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Abstract

A Kirchhoff graph is a vector graph with orthogonal cycles and vertex

cuts. We present an algorithm that constructs all the Kirchhoff graphs

up to a fixed edge multiplicity. We explore the tiling of prime Kirchhoff

graphs. Specifically, we show the existence of countably infinitely many

prime Kirchhoff graphs given a set of initial fundamental Kirchhoff graphs.

We also explore the minimal multiplicity for which nontrivial Kirchhoff

graphs exist.



1 Introduction

Kirchhoff graphs are originally motivated by the study of electrochemical reac-

tion networks; they are circuit diagrams for these networks ([1], [2]). A Kirchhoff

graph is a connected vector graph whose cycles are orthogonal to its vertex cuts.

More specifically, given a matrix R, a Kirchhoff graph has properties that all of

its cycles form a basis for Null(R), and all of its vertex cuts lie in Row(R).

Many properties of Kirchhoff graphs have been explored in the past, for ex-

ample, Kirchhoff graph uniformity ([3],[4]). Fehribach & McDonald [5] showed

how to construct rank-two, nullity-two Kirchhoff graphs. In a previous MQP [6],

Gietzmann-Sanders presented an algorithm for construction Kirchhoff graphs

inside a given frame (bounding box) . This MQP aims to explore the construc-

tion and the tiling of Kirchhoff graphs in order to study how Kirchhoff graphs

interact with one another.

Section 2 gives a brief background on Kirchhoff graphs. Section 3 presents

an algorithm that constructs all Kirchhoff graphs up to a fixed edge multiplicity

given R. Section 4 explores the tiling of prime Kirchhoff graphs. Specifically, it

explores the number of possible prime Kirchhoff graphs given an initial funda-

mental set of Kirchhoff graphs.

2 Kirchhoff Graphs

Kirchhoff graphs are graphs whose edges are vectors (or whose edges are assigned

vectors) that satisfy an orthogonality condition between its cycles and its vertex

cuts. Consider a set S := {s1, s2, · · · , sn} of vectors in a vector space V over

Q. For simplicity, suppose that no vector in S is a scalar multiple of another

vector is S. Suppose there is a k where 1 < k < n so that {s1, s2, · · · , sk} is the

basis for Span(S). Then for [s1, s2, · · · sn], a row vector of vectors, there is a

coefficient matrix C ′ such that [s1, s2, · · · sn] · [C ′/−Ik] = 0 where [C ′/−Ik] is

a block matrix with C ′ over Ik. Note that if the entries of R are not integers, we

can write R in the form of [qIk|C] where q ∈ Z+ is the least common multiple

of denominators of the fractional entries in R, so the entries of R are integers,

and C is the block matrix with entries multiplied by q. Then N := [C/ − qIk]

is the null matrix for S, and R := [qIk|C] is the row matrix for S. Specifically,

the columns of N is a basis for Null(R), and the columns of R can be used to

represent S. This means that any matrix A that is row equivalent to R has the

same row space and null space as R.

Definition 2.1. A vector graph G is a pair G = (V, S), where V is a set of

vertices, and S is a set of edge vectors as discussed above. There is a cycle in

the graph only when the corresponding vectors add to zero in the vector space.
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Definition 2.2. For a vertex v in a vector graph G, the vertex cut of v,

denoted λ(v) = {λ1, · · · , λn}, has entries correspond to the vectors s1, · · · , sn.
For each i, entry λi is the net number of si that exit vertex v. λi ∈ Z is negative

if a vector is entering v, positive if a vector is leaving v, and zero if it is not

involved. Each vertex is situated in Zk and is associated with a coordinate

(x1, · · · , xk), where k = dim(Row(R)).

Definition 2.3. A cycle C in a vector graph G is an alternating sequence of

vertices and edges that starts and ends with the same vertex in which no vertex

appears twice except for the first and the last vertex. Cycles in a vector graph

corresponds to linear combinations of the edge vectors s1, · · · , sn that add to

the zero vector.

