

Interactive Information Console for Atwater Kent

A Major Qualifying Project

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements

for the Degree of Bachelor of Science

Bernardino Garay

Electrical and Computer Engineering 2017

Clara Merino

Electrical and Computer Engineering 2017

Raphael Swapnil Sarkar

Electrical and Computer Engineering 2017

Sonam Sherpa

Electrical and Computer Engineering 2017

Project Advisor:

Professor Shamsur Mazumder

Electrical and Computer Engineering Department

Abstract

There are three major focuses within this Major Qualifying Project (MQP): the

upgrade of media displayed on the Atwater Kent Power Panels, the addition of a Smart

Mirror, and the relocation of the Independent Grid Solar Charging Station. Changes were

made to the features of two past MQP’s: Atwater Kent Power Panel (2016) and Grid-

Independent Charging Station with Power Flow Display (2012). This will make these

projects accessible to everyday users and highlight the awareness of energy usage within

Atwater Kent. The Smart Mirror will be able to reduce the amount of power consumed by

the Power Panels by not allowing the system to be on for a long period of time. This new

combination of systems provides the Atwater Kent community with an interactive

method of conveyed energy usage and previous MQP’s.

Acknowledgements

This project was made possible by the New England Center for Analog and Mixed

Signal Integrated Circuit Design (NECAMSID) and by the Electrical and Computer

Engineering (ECE) Department at WPI. The team would like to thank Professor Shamsur

Mazumder for their guidance throughout the course of this project. The team also would

like to thank Professor O’Rourke for advice on how to approach the project’s proposals.

The team would also like to thank Bill Appleyard and Leah Morales for their assistance

in ordering parts and assembly. The team would also like to thank Professor Orr for

inviting the team to present at the Energy Sustainability Forum. The team extends their

gratitude to the Head of the ECE Department, Professor Massoud for providing

assistance to implement new features to the existing system featured in the front lounge

of Atwater Kent.

Table of Contents
Abstract .. 2

Acknowledgements ... 3

1. Introduction ... 6

2. Preliminary Project Decisions .. 6

2.1. Related Previous Projects ... 7

2.1.1. Atwater Kent Power Panel ... 7

2.1.2. Renewable Energy Applications .. 8

2.1.3. Grid Independent Solar Charging Display ... 9

2.2. Atwater Kent Power Panel Design .. 11

2.2.1. LED Panel Matrix ... 11

2.2.2. LED Wall Controller .. 12

2.2.3. Capacitive Touch Sensor .. 13

2.2.4. ODROID XU4 ... 15

2.3. Project Surveying for Deciding on Enhancement .. 16

2.3.1. Previous MQP Group Responses ... 16

2.3.2. Students .. 16

2.3.3. Parents & Prospective Students ... 16

2.3.4. Professor Responses .. 17

2.4. Final Project Decisions ... 18

3. System Upgrades and Additions .. 20

3.1. Challenges of Operating the Previous System .. 20

3.1.1. Electrical Component Enclosure ... 23

3.1.2. Capacitive Touch Sensors .. 26

3.2. Power Panels Media Upgrade .. 29

3.2.1. Children Panels ... 29

3.2.2. Main Display Selection Menu .. 31

3.2.3. Challenges .. 33

3.3. Solar Grid Independent Charging Station ... 39

3.3.1. Current System and Goal ... 39

3.3.2. Procedure ... 41

3.3.3. Finalization of System ... 45

3.4 MQP addition Criteria ... 47

3.5 Smart Mirror ... 48

3.5.1. Block Diagram and Component Analysis ... 48

3.5.2. Installation Process ... 52

3.5.3. Smart Mirror Features ... 57

4. Future Recommendations .. 58

4.1. LED Panels .. 58

4.1.1. Electrical Component Enclosure ... 58

4.1.2. Games ... 59

4.1.3. Solar Panels Installation ... 59

4.2 Smart Mirror ... 60

4.2.1. Remote Desktop... 60

4.2.2. User Control .. 60

4.2.3. Lab Occupancy .. 61

5. Conclusion ... 62

6. Appendix .. 63

6.1 Power Panels User Manual .. 63

6.2 Making System autonomous .. 66

6.3 ODROID and Software Tips .. 69

6.4 Accessing Advanced User settings ... 71

6.5 LED Studio Software Manual .. 72

6.6 System Power Issues ... 76

6.7 Smart Mirror User Manual ... 78

6.8 Code from Smart Mirror ... 80

6.9 Code from LED Panels ... 128

6.9.1 Power Panel Section ... 128

6.9.2 Children Panels Section ... 140

7. References .. 147

1. Introduction

There are three major focuses within this Major Qualifying Project (MQP): the

upgrade of media displayed on the Atwater Kent Power Panels, the addition of a Smart

Mirror, and the relocation of the Independent Grid Solar Charging Station. Before the

team could tackle these three focuses, the primary goals were to develop an

understanding of how the previous MQP’s functioned and their intended goals, to

improve upon the documentation from in the MQP report provided by the Power Panel

MQP made in 2016, and to develop a list of media that the Atwater Kent community

would enjoy interacting with. The group identified that there was a need to improve upon

documentation because there was a lack of data needed to understand the overall system.

This was highly needed before being able to move ahead and add more features. The

report provided by the Power Panels team contained information that was unclear about

system installation and functionality. However, the Power Panel MQP group did install

and set up the entire Power Panel system which provided a method of displaying

information relevant to students and visitors onto an aesthetically appealing LED display

matrix. Since then, the Electrical and Computer Engineering (ECE) department has

provided the 2016-2017 team with ideas, resources, and funding that allows and

encourages the team to build upon the existing system with new features and identify

occurring flaws. This report will touch upon what how previous MQP’s are enhanced and

tied together to make an energy usage awareness system for the Atwater Kent

community.

2. Preliminary Project Decisions

One of the goals of this project is to provide a platform to display energy usage

related statistics. The Power Panels serve as a tool to add character to the lounge as well

as a way to display information gathered from a variety of previous MQP projects. It was

necessary to research previous projects completed by WPI students related to energy to

see how they contributed to the Atwater Kent Power Panels. Each of these systems is

explored further through this section.

2.1. Related Previous Projects

2.1.1. Atwater Kent Power Panel

This is an analysis to understand what the 2015-2016 Power Panel Group

accomplished. For the remainder of this report, the team will be referring to this MQP as

the previous MQP team. The goal of the previous MQP team was to design and assemble

a Power Panel system that displays relevant information as well as highlights energy

consumption by Atwater Kent to students and visitors of the Atwater Kent Pumpkin

Lounge. Their panel displayed a variety of information to students which included

campus events, a twitter feed, campus map, pizza countdown, solar data measurements,

and the standard weather and time. A creative element was explored through analyzing

and comparing various LED pixel layouts to make the system more aesthetically

pleasing. In addition, capacitive touch sensors installed on the wall, in front of the panel

displays, allow for users to interact with the system’s menu selections.

Figure 1. Previous MQP Project: Atwater Kent Power Panel System Block Diagram

The block diagram above presents the overall Power Panel system design. The

system utilizes another MQP (Grid Independent Charging Display) in order to receive

power generated from the solar panels. The voltage and current sensors from the

Charging Display serve as input to the computer module of the system to display solar

panel statistics and data. The user is able to navigate the system through the capacitive

touch sensor that directly inputs into the computer module. The computer module outputs

to an LED display sending card which communicates with the LED display receiving

card. The receiving cards connect to the LED matrix panels in order to mirror the screens

displayed on the computer module. The computer module is powered through an external

power supply.

2.1.2. Renewable Energy Applications

In 2012, this team evaluated the extent to which using power obtained from the

wind turbine was feasible. After determining that the wind turbine did not create enough

power to use for their Power Panel, they created a “solar energy harvesting board” (3).

This board served to store energy in batteries for use within the ECE department.

Initially, this team had three sections of renewable energy applications which they

focused on. With interest in developing a solar panel system, wind system, and site

monitoring system, it was determined that in order to stay on schedule, the solar panel

system was explored. The roof of AK was surveyed and the most optimal location for the

solar panels was determined. The team installed three out of the six panels that were

donated to the NECAMSID Lab. The remaining four have not yet been installed and are

still located in the Lab. The solar panels located on the roof are still functional and will be

utilized by this Power Panel project for the Atwater Pumpkin Lounge. An image of the

set-up on the roof of AK can be seen in Figure 2 with the solar panel installation circled

in red.

Figure 2. Location of Solar Panels on roof of Atwater Kent

The 2012 team proposed to install a panel display similar to the intentions of this

Power Panel. The past team focused the majority of available time on establishing an

effective method to collect energy from the panels and therefore was not able to develop

a means for display. The project concentrated on developing a system to measure the

output voltage and current accurately. This has been used to collect and make

assessments of the output energy from the solar panel array.

2.1.3. Grid Independent Solar Charging Display

In 2012, the MQP, “Grid-Independent Charging Display,” was developed to

display the power flow of the AK solar panels into a wall mounted charging station (5).

The primary goal of this project was to promote the use of green energy while also

providing a useful device to the visitors of Atwater Kent. Figure 3 shows an image of

their final design.

Figure 3. Grid Independent Solar Charging Display System Diagram

The project displays the power flow at three different points: the solar panel

output, battery charging circuit input, and the load output. This was meant to give the

user a logical understanding of how power flows from generation to consumption. By

continuously displaying data through LCD screen modules, the team expected users to

become more conscious about their energy usage and needs.

Instead of being installed in the Pumpkin Lounge, the project remained in the

NECAMSID lab where it was occasionally used. It remained there for a number of years

until an issue with one of its LCD displays arose and could not be easily fixed.

Additionally, the previous MQP team came up with some improvements that they felt

could be easily implemented into a future redesign. The team felt that one of the major

concerns with the design was the limited amount of space for displaying text and images

on the 2.8-inch LCD touch screens (5). Initially, they wanted to display the energy saved

in terms of equivalencies such as kilowatt-hours saved, joules of energy from the sun, or

amount of money saved. They recommended incorporating larger display screens at each

point or relaying the information from the Arduinos via Ethernet to a TV panel in order to

display more visually appealing images and text.

2.2. Atwater Kent Power Panel Design

2.2.1. LED Panel Matrix

The previous MQP team opted to work with LED panels rather than a LCD screen

because of the flexible design and to showcase electrical ingenuity. The LED panels can

be joined into a matrix and made into any size that they want while an LCD screen

usually has a standard size. This decision provided more freedom to the Panel design

which the previous team has made in varying sizes and shapes to add to the artistic value.

As the goal of the project was also to show the creative ingenuity of WPI students, the

LED panel matrix that they designed, built and installed in the building is a lot more

impressive than using LCD screens and just using it as a monitor.

Figure 4. Previous System Display Decisions

2.2.2. LED Wall Controller

In the final LED panel design, the 2016 team used LED Video Wall controller

from Adafruit to display the video on the panels. The system involved video decoder

boards with a sender card connected to the video source and receiver card connected to

the LED wall panels. Sending card is located inside the power box while the receiver card

is located behind the main display panel in the pumpkin lounge. The two cards

communicate over Ethernet. For compatibility with the video decoder boards, 16X32

LED panels used were also from Adafruit as the software configuration and the rest of

the tutorial were modeled with those panels. Adafruit has a tutorial on setting up LED

Video Wall on their website which walks through the various steps in building the frame,

wiring/mounting the system and LED configuration software. The previous team were

working on the setup of the system until C term which gave them little time to document

a lot of their progress and design motives. Additionally, while the LED Video Wall

Controller is key to the foundation of this project, Adafruit explicitly states that they

don’t have any additional documentation other than the tutorial page and that they don’t

provide any consultation or support for the product.

The figure below shows the different connections of the video decoder boards for

them to work properly. The images were pulled from the tutorial page to give an idea of

how the sending/receiving cards look and their connections.

Figure 5. Wiring of Receiver Card in the LED Panel (Left) Sender Card Connections

(Right)

2.2.3. Capacitive Touch Sensor

To navigate the system, they built and installed a capacitive touch sensor. A

capacitive touch sensor uses a conductive material that changes capacitance when

touched by a grounded object such as a hand. Capacitive buttons can be labeled and laid

out in intuitive manner. Some capacitive touch specific solutions exist on the market, but

nearly any microcontroller with analog input pins can be used to detect capacitive touch.

The Arduino microcontroller has libraries that support capacitive touch recognition with

the benefits of low cost and ease of programming. The touch pads themselves can be

manufactured out of any conductive material that has excellent hardness and strength

properties compared to the human hand. Additionally, the pads can be designed in a

custom layout that fits the Power Panel’s user interface and can be easily interfaced

through an Arduino to the central processor. Because of these positive aspects, a

capacitive touch interface was utilized for the user interaction portion of the Power Panel.

Figure 6. Capacitive Touch Sensor connected with Arduino Micro

They designed it to be intuitive and simple to use with the main display. It was the

only user input to the Power Panel so it was responsible for controlling the menu options

and programs within. One of the better display of the capacitive sensors was its use to

simulate a game of pong displayed on the screens. Although relatively simple, it allows

for 2 players to use the sensors to play the game back and forth, demonstrating the

interactive capability of the system. Among the 9 pads, the triangle and square pads at the

bottom were left without any assigned functions for increased flexibility in future works

with the capacitive touch sensor.

Figure 7. Capacitive Touch Sensor mounted in doorway

Figure 8. Capacitive Sensors output to ODROID from left and right panel

The pictures above (Figure 7 and Figure 8) show the capacitance touch sensors

mounted on the doorway and their respective output that gets read by the ODROID.

During the testing phase, you can use the keyboard connected to the ODROID instead of

the capacitance sensors for debugging.

2.2.4. ODROID XU4

The previous team needed a computer module capable of integrating the LED

Matrix panels, LED Wall Controller and capacitive touch sensors into one complete

functional system. Based on their criteria, the microcontroller chosen was the ODROID

XU4, which runs a Cortex A-15 Processor with a clock speed of 2GHz. The ODROID

XU4 had many of the desired features such as decent processing power, digital I/O pins,

Analog to digital converters, DVI video output, memory and operating system capable of

graphic signal output. It also ran a more developed version of the Ubuntu OS allowing for

simple installation of programs such as Processing which is the main program used to

control the display on the LED panels. It also minimizes the amount of time spent on

editing the operating system’s settings to allow for dependable installation. From all the

considered options, the ODROID XU4 had the highest clock speed enabling it to run

Processing very smoothly compared to some of the other options such as raspberry pi and

Arduino.

2.3. Project Surveying for Deciding on Enhancement

2.3.1. Previous MQP Group Responses

Throughout the summer as well as during A-term, the team kept in close contact

with the previous MQP group. This was to learn about the system but it also helped with

learning what they saw as possible system improvements. During a meeting with

Alejandro Miranda, the team received feedback on how to improve the system through

areas of troubleshooting.

2.3.2. Students

To approach students, the team turned on the system and provided a google survey

for passersby to fill out. The system itself attracts many passing by and so collecting a

wide range of responses became feasible to accomplish. The team conducted surveys for

approximately 15 hours total. To reach out to more students that were not available

during the demo, the team also sent out an email to the undergraduate population. This

email had a link to the google survey form. The google survey was short and provided

images of what the current system looked like. It asked students to provide feedback on

what is currently being displayed and provide interest rankings of suggested system

added features. It also had a textbox for students to add any suggestions or comments as

well as indicating interest in providing assistance with the panels themselves. This was

done to provide the possibility of having a group of students who can be system operation

managers after the completion of the MQP.

2.3.3. Parents & Prospective Students

During Parent’s Weekend, there was an opportunity to collect survey results from

prospective students as well as parents. By interviewing parents, the team received

feedback from an audience that was not technically inclined. This provided unique

suggestions on how to attract a crowd outside of the Atwater Kent community audience.

Interviewing prospective students help the team add onto the learning features that are

going to be displayed. Parents suggested that there should be a mounted simplified

operation manual and project description onto the wall. The everyday person would not

know the engineering that goes on behind the scenes. Prospective students suggested that

other previous ECE MQP’s be displayed. Overall, both parents and prospective students

enjoyed the system. It was in general agreement that the system provided an aesthetically

pleasing and engaging.

2.3.4. Professor Responses

To further develop a feel for what assistance the previous MQP received, the team

contacted professors and faculty who had an input to the system. The team presented

demos to the following people to get a feel for their role within the project development

last year as well as to get suggestions for system improvements: Professor Orr, Professor

McNeill, Professor Massoud, and Bill Appleyard. Professor Massoud was one of the first

people who the team presented a demo for. A demo consisted of the team turning on the

system before the person of interest arrived to the presentation. Professor Massoud is the

head of the ECE department and throughout the meeting provided a lot of feedback and

guidance. He questioned the purpose of the panels themselves and why the choice of

LED pixel matrices over the use of a standard LCD TV monitor. Bill Appleyard helped

answer that the panels themselves are much more than just panels. They embody what the

ECE community is about. The ECE community is about creating innovative and technical

solutions. By comparing the LCD TV screens located near the front doors of AK, the

team saw that the power panels would be a more engaging and interactive feature to the

pumpkin lounge, especially with the capacitive touch sensors as a control feature.

