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1. Introduction 
This addendum is in addition to a previously submitted MQP report “Design of Low Cost Modular 

Robotic Manipulator Joints” (09D044M) submitted May 2009 by J. Baldiga, S. Fitzell, C. McCarthy, and T. 

Watson. This addendum details additional work on the joint controller, firmware, and user software 

performed after the submission of the original project. This addendum also elaborates on several 

sections of the report and includes some test results pertaining to the electrical and control systems that 

were omitted in the original submission. 

2. Changes to Project Deliverables 
 Due of the scope of the RoboJoint project, the final deliverables included only the critical parts 

of the planned project.  The primary components remain a joint controller and a computer interface.  

The joint controller went through 3 generations. The first utilized a MSP430 microcontroller interface 

with a stepper motor. After a decision was made to use a standard DC motor, the next revisions of the 

controller utilized an H-bridge driver and a simpler PIC microcontroller.  The first revision of the PIC 

based controller utilized a simple serial interface with a PC.  Using a terminal emulator, the user could 

communicate with the controller through a series of prompts, giving the joint the speed and direction in 

which it should move, and providing feedback of the current location. The third generation utilized a 

dsPIC, which included an onboard quadrature encoder interface (QEI) module to optimize the operation 

of the microcontroller, and move the most significant operations to a dedicated peripheral.  The dsPIC 

based controller was again brought to the point where a user could interact with it through a terminal. 

However, this generation also brought a change in architecture to provide for a USB interface with a PC.  

 In order to provide a USB interface, it was initially determined that an additional module would 

be needed in order to communicate with the host PC via USB. This module would then store and 

forward commands to the individual joint controller. The USB module required customized drivers which 

became time consuming to develop. Additionally, in order to provide a visual interface for the user, an 

attempt to develop a control application using Visual C++ was made. The actual development of the 

Visual C++ application quickly consumed much of the available time for the project’s completion and 

was eventually halted. While the PC application was able to successfully send commands via USB to the 

base it was never able to receive any usable form of feedback from the microcontrollers.  This meant the 

speed and direction of individual joints could be set, it would not provide the current position and status 

of the joint, a critical part of the project. Additionally, the USB based prototype never successfully 

demonstrated control of more than one joint at a time. Because the focus of the project was not the 

development of the software user interface, but the actual microcontroller development, a new solution 

had to be found. 

 In order to simply the project for completion and to meet the critical project requirements, work 

on a final generation began. This utilized working components from all earlier generations and 

combined them to bring the project to an effective completion. The PIC microcontroller based 

controllers had been proven to control the joints and to provide accurate positioning data. As a result, 

much of this earlier code was utilized and reconfigured to work with a new serial interface.  To eliminate 

the troubles associated with developing a USB controller and PC interface, a USB-to-UART bridge was 
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utilized. This bridge, manufactured by FTDI, provides serial port emulation over USB to the PC and TTL 

logic to the microcontroller. As a result, the user interface now had to communicate with a serial 

protocol as opposed to using a USB interface, greatly reducing the development complexity.  

Additionally, in order to eliminate the time consuming development and completion of a Visual C++ 

application, National Instruments LabVIEW was utilized. This rapid software development tool, greatly 

simplified the creation of a user interface. As a result, the project was able to meet the primary goals of 

the project. 

3. Joint Controller 
 The final joint controller consisted of a microcontroller, H-Bridge Driver, and voltage regulator. 

The PIC and logic functions of the Driver IC were powered off of the regulator (specs.), allowing the joint 

controller to function over a wide range of input voltages. This provides great flexibility to the motor 

utilized, since the motor drive voltage, off which the regulator is fed, can be widely varied as well. This 

allows for a sole DC power source to the joint and its controller. The microcontroller utilizes a 4 MHz 

crystal as a system clock and has full in-circuit programming capability. An interface to the H-bridge 

driver is provided in the form of a PWM signal. A drive enable provides complete shutdown of the motor 

and associated drive circuitry, and a standard logic line allows for directional control of the motor. 
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Figure 1: Final Schematic 
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3.1. 16F688 Microcontroller Code 

 The PIC microcontroller has 3 portions of code. The main C file, interrupt code, and USART 

library.  The main C source variable initializes the microcontroller, configuring inputs and outputs 

appropriately and configuring TMR0 to allow for monitoring of the shaft position. An onboard PWM 

module is configured to provide speed and direction control and an integrated Universal Serial 

Asynchronous Receiver/Transmitter (USART) to provide a 19200 baud communication link with the PC 

running the LabVIEW control software. When data destined for the joint is detected an interrupt sets a 

flag forcing any needed change in the joint’s operation, on the next iteration of the program loop. 

