dx ,y,z,6);
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73 CALL(" elements/specx.udo",spx@STR(j)@offsetbot ,1,x -0.5* cavityx+

ax+(j-1)*dx+0.5*dx ,y,z,6);

74 j=j+1;

75 endwhile;

76 CALL(" elements/specx.udo",spx@STR(int(nx))@top ,1,x -0.5* cavityx+ax

+2*r+(int(nx) -1)*dx ,y,z,6);

77 CALL(" elements/specx.udo",spx@STR(int(nx))@bot ,1,x -0.5* cavityx+ax

+(int(nx) -1)*dx ,y,z,6);

78

79 #ports 1 & 2

80 CALL(" elements/portz.udo",portin ,cavityx ,cavityy ,DOWN ,1,22,

portpulse ,x,y,z+cavityz ,11);

81 CALL(" elements/portz.udo",portout ,cavityx ,cavityy ,UP ,2,22,

portpulse ,x,y,z,11);

82

83 #MESHPAR(cx,cy,cz ,0,0,0,0,0,0,1);

84 MESHPAR(sx ,sy ,sz ,x -0.5* cavityx ,x+0.5* cavityx ,y -0.5* cavityy ,y+0.5*

cavityy ,z+cavityz -wallportz -wallz ,z+cavityz -wallportz ,1);
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C.3 Model of the Sanyo Direct Access Microwave Oven

1 comment =" Sanyo Direct Access microwave oven peroforated walls

segments ";

2 bitmap =" mwoven.bmp";

3

4 PAR( "Object name", onam , ovenh );

5

6 PAR( "Oven x-dim", ol , 290 );

7 PAR( "Oven y-dim", ow , 300 );

8 PAR( "Oven z-dim", oh , 185 );

9

10 PAR( "Feeding waveguide x-dim", fwl , 70 );

11 PAR( "Feeding waveguide y-dim", fww , 34 );

12 PAR( "Feeding waveguide z-dim", fwh , 72 );

13 PAR( "Feeding waveguide z-position (from bottom)", fwz , 88 );

14 PAR( "Feeding waveguide y-position (from centre)", fwy , -17 );

15

16 PAR( "Patch A x-dim", pal , 12 );

17 PAR( "Patch A y-dim", paw , 220 );

18 PAR( "Patch A z-dim", pah , 35 );

19

20 PAR( "Patch B x-dim", pbl , 12 );

21 PAR( "Patch B y-dim", pbw , 60 );

22 PAR( "Patch B z-dim", pbh , 80 );

23 PAR( "Patch B y-position", pby , 30);

24

25 #PAR( "Load x-dim", lx, 100 );

26 #PAR( "Load y-dim", ly, 70 );

27 #PAR( "Load z-dim", lz, 30 );

28

29 PAR( "Cyl. load: radius", lr , 25 );

30 PAR( "Cyl. load: height", lh , 51 );

31

32 PAR( "Load z-position", lp , 10 );

33 PAR( "Load shift from ctr in x-dir", sx , 0 );

34 PAR( "Load shift from ctr in y-dir", sy , 0 );

35

36 PAR( "Shelf diameter", sd , 272 );

37 PAR( "Shelf height (z-dir)", sh , 5 );

38 PAR( "Shelf z-position", sz , 5 );

39

40 PAR( "Shelf medium", smed , TTglass );

41 PAR( "Load medium", lmed , water2450 );
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42 PAR( "Patch A medium", pamed , conduct130 );

43 PAR( "Patch B medium", pbmed , conduct136 );

44

45 PAR( "Mesh in air", amesh , 6);

46 PAR( "Mesh in load", lmesh , 1.2);

47 PAR( "Mesh in shelf", smesh , 3.5);

48

49 ENDHEADER;

50

51 TEST( oh >0, "Oven height should be greater than 0" );

52 TEST( ol >0, "Oven length should be greater than 0" );

53 TEST( ow >0, "Oven width should be greater than 0" );

54

55 TEST( fwh >0, "Feeding waveguide height should be greater than 0" )

;

56 TEST( fwl >0, "Feeding waveguide length should be greater than 0" )

;

57 TEST( fww >0, "Feeding waveguide width should be greater than 0" );

58 TEST( fwz <=oh -fwh&&fwz >=0, "Feeding waveguide should be inside the

oven" );

59 TEST( fwy <=ow/2-fww /2&&fwy >=-ow/2+ fww/2, "Feeding waveguide should

be inside the oven" );

