
Proactive Planning through Active Policy Inference in
Stochastic Environments

by

Nolan Poulin

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

by

May 2018

Committee in charge:

Professor Jie Fu, Thesis Advisor, Chair
Professor Zhi Li, Committee Member

Professor Carlo Pinciroli, Committee Member

The dissertation of Nolan Poulin, titled Proactive Planning through Active Policy
Inference in Stochastic Environments, is approved:

Chair Date

Date

Date

Worcester Polytechnic Institute

Abstract

In multi-agent Markov Decision Processes, a controllable agent must perform op-

timal planning in a dynamic and uncertain environment that includes another un-

known and uncontrollable agent. Given a task specification for the controllable

agent, its ability to complete the task can be impeded by an inaccurate model of

the intent and behaviors of other agents. In this work, we introduce an active policy

inference algorithm that allows a controllable agent to infer a policy of the envi-

ronmental agent through interaction. Active policy inference is data-efficient and

is particularly useful when data are time-consuming or costly to obtain. The con-

trollable agent synthesizes an exploration-exploitation policy that incorporates the

knowledge learned about the environment’s behavior. Whenever possible, the agent

also tries to elicit behavior from the other agent to improve the accuracy of the

environmental model. This is done by mapping the uncertainty in the environmen-

tal model to a bonus reward, which helps elicit the most informative exploration,

and allows the controllable agent to return to its main task as fast as possible. Ex-

periments demonstrate the improved sample efficiency of active learning and the

convergence of the policy for the controllable agents.

Acknowledgments

Thank you so much to my thesis advisor, Professor Jie Fu, who guided me

through the thesis process. I am grateful for my improved abilities to perform

research and develop algorithms. Thank you so much to my committee members,

for providing great feed-back and taking the time to review my work. Also, thank

you to the students of CIRL who have always provided

I’m forever grateful to my parents, Deb and Steve Poulin, who have given me

so much support and always reminded me that they’re proud of me for being who

I am.

Finally, thank you to McKayla. Your support and teamwork during my graduate

studies have been unparalleled.

i

Contents

1 Motivation for Active Policy Inference 1

1.1 Introduction . 2

1.2 Inferring Latent Variables in MDPs 3

1.2.1 Model Based Solutions . 4

1.2.2 Exploration in Policy Gradient Methods 6

1.2.3 Learning from Demonstration 7

1.2.4 Active Learning . 8

1.3 Contributions of this work . 9

2 Policy Inference with Gaussian Policy Estimate 11

2.1 Hidden-parameter MDP . 12

2.2 Unknown Policy Parameterization . 13

2.2.1 Preliminaries . 13

2.2.2 Q-function Approximation . 14

2.3 Policy Inference . 17

2.3.1 Gaussian Distribution of Policy Parameters 20

2.4 Single-agent policy inference experiment 24

2.4.1 Simulation environment . 24

2.4.2 Experiment Hyper-parameters 26

ii

2.4.3 Results . 28

2.4.4 Experiment with Fewer Kernels 31

3 Policy Inference in a Multi Agent Environment 35

3.1 Policy Synthesis for the Controllable Agent 35

3.1.1 EM-based Approximate Optimal Control 36

3.2 Multi-agent Policy Model . 40

3.2.1 Fixed and Mobile kernels for policy inference 40

3.2.2 True Multi-Agent Policy of Agent 2 41

3.3 Policy Synthesis Comparison . 43

3.4 Multi Agent Inference Experiment . 45

4 Proactive Policy Inference 50

4.1 Proactive Inference . 50

4.1.1 Characterizing Unknown Parameters 51

4.2 Single Agent Proactive Inference . 54

4.2.1 Experimental Results . 56

4.3 Multi-agent Proactive Inference . 64

4.3.1 Asymptotic Discount Optimal Policies 64

4.3.2 Multi-agent Algorithm . 64

4.3.3 Bonus Reward . 66

4.3.4 Proactive Multi-agent Experiment 67

4.3.5 Discussion . 67

5 Conclusion 71

A 73

A.1 8-by-8 Grid World . 73

iii

A.2 32-by-32 Grid World . 74

iv

List of Figures

2.1 True Policy of α2. 26

2.2 State visitation count in single agent demonstration. 27

2.3 Feature values for a kernel centered at cell 0. 28

2.4 L̃(D|ρ) with parameters in Table 2.2. 29

2.5 ||π2, π̂2||1 with parameters in Table 2.2. 30

2.6 µw for each iteration with parameters in Table 2.2. 30

2.7 νw for each iteration with parameters in Table 2.2. 31

2.8 π̂2 with parameters in Table 2.4. 32

2.9 L̃(D|ρ) with parameters in Table 2.4. 33

2.10 ||π2, π̂2||1 with parameters in Table 2.4. 33

2.11 µw with parameters in Table 2.4. 34

2.12 νw with parameters in Table 2.4. 34

3.1 Mixture of finite-time MDPs. Note this report uses notation that

each finite-time MDP ends at time T instead of T . Image courtesy

of [TSH10]. 37

3.2 Hidden Policy of α2 in an empty, deterministic, world. 42

3.3 Hidden Policy of α2 in an empty, deterministic, world with s1 = 11. . 44

3.4 Optimal policy of α1 from VI with s2 = 12. 45

3.5 Approximately optimal policy of α1 from EM with s2 = 12. 46

v

3.6 L̃(D|ρ) with parameters in Table 3.4. 48

3.7 Fraction of maximum possible ||π2, π̂2||1 (see Eq. 3.6) with parame-

ters in Table 3.4. 48

3.8 µw for each iteration with parameters in Table 3.4. 49

3.9 νw for each iteration with parameters in Table 3.4. 49

4.1 A set of roll-outs of π2 that contains very few state-action samples. . 55

4.2 P (s
(0)
2) ∼ I0 as defined by Eq. 4.3 . 56

4.3 50 trial average: Fraction of maximum possible ||π2, π̂2||1 (see Eq.

3.6) with parameters in Table . 59

4.4 50 trial average: Fraction of maximum possible ||π2, π̂2||1 (see Eq.

3.6) with Algorithm parameters in Table 4.3. 60

4.5 100 trial average: Fraction of maximum possible ||π2, π̂2||1 (see Eq.

3.6) with Algorithm parameters in Table 4.4. 62

4.6 50 trial average: Fraction of maximum possible ||π2, π̂2||1 (see Eq.

3.6) with Algorithm parameters in Table 4.5. 69

4.7 50 trial average of trajectories where α1 reaches cell=0 (goal) with

Algorithm parameters in Table 4.5. 70

A.1 8-by-8 grid world for a single agent. 73

A.2 True policy of α2 in a single agent environment. Grid size is 32-by-

32. Arrow sizes are proportional to probability of taking the action

in each direction. Dots represent the stay-action. 74

A.3 Visitation count given 150 trajectories with 5 time steps using the

true policy of α2 (Fig. A.2) in a single agent environment. Grid size

is 32-by-32. Blue circles represent the standard deviation of kernels

used. 75

vi

A.4 Inferred policy of α2 in a single agent environment given visitation

count (Fig. A.3) in a single agent environment. Grid size is 32-by-32.

Arrow sizes are proportional to probability of taking the action in

each direction. 76

A.5 The numerator of Eq. 4.3,
∑

a2
Ω(s, a2), is proportional to the proba-

bility of initial state being selected after inference results in Fig. A.4.

This heat-map is an alternative visualization of the 3D bar-plot like

Fig. 4.2 . 77

A.6 The true error, ||π2, π̂2||1, after inference results in Fig. A.4 78

vii

List of Tables

2.1 Agent motion model given attempted East (right) action. 25

2.2 Hyper-parameters used for single agent inference. 27

2.3 Observed data for single agent inference. 28

2.4 Hyper-parameters for inference with K = 7. 32

3.1 Parameters to synthesize hidden π2((s1, s2)). 43

3.2 Parameters to synthesize optimal π1((s1, s2);θ∗). 44

3.3 Observed data for multi agent inference. 47

3.4 Hyper-parameters used for multi-agent inference. 47

4.1 Parameters for single-agent active inference (Alg. 1) 58

4.2 Hyper-parameters used for multi-agent inference. 58

4.3 Parameters for longer single-agent active inference (Alg. 1) 60

4.4 Parameters for single single-agent active inference (Alg. 3) 61

4.5 Parameters for multi-agent active inference (Alg. 4) 67

4.6 Hyper-parameters used for multi-agent inference. 68

viii

Chapter 1

Motivation for Active Policy

Inference

A fundamental assumption of this thesis is that when an autonomous agent moves

in an environment it is attempting to fulfill a specified task. The agent could be an

autonomous vehicle or a robotic manipulator and in a realistic environment, there

will be static obstacles and other autonomous and uncontrollable agents. Tasks for

autonomous agents are often multifaceted. Two examples are:

• “Drive from point-A to point-B and neither leave the road nor collide with

another car or pedestrian.”

• “Pick up everything on the table and put it in the box that the human is hold-

ing.”

It is clear that accurately representing the probabilistic motion distribution of

uncontrollable agents – cars, pedestrians, or people holding boxes – will benefit the

autonomous agent as it tries to complete its main objective. This thesis details an

algorithm that elicits informative interactions with an uncontrollable agent that a

controllable agent uses to effectively plan its future actions.

1

1.1 Introduction

Modeling stochastic environments with discrete state and action spaces has tradi-

tionally been accomplished with a Markov Decision Process (MDP). An agent that

takes planned actions in an MDP is following its policy. When an autonomous

agent is given a task to complete in its environment, the agent is rewarded upon

completing this task. In a realistic scenario, there are often too many unknowns to

solve for a control policy that has the highest likelihood of returning a reward. The

agent may not know how the actions it can take affect its transitions from one state

to another and, therefore, can’t immediately make an efficient plan. Or, the agent

may know what actions to take to earn the reward, but environmental disturbances

require that the agent adapt. In the latter case, the agent needs to learn a model

of its environment.

In this work, we’ll assume that a stochastic environment has been successfully

modeled, and that, given an arbitrary task, our controllable agent can solve for

an optimal policy that maximizes the likelihood of reward. However, when we

introduce a second, uncontrollable, agent into the environment the controllable agent

needs learn how the uncontrollable agent will affect it’s plan. We build upon policy

gradient methods to infer the policy of the uncontrollable agent, and subsequently

converge to the optimal policy for the controllable agent over the course of many

interactions. This implementation parameterizes the policy with a multivariate-

normal distribution. We use the learned policy-parameter variance to quantify the

uncertainty in the inferred parameters, and use that to guide exploration.

In Sections 1.2-1.3 we’ll cover the how current models and algorithms built the

foundation for this policy inference algorithm. Section 2.1 will cover common nota-

tion in Reinforcement Learning (RL) and MDP to serve as preliminary information

2

to the main result in Chapter 2. Here, we’ll test the inference algorithm by inferring

the policy of a single agent. The following chapter, 3, will extend the model and ex-

periments to two agents. Finally, Chapter 4 will introduce our algorithm for active

policy inference and demonstrate results with several simulation experiments.

Consider the following: Each day, a mobile robot repeatedly traverses a factory

floor to deliver a parcel. Eventually, a second robot also starts working in the area,

and the first robot does not know anything about the second robot’s task. The first

robot must not collide with the second robot and, without knowledge of the second

robot’s intent, it now takes longer to deliver its parcel each day. After each day,

the first robot can use it’s observations of the inter-robot interactions to improve

its delivery plan. Is there a better solution than greedily updating the plan? Can

the first robot plan to move in such a way that will expose more about the second

robot?

1.2 Inferring Latent Variables in MDPs

Given an unknown system that is modeled as an MDP, adaptive planning [HL12]

means that the agent must learn or infer latent (hidden) environmental parame-

ters and replan when it has a new estimate of the unknown system. The main

techniques to accomplish this fall into two distinct categories, model-based RL, and

model-free RL; the survey in [PN17] provides a succinct comparison. Generally,

model-based RL attemts to learn the underlying transition model. By learning an

approximately correct environmental model, an agent can optimally solve problems

[FT14][BWH12][DR11]. Model-free RL does not learn an environmental model, but

learns the actions, or control inputs, to take at given states by performing gradi-

ent ascent on the likelihood of a reward function [Wil92][PS08]. In general, the

3

RL community is now focusing on methods that combine model-free with model-

based approaches called actor-critic methods [KT00]. Actor-critic methods update

an estimated environmental model to help reduce the variance in the policy-gradient

common in model-free implementations [PS08].