During this update, the speed byte is used to set the duty cycle of the PWM signal. If the command is a 

request for a status update from the controller, the information is immediately returned to the PC.  A 

command to place the joint into a freerunning mode will result in the direction command being used to 

appropriately set the drive lines of the H-Bridge driver and result in the subsequent enabling of the 

driver. Lastly, a positioning command will defer primary control of the joint to the interrupt routine 

which already is monitoring the position of the joint. In this case, the destination is extracted from the 

received data and stored into memory onboard the controller for reference by the positioning routine.  

Two interrupts are used by the controller. The first monitors the serial data stream for commands. A 

second is triggered every 512 µS by a peripheral timer. When a valid command for the joint is 

recognized, the data stream is loaded into a byte array, where a pointer can be used to select a 

particular element in the array which relates to a particular byte in the received data stream from the 

PC. The routine ignores and resets the array whenever the hex byte 0xFF is received, effectively using it 

as a SYNC command. When valid data is loaded into the array, the Update bit is set, causing the main 

loop to enter into a routine which parses the data and acts appropriately based on the received 

commands. The Timer0 interrupt is also responsible for the position monitoring of the shaft, utilizing the 

rotary encoder, whose operation is described in Section 3.2. The interrupt compares the current input 

state of two photosensors to their previous value. Utilizing a state table the direction of the shaft’s 

rotation can be determined. The integer value holding the position of the joint is incremented or 

decremented as necessary. This timer is also utilized to monitor the state of the limit switch on the 

elbow joint. If a low logic condition is detected it will force a shutdown of the joint. 

Lastly, a library provided by HITECH, the creator of the compiler used in the project greatly simplifies the 

use of the USART allowing for common C commands, such as putch(), getch(), and printf() to map to the 

serial port, and provide easy access to the data. Additional included libraries provide delay and timing 

routines that are occasionally called upon. 



7 
 

3.2. Optical Encoder Module  

 
Figure 2: Rotary Encoder 

The RoboJoint utilizes off-the-shelf optical encoders to determine the joint’s current position. The 

encoder is made up of a graduated codewheel, fixed to the shaft, and a stationary circuit board with a 

LED emitter and detector. As the graduations pass over the emitter/detector, a pulse is sent out of the 

encoder. The encoder is comprised of two channels, which carry pulses corresponding to the detection 

of black marks and reflective gaps on the rotary wheel, as shown in Figure 2. Based on the phase 

between these two channels, and determining which channel is leading, it is possible to determine the 

direction of rotation in the shaft. A timed interrupt constantly monitors the state of these lines, and 

increments or decrements a position counter accordingly. This position is then accessed elsewhere as 

needed throughout the program. 

 

3.3.  Limit Switch 

While the rotation joint was not designed to have any limits on its range of motion, the elbow joint only 

has the ability to move roughly 180°. For this reason it was necessary to implement a method of shutting 
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down power to the joint to prevent a collision and damage to the mechanism. While the original intent 

was to embed miniature switches into the body of the joint, the rapid prototype manufacturing 

methods made this not feasible. In order to achieve this on the prototype, a copper plate was machined 

to go on the base of the elbow, which was tied to digital ground. Two additional plates, one on either 

side of the rotating mechanism where tied to the limit switch input on the controller. When the rotating 

mechanism nears the base on either side of its 180° sweep, the copper plates make contact triggering 

the limit input. The input on the controller is tied by a pull-up resistor to VCC. As a result logic high 

signifies a normal condition, while any short to ground will result in a limit error. As soon as a limit error 

condition is detected, the controller initiates a shutdown of the drive. It then reverses the drive until the 

limit condition has been cleared. This eliminates any strain the drive gears or the housing might be 

under from binding or other forces due to a collision. As soon as the rotating mechanism has been 

backed off from the housing base, the drive is shutdown until further input from the PC. When queried 

for its status, the controller will respond it is in a limit error condition until a new command has been 

received clearing the condition. 