Definition 2.4. The cycle vector of a cycle C, denoted χ(C) = {χ1, · · · , χn},
has entries correspond to vectors s1, · · · , sn. For each i, entry χi is the net

number of times si appears in the cycle. Add 1 to the i-th component each

time C traverses an si in the forward direction, and subtract 1 for each si in

the backward direction.

This leads to the definition of a Kirchhoff graph.

Definition 2.5. Let A be any matrix that is row equivalent to R. A vector

graph G is a Kirchhoff graph for A if and only if the following conditions are

satisfied:

1. For uj ∈ Z, u = [u1, u2, · · · , un]
T ∈ Null(A) if and only if there is a basis

of cycles in G where, for each j, 1 ≤ j ≤ n, the j-th directed edge appears

with multiplicity |uj |.

2. For a given vertex of G, if the j-th edge exists with multiplicity vj ∈ Z,
then λ(v) ∈ Row(A).

Note that because of the fundamental theorem of linear algebra, Row(A)

and Null(A) are orthogonal compliments:

Row(A) ⊥ Null(A), RowT (A)⊕ Null(A) = Qn

Additionally, A has a Kirchhoff graph if and only if R has a Kirchhoff graph,

since they are row-equivalent to each other.

Definition 2.6. Let G be a Kirchhoff graph with edge vectors s1, · · · , sn. G
is uniform if each si occurs the same number of times in G.

Definition 2.7. A vector graph G is vector 2-connected if and only if for

any pair of vector edges si and sj , there exists a cycle c such that the cycle

vector χ(c) is nonzero with respect to both si and sj .
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Theorem 2.8. (Reese, Fehribach, Paffenroth, Servatius, 2019 [4]) Ev-

ery vector 2-connected Kirchhoff graph is uniform.

The authors use a linear algebraic equivalent to Kirchhoff graphs to prove

this result. All Kirchhoff graphs mentioned in this MQP will assumed to be

vector 2-connected, hence uniform.

Definition 2.9. Given a 2-connected Kirchhoff graph G, the multiplicity

m(G) is the number of times each edge appears in G. When it is unambiguous,

we simply write m.

Definition 2.10. A null Kirchhoff graph is a Kirchhoff graph with only one

vertex and no edges.

Example 2.11. Suppose we have vectors s1 = sin2 x, s2 = cos2 x, s3 = 1,

s4 = 1 + sin2 x in L2[0, π]. Then the null matrix is

N =


1 2

1 1

−1 0

0 −1

 ,

which means

s1 + s2 = s3

2s1 + s2 = s4

are satisfied by the null matrix. The row matrix then is

R =

[
1 0 1 2

0 1 1 1

]
,

where each column represents an edge vector. The vector graph in Figure 1 is

a Kirchhoff graph for R and any graph that is row equivalent to R.

The vertex cut for each vertex in G lies in Row(R). For example, the vertex

v0 = (0, 0) has one copy of s1, zero copy of s2, one copy of s3, and two copies

of s4 coming out of it, so

λ(v) =
[
1 0 1 2

]
∈ Row(R).

All cycles of G also lie in Null(R). For example, the cycle C = (0, 0)− (1, 0)−
(1, 1)− (0, 0) has cycle vector

χ(C) =
[
1 1 −1 0

]
∈ Null(R).
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Figure 1: Kirchhoff graph for R. Hash marks indicate multiplicity and vertex
coordinates are given by ordered pairs.
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Definition 2.12. Let G be a Kirchhoff graph with vertices {v1, · · · , vn} sit-

uated in Zk. Let pv = (x1, · · · , xk) be Cartesian coordinate of vertex v. Let

|pv| =
∑k

i=1 xi. Then the anchor vertex vϵ is the vertex with minimal |pv|. If
for two vertices v1, v2, |pv1 | = |pv2 |, then the anchor vertex is the vertex with

smallest x1, then x2 etc. We then place the anchor vertex of G at (0, · · · , 0)
and place other vertices correspondingly.