1.2.1 Model Based Solutions

For the described multi-agent factory scenario, suppose that there are a set of pa-

rameters that can characterize the policy of the second, unknown and uncontrollable,

robot. To capture these unknown parameters, we’ll extend the model from an MDP

to a Hidden Parameter Markov Decision Process (HiP-MDP) [DVK16]. HiP-MDPs

are well suited to problems where the number of parameters to learn is small rela-

tive to the size of the state-action space. This is a very applicable framework when

certain aspects of the environment are already known, and sensory information is

precise and accurate.

Arguably, simply exploiting information from a multi-agent interaction only re-

quires a controllable agent to capture the intent of an uncontrollable agent. Recently,

the Mixed-Observability MDP (MOMDP)has been presented in [BWF+13] as a an

instantiation of a Partially-Observable MDP (POMDP)[KLC98]. In this MOMDP,

an autonomous golf-cart maintains a belief over a pedestrian’s intent when they

interact. The authors state that “the [golf-cart]’s ultimate goal is to complete the

specified task and not to recognize intention.” In other words, learning the policy of

an uncontrollable agent provides excessive information to handle a vehicle-pedestrian

encounter in a crosswalk.

In comparison to HiP-MDP and MOMDP, more general classes of RL algo-

rithms assume that the entire transition model is unknown. To prove that a tran-

sition model has been learned, [FT14] puts guarantees on the samples required to

4

achieve a Probably Approximately Correct MDP (PAC-MDP). The authors show

that the number of samples needed to learn a transition system in an MDP that has

a bounded model error scales polynomially. The authors also present an Maximum

Likelihood Estimate (MLE) of the transition model parameters, complete with em-

pirical mean and variance, but this requires a parameter set that scales with the

size of the state and action domains.

The RMAX algorithm from [BT02] is specifically geared to solve a multi-agent

MDP. RMAX , however, would require that the controllable agent coerce visits to

each joint-state1enough times to conclude, with a specified confidence, what the

probability of future joint states is. This essentially models the action distribution

of the other agent(s) as part of the underlying transition model.

Using another approach in the face of uncertain transitions, [BWH12] merge

adaptive and robust methods for solving MDPs. Normally a robust solution uses

the minimax approach, it plans for the worst-case transition. Instead of planning for

the worst, an unmanned aerial vehicle (UAV) models its uncertain transitions with

Dirichlet distributions. In an algorithm like an Extended Kalman Filter (EKF),

transition samples form an empirical covariance matrix of the system’s transition

model so that the UAV can reduce its exposure to a failed mission. This allows for

the system to have a failure risk-tolerance instead of using a conservative minimax

plan.

The objective of [CLP17] is learn the true model of several adversaries by min-

imizing “the cost of information gain”. Each adversarial agent is modeled with an

MDP and a set of pre-designed temporal logic specifications. The goal is to iden-

tify which specification each adversary is trying to satisfy. The controllable agent

receives a reward by maximizing the information gain, the entropy of the current

1A joint-state is the combination of the states of individual agents.

5

state belief.

Similarly, [LXM13] assume that an adversary in an MDP may have a non-

stationary policy. If the adversary chooses to play “nicely”, then a minimax policy

would be far too conservative. Each time a state transition is observed, the authors

record it and subject each new transition to a “stochasticity check”, essentially trying

to detect a change in the adversarial policy using the Chernoff bound. Both [LXM13]

and [BWH12] have tried to overcome the conservativeness often encountered in min-

imax policies, but environmental agents can be agnostic, or even complimentary, to

the controllable agent’s intent.

In general, model-based solutions allow the agent to leverage its belief about

future states as it plans. This belief is reflected in the value of each state, but is

very sensitive to model errors.

In this work, we assume that the second agent’s policy is unknown but can

be parameterized. We’ll use a HiP-MDP to learn the policy from observed state-

sequences; we do not know what actions the agent has decided to take at each

state. In single agent scenarios, [FT14], [BWH12], [PS08], and [TMZ+14], the agent

always knows what action it just took. This work shows that we can learn the hidden

action-distribution of an uncontrollable agent, while only observing the outcomes of

those actions.

1.2.2 Exploration in Policy Gradient Methods

If one agent needs to interact with another agent to learn that agent’s policy, then

some level of “exploration” will help it learn faster [NNXS17]. Instead of always tak-

ing an action on the path towards the highest reward, an agent can sometimes take

sub-optimal actions that might provide more information about hidden parameters.

This work will implement policy-gradient methods to infer a policy from observed

6

state-sequences. Policy-gradients [Wil92] are traditionally applied in model-free RL

as well as actor-critic RL. Although this work will use policy-gradients in model-

based learning, it is worthwhile to describe how exploration is achieved by other

policy-gradient implementations, and how it produces more informative samples

(state-sequences).

The PILCO algorithm, from [DR11], claims exceptional sample efficiency as it

learns a dynamics model of a physical cart-pole swing-up. It learns the optimal

control inputs to the system via a policy-gradient, but incorporates the variance of

policy parameters into the policy synthesis by modeling the unknown dynamics as

Gaussian Processes (GPs).

Many of these algorithms have relied on the random-sampling of policy param-

eters to effectively add entropy to their learning process. For instance, [PS08] use a

stochastic disturbance acceleration policy to control robot manipulator servos. Sim-

ilarly, [SOR+10] samples actions from a distribution, with a mean value determined

by learned feature weightings.

If an agent is synthesizing a policy, regularizing a value function with an entropy

term puts value on exploration [NNXS17]. Entropy regularization works in-practice

but this is a heuristic that does not guide exploration in a formulaic approach. This

work will infer the policy of an uncontrollable agent using a policy-gradient method,

and directly use the second moment of the policy parameters to guide exploration.

1.2.3 Learning from Demonstration

The stated inference problem is similar to imitation learning, also referred to as

learning from demonstration. These algorithms attempt to learn a policy from

expert demonstrations, although the “expert” may be following a sub-optimal policy.

Given a set of state-action samples and a set of pre-defined features, [HLZP17]

7

discuss the number of samples required to learn an unknown transition model and

policy from demonstration given a maximum model-error threshold. The authors

can also estimate the log-loss function used by the expert.

In an imitation learning approach, the DAGGER algorithm learns to complete

a task in a supervised fashion [RGB11]. Given an initial set of trajectories from

an expert, the agent then attempts to mimic the policy. When an agent is trying

to mimic an expert’s policy, the agent’s probability of making a “wrong” decision

over the course of a trajectory grows polynomially with the length of the trajectory.

DAGGER will minimize that probability of error by minimizing an upper bound to

the 0-1 loss of a learned trajectory; the 0-1 loss would count the number of times

the agent took a different action than the expert, but this is not always observable.

At any point during a trajectory, the agent has some probability of asking for the

expert for a correction that will last a few time steps, creating a mixture of expert

and agent decisions. Early in the learning, the agent is likely to have made several

errors, so the expert correction is very informative. The correction will probably

start from a state that the expert would not have visited on its own, and the chance

of querying the expert for advice diminishes as the learning procedure continues.

By aggregating the observed data from previous learning stages, DAGGER pro-

duces a final policy that matches the average loss incurred during the training period.

Since the first stages had a high proportion of expert trajectory-segments, this final

policy is comparable to the expert’s. As the number of stages goes to infinity, the

loss of the final policy will converge to the loss of the best policy.

1.2.4 Active Learning

When an agent is trying to learn a model, e.g., a transition or value function,

collecting data from areas of the largest model error is clearly the best way to

8

improve a model estimate. The true model error is rarely available to an agent,

however. As a proxy, agents can minimize an upper bound to that error, or seek

data that minimizes the uncertainty in the model itself. An agent that intentionally

seeks data that will minimize that error or uncertainty is employing active learning

in the RL task. In fact, DAGGER [RGB11] has been described as “active learning

from an oracle” by [AWD17].

In comparison to DAGGER , [KVTT17] randomly samples policy parameters

from normal distributions and actively updates the distribution’s moments as a

function of the rewards earned by recent trajectory samples from a system. A robot

interacts with a human and is rewarded by an engagement metric. This implemen-

tation actively varies the distribution of policies that generate the trajectories to

converge to the most rewarding policy, but the mechanism to control this active

update is heuristically defined.

The key tenant of (most) active learning algorithms is determining what is un-

known in a model and adjusting the policy such that some measure of the unknown

is minimized. This helps active learning algorithms improve sample efficiency in RL.

Remark 1.2.1. It should be noted that [FSM12] uses the term “active inference”

to describe a policy synthesis algorithm for computing an optimal policy in a belief-

MDP. This synthesis algorithm shows that minimizing surprise, the negated log-

likelihood of an observed state transition, yields the same policy as maximizing the

expected reward. This should not be confused with the implementation in this work.

1.3 Contributions of this work

We apply model-based RL to a problem where one agent must learn the hidden pol-

icy of an uncontrollable agent through interaction. The policy of the uncontrollable

9

agent is fixed, it does not change with time, but might be dependent on the relative

position of the the controllable agent. The environment is stochastic, actions lead

to a distribution over future states. By learning the policy of the uncontrollable

agent, the controllable agent can optimally plan to complete its task.

We contribute three major advances. First, we apply a policy-gradient method

to infer the demonstrated policy of the uncontrollable agent. The inferred policy

is parameterized as a multivariate distribution that allows this implementation to

capture the second-moment of the policy-distribution. The second-moments quan-

tify the ambiguity in the inferred policy. Second, we’ll request the uncontrollable

agent to sample its initial state based on the ambiguity in the policy-distribution.

This provides guide for efficiently requesting policy demonstrations. Third, we’ll

show that a controllable agent can adaptively plan to proactively infer the policy of

the uncontrollable agent. The controllable agent will receive a bonus reward when

states with a high uncertainty are visited.

Unlike [LXM13] and [BWH12], we do not limit the case to adversaries; there is

a chance that the uncontrollable agent will help earn rewards. Finally, we perform

the inference with only state-sequences. The actions taken by the uncontrollable

agent are not observable, only the action-outcome.

10

Chapter 2

Policy Inference with Gaussian

Policy Estimate

The multi-agent system presented in this thesis is modeled with two agents, the

controllable agent α1 and the uncontrollable agent α2. The interaction between the

two agents is captured by a Markov Decision Process (MDP). We assume that α2

has a predefined yet unknown policy. If α1 is given a task, it can only robustly plan

for this task when it has an accurate estimate of how α2 will act. Determining the

action distribution of an uncontrollable agent given its current state is known as

policy-inference. The following definitions formally present a hidden policy in an

MDP.

After defining the Hidden-Parameter MDP, this chapter presents an inference

method that uses Monte-Carlo integration of policy parameters sampled from a

multivariate distribution. We’ll use Stochastic Gradient Ascent (SGA) to improve

the log-likelihood of an observed set of data given a policy parameterization. Section

2.2.2 details a Q-function approximation which is used to form a softmax policy like

in [NNXS17], also known as a Boltzmann [HLZP17] or a Gibbs [SO15] policy.

11

2.1 Hidden-parameter MDP

Definition 2.1.1. The interaction between two agents is captured by a hidden-

parameter MDP,

M = (S,A1 × A2, R, T, π2, I0, γ)

with the tuple defined as in [SO15] plus the hidden parameter, π2:

• S ≡ (S1 × S2) is a set of joint states with cardinality 0 < |S| <∞ .

• A1 × A2 is a finite set of actions, where A1 is the set agent one can execute

and A2 is the set available to agent two.

• R : S × A1 → R is the real-valued state-action reward function given to the

controllable agent.

• T : S × (A1 × A2) → Dist(S) is the probabilistic state transition function

T (s′|s, (a1, a2)) which yields the probability of reaching state s′ after both agents

take action pair (a1, a2) at the state s.

• π2 : S → Dist(A2) The distribution of agent two’s actions given a state. The

probability of each action is π2(a2|s).

• I0 ∈ Dist(S) is the initial state distribution.