Professor Massoud also suggested looking into the MIT room occupancy use. MIT’s

monitors tell users what classes are in progress and include a countdown until the room is

free. Adding this feature would be implementing an entire system change throughout

Atwater Kent, of which Professor Massoud suggested that the ECE department could

provide funding for.

During the meeting with Professor McNeil, the team updated both him and

Professor Mazumder on a list of possible system improvements the team has identified.

He guided the team’s first MQP presentations slide and added suggestions to help

improve the flow of the slides. Meeting with Professor Orr was insightful regarding

increasing energy efficiency. Professor Orr can provide connection to WPI’s chief

engineer. Through this meeting, the team would be able to gain access to the system’s

building management system. This program will provide a real-time feed on the energy

use throughout the building on campus. It is in the team’s goal to be able to showcase this

data as the data for the power harvested from the solar panels. Meeting with all of these

professors helped provide the team with additional tools and knowledge of who to reach

out to regarding certain tasks.

2.4. Final Project Decisions

The team has decided to implement the following onto the children panels

separately: Time and Date, Interactive GIF’s, WPI Twitter Feed, WPI Facts, Pizza Friday

Countdown, and weather. As for the main panel, the main features to be displayed

include: Lab space availability or Motion Sensored Game. The rest will be: mini games,

AK map, AK building energy usage, AK solar data, and AK History.

Using the responses from the survey results, the team has evaluated each response based

on the following factors.

● Creativity - How interesting, creative, attractive, and unconventional the design is

● Interactivity - How likely will this design encourage interactivity

● Feasibility - How likely will the team complete the design by the end of C-term

● Cost - How much resources will be put into the design

Including these factors will determine the priority of each design and what the team plans

to focus on for this project. Below is the value analysis of the three designs

Table 1. Value Analysis of Design Options

3. System Upgrades and Additions

3.1. Challenges of Operating the Previous System

The team wanted to have the current system in working condition before including

new additions to the system. It was something that was agreed upon as otherwise, the

errors and problems would only likely worsen later during the project work. Thus, issues

were identified to work and fix as priority tasks. The problems that were found along are

in the following list:

1. Electrical Component Enclosure (ECE) was too cluttered and components were

not fixed in place

2. Block diagram was too vague

3. Capacitive Touch Sensor was malfunctioning randomly

 During the troubleshooting of these issues, challenges rose that caused roadblocks

which delayed the ability to fix them in a planned manner. The challenges were the

following:

1. Lack of proper Documentation

The previous team spent majority of their MQP time building the system and had little

time to document their progress. As a result, there are gaps of information within the

MQP report. They did their best to include documentation of all things that they deemed

important. However, some of the missing information is necessary in order to properly

understand the system and to debug error and system failures as they appeared.

2. Electrical Component Enclosure

Figure 9. Crowded Electrical Box Enclosure

The ECE box holds the microcontroller and other components crucial to the power panel.

The major components are color coded and their connections:

● This is the ODROID (microcontroller) and its connections:

● An HDMI,

● Ethernet cable for internet

● DC jack

● And a connection to the POWERED USB HUB

● This is the POWERED USB HUB and its connections:

● Connected to the ODROID

● Connected to the ETHERNET-USB EXTENDER

● XBEE module via micro usb cable

● This is the MOLEX CONNECTOR and its connections:

● Directly connected to the power supply via the screw terminals

● This is the TOP SWITCH, it is used to turn on the LED Panels in the pumpkin

lounge

● This is the BOTTOM SWITCH, it is used to turn on the ODROID, the

POWERED USB HUB, as well as the SENDING CARD

● This is the DC JACK INPUT to the ODROID, it is connected directly to the

Power Supply.

● These are the two ETHERNET CABLES.

● Please make sure that the YELLOW Cable is attached to the U-Port and the

WHITE Cable is attached to the D Port

This is the HDMI Cable, it is used to connect the ORDOID to the SENDING CARD

while using a VGA Adapter.

The ECE box is visibly overcrowded with its many components. It is to the point

where opening the box results in the components overflowing out of the box.

Additionally, there are six screws used to close the box which does ensure security but at

a cost of tedious time to remove the cover. The next step is to plug in the USB for mouse

and keyboard and change the VGA/DVI cable with a different HDMI cable for a monitor

to operate the ODROID. A more detailed procedure of turning on the system can be

found in the appendix. It is however clear that the ECE box needs an upgrade in terms of

size and ease of use for a faster and smoother operation.

3. Capacitive Touch Sensor

As the team worked to identify problems with the Power Panel system, it was

discovered that the system would freeze at certain times and not respond to the capacitive

touch sensor panels. This would happen randomly such as starting the system, choosing

an option or if the system was operating for a certain period of time. The team started to

analyze the possible sources for this problem. The focus was on the capacitive sensor

regarding how it operated, its components and feedback system. It required more

analysis, meetings and assistance from the previous MQP team before finding a

resolution to the issue.

3.1.1. Electrical Component Enclosure

The previous MQP team decided to mount the ODROID, LED Video Wall

Controller, Xbee Module, Power Supply, and other necessary components into a small

enclosure located and mounted on the wall of AK113. The enclosure was a 9”x5”x4”

watertight container with a front cover that can be removed by unscrewing the screws.

The front cover had a ventilation hole so the inner temperatures of the box do not reach

extremities that will result in system malfunctions. The enclosure is significant to the

system as a whole because it provides access to power the system on or off. The

enclosure also contained a routing hole that allowed wires and cables to be run through to

the entire LED display configuration. The enclosure was secure enough for users to not

feasibly gain access to the components that run the system.

 With these obstacles in mind, the team came up with a solution that would

facilitate these problems. To allow for more leeway when ordering a new enclosure, the

team contacted AK facilities to provide permission to go ahead and have the bulletin

board in AK113 removed since it was not utilized for any purpose. When searching for a

new enclosure it was important to have enough space for each component to be able to be

mounted on the back panel as well as possibly have extra space for any potential

additions to the hardware. The team settled on these circumstances and determined the

maximum size for the enclosure is 14”x10”x6”. This size was the closest measurement

available to what was needed. The team discovered these dimensions based on measuring

the components themselves and allowing for some space in between. However, trying to

order a premade enclosure runs into an issue to deal with the dimensions the seller can

provide. So the team went with an alternative plan for the enclosure.

 The team obtained a 10”x10”x6” enclosure that would allow more space for the

components to be placed in the box. One of the recommendations from the previous

MQP team was to be able to install a small exhaust fan within the enclosure to release hot

air that accumulated within the box. With this new box, the team was able to successfully

install a new fan. Drilled holes where the fan was mounted allows for efficient passage of

hot air to exit the enclosure. There is still quite of bit of clutter but the overall goal is to

still eventually be able to turn the system on/off from the pumpkin lounge rather than

having to constantly set it up from AK113. So that the box will not have to be tampered

with when trying to operate the system for startup or shutdown.

Figure 10. ECE Box Component Layout

 The changes made are beneficial because they give each component (ODROID,

power supply, LED video wall controller, etc.) enough space and distance so excessive

heat won’t accumulate to disrupt the system from running. The large enclosure allows for

all the components to be securely fastened into the back panel that way no wires, cables,

or hardware will be damaged when trying to open the box or turn on the system.

 Figure 11. ECE Box

Below shows a table of how the temperature within the enclosure increases over

the course of six hours. As shown below the temperature for the old enclosure reaches its

peak at around 60 degrees Celsius.

 Current Electrical Component

Enclosure

New Electrical Component

Enclosure

Duration Temperature (Celcius) Temperature (Celcius)

1 hr 35 30

2 hr 46 38

3 hr 54 44

4 hr 61 52

5 hr 62 52

6 hr 61 54

Table 2. ECE Box Temperature data over 6-hour period

Figure 12. ECE Box Block Diagram

3.1.2. Capacitive Touch Sensors

The capacitive touch sensor would stop working randomly when running the

system. It was not quite clear as to the reason for this frequent issue from the capacitive

touch sensor. To try to better understand the reason, the team reviewed the 2015-2016

report to learn how the sensors worked and the way it was implemented into the system.

The sensors were analyzed through its design and found no flaw within it. The way it was

designed should have the system running. It was detached from the wall to make sure the

wire connections were not the problem. As expected, the only wire connection was a

micro USB wire which joined together from the two capacitive touch sensor and was a

direct input to the ODROID with an Ethernet cord.

Not explicit in the report, the team found how the output from the capacitive touch

sensor was read by the ODROID to control the main LED display. The capacitive touch

sensor basically sends back letters as inputs to control the onscreen display. They are

mapped to keyboard letters in 2 3X3 matrix from Q to Y, A to H and Z to N. Once

processing is running, the results on screen display can be controlled from the keyboard

directly rather than using the capacitive touch sensor. This was something the team did

not know and only found out after several tests.

After running the system, the team found that the capacitive touch sensor did not

have as many random failures when the grid independent system also turned on. The

relationship between the two is most likely a result of the coding and the communication

between the two systems. Once the system gained stability, the team focused more in

detail as to what caused the capacitive touch sensor to fail.

 It was noted that the capacitive touch sensor was fine running the whole system as

long as the solar power option was not chosen in the main menu. This option is meant to

display the voltage and current input from the solar panels on top of the roof of AK. The

information is coming from the Grid Independent MQP which is connected to the solar

panel and has voltage and current sensors to read the input. From the previous MQP

team’s report, it was identified that there are 2 Xbee modules (Receiver and Transmitter)

to communicate between the Grid Independent MQP and Power Panel MQP. Other than

that, it was not specified how it was programmed for the Grid Independent MQP and its

functionality.

Looking specifically at the error when the solar power selection was chosen, it was

an error which indicated that the program was attempting to access a location which did

not exist. Further research shows that the Xbee modules online provides details on the

capabilities and its method of communication. It explains that it used serial port to

communicate and needed its own programming. For this part, there was some

programming in the ODROID and some in the Arduino of the “Grid Independent

Charging Display” MQP. The ODROID system provided access to read the programming

but it did not contain enough commentary to explain the importance of the codes or the

program logic. On the Arduino side, the team attempted to access it directly. The Arduino

turns out to have a safety feature where once it is programmed, it will keep running the

program in binary language and cannot be read in human language. So having access to

the source code allows access to study and understand the program logic. Unfortunately,

the original source code was lost when speaking to the previous MQP team about it.

Fortunately, one of the members was able to provide any assistance and guidance

on the missing information. This provided clarification on the original source code,

especially on the communication with the Xbee modules. One of the Arduinos from the

Grid Independent MQP was reprogrammed specifically for the Xbee to send the voltage

and current information via serial communication.

During a meeting with one of the previous members, the error was displayed while

running the system. After the previous team member worked with the programming and

some of the coding, he identified the serial port code of the ODROID. He explained that

the ODROID had 7 ports which were the different pins available to it. As the ODROID

does not have many port connections, the system uses a USB hub to connect the other

pins. The Xbee module was connected to the ODROID through one of those USB ports

and this was dislocated. The Xbee was tested through different values through the serial

port to make the Xbee functional. The test was noting the different ports used until the

solar power selection can be accessed. The capacitance touch sensor is now able to

function properly with the current settings.

3.2. Power Panels Media Upgrade

3.2.1. Children Panels

The original idea of the LED Panels was to add an art style to it. Some

arrangements to the children panel will be able to accomplish that goal as well as make it

a welcoming center for tourists and incoming students. The new media will be the “Date

and Time,” “Gompei GIF,” and “WPI Fun Facts.” The “Date and Time” was originally

on the Main Display, but was best to be placed on a child panel so users of the system can

easily see the time and date displayed without having to access it through the capacitive

touch sensors. The “Gompei GIF” is an idea to add to the art style of the system where

the WPI mascot appears to be making a basketball throw on one child panel and on an

adjacent child panel the basketball is made in the hoop. The “WPI Fun Facts” will display

a variety of facts about the institution. Just like the scroll of the twitter feed, the fun facts

will have a similar style except vertically scroll upwards and display the text.

 The team wanted to create a pleasant and enjoyable atmosphere so that the

students can use the pumpkin lounge as a relaxation center. Having two panels that

appear to be interacting with each other seemed like a way to showcase that.

 After some research, the best way to have a GIF in processing is by displaying a

sequence of images in loop. For that, each GIF was cropped in squares to match the

children panel they will be displayed in and then split up in individual frames that capture

the GIF. The frames were downloaded to the ODROID database and loaded into the

setup of processing. Then, a counter was created which went up by one every (check)

clock cycles until it reaches (check) which represents the total number of frames for the

particular GIF. After that, it was a simple matter of calling on the GIF image with counter

as input so that the GIF runs with the clock cycle to provide the motion.

Figure 13. Interactive GIF: Gompei shooting a ball in loop

The two images shown above are still now but are part of a GIF that will be

displayed in 2 of the panels in pumpkin lounge. The left GIF is gompei shooting a

basketball without looking at the board while the right GIF is simply a basketball going

inside the hoop. The idea is to have the two GIFs running in different panels seamlessly.

Once it was understood on how to add GIFs to the panels, the important part will be the

timing as both GIF have different lengths. It also has to be a satisfying loop showing the

interaction between the two panels.

Figure 14. Partial Code for WPI Fun Facts Panel

 The WPI fun facts code is following the same style as the GIF but instead of

displaying different frame with cycle, it uses cases to display the facts in the panel. It was

initially attempted to do it exactly as the Gif and took screenshots of the facts but doing

so gave a very blurry display in the panels. That is when the switch was made to the case

and got clean, easy to read facts on the panel.

3.2.2. Main Display Selection Menu

 The menu discarded previous selections such as “AK Power,” “Pizza Friday

Menu,” and “Time and Date.” The “AK Power” selection was planned to display the

measurements of power being used within the building, but the facilities would not allow

this information to be displayed so this selection had to be replaced. The other two

selections were not going to be used often since there was already a sign that showed the

Pizza Friday Menu and the other selection can be accessed from users own phones or

watches and clocks. The remaining selections remained on the display and three new

ones were added that would encourage users to learn about the Atwater Kent building as

well as interact with the system to learn about daily news and information. The purpose

of this is to make this user friendly for tourists or other students to utilize on a daily basis.

Figure 15. LED Panels Main Display Selection Menu

 An issue with the old menu is that it did not clarify the function of the system or

how to utilize it properly. The “About” selection was created to ease users into learning

the LED Panel system. The capacitive touch sensors do provide a simple display that can

be easily understood to navigate the menu, so once the user understands the sensors, they

are able to select “About” which explains the rest of the selections and controls.

Figure 16. About Selection Controls Slide

 When the user reads this, they will use the up and down arrows to try it out and

notice the next two slides below will appear, briefly describing the remaining selections

and their purpose. This will give the user the understanding of the menu and the overall

purpose of its use.

Figure 17. About Selection Description

 The last two selections made to the menu are “AK MQP” and “AK History” which

fit with half the menu’s theme of focusing on the Atwater Kent building.

Figure 18. AK MQP Selection Menu

Figure 19. AK MQP Gauss Generator

 The “AK MQP” selection focuses on displaying some common MQP’s shown in

the display cases and in the Electrical Computer Engineering department.

Figure 20. AK History Slides

 The “AK History” selection focuses on displaying pictures of the building when it

first became part of the WPI community and how it came to be.

3.2.3. Challenges

 Solar Data Glitch (When selecting it on the LED Panel Menu, the entire program

would freeze. This can be resolved within a line of code highlighted in Appendix)

3.2.3.1. LED Panels Orientation Glitch on twitter and main display

ODROID update 3.10.92-71 was installed on the ODROID and caused an issue

with the orientation on the LED Panels. They occur on the main display and the

horizontal ticker as shown below.

Figure 21. LED Main Display and Horizontal Ticker Glitch

 It seems that this is a common issue from other people who own an ODROID and

a solution has not been know yet. However, a solution was discovered through the LED

Studio Software that is further explained later in this section.

3.2.3.2 . Children Panel Testing

 Updates were made to the ODROID in order to gain access to some remote

desktop applications to communicate with the smart mirror. Unfortunately, the update

created an issue. It affected the orientation of the processing display on the led panels.

Most of them were just moved in terms of location which was restored by changing the

coordinates of the media. However, the horizontal ticker and main display panel were

showing the glitches as shown in Figure 21. The horizontal ticker had visual glitches

along the tweets which made the text illegible to read while the main display was

separated in two different locations.

The team cooperated with one of the previous MQP members. There were

different attempts for debugging approach. The first was checking the hardware and wire

connections behind the panels, but they appeared to be functional as intended. Another

test was to display one of the laptops to the panel display and it displayed the whole

screen perfectly onto the LED Panels without any glitches. It was unsure as to why this

occured but it seemed like ODROID update while being connected to the LED Panel

system was the only link of creating the distorted display on the media. It was assumed

that the ODROID had an issue with the hardware or software so it was best to replace it

with another assuming the issue was unrepairable.

As for the glitches, there seemed to be a connection with the way the LED Panels

were set with certain resolution and X/Y coordinates. The ODROID display to the

desktop monitor was perfectly fine which meant that the problem was not from the code

in processing. It also meant that the problem occurred after its sketch output is generated

which only leaves the transition from ODROID to the panels. The LED panels have a

receiving card installed for this purpose. The sending card is connected with the

ODROID with a hdmi-DVI connection.