Definition 2.13. Given two Kirchhoff graphs K1,K2, and a coordinate x ∈
Zn, we define addition (K1+K2,x ) as drawing the anchor vertex of K1 at (0, 0)

and the anchor vertex of K2 at coordinate x . And V (K1 + K2) = V (K1) ∪
V (K2), E(K1 +K2) = E(K) ∪ E(K), with m(K1 +K2) = m(K1) +m(K2).

When it is unambiguous, we write K1 +K2 as a shorthand.

Example 2.14. Given

R =

[
2 0 1 1

0 2 1 −1

]
,

and two Kirchhoff graphs K1,K2 (Figures 2 and 3) associated with it,

Figure 2: Kirchhoff graph K1. Notice that it has vertex cuts in the row space
and the cycles for a basis for the null space.

The addition (K1 +K2, (1, 1)) is shown in Figures 4.

Definition 2.15. Given a Kirchhoff graph G, its chiral graph is achieved by

rotating G 180 degrees and reversing edge vectors.

Definition 2.16. A Kirchhoff graph is a self-chiral if its chiral is itself. In

other words, it is invariant under the chiral action.

Definition 2.17. Given n Kirchhoff graphs K1, · · · ,Kn, the set generated

from the graphs is defined as ⟨K1, · · · ,Kn⟩ = {a1K1 + · · · + anKn : ai ∈ Z},
where aiKi is the set of all graphs that can be made by tiling or subtracting Ki
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Figure 3: Kirchhoff graph K2.

Figure 4: Addition example for (K1 +K2, (1, 1)). When it is unambiguous, we
can just write K1 +K2.
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together, at any coordinate, and ai is negative only when there exists ai copies

of Ki in the tiled Kirchhoff graph that can be taken out.

Definition 2.18. If S′ is a set of Kirchhoff graphs and S is a subset of S′ such
that S′ = ⟨S⟩, then S is called a generating set of S′.

Definition 2.19. A Kirchhoff graphG is prime if and only ifG has no nontriv-

ial sub-graph decomposition. In other words, G cannot be written as G1 +G2

where both G1 and G2 are nontrivial Kirchhoff graphs. A Kirchhoff graph is

composite otherwise.

Definition 2.20. A fundamental set for S is a minimal generating set with

respect to multiplicity and cardinality.

3 Finding Kirchhoff Graphs via an Algorithm

Given a matrix R = [qI|C] with entries in Z and its associated set of edges

vectors S, we are interested in whether a Kirchhoff graph exists for R. If so,

we want to find all Kirchhoff graphs associated to R. One way to do so is

through an exhaustive search algorithm. Specifically, given R and an edge

vector multiplicity mmax, we want to find all Kirchhoff graphs with multiplicity

up to mmax that associate with R.

For this algorithm, we use Theorem 2.8 to assume that the Kirchhoff graphs

we are looking for are uniform, i.e., all edges have the same multiplicity. Doing

so allows us to have exactly m copies of each edge vector and stop the algorithm

when the multiplicity exceeds mmax.

The code is implemented in java and can be found at https://github.com/

Jessica-Wang-Math/Kirchhoff.git

3.1 Structure of the Algorithm

Below is a short description of the backtracking exhaustive search algorithm for

a given matrix R and multiplicity mmax.

1. Find all possible vertex cuts with entries between −mmax and mmax by

finding all linear combinations of the row vectors of R. Let Λ be the set

of all possible vertex cuts with an arbitrary order. Initialize T to be an

empty list which we will add vertices into. This will serve as our “to-do”

list.

2. Construct an anchor vertex, assign the first vertex cut in Λ to the anchor

vertex. Add the set of edges according to the vertex cut. If doing so results

in vertices to have coordinates (x1, x2) where x1 < x2, then we abandon
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this vertex cut and remove all the vertices that were constructed. Add all

vertices neighboring to the anchor vertex to T.

3. Go to the next vertex in the graph (according to the order in T), assign an

appropriate vertex cut to it. Delete this vertex in T and add its neighbor-

ing vertices to T. If the current vertex cut is not in Λ or doing so results

in having m(G) greater than mmax, then we abandon this vertex and goes

back to the previous vertex, and assign the next vertex cut in Λ to it.

4. We repeat step 3 until either

• we find a graph with all vertices assigned to a vertex cut in S, which

means we have likely found a Kirchhoff graph, or

• we have exhausted all cuts in S, which means there is no Kirchhoff

graph with multiplicity n, n < mmax associated to R.

5. If a Kirchhoff graph is found, we add it to a list of graphs, and continue

the process with step 2 to find the next possible graph until T is empty.

3.2 Acceleration of the Algorithm

In addition to developing and implementing the algorithm, there are also a few

steps we took in order to speed up the graph-finding process.

For step 1 in Section 3.1, we want to find all possible vertex cuts c that are in

Row(R). Originally, we generated all linear combinations of the row vectors of R

that have entries between −mmax andmmax. However, this was computationally

costly and the algorithm consistently spent hours on finding the vertex cuts even

for relatively small mmax. To improve this, we can start with constructing the

vertex cut instead. We generate all possible permutations of c with entries from

−mmax to mmax, then check if it is in Row(R). To do so, We can construct

the augmented matrix B=
[
RT | c

]
. Then c is in Row(R) if and only if B is

consistent. This would result in only checking (2mmax + 1)n vertex cuts, where

n is the number of edge vectors in R.

Another concern is that the algorithm would waste time by generating dupli-

cate Kirchhoff graphs. To solve this, we can consider only the Kirchhoff graphs

whose anchor vertex lies above or on the line x2 = x1 (as described in step 2

above.) If assigning the anchor vertex (which is situated at the origin) a vertex

cut would result in having vertices with coordinate (x1, x2) with x1 < x2, then

we deem this vertex cut invalid for the null vertex. This improves the efficiency

by cutting down the time spent on finding duplicate graphs.
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3.3 Examples of Kirchhoff Graphs found by the Algorithm

Given R =

[
2 0 1 1

0 2 3 1

]
and an upper bound multiplicity mmax = 6, the

algorithm finds 16 non-trivial Kirchhoff graphs, as shown in Figure 5. Notice

that mmax = 6 is the smallest multiplicity for any Kirchhoff graphs associated

to this R, meaning that all 16 are prime Kirchhoff graphs. Interestingly, the

first 8 Kirchhoff graphs are self-chirals, and the rest show up in pairs in which

one is the chiral of the other.

For another example, let us consider R =

[
1 0 2 1

0 1 1 2

]
, mmax = 6 that

was shown in Example 2.11. The algorithm finds 4 prime Kirchhoff graphs, as

shown in Figure 6. Two form a chiral pair, and two are self-chirals.

4 Tiling of Kirchhoff Graphs

Definition 4.1. The frame size of a Kirchhoff graph G situated in Cartesian

space Zn is an n-tuple (x1, · · · , xn) with xi being the maximal length of any sj
in that direction.

Proposition 4.2. Given a Kirchhoff graph G for matrix R, there exists an

algorithm to determine if G is prime.

Proof. To check if a Kirchhoff graph is prime, we start by removing any edge

vector. We then remove additional edge vectors associated with this vertex until

this vertex has a vertex cut in Row(R), which may result in a null vertex. After

that, we move on to a neighboring vertex and continue the same process. If

doing so results in every edge being removed, then G is prime. If such process

terminates and a nontrivial Kirchhoff graph is left, then G is composite, and is

the sum of the remaining Kirchhoff graph and the Kirchhoff graph formed from

the removed edges.

Proposition 4.3. For the two fundamental Kirchhoff graphs F1,F2 (see Figures

2 and 3) for matrix

R =

[
2 0 1 1

0 2 1 −1

]
,

there exists a set of prime Kirchhoff graphs A ⊆ ⟨F1,F2⟩ of infinite cardinality.

Proof. Graphics of this proof can be found in Figure 7. First, we write the

edges of F2 as a multiset M = E(F2) = {s1, s1, s2, s2, s3, s3, s4, s4} where si
is the i-th column of R and the multiplicity of each si is the the multiplicity of

F2. Now, we will generate a prime Kirchhoff graph from F1 and F2 by tiling F1

together in a way that forms a copy of F2 inside the resulted composite graph,

always placing each F1 so the edges not included in constructing F2 lie to the
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Figure 5: 16 non-trivial prime Kirchhoff graphs for matrix R
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Figure 6: 4 prime Kirchhoff graphs for matrix R
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outside of the partial construction. One way to do so is by creating a composite

graph C1 = (F1+F1, (1, 1)), which covers five out of eight edges of F2. Remove

the five edges from M to get M1 = {s1, s2, s3}. To include the second s1, we

can create C2 = (C1 + F1, (1,−1)), since we want to enclose F2 in the graph.

Now, s1 and s3 have been completed, so we only have M2 = {s2} to tile. We

will create C3 = (C2 + F1, (2, 0)), which now has a copy of F2 inside. We can

remove it to result in our desired graph P1 = (C3 − F2, (0, 1)).

Note that P1 has no copies of F1 in it because every F1 has contributed at

least one edge in the creating of F2. P has no copies of F2 in it since only one

was created and it was taken out. We can see P is prime if we apply algorithm

4.2 to it. Starting from the anchor vertex, have to remove edges in order for the

vertex cut to remain in the row space, which consequently will remove all edges

in P .

From P, we can continue expanding the graph by tiling more F1 to create

an enclosed F2 to take out. One way to do so to create C1 = ((P +F1, (2, 2))+

F1, (3, 1)). Then we can take out a copy of F2 inside to create the prime graph

P2 = (C1 − F2, (2, 2)). Notice that P2 is prime by the same argument using

algorithm 4.2.

We can keep expanding the graph by tiling Ci+1 = ((Ci+F1, (i, i)),F1, (i+

1, i−1)), then obtain a prime graph by subtracting Pi+1 = (Ci−F2, (i, i)). Pi+1

is prime since it has the same pattern of vertex cuts as P2, i.e., the outside ver-

tices have vertex cuts (1, 1, 1, 0), (−1,−1,−1, 0), (1,−1, 1, 0), (−1, 1, 0,−1), and

the inside vertices are null vertices.

The set of graph A = {P1,P2, · · · } are unique from each other since they

have distinct frame sizes and all graphs are connected graphs. Hence A must

have infinite cardinality.

Note that this kind of construction is possible in many other cases, especially

when the Kirchhoff graphs are symmetric. In many cases, it is possible to expand

a given fundamental graph and obtain prime graphs of bigger multiplicity. It

seems possible to construct countably infinitely many prime Kirchhoff graphs

for any edge set S.

5 Future Work

This project has motivated some further questions, such as:

• Given a matrix R, what is the smallest m such that nontrivial Kirchhoff

graphs exist?

• Given a matrix R and multiplicity m, how many prime Kirchhoff graphs

are there?
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Figure 7: The expansion method mentioned in Proposition 4.3
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• Given a matrix R, does there exist a large fundamental graph F ∗ ̸∈
⟨F1,F2⟩?

• Is there a condition for the existence of chiral graphs given a matrix?

• What algebraic structure does a family of Kirchhoff graphs form?

These questions will better help us to understand Kirchhoff graphs and their

tilings. We hope to explore them in the future.
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