• γ ∈ (0, 1]: The discounting factor.

This definition also leads us to a couple pivotal assumptions in this work:

Assumption 2.1.2. The state-action transition function T (·) is known.

We’ll also need two definitions from [GHL09] about policies to continue:

12

Definition 2.1.3. Markov Policy: A policy πt(s) is considered to be a Markov policy

if P (aj|ht) = P (aj|s(N)), ∀aj ∈ A, where ht = s(0), ..., s(N) is a state history ending

at some discrete time t ∈ [0,∞).

Definition 2.1.4. Stationary Policy: A policy πt(s) is considered to be a stationary

policy if πt(si) = π(si),∀si ∈ S, for all time t ∈ [0,∞).

Thus, a stationary Markov policy is fixed with respect to time, and is only

dependent on the current state of the system; it is independent of history.

Assumption 2.1.5. The unknown policy of α2, π2 is a stationary Markov policy.

Given that α1 takes some action a1, the distribution of next states is

P (s′|s, a1) =
∑
a2∈A2

T (s′|s, (a1, a2))π2(a2|s). (2.1)

With this model, the true probability of a future state s′ given the current state s is

p(s′|s) =
∑

a1,a2∈A

T (s′|s, (a1, a2))π2(a2|s)π1(a1|s), (2.2)

where, for simplicity, this report uses identical action sets, A1 ≡ A2 ≡ A. Finally,

the MDP formed by the tuple (S,A1 × A2, R, T, π2, I, γ) will be referred to as M.

2.2 Unknown Policy Parameterization

2.2.1 Preliminaries

The parameterization for π2 requires an understanding of how a reward function,

R, influences the optimal action distribution at a state s. Although we do not wish

to learn the reward function of α2, we will build approximations of the value and

13

state-action value functions used by α2. These are often a function of a reward

function.

Value Functions

Following [HL12] and [SO15], the value of a state s is defined as the expectation

over all discounted future rewards that could be earned from s. For an arbitrary,

single-agent MDP, if an agent αi follows a policy πi:

Vπi(s) = Eπi

{
∞∑
t=0

γtR
(
(s, ai)

(t)
) ∣∣∣∣s(t) = s

}
.

The subscript in Eπi {·} means that the expectation is taken over the single agent

Markov chain that is induced by αi playing policy πi in the MDP,

Vπi = Eπi
{
R
(
(s, ai)

(t)
)

+ γVπi(s
(t+1))

}
.

State-action Value (Q) Functions

Likewise, the value of an action at a particular state is the expected discounted

future reward that could be earned by following policy πi:

Qπi(s, ai) = Eπi

{
∞∑
t=0

γtR
(
(s, ai)

(t)
) ∣∣∣∣s(t) = s, a

(t)
i = ai

}
.

2.2.2 Q-function Approximation

To build an estimate of α2’s policy, π̂2, we’ll parameterize α2’s state-action value

function, Q(s, a2), with a linear-in-parameter model. Sugiyama describes this model

in detail in Section 2.2.1 of [SO15], it is also used by [HLZP17] and [AHS10]. It is

advantageous that α1 does not need to learn the reward function of α2, but only the

14

distribution of α2’s action given the joint state set, π2(s), s ∈ S. Each parameter

element determines the weighting of a feature φ : S × A2 → R. If a total of W

features are used then α2’s Q-function is approximated as

Q(s, a2) ≈ Q̂(s, a2) =
W∑
w=1

θ̂wφw(s, a2) = θ̂
>
φ(s, a2).

The estimated parameter vector, θ̂, represents feature weightings that must be

learned for the best estimate of the Q-function.

Following Chapter 3 of [SO15], we’ll use Geodesic Gaussian Kernels (GGKs)

because they intuitively incorporate any obstacles1 that exist in S into a distance

metric between a state s, and the center of a GGK, c. Consider the state-graph of

M. If there are K kernels, and the l-th kernel has center cl, then the value of the

kernel at a state s is

k(s, cl) = exp

(
−SP(s, cl)

2

2σ2
l

)
.

The Shortest Path (SP) between a state s and the l-th kernel’s center cl can be

precomputed, and the kernel standard deviation, σl, determines the effective support

of the kernel. The feature function is defined for each action, so the number of

features is W = |A| ×K. The w-th feature function is

φw(s2, a2) = I(a2 == a
(j)
2)

∑
s′2∈S2

P
(
s′2|s2, a

(j)
2

)
k(s′2, cl), (2.3)

where w = j + (l|A2| − 1) represents the index used for both feature-vector func-

tions and parameter elements, θw. Also, for each action a2 the indicator function

1Obstacles could be considered as known sink-states in M, and will be clarified in Sect. 2.4.

15

I(a2 == a
(j)
2) is defined as:

I(a2 == a
(j)
2) =


0 if a2 6= a

(j)
2

1 if a2 = a
(j)
2

j = 1, . . . , |A2|,

assuming all actions are enabled from each state s2 ∈ S2.

Given a Q-function, [NNXS17] represents the policy at a state as represented

the softmax over all actions,

π2(a2|s) = exp((Q(s, a2)− V (s))/κ), (2.4)

where V (s) = κ log
∑

a2∈A exp(Q(s, a)/κ). Also, κ is a temperature parameter. If

κ → ∞, the distribution π2(s) becomes uniform over A2. If κ → 0, the distri-

bution π2(s) becomes a Dirac Delta distribution that peaks on the action a∗2 =

argmaxa2 Q(s, a2). In the inference algorithm, we consider κ as a predefined hyper-

parameter in the range (0,∞).

This is the model used for π2 in the rest of this report. The advantage of this

parameterization is that we have reduced the number of parameters to learn from

|S| × A to W . We’ll show that we can effectively infer a policy with K � |S|.

The form used in Eq. 2.4 is equivalent to the Gibbs policy from [SO15]. It is

referred to as a Boltzmann policy in [HLZP17], [KVTT17], and [HGW+16], although

the authors have described this parameterization without reference to a temperature

parameter, in which case κ = 1.

16

2.3 Policy Inference

For α1 to plan a near-optimal policy for its own task, it must learn the policy of

the other agent, which gives the model of the MDP. The estimate of α2’s policy,

π̂2, is parameterized by a vector θ. Therefore, the estimated probability of a state

transition is

q(s′|s,θ) =
∑

a1,a2∈A

P (s′|s, (a1, a2))π̂2(a2|s,θ)π1(a1|s). (2.5)

As the α2 moves through S, the robot agent can observe the outcomes of α2’s

actions, and build a set of observed state sequences.

Definition 2.3.1. A trajectory τ is a sequence of joint states s = (s1, s2) with

time-step index t,

s(0), s(1), . . . , s(t), . . . , s(|τ |); 0 ≤ t ≤ |τ |.

Remark 2.3.2. This definition is a key difference from comparable policy gradi-

ent algorithms, such as policy gradients with parameter-based exploration (PGPE)

[TMZ+14] [SOR+10]. In lieu of state-action sequences, Section 2.3.1 will present an

inference procedure that uses observed state-action-outcome sequences. The action-

outcome is assigned to be the most probable (maximum a posteriori) action that can

lead from s to s′ using the known transition function, T (·).

Suppose the policy of agent one, π1 is known. We’ll define the probability of a

trajectory as the joint probability of each set state-transition tuple for each of the

17

two distributions, p and q:

p(τ) =

|τ |∏
t=1

p
(
s(t)|s(t−1)

)
,

q(τ |θ) =

|τ |∏
t=1

q
(
s(t)|s(t−1),θ

)
.

By using the parameter θ, q(τ,θ) is the probability of replicating a trajectory given

the parameterization.

Assumption 2.3.3. The observed demonstration set, D, is sampled i.i.d. from the

set of all possible demonstrations D.

The best inference of an environmental policy has a high likelihood of replicating

the trajectories in D.

Lemma 2.3.4. Minimizing the Kullback-Leibler divergence (KL-divergence) of the

replica distribution from the observed trajectory distribution is equivalent to maxi-

mizing the log-likelihood of the observed state sequences given a parameterized policy.

With a fixed policy for α1, π1,

argmax
θ
L(θ) = argmin

θ
KL(p||qθ).

Proof. Consider a pair of stationary policies for the two agents, π1 and π2. The

induced Markov chain is Mπ1,π2 . Let p be the probability distribution of paths in

the chainMπ1,π2 . Let qθ be the probability distribution of paths in the chain Mπ1,π̂2
.

The KL-divergence from qθ to p is

KL(p||qθ) =
∑
τd∈D

p(τd) ln

(
p(τd)

q(τd|θ)

)
=
∑
τd∈D

P (τd|D) ln

(
P (τd|D)

P (τd|θ)

)
,

18

where P (τd|D) is the maximum likelihood probability of the state sequence, and

P (τd|θ) is the probability of obtaining that state sequence by our inferred policy

that is parameterized by the vector θ.

Minimizing the deviation of qθ from p is equivalent to maximizing the expectation

of the observing D, given that the environment actions are distributed as π2(s;θ):

argmin
θ

(KL(p||qθ)) = argmin
θ

(∑
τd∈D

P (τd|D) ln

(
P (τd|D)

P (τd|π1,θ)

))

= argmin
θ

(∑
τd∈D

P (τd|D) ln(P (τd|D))︸ ︷︷ ︸
constant

−P (τd|D) ln (P (τd|π1,θ))

)

= argmax
θ

(∑
τd∈D

P (τd|D) ln (P (τd|π1,θ))

)

= argmax
θ

EP (τd|D) {ln(P (τd|π1,θ))}

≈ argmax
θ

∑
τd∈D

ln(P (τd|π1,θ))

= argmax
θ
L(D|π1,θ),

(2.6)

where we estimate the expectation using the empirical mean. We will write the final

line of Eq. 2.6 as L(D|θ) for compactness and consistency with Lemma 2.3.4.

For the rest of this report, lets assert that an optimal parameter exists.

Assumption 2.3.5. There exists an optimal parameter vector that can represent the

true distribution of π2(s) to within a threshold ξ, given that a set of basis functions

are properly defined;

∃ θ∗
∣∣∣ ||π̂2(s;θ∗), π2(s)||1 ≤ ξ.

19

The infinite L1-norm between two policies,

||πx(s), πy(s)||1 =
∑
s∈S

∑
a∈A

πx(a|s)− πy(a|s),

is a measurable distance unlike KL-divergence; KL(p||q) 6= KL(q||p). For all follow-

ing experiments, we’ll use the L1-norm to compare two policies.

We are now ready to discuss the inference procedure used to identify the best

estimate of π2(s,θ) that maximizes the R.H.S of Lemma 2.3.4.

2.3.1 Gaussian Distribution of Policy Parameters

After a data set of trajectories, D, has been collected, α1 needs to maximize L(D|θ),

the log-likelihood of the dataset when π2 is parameterized by an estimated parameter

vector θ̂. Let θ̂ = [θw]Ww=1 be a vector of independently sampled random variables

with Gaussian distributions N (µw, ν
2
w) for w = 1, . . . ,W . The variance, ν2

w, will

capture the uncertainty of θw in the inference from dataset D.

The following is similar to the analysis in [TMZ+14], [HGW+16], and [SOR+10]

except that we do not include a reward function because the policy sought must

replicate the observed data D, not earn a reward.

We denote ρw = (µw, νw) as the tuple of mean and variance for θw and denote

ρ = {ρw}Ww=1 to be the collection of variable tuples. Given ρ, the probability of the

demonstrations is

P (D|ρ) =

∫
θ

P (D|θ)p(θ|ρ)dθ.

The log-likelihood of the demonstrations can be lower-bounded using Jensen’s in-

equality:

L(D|ρ) = logP (D|ρ) = log

(∫
θ

P (D|θ)p(θ|ρ)dθ

)
≥
∫
θ

p(θ|ρ) log
(
P (D|θ)

)
dθ.