Figure 22. Sending and Receiving card for LED Panels

The problem started after the firmware update of the ODROID. The receiving card

which is connected with the LED panel matrix is programmed with an “LED Studio

Software Configuration”. The team developed a theory on how this problem occurred

which was that the update changed the video graphical resolution which would throw off

the software that is trying to display using the old resolution. It was assumed that a new

ODROID would fix the problem but after attempting to do so, the display was the same

with the glitches. It was attempted to display some laptops and a raspberry pi on the

panels. During the testing, it was noted that the pi also had similar issues, one of the

laptops couldn’t get some of the panels to display anything at all but one laptop was able

to completely display the panels without any issues.

It was still unclear to note the cause since both laptops run on windows 10 and

even when changing the settings on the laptop to match the ODROID there was no effect.

However, the one laptop which was able to display the panels properly proves that panels

and the hardware itself was fine and it was a software issue while sending the data from

ODROID to the panels. With that in mind, the following list was created to solve this

issue:

1. Rollback the ODROID software to the previous version – It was assumed

that resetting the firmware would reset the panels into displaying the correct

coordinates.

2. Using just the laptop to display the panels – It was a backup plan if there was

no improvement on the LED display to serve as a temporary placeholder in order

to properly demonstrate the features of the LED panels. It would be impossible to

implement the idea of using the smart mirror to control the panels as it was meant

for the ODROID and not the laptop. Thus, this would have been a temporary

solution at best.

3. Use the LED Studio software to reset dimensions for the panels – This is one

of the most viable options to utilize as it has the highest likelihood of being able to

solve the issue. The problem is that the Software is part of Adrafruit’s personal

project for which they provide limited support. The only information they have is

their setup instruction for their specific project. Adding to that fact, the previous

MQP team emphasized the difficulty of the software and stated to not make any

changes to it. As it currently works for the most part on the ODROID and fully on

the laptop, it is a risk towards the project if changes were to be implemented to the

software and the issues become worse.

It was decided to go with option 1 first because it would be the easiest fix if

there was such an option available. Unfortunately, it provides no solution. The

team reached out to other students who worked with a similar system, researched

online in forums from those experiencing similar dilemmas. The only way to do a

software rollback for the ODROID running the Ubuntu operating system was by

accessing the grub menu. The problem with that was the access to grub depends

on pressing ‘shift’ during boot time. This method did not work nor did other

buttons such as ‘esc’ and ‘space.’ The team also attempted to directly access the

grub menu from the terminal but that was also unsuccessful. It almost seemed as if

the grub menu was non-existent in the ODROID going through the different files,

terminal and settings. Researching online for assistance did not provide any

information useful to troubleshooting the issue since the community only had

experience to solve the shift during boot or using terminal to make changes to the

grub menu.

Option 2 was next but after much consideration it was decided the work was not

worth the temporary solution unless nothing else worked. As the laptop was able to

display properly, a possibility was to use the laptop to display the panels and record a

video of the system running in order to show the system working under operation.

Although the laptop displayed properly, all of the panels were misaligned with their

displays and needed a review on the coordinates. There was also the problem of not being

able to access some selections on the main display such as the solar data and the twitter

feed (It lacked a specific account approved by Twitter with the proper IP address). The

team decided that the time needed to fully shift everything to the correct position for the

laptop would be time wasted on a temporary fix if there is the possibility of fixing the

display completely.

So, option 3 was the last attempt. The goal was to be able to return the settings to

their current settings so that option 2 becomes more viable if the attempt does not work.

Screenshots of the settings were taken as a trail to redo any changes. The screenshots are

included in the appendix as well as a description on how to operate the LED Studio

configuration software. The team worked with the software and tried to make minor

changes to the settings and better understand it. Eventually, it was identified that

changing the resolution was able to minimize most of the glitches. This finding, and the

error following the ODROID update, coincide to express the ODROID’s old firmware

had a certain resolution which was matched by the sending card which controlled the

LED Panels. The firmware update for the ODROID made some changes to that resolution

which no longer matched the sending card and thus created the glitch in response.

Changing the sending card resolution with the LED Studio configuration software

brought it to a resolution close to the new updated firmware’s resolution and eliminated

most of the glitches. The minor glitches left are because the configuration software only

has custom resolution so it cannot be customized to match the exact resolution.

3.2.3.3. Unexplained ODROID Malfunction

 After fixing the glitches the LED Panels and demonstrated it working properly,

another issue was presented. Without adding further changes to the working ODROID

and panels, the LED panels connected to the ODROID did not display any media. The

ODROID was assumed to have an internally damaged component so another ODROID

was used to replace it. It was initially claimed that the issue came from the LED

Software, then the HDMI cable, or even with the components inside the ECE box.

However, tests were run to check what components were damaged by displaying the

images from a different processor (laptop, raspberry pi) which were capable of providing

the display. The ODROID did not and the likely possibility of this was it being damaged

or having the wrong HDMI cable. When replaced with the new ODROID, the display

appeared again. This fixed the problem but after demonstrating it on Project Presentation

Day where the system was working perfectly, the new ODROID also had the same

malfunction where it did not display anything in the panels even though other devices

could. It hints at an unexplored problem with the ODROID.

3.3. Solar Grid Independent Charging Station

3.3.1. Current System and Goal

 With the idea of creating a user friendly console to be provided to the public of

Atwater Kent, the Solar Charging Station needed to be assessed for its functionality and

ability to be relocated to the first floor from the third floor of the building. In order to

make this a feasible task, there were three big factors that must be clear to pursue and

accomplish: (1) The charging system must be functional when relocated a further

distance away from the third floor to the first floor, (2) it must be enclosed in a secure

area that cannot be tampered with easily yet present the components that make up the

system in a clear way, (3) and the system should still hold its purpose of providing the

functionality of a charging station as well as provide information of the solar panel’s live

data feed.

The functionality is priority to ensure the system will perform when relocated, so

it was best to run the system in its current state in the lab on the third floor. This testing

of the system is shown below in Figure 23.

Figure 23. Solar Charging Station with Xbee Module

 What should be noted about the system is the removal of the LCD screen on the

top left of the picture and is replaced with an Xbee Module. This was a decision made as

a response to the recommendation of creating a larger display for the solar panel’s data

feed through a wireless, zigbee communication from the Charging Station to the

ODROID, which presents the data onto the LED Panel menu as a selection.

 It is noted that the LCD screens display 0.000W and this was a known issue the

system produced before the installation of the Xbee Module. Overtime the system did

lose the LCD monitor functionality to properly state the power being distributed, but did

provide the opportunity to apply a better usage of presenting the energy usage of the

Solar Charging Station that can provide the awareness of Solar Panels providing power at

different times of day for the public to use.

3.3.2. Procedure

 Knowing that the Charging Station is functional and able to perform, the next task

was to make the system presentable for use by positioning it next to the LED Panels to

show the connection between the system and its live solar data feed. This means the

system should be visible to the public but should be enclosed in a secured manner. Thus

leading to the usage of Acrylic plexiglass, specifically ¼ inch thick. Figure 24 shows the

plan of the casing for the components of the system as well as measurements made for

each of the sides of the case. Figure 25 shows the bottom of the case with the components

laid out. What should be noted about the measurements is that there will be six different

slabs of plexiglass to make up to box-shaped enclosure. The measurements were taken

based on the sizes and shapes of the components that make up the system and the

distances between each component.

Figure 24. Acrylic Case with Measurements

Figure 25. Acrylic Slab with Positions of each Component

Next was removing the system from the wooden board it was attached to within

the third floor lab. The system attached to the board is shown in Figure 26.

Figure 26. Solar Charging Station attached to wooden board

It was secured with numerous nuts and bolts that included time to remove the

components as well as note the wire connections each one had. Once the components

were removed from the wooden board, it was laid across on an extra acrylic slab that was

used to provide an idea of the system taking up the size that was noted in Figure 24. As

seen in Figure 27, the system does have an issue of wires being too long to fit within the

size limit, which does request it to be rewired to adjust the direction as well as shorten the

length when connected between two components.

Figure 27. Solar Charging Station removed from the wooden board

 With the layout of the system planned into an acrylic case enclosure, the next step

was to also extend the connection of the solar panel to the system with a longer cable.

Below shows Figure 28 which is the cable that was used to extend the cable connection

and is the type of wire gauge (14-2) compatible with the solar panel. With the assistance

of the head of facilities of Atwater Kent, the cable is able to extend from the third floor

down to the first floor where it is located in the AK113 lab. It was then ensured that the

new cable is spliced together with the old one and placed near the ceiling.

Figure 28. 14-2 Wire Gauge Solar Panel Cable

With the ability to relocate the system to the first floor and planned out the

positions of the components within the acrylic casing, the final workings are to create the

casing, rewire the components, and place the system on the wall. The acrylic material

does have a ¼ inch thickness to ensure the case is stable enough to hold the components

and the six slabs of acrylic are able to hold together when glued. With the assistance of

the electronics technician, the acrylic slabs were cut to their planned sizes. Next was

placing the components onto the bottom of the case, where the plastic covering was used

to mark the locations of the components and their areas of placing screws to attach to the

acrylic slab. This provided a safe excuse of making mistakes when placing the

components as well as change location if needed. With the components placed, new wires

were used provided by the electronics technician which are 18 gauge red and black wires.

These required use of wire splitting tools and soldering techniques for some components,

but the goal was to make the system have an aesthetically appealing display to users of

the system. Once this was complete, the plastic was peeled off the slab that was on the

cover that holds the components since the case was ready to enclose the system. The

slabs were glued one by one to the slab holding the components and settled within five

minutes of gluing. The last slab that is used to cover the top was placed using six

different screws in order to allow the option to reopen the case if there is an error with the

components or provide features to the system. However, this did become an issue to

allow access to users who wish to utilize the charging system, so a small door hinge was

created in front of the power outlets for users to access the system with ease.

3.3.3. Finalization of System

The last step was to place the cased system onto the wall. After speaking to the

head of the Atwater Kent facilities, the team was given the permission to place it next to

the main display of the LED panels. It should be noted that this was allow to hang on the

wall since there were not metal pieces inside the wall that the system can interfere with,

so it was safe to place it along with four different bolts to hold the case. Once the system

was installed, the 14-2 gauge cable connected to the system and the system became

functional to provide charge. The final system can be viewed in Figure 29. which is now

capable of sending the solar data feed from the solar panel located on the roof down to

the first floor of the pumpkin lounge and provide an option for users to charge their

devices.

Figure 29. Final Installment of the Solar Charging Station in the Enclosure

3.4 MQP addition Criteria

1. Interactive – Students/Visitors are encouraged to use the system

2. Comfort - System is located in Pumpkin Lounge so the system’s interaction features

should not infringe upon any user’s comfort

3. Distraction free – Pumpkin Lounge is at all time of the day used as a study area. New

addition to the system cannot be obnoxious or distracting to the students’ education

4. Ease of Use – New addition should help using the system easier

5. Aesthetically pleasing - The new addition will be visible in the main lounge area of

the ECE department and will be used by prospective students.

MQP addition options:

1. Interactive Game – The original idea of our MQP team was to create an

interactive game that both visitors and students can play to learn about the system. It was

hoped it would be the initial attraction that would have people use the system for fun and

then they would learn and use the rest of the system features. However, while it would be

interactive, it could be a source of distraction for other students in the lounge who are

focusing on their school work.

2. Music Speakers – This was an idea explored where it would help students

relax by making the pumpkin lounge an open music room. It would be an interesting

aspect that is not seen in any WPI buildings and can definitely be a tool for relaxation and

comfort in the lounge. It is however hard to pick a genre of music that everyone can agree

with and as Pumpkin lounge is the heart of AK, a lot of people will be influenced by the

sound. While some students might enjoy the addition, it can definitely be a source of

distraction for others as there is no easy way to isolate the music to a small location

within the lounge.

3. Smart Mirror – This is the idea the team came up with when exploring the

criteria. It would be user interface which can help control the system right from the

pumpkin lounge without infringing on anyone’s comfort or being a source of distraction.

It is interactive by design and matches the criteria for the addition.

It was then decided to go with the Smart mirror user interface as a new addition to

the Power Panel system. As it gives an option to control the system from the pumpkin

lounge, it was decided to move the Grid Independent MQP there from AK 317B as well.

The NECAMSID lab is off limits except to the Professor and MQP teams working there

so normal visitors and students cannot access the lab room. Bringing down the Grid

Independent MQP which sends the solar data to the Odroid has the added benefit of

actually utilizing the solar power. It has an inverter which powers a wall outlet that can

be used to charge small devices like cell phones and laptops.

3.5 Smart Mirror

3.5.1. Block Diagram and Component Analysis

With the new feature being the smart mirror, some investigation was required to

understand what components are necessary to extend the system’s interactions. The main

components for the mirror will be the computer monitor, the sheet for the mirror, the

Raspberry Pi 3 microcontroller, and the Gesture Sensor. Below is the Block Diagram of

the ‘Smart Mirror.’

Figure 30. Smart Mirror Block Diagram

The components that make up the ‘Smart Mirror’ are listed below.

· Two-Way Acrylic Sheet $86.67

· 2 by 4 wood $10.50

· LCD Monitor $169.99

· Raspberry Pi 3 Model B $39.99

· HDMI Cable $5

· Power Supply (With Raspberry Pi)

· Gesture Sensor RGB $14.95

The ‘Smart Mirror’ uses the Raspberry Pi 3 microcontroller that is connected to

the LCD Monitor through an HDMI cable in order to display the image through the

mirror and the Ethernet cable is able to communicate the data between the LCD Monitor

and the microcontroller. The data comes from the RGB Gesture Sensor where users will

use their hand movements to interact with the ‘Smart Mirror.’ The entire ‘Smart Mirror’

system will have a power supply that provides 5V, 250mA, and 1.25W to the system

through a micro USB cord. The power supply will be connected to the external power of

the AK building.

The size of the mirror is dependent on the monitor, so the monitor must be

considered first. With that in mind, the LCD Monitor below has been chosen.

Figure 31. LCD Monitor

The Monitor is able to connect to the raspberry pi with ease since it comes with an

HDMI slot. It is a 27’ (25.3’ x 18.3’) display which is an appropriate size for users to

clearly see the screen through the mirror.

When researching how the smart mirrors are configured, the common material

used for the sheets are two-way acrylic sheets. These sheets provide a reflection on one

side and the other side appears transparent. This sheet is able to hide the computer

monitor behind the sheet and when the monitor is turned off the sheet will appear as a

mirror.

Figure 32. Two-way Acrylic Sheet

These sheets can be custom ordered and sized in various ways. In order to make

the smart mirror, the acrylic sheet must be slightly larger compared to the monitor.

Fortunately, the company TAP Plastics offers customization for these sheets and can be

ordered in any size that can fit the criteria of the smart mirror.

The smart mirror requires the microcontroller in order to provide the interface.

Choosing the raspberry pi 3 is relatively cheap and contains simple instructions on

running the operating system onto the monitor and easy set-up. There is also a large

community behind the pi 3 that provides feedback and input on setting up the smart

mirror configurations.

Figure 33. Raspberry Pi 3 Model B

The Gesture Sensor is used to recognize motion detection and output the detection

of the motion passing over. The way it will be utilized for the ‘Smart Mirror’ is it will

detect when a user moves their hand across the sensor. Doing this will turn on the system

and the user can move their hand in a certain direction to move through a menu selection.

The user can move their hand towards the sensor and it will recognize that motion and

respond by selecting the option on the menu.

Figure 34. Sparkfun RGB and Gesture Sensor

Push buttons will be another option for the ‘Smart Mirror’ if there is a need to

switch the way users will interact with the ‘Smart Mirror.’ Push buttons are simple to

install and can be easily accessed by the user to interact with.

Figure 35. Push-Button

3.5.2. Installation Process

The process for setting up the Smart Mirror required a lot of minor tweaks such as

the proper operating system installation, being able to connect to WPI’s Wireless

Internet, configuring the system clock, etc.

3.5.2.1. Installed Raspbian OS

Figure 36. Initial Setup when first booting up Raspberry Pi

 When first booting up the Raspberry Pi the user is asked what operating system

they want to use when using the Raspberry Pi. There are plenty of options available to

choose from but the most basic and feasible option for the purpose of the Smart Mirror

was to choose Raspbian. When going through this OS installation process it was required

to have internet. This provided an issue registering a Raspberry Pi onto WPI’s internet

since the setup is complicated. A work around this issue was through the use of a hotspot

device. Once connected to the internet, the installation began to download.

3.5.2.2. Configured English (US) Keyboard and System Clock

 The Raspberry Pi is defaulted to the British English Keyboard layout which made

it slightly more difficult when setting up the Smart Mirror software. So it was required to

set up the keyboard to US English.

Figure 37. Changing the keyboard regional language

This was simply done by going to the drop down menu at the top left of the

desktop screen and selecting Preferences>Raspberry Pi Configuration>Localization and

then clicking on Set Keyboard. Then a list of keyboard configurations are laid out to

choose from.

Figure 38. Menu options for selecting Time Zone

 As shown in the figure above the time zone/system clock can be configured from

the same menu as the keyboard settings. Then the user is prompted to select their

location.