The limit switch is also used during the initialization of the joint on power-up. In order to provide 

additional positioning feedback to the PC, the joint controller determines the extent of its drive before 

initializing normal operation. It will drive the motor forward until it contacts the limit switch, at which 

point it will record its position and reverse the motor. Again the motor is driven until contact with the 

limit switch made. A position measurement is again made, and the joint drive is shutdown. The 

controller then passes to the PC the measured limits of the elbow mechanism. This can later be used to 

determine an approximate graphical representation of the joint’s position. 

 

4.  PC LabVIEW Application 
In order to allow rapid development of a user interface, LabVIEW was utilized. The tool uses graphical 

representations of commands, which can be interconnected to program the desired application. The 

RoboJoint application, when running constantly monitors the user inputs and forms command strings 

that are sent to the joint via a serial link. Additionally, the application sends a status request command 

to each joint, waits for a reply, and parses the data so that it can be displayed for the user. The 

constructed user interface is shown in Figure 3, and can be packaged into a standalone executable file 

for distribution and operation on other machines. All that is needed are the drivers for the USB to serial 

converter. 

Figure 4 shows the portion of the application responsible for monitoring user input. A timed loop checks 

for changes to any of the controls at a frequency of 1kHz. If a button is pressed, or other change is 

detected, a string of commands is formed. This contains the joint address, speed controls and direction 

controls. After a string of hexadecimal values is generated, it is passed onto a serial write command, 

which sends it to the appropriate port, and onto the joint. Figure 5 shows the configuration of the port, 

and the simplicity of the LabVIEW tool. The configuration of the same port in Visual C++ took over 30 

lines and several hours to troubleshoot, while this graphical representation makes it simple to configure 

and utilize the port. 
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Figure 3: RoboJoint User Interface 
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Figure 4: Command Forming 
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Figure 5: Serial Configuration 

An important part of the user interface is to provide the current status and position of the joint. The 

application obtains this information, by forming a request consisting of the command 0xAB and the joint 

address, and then waiting for a response. Any response is stored into an array for parsing by the 

application. A timeout will eventually force the application to move to the next joint if no response is 

received. Figure 6 shows the creation of the status request, the read command, and the loading of any 

received data into an array. This received data is then parsed, and if valid displayed for the user. Figure 7 

shows a case structure utilized to relay to the user the current mode of operation the joint is in.  After 

receiving the status update, the LabVIEW application shades the button corresponding to the current 

motion red. The current reported position is extracted from the update, converted to a string and 

displayed. If the controller is in an error state, as happens when the limit switch is triggered, the status 

indicator will display any pertinent error messages. In the case of a limit error, the application also 

flashes the controls of the joint in error. 
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Figure 6: Formation of Status Request 
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Figure 7: Display of Received Data 

An additional feature of the user interface is the graphical representation of the elbow joint’s position. 

One of the reasons for the initialization sequence described in section 3.3 is to determine the full range 

of the joint. One extreme of its movement is defined as 0, while the other will be set upon traveling the 

full motion range. This maximum value is sent back to the user interface and used to set the maximum 

value of the scale on the graphical gauge. The actual position is then represented with the needle on the 

gauge and the joints position will be represented due to the adjusted scale.  

The LabVIEW tool has work very well to achieve the desired user interface for the RoboJoint system. 

There are some limitations to the tool, however as the primary purpose of the user interface is the 

testing and demonstration of the joint controllers, it suits the project well. Without this rapid 

development tool, it would have been exceeding hard to get a working user interface operational within 

the required time. 
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4.1. Serial Data Commands 
The command structure utilized by the latest generation of controller is fairly straightforward. After a 

series of SYNC bits, a packet is constructed containing the command, joint address, direction, speed, and 

location parameter, as shown in Figure 8. For all commands except 0xAB, the packet contains 

parameters that are to be loaded into the controller to produce the desired function. The address byte is 

used by each controller to determine if the data should be stored into memory or simply discarded. The 

direction and speed bytes will be stored into the controller and override any previous settings. The valid 

direction commands are shown in Figure 9. The speed byte can range from 0x00 to 0xFE, with 0x00 

representing 0% and 0xFE running the motor at full power. This value is used by the controller to 

calculate the duty cycle the motor will be driven with. The location data is used in conjunction with the 

0xAC command and simply conveys the location the joint should be moved to.  