20

Denote this lower bound as L̃(D|ρ) =
∫
θ
p(θ|ρ) logP (D|θ)dθ. This is the lower

bound on the objective function derived in Eq. 2.6. By taking derivative of L̃(D|ρ)

with respect to ρ, we obtain the gradient of the objective function:

∇ρL̃(D|ρ)) =

∫
θ

∇ρp(θ|ρ) logP (D|θ)dθ

=

∫
θ

[p(θ|ρ)∇ρ log p(θ|ρ)] logP (D|θ)dθ

≈ 1

m

m∑
i=1

[
∇ρ logP (θ(i)|ρ)

]
logP (D|θ(i))

(2.7)

where θ(i), i = 1, . . . ,m are samples generated from the multi-variant Gaussian

distribution with mean µ = [µ1, . . . , µW]> and covariance matrix diag (ν1, . . . , νW).

Let ν be an equivalent representation for diag (ν1, . . . , νW). Each sampled parameter

element, θ
(i)
w , has probability:

P (θ(i)
w |ρw) =

1√
2πσ2

w

exp

(
−(θ

(i)
w − µw)2

2σ2
w

)
.

The bracketed gradient components in the last line of Eq. 2.7 with respect to

each element of µ and ν are:

∇µw logP (θ(i)
w |ρw) =

θ
(i)
w − µw
ν2
w

, and

∇νw logP (θ(i)
w |ρw) =

(θ
(i)
w − µw)2 − ν2

w

ν3
w

.

Note that superscripts enclosed in parenthesis represent sample indexes, e.g., the

i-th sample of parameter element w is θ
(i)
w . All purely numeric superscripts are

exponents.

We can obtain the optimal collection of parameters ρ∗ = argmaxρ L̃(D|ρ) by

21

performing gradient ascent on the parameter distributions, ρ = (µ,ν). The policy

parameterized by θ̂
∗
∼ N (µ∗,ν∗) is π̂2(s; θ̂

∗
) and it maximizes the log likelihood of

the demonstration set D. The log likelihood of observed demonstrations for a given

θ(i) can be computed as

logP (D|θ(i)) =
∑
τd∈D

logP
(
τd|θ(i)

)
(2.8)

=

|D|∑
d=1

|τd|−1∑
t=0

logP
(
s(t+1)|(s, a1, o2)(t)

)
+

|τd|−1∑
t=0

log π2

(
o

(t)
2 |s(t);θ(i)

)
(2.9)

=
∑
s∈S

∑
o2∈A

C(s, o2) log π2

(
o2|s;θ(i)

)
+ Const. (2.10)

Above, C(s, o2) is the number of times the state action pair (s, o2) is observed

from in D. The constant term, Const =
∑|D|

d=1

∑|τd|−1
t=0 logP

(
st+1|(s, a1, o2)(t)

)
, is

independent of θ(i) and can be precomputed for a demonstration D. The observed

action outcome at time-step t is ot2, which is the only action information available

in a trajectory, per Definition 2.3.1. If a trajectory fragment (s1, s2)(t), (s′1, s
′
2)(t+1)

is observed, the action of the controllable agent, a
(t)
1 , is known but the uncontrolled

action, a
(t)
2 , is not. Therefore o

(t)
2 is assigned to be the nominal motion that causes

the transition s
(t)
2 → s

(t+1)
2 in the graph of M.

Remark 2.3.6. If the policy does not depend on a basis function φw, µw = 0 and

νw � 1, the basis function can be removed from the parameterization since it has no

influence on the inferred policy.

22

Gradient Ascent

Using the gradient defined in Eq. 2.7, for each iteration n we sample a set of m

parameter vectors, and update the distribution parameters on each iteration:

µ̇n ← ηµ̇n−1λ∇µn
L̃(D|ρn)

µn+1 ← µn + µ̇n and

ν̇n ← ην̇n−1λ∇νnL̃(D|ρn)

νn+1 ← νn + ν̇n.

(2.11)

The step-size parameter, λ, limits the rate of change of the distribution moments,

and the velocity memory, η helps the iteration bootstrap itself through local mini-

mums as suggested by [KB14]. The “velocity” of each gradient is stored in µ̇n and

ν̇n, respectively.

Remark 2.3.7. We do notice that the gradient variability is also a function of

the size of D, as concluded by [TMZ+14]. Therefore the step size, λ, is a hyper-

parameter that is dependent on the experiment.

Algorithm Termination

In general, the gradient ascent should be terminated at some final iteration N when

the update to the parameters no longer improves L̃(D|ρ). This log-likelihood is

bounded,

logP (D|θ(i)) ≤ 0, ∀θ ∈ Θ,

where Θ is the domain of the parameter vector. Due to the nature of sampling, there

is no guarantee that for every iteration L(D|ρn+1) > L(D|ρn). Therefore, we’ll use

23

a moving average of the past Λ log-likelihoods,

HIST(Ln) =
1

Λ

Λ−1∑
v=0

L(D|ρn−v).

We record the previous value of the moving average, HIST(Ln−1), and if the im-

provement in the moving average is below a defined threshold,

∆HIST(Ln) = HIST(Ln)− HIST(Ln−1) ≤ ζ,

the algorithm will terminate. We’ll require that at least N iterations are performed

before termination. Upon termination the mean values of ρn are assigned to the

parameter vector used to build π̂2(s; θ̂), θ̂ ← µn.

2.4 Single-agent policy inference experiment

The algorithm and parameterization presented in Sections 2.2.2-2.3.1 are initially

tested in a single agent environment. In this example, the states are just s = s2 ∈ S,

and π1(a1|s) is dropped from Eq. 2.2.

2.4.1 Simulation environment

Assume that α2 exists alone in a 5 × 5 grid world. In a single agent simulation,

states and grid-cells are synonymous. The available action set is

A = {Empty,North, South, East,West},

24

which correspond to their motion primitives

{Stay, Up,Down,Right, Left}.

The motion resulting from an action a2 is stochastic; the intended motion is actually

executed with a probability of 0.8, and there is a probability of 0.1 of sliding in the

two perpendicular motion directions. The exception is the Empty action which

results in a Stay motion with probability 1. The boarders of the grid-world are

considered to be walls. If the resulting motion would cause the agent to leave the

grid then Stay is selected as the outcome, s′ = s. Table 2.4.1 clarifies the motion

model for the East action based on the starting cell location.

Starting grid-cell location type
Resulting Motion Middle Right Column Top Row Upper Right Corner

North 0.1 0.1 0.0 0.0
South 0.1 0.1 0.1 0.1
East 0.8 0.0 0.8 0.0
West 0.0 0.0 0.0 0.0
Stay 0.0 0.8 0.1 0.9

Table 2.1: Agent motion model given attempted East (right) action.

The hidden policy of α2 is visualized in Fig. 2.1. The policy is deterministic,

κ = 0, and the agent has a hidden goal of the yellow cell. The red cells are obstacles,

are not hidden, and are sink states. The Shortest Path (SP) in metric from a cell to

a kernel center, Eq. 2.3, accounts for the distance around known obstacles. Arrows

represent the direction an action is selected with probability 1, and dots represent

that the Empty/Stay action is selected with probability 1. A demonstration set

D is generated with a uniform initial distribution s(0) ∼ U , ∀τd ∈ D. The state

visitation count for the example D is visualized in Fig. 2.2

25

Figure 2.1: True Policy of α2.

2.4.2 Experiment Hyper-parameters

To approximate the Q-function of α2, per Section 2.2.2, let’s start by placing a

kernel centered at every grid cell. This sets W = |S| × A, which is an unrealistic

number of parameters but, it’s a good test. See Fig. 2.3 for a visualization of how

the the kernel function values, k(s, a2), at each state are mapped to the feature

vector-function φ(s, a2). Also, the initial guess of π2 is set to be uniform across the

entire action set available to α2. We’ll set the following parameters:

26

Figure 2.2: State visitation count in single
agent demonstration.

σl 1.1, ∀l Identical kernel standard-deviations

κ 0.1 Temperature of π̂2. Eq. (2.4)

λ 1e−5 Gradient update rate. Eq. (2.11)

η 0.0 Gradient velocity memory

m 5000 Per iteration sample size of θ ∼ ρ

Λ 60 Moving average buffer length for HIST(L)

ζ 0.001 Gradient ascent termination when ∆HIST(L) < ζ

µ0 0.0 Initial parameter means

ν0 1.0 Initial parameter standard-deviations

νmin 0.2 Minimum parameter standard-deviation

Table 2.2: Hyper-parameters used for single agent inference.

27

|τ | 10 Number of steps in a trajectory

|D| 5000 Number of trajectories observed

I0 U(0, 24) Uniform distribution of s
(0)
2

Table 2.3: Observed data for single agent inference.

Figure 2.3: Feature values for a kernel centered at cell 0.

Algorithm bounds

As noted in footnote 2 of [Wil92], there is not gradient step-size, λ (this reports

notation), that will keep the parameter variance elements νw > 0. Our remedy is

to enforce a lower bound on the covariance of ρn after each gradient update in Eq.

2.11:

νmin ≤ νn, ∀νw ∈ νn. (2.12)

2.4.3 Results

Our Assumption 2.3.5 is verified by Figures 2.4 and 2.5. The recorded L1-norm was

neither used during gradient ascent, nor as a termination criteria. Note that the final

L1-norm ≈ 0.7. This final error has a range of about [0.01−5] with these parameters

over different trials. We can also examine the dynamics of the distribution ρ as well,

see Figures 2.6 and 2.7.

28

Note that the legend entry “maxi∈m L̃n(D|θ(i))” represents the sampled param-

eter vector that maximizes the log-likelihood of D at the iteration n. The policy

estimate π̂2(θ̂) is constructed using µN , the mean vector of the multi-variate distri-

bution ρ at the final iteration, N .

As the iterations progress, notice that the parameter variances decrease in Fig.

2.12, implying that the value of of each parameter is known with more confidence.

Figure 2.4: L̃(D|ρ) with parameters in Table 2.2.

29

Figure 2.5: ||π2, π̂2||1 with parameters in Table 2.2.

Figure 2.6: µw for each iteration with parameters in Table 2.2.

30

Figure 2.7: νw for each iteration with parameters in Table 2.2.

2.4.4 Experiment with Fewer Kernels

Note that if we use K = 7, and use the parameters in Table 2.4, we can achieve

a final L1-norm ≈ 6.5. There is some obvious generalization error in the inferred

policy shown in Fig. 2.8. Note that the grid-cells with blue circles in them note

only that a kernel is centered at that location, the circle is not proportional to σl.

However, the magnitudes of the dots and arrows are proportional to the probability

of selecting that action; the yellow cell is in the most North-East cell.

31

σl 2.0, ∀l Identical kernel standard-deviations.

κ 0.1 Temperature of π̂2. Eq. (2.4).

λ 1e−6 Gradient update rate. Eq. (2.11)

η 0.2 Gradient velocity memory.

m 5000 Per iteration sample size of θ ∼ ρ.

Λ 60 Moving average buffer length for HIST(L).

ζ 0.001 Gradient ascent termination when ∆HIST(L) < ζ.

νmin 0.2 Minimum parameter standard-deviation.

Table 2.4: Hyper-parameters for inference with K = 7.

Figure 2.8: π̂2 with parameters in Table 2.4.

32

Figure 2.9: L̃(D|ρ) with parameters in Table 2.4.

Figure 2.10: ||π2, π̂2||1 with parameters in Table 2.4.

33

Figure 2.11: µw with parameters in Table 2.4.

Figure 2.12: νw with parameters in Table 2.4.

34

Chapter 3

Policy Inference in a Multi Agent

Environment

Now that Chapter 2 has introduced the inference algorithm, we’ll explore the infer-

ence procedure in a multi agent environment. This requires two additional topics to

be covered, (1) how α1 will build a policy to complete it’s task, and (2) how α1 can

determine the dependence of π2 on the relative position between α1 and α2. Exper-

imental results will show the inference algorithm in the multi-agent environment.

To perform the experiment, we’ll modify true π2 from Fig. 2.1 to be repulsed by

the position of α1.