3.5.2.3. Setup Wi-Fi access with WPI’s Internet

 Setting up Wi-Fi Access for the Raspberry Pi was no simply task. WPI does not

have a transparent way of connecting Linux systems to its internet unless Network

Manager is installed. When going to the WPI Helpdesk located in the Gordon Library,

they informed the team that the Helpdesk does not have knowledge on how to setup a

Raspberry Pi on WPI Wi-Fi. When the team first set up the Wi-Fi for the Raspberry Pi, a

specific certificates needed to be downloaded from WPI Network that would then be used

with wpa_supplicant. This information was obtained from an online forum that a past

WPI student wrote that contained information about the wpa_supplicant. Setting up

internet access with wpa_supplicant is possible but very tedious and unsafe because it

leaves the student’s username and personal password in a text document that can be

accessed without proper security. This can be shown in the example wpa_supplicant file

below.

Figure 39. Format of wpa_supplicant, proper certificates and personal password

 It is suggested that if the Raspberry Pi loses its WPI Wi-Fi access, it should be

taken directly to Network Operations located in Morgan Hall. They were able to

efficiently setup the Raspberry Pi onto the WPI Wireless Internet using Network

Manager. The reason why Network Manager is less tedious to use is because it allows

users to choose what certificates are needed instead of having to input the file path to

each certificate.

3.5.2.4. Installing Smart Mirror Software

 Before installing the necessary packages for the Magic Mirror software, it is

advised that space is freed from the SD card. Once all the extra software that is

preinstalled is removed, it can then begin installation with internet access. The team

followed this very detailed step-by-step forum that shows the command used to install the

packages for the Magic Mirror software. It also shows how to reorient the screen position

to either be in portrait or landscape mode. Using this software gave a base for what the

team wanted to display onto the Smart Mirror.

3.5.2.5 . Obtained API Key Codes to Obtain Live Weather Feed

 After installing the software and running it, the team noticed that the weather

forecast wasn’t displaying the correct information. This is because the software grabs its

information from a website called OpenWeatherApp. An account is needed to obtain an

API code to be entered. A location ID is also needed to display the weather forecast from

Worcester, MA which can be obtained from a list[2] of cities located on the

OpenWeatherApp.

3.5.2.6. Implemented Automatic Startup for Smart Mirror Software

 The team wanted to add the feature that the software being used for this project

would automatically initiate whenever the Raspberry Pi was booting up. There is another

forum[3] that has detailed description of what command will start an installation of a

production process manager for Node.js applications. This allows to keep certain

applications alive forever, reload them, and aid in common system admin tasks.

3.5.2.7. Customized Compliments Relative to Atwater Kent Users

 Within the software folders of the Smart Mirror there are various modules that are

used to display information onto the LCD screen. Specifically looking at the compliments

folder will provide a text file that can be edited to display whatever compliments/phrases

that were relative to users of Atwater Kent

Figure 40. Example config file of compliments displayed on Smart Mirror

As shown in the image above, it is simple to configure what compliments can

appear as well as implementing other within the Smart Mirror.

3.5.3. Smart Mirror Features

 The purpose of the Smart Mirror is to allow users of AK to control the power

consumptions settings of the LED Display through brightness, power on/off, or sleep

mode. It also contains all the default modules for users of AK to access readily available

information such as weather forecast, upcoming holidays, current events, etc. An

additional module aside from the default ones that was added is being able to display

WPI’s Instagram photos onto the Smart Mirror. An online tutorial

(https://github.com/kapsolas/MMM-Instagram) was used to assist in creating the module

to be compatible with the Smart Mirror software. This method did require another API

code to be linked with a current Instagram account. (http://jelled.com/instagram/access-

token) With this website generating API codes it allowed the team to display pictures of

WPI’s campus and students on the Smart Mirror.

https://github.com/kapsolas/MMM-Instagram
http://jelled.com/instagram/access-token
http://jelled.com/instagram/access-token

4. Future Recommendations

The following section will be divided into three parts to understand how to

improve each individual system component in order to reach the goals of this MQP.

4.1. LED Panels

The LED Panels themselves are in a functional state with the panels themselves

being tested for long periods of time. However, issues that the team has not been able to

fix include being able to start the panels themselves remotelesly. The necessity for this

stems from not being able to work on both the aesthetics of the power panels themselves

and testing out what changes made look like since there needs to be a manual change

between the HDMI or VGA port to and from the programming card. There were two

attempts made to address this issue.

The first is to enable wake on LAN through the Odroid. The Wake on LAN(WoL)

functionality serves to be able to turn on computers while it is on low power mode or off.

This attempt was unsuccessful because the Odroid does not have a BIOS system in which

would be able to enable WoL. The second attempt was attempting to create the electrical

switch on the wall of AK113 to face the same direction as the power panels themselves.

This way, future students could turn on the panels without having to go to the other side

of the wall to unscrew the lock box. A recommendation that the team considered but did

not attempt was removing the use of the Odroid and replacing it with a Raspberry Pi. The

reason for this being that there are previous examples online on how to remote desktop

into a Raspberry Pi.

4.1.1. Electrical Component Enclosure

One of the main concerns when the team first learned about the MQP was that of

heating issue. This issue was looked into and noted it was not a main concern. What is

concerning is how cramped the components in the ECE box is. The team was able to

receive a size close to the one that was determined to be the maximum for the enclosure,

but it did not provid a large enough space for the components. Since it is not a major

concern, the team installed everything and added in a cooling fan. There were holes

drilled onto the front of the enclosure to allow hot air to come from out of the box. This

box can be changed for aesthetic purposes but it should be noted that there has not been a

heating issue detected.

4.1.2. Games

Within the Odroid’s Processing code, there are two games that are featured.

However, while troubleshooting the system in AK113 many students from the AK

community have presented their curiosity for a method of submitting games to display

them on the LED Panels. A way to approach this would be to allow students to meet with

any future teams working on this project in order to understand how Processing works on

the Odroid. It is noted that some robotics and computer science students have used this

program before to design and display media. These games should be approved by future

teams before uploading the program into Processing to be displayed.

4.1.3. Solar Panels Installation

The team researched the feasibility of installing the remaining solar panels from

the 2011 MQP entitled “Renewable Energy Applications.” After making the decision to

construct a solar energy system, discussion of system design and location for the panels

began. Through Professor Looft, contact was made with WPI alum Jim Dunn, who has a

solar panel installation company called Future Solar LCC. The 2011 team discussed with

Jim Dunn about the possibility of installing solar panels onto the roof of Atwater

Kent. Mr. Dunn mentored the team and donated six solar panels of three different

models so the team could compare the specifications of each model. However, the team

only managed to install the system was designed to handle in excess of 230W, 45V, and

9A to take input from all three different types of panels. Upon reviewing the specification

sheets for the remaining solar panels, it was expected that they would not fulfill the

power requirement of powering the power panels. In an attempt to resolve this issue, the

team looked into the possibility of buying new solar panels to install that could power the

power panels themselves. This opened a conversation with facilities and the Atwater

Kent Electrical Engineer Manager, Professor O’Rouke.

The take away from this meeting include not being able to access the roof after it

collapsed in 2016. The reason for this being that the solution after the roof collapsed was

to apply a rubber layer which acts like a large tarp on top of the roof. This also means that

the solar panels cannot be attached to the roof or else they would cause holes. An effect

coming from this is that none of the current solar panels are attached to the roof. This

means that they are no longer in their most optimal position on the roof. They are

currently held down through the use of cinder blocks. This poses a challenge to add more

solar panels because they too could require cinder blocks which would increase the

weight on the roof. This creates a detrimental situation and can cause the roof to collapse.

4.2 Smart Mirror

4.2.1. Remote Desktop

In the section above entitled remote desktop on the Odroid, it was made clear about the

different approaches taken to complete this. Additionally, it is recommended to switch

the Odroid to a Raspberry Pi. An additional benefit to doing this would be that the Magic

Mirror interface on a Raspberry Pi itself. A script can be written onto the Magic Mirror

modules that turns on the Power Panel’s Raspberry Pi.

4.2.2. User Control

It is important to note the team attempted to have users control the Smart Mirror.

The team used a module found within the Magic Mirror websites which used the

Raspberry Pi’s IP address and SSH settings to be able to navigate through the Smart

Mirror through a website. This website would be displayed on the Smart Mirror itself and

was meant for users to be able to select what they wanted to see featured on the screen.

After mounting the panels, the team left the power panels on for an hour to note the

reactions of the addition of a Smart Mirror. Within hours, the AK Community had used

the website to modify the interface entirely. In conclusion, it was not intended to grant

this much access to the AK community. Instead, the team suggested limited accessibility

through the use of buttons or gesture control. Both of these features were purchased and

can be found in the NECASMID Lab in Atwater Kent.

The SparkFun RGB and Gesture Sensor can be installed on the front of the magic

mirror so nothing is blocking its ability to sense the user’s hand in front of it. The gesture

control works by being able to “sense” the direction of movement from the user waving

their hand in front of it. This provides feasibility of moving from modules left and right

or up and down if the modules are displayed in a console setting, which is a module

found on the Magic Mirror Modules. The use of buttons can do the same purpose of

navigation, however, there is a higher risk of the buttons malfunctioning eventually. This

can come from everyday wear and will need additional and frequent troubleshooting even

after the MQP team is done.

4.2.3. Lab Occupancy

A feature that was highly sought after was having a way to measure free space in

Atwater Kent. This is a feature that would look better on the Smart Mirror because the

high amount of information would appear pixelated on the power panels. The team

approached Professor O’Rouke on how to approach this problem but due to time

constraints it was not a priority focus for this project. The first consideration was being

able to have weight sensors placed on the chairs of the lab spaces of Atwater Kent. The

weight on a chair would indicate that the lab seat was being used. On the Smart Mirror,

there would be a module that included all the lab spaces in Atwater Kent and displayed

which seats were occupied. A different approach to this addition would be to have

occupancy sensors which measures the amount of people that enter and leave the labs.

This is a problem on its own because it has to incorporate permissions from WPI

facilities. A third approach would be to monitor the user logins within the desktops of the

labs. This approach is risky because it is considered private information if someone logs

onto the computer.

5. Conclusion

To summarize, the team can make note of the following items. The team identified

four focuses in A-term: improving documentation of the system and the system’s block

diagrams, enabling the system’s capacitive touch sensors, finding a method of having the

system switch from on the grid to off the grid energy, and changing the system startup

process. With B-term, the team has finalized improvements of the previous MQP’s

system block diagrams with the help of members from the previous MQP team. The team

has also added in the block diagram of the proposed improvement of a magic or smart

mirror feature to the existing diagram of the entirety of the system, as well as added in a

block diagram of the Smart Mirror system itself. The previous system’s capacitive touch

sensors have been fixed through software troubleshooting and now respond to human

touch and can select the options in the system’s digital menu. There were physical

complications to having the previous system run through the use of the solar panels on

the roof. However, a block diagram was proposed to help power the current system using

the current panels found within AK. There was also another solar panel system proposed

that included panels which could be brought. This was done to provide a future

recommendation of system improvement to using less energy. Another way the team

tackled both issues of high energy consumption and to address the complications of

system start-up was to propose the idea of implementing a smart mirror. This would help

address the energy consumption issue because the Smart Mirror would allow the overall

main display to be turned on/off by the Smart Mirror’s Raspberry Pi. Doing so, this

reduces the power consumption by more than 50%. The smart mirror benefits the system

as well because it allows the system to be working via remote desktop. This fixes the

complications of having to open and close the box, reconnecting the HDMI cable, and

having to log onto the computer nearest the Odroid. As of right now, the remote desktop

feature has been addressed and understood to be able to implement onto the Raspberry Pi.

The next steps for the team include installation of the magic mirror, configuring the

remote desktop settings, and finding a way to receive the energy consumption data from

AK’s building engineer. The team looks forward to the challenge.

6. Appendix

6.1 Power Panels User Manual

Operation and Procedure Description for the Atwater Kent Power Panel:

1. Go to AK 113 and use a screwdriver to open the plastic box.

2. In the plastic box, there is a VGA hdmi converter. Using a long hdmi cable and the

VGA hdmi converter connect the ODROID to the computer monitor. Disconnect the

mouse and keyboard from the closest lab bench and connect it to the powered usb hub

inside the box. This will be used for navigating through the ODROID.

3. Turn on the bottom switch (This switch powers everything that is within the small box,

the ODROID, powered usb hub, and sending card.

4. On the computer monitor you should see an Ubuntu welcome screen. You should be

automatically logged into odroid. You can change the setting by following the advanced

user setting later in the appendix if you want to change the automatic login.

5. You will be see the screen display below. For the terminal, type in exit to close it. And

simply choose to cancel the warning.

Figure 41. Odroid Starting Display

6. Ensure that the ODROID is connected to the internet, preferably through Ethernet. We

used our student account to register the odroid as a device so repeat the same process if

the odroid is not getting recognized after our account are closed.

7. (Optional) On the desktop there is a folder called Start app, which has 2 additional

folders inside of it. Opening them will give shortcut to the power panel and children

panel. They are the exported application of the processing sketches. Double click and

choose run on the notification window to show the displays. This only displays the

output.

8. To access the code, open processing from desktop. You will see a diamond icon with a

program in it called processing. Right click and hit OPEN. Then click RUN on the

notification window. Processing should begin to open. Once it is opened to File->Open-

>desktop->Children_Panels 4-27b->Children_Panels->Children_Panels.pde

9. The code should open up, and you can then go to the top left of the window to the run

button.

10. Next do the same with the Power Panel. Go to File->Open->Desktop->PowerPanel 3-

27b -> PowerPanel -> PowerPanel.pde. The code should open. Do the same where you

hit the run button like in step 9. This should open the Power Panel window.

11. The children panel and power panel windows should automatically position

themselves in the correct locations. Before moving forward click on the PowerPanel

window using the mouse, anywhere, just to make sure that it is the currently active

window to respond to keyboard presses and inputs.

12. Once that is done you may disconnect the long hdmi and vga hdmi converter from the

monitor and the ODROID. Take the small hdmi, attach it to the vga hdmi adapter and

then connect it to the ODROID. Then take the end with the vga hdmi adapter and connect

it to the sending card. As shown in the picture below.

Figure 42. Sending card ports

13. Once it is connected you may flip the TOP switch which turn on the power panels in

the pumpkin lounge.

14. To turn off the system it would be best to turn off the ODROID properly through its

menu, rather than just flipping the switch off. This can cause corruption issues with the sd

card. It may be a good idea to look into making a copy of the image for back up.

6.2 Making System autonomous

● · One of the project goals was to build this system to be easily operated by WPI

Crimson Key. The Crimson Key Tour Guides are a group of students who

volunteer their time to giving tours and sharing their stories to prospective students

and families.

● · In order to make the system autonomous, the team attempted to find ways to

load up the processing displays from simply turning the system on. During this

attempt, the processing sketches were exported. Below is a figure that shows the

Export option in processing which was saved in the ODROID’s desktop as

application shortcuts.

Figure 43. Export Option in ‘Processing’

Figure 44. Exported Folders for Children and Power Panel Sketches in Desktop

Figure 45. Application shortcut for Children Panels Display

Figure 46. Application shortcut for Power Panels Display

● · This provided an application shortcut which would load up the panel displays

directly. Next, the team tried to include that in the Ubuntu built in startup program.

● · Including the shortcut in the built in startup did not yield any result as the

sketch display did not start when the system turned on. The team decided to look

at other options.

● · It was discovered that a “systemd” which is built-in for Ubuntu 15.04.

“Systemd” is a system and service manager for Linux operating systems and starts

the rest of the system. It can be used to run scripts which could take in the source

files of the sketch shortcuts and run it right from boot. Unfortunately, the team did

not have any prior knowledge in understanding the usage of “systemd” and scripts.

It was then attempted to follow online research to work with “systemd” but was

unsuccessful.

● · The team also looked at the unity-control center to automatically log in another

new user called ‘Panels’ with less privileges. There is more information in the

appendix under accessing advanced user settings. As it is an automatic login, the

team did not want just any user to be able to make admin changes to the ODROID

which is why panels was created.

Figure 47. Automatic login option in advanced user setting

● · The team attempted to move only the processing application and the panels

code to the ‘Panels’ from the shared public folder within the ODROID but there

was no access to it. The next option was to use a flash drive to move the files but it

only worked with user ‘odroid’. ‘Panel’ was unable to recognize the flash drive as

a file system.

● · The control for the autonomous panels should be the smart mirror. If the

processing sketches can be displayed after booting up, a switch should be used

with the smart mirror in order to turn on the system. A physical switch can be

extended to the smart mirror through the wall but according to Professor O’rourke,

there is a lot of steps and time required to get approval from the electricians in

WPI to add such a switch. It also would not be a good option until the power issue

of the system is taken care of.

6.3 ODROID and Software Tips

Processing

· What it is – Processing is a flexible software sketchbook and a language for learning

how to code within the context of the visual arts. It is open sourced with variety of online

resources. It is written in C++ and is fairly easy to learn and use.

· How the team used it – The LED panels are designed to act like two displays. One of

them is “Power Panel” which is only the main display panel. It is a menu system with a

lot of depth to its application and thus requires its own sketch. The other children panels

and tickers are all pulled from “Children Panel” sketch. In the following figures, the

sketches are shown as the two panel codes in Processing and their corresponding

displays.