60

61 TEST( sd >0, "Shelf diameter should be greater than 0" );

62 TEST( sh >0, "Shelf height should be greater than 0" );

63 TEST( sz >0, "Shelf z-position should be greater than 0" );

64

65 OPENOBJECT(onam);

66

67 # Draw the oven

68 CALL( "elements/cubic.udo", box , ol , ow , oh , air , x, y, z, 9 );

69

70 # Draw the patches of "perforation"

71 # Patch A - on the wall opposite waveguide

72 CALL( "elements/cubic.udo", patcha , pal , paw , pah , pamed , x+0.5*ol

+0.5*pal , y-0.5* ow+0.5*paw , z+oh-pah , 9 );

73

74 # Patch B - on the wall alongside the waveguide

75 CALL( "elements/cubic.udo", patchb , pbl , pbw , pbh , pbmed , x -0.5*ol

-0.5*pbl , y+0.5*ow-pby -0.5*pbw , z+oh-pbh , 9 );

76

77 # Joining elements

78 MARKFJ( ELEM , box , PASSIVE );

79 MARKFJ( ELEM , patcha , ACTIVE );
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80 MARKFJ( ELEM , patcha , ACTIVE );

81 JOIN( CUT );

82

83 # Draw the feeding waveguide

84 CALL( "elements/cubic.udo", onam@fw , fwl , fww , fwh , air , x-ol/2-

fwl/2, y+fwy , z+fwz , 9 );

85

86 # Draw the shelf

87 CALL( "elements/cyv.udo", onam@shelf , sd/2, sh , 32, smed , E, x, y,

z+sz , 10 );

88

89 # Draw the load - rectangular block

90 # CALL( "elements/cubic.udo", onam@load , lx, ly, lz, meat , x+sx, y

+sy, z+lp, 9 );

91

92 # Draw the load - cylinder

93 CALL( "elements/cyv.udo", onam@cload , lr , lh , 32, lmed , E, x, y, z

+sz+sh, 10 );

94

95 # Global mesh - cell sizes in x-, y-, z-directions

96 MESHPAR( amesh , amesh , amesh , 1, 2, 1, 2, 1, 2, 1 );

97

98 #Draw SPs

99 CALL( "elements/specx.udo", spyx , 2, x-ol/2, y, z, 6 );

100 CALL( "elements/specy.udo", spy1 , 2, x, y -0.5*ow+paw , z, 6 );

101 CALL( "elements/specy.udo", spy2 , 2, x, y+0.5*ow -pby , z, 6 );

102 CALL( "elements/specy.udo", spy3 , 2, x, y+0.5*ow -pby -pbw , z, 6 );

103

104 CALL( "elements/specxu.udo", onspxu1", 2, lmesh , x-lr+sx , y, z, 7)

;

105 CALL( "elements/specxd.udo", onspxd1", 2, lmesh , x+lr+sx , y, z, 7)

;

106 CALL( "elements/specyu.udo", onspyu1", 2, lmesh , x, y-lr+sy , z, 7)

;

107 CALL( "elements/specyd.udo", onspyd1", 2, lmesh , x, y+lr+sy , z, 7)

;

108

109 CALL( "elements/specxu.udo", onspxu2", 2, smesh , x-sd/2, y, z, 7);

110 CALL( "elements/specxd.udo", onspxd2", 2, smesh , x-lr+sx , y, z, 7)

;

111 CALL( "elements/specxu.udo", onspxu3", 2, smesh , x+lr+sx , y, z, 7)

;

112 CALL( "elements/specxd.udo", onspxd3", 2, smesh , x+sd/2, y, z, 7);

113
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114 CALL( "elements/specyu.udo", onspyu2", 2, smesh , x, y-sd/2, z, 7);

115 CALL( "elements/specyd.udo", onspyd2", 2, smesh , x, y-lr+sy , z, 7)

;

116 CALL( "elements/specyu.udo", onspyu3", 2, smesh , x, y+lr+sy , z, 7)

;

117 CALL( "elements/specyd.udo", onspyd3", 2, smesh , x, y+sd/2, z, 7);

118

119 CALL( "elements/speczu.udo", onspzu1", 2, lmesh , x, y, z+sz+sh , 7)

;

120 CALL( "elements/speczd.udo", onspzd1", 2, lmesh , x, y, z+sz+sh+lh ,

7);

121 CALL( "elements/speczd.udo", onspzd2", 2, 2.5, x, y, z+sz+sh , 7);

122

123 # Draw port

124 CALL( "elements/portx.udo", onam@port , fwh , fww , "UP", 1, fwl/2,

ovenhport , x-ol/2-fwl , y-fww /2+fwy , z+fwz , 11 );

125

126 CLOSEOBJ;
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