3.1 Policy Synthesis for the Controllable Agent

Policy Solution

For some agent αi, a policy π∗i is said to be optimal if it maximizes the expected

total discounted reward from a given initial distribution I0. For a deterministic

35

policy this is,

π∗i ← arg max
πi

∑
s∈S

Vπi(s)I0(s). (3.1)

In an MDP with stochastic transitions, a common way to solve for a policy is by

iteratively updating the value function presented in Section 2.2.1. If the policy of α2

was known, then iteratively solving the Bellman equation [HL12] will converge to a

policy that takes a discount optimal action at each state. This is known as Value

Iteration (VI). Note that if we use the true policy of α2, an optimal policy, within

a prescribed tolerance, will eventually be found via:

V ∗(s) = max
a1

[
R(s, a1) + γ

∑
s′

∑
a2∈A

T (s′|s, (a1, a2))π2(a2|s)V ∗(s′)

]
, and

π∗1(s) = argmax
a1

[
R(s, a1) + γ

∑
s′

∑
a2∈A

T (s′|s, (a1, a2))π2(a2|s)V ∗(s′)

]
.

(3.2)

Given some estimated policy of agent two, π̂2, the best α1 can do is to solve for

some sub-optimal policy π1(s; θ̂):

V (s; θ̂) = max
a1

[
R(s, a1) + γ

∑
s′

∑
a2∈A

T (s′|s, (a1, a2))π̂2(a2|s; θ̂)V (s′)

]
, and

π1(s; θ̂) = argmax
a1

[
R(s, a1) + γ

∑
s′

∑
a2∈A

T (s′|s, (a1, a2))π̂2(a2|s; θ̂)V (s′)

]
.

(3.3)

In Section 4.3.1, we’ll discuss how to iteratively improve θ̂ and cover the convergence

of π1(s; θ̂)→ π∗1(s).

3.1.1 EM-based Approximate Optimal Control

Solving Equations 3.2 or 3.3 can be very tedious, especially as the state space grows.

To approximately solve for α1’s policy, we’ll use the Expectation Maximization (EM)

36

Figure 3.1: Mixture of finite-time MDPs. Note this report uses notation that each
finite-time MDP ends at time T instead of T . Image courtesy of [TSH10].

solution from [TSH10]. The computational requirements to solve for a sub-optimal

policy for α1 are much less than traditional value iteration; see Figure 1.4 in [TSH10].

Although the solution is sub-optimal, the solution is complete for the entire state-

action-space. Since EM is traditionally used as a clustering algorithm [DLR77], the

resulting policy is not a hardmax (deterministic) like Eq. 3.1 but rather a softmax

(stochastic).

Policies from Expectation Maximization

This section presents a summary of the EM procedure for policy synthesis. Toussaint

and Storkey showed in [TSH10] that EM can be used to approximate the MDP as

a mixture of finite-time MDPs, as shown in Fig. 3.1.

Their derivation starts with the joint distribution of the probability of a reward

R, a sequence of states τ , and the probability of the sequence ending at time T ,

37

subject to a policy π1. Note that s(T) is the state at time T in the joint distribution,

P (R, τ, T ; π1) = P (R|τ ; π1)P (τ |T ; π1)P (T)

= P (R|s(T); π1)

[
T −1∏
t=0

P (s(t+1)|s(t); π1)

]
P (s(0); π1)δ|τ |T P (T),

(3.4)

where δ|τ |T = 1 when the trajectory ends at step T and is zero otherwise. The

algorithm requires that each MDP in the mixture only emits a reward at a single

final time step; the final states, r, in Fig. 3.1 emit rewards from the distribution

R(s(T), a
(T)
1) which is defined:

P (R|s, at) =
R(a1, s)−mina1,s(R)

maxa1,s(R)−mina1,s(R)
.

The goal of EM is to maximize the following energy function,

F (π1, ω) := logP (R; π1)−KL(ω(τ, T)||P (τ, T |R; π1).

F (π1, ω) is the difference between the log-likelihood of the reward probability subject

to π1, and the KL-divergence of the latent variable distribution ω from the latent

variables given a reward and subject to π1. The latent, unknown, variables of the

MDP are the state-action sequence that brings the system to a final state, s(T), at

time T . Note that only sequences where |τ | = T provide a non-zero probability of

reward in the mixture of finite-time MDPs.

The M-step returns the energy function maximized over the latent variables using

38

the previous, old, iteration’s policy:

F (π1, ω
∗) =

∑
s

[
P (R|s(T); πold1)α(s)

]
logP (R|s(T); πold1)

+
∑
s′,s

[
β(s′)P (s′|s; πold1)α(s)

]
logP (s(t+1)|s(t); πold1),

(3.5)

where

α(s(t)) =
∞∑
t=0

P (s(t); πold1)P (T = t), and

β(s(t+1)) =
1

1− γ

∞∑
υ=0

P (R|s(t)′, T = t+ υ; πold1)P (T = υ + 1).

In the equation for β, above, the term s(t)′ refers to reachable states from s(t).

Essentially, the M-step provides a policy update. The E-step, given a policy,

finds the state-action sequence that maximizes the expectation of a reward; the E-

step calculates α and β. These two terms are then used in the M-step to provide

the policy for future iterations, up to Z iterations. The terms α and β are updated

on a state-action horizon time-limit of H. Toussaint et al. in [TSH10] show that as

Z → ∞, and H → ∞, the EM algorithm returns a policy equivalent to that from

VI. The parameters Z and H are now added to the set of hyper-parameters for a

multi-agent simulation

Remark 3.1.1. In the experiment implementation in the following sections and

chapters, note that if the horizon parameter H is too short and the reward space is

sparse, states that are too far from receiving a reward will select the Empty action.

Section 3.3 will compare the policy synthesis of EM and VI, but we first must

define the true policy of α2 in a multi-agent environment.

39

3.2 Multi-agent Policy Model

When α1 exists in the environment with α2, the state space in our HiP-MDP, M,

is again S ≡ S1 × S2. In the case of the experiment in Section 2.4, the cardinality

of S, |S|, has exploded to 252. Given the number of actions available at each

state, 5, an approximation of π2 must represent the probability of selecting each

action at each state; the cardinality of the policy estimate, |π̂2|, has increased from

125 to 3125. How can we design a set of kernels, so that K � |S| and minimize∣∣∣∣∣∣π2(s), π̂2(s; θ̂)
∣∣∣∣∣∣

1
?

For the example tasks described in Chapter 1, a human would infer that the

uncontrollable agents would only change their actions if the controllable agent is

within a relative distance. Other cars might only swerve away from a driver if two

cars become dangerously close. Alternatively, a human holding a basket might only

extend their arms to accept a load of items when the manipulator is sufficiently

close to them. With this assumption, we’ll make the inference task computationally

manageable.

For simplicity, we’ve adjusted the grid-world example from that used in Section

2.4 one with no obstacles and deterministic transitions. The motivation for this will

be discussed in Chapter 4, but by limiting the stochasticity of the environment, the

interactions of α1 and α2 are easier to influence.

3.2.1 Fixed and Mobile kernels for policy inference

Assumption 3.2.1. The uncontrollable agent, α2, has a nominal policy, and when

the agents are within some unknown distance x, π2 is biased either towards or away

40

from the position of α1:

π2 =


f(s2) if SP(s1, s2) > x

f(s1, s2) if SP(s1, s2) ≤ x.

Using Assumption 3.2.1, then we can segment our parameter and feature vectors

into fixed and mobile elements. The fixed kernels are still scattered at locations

cl ⊂ S2, l = 0, . . . , K − 1. Now, consider that the next, Kth, kernel is mobile; it is

attached to the α1’s location. When this kernel is far from the current state of α2 its

anticipated influence is very small due to Eq. 2.3. This simply requires that another

|A| parameters elements are included in the θ from the experiments in Section 2.4.

3.2.2 True Multi-Agent Policy of Agent 2

To perform multi-agent experiments, let’s now synthesize a true policy for α2 that

is a combination of the policy shown in Fig. 3.2 and a repulsive effect from the

proximity to α1. To form the policy in Fig. 3.2, the experiment in Sec. 2.4.3 was

repeated, thus the light-blue kernel markers on each grid-cell. With these inference

results, we have a set of parameters, θ∗FIXED that satisfy Assumption 2.3.5 for that

stationary distribution such that the true Q-function of α2 is:

Q(s, a2) = Q̂(s, a2;θ∗FIXED) =

WFIXED∑
w=1

θ∗wφw(s, a2),

where WFIXED = KFIXED× |A| and KFIXED = 25 and |A| = 5. These 25 kernels are at

fixed locations in the grid-world.

To represent the repulsion that α2 should desire as it α1 approaches, we’ll attach

41

Figure 3.2: Hidden Policy of α2 in an empty, deter-
ministic, world.

a single mobile kernel to the location of α1. The kernel function for this kernel is

identical to Eq. 2.3, except that its center is mobile: cMOBILE = s
(t)
1 for all t ∈ [0, |τ |).

With the associated feature-function φMOBILE, we’ll associate five parameter values

that will decrease the value of α2’s Q-function if α1 is close. All the parameters

used to synthesize a true policy for α2 are:

42

θ∗FIXED – Results used for Fig. 2.5

cFIXED – Grid Cells 0, . . . 24

σFIXED 2.0 Fixed kernel standard deviations

cMOBILE – Described above

σMOBILE 1.0 Mobile kernel standard-deviations.

θMOBILE ∀ a∈ {N,S,E,W} −0.9 Negative action value for North, South, East,West

θMOBILE a={Empty} 0.0 No additional weight for Empty action

κ 1.0 Temperature of π2(s) Eq.2.4

Table 3.1: Parameters to synthesize hidden π2((s1, s2)).

The resulting policy is harder to visualize. In Figure 3.3, the black arrow magni-

tudes represent the probability of α2 taking each action given that α1 is located

in the blue cell. Grey dots become larger and blacker as the probability of α2

selecting the Empty action increases. The effect of the mobile kernel is obvious in

comparison to Figure. 3.2. This realization of π2((s1, s2);θ∗) will be used as the

benchmark for multi-agent inference experiments in both Section 3.4 and Chapter

4.

3.3 Policy Synthesis Comparison

In future experiments, α1 will be tasked to reach the upper left (North-West grid

cell, s1 = 0, without landing in the same cell as α2. The reward function for α1 is

R(s, a1) =


1 if s1 == 0,∀s2 ∈ S2 & a1 == Empty

0 Otherwise

43

Figure 3.3: Hidden Policy of α2 in an empty, deter-
ministic, world with s1 = 11.

In the case that s1 == s2, the transition probability ofM is set to a self-loop under

all actions.

To create an optimal policy benchmark for α1, π1(s;θ∗), we’ll solve Eq. 3.2 with

VI and maximize Eq. 3.5 using π2((s1, s2);θ∗). The parameters necessary for EM

and VI are listed in Table 3.2.

γ 0.9 Discount rate in M
Z 100 EM-only: Number of M-step evaluations
H 15 EM-only: Trajectory Horizon Length

Table 3.2: Parameters to synthesize optimal π1((s1, s2);θ∗).

As a comparison, when agent two is in the middle cell, marked in blue, the

optimal policy of α1 to reach the green cell is shown in Figure 3.4. The agent is

44

clearly exploiting its knowledge of the true π2(s;θ∗) when (s) = (13, 12) as that

is normally a very dangerous action1. Figure 3.5 shows the approximately optimal

π2(s;θ∗) from EM.

Figure 3.4: Optimal policy of α1 from VI with s2 = 12.

3.4 Multi Agent Inference Experiment

Using the observed data-set described by Table 3.3 we can perform similar experi-

ments to those in Section 2.4. We’ll also use the inference parameters in Table 3.4

that notes, among other things, that this experiment uses 25 fixed kernel locations

1Actually, a bug was recently discovered in the simulation engine written by your’s truly.
Without a memory variable in the MDP, the agent’s are currently allowed to swap places without
triggering a collision. The root of the problem is the definition of the transition probability matrix
format and is not an easy fix. However, the policy of α1 clearly exploits this when (s) = (13, 12)
(the blue cell is 12, the one to the right of it is cell 13).

45

Figure 3.5: Approximately optimal policy of α1 from
EM with s2 = 12.

and a mobile kernel.

The error metric plotted in Fig. 3.7 is now the fraction of the maximum possible

L1-norm. That is, for each iteration n,

Error(n) =
||π2, π̂2||1

2|S|
. (3.6)

With this, we can represent the likelihood of π̂2 selecting different actions at each

joint state s from the true π2. For instance, if Error(n) == 1, then all actions

sampled from π̂2 will be different from the true π2 at every state. Recognize that

there are infinitely many softmax policies that have Error(n) == 1, and a finite

number of hardmax policies with this upper error value.