Figure 48. Children Panels code in processing

Figure 49. Power Panel code in Processing

Figure 50. Processing sketch output in desktop

6.4 Accessing Advanced User settings

Figure 51. Shortcut to unity control center

·

Figure 52. Gnome System Settings

● Instruction:

○ Press Alt + F2 to access user setting in gnome center.

○ Type in: unity-control-center

● · This displays the old menu system for the Ubuntu system. Some of the settings

do not work as the controls are no longer functional such as “Display”. But the

user settings option still function. It allows for one to automatically login a user at

startup which is a functionality that was needed for making the system

autonomous.

6.5 LED Studio Software Manual

Operation and Procedure Description for the LED Studio Software:

1. Download the software .exe file from the following link:

https://learn.adafruit.com/adafruit-diy-led-video-wall/led-studio-software

Figure 53. Adafruit LED Studio Software Download

If the software does not work after completing the procedures, use this link instead and

download the latest version of the software:

https://www.vegasledscreens.com/downloads/category/1-led-studio-software.html

Figure 54. Recent Version of LED Studio Software

2. Using the first link from step one, proceed to using the following USB cable to connect

the LED video wall controller to the device the LED Studio Software is installed on.

https://learn.adafruit.com/adafruit-diy-led-video-wall/led-studio-software
https://www.vegasledscreens.com/downloads/category/1-led-studio-software.html

Figure 55. USB cable to LED video wall controller

3. Run the software and it will prompt the user with the following message

Figure 56. Registration Information

The name and company can be entered with anything, but the serial number is always

“888888”

4. Click “option” then “software setup”

Figure 57. Software Setup

5. Once in the “software setup” of the program, type “linsn” anywhere and a text will ask

for a password. Type “168” to proceed.

Figure 58. Software Setup Input Password

6. This will present the sender tab where users can adjust the display resolution,

mirror/rotation, as well the start X/Y position of what part of the screen will display on

the LED wall. This will update in realtime. Click Save on Sender when changes to the

settings are complete.

Figure 59. Sender Card Settings

7. If users wish to make complex changes to the receiver tab, then download the

configuration file from the first step and proceed to loading it onto the tab. This opens up

more options to configure multiple receiver cards and their displays, but does require

users to have advanced knowledge in this area to work with these options. They are not

necessary to run the LED Panels as they are, but can provide more choices to alter the

displays of the LED Panels.

 6.6 System Power Issues

● Background –

 The system has LED panels which are matrixes of LED panels combined

together. The configuration software is used to control the display of the panels

and match it with a group of panel matrixes. The table below shows the power

demand for the system with just the LED panels displaying white in full

brightness. Analyzing the table reveals that the LED panels draw up too much

current when they are turned on.

Table 3. Summary of Power and Current Demand for each panel display

● Limitations –

From Professor O’Rourke, it was noted that AK 113 where the panels get

their power was not originally meant to be used as a computer lab room. This in

turn meant that the room did not have a circuit breaker designed to handle the

computers and the LED panel system. The panels and 3 of the computers within

the lab room are connected to one circuit breaker. As the panels are a high current

system, they are not the most stable system. There have been a few times where

the system has tripped the circuit breaker. As AK 113 is busy with students

working on all kinds of labs, accidentally shorting the system and activating the

circuit breaker can cause some of them to lose their work progress. The whole

system is meant to be helping students and visitors so it is best not to compromise

that. Additionally, the team does not want to have the circuit breaker activate since

it is an indication of a faulty system design which could overload the system and

damage a lifetime of systems connected in that circuit breaker.

● Smart mirror issue –

The Smart Mirror is included in the same circuit breaker because of its

location. It was noticed that with the panels turned on, the Smart Mirror cannot

power on. The current draw from our system is probably too strong to properly

supply the smart mirror. The solution for is use of an extension cord to connect it

to a different circuit to avoid adding more load in the LED panel circuit.

● Takeaway

Our LED panel system uses a lot of power and is connected to a circuit

with other loads (computer benches in the lab) that wasn’t designed to handle such

power level. It is thus not recommended to have the system on for extended period

of time as it could trip the circuit breaker and cut power for the lab bench where

students could be working. Testing the system should be done over the weekend

when there are less students with permission from the school. It can be used to

better understanding of the system, its limits and find solution to the problems.

6.7 Smart Mirror User Manual

The easiest way to turning the Smart Mirror on or off is to turn on/off the power supply.

However, by turning the power off “unexpectedly” the SD Card of the Raspberry Pi can

become corrupted. The alternative method that our team has includes the use of a

website. This module was uploaded from the Magic Mirror Forum called: MMM-Remote

Control. It allows authorized users to be able to have an easier interface for editing

properties of the Smart Mirror itself.

Figure 60. Magic Mirror Module: Remote Control

This picture below are highlights of the user website. From this website, one will be able

to control the power, module, brightness, and editing settings. The website includes the

IP address of the Raspberry Pi and hence will not be included in this user manual. The

official operation manual given to ECE Technician, Bill Appleyard or to Professor

Mazumder.

The following are instructions on how to download and run the module based on the

work of user: Jopyth on the Magic Mirror Forum.

1) Clone this repository in your modules folder, and install dependencies:

cd ~/MagicMirror/modules # adapt directory if you are

using a different one

git clone https://github.com/Jopyth/MMM-Remote-

Control.git

cd MMM-Remote-Control

npm install

2) Add the module to your config/config.js file, if you add a position, it will display

the URL to the remote on the mirror.

{

 module: 'MMM-Remote-Control'

// uncomment the following line to show the URL of

the remote control on the mirror

 // , position: 'bottom_left'

// you can hide this module afterwards from the

remote control itself

},

3) Add the IP addresses of devices you want to use to access the Remote Control to
the ipWhiteList in your config.js.

4) Restart your Magic Mirror² (i.e. pm2 restart mm).

5) Access the remote interface on http://192.168.xxx.xxx:8080/remote.html (replace
with IP address of your RaspberryPi).

Note: If your user does not have sudo rights, the shutdown does not work (it should
work for everyone who did not change anything on this matter).

6.8 Code from Smart Mirror

Magic Mirror is an online readily available program designed by students at MIT.

Through this website, hundreds of users have been able to design and modify their own

module. A module is a component feature for the Smart Mirror to display. There is a

section in the MQP report explaining how to install and use Magic Mirror. Below is the

default code for the default Modules (the modules that come with you initially install

Magic Mirror):

Default Modules:

Clock

 // Module config defaults.

 defaults: {

 displayType: "digital", // options: digital, analog, both

 timeFormat: config.timeFormat,

 displaySeconds: true,

 showPeriod: true,

 showPeriodUpper: false,

 clockBold: false,

 showDate: true,

 showWeek: false,

 dateFormat: "dddd, LL",

 /* specific to the analog clock */

 analogSize: "200px",

 analogFace: "simple", // options: 'none', 'simple', 'face-###' (where ### is 001

to 012 inclusive)

 analogPlacement: "bottom", // options: 'top', 'bottom', 'left', 'right'

 analogShowDate: "top", // options: false, 'top', or 'bottom'

 secondsColor: "#888888",

 timezone: null,

 },

 // Define required scripts.

 getScripts: function() {

 return ["moment.js", "moment-timezone.js"];

 },

 // Define styles.

 getStyles: function() {

 return ["clock_styles.css"];

 },

 // Define start sequence.

 start: function() {

 Log.info("Starting module: " + this.name);

 // Schedule update interval.

 var self = this;

 setInterval(function() {

 self.updateDom();

 }, 1000);

 // Set locale.

 moment.locale(config.language);

 },

 // Override dom generator.

 getDom: function() {

 var wrapper = document.createElement("div");

 /************************************

 * Create wrappers for DIGITAL clock

 */

 var dateWrapper = document.createElement("div");

 var timeWrapper = document.createElement("div");

 var secondsWrapper = document.createElement("sup");

 var periodWrapper = document.createElement("span");

 var weekWrapper = document.createElement("div")

 // Style Wrappers

 dateWrapper.className = "date normal medium";

 timeWrapper.className = "time bright large light";

 secondsWrapper.className = "dimmed";

 weekWrapper.className = "week dimmed medium"

 // Set content of wrappers.

 // The moment().format("h") method has a bug on the Raspberry Pi.

 // So we need to generate the timestring manually.

 // See issue: https://github.com/MichMich/MagicMirror/issues/181

 var timeString;

 var now = moment();

 if (this.config.timezone) {

 now.tz(this.config.timezone);

 }

 var hourSymbol = "HH";

 if (this.config.timeFormat !== 24) {

 hourSymbol = "h";

 }

 if (this.config.clockBold === true) {

 timeString = now.format(hourSymbol + "[]mm[]");

 } else {

 timeString = now.format(hourSymbol + ":mm");

 }

 if(this.config.showDate){

 dateWrapper.innerHTML = now.format(this.config.dateFormat);

 }

 if (this.config.showWeek) {

 weekWrapper.innerHTML = this.translate("WEEK") + " " + now.week();

 }

 timeWrapper.innerHTML = timeString;

 secondsWrapper.innerHTML = now.format("ss");

 if (this.config.showPeriodUpper) {

 periodWrapper.innerHTML = now.format("A");

 } else {

 periodWrapper.innerHTML = now.format("a");

 }

 if (this.config.displaySeconds) {

 timeWrapper.appendChild(secondsWrapper);

 }

 if (this.config.showPeriod && this.config.timeFormat !== 24) {

 timeWrapper.appendChild(periodWrapper);

 }

 /**

 * Create wrappers for ANALOG clock, only if specified in config

 */

 if (this.config.displayType !== "digital") {

 // If it isn't 'digital', then an 'analog' clock was also requested

 // Calculate the degree offset for each hand of the clock

 var now = moment();

 if (this.config.timezone) {

 now.tz(this.config.timezone);

 }

 var second = now.seconds() * 6,

 minute = now.minute() * 6 + second / 60,

 hour = ((now.hours() % 12) / 12) * 360 + 90 + minute / 12;

 // Create wrappers

 var wrapper = document.createElement("div");

 var clockCircle = document.createElement("div");

 clockCircle.className = "clockCircle";

 clockCircle.style.width = this.config.analogSize;

 clockCircle.style.height = this.config.analogSize;

 if (this.config.analogFace != "" && this.config.analogFace != "simple" &&

this.config.analogFace != "none") {

 clockCircle.style.background = "url("+ this.data.path + "faces/" +

this.config.analogFace + ".svg)";

 clockCircle.style.backgroundSize = "100%";

 // The following line solves issue:

https://github.com/MichMich/MagicMirror/issues/611

 clockCircle.style.border = "1px solid black";

 } else if (this.config.analogFace != "none") {

 clockCircle.style.border = "2px solid white";

 }

 var clockFace = document.createElement("div");

 clockFace.className = "clockFace";

 var clockHour = document.createElement("div");

 clockHour.id = "clockHour";

 clockHour.style.transform = "rotate(" + hour + "deg)";

 clockHour.className = "clockHour";

 var clockMinute = document.createElement("div");

 clockMinute.id = "clockMinute";

 clockMinute.style.transform = "rotate(" + minute + "deg)";

 clockMinute.className = "clockMinute";

 // Combine analog wrappers

 clockFace.appendChild(clockHour);

 clockFace.appendChild(clockMinute);

 if (this.config.displaySeconds) {

 var clockSecond = document.createElement("div");

 clockSecond.id = "clockSecond";

 clockSecond.style.transform = "rotate(" + second + "deg)";

 clockSecond.className = "clockSecond";

 clockSecond.style.backgroundColor = this.config.secondsColor;

 clockFace.appendChild(clockSecond);

 }

 clockCircle.appendChild(clockFace);

 }

 /***

 * Combine wrappers, check for .displayType

 */

 if (this.config.displayType === "digital") {

 // Display only a digital clock

 wrapper.appendChild(dateWrapper);

 wrapper.appendChild(timeWrapper);

 wrapper.appendChild(weekWrapper);

 } else if (this.config.displayType === "analog") {

 // Display only an analog clock

 dateWrapper.style.textAlign = "center";

 if (this.config.showWeek) {

 weekWrapper.style.paddingBottom = "15px";

 } else {

 dateWrapper.style.paddingBottom = "15px";

 }

 if (this.config.analogShowDate === "top") {

 wrapper.appendChild(dateWrapper);

 wrapper.appendChild(weekWrapper);

 wrapper.appendChild(clockCircle);

 } else if (this.config.analogShowDate === "bottom") {

 wrapper.appendChild(clockCircle);

 wrapper.appendChild(dateWrapper);

 wrapper.appendChild(weekWrapper);

 } else {

 wrapper.appendChild(clockCircle);

 }

 } else {

 // Both clocks have been configured, check position

 var placement = this.config.analogPlacement;

 analogWrapper = document.createElement("div");

 analogWrapper.id = "analog";

 analogWrapper.style.cssFloat = "none";

 analogWrapper.appendChild(clockCircle);

 digitalWrapper = document.createElement("div");

 digitalWrapper.id = "digital";

 digitalWrapper.style.cssFloat = "none";

 digitalWrapper.appendChild(dateWrapper);

 digitalWrapper.appendChild(timeWrapper);

 digitalWrapper.appendChild(weekWrapper);

 var appendClocks = function(condition, pos1, pos2) {

 var padding = [0,0,0,0];

 padding[(placement === condition) ? pos1 : pos2] = "20px";

 analogWrapper.style.padding = padding.join(" ");

 if (placement === condition) {

 wrapper.appendChild(analogWrapper);

 wrapper.appendChild(digitalWrapper);

 } else {

 wrapper.appendChild(digitalWrapper);

 wrapper.appendChild(analogWrapper);

 }

 };

 if (placement === "left" || placement === "right") {

 digitalWrapper.style.display = "inline-block";

 digitalWrapper.style.verticalAlign = "top";

 analogWrapper.style.display = "inline-block";

 appendClocks("left", 1, 3);

 } else {

 digitalWrapper.style.textAlign = "center";

 appendClocks("top", 2, 0);

 }

 }

 // Return the wrapper to the dom.

 return wrapper;

 }

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "clock",

 position: "top_left", // This can be any of the regions.

 config: {

 // The config property is optional.

 // See 'Configuration options' for more information.

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/clock

Calendar

 Module.register(“calender”, {

 // Define module defaults

 defaults: {

 maximumEntries: 10, // Total Maximum Entries

 maximumNumberOfDays: 365,

 displaySymbol: true,

 defaultSymbol: "calendar", // Fontawesome Symbol see

http://fontawesome.io/cheatsheet/

 displayRepeatingCountTitle: false,

 defaultRepeatingCountTitle: "",

 maxTitleLength: 25,

 fetchInterval: 5 * 60 * 1000, // Update every 5 minutes.

 animationSpeed: 2000,

 fade: true,

 urgency: 7,

 timeFormat: "relative",

 dateFormat: "MMM Do",

 getRelative: 6,

 fadePoint: 0.25, // Start on 1/4th of the list.

 hidePrivate: false,

 colored: false,

 calendars: [

 {

 symbol: "calendar",

 url: "http://www.calendarlabs.com/templates/ical/US-Holidays.ics",

 },

],

 titleReplace: {

 "De verjaardag van ": "",

 "'s birthday": ""

 },

 broadcastEvents: true,

 excludedEvents: []

 },

 // Define required scripts.

 getStyles: function () {

 return ["calendar.css", "font-awesome.css"];

 },

 // Define required scripts.

 getScripts: function () {

 return ["moment.js"];

 },

 // Define required translations.

 getTranslations: function () {

 // The translations for the default modules are defined in the core translation

files.

 // Therefor we can just return false. Otherwise we should have returned a

dictionary.