Upon receiving the 0xAB command, with a valid address, from the PC, the controller forms a 

response utilizing the same packet structure. The response simply echo’s back the values stored in 

memory. Command, Direction, and Speed will be identical to the last movement command received. 

The address byte is that of the current joint, and becomes a source identifier, and the Location bytes are 

used to return the current position of the joint, as determined by the rotary encoder.  

 

 

 

Figure 8: Packet Structure 

 

Command Function 

0xAA Run   

0xAB Request Status/Position 

0xAC Goto Position 

0xAD Halt 
Figure 9: Commands 

Direction Function 

0x00 Idle (Command yet to be received) 

0x01 Forward 

0x02 Stopped 

0x04 Reverse 

0xEE Limit Error 
Figure 10: Valid Direction Parameter 

 

Command

(1 byte)

Address

(1 byte)

Direction

(1 byte)

Speed

(1 byte)

Location

(2 bytes)
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5. 1st Generation Controller 
The initial electrical design consisted of a microcontroller to supervise all functions of the motor control 

as well as provide an interface to the user’s computer. This interface was in the form of RS-232 serial 

communication to the host PC. At the time, the system was designed to drive a stepper motor, and as a 

result, a MSP430 microcontroller was chosen, as it had on-board peripherals designed explicitly to 

interface with servo and stepper motors, as well as a UART capable of serial and IrDA communications 

(to accommodate the needs of the rotator-joint). The MCU chosen was an MSP430F2132 and had the 

capability, in addition to IrDA functionality, to provide serial communications using its hardware UART.  

Although this would not be an issue for production, when it came to prototyping it proved to be problematic. As a result, the 
processor was mounted on a surface-mount interface board. A preliminary prototype was assembled to establish serial 

communications between the host and the control board, and to test the functionality of the IR transceiver. Although work 
had begun on implementing stepper motor control, it was never completed due to electromechanical design changes which 

resulted in a change from stepper motors to conventional brushed DC motors. 

 

 Figure 11: 1st Generation Protoboard 
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Figure 12: 1st Generation Schematic 
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6. 2nd  Generation Controller 
Upon selection of a standard brushed DC motor, it was decided to completely redesign the controller 

instead of adapting the MSP430 design. Instead, a PIC microcontroller was chosen due to its simplicity 

and ease of interface with a brushed DC motor. Like the MSP430 design, a serial link was created to 

communicate commands to the host PC. While the emphasis of the first generation was on 

communications and creating a reliable method of delivering the commands to the joint module, the 

next step was to focus on motor control. While the project as a whole focused on communication from 

the host to a number of joints, for simplicity and to encourage design on the motor controller, this 

iteration provided the capacity to communicate with a sole joint through an RS-232 interface. 

Communication with the module was achieved through a serial terminal, which enabled the user to 

access a text-based prompt system to issue relevant commands for manipulating the joint. This prompt 

allowed the user to move the joint either forwards or backwards for a set amount of time or to a rough 

location. The relevant commands were formed from these text responses and executed by the joint.  

The PIC microcontroller used in this iteration is a 16F876. This microcontroller is a TTL based device, 

powered by a 5v regulated source. An PWM (Pulse-Width Modulation) interface integrated into the PIC 

is utilized to vary the duty cycle of a TTL drive signal. This drive signal is fed to an H-Bridge driver 

onboard the controller, in this case a SN75441. This H-bridge driver contains a series of MOSFETs which 

utilizing the TTL input logic, switches the high voltage, high current source provided separately for the 

purpose of driving the motor. Figure 13 shows a simplified depiction of an H-bridge circuit, while Figure 

14 shows the common logic states and their accompanying function.  

 

Figure 13: Typical H-Bridge Circuit (National Semiconductor) 

 

Figure 14: H-Bridge Logic Table (STMicroelectronics) 

Figure 15 also shows the external RS232 transceiver which translated the TTL (0volts , 5volts) levels to 

true RS-232 (-15volts, 15volts) allowing for the circuit’s direct interface with the PC.  
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Figure 15: 2nd Generation Schematic 
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7.  3rd Generation Controller  
The 3rd Generation control system was to be made up of two primary components, the base controller 

and the joint controller, as shown in Figure 16. The base controller served as a link between a PC and the 

RoboJoint system. Receiving commands from the PC via a USB connection, it translates the instructions 

from the PC into commands the joint controllers can interpret. Additionally, the base controller kept 

track of all joint controllers’ operations and status, allowing the PC to poll for updated data from the 

controller when necessary. After reviewing the results of Iteration 2, especially in regards to the 

terminal based user interface, it was decided that it would be important to provide the user with an 

easily operable interface for testing and demonstration. This was attempted using Visual C++, but 

eventually would be completed with LabVIEW. The program was to communicate directly with the base 

controller, which would then relay the commands to the appropriate joint. Joint controllers, which 

reside in each individual joint, provide the actual motion functionality. An onboard microcontroller 

controls motor speed and direction, maintains a record of the current shaft position, monitors the status 

of necessary limit switches and provides two-way communication back to the controller. These 

controllers are designed to work with both the elbow and rotation joints. In order to accommodate the 

differences between the joints, a jumper must be set on the PC board, which will trigger the embedded 

software to react appropriately.  

The interrupt also controls driving the joint to a known location. Because it has already determined the 

position of the joint, via the shafts cumulative rotation, the interrupt simply compares the current and 

desired position, and spins the shaft either clock or counterwise to try to force the two integers to be 

equal. Ideally the move would stop when the position difference is 0. However, because of the low pitch 

of the markings on the encoder shaft, it is extremely hard to precisely spin the shaft to the desired 

location. To combat this, it is assumed the shaft will usually over or undershoot the destination. As a 

result the rotation of the shaft will not stabilize on the correct position, but oscillate around it. To 

combat this, an additional counter monitors the number of times the joint moves past the destination 

and when a nominal amount of crossings have been made, the controller assumes the shaft is relatively 

close and will not be able to reliably move any closer to the desired position. Finally, the interrupt 

constantly monitors the limit switch input, which represents an error condition with the joint 

necessitating a reset or intervention. 
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Figure 16: 3rd Generation System Outline 

In addition to the microcontroller, a dual-channel H-bridge driver resides on each board. Both channels 

of this driver can be utilized by the controller. A set of header pins provide connectivity to the both the 

output and input of this second channel to any peripherals that may need it. As a result it is possible to 

use the controller board to drive an end effector. Additionally, these pins could potentially be used as 

logic level input/outputs, to either activate relays or interface with feedback systems, such as additional 

limit switches.  

 

7.1. Communications  

Please refer to section 6.3.2 (Communications) of the submitted MQP report for additional 

details on the design of the 3rd generation system. 
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7.2. Slip-Joint / IrDA Link 
One of the unique ideas originally part of the 3rd generation system was an integrated slip joint to allow 

for continuous rotation while providing power across the joint. Additionally, an IrDA communications 

link was installed to maintain reliable communications as the joint was rotated. 

7.2.1. Original IrDA Design 

In order to reduce the cost of the joint, it was decided that an infrared data link would be used to 

transmit data across the infinite rotation joint. While it would be possible to integrate a slip-ring device 

capable of transmitting power and signal through the shaft, the cost or these devices grows as more 

conductors are added and higher signal integrity is needed. Instead of purchasing a high-quality 4-

conductor device, capable of transmitting both power and signal, the design could utilize a cheaper 2-

conductor part. Additionally, by only transmitting power, the device does not need to be of high quality, 

as voltage regulators and capacitive filtering on each board will be able to flatten out any spikes or 

dropouts in the power supply. The communication link which would be very sensitive to any 

interruptions is then provided through the use of IR transceivers, integrated into the mechanical 

package of the RoboJoint. The TFDU4300 Infrared Transceiver was chosen due to its small size and high 

modularity. Capable of an 115.2kbps transmission rate, the module is fully IrDA compliant. As a result, it 

can be easily integrated into designs using a wide range of microcontrollers, such as the MSP430 and 

Microchip PICs.  

 

The TFDU4300 at its core, is little more than an IR LED and IR photo detector. It takes logic bits and 

triggers the LED accordingly and does not have any processing ability of its own. Because of this, serial 

data streams must be processed before arriving at the device. The IrDA specifications call for the 

nominal pulse to be T/12, where T is the duration of a typical UART bit at that transmission rate. During 

testing, a 9600 bits/second transmission rate was used. This equates to a bit duration of 104 μS and a 

resulting IrDA pulse of approximately 19.5 μS. Further calculations, referenced by the IrDA 

specifications, detail that the pulse length can deviate to a minimum of 1.41 μS and maximum of 22.13 

μS and still be considered valid. A diagram comparing a typical UART serial stream to its IrDA 

compliment is shown in Figure 17. It is also important to note that pulses only occur for logic lows, 

effectively inverting the signal.  
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Figure 17: IrDA Protocol (Texas Instruments) 

 

7.2.2. Results 

The utilization of the TFDU4300 IR Transceiver began early in the design phase, appearing in the first 

design iteration. Initial testing consisted of using the MSP430 microcontrollers outfitting with an IR link 

to toggle LEDs, and progressed to testing the rotary joints’ integrated transceivers. The TFDU4300 

module proved to be a simple device to use and integrate with both the early MSP4300 microcontroller 

and the final dsPIC used on the controller board.  

The IrDA link was tested in conjunction with the slip joint, but independent of the rest of the system. 

Tests showed that the link functioned reliably as the joint was rotated. The IR transceivers were simply 

connected to a 5V supply as well, with one side additionally being attached to a function generator 

producing a 1 kHz sine wave. The output of the device being utilized as a receiver was connected to an 

oscilloscope to verify the integrity of the signal. The two plates were rotated, stopping at 4 key points to 

capture the waveform. The signal did not appear to be affected by the rotation at any point.  

 

Figure 18: IR Transceivers over each other       Figure 19: IR Transceivers 180° apart       Figure 20: IR Transceivers 90° apart 

 

Many designs for the slip joint were tested and compared. The design utilized, is described in detail in 

Section 6.2 of the original MQP report. Testing under controlled conditions showed that the slip joint 
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design might be feasible with better materials and manufacturing. As soon as any significant load was 

added, the power transfer became extremely unreliable. Figure 21 shows the result of simple testing. A 

noticeable dropout occurs when the direction of the joint is changed. When contact between the plates 

was maintained, there was a relatively clean power supply, however because the slip joint was fairly 

unreliable, it was eliminated from the project. 

 

Figure 21: Power Transmission over 1 second 

8. Conclusion 
It is clear that the original scope of the project was too large to have been successfully completed in the 

given time period. While several aspects of the project where tested, their integration into one system 

proved to be unwieldy. As a result a clearer set of requirements and deliverables had to be defined. At 

its core, the RoboJoint project was to provide a modular joint platform. On the controller side, any 

electronics had to be small, yet powerful enough to drive a decent sized motor, and easily integrated 

into the joint. A user interface was also sought to provide testing and demonstration capabilities of the 

joints.  

The latest results of this project have yielded a simple controller, which can be easily mounted inside a 

joint, and allow for integral monitoring of position via a COTS optical encoder. The controller utilizes an 

architecture that is expandable to 255 devices, with no change to the controller other than addressing. 

An H-bridge driver can provide up to 4 amps of DC power, allowing for the attachment of a wide variety 

of motors, and allow for precise speed and motion control. A simple serial interface can easy be 

interfaced with a number of wired and wireless protocols to provide functionality in a number of 

different environments. Lastly a small part count makes the controller small and cheap to build.  

The provided software allows the user to operate the joints and demonstrate their controller’s 

positioning and feedback ability. While the software is not designed to be an end solution, the 

controllers simple command structure can be integrated into a number of end-user applications 
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customized to a specific application.  Section 10.4 of the submitted MQP report gives more insight to 

possible applications and features worth future consideration.  

Overall, the final deliverables address the most critical design requirements and provide a platform for 

further improvement and refinement. 
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Appendix - PIC Code – main.c 
#include <htc.h> 
#include <stdio.h> 
#include "usart.h" 
 
 
#define _XTAL_FREQ  4000000  //Crystal Frequency for timing routines 
volatile unsigned char RXhold;  //for Serial RX routine 
volatile unsigned char cmds[20]; //Byte array of received data 
volatile int ind;  
volatile unsigned char LQA;  //QEI states 
volatile unsigned char LQB; 
volatile unsigned char QA; 
volatile unsigned char QB; 
volatile int position;   //current Position (0-65536) 
unsigned char mode;   //variable containing current mode state 
unsigned char dir;   //variable containing current direction 
unsigned char speed;   //variable containing current speed 
volatile int destination;   //destination position  for goto cmd(0-65536) 
volatile unsigned char addr;  //placeholder for joint address 
unsigned char update;    
volatile bit limit;   //limit switch trigger 
volatile bit home;   //home routine active 
volatile int feedback;   //feedback PID 
volatile int limita;   //placeholder for limit switch 
int convert;    //char to word conversion holder 
 
 
 
void main(void) 
{ 
 unsigned char input; 
 init_comms(); 
 limit=0; 
 addr=0x19; //DECIMAL 101 //joint Address 
 update=0;   //update flag (TRUE if new command to be processed) 
 dir=0x00; //0x00-no cmd recieved 
     //0x01-forward 
     //0x02-stop 
     //0x04-reverse  
     //0xEE-limit error      
 mode=0x00; //MODE=0x00- no command recieved 
   //MODE=0xAA- freerunning 
   //MODE=0xAB- Status Check 
   //MODE=0xAC- position fix 
   //MODE=0xAD- Stopped 
   //MODE=0xAE- Limit Error 
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//SETUP SYSTEM VARIABLES 
  
 LQA=0; 
 LQB=0; 
 PR2=0xff; //SET timer 2 period, timer has prescale of 4, for roughly 1.22kHZ PWM 
// CCPR1L=0xcc; //50% duty cycle...ignore LSBs 
 T2CON=0b00000101; //INIT TMR2 
 
 CCP1CON=0b00001100; //PWM MODE ON STARTUP KEEP MOTOR STOPPED 
    CCPR1L=0; 
    RA0=0; 
    RB5=0; 
 
 
 
 
/////////////////INITIALIZATION SEQUENCE////////////////// 
   home=1; 
   RB5=1; //enable drive 
   RA0=0;//MOVE FORWARD @ 50% speed   
   CCPR1L=128; 
   while(!limit); //move until limit 
    
   RA0=1;//MOVE BACKWARDS @ 50% speed   
 
   while(limit){ //move until limit triggered 
    __delay_ms(1); 
   } 
   limita=position; //save extent as position 
   while(!limit); //move again 
   position=0;//SAVE THE POSITON, use as origin 
   RA0=0; 
   while(limit){ 
    __delay_ms(1); 
   } 
   RA0=1; //STOP THE MOTOR 
   RB5=0; //DISABLE DRIVE 
   CCPR1L=0; 
   home=0; 

__delay_ms(5); 
 
 
 
 
 printf("\rCONTROLLER INITIALIZED\n");String to debug/test serial connection 
 // 
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   while(1){   //MAIN PROGRAM LOOP 
 
    if(cmds[2]==addr){ // check to see if right joint 
     update=1;  //FLAG change in command 
     cmds[1]=0; 
    } 
 
    if(update){  //start routine to capture new values 
     
     if (cmds[1]==0xAA&&cmds[1]!=0x00){ 
      dir=cmds[3];  //retrieve cmds from array 
      speed=cmds[4]; 
      mode=cmds[3]; 
      convert = cmds[6]; //store intended desitination 
      convert += (cmds[5]<<8);     
      if(dir==0x08){ 
       mode=0xAC; 
       dir=0x00; 
       feedback=0; 
      } 
      else 
       mode=0x00; 
     } 
     if (cmds[1]==0xAB){  //report status to PC 
      putch(0xFF); 
      putch(0xFF); 
      putch(addr); 
      putch(dir); 
      printf("%i",position); 
      putch(0xEF); 
      printf("%i",destination); 
      //printf("SPEED %c",speed); 
     } 
       
    // else if (mode==0xAC)  //for debugging 
     // printf("Freerunning:[%c]",dir); 
     
     update=0; 
    } 
   
 
  if(limit&&dir!=0xEE){ //limit error handler 
    RB5=1;  
    if(RA0)   //this reverses drive 
     RA0=0; 
    else 
     RA0=1; 
    CCPR1L=128; 
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    for(int i=0;i<600;i++){ //move away from extent for about a second 
     if(limit){ 
      __delay_ms(5); 
     } 
    }  
   // RA0=0; 
    RB5=0;  //disable drive 
    CCPR1L=0; 
    limit=0;  //clear controller limit error 
    dir=0xEE; //set controller condition to limit error, to relay to PC 
    mode=0xAD; //set controller mode to halt 
   } 
  limit=0; //clear limit condition, will be reset on next interrupt if condition still exists 
 
 
   if(dir==0x01){  //FORWARD 
    CCPR1L=speed; 
    RA0=0;  //direction toggle 
    RB5=1;  //Joint Enabled 
   } 
   else if(dir==0x02){ //STOPPED 
    CCPR1L=0; 
    RA0=0; 
    RB5=0;  //Joint Disabled 
   } 
   else if(dir==0x04){ 
    CCPR1L=255-speed; //Invert PWM, direction inversion from RA0 
    RA0=1; 
    RB5=1;  //joint enabled 
   } 
 
       
//DEBUG STREAM 
putch(RA1); 
putch(RA2); 
putch(0xAA); 
putch(LQA); 
putch(LQB 
 } 
} 

Interrupt Routine 

void interrupt my_isr(void){ 
 
 /***** Usart Code *****/ 
 if((RCIE)&&(RCIF)){ 
  RXhold=RCREG; 
  RCIF=0; // clear event flag 
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  if(RCREG==0xFF) //Consider 0xFF to be a SYNC bit 
   ind=0;  //ignore by keeping array pointer @ 0 
  else if (ind<20)  //Ignore any extraneous bits (more than 20 chars thrown out) 
   cmds[ind]=RXhold; // Otherwise store char(byte) into array 
  else 
   ind=0;  //if data is not valid, or more than 20 entries, reset pointer 
   
  ind++;   //progress pointer 
  //DEBUG 
//  putch(0xEE); 
//  putch(ind); 
//  putch(cmds[ind]); 
      
  //Command Array Format 
  //0-Command type 
  //1-Address 
  //Direction 
  //Speed 
  //Destination 
 
 } 
 
 //POSITIONING COMMANDS 
 if(mode==0xAC){ 
  if(destination==position){ 
   CCPR1L=0; 
   RA0=0; 
   RB5=0; 
   feedback++; //Count zero crossings 
   speed--; 
  } 
  else if(destination>position){ //move joint towards 0 
   CCPR1L=speed; 
   RA0=0; 
   RB5=1; 
 
  } 
  else if(destination<position){ //move joint towards 0 
   CCPR1L=255-speed; 
   RA0=1; 
   RB5=1; 
  } 
  if(feedback>80)  //If too many zero crossings, stop motor to avoid oscillations 
   mode=0x00; 
 } 
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 /* QEI State Table from http://www.sxlist.com/techref/io/sensor/pos/enc/quadrature.htm 
 (A;B)            Current: 
Previous ||(0;0) (0;1) (1;0) (1;1) 
         |+---------------------- 
 (0;0)   |   NC    CW   cCW   Err        NC=No change 
 (0;1)   |  cCW    NC   Err    CW        CW=Clockwise 
 (1;0)   |   CW   Err    NC   cCW       cCW=Counter-clockwise 
 (1;1)   |  Err   cCW    CW    NC       Err=Error (ignored) 
*/ 
 QA=RA1; //STORE current states 
 QB=RA2;  
//DEBUG 
// printf("A\n"); 
// putch(RA1); 
// putch(RA2); 
 
//Use new states to determine phase, which will give shaft direction 
//row1 
 if((LQA==0&&LQB==0)&&(QA==0&&QB==1)) 
  position++;   
 else if((LQA==0&&LQB==0)&&(QA==1&&QB==0)) 
  position--;  
//row2 
 else if((LQA==0&&LQB==1)&&(QA==0&&QB==0)) 
  position--;  
 else if((LQA==0&&LQB==1)&&(QA==1&&QB==1)) 
  position++;  
//row3 
 else if((LQA==1&&LQB==0)&&(QA==0&&QB==0)) 
  position++;  
 else if((LQA==1&&LQB==0)&&(QA==1&&QB==1)) 
  position--;  
//row4 
 else if((LQA==1&&LQB==1)&&(QA==0&&QB==1)) 
  position--;   
 else if((LQA==1&&LQB==1)&&(QA==1&&QB==0)) 
  position++;  
 
 LQA=QA;  //store new states to be used on next iteration 
 LQB=QB; 
    
  T0IF=0; // clear interrupt flag 
 } 
} 