46

Given that the feature-space is much smaller than the joint state-action-space,

W = 26 × 5 = K × |A| � |S| × |A| = 625 × 5, the inference result in Fig. 3.7

produced a reasonable policy estimate, π̂2.

|τ | 10 Number of steps in a trajectory

|D| 3000 Number of trajectories observed

I0

(
U(0, 24),U(0, 24)

)
Uniform distribution of s(0)

Table 3.3: Observed data for multi agent inference.

σl 2.0, ∀l Identical kernel standard-deviations for all mobile and fixed kernels

cl – (Kernel Centers) Grid Cells 0, . . . 24 ∪ s(t)
1

κ 0.5 Temperature of π̂2. Eq. (2.4)

λ 1e−5 Gradient update rate. Eq. (2.11)

η 0.0 Gradient velocity memory

m 2000 Per iteration sample size of θ ∼ ρ

Λ 60 Moving average buffer length for HIST(L)

ζ 0.001 Gradient ascent termination when ∆HIST(L) < ζ

µ0 0.0 Initial parameter means

ν0 1.0 Initial parameter standard-deviations

νmin 0.2 Minimum parameter standard-deviation

Table 3.4: Hyper-parameters used for multi-agent inference.

47

Figure 3.6: L̃(D|ρ) with parameters in Table 3.4.

Figure 3.7: Fraction of maximum possible ||π2, π̂2||1 (see Eq.
3.6) with parameters in Table 3.4.

48

Figure 3.8: µw for each iteration with parameters in Table 3.4.

Figure 3.9: νw for each iteration with parameters in Table 3.4.

49

Chapter 4

Proactive Policy Inference

In the previous sections, an autonomous agent eventually infers a reasonable es-

timate of an uncontrollable agent’s policy. By approximating the uncontrollable

agent’s Q-function as a linear combination of fixed and mobile features, the au-

tonomous agent can eventually learn the hidden parameters in the transition model

of a HiP-MDP, where the hidden parameter is the policy of the uncontrollable agent.

The successes in previous chapters have ignored a realistic constraint. Often,

sampling a system is expensive, costing both time and wear-and-tear on mechatronic

systems. This chapter will introduce active learning to enable an autonomous agent

can adjust its policy to improve sample efficiency.

4.1 Proactive Inference

Assuming that α1 has received some initial data D(1), the estimated policy of the

uncontrollable agent can be improved from some initial guess π̂
(0)
2 to form π̂

(1)
2 .

Let’s assume that D(1) was incomplete, i.e., it did not contain enough data for the

following algorithm to meet the tolerance required by Assumption 2.3.5. Therefore,

α1 will need to gather more data, sets of trajectories, D(b), b = 1, . . . , B, to improve

50

its hypothesis of the other agent’s policy. Like the DAGGER algorithm [RGB11],

whenever a new dataset D(b) is received, the data used for inference is updated

as D ← D ∪ D(b). While DAGGER imitates the expert policy, and can request

corrective actions from the expert during a roll-out, this implementation can only

request another demonstration from α2. Ideally, the requested D(b) will contain data

that were lacking in all previous batches, because, when there are not enough data,

some estimated parameter elements, θ̂w, will be incorrect.

How can α1 glean more informative data? To achieve proactive policy inference,

α1 needs to recognize what parts of π̂2 it thinks are known and unknown. Explicitly,

after observing D(b), α1 still might have very little knowledge about π2(x) – perhaps

s2 = x has not yet been visited. This section will discuss how to distinguish known

and unknown policy parameters, and how α1 can proactively influence the future

data, D(b+1).

Remark 4.1.1. From this point on, the mean parameter vector inferred from any

batch, µ(b) , will be used to parameterize the agents policy, e.g., π2(s;µ(b)).

4.1.1 Characterizing Unknown Parameters

By Eq. 2.2, the transition function is determined by the policies of both agents,

P ((s′1, s
′
2)|(s1, s2), (a1, a2)) = T (s′1|s1, a1)π2(a2|(s1, s2))π1(a1|(s1, s2)).

Since we’ve made Assumption 2.1.5 that π2 is a stationary Markov policy, learning

π2 is equivalent to learning the dynamics of the MDP. Both problems have the same

sample complexity, they are polynomial in the size of the joint state space and the

action space of the α2. With the Gaussian policy approximation from Section 2.3.1,

if the number of parameters, W is much less than |S| ×A, then sample complexity

51

will be significantly reduced.

Definition 4.1.2. Given two parameters ε, ϕ ∈ (0, 1), a parameter θw is (ε, ϕ)-

known if, with probability 1− ϕ, the probability of the true value for θw is ε close to

the mean of the Gaussian distribution N (µw, νw), i.e.,

P (|θw − µw| ≥ ε) ≤ ϕ.

If the estimated unknown policy parameter θ̂w is ε-close to the true (unknown)

mean µw with probability 1 − ϕ, then we could claim that enough knowledge has

been obtained for θw and treat it as a known policy parameter. This claim is based

on the Chernoff bound [KMT11].

Let the parameter elements, θw, form a set Θ. Then let ΘK be the subset of

known policy parameters and ΘUK be the remaining unknown parameters. Next,

we present a method to determine whether a state is unknown from the knowledge

of these sub-sets of Θ.

First, given that each sampled parameter vector in Eq. 2.7, θ(i), is a Gaussian

variable, the Q̂-function is distributed as a multi-variate normal:

Q̂(s, a;θ(i)) ∼
W∑
w=1

φw(s, a2)N
(
µw, ν

2
w

)
,

The features, φw(s, a2), w = 1, . . . ,W can be viewed as the mixing parameters.

A state s is known if and only if for any a2 ∈ A, Q(s, a2) is known. Since the

Q-value is a mixture of Gaussians, we’ll use the mean and variance of Q(s, a;µ(b))

returned from Eq. 2.11 to determine the distribution of a random variable – the

estimate of π2(a|s).

If we were trying to solve a Probably-Approximately-Correct- (PAC)-MDP [FT14],

52

we would require an accuracy in learning the transition function. The model is con-

sidered to be correct if the model error T̄ (s′|s, a1)− T (s′|s, a1) ≤ ε with probability

1 − ϕ, where T̄ is the estimated transition function and T is the true transition

function.

Based on the needed accuracy and the relation between T and π2,

P (s′|s, a1) = T (s′|s, (a1, a2))π2(a2|s),

we can show for any batch b:

P̄ (s′|s, a1)− P (s′|s, a1) = T (s′|s, (a1, a2)) (π2(a2|s)− π̄2(a2|s;µ))

≈ T (s′|s, (a1, a2))

·
(

exp(Q(s, a2)− V (s)/κ)

− exp(Q(s, a2;µ)− V (s;µ)/κ)
)

Since Q(s, a2;µ) is a Gaussian, expQ(s, a2;µ) is log-normal. Remember that to

the first two moments, the sum of lognormal random variables can be approximated

by a lognormal random variable [Fen60]. The approximated value function is the

log-summation of log-normal random variables: V = κ log
∑

expQ(s, a;µ)/κ. This

can be approximated as a Gaussian. Therefore, we can quantify the bounded error

between the estimated transition and true transition model, π2(a2|s)− π̄2(a2|s;µ(b)),

by directly analyzing the distribution of the log-normal random variable

exp(Q(s, a2;µ)− V (s;µ)).

We will use the linear combination of parameter-variances to quantify the vari-

53

ance of the Q-function,

Ω(s, a2) =
∑

w=1∈ΘUK

ν2
wφ

2
w(s, a2). (4.1)

This can now be used as a metric for α1 to either query, or explore, for the most

informative data-batch D(b). We’ll use a threshold to determine the assignment of

parameters into the known and unknown parameter sets.

θw ∈


ΘK if νw ≤ ϑ

ΘUK Otherwise

(4.2)

4.2 Single Agent Proactive Inference

In a scenario where α1 simply watches α2 but sample efficiency is still a concern,

assume that α1 can request α2 to give a demonstration that starts from a state that

has a high value of Ω(s, a2). However, α1 cannot directly request α1 to start at state

s and take a2 because that might violate the policy of α2.

Instead, after new data is observed D(b), we’ll allow agent one to set the initial

state-distribution of α2, I0. The initial state distribution will be proportional to the

Q-function variance summed over all actions:

I
(b)
0 =

∑
a2

Ω(s, a2)∑
s

∑
a2

Ω(s, a2)
(4.3)

Given a minimal demonstration, Fig. 4.1, the next initial state distribution that

α1 would request s
(1)
2 be drawn from looks like Fig. 4.2. Note that in this figure,

the highest uncertainty is the cell 24, the South-East (lower-right) corner.

The algorithm for proactive inference in the single agent case, Algorithm 1, re-

54

Figure 4.1: A set of roll-outs of π2 that contains
very few state-action samples.

quires the user to determine if do active update is set to True or False. If do active update =

True then the initial distribution for the trajectories is set proportional to the policy

uncertainty in Eq. 4.3. Otherwise, s
(b)
2 ∼ U(0, |S|).

Another note is that the gradient step size, λ, must now adapt as the data set

size, |D|, grows; see Remark 2.3.7. Setting it to be inversely proportional to the

nominal log-probability of the observed dataset, the constant term in Eq. 2.8 is

often a good choice. If that constant term is zero, i.e., transitions are deterministic,

the cardinality of the data-set can be used:

λ =
1

−Γ
[∑|τd|−1

t=0 logP (s(t+1)|(s, a1, o2)(t))
] , or

=
1

Γ(|D|+ 1)
,

(4.4)

55

Figure 4.2: P (s
(0)
2) ∼ I0 as defined by Eq. 4.3

where Γ = 10 as a scaling parameter.

For simplicity, we’ll define a roll-out procedure, Algorithm 2 which is equivalent

to sampling a set of trajectories.

4.2.1 Experimental Results

Here, we’ll show that we can accelerate the convergence of π̂
(b)
2 as we observe more

batches of data D(b). Similar to Section 2.4, the transition function is stochastic,

see the motion model in Table 2.4.1. The true agent policy is again described by

Fig. 2.1 where α2 tries to avoid the red obstacles. The algorithm parameters are

listed in Table 4.1 and inference parameters are listed in Table 4.2.

If do active update = True, we’ll consider that trial of Alg. 1 to be active, other-

wise, it was passive inference. Figure 4.3 shows that updating the initial distribution

56

Algorithm 1 Single agent mini-batch inference

1: Define Inference model Y = (S2, A2, T,φ(s, a2))
2: Set do active update = (True|False)
3: I

(0)
0 = U(0, |S|) . Sample first data set uniformly.

4: D = ∅ . Initialze dataset to be empty
5: µ(0) = 0, ν(0) = 1
6: for b ∈ [1, B] do

7: D(b) ← Rollout(|D|, |τ |, I(b)
0) . Alg. 2

8: D ← D ∪D(b)

9: λ← Eq. 4.4
10: ν(b), π̂2(s;µ(b))← Infer(D, Y,µ(b−1),ν(b−1)) . Sect. 2.3
11: if do active update then
12: I

(b)
0 = Update(ν(b),φ(s, a2)) . Eq. 4.1 & 4.3

13: end if
14: end for

Algorithm 2 Rollout

1: procedure Rollout(|D|, |τ |, I0, π1, π2)
2: D = ∅
3: for d ∈ |D| do

4: Sample s
(t=0)
2 from I0

5: τ0 = s
(0)
2

6: for t = 1 to |τd| do

7: Sample s
(t)
2 from p(s

(t)
2 |s

(t−1)
2 , π1, π2) . Eq. 2.2

8: τt = s
(t)
2

9: end for
10: D = D ∪ τd
11: end for
12: return D
13: end procedure

57

B 20 Number of batches (updates to π̂2)
|D| 2 Trajectories added per batch
|τ | 4 Trajectory length

Table 4.1: Parameters for single-agent active inference (Alg. 1)

K 7 Number of kernels
σl 2.0, ∀l Identical kernel standard-deviations
cl – (Kernel Centers) Same as Fig. 2.8
κ 0.5 Temperature of π̂2. Eq. (2.4)
λ – See Eq. 4.4
η 0.2 Gradient velocity memory
m 1000 Per iteration sample size of θ ∼ ρ
Λ 60 Moving average buffer length for HIST(L)
ζ 0.001 Gradient ascent termination when ∆HIST(L) < ζ
µ0 0.0 Initial parameter means
ν0 1.0 Initial parameter standard-deviations
νmin 0.4 Minimum parameter standard-deviation
ϑ 0.4 Threshold for inclusion in ΘK

Table 4.2: Hyper-parameters used for multi-agent inference.

with Eq. 4.3 produces faster convergence to a minimum inference error. The solid

lines represent the average ||π2, π̂2||1 over 50 trials.