 // If you're trying to build your own module including translations, check out

the documentation.

 return false;

 },

 // Override start method.

 start: function () {

 Log.log("Starting module: " + this.name);

 // Set locale.

 moment.locale(config.language);

 for (var c in this.config.calendars) {

 var calendar = this.config.calendars[c];

 calendar.url = calendar.url.replace("webcal://", "http://");

 var calendarConfig = {

 maximumEntries: calendar.maximumEntries,

 maximumNumberOfDays: calendar.maximumNumberOfDays

 };

 // we check user and password here for backwards compatibility with old configs

 if(calendar.user && calendar.pass){

 calendar.auth = {

 user: calendar.user,

 pass: calendar.pass

 }

 }

 this.addCalendar(calendar.url, calendar.auth, calendarConfig);

 }

 this.calendarData = {};

 this.loaded = false;

 },

 // Override socket notification handler.

 socketNotificationReceived: function (notification, payload) {

 if (notification === "CALENDAR_EVENTS") {

 if (this.hasCalendarURL(payload.url)) {

 this.calendarData[payload.url] = payload.events;

 this.loaded = true;

 if (this.config.broadcastEvents) {

 this.broadcastEvents();

 }

 }

 } else if (notification === "FETCH_ERROR") {

 Log.error("Calendar Error. Could not fetch calendar: " + payload.url);

 } else if (notification === "INCORRECT_URL") {

 Log.error("Calendar Error. Incorrect url: " + payload.url);

 } else {

 Log.log("Calendar received an unknown socket notification: " + notification);

 }

 this.updateDom(this.config.animationSpeed);

 },

 // Override dom generator.

 getDom: function () {

 var events = this.createEventList();

 var wrapper = document.createElement("table");

 wrapper.className = "small";

 if (events.length === 0) {

 wrapper.innerHTML = (this.loaded) ? this.translate("EMPTY") :

this.translate("LOADING");

 wrapper.className = "small dimmed";

 return wrapper;

 }

 for (var e in events) {

 var event = events[e];

 var excluded = false;

 for (var f in this.config.excludedEvents) {

 var filter = this.config.excludedEvents[f];

 if (event.title.toLowerCase().includes(filter.toLowerCase())) {

 excluded = true;

 break;

 }

 }

 if (excluded) {

 continue;

 }

 var eventWrapper = document.createElement("tr");

 if (this.config.colored) {

 eventWrapper.style.cssText = "color:" + this.colorForUrl(event.url);

 }

 eventWrapper.className = "normal";

 if (this.config.displaySymbol) {

 var symbolWrapper = document.createElement("td");

 symbolWrapper.className = "symbol align-right";

 var symbols = this.symbolsForUrl(event.url);

 if(typeof symbols === "string") {

 symbols = [symbols];

 }

 for(var i = 0; i < symbols.length; i++) {

 var symbol = document.createElement("span");

 symbol.className = "fa fa-" + symbols[i];

 if(i > 0){

 symbol.style.paddingLeft = "5px";

 }

 symbolWrapper.appendChild(symbol);

 }

 eventWrapper.appendChild(symbolWrapper);

 }

 var titleWrapper = document.createElement("td"),

 repeatingCountTitle = "";

 if (this.config.displayRepeatingCountTitle) {

 repeatingCountTitle = this.countTitleForUrl(event.url);

 if (repeatingCountTitle !== "") {

 var thisYear = new Date(parseInt(event.startDate)).getFullYear(),

 yearDiff = thisYear - event.firstYear;

 repeatingCountTitle = ", " + yearDiff + ". " + repeatingCountTitle;

 }

 }

 titleWrapper.innerHTML = this.titleTransform(event.title) + repeatingCountTitle;

 if (!this.config.colored) {

 titleWrapper.className = "title bright";

 } else {

 titleWrapper.className = "title";

 }

 eventWrapper.appendChild(titleWrapper);

 var timeWrapper = document.createElement("td");

 //console.log(event.today);

 var now = new Date();

 // Define second, minute, hour, and day variables

 var oneSecond = 1000; // 1,000 milliseconds

 var oneMinute = oneSecond * 60;

 var oneHour = oneMinute * 60;

 var oneDay = oneHour * 24;

 if (event.fullDayEvent) {

 if (event.today) {

 timeWrapper.innerHTML = this.capFirst(this.translate("TODAY"));

 } else if (event.startDate - now < oneDay && event.startDate - now > 0) {

 timeWrapper.innerHTML = this.capFirst(this.translate("TOMORROW"));

 } else if (event.startDate - now < 2 * oneDay && event.startDate - now > 0) {

 if (this.translate("DAYAFTERTOMORROW") !== "DAYAFTERTOMORROW") {

 timeWrapper.innerHTML = this.capFirst(this.translate("DAYAFTERTOMORROW"));

 } else {

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 }

 } else {

 /* Check to see if the user displays absolute or relative dates with their events

 * Also check to see if an event is happening within an 'urgency' time

frameElement

 * For example, if the user set an .urgency of 7 days, those events that fall

within that

 * time frame will be displayed with 'in xxx' time format or moment.fromNow()

 *

 * Note: this needs to be put in its own function, as the whole thing repeats

again verbatim

 */

 if (this.config.timeFormat === "absolute") {

 if ((this.config.urgency > 1) && (event.startDate - now < (this.config.urgency *

oneDay))) {

 // This event falls within the config.urgency period that the user has set

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 } else {

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate,

"x").format(this.config.dateFormat));

 }

 } else {

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 }

 }

} else {

 if (event.startDate >= new Date()) {

 if (event.startDate - now < 2 * oneDay) {

 // This event is within the next 48 hours (2 days)

 if (event.startDate - now < this.config.getRelative * oneHour) {

 // If event is within 6 hour, display 'in xxx' time format or moment.fromNow()

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 } else {

 // Otherwise just say 'Today/Tomorrow at such-n-such time'

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").calendar());

 }

 } else {

 /* Check to see if the user displays absolute or relative dates with their events

 * Also check to see if an event is happening within an 'urgency' time

frameElement

 * For example, if the user set an .urgency of 7 days, those events that fall

within that

 * time frame will be displayed with 'in xxx' time format or moment.fromNow()

 *

 * Note: this needs to be put in its own function, as the whole thing repeats

again verbatim

 */

 if (this.config.timeFormat === "absolute") {

 if ((this.config.urgency > 1) && (event.startDate - now < (this.config.urgency *

oneDay))) {

 // This event falls within the config.urgency period that the user has set

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 } else {

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate,

"x").format(this.config.dateFormat));

 }

 } else {

 timeWrapper.innerHTML = this.capFirst(moment(event.startDate, "x").fromNow());

 }

 }

 } else {

 timeWrapper.innerHTML = this.capFirst(this.translate("RUNNING")) + " " +

moment(event.endDate, "x").fromNow(true);

 }

 }

 //timeWrapper.innerHTML += ' - '+ moment(event.startDate,'x').format('lll');

 //console.log(event);

 timeWrapper.className = "time light";

 eventWrapper.appendChild(timeWrapper);

 wrapper.appendChild(eventWrapper);

 // Create fade effect.

 if (this.config.fade && this.config.fadePoint < 1) {

 if (this.config.fadePoint < 0) {

 this.config.fadePoint = 0;

 }

 var startingPoint = events.length * this.config.fadePoint;

 var steps = events.length - startingPoint;

 if (e >= startingPoint) {

 var currentStep = e - startingPoint;

 eventWrapper.style.opacity = 1 - (1 / steps * currentStep);

 }

 }

 }

 return wrapper;

 },

 /* hasCalendarURL(url)

 * Check if this config contains the calendar url.

 *

 * argument url string - Url to look for.

 *

 * return bool - Has calendar url

 */

 hasCalendarURL: function (url) {

 for (var c in this.config.calendars) {

 var calendar = this.config.calendars[c];

 if (calendar.url === url) {

 return true;

 }

 }

 return false;

 },

 /* createEventList()

 * Creates the sorted list of all events.

 *

 * return array - Array with events.

 */

 createEventList: function () {

 var events = [];

 var today = moment().startOf("day");

 for (var c in this.calendarData) {

 var calendar = this.calendarData[c];

 for (var e in calendar) {

 var event = calendar[e];

 if(this.config.hidePrivate) {

 if(event.class === "PRIVATE") {

 // do not add the current event, skip it

 continue;

 }

 }

 event.url = c;

 event.today = event.startDate >= today && event.startDate < (today + 24 * 60 * 60

* 1000);

 events.push(event);

 }

 }

 events.sort(function (a, b) {

 return a.startDate - b.startDate;

 });

 return events.slice(0, this.config.maximumEntries);

 },

 /* createEventList(url)

 * Requests node helper to add calendar url.

 *

 * argument url string - Url to add.

 */

 addCalendar: function (url, auth, calendarConfig) {

 this.sendSocketNotification("ADD_CALENDAR", {

 url: url,

 maximumEntries: calendarConfig.maximumEntries || this.config.maximumEntries,

 maximumNumberOfDays: calendarConfig.maximumNumberOfDays ||

this.config.maximumNumberOfDays,

 fetchInterval: this.config.fetchInterval,

 auth: auth

 });

 },

 /* symbolsForUrl(url)

 * Retrieves the symbols for a specific url.

 *

 * argument url string - Url to look for.

 *

 * return string/array - The Symbols

 */

 symbolsForUrl: function (url) {

 return this.getCalendarProperty(url, "symbol", this.config.defaultSymbol);

 },

 /* colorForUrl(url)

 * Retrieves the color for a specific url.

 *

 * argument url string - Url to look for.

 *

 * return string - The Color

 */

 colorForUrl: function (url) {

 return this.getCalendarProperty(url, "color", "#fff");

 },

 /* countTitleForUrl(url)

 * Retrieves the name for a specific url.

 *

 * argument url string - Url to look for.

 *

 * return string - The Symbol

 */

 countTitleForUrl: function (url) {

 return this.getCalendarProperty(url, "repeatingCountTitle",

this.config.defaultRepeatingCountTitle);

 },

 /* getCalendarProperty(url, property, defaultValue)

 * Helper method to retrieve the property for a specific url.

 *

 * argument url string - Url to look for.

 * argument property string - Property to look for.

 * argument defaultValue string - Value if property is not found.

 *

 * return string - The Property

 */

 getCalendarProperty: function (url, property, defaultValue) {

 for (var c in this.config.calendars) {

 var calendar = this.config.calendars[c];

 if (calendar.url === url && calendar.hasOwnProperty(property)) {

 return calendar[property];

 }

 }

 return defaultValue;

 },

 /* shorten(string, maxLength)

 * Shortens a string if it's longer than maxLength.

 * Adds an ellipsis to the end.

 *

 * argument string string - The string to shorten.

 * argument maxLength number - The max length of the string.

 *

 * return string - The shortened string.

 */

 shorten: function (string, maxLength) {

 if (string.length > maxLength) {

 return string.slice(0, maxLength) + "…";

 }

 return string;

 },

 /* capFirst(string)

 * Capitalize the first letter of a string

 * Return capitalized string

 */

 capFirst: function (string) {

 return string.charAt(0).toUpperCase() + string.slice(1);

 },

 /* titleTransform(title)

 * Transforms the title of an event for usage.

 * Replaces parts of the text as defined in config.titleReplace.

 * Shortens title based on config.maxTitleLength

 *

 * argument title string - The title to transform.

 *

 * return string - The transformed title.

 */

 titleTransform: function (title) {

 for (var needle in this.config.titleReplace) {

 var replacement = this.config.titleReplace[needle];

 var regParts = needle.match(/^\/(.+)\/([gim]*)$/);

 if (regParts) {

 // the parsed pattern is a regexp.

 needle = new RegExp(regParts[1], regParts[2]);

 }

 title = title.replace(needle, replacement);

 }

 title = this.shorten(title, this.config.maxTitleLength);

 return title;

 },

 /* broadcastEvents()

 * Broadcasts the events to all other modules for reuse.

 * The all events available in one array, sorted on startdate.

 */

 broadcastEvents: function () {

 var eventList = [];

 for (url in this.calendarData) {

 var calendar = this.calendarData[url];

 for (e in calendar) {

 var event = cloneObject(calendar[e]);

 delete event.url;

 eventList.push(event);

 }

 }

 eventList.sort(function(a,b) {

 return a.startDate - b.startDate;

 });

 this.sendNotification("CALENDAR_EVENTS", eventList);

 }

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "calendar",

 position: "top_left", // This can be any of the regions. Best

results in left or right regions.

 config: {

 // The config property is optional.

 // If no config is set, an example calendar is shown.

 // See 'Configuration options' for more information.

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/calendar

Current Weather

 Module.register(“currentweather”,{

// Default module config.

 defaults: {

 location: false,

 locationID: false,

 appid: "",

 units: config.units,

 updateInterval: 10 * 60 * 1000, // every 10 minutes

 animationSpeed: 1000,

 timeFormat: config.timeFormat,

 showPeriod: true,

 showPeriodUpper: false,

 showWindDirection: true,

 useBeaufort: true,

 lang: config.language,

 showHumidity: false,

 degreeLabel: false,

 initialLoadDelay: 0, // 0 seconds delay

 retryDelay: 2500,

 apiVersion: "2.5",

 apiBase: "http://api.openweathermap.org/data/",

 weatherEndpoint: "weather",

 appendLocationNameToHeader: true,

 calendarClass: "calendar",

 onlyTemp: false,

 roundTemp: false,

 iconTable: {

 "01d": "wi-day-sunny",

 "02d": "wi-day-cloudy",

 "03d": "wi-cloudy",

 "04d": "wi-cloudy-windy",

 "09d": "wi-showers",

 "10d": "wi-rain",

 "11d": "wi-thunderstorm",

 "13d": "wi-snow",

 "50d": "wi-fog",

 "01n": "wi-night-clear",

 "02n": "wi-night-cloudy",

 "03n": "wi-night-cloudy",

 "04n": "wi-night-cloudy",

 "09n": "wi-night-showers",

 "10n": "wi-night-rain",

 "11n": "wi-night-thunderstorm",

 "13n": "wi-night-snow",

 "50n": "wi-night-alt-cloudy-windy"

 },

 },

 // create a variable for the first upcoming calendaar event. Used if no location

is specified.

 firstEvent: false,

 // create a variable to hold the location name based on the API result.

 fetchedLocatioName: "",

 // Define required scripts.

 getScripts: function() {

 return ["moment.js"];

 },

 // Define required scripts.

 getStyles: function() {

 return ["weather-icons.css", "currentweather.css"];

 },

 // Define required translations.

 getTranslations: function() {

 // The translations for the default modules are defined in the core translation

files.

 // Therefor we can just return false. Otherwise we should have returned a

dictionary.

 // If you're trying to build yiur own module including translations, check out

the documentation.

 return false;

 },

 // Define start sequence.

 start: function() {

 Log.info("Starting module: " + this.name);

 // Set locale.

 moment.locale(config.language);

 this.windSpeed = null;

 this.windDirection = null;

 this.sunriseSunsetTime = null;

 this.sunriseSunsetIcon = null;

 this.temperature = null;

 this.weatherType = null;

 this.loaded = false;

 this.scheduleUpdate(this.config.initialLoadDelay);

 },

 // add extra information of current weather

 // windDirection, humidity, sunrise and sunset

 addExtraInfoWeather: function(wrapper) {

 var small = document.createElement("div");

 small.className = "normal medium";

 var windIcon = document.createElement("span");

 windIcon.className = "wi wi-strong-wind dimmed";

 small.appendChild(windIcon);

 var windSpeed = document.createElement("span");

 windSpeed.innerHTML = " " + this.windSpeed;

 small.appendChild(windSpeed);

 if (this.config.showWindDirection) {

 var windDirection = document.createElement("sup");

 windDirection.innerHTML = " " + this.translate(this.windDirection);

 small.appendChild(windDirection);

 }

 var spacer = document.createElement("span");

 spacer.innerHTML = " ";

 small.appendChild(spacer);

 if (this.config.showHumidity) {

 var humidity = document.createElement("span");

 humidity.innerHTML = this.humidity;

 var spacer = document.createElement("sup");

 spacer.innerHTML = " ";

 var humidityIcon = document.createElement("sup");

 humidityIcon.className = "wi wi-humidity humidityIcon";

 humidityIcon.innerHTML = " ";

 small.appendChild(humidity);

 small.appendChild(spacer);

 small.appendChild(humidityIcon);

 }

 var sunriseSunsetIcon = document.createElement("span");

 sunriseSunsetIcon.className = "wi dimmed " + this.sunriseSunsetIcon;

 small.appendChild(sunriseSunsetIcon);

 var sunriseSunsetTime = document.createElement("span");

 sunriseSunsetTime.innerHTML = " " + this.sunriseSunsetTime;

 small.appendChild(sunriseSunsetTime);

 wrapper.appendChild(small);

 },

 // Override dom generator.

 getDom: function() {

 var wrapper = document.createElement("div");

 if (this.config.appid === "") {

 wrapper.innerHTML = "Please set the correct openweather <i>appid</i> in the

config for module: " + this.name + ".";

 wrapper.className = "dimmed light small";

 return wrapper;

 }

 if (!this.loaded) {

 wrapper.innerHTML = this.translate("LOADING");

 wrapper.className = "dimmed light small";

 return wrapper;

 }

 if (this.config.onlyTemp === false) {

 this.addExtraInfoWeather(wrapper);

 }

 var large = document.createElement("div");

 large.className = "large light";

 var weatherIcon = document.createElement("span");

 weatherIcon.className = "wi weathericon " + this.weatherType;

 large.appendChild(weatherIcon);

 var degreeLabel = "";

 if (this.config.degreeLabel) {

 switch (this.config.units) {

 case "metric":

 degreeLabel = "C";

 break;

 case "imperial":

 degreeLabel = "F";

 break;

 case "default":

 degreeLabel = "K";

 break;

 }

 }

 var temperature = document.createElement("span");

 temperature.className = "bright";

 temperature.innerHTML = " " + this.temperature + "°" + degreeLabel;

 large.appendChild(temperature);

 wrapper.appendChild(large);

 return wrapper;

 },

 // Override getHeader method.

 getHeader: function() {

 if (this.config.appendLocationNameToHeader) {

 return this.data.header + " " + this.fetchedLocatioName;

 }

 return this.data.header;

 },

 // Override notification handler.

 notificationReceived: function(notification, payload, sender) {

 if (notification === "DOM_OBJECTS_CREATED") {

 if (this.config.appendLocationNameToHeader) {

 this.hide(0, {lockString: this.identifier});

 }

 }

 if (notification === "CALENDAR_EVENTS") {

 var senderClasses = sender.data.classes.toLowerCase().split(" ");

 if (senderClasses.indexOf(this.config.calendarClass.toLowerCase()) !== -1) {

 var lastEvent = this.firstEvent;

 this.firstEvent = false;

 for (e in payload) {

 var event = payload[e];

 if (event.location || event.geo) {

 this.firstEvent = event;

 //Log.log("First upcoming event with location: ", event);

 break;

 }

 }

 }

 }

 },

 /* updateWeather(compliments)

 * Requests new data from openweather.org.

 * Calls processWeather on succesfull response.

 */

 updateWeather: function() {

 if (this.config.appid === "") {

 Log.error("CurrentWeather: APPID not set!");

 return;

 }

 var url = this.config.apiBase + this.config.apiVersion + "/" +

this.config.weatherEndpoint + this.getParams();

 var self = this;

 var retry = true;

 var weatherRequest = new XMLHttpRequest();

 weatherRequest.open("GET", url, true);

 weatherRequest.onreadystatechange = function() {

 if (this.readyState === 4) {

 if (this.status === 200) {

 self.processWeather(JSON.parse(this.response));

 } else if (this.status === 401) {

 self.updateDom(self.config.animationSpeed);

 Log.error(self.name + ": Incorrect APPID.");

 retry = true;

 } else {

 Log.error(self.name + ": Could not load weather.");

 }

 if (retry) {

 self.scheduleUpdate((self.loaded) ? -1 : self.config.retryDelay);

 }

 }

 };

 weatherRequest.send();

 },

 /* getParams(compliments)

 * Generates an url with api parameters based on the config.

 *

 * return String - URL params.

 */

 getParams: function() {

 var params = "?";

 if(this.config.locationID) {

 params += "id=" + this.config.locationID;

 } else if(this.config.location) {

 params += "q=" + this.config.location;

 } else if (this.firstEvent && this.firstEvent.geo) {

 params += "lat=" + this.firstEvent.geo.lat + "&lon=" + this.firstEvent.geo.lon

 } else if (this.firstEvent && this.firstEvent.location) {

 params += "q=" + this.firstEvent.location;

 } else {

 this.hide(this.config.animationSpeed, {lockString:this.identifier});

 return;

 }

 params += "&units=" + this.config.units;

 params += "&lang=" + this.config.lang;

 params += "&APPID=" + this.config.appid;

 return params;

 },

 /* processWeather(data)

 * Uses the received data to set the various values.

 *

 * argument data object - Weather information received form openweather.org.

 */

 processWeather: function(data) {

 if (!data || !data.main || typeof data.main.temp === "undefined") {

 // Did not receive usable new data.

 // Maybe this needs a better check?

 return;

 }

 this.humidity = parseFloat(data.main.humidity);

 this.temperature = this.roundValue(data.main.temp);

 if (this.config.useBeaufort){

 this.windSpeed = this.ms2Beaufort(this.roundValue(data.wind.speed));

 }else {

 this.windSpeed = parseFloat(data.wind.speed).toFixed(0);

 }

 this.windDirection = this.deg2Cardinal(data.wind.deg);

 this.weatherType = this.config.iconTable[data.weather[0].icon];

 var now = new Date();

 var sunrise = new Date(data.sys.sunrise * 1000);

 var sunset = new Date(data.sys.sunset * 1000);

 // The moment().format('h') method has a bug on the Raspberry Pi.

 // So we need to generate the timestring manually.

 // See issue: https://github.com/MichMich/MagicMirror/issues/181

 var sunriseSunsetDateObject = (sunrise < now && sunset > now) ? sunset :

sunrise;

 var timeString = moment(sunriseSunsetDateObject).format("HH:mm");

 if (this.config.timeFormat !== 24) {

 //var hours = sunriseSunsetDateObject.getHours() % 12 || 12;

 if (this.config.showPeriod) {

 if (this.config.showPeriodUpper) {

 //timeString = hours + moment(sunriseSunsetDateObject).format(':mm A');

 timeString = moment(sunriseSunsetDateObject).format("h:mm A");

 } else {

 //timeString = hours + moment(sunriseSunsetDateObject).format(':mm a');

 timeString = moment(sunriseSunsetDateObject).format("h:mm a");

 }

 } else {

 //timeString = hours + moment(sunriseSunsetDateObject).format(':mm');

 timeString = moment(sunriseSunsetDateObject).format("h:mm");

 }

 }

 this.sunriseSunsetTime = timeString;

 this.sunriseSunsetIcon = (sunrise < now && sunset > now) ? "wi-sunset" : "wi-

sunrise";

 this.show(this.config.animationSpeed, {lockString:this.identifier});

 this.loaded = true;

 this.updateDom(this.config.animationSpeed);

 this.sendNotification("CURRENTWEATHER_DATA", {data: data});

 },

 /* scheduleUpdate()

 * Schedule next update.

 *

 * argument delay number - Milliseconds before next update. If empty,

this.config.updateInterval is used.

 */

 scheduleUpdate: function(delay) {

 var nextLoad = this.config.updateInterval;

 if (typeof delay !== "undefined" && delay >= 0) {

 nextLoad = delay;

 }

 var self = this;

 setTimeout(function() {

 self.updateWeather();

 }, nextLoad);

 },

 /* ms2Beaufort(ms)

 * Converts m2 to beaufort (windspeed).

 *

 * argument ms number - Windspeed in m/s.

 *

 * return number - Windspeed in beaufort.

 */

 ms2Beaufort: function(ms) {

 var kmh = ms * 60 * 60 / 1000;

 var speeds = [1, 5, 11, 19, 28, 38, 49, 61, 74, 88, 102, 117, 1000];

 for (var beaufort in speeds) {

 var speed = speeds[beaufort];

 if (speed > kmh) {

 return beaufort;

 }

 }

 return 12;

 },

 deg2Cardinal: function(deg) {

 if (deg>11.25 && deg<=33.75){

 return "NNE";

 } else if (deg > 33.75 && deg <= 56.25) {

 return "NE";

 } else if (deg > 56.25 && deg <= 78.75) {

 return "ENE";

 } else if (deg > 78.75 && deg <= 101.25) {

 return "E";

 } else if (deg > 101.25 && deg <= 123.75) {

 return "ESE";

 } else if (deg > 123.75 && deg <= 146.25) {

 return "SE";

 } else if (deg > 146.25 && deg <= 168.75) {

 return "SSE";

 } else if (deg > 168.75 && deg <= 191.25) {

 return "S";

 } else if (deg > 191.25 && deg <= 213.75) {

 return "SSW";

 } else if (deg > 213.75 && deg <= 236.25) {

 return "SW";

 } else if (deg > 236.25 && deg <= 258.75) {

 return "WSW";

 } else if (deg > 258.75 && deg <= 281.25) {

 return "W";

 } else if (deg > 281.25 && deg <= 303.75) {

 return "WNW";

 } else if (deg > 303.75 && deg <= 326.25) {

 return "NW";

 } else if (deg > 326.25 && deg <= 348.75) {

 return "NNW";

 } else {

 return "N";

 }

 },

 /* function(temperature)

 * Rounds a temperature to 1 decimal or integer (depending on config.roundTemp).

 *

 * argument temperature number - Temperature.

 *

 * return number - Rounded Temperature.

 */

 roundValue: function(temperature) {

 var decimals = this.config.roundTemp ? 0 : 1;

 return parseFloat(temperature).toFixed(decimals);

 }

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "currentweather",

 position: "top_right", // This can be any of the regions.

 // Best results in left or

right regions.

 config: {

 // See 'Configuration options' for more information.

 location: "Amsterdam,Netherlands",

 locationID: "", //Location ID from

http://openweathermap.org/help/city_list.txt

 appid: "abcde12345abcde12345abcde12345ab" //openweathermap.org API

key.

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/currentweather

Weather Forecast

 Module.register(“weatherforecast”,{

// Default module config.

 defaults: {

 location: false,

 locationID: false,

 appid: "",

 units: config.units,

 maxNumberOfDays: 7,

 showRainAmount: false,

 updateInterval: 10 * 60 * 1000, // every 10 minutes

 animationSpeed: 1000,

 timeFormat: config.timeFormat,

 lang: config.language,

 fade: true,

 fadePoint: 0.25, // Start on 1/4th of the list.

 colored: false,

 initialLoadDelay: 2500, // 2.5 seconds delay. This delay is used to keep the

OpenWeather API happy.

 retryDelay: 2500,

 apiVersion: "2.5",

 apiBase: "http://api.openweathermap.org/data/",

 forecastEndpoint: "forecast/daily",

 appendLocationNameToHeader: true,

 calendarClass: "calendar",

https://github.com/MichMich/MagicMirror/tree/master/modules/default/currentweather

 roundTemp: false,

 iconTable: {

 "01d": "wi-day-sunny",

 "02d": "wi-day-cloudy",

 "03d": "wi-cloudy",

 "04d": "wi-cloudy-windy",

 "09d": "wi-showers",

 "10d": "wi-rain",

 "11d": "wi-thunderstorm",

 "13d": "wi-snow",

 "50d": "wi-fog",

 "01n": "wi-night-clear",

 "02n": "wi-night-cloudy",

 "03n": "wi-night-cloudy",

 "04n": "wi-night-cloudy",

 "09n": "wi-night-showers",

 "10n": "wi-night-rain",

 "11n": "wi-night-thunderstorm",

 "13n": "wi-night-snow",

 "50n": "wi-night-alt-cloudy-windy"

 },

 },

 // create a variable for the first upcoming calendaar event. Used if no location

is specified.

 firstEvent: false,

 // create a variable to hold the location name based on the API result.

 fetchedLocatioName: "",

 // Define required scripts.

 getScripts: function() {

 return ["moment.js"];

 },

 // Define required scripts.

 getStyles: function() {

 return ["weather-icons.css", "weatherforecast.css"];

 },

 // Define required translations.

 getTranslations: function() {

 // The translations for the default modules are defined in the core translation

files.

 // Therefor we can just return false. Otherwise we should have returned a

dictionary.

 // If you're trying to build yiur own module including translations, check out

the documentation.

 return false;

 },

 // Define start sequence.

 start: function() {

 Log.info("Starting module: " + this.name);

 // Set locale.

 moment.locale(config.language);

 this.forecast = [];

 this.loaded = false;

 this.scheduleUpdate(this.config.initialLoadDelay);

 this.updateTimer = null;

 },

 // Override dom generator.

 getDom: function() {

 var wrapper = document.createElement("div");

 if (this.config.appid === "") {

 wrapper.innerHTML = "Please set the correct openweather <i>appid</i> in the

config for module: " + this.name + ".";

 wrapper.className = "dimmed light small";

 return wrapper;

 }

 if (!this.loaded) {

 wrapper.innerHTML = this.translate("LOADING");

 wrapper.className = "dimmed light small";

 return wrapper;

 }

 var table = document.createElement("table");

 table.className = "small";

 for (var f in this.forecast) {

 var forecast = this.forecast[f];

 var row = document.createElement("tr");

 if (this.config.colored) {

 row.className = "colored";

 }

 table.appendChild(row);

 var dayCell = document.createElement("td");

 dayCell.className = "day";

 dayCell.innerHTML = forecast.day;

 row.appendChild(dayCell);

 var iconCell = document.createElement("td");

 iconCell.className = "bright weather-icon";

 row.appendChild(iconCell);

 var icon = document.createElement("span");

 icon.className = "wi weathericon " + forecast.icon;

 iconCell.appendChild(icon);

 var maxTempCell = document.createElement("td");

 maxTempCell.innerHTML = forecast.maxTemp;

 maxTempCell.className = "align-right bright max-temp";

 row.appendChild(maxTempCell);

 var minTempCell = document.createElement("td");

 minTempCell.innerHTML = forecast.minTemp;

 minTempCell.className = "align-right min-temp";

 row.appendChild(minTempCell);

 if (this.config.showRainAmount) {

 var rainCell = document.createElement("td");

 if (isNaN(forecast.rain)) {

 rainCell.innerHTML = "";

 } else {

 if(config.units !== "imperial") {

 rainCell.innerHTML = forecast.rain + " mm";

 } else {

 rainCell.innerHTML = (parseFloat(forecast.rain) / 25.4).toFixed(2) + " in";

 }

 }

 rainCell.className = "align-right bright rain";

 row.appendChild(rainCell);

 }

 if (this.config.fade && this.config.fadePoint < 1) {

 if (this.config.fadePoint < 0) {

 this.config.fadePoint = 0;

 }

 var startingPoint = this.forecast.length * this.config.fadePoint;

 var steps = this.forecast.length - startingPoint;

 if (f >= startingPoint) {

 var currentStep = f - startingPoint;

 row.style.opacity = 1 - (1 / steps * currentStep);

 }

 }

 }

 return table;

 },

 // Override getHeader method.

 getHeader: function() {

 if (this.config.appendLocationNameToHeader) {

 return this.data.header + " " + this.fetchedLocatioName;

 }

 return this.data.header;

 },

 // Override notification handler.

 notificationReceived: function(notification, payload, sender) {

 if (notification === "DOM_OBJECTS_CREATED") {

 if (this.config.appendLocationNameToHeader) {

 this.hide(0, {lockString: this.identifier});

 }

 }

 if (notification === "CALENDAR_EVENTS") {

 var senderClasses = sender.data.classes.toLowerCase().split(" ");

 if (senderClasses.indexOf(this.config.calendarClass.toLowerCase()) !== -1) {

 var lastEvent = this.firstEvent;

 this.firstEvent = false;

 for (e in payload) {

 var event = payload[e];

 if (event.location || event.geo) {

 this.firstEvent = event;

 //Log.log("First upcoming event with location: ", event);

 break;

 }

 }

 }

 }

 },

 /* updateWeather(compliments)

 * Requests new data from openweather.org.

 * Calls processWeather on succesfull response.

 */

 updateWeather: function() {

 if (this.config.appid === "") {

 Log.error("WeatherForecast: APPID not set!");

 return;

 }

 var url = this.config.apiBase + this.config.apiVersion + "/" +

this.config.forecastEndpoint + this.getParams();

 var self = this;

 var retry = true;

 var weatherRequest = new XMLHttpRequest();

 weatherRequest.open("GET", url, true);

 weatherRequest.onreadystatechange = function() {

 if (this.readyState === 4) {

 if (this.status === 200) {

 self.processWeather(JSON.parse(this.response));

 } else if (this.status === 401) {

 self.updateDom(self.config.animationSpeed);

 Log.error(self.name + ": Incorrect APPID.");

 retry = true;

 } else {

 Log.error(self.name + ": Could not load weather.");

 }

 if (retry) {

 self.scheduleUpdate((self.loaded) ? -1 : self.config.retryDelay);

 }

 }

 };

 weatherRequest.send();

 },

 /* getParams(compliments)

 * Generates an url with api parameters based on the config.

 *

 * return String - URL params.

 */

 getParams: function() {

 var params = "?";

 if(this.config.locationID) {

 params += "id=" + this.config.locationID;

 } else if(this.config.location) {

 params += "q=" + this.config.location;

 } else if (this.firstEvent && this.firstEvent.geo) {

 params += "lat=" + this.firstEvent.geo.lat + "&lon=" + this.firstEvent.geo.lon

 } else if (this.firstEvent && this.firstEvent.location) {

 params += "q=" + this.firstEvent.location;

 } else {

 this.hide(this.config.animationSpeed, {lockString:this.identifier});

 return;

 }

 params += "&units=" + this.config.units;

 params += "&lang=" + this.config.lang;

 /*

 * Submit a specific number of days to forecast, between 1 to 16 days.

 * The OpenWeatherMap API properly handles values outside of the 1 - 16 range and

returns 7 days by default.

 * This is simply being pedantic and doing it ourselves.

 */

 params += "&cnt=" + (((this.config.maxNumberOfDays < 1) ||

(this.config.maxNumberOfDays > 16)) ? 7 : this.config.maxNumberOfDays);

 params += "&APPID=" + this.config.appid;

 return params;

 },

 /* processWeather(data)

 * Uses the received data to set the various values.

 *

 * argument data object - Weather information received form openweather.org.

 */

 processWeather: function(data) {

 this.fetchedLocatioName = data.city.name + ", " + data.city.country;

 this.forecast = [];

 for (var i = 0, count = data.list.length; i < count; i++) {

 var forecast = data.list[i];

 this.forecast.push({

 day: moment(forecast.dt, "X").format("ddd"),

 icon: this.config.iconTable[forecast.weather[0].icon],

 maxTemp: this.roundValue(forecast.temp.max),

 minTemp: this.roundValue(forecast.temp.min),

 rain: this.roundValue(forecast.rain)

 });

 }

 //Log.log(this.forecast);

 this.show(this.config.animationSpeed, {lockString:this.identifier});

 this.loaded = true;

 this.updateDom(this.config.animationSpeed);

 },

 /* scheduleUpdate()

 * Schedule next update.

 *

 * argument delay number - Milliseconds before next update. If empty,

this.config.updateInterval is used.

 */

 scheduleUpdate: function(delay) {

 var nextLoad = this.config.updateInterval;

 if (typeof delay !== "undefined" && delay >= 0) {

 nextLoad = delay;

 }

 var self = this;

 clearTimeout(this.updateTimer);

 this.updateTimer = setTimeout(function() {

 self.updateWeather();

 }, nextLoad);

 },

 /* ms2Beaufort(ms)

 * Converts m2 to beaufort (windspeed).

 *

 * argument ms number - Windspeed in m/s.

 *

 * return number - Windspeed in beaufort.

 */

 ms2Beaufort: function(ms) {

 var kmh = ms * 60 * 60 / 1000;

 var speeds = [1, 5, 11, 19, 28, 38, 49, 61, 74, 88, 102, 117, 1000];

 for (var beaufort in speeds) {

 var speed = speeds[beaufort];

 if (speed > kmh) {

 return beaufort;

 }

 }

 return 12;

 },

 /* function(temperature)

 * Rounds a temperature to 1 decimal or integer (depending on config.roundTemp).

 *

 * argument temperature number - Temperature.

 *

 * return number - Rounded Temperature.

 */

 roundValue: function(temperature) {

 var decimals = this.config.roundTemp ? 0 : 1;

 return parseFloat(temperature).toFixed(decimals);

 }

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "weatherforecast",

 position: "top_right", // This can be any of the regions.

 // Best

results in left or right regions.

 config: {

 // See 'Configuration options' for more information.

 location: "Amsterdam,Netherlands",

 locationID: "", //Location ID from

http://openweathermap.org/help/city_list.txt

 appid: "abcde12345abcde12345abcde12345ab"

//openweathermap.org API key.

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/weatherforecast

Weather Forecast

 Module.register(“newsfeed”,{

// Default module config.

 defaults: {

 feeds: [

 {

 title: "New York Times",

 url: "http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",

 encoding: "UTF-8" //ISO-8859-1

 }

],

 showSourceTitle: true,

 showPublishDate: true,

 showDescription: false,

 wrapTitle: true,

 wrapDescription: true,

 hideLoading: false,

 reloadInterval: 5 * 60 * 1000, // every 5 minutes

 updateInterval: 10 * 1000,

 animationSpeed: 2.5 * 1000,

 maxNewsItems: 0, // 0 for unlimited

 ignoreOldItems: false,

 ignoreOlderThan: 24 * 60 * 60 * 1000, // 1 day

 removeStartTags: "",

 removeEndTags: "",

 startTags: [],

 endTags: []

 },

 // Define required scripts.

 getScripts: function() {

 return ["moment.js"];

 },

 // Define required translations.

 getTranslations: function() {

 // The translations for the default modules are defined in the core translation

files.

 // Therefor we can just return false. Otherwise we should have returned a

dictionary.

 // If you're trying to build your own module including translations, check out

the documentation.

 return false;

 },

 // Define start sequence.

 start: function() {

 Log.info("Starting module: " + this.name);

 // Set locale.

 moment.locale(config.language);

 this.newsItems = [];

 this.loaded = false;

 this.activeItem = 0;

 this.registerFeeds();

 },

 // Override socket notification handler.

 socketNotificationReceived: function(notification, payload) {

 if (notification === "NEWS_ITEMS") {

 this.generateFeed(payload);

 if (!this.loaded) {

 this.scheduleUpdateInterval();

 }

 this.loaded = true;

 }

 },

 // Override dom generator.

 getDom: function() {

 var wrapper = document.createElement("div");

 if (this.config.feedUrl) {

 wrapper.className = "small bright";

 wrapper.innerHTML = "The configuration options for the newsfeed module have

changed.
Please check the documentation.";

 return wrapper;

 }

 if (this.activeItem >= this.newsItems.length) {

 this.activeItem = 0;

 }

 if (this.newsItems.length > 0) {

 // this.config.showFullArticle is a run-time configuration, triggered by optional

notifications

 if (!this.config.showFullArticle && (this.config.showSourceTitle ||

this.config.showPublishDate)) {

 var sourceAndTimestamp = document.createElement("div");

 sourceAndTimestamp.className = "light small dimmed";

 if (this.config.showSourceTitle && this.newsItems[this.activeItem].sourceTitle

!== "") {

 sourceAndTimestamp.innerHTML = this.newsItems[this.activeItem].sourceTitle;

 }

 if (this.config.showSourceTitle && this.newsItems[this.activeItem].sourceTitle

!== "" && this.config.showPublishDate) {

 sourceAndTimestamp.innerHTML += ", ";

 }

 if (this.config.showPublishDate) {

 sourceAndTimestamp.innerHTML += moment(new

Date(this.newsItems[this.activeItem].pubdate)).fromNow();

 }

 if (this.config.showSourceTitle && this.newsItems[this.activeItem].sourceTitle

!== "" || this.config.showPublishDate) {

 sourceAndTimestamp.innerHTML += ":";

 }

 wrapper.appendChild(sourceAndTimestamp);

 }

 //Remove selected tags from the beginning of rss feed items (title or

description)

 if (this.config.removeStartTags == "title" || this.config.removeStartTags ==

"both") {

 for (f=0; f<this.config.startTags.length;f++) {

 if

(this.newsItems[this.activeItem].title.slice(0,this.config.startTags[f].length)

== this.config.startTags[f]) {

 this.newsItems[this.activeItem].title =

this.newsItems[this.activeItem].title.slice(this.config.startTags[f].length,this.

newsItems[this.activeItem].title.length);

 }

 }

 }

 if (this.config.removeStartTags == "description" || this.config.removeStartTags

== "both") {

 if (this.config.showDescription) {

 for (f=0; f<this.config.startTags.length;f++) {

 if

(this.newsItems[this.activeItem].description.slice(0,this.config.startTags[f].len

gth) == this.config.startTags[f]) {

 this.newsItems[this.activeItem].title =

this.newsItems[this.activeItem].description.slice(this.config.startTags[f].length

,this.newsItems[this.activeItem].description.length);

 }

 }

 }

 }

 //Remove selected tags from the end of rss feed items (title or description)

 if (this.config.removeEndTags) {

 for (f=0; f<this.config.endTags.length;f++) {

 if (this.newsItems[this.activeItem].title.slice(-

this.config.endTags[f].length)==this.config.endTags[f]) {

 this.newsItems[this.activeItem].title =

this.newsItems[this.activeItem].title.slice(0,-this.config.endTags[f].length);

 }

 }

 if (this.config.showDescription) {

 for (f=0; f<this.config.endTags.length;f++) {

 if (this.newsItems[this.activeItem].description.slice(-

this.config.endTags[f].length)==this.config.endTags[f]) {

 this.newsItems[this.activeItem].description =

this.newsItems[this.activeItem].description.slice(0,-

this.config.endTags[f].length);

 }

 }

 }

 }

 if(!this.config.showFullArticle){

 var title = document.createElement("div");

 title.className = "bright medium light" + (!this.config.wrapTitle ? " no-wrap" :

"");

 title.innerHTML = this.newsItems[this.activeItem].title;

 wrapper.appendChild(title);

 }

 if (this.config.showDescription) {

 var description = document.createElement("div");

 description.className = "small light" + (!this.config.wrapDescription ? " no-

wrap" : "");

 description.innerHTML = this.newsItems[this.activeItem].description;

 wrapper.appendChild(description);

 }

 if (this.config.showFullArticle) {

 var fullArticle = document.createElement("iframe");

 fullArticle.className = "";

 fullArticle.style.width = "100%";

 fullArticle.style.top = "0";

 fullArticle.style.left = "0";

 fullArticle.style.position = "fixed";

 fullArticle.height = window.innerHeight;

 fullArticle.style.border = "none";

 fullArticle.src = this.newsItems[this.activeItem].url;

 wrapper.appendChild(fullArticle);

 }

 if (this.config.hideLoading) {

 this.show();

 }

 } else {

 if (this.config.hideLoading) {

 this.hide();

 } else {

 wrapper.innerHTML = this.translate("LOADING");

 wrapper.className = "small dimmed";

 }

 }

 return wrapper;

 },

 /* registerFeeds()

 * registers the feeds to be used by the backend.

 */

 registerFeeds: function() {

 for (var f in this.config.feeds) {

 var feed = this.config.feeds[f];

 this.sendSocketNotification("ADD_FEED", {

 feed: feed,

 config: this.config

 });

 }

 },

 /* generateFeed()

 * Generate an ordered list of items for this configured module.

 *

 * attribute feeds object - An object with feeds returned by the node helper.

 */

 generateFeed: function(feeds) {

 var newsItems = [];

 for (var feed in feeds) {

 var feedItems = feeds[feed];

 if (this.subscribedToFeed(feed)) {

 for (var i in feedItems) {

 var item = feedItems[i];

 item.sourceTitle = this.titleForFeed(feed);

 if (!(this.config.ignoreOldItems && ((Date.now() - new Date(item.pubdate)) >

this.config.ignoreOlderThan))) {

 newsItems.push(item);

 }

 }

 }

 }

 newsItems.sort(function(a,b) {

 var dateA = new Date(a.pubdate);

 var dateB = new Date(b.pubdate);

 return dateB - dateA;

 });

 if(this.config.maxNewsItems > 0) {

 newsItems = newsItems.slice(0, this.config.maxNewsItems);

 }

 this.newsItems = newsItems;

 },

 /* subscribedToFeed(feedUrl)

 * Check if this module is configured to show this feed.

 *

 * attribute feedUrl string - Url of the feed to check.

 *

 * returns bool

 */

 subscribedToFeed: function(feedUrl) {

 for (var f in this.config.feeds) {

 var feed = this.config.feeds[f];

 if (feed.url === feedUrl) {

 return true;

 }

 }

 return false;

 },

 /* titleForFeed(feedUrl)

 * Returns title for a specific feed Url.

 *

 * attribute feedUrl string - Url of the feed to check.

 *

 * returns string

 */

 titleForFeed: function(feedUrl) {

 for (var f in this.config.feeds) {

 var feed = this.config.feeds[f];

 if (feed.url === feedUrl) {

 return feed.title || "";

 }

 }

 return "";

 },

 /* scheduleUpdateInterval()

 * Schedule visual update.

 */

 scheduleUpdateInterval: function() {

 var self = this;

 self.updateDom(self.config.animationSpeed);

 timer = setInterval(function() {

 self.activeItem++;

 self.updateDom(self.config.animationSpeed);

 }, this.config.updateInterval);

 },

 /* capitalizeFirstLetter(string)

 * Capitalizes the first character of a string.

 *

 * argument string string - Input string.

 *

 * return string - Capitalized output string.

 */

 capitalizeFirstLetter: function(string) {

 return string.charAt(0).toUpperCase() + string.slice(1);

 },

 resetDescrOrFullArticleAndTimer: function() {

 this.config.showDescription = false;

 this.config.showFullArticle = false;

 if(!timer){

 this.scheduleUpdateInterval();

 }

 },

 notificationReceived: function(notification, payload, sender) {

 Log.info(this.name + " - received notification: " + notification);

 if(notification == "ARTICLE_NEXT"){

 var before = this.activeItem;

 this.activeItem++;

 if (this.activeItem >= this.newsItems.length) {

 this.activeItem = 0;

 }

 this.resetDescrOrFullArticleAndTimer();

 Log.info(this.name + " - going from article #" + before + " to #" +

this.activeItem + " (of " + this.newsItems.length + ")");

 this.updateDom(100);

 } else if(notification == "ARTICLE_PREVIOUS"){

 var before = this.activeItem;

 this.activeItem--;

 if (this.activeItem < 0) {

 this.activeItem = this.newsItems.length - 1;

 }

 this.resetDescrOrFullArticleAndTimer();

 Log.info(this.name + " - going from article #" + before + " to #" +

this.activeItem + " (of " + this.newsItems.length + ")");

 this.updateDom(100);

 }

 // if "more details" is received the first time: show article summary, on second

time show full article

 else if(notification == "ARTICLE_MORE_DETAILS"){

 this.config.showDescription = !this.config.showDescription;

 this.config.showFullArticle = !this.config.showDescription;

 clearInterval(timer);

 timer = null;

 Log.info(this.name + " - showing " + this.config.showDescription ? "article

description" : "full article");

 this.updateDom(100);

 } else if(notification == "ARTICLE_LESS_DETAILS"){

 this.resetDescrOrFullArticleAndTimer();

 Log.info(this.name + " - showing only article titles again");

 this.updateDom(100);

 } else {

 Log.info(this.name + " - unknown notification, ignoring: " + notification);

 }

 },

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "newsfeed",

 position: "bottom_bar", // This can be any of the regions. Best

results in center regions.

 config: {

 // The config property is optional.

 // If no config is set, an example calendar is shown.

 // See 'Configuration options' for more information.

 feeds: [

 {

 title: "New York Times",

 url:

"http://www.nytimes.com/services/xml/rss/nyt/HomePage.xml",

 },

 {

 title: "BBC",

 url:

"http://feeds.bbci.co.uk/news/video_and_audio/news_front_page/rss.xml?edition=uk",

 },

]

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/newsfeed

Compliments

 Module.register("compliments", {

// Module config defaults.

 defaults: {

 compliments: {

 anytime: [

 "Hey there sexy!"

],

 morning: [

 "Good morning, handsome!",

 "Enjoy your day!",

 "How was your sleep?"

],

 afternoon: [

 "Hello, beauty!",

 "You look sexy!",

 "Looking good today!"

],

 evening: [

 "Wow, you look hot!",

 "You look nice!",

 "Hi, sexy!"

]

 },

 updateInterval: 30000,

 remoteFile: null,

 fadeSpeed: 4000

 },

 // Set currentweather from module

 currentWeatherType: "",

 // Define required scripts.

 getScripts: function() {

 return ["moment.js"];

 },

 // Define start sequence.

 start: function() {

 Log.info("Starting module: " + this.name);

 this.lastComplimentIndex = -1;

 if (this.config.remoteFile != null) {

 this.complimentFile((response) => {

 this.config.compliments = JSON.parse(response);

 });

 }

 // Schedule update timer.

 var self = this;

 setInterval(function() {

 self.updateDom(self.config.fadeSpeed);

 }, this.config.updateInterval);

 },

 /* randomIndex(compliments)

 * Generate a random index for a list of compliments.

 *

 * argument compliments Array<String> - Array with compliments.

 *

 * return Number - Random index.

 */

 randomIndex: function(compliments) {

 if (compliments.length === 1) {

 return 0;

 }

 var generate = function() {

 return Math.floor(Math.random() * compliments.length);

 };

 var complimentIndex = generate();

 while (complimentIndex === this.lastComplimentIndex) {

 complimentIndex = generate();

 }

 this.lastComplimentIndex = complimentIndex;

 return complimentIndex;

 },

 /* complimentArray()

 * Retrieve an array of compliments for the time of the day.

 *

 * return compliments Array<String> - Array with compliments for the time of the

day.

 */

 complimentArray: function() {

 var hour = moment().hour();

 var compliments = null;

 if (hour >= 3 && hour < 12) {

 compliments = this.config.compliments.morning;

 } else if (hour >= 12 && hour < 17) {

 compliments = this.config.compliments.afternoon;

 } else {

 compliments = this.config.compliments.evening;

 }

 if (typeof compliments === "undefined") {

 compliments = new Array();

 }

 if (this.currentWeatherType in this.config.compliments) {

 compliments.push.apply(compliments,

this.config.compliments[this.currentWeatherType]);

 }

 compliments.push.apply(compliments, this.config.compliments.anytime);

 return compliments;

 },

 /* complimentFile(callback)

 * Retrieve a file from the local filesystem

 */

 complimentFile: function(callback) {

 var xobj = new XMLHttpRequest();

 xobj.overrideMimeType("application/json");

 xobj.open("GET", this.file(this.config.remoteFile), true);

 xobj.onreadystatechange = function() {

 if (xobj.readyState == 4 && xobj.status == "200") {

 callback(xobj.responseText);

 }

 };

 xobj.send(null);

 },

 /* complimentArray()

 * Retrieve a random compliment.

 *

 * return compliment string - A compliment.

 */

 randomCompliment: function() {

 var compliments = this.complimentArray();

 var index = this.randomIndex(compliments);

 return compliments[index];

 },

 // Override dom generator.

 getDom: function() {

 var complimentText = this.randomCompliment();

 var compliment = document.createTextNode(complimentText);

 var wrapper = document.createElement("div");

 wrapper.className = this.config.classes ? this.config.classes : "thin xlarge

bright";

 wrapper.appendChild(compliment);

 return wrapper;

 },

 // From data currentweather set weather type

 setCurrentWeatherType: function(data) {

 var weatherIconTable = {

 "01d": "day_sunny",

 "02d": "day_cloudy",

 "03d": "cloudy",

 "04d": "cloudy_windy",

 "09d": "showers",

 "10d": "rain",

 "11d": "thunderstorm",

 "13d": "snow",

 "50d": "fog",

 "01n": "night_clear",

 "02n": "night_cloudy",

 "03n": "night_cloudy",

 "04n": "night_cloudy",

 "09n": "night_showers",

 "10n": "night_rain",

 "11n": "night_thunderstorm",

 "13n": "night_snow",

 "50n": "night_alt_cloudy_windy"

 };

 this.currentWeatherType = weatherIconTable[data.weather[0].icon];

 },

 // Override notification handler.

 notificationReceived: function(notification, payload, sender) {

 if (notification == "CURRENTWEATHER_DATA") