
MQP-ID-SFS-0892 
 
 
 

ASSOCIATION OF C3PO & PLCβ 
 
 

A Major Qualifying Project Report 

Submitted to the Faculty of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfillment of the requirements for the 

Degrees of Bachelor of Science  

in 

Chemistry & 

Biology/Biotechnology 

by 

 

_________________________ 

Samuel Carley 

 

CDR Deadline:  April 26, 2018 

 

APPROVED: 

 
___________________________   ________________________ 
Suzanne Scarlata, PhD    David Adams, PhD 
Chemistry and Biochemistry    Biology and Biotechnology 
MAJOR ADVISOR     WPI Co-Advisor 
 
 
 
This report represents the work of WPI undergraduate students submitted to the faculty as 
evidence of completion of a degree requirement. WPI routinely publishes these reports on its 
website without editorial or peer review. For more information about the projects program at 
WPI, please see http://www.wpi.edu/academics/ugradstudies/project-learning.html  
 



 2

ABSTRACT 
 

 
 While Phospholipase-Cβ (PLCβ) plays an important role on the plasma 

membrane by generating calcium signals, it also has a significant population in the 

cytosol where it shows affinity for Component 3 Promoter of RISC (C3PO), which is an 

enhancer of RNA silencing. This project focused on PLCβ’s inhibition of RNA silencing 

in vitro and in PC12 cells by evaluating the hydrolysis of fluorescent oligonucleotides. 

We find that PLCβ binds and inhibits C3PO, allowing the expression of genes whose 

sequence would otherwise be degraded. 

 

 



 3

TABLE OF CONTENTS 

 
 
Signature Page ……………………………………………………………………. 1 
 
Abstract …………………………………………………………………………… 2 
 
Table of Contents ……………………………………………………………….… 3 
 
Acknowledgements ………………………………………………………………. 4 
 
Background ………………………………………………………………………..  5 
 
Project Purpose …………………………………………………………………… 12 
 
Methods …………………………………………………………………………… 13 
 
Results …………………………………………………………………………… 16 
 
Discussion ………………………………………………………………………… 23 
 
Bibliography ……………………………………………………………………… 25 
 



 4

ACKNOWLEDGEMENTS 
 

I would like to first and foremost thank Dr. Suzanne Scarlata for being an 

absolutely stellar PI; her guidance was integral to the success of this project. I would also 

like to thank Ashima Singla and Dr. Osama Garwain of the Scarlata lab for showing me 

the ropes, Kaitlyn Valla for her expertise purifying proteins, as well as the rest of the 

group for their help along the way. Lastly, I would like to offer a special thank you to Dr. 

David Adams who initially pointed me in the direction of the Scarlata group and whose 

advice has been invaluable during my time at WPI. 

   



 5

BACKGROUND 
 

This chapter first explores the role of the Phospholipase C family of proteins and 

their role within the cell, including the structure and function they share.  It then pivots to 

the isozyme PLCβ, and what makes this particular type of PLC unique, including its 

activator and presence within the cytosol. Of particular interest is its relationship with the 

C3PO protein, which is also covered in greater detail.  Ultimately, it concludes by 

discussing recent findings regarding what is hypothesized to be the two proteins role in 

RNA silencing, a type of post-translational gene regulation, and its impact on cell 

differentiation. 

Phospholipase C 

Phospholipase C (PLC) proteins are a family of enzymes known to selectively 

catalyze the hydrolysis of the phospholipid, phosphatidylinositol 4,5-biphosophate (PIP2) 

along the cell membrane. The group is generally targeted for research purposes because 

the reaction generates two important regulatory molecules, 1,2-diacylglycerol (DAG) and 

1,4,5-triphosphate (IP3), which influence Ca2+ concentration within the cell (Kadamur 

and Ross, 2013).  

Although each family member has this similar phospholipid hydrolytic function, 

the members are not the same.  Each isozyme maintains 40-50% of their structure, 

including a TIM barrel that serves as the activity site, an X-Y linker that may block the 

activity site in unactivated specimen, and several other structures (Figure-1) below. 

Mammalian PLC isozymes are then categorized into 4 groups based upon structural 

differences further away the activity site (Kadamur and Ross, 2013). This project focuses 

on one group in particular – PLCβ. 
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Figure 1- The Conserved Structure Found in all PLC Family Members.  Shown is a TIM barrel serving as the active 
region surrounded by the X-Y Linker, PH and EF Hands, this particular model is from PLCβ2                          
(Kadamur and Ross, 2013) 

PLCβ 

PLCβ distinguishes itself by having an extension of roughly 400 amino acids at 

the C-terminus that form a three stranded coil. PLCβ’s activation along this site by Gq 

proteins is unique amongst the PLC family.  The activation by Gq allows it to respond to 

stimuli outside the cell (Figure-2) (Kadamur and Ross, 2013). Previous studies have 

demonstrated that the membrane bound G proteins are capable of anchoring and orienting 

PLCβ, allowing the phosphorylation of PIP3 to progress without the X-Y linker blocking 

the TIM barrel (Fukami et al., 2010). 

 

Figure 2 - A model for PLCβ function on the cell membrane - note the activation by G protein, unique to this isozyme  
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 PLCβ has been shown to regulate calcium, and a variety of effects result from its 

inactivity in PLCβ KO mice.  The absence of PLCβ1 induces epilepsy, with mice 

typically dying at post-natal day three. PLCβ2 KO also alters the ability for mice to taste.  

Removing PLCβ3 induces myeloproliferative disease and atherosclerosis while PLCβ4 

KO causes depression. (Fukami et al., 2010) 

However, to say this is all due to calcium regulation paints an incomplete picture 

of PLCβ’s role within the cell.  Despite the lack of G-protein, there remains a significant 

population of PLCβ in the cytosol (Aisku, Runnels and Scarlata, 2010).  This suggests 

PLCβ is performing a function independent of its activator, in other words it could be a 

moonlighting protein, performing a secondary task entirely independent of its known 

function.   

PLCβ1 Affiliation to TRAX 

 The Scarlata lab previously identified translin-associated factor X (TRAX) as a 

novel binding partner to PLCβ, using PLCβ1 (Aisiku, Runnels and Scarlata, 2010). Like 

Gαq TRAX binding also occurs on the C-terminus, although with a lower affinity. 

Through immunofluorescent imaging it was shown that despite its preference, TRAX and 

PLCβ1 are colocalized in HEK293 cells. Further experiments concluded that only Gαq or 

TRAX can interact with PLCβ1, but even with forced activation of G protein to generate 

an excess concentration of activators, colocalization in the cytosol persisted (Aisiku, 

Runnels and Scarlata, 2010). 

TRAX, C3PO, and RNA Silencing 

 Isolated TRAX is unstable and thus it is only found associated with the nucleotide 

binding protein translin, where the two naturally form the octamer called component 3 



 8

promoter (C3PO) of RNA induced silencing complexes(RISCs)(Figure-3). Duplex 

microRNAs (miRNAs) bind to C3PO which degrades one of the strands leaving the other 

to bind to its target mRNA on RISC and become degraded halting that gene’s expression 

(Philip et al., 2013). In models for C3PO activity, it was designated to be a purely a 

promoter of RISCs where Argonaut 2 (Ago2) was the catalytic component of the 

structure (Figure-4). However, recent experiments in our lab have cast a shadow of doubt 

upon this idea, as there has been little association between C3PO and Ago2, which 

suggests independent hydrolysis. 

 

Figure 3- Three dimensional structure of the octamer C3PO – TRAX, the protein known to bind with PLCβ, is seen in 
blue, Translin, the nucleotide binding protein, is in red (Sahu, Philip and Scarlata., 2013) 

  

Figure 4- A early model of the role C3PO plays in RNA silencing.  Note: the model considers Ago2 the catalytic 
component of RNA silencing (Phillip et al., 2013). 
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 A recent study asserts that this RNA silencing has significant impact on the 

learning process in mammalian brains. Knock out TRAX/Translin mice struggled to 

perform in long term memory tests, showing impaired results in novel object tests when 

compared to wild type mice, and significantly reduced synapse activity (Park et al., 

2017).  

A typical indicator for C3PO activity is the number of miRNAs within the cell. 

Looking at the hippocampal region of wild type and TRAX/Translin knock-down mice in 

learned and homecaged populations, it was seen that there is a substantial change in 

several miRNAs. Learned KO mice had a far higher number of targeted miRNAs than 

their wt counterparts, while homecaged mice did not have a significant difference (Park 

et al, 2017).  This shows that the genes C3PO regulate play a role in learning, with the 

difference in gene expression demonstrating the necessity of this post transcriptional gene 

regulation to occur. 

PLCβ1’s Interaction with RNA Silencing 

 Our lab’s hypothesis is that PLCβ1 is a significant factor in this gene regulation. 

Binding to C3PO occurs in a 1 to 1 ratio and inhibits the hydrolysis of nucleotides 

(Aisikku, Runnels and Scarlata, 2010). This function likely plays a role in neural 

differentiation in KO mice that were largely issues related to the synapse development in 

neuronal cells. On a cellular level, the Scarlata lab was also able to demonstrate that 

without PLCβ1, PC12 cells are unable to differentiate, furthering this idea that both 

PLCβ1 and C3PO are necessary for proper differentiation and development to occur in 

the brain (Garwain and Scarlata, 2016). 
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Co-localization of PLCb1 and C3PO has been demonstrated in previous studies, 

and binding has been shown to occur, but several questions remain with regards to how 

this inhibition of hydrolysis occurs (Scarlata et al., 2016). It has not been conclusively 

determined whether C3PO is capable of hydrolyzing independently of Ago2 in cells, nor 

whether PLCβ1’sregulatory mechanism is universal. 

The current model for how PLCβ1 interacts with C3PO (Figure-5) is that it binds 

to the two exposed areas of TRAX in C3PO and halts hydrolysis. Whether the structure 

needs to be in its active state or not remains to be seen, although it has been observed that 

the greatest inhibition of hydrolysis are genes most targeted by C3PO, which could imply 

a better attachment to TRAX when C3PO is most active. 

 

Figure 5- A model for how PLCβ binds to C3PO, with the 400 amino acid extended coil interfering with the two TRAX 
proteins ability to hydrolyze the nucleotide sequence 

Connection to G-protein 

 One of the experiments that has been conducted by the Scarlata lab has been to 

excite G protein coupled receptors (GPCR) using carbachol – a synthetic agonist to 

acetylcholine. What has been found is that when Gq proteins are excited, cytosolic PLCβ 

migrates towards the membrane and away from C3PO. 
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 The M1 muscarinic acetylcholine receptor is both the GPCR most commonly 

associates with Gq proteins and most localized in the hippocampus region of the brain. In 

homozygous M1 knock out mice there is a significant change in behavior, with mice 

performing significantly worse on several of the cognitive tests that involve hippocampal 

learning – specifically when memories of tasks have to be transferred to other parts of the 

brain (Anagnostaras et al., 2002). 

 The importance M1 has with regards to the transfer of information through the 

brain and C3PO’s impact on learning in general are too similar to ignore.  The association 

of PLCβ and C3PO ultimately will serve as a bridge that connects the GPCR and cellular 

differentiation to create a better model for learning in mammals.  
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PROJECT PURPOSE 

 While it is known that C3PO is inhibited by PLCβ, the mechanism for its 

influence is less established.  This project first aimed to observe the impact of the two 

proteins with regards to hydrolysis of oligonucleotides in vivo. It then pivots into the 

manner in which this inhibition occurs, looking at how altering the order in which 

oligonucleotides are exposed to both PLCβ and C3PO in vitro impacts hydrolysis rates.  

Ultimately, we try to illuminate how PLCβ is used as a tool to regulate C3PO’s post- 

transcriptional gene regulation and implement it into the larger narrative surrounding how 

learning occurs on a cellular level. 



 13

METHODS 

Throughout this project specific protocols were followed to ensure the integrity of the 

results. 

Protein Gels 

The purified proteins were analyzed on SDS gels followed by Coomassie Blue staining. 

Separating gels were composed of 2.3mL of dH2O, 5.0mL of 30% acrylamide, 2.5mL pH 

8.8 1.5M tris, 100μL of 10% SDS, 100 μL of 10% APS and 6μL TEMED. The stacking 

gel was made by mixing together 2.2mL of dH2O, 680μL of 30% acrylamide, 1mL of 

0.5M Tris (pH=6.8), 40μL of 10% SDS, 40 μL of 10% APS and 4μL of TEMED. 

Bradford Assay 

Concentrations of proteins were determined by running Bradford assays.  Bovine serum 

albumin was used to create standards in a series of compared to a 10x diluted sample of 

each protein elution. 0.5 µl of Bradford solution was then added to each well, and the 

absorbance measurements taken at 280 nm.   

Fluorescent Oligonucleotides 

The rate of hydrolysis was observed using a fluorescent oligonucleotide designed to emit 

a photon of a different wavelength as it was broken down.  Having already seen miR103-

3p impacted by PLCβ’s presence in the cell, it was chosen as the template for a double 

stranded DNA that had 6-Carbofluorescein (FAM) tagged on the 3’ end and 5-

Carboxytetramethylrhodamine (TAMRA) on tagged on the 5’ end. Due to the small 

length of the oligonucleotide, upon excitation of FAM, Forster Resonance Energy 

Transfer (FRET) would occur causing a greater signal from TAMRA at 590 nm, and far 

less from FAM’s 520 nm (Figures-6 and 7).  As the oligonucleotide was degraded and 
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the distance between the two fluorophores increased, FRET’s impact lessened and the 

signal at 520 nm gradually would increase, while the 590 would decrease. 

Fluorometry and FRET 

A fluorometer was used in order to observe FRET in vitro. 2.5 µl of 100 µM of the 

oligonucleotide was pipette into a microcuvette under variable conditions, maintaining a 

constant volume of 120 µl to ensure the same concentration of fluorescent molecules.  

Solutions were excited using a single photon xenon laser at 490 nm. Using a steady state 

emission scanning, the emitted photons were observed from 500-650 nm with step sizes 

of 1 nm, over three averages after a 103 µsec delay and 50 µsec delay time.  25 shots 

were fired per reading with a frequency of 150 Hz.  Fluorometer experiments were 

performed in triplicate and averaged in order to perform a T-test for significant 

difference. 

Cell Type 

PC12 cells are derived form a pheochromocytoma of the rat adrenal medulla that have 

embryonic origin stemming from the neural crest. They are capable of differentiating into 

neuron-like cells developing physical features such as dendrites. 

Cell culture 

PC12 cells were maintained in Dulbecco’s modified Eagle’s medium which contained 

DMEM (Dulbecco’s Modified Eagle Medium), GIBCO, 320-355mosM supplemented 

Figure 6 - Intact oligonucleotide behavior, emission at 590 
nm is an indicator that hydrolysis has slowed. 

Figure 7 - Hydrolyzed oligonucleotide behavior, emission 
at 520 nm is an indicator that hydrolysis has occured 
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with 50 mL Fobium Fetal Bovine Serum (FBS), 5mL P/S and 5mL of 100mm Sodium 

Pyruvate. When the cells were split, 2ml of trypsin were added (in a 100mm dish) and the 

plate was incubated at room temperature for 2 minutes in order for the cells to detach 

from the plate. 

Transfection 

Expression of both TRAX and PLCβ were knocked down in PC12 cells by transfecting 

complementary siRNA by electroporation. This protocol adapted from Molecular 

Cloning: A Laboratory Manual. Cells were grown to near 100% confluence and washed 

with sterile PBS. The cells were then trypsinized, centrifuged 5 minutes at 1500× g and 

resuspended in 10mL of fresh growth medium. 800 µl of cells were pipeted into a 0.4cm 

BioRad cuvette and placed in an electroporator (BioRad Gene Pulser Xcell). Cells were 

then plated and covered with fresh medium. 

Microinjection and FLIM 

Cells were fixed by washing with Hanks’ Balanced Salt Solution (HBSS) media before 

imaging with ISS vista vision software attached to a two photon excitation confocal 

microscope. Fluorescence lifetime was imaged from 500-540 via channel three, with a 

threshold set to 60 and data smoothed twice.  Excitation was performed at 780 nm.  

Microinjections were performed with 100 µM solution of oligo’s injected with an 

injection pressure of 40 hPa over 0.65 seconds, with an Eppendorf produced Femtotips. 
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RESULTS 
 
 PLCβ1 is necessary for the differentiation of PC12 cells, but the mechanism for 

its influence is less established. Prior to the beginning of this project, RNAseq data were 

collected showing the number of miRNAs present in knock-down PC12 cells in 

undifferentiated and differentiated states, but this data was never evaluated. From almost 

400 sequences, 49 were shown to have a magnitude of 10,000 copies, only 14 of which 

were shown to have a change in expression of greater than 15% in KO cells. Of these, 

miR-103-3p was chosen for further testing.  

This project began by first observing the change in rate of hydrolysis in differing 

cell types. Due to interference in intensity that could arise in cells Fluorescence Lifetime 

(the duration of time a molecule fluoresces) at 520 nm was used as an indicator for how 

the oligonucleotides were interacting with C3PO. In this experiment FRET would cause 

the lifetime to decreases, so as hydrolysis occurs the lifetime at 520 increases. 

 The phasor plot below (Figure-8) shows the first trial where wild type PC12 cells 

were microinjected with the fluorescent miR. Single fluorescence lifetime is ideally 

plotted along the arc moving across the diagram, however interference due to FRET 

moves the overall fluorescence below the arc.  As time goes on, the fluorescence 

increases and behaves more similarly to if there was only a single fluorophore. The pixels 

that were plotted appear in purple in the cell image – their distribution throughout the cell 

matches C3PO’s presence throughout the cytosol. 

 The average lifetime in the phasor plots were then taken and made into a 

distribution graph, where the actual change in fluorescence lifetime could be compared 

from the first 3 minutes to the last data point taken at 20 minutes. This increase is due to 
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the photons emitted from FAM unable to excite TAMRA as the distance between the two 

fluorophores increases with hydrolysis. 

 

 

Figure 8 - Top Left shows the phasor plot of wild type PC12 Cell injected with the fluorescent nucleotide after three 
minutes, the top right panel shows the same cell after 20 minutes.  Below is a lifetime distribution graph showing the 
most frequent lifetimes 

Looking at the phasor diagram from PLCβ1 knock down cells, it’s clear that the 

shift towards the central arc is more drastic. This fits the model of PLCβ inhibiting the 

hydrolysis of microRNAs. With C3PO left unchecked, the degradation of 

oligonucleotides is very rapid and FRET is rapidly eliminated. The oligonucleotides are 

also seen fluorescing evenly throughout the cell, again consistent with C3PO’s location. 

Consistent with this data is the Lifetime Distribution graph (Figure-9), which shows a 
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much more drastic shift over the course of 20 minutes – FAM’s lifetime extends to a 2.5 

nsec, vs the almost 2.0 shown in wt lifetime after 20 minutes. 

 

 

Figure 9Top Left shows the phasor plot of PLCβ Knock Down  PC12 Cell injected with the fluorescent nucleotide after 
three minutes, the right shows the same cell after 0 minutes.  Below is a lifetime distribution graph showing the most 
frequent lifetimes 

 In cells where TRAX was knocked–down (Figure-10), the fluorescence lifetime 

remained beneath the central arc on the phase diagram, meaning FRET was maintained 

and the oligo was not hydrolyzed as effectively. Interestingly, the limited number of 

points in the phasor plot that did fluoresce at 520 nm were all found in isolated areas in 

the cell, suggesting high levels of localization inconsistent with C3PO’s behavior. 

Furthermore, in the lifetime distribution graph, lifetime was not shown to increase, but 
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remained below 1.5 nsec; a stark difference from the increasing trends viewed in previous 

trials. 

 

 

Figure 10 - Top Left shows the phasor plot of TRAX Knock Down  PC12 Cell injected with the fluorescent nucleotide 
after three minutes, the right shows the same cell after 20 minutes.  Below is a lifetime distribution graph showing the 
most frequent lifetimes 

 The interaction between PLCβ1 and C3PO is given further clarity by experiments 

testing their interactions in vitro. By mixing the two proteins and oligonucleotide in a 

cuvette, the observed reaction cannot rely on external factors such as Ago2. In order to 

ensure the validity of the results, we first tested the purity of our protein samples. The 

result of a protein gel stained with coomassie blue for PLCβ1 (Figure-11). Single bands 

appear in the appropriate location, indicating the purification was successful. 
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Figure 11 – Protein Gel results from the purification of PLCβ1, the dark colour was a result of overstaining, but the 
two bands to the left of the ladder are still visible. 

A similar protein gel was performed to determine the purity of C3PO (Figure-

12), however this gel was performed in SLS buffer, which denatures C3PO into its 

components translin and TRAX.  The results are consistent with this, as we see two 

similarly sized bands in the appropriate location next to the ladder. 

 

Figure 12 - The results from the C3PO protein gel - note the two bands consistent with the tertiary structure - 6 
Translin and 2 TRAX 

Evaluating the fluorescence over time in terms of the rate at which the ratio 

between fluorescence intensity at 520 and 590 increased was used as a barometer for how 
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fast C3PO hydrolyzed the oligonucleotide when C3PO was allowed to interact with the 

oligonucleotides for three minutes before the addition of PLCβ1, or when PLCβ1 was 

added three minutes before C3PO. Raw data for a trial of each condition can be seen in 

Figure 13 below.  The increase in 520 expression demonstrates C3PO’s ability to 

hydrolyze nucleotides without external factors. 

 

Figure 13  – Left: Raw data from trial one of the fluorometer when C3PO and DNA were allowed three minutes to 
react before PLCβ1 was added.  Right: Raw data from trial one of the fluorometer when PLCβ1 and DNA were 
allowed three minutes to react before C3PO was added.  

While the intensity is highly variable, the rate of change in intensity is a more 

consistent indicator of hydrolysis and was found to be consistent between multiple trials.  

After trial one, rather than compiling the 150 points from every reading, a 10 point 

moving average was taken around both 520 and 590 nm. The ratio of these two averages 

was plotted over time, producing a linear trend from which we could better compare the 

rate of hydrolysis between the different conditions, and gauge similarity between trials 

(Figure 14). 
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Figure 14 - Left: The rate the ratio of fluorescence intensity at 520 nm/590 nm when C3PO was exposed to DNA first. 
Right: The same ratio except when PLCβ1 is added first 

The average rate of change is shown in Figure 15 below, where it can be clearly 

visualized that PLCβ1 has a greater impact after C3PO binds to the nucleotides. This 

difference passed the 95% confidence interval producing a P-value of 0.0026, suggesting 

PLCβ1 inhibits the most effectively when C3PO is active. 

 

Figure 15 - A comparison of the average change in fluorescence intensity emitted at 520/590 nm, an indicator for how 
quickly the oligonucleotides are being hydrolyzed by C3PO 
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DISCUSSION 
 
 Demonstrating a definitive association of PLCβ1 and C3PO in this project is a 

bridge that connects G protein coupled receptors, RNA silencing and cell differentiation 

and will develop a better map for how learning occurs in mammals. Through our 

experiments, we were able to develop an even clearer idea of how the two proteins work 

together. 

 In line with our lab’s previous findings, we were able to observe C3PO 

hydrolyzing oligonucleotides without Ago2, allowing the protein to have functions 

outside the stress granules and RICS where Ago2 resides.  The project’s further discovery 

that C3PO is better inhibited by PLCβ1 when oligonucleotide is already bound grants us 

a more detailed model for how inhibition occurs. This also opens up the possibility that 

PLCβ1 selectively inhibits C3PO based upon the sequence of nucleotides it has bound.  

However, we did not test the variety of miRNAs that they both interact with, or whether 

nor did we test a perfect pairing of nucleotides is required. 

We were able to demonstrate that the hydrolysis rates of oligonucleotide in 

untreated cells are between values observed when PLCβ1 was knocked down and C3PO 

was knocked down.  This result shows they both are required to maintain normal gene 

regulation.  This in conjunction with the previous studies that demonstrated that learning 

is dependent on Gq , C3PO components as well as the observation that C3PO and PLCβ1 

are required for PC12 differentiation (Anagnostaras et al., 2002, Park et al., 2017, 

Garwain and Scarlata 2016).  These results help build the framework for how all these 

parts are involved in neuronal differentiation in mammals  
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Unfortunately, we were unable to test whether or not activating GPCRs would 

increase the rates of hydrolysis as it draws PLCβ1 out of the cytosol. If this was the case, 

it would directly link the neurotransmitter’s external GPCR-mediated signal to the post 

transcriptional gene regulation that C3PO conducts. Until this is investigated, we cannot 

say conclusively that this relationship exists, although we remain confident it serves as 

the bridge between neurotransmitters and gene regulation, completing this pathway. 

The only experiment that did not behave as expected was the solution FRET of 

miR hydrolysis study looking at the intensity of the 520nm and 590nm peaks.  Based 

upon our model, we believed that 590nm should decrease as 520nm increased correlating 

to a reduction in FRET, but instead the signal at 590nm remained constant. This is likely 

due to quenching that occurred as a result of cutting of the oligonucleotides, although this 

remains uncertain. As lifetime tends to give more consistent results with less interference, 

further trials should be done with a modified procedure that utilizes the confocal 

microscope to perform in vitro trials. 
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