Ergodicity concerns

In the previous experiment, the trajectories were very short and only 2 were added to

D to each batch. This frugal amount of data is what allowed the active update to I0

to outperform the original uniform sampling. With the stochastic transition model

in Table 2.4.1, any trajectory of appreciable length is likely to contain several “slips”

to an unintended grid-cell. This, essentially, increases the available information in

an observed data-set. This was previously mentioned in Section 3.2, we can now

justify that claim.

Following Definition 1 in [HLZP17], the fundamental matrix of the Markov chain

58

Figure 4.3: 50 trial average: Fraction of maximum possible
||π2, π̂2||1 (see Eq. 3.6) with parameters in Table

Mπ2 is:

Z = (T + 1π2
ᵀ)−1,

where T is the transition probability matrix from Sec. 2.1, 1 represents a vector of

ones, and π2 is the vector representation of the true policy of α2. Now, Definition 2

in [HLZP17] defines the ergodic coefficient of a probability matrix (one with equal

row sums) as:

e(Z) =
1

2
max
i,j

∑
s

|zis − zjs|.

“The ergodic coefficient of [Mπ2] indicates the sensitivity of [the] stationary distri-

bution”[HLZP17].

To show this assertion, we’ll rerun the single-agent active/passive experiment

with more data available as stated in Table 4.3.

59

B 20 Number of batches (updates to π̂2)
|D| 10 Trajectories added per batch
|τ | 6 Trajectory length

Table 4.3: Parameters for longer single-agent active inference (Alg. 1)

Figure 4.4: 50 trial average: Fraction of maximum possible
||π2, π̂2||1 (see Eq. 3.6) with Algorithm parameters in Table
4.3.

In Figure 4.4, we still average over 50 trials of both active/passive flavors of

Algorithm 1. The averages of the passive trial outperform the active algorithm.

Uniformly sampling 10 initial states produces variability over the trajectories added

to D in the bth batch and adjusting the initial distribution with Eq. 4.3 produces

less informative data in comparison.

60

Single-update algorithm

Here, we’ll try to directly compare how active and passive inference improve the

results from an initial data set. Specifically, by rolling out an initial set of data,

inferring a policy, and storing the learned distribution values ρ(1), we can compare

the resulting error of ρ
(2)
active with ρ

(2)
passive

1. This procedure is described in Algorithm

3. Running this algorithm 100 times shows that the active inference results in a 2%

improvement over the passive update, see Figure 4.5. This experiment was run in

an 8-by-8 grid world, see Figure A.1, and used the parameters in Table 4.4.

B 2 Number of batches (updates to π̂2) See Alg. 3.
|D| 5 Trajectories added per batch
|τ | 2 Trajectory length (two states yield one observed action-outcome)

Table 4.4: Parameters for single single-agent active inference (Alg. 3)

Algorithm 3 Single agent active/passive single-update comparison

1: Define Inference model Y = (S2, A2, T,φ(s, a2))

2: I
(0)
0 = U(0, |S|) . Sample first data set uniformly.

3: D ← Rollout(|D|, |τ |, I(0)
0)

4: λ← Eq. 4.4
5: µ(0) = 0, ν(0) = 1
6: ν(1), π̂2(s;µ(1)← Infer(D, Y,µ(0),ν(0)) . Shared initial inference results
7:

8: D
(1)
passive ← Rollout(|D|, |τ |I(0)

0) . Rollout with original, uniform, I0

9: Dpassive ← D ∪D(1)
passive

10: ν
(2)
passive, π̂passive(s;µ

(2)
passive)← Infer(Dpassive, Y,µ

(1),ν(1)) . Passive results
11:

12: I0−active = Update(ν(1),φ(s, a2)) . Eq. 4.1 & 4.3

13: D
(1)
active ← Rollout(|D|, |τ |I0−active) . Rollout with new, active, I0

14: Dactive ← D ∪D(1)
active

15: ν
(2)
active, π̂active(s;µ

(2)
active)← Infer(Dactive, Y,µ

(1),ν(1)) . Active results

1Remember ρ = (µ,ν).

61

Figure 4.5: 100 trial average: Fraction of maximum possible
||π2, π̂2||1 (see Eq. 3.6) with Algorithm parameters in Table
4.4.

Large world example

All previous examples have used a relatively uniform distribution of kernels in the

state space, all having equal size, for inference. Given some initial idea about the

hidden policy of α2, a user could intentionally design a set of kernels that might

be effective at inferring π̂2. Consider the large grid world, visitation count, and

kernels described by figures A.2 and A.3 in Appendix A.2. The referenced figures

in this section are included in the appendix due to the size required for adequate

visualization.

Specifically, note the relative sizes of the kernels used and the approximate num-

ber of state-visits that fall within each kernels standard deviation, the blue circles.

The inference results for a single stage are presented in Figure A.4. If the next set

62

of trajectories were to be sampled base on Equation 4.3, the probability of the first

state would be proportional to the heat-map shown in Figure A.5, in which white

represents the highest probability. Finally, the error between the true and estimated

π2 is in Figure A.6.

Effect of kernel location and size

Although the new initial distribution correctly identifies some areas of large policy

error, e.g., near the red obstacle and upper left corner, there is also high uncertainty

in the upper center of the grid where the error is relatively low. Compare figures

A.5 and A.6 row 3, column 16.

Another interesting point as that the lower quadrant of the error plot, Figure

A.6 rows 15-32 columns 0-16, contains 23% of the inference error; see Equation 3.6.

This is the location of the largest kernel and where the true π2 always took the

northward action. There is enough cumulative error between the true and learned

probability of the North action that this area would benefit from more samples.

However, note that the policy error at each state is low, and the algorithm clearly

marked this parameter with a low variance, ν2
w. In this case, the uniform sampling

(passive algorithm) will result in a slight improvement to the inferred policy in all

regions, including the lower left quadrant. The active sampling will most likely only

improve the policy in the uncertain regions, which cover a comparatively small area.

For instance, compare the error and the uncertainty (figures A.5 and A.6) in cells

near the block of red obstacles and the lower right corner.

Perhaps the error metric described in Equation 3.6 has obscured the benefit of

the active inference procedure in this section. The active inference method will

provide an improvement in the inferred policy in locations of high uncertainty, but

these areas might not be large with respect to the entire state space. In future work,

63

analyzing the error in parameters that cover large areas of the state-space could be

penalized less than errors in features that are placed at interesting locations.

4.3 Multi-agent Proactive Inference

Finally, we can address how α1 can adjust its policy to glean the most information

about π2 in a dataset. This section will introduce a bonus reward used to help

α1 proactively explore the state-space. Like the experiments in Chapter 3, the

environment has no obstacles and the transition function is deterministic.

4.3.1 Asymptotic Discount Optimal Policies

First, we’ll justify why this algorithm allow α1 to solve for the its optimal policy.

In Chapter 2.5 of [HL12], Hernández-Lerma shows that an adaptive MDP will con-

verge to the optimal value function if the parameter estimate converges to the true

parameter. Remember Assumption 2.3.5; the true π2 can be sufficiently represented

with an optimal parameter. The author formally proves that if θ̂
(b)
→ θ∗ as b→∞,

then V (s; θ̂
(b)

)→ V ∗(s;θ∗). In other words, if α1 can eventually infer the policy of

α2, α1 will then be able to plan an optimal policy to complete its task.

4.3.2 Multi-agent Algorithm

There are two different options for Algorithm 4. The passive implementation uses

use bonus reward = False, while the active implementation uses use bonus reward =

True.

64

Algorithm 4 Multi-agent mini-batch inference

1: Define HiP-MDP M = (S,A, T, γ, R)
2: Define Inference model Y = (S,A2, T,φ(s, a2))
3: Set use bonus reward = (True|False)
4: Set I0

5: R̂(s, a) = R . Initial synthesis with true reward.
6: D = ∅
7: µ(0) = 0, ν(0) = 1
8: Set π̂

(0)
2 (s) so DIST(A2) ∼ U

9: for b ∈ [1, B] do

10: π
(b)
1 ← Solve(M, π̂

(b−1)
2 (s), R̂(s, a1)) . Use EM from Sect. 3.1.1

11: D(b) ← Rollout(|D|, |τ |I(b)
0 , π

(b)
1 , π2) . Always roll out with true π2.

12: D ← D ∪D(b)

13: λ← Eq. 4.4
14: ν(b), π̂2(s;µ(b))← Infer(D,M, Y,µ(b−1),ν(b−1)) . Sect. 2.3
15: if use bonus reward then
16: R̂(s, a1) = R(s, a1) + Bonus(ν(b),φ(s, a2)) . Eq. 4.1 & 4.5
17: end if
18: end for

Passive Implementation

In the passive implementation, α1 simply updates π
(b)
1 by including the new inference

π̂
(b)
2 ; α1 will simply exploit the information from D(b−1) so that π

(b)
1 (s; θ̂) maximizes

the expected discounted reward, as shown in Section 3.3.

Active Implementation

The second option is for α1 to proactively seek the most informative D(b). Gathering

data about any unknown parameter elements will be given to α1 as a bonus reward;

α1 proactively improves the inference of π̂2. Therefore, α1 needs to determine which

θ̂w’s are unknown. This is discussed in Section 4.3.3; after each batch, a bonus

reward is added to the original reward function R and used for policy synthesis.

65

4.3.3 Bonus Reward

What we would like to do is give α1 a bonus reward whenever α2 takes an action for

which Q̂(s, a2) has a large Ω(s, a2), see Eq. 4.1. Since α1 can not actually control

α2 to take an “uncertain” action a2 at a joint state s, we build an exploration bonus

reward at each joint state.

Using the original reward function of the robot from Def. 2.1.1 the reward

including an exploration bonus is defined as

R̂(s, a) = R(s, a) + δR(s)

and

δR(s) ∝
∑
a2∈A

∑
θw∈ΘUK

ν2
wφ

2
w(s, a2)

In practice, we can select a constant ε and define

δR(s) = ε
∑
a2∈A

∑
θw∈ΘUK

ν2
wφ

2
w(s, a). (4.5)

The constant ε has a role of weighting between exploration and exploitation.

The exploration bonus has the following property: When all parameters becomes

known, the exploration bonus will become zero and the policy returns to the opti-

mal policy with respect to the original reward function. By definition, for the same

estimate of θ, and for any two pairs (x, a1), (y, a2), ∀ x, y ∈ S2|x 6= y, the uncer-

tainty in Q(x, a1) is greater than that of Q(y, a2) if
∑

a2∈A
∑

θw∈ΘUK
ν2

2φ
2
w(x, a2) >∑

a2∈A
∑

θw∈ΘUK
ν2
wφ

2
w(y, a2), and thus exploring any joint states s = (s1, x),∀s1 ∈ S1

will receive a higher exploration bonus.

66

4.3.4 Proactive Multi-agent Experiment

For this experiment, we’re interested in a configuration where α1 and α2 are es-

sentially forced to interact. The initial state for α1 will always be the South-East

(lower-left) corner, cell 24. Its goal is to reach the North-West (upper-left) corner,

cell 0. Similar to the multi-agent experiment in Section 3.4, α2 will be trying to

reach the North-East (upper-right) corner, cell 4. In this experiment, α2 will always

start in the South-West (lower-left) corner, cell 20. The transition model is deter-

ministic, actions succeed with probability 1. Also, a collision results in a sink-state.

The transition to a sink-state is known to α1, so it tries to avoid α2 in general but

the inclusion of the bonus-reward does affect that slightly.

The bonus-reward coerces α1 to make sub-optimal actions so that an informative

joint-state is reached, α2 makes informative actions, and the ||π2, π̂2||1 converges

faster than with the passive approach; see Figure 4.6. The hyper parameters used

for this experiment can be found in tables 3.2, 4.5, and 4.6.

B 30 Number of batches (updates to π̂2 and π1)
|D| 10 Trajectories added per batch
|τ | 10 Trajectory length

Table 4.5: Parameters for multi-agent active inference (Alg. 4)

4.3.5 Discussion

The proactive inference algorithm presents a way for an agent in a multi-agent envi-

ronment to guide its exploration. In the example presented in the previous section,

using the weighted parameter-variance combined with squared-feature values leads

to proactive planning. Agent-1 is able to improve its inference of π̂2, however, in the

demonstrated example the fraction of batches in which α1 reached its goal dropped

relative to the greedy (passive) policy synthesis; see Figures 4.6 and 4.7.

67

K 9 Number of kernels
σl 2.0, ∀l Identical kernel standard-deviations
cl [0 : 4 : 24] Kernel Centers every 4th cell (forms an “X”)
κ 0.5 Temperature of π̂2. Eq. (2.4)
I0 (20, 24) Constant initial state for all trajectories.
λ – See Eq. 4.4
η 0.2 Gradient velocity memory
m 1000 Per iteration sample size of θ ∼ ρ
Λ 60 Moving average buffer length for HIST(L)
ζ 0.001 Gradient ascent termination when ∆HIST(L) < ζ
µ0 0.0 Initial parameter means
ν0 1.0 Initial parameter standard-deviations
νmin 0.4 Minimum parameter standard-deviation
ϑ 0.8 Threshold for inclusion in ΘK

Table 4.6: Hyper-parameters used for multi-agent inference.

The trade-off between the faster inference and count of batches in which α1

reaches its goal is a function of both the bonus-reward weight, ε in Eq. 4.5, as well

as the threshold for the unknown parameter set, ϑ in Eq. 4.2. By increasing ε, α1

will visit states with high parameter uncertainty more and possibly never reach the

original goal location. Subsequently, decreasing epsilon to zero recovers the original

reward function, which will not provide an improvement in the inference results. If

no parameter variances are above the value chosen for ϑ, the original reward function

is recovered.

For this proactive planning algorithm to yield more rewards then a passive plan,

there must be something worth learning. If this was the case, proactive exploration

would be the only, or faster, way to learn a critical subset of π2. An interesting

experiment for future work would be to augment the policy of α2 to be aggressive,

where it would try to collide with α1. Something “worth” learning might be a subset

of the state-space where α2 gets stuck; add a set of parameters to Table 3.1 such

that P (a2 == Empty|s2) = 1, ∀s1 ∈ S.

68

Figure 4.6: 50 trial average: Fraction of maximum possible
||π2, π̂2||1 (see Eq. 3.6) with Algorithm parameters in Table
4.5.

69

Figure 4.7: 50 trial average of trajectories where α1 reaches
cell=0 (goal) with Algorithm parameters in Table 4.5.

70

Chapter 5

Conclusion

This thesis has successfully designed a new parameter-based policy inference algo-

rithm that can be used in model-based RL. We applied policy-gradient techniques to

maximize the likelihood of observed state-sequences from an uncontrollable agent

with an unknown policy, given a parametric estimate of that policy. By assum-

ing that the parameter vector is distributed as a multi-variate normal distribution,

the policy inference algorithm captures the parameter variance, which we show can

quantify the uncertainty in the estimated Q-function of the uncontrollable agent.

This report approximated the Q-function as a linear combination of parameters.

Using the parametric uncertainty, we also provided two platforms for interacting

with an uncontrollable agent. First, if we’re allowed to ask for policy demonstra-

tions, trajectories, from the uncontrollable agent and select the initial state of the

trajectory, we can actively seek to aggregate more informative data and improve

the sample efficiency of the inference. We select the the initial state of a new tra-

jectory from a with probability proportional to the total estimated variance of the

Q-function at a state. This was applied to a single-agent scenario where we learned

the agent’s policy from demonstrations. We discussed that this active-re-sampling

71

can be used to provide more insight into features that have a high parameter un-

certainty.

The single-agent active inference algorithm can accelerate the policy inference,

but is highly dependent on the feature selection. To automatically determine per-

tinent features, future work could initialize the algorithm with many redundant

features, and then remove the features that the inference algorithm determines to

have a parameter mean of zero with high confidence. Alternatively, on-line hyper-

parameter optimization could help adjust feature locations and size to better esti-

mate the demonstrated policy

Second, in a multi-agent experiment, we defined a new bonus-reward that is a

function of the estimated variance of the uncontrollable agent’s Q-function. This

bonus reward convinced a controllable agent to choose actions that led to informa-

tive interactions and accelerated the policy inference of the uncontrollable agent.

Future extensions of this work also include a joint planning and active learning al-

gorithm. That algorithm would lead to the controllable agent eventually exploiting

the actively-learned information so that it can plan an optimal policy as soon as

possible.

72

Appendix A

A.1 8-by-8 Grid World

This figure shows an example initial data set, D(0) used in line 3 of Algorithm 3.

Figure A.1: 8-by-8 grid world for a single agent.

73

A.2 32-by-32 Grid World

Figure A.2: True policy of α2 in a single agent environment. Grid size is 32-by-32.

Arrow sizes are proportional to probability of taking the action in each direction.

Dots represent the stay-action.

74

Figure A.3: Visitation count given 150 trajectories with 5 time steps using the true

policy of α2 (Fig. A.2) in a single agent environment. Grid size is 32-by-32. Blue

circles represent the standard deviation of kernels used.

75

Figure A.4: Inferred policy of α2 in a single agent environment given visitation count

(Fig. A.3) in a single agent environment. Grid size is 32-by-32. Arrow sizes are

proportional to probability of taking the action in each direction.

76

Figure A.5: The numerator of Eq. 4.3,
∑

a2
Ω(s, a2), is proportional to the probabil-

ity of initial state being selected after inference results in Fig. A.4. This heat-map

is an alternative visualization of the 3D bar-plot like Fig. 4.2

77

Figure A.6: The true error, ||π2, π̂2||1, after inference results in Fig. A.4

78

Bibliography

[AHS10] Takayuki Akiyama, Hirotaka Hachiya, and Masashi Sugiyama. Effi-
cient exploration through active learning for value function approx-
imation in reinforcement learning. Neural Networks, 23(5):639–648,
2010.

[AK17] Garrett Andersen and George Konidaris. Active exploration for learn-
ing symbolic representations. In Advances in Neural Information Pro-
cessing Systems, pages 5016–5026, 2017.

[AWD17] Olov Andersson, Mariusz Wzorek, and Patrick Doherty. Deep learn-
ing quadcopter control via risk-aware active learning. In AAAI, pages
3812–3818, 2017.

[BT02] Ronen I Brafman and Moshe Tennenholtz. R-max-a general polyno-
mial time algorithm for near-optimal reinforcement learning. Journal
of Machine Learning Research, 3(Oct):213–231, 2002.

[BWF+13] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David
Hsu, Wee Sun Lee, and Daniela Rus. Intention-aware motion plan-
ning. In Algorithmic Foundations of Robotics X, pages 475–491.
Springer, 2013.

[BWH12] Luca F Bertuccelli, Albert Wu, and Jonathan P How. Robust adap-
tive markov decision processes: Planning with model uncertainty.
IEEE Control Systems, 32(5):96–109, 2012.

[CLP17] S. P. Chinchali, S. C. Livingston, and M. Pavone. Multi-objective op-
timal control for proactive decision-making with temporal logic mod-
els. In Int. Symp. on Robotics Research, dec 2017.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
royal statistical society. Series B (methodological), pages 1–38, 1977.

[DR11] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and
data-efficient approach to policy search. In Proceedings of the 28th In-

79

ternational Conference on machine learning (ICML-11), pages 465–
472, 2011.

[DVK16] Finale Doshi-Velez and George Konidaris. Hidden parameter markov
decision processes: A semiparametric regression approach for dis-
covering latent task parametrizations. In IJCAI: proceedings of the
conference, volume 2016, page 1432. NIH Public Access, 2016.

[Fen60] Lawrence Fenton. The sum of log-normal probability distributions in
scatter transmission systems. IRE Transactions on Communications
Systems, 8(1):57–67, 1960.

[FSM12] Karl Friston, Spyridon Samothrakis, and Read Montague. Active in-
ference and agency: optimal control without cost functions. Biological
cybernetics, 106(8-9):523–541, 2012.

[FT14] Jie Fu and Ufuk Topcu. Probably approximately correct mdp learn-
ing and control with temporal logic constraints. In Proceedings of
Robotics: Science and Systems, Berkeley, USA, July 2014.

[GHL09] Xianping Guo and Onésimo Hernández-Lerma. Continuous-Time
Markov Decision Processes, pages 9–18. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[HGW+16] Michael Herman, Tobias Gindele, Jörg Wagner, Felix Schmitt, and
Wolfram Burgard. Inverse reinforcement learning with simultaneous
estimation of rewards and dynamics. In Artificial Intelligence and
Statistics, pages 102–110, 2016.

[HL12] Onésimo Hernández-Lerma. Adaptive Markov control processes, vol-
ume 79. Springer Science & Business Media, 2012.

[HLZP17] Manjesh K. Hanawal, Hao Liu, Henghui Zhu, and Ioannis Ch Pascha-
lidis. Learning policies for markov decision processes from data. 01/
2017.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KLC98] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassan-
dra. Planning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

[KMT11] Hisashi Kobayashi, Brian L Mark, and William Turin. Probability,
random processes, and statistical analysis: applications to communi-
cations, signal processing, queueing theory and mathematical finance.
Cambridge University Press, 2011.

80

[KT00] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In
Advances in neural information processing systems, pages 1008–1014,
2000.

[KVTT17] Mehdi Khamassi, George Velentzas, Theodore Tsitsimis, and Costas
Tzafestas. Active exploration and parameterized reinforcement learn-
ing applied to a simulated human-robot interaction task. In Robotic
Computing (IRC), IEEE International Conference on, pages 28–35.
IEEE, 2017.

[LXM13] Shiau Hong Lim, Huan Xu, and Shie Mannor. Reinforcement learning
in robust markov decision processes. In Advances in Neural Informa-
tion Processing Systems, pages 701–709, 2013.

[MCdFDC07] Ruben Martinez-Cantin, Nando de Freitas, Arnaud Doucet, and
José A Castellanos. Active policy learning for robot planning and
exploration under uncertainty. In Robotics: Science and Systems,
volume 3, pages 334–341, 2007.

[NNXS17] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuur-
mans. Bridging the gap between value and policy based reinforce-
ment learning. In Advances in Neural Information Processing Sys-
tems, pages 2772–2782, 2017.

[PN17] Athanasios S Polydoros and Lazaros Nalpantidis. Survey of model-
based reinforcement learning: Applications on robotics. Journal of
Intelligent & Robotic Systems, 86(2):153–173, 2017.

[PS08] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills
with policy gradients. Neural networks, 21(4):682–697, 2008.

[RGB11] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction
of imitation learning and structured prediction to no-regret online
learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635, 2011.

[SO15] Masashi Sugiyama and Safari Books Online. Statistical reinforcement
learning: modern machine learning approaches. CRC Press, Taylor
& Francis Group, Boca Raton, FL, 1 edition, 2015.

[SOR+10] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves,
Jan Peters, and Jürgen Schmidhuber. Parameter-exploring policy
gradients. Neural Networks, 23(4):551–559, 2010.

81

[TMZ+14] Voot Tangkaratt, Syogo Mori, Tingting Zhao, Jun Morimoto, and
Masashi Sugiyama. Model-based policy gradients with parameter-
based exploration by least-squares conditional density estimation.
Neural networks, 57:128–140, 2014.

[TSH10] Marc Toussaint, Amos Storkey, and Stefan Harmeling. Expectation-
maximization methods for solving (po) mdps and optimal control
problems. Inference and Learning in Dynamic Models, 2010.

[Wil92] Ronald J Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. In Reinforcement Learning,
pages 5–32. Springer, 1992.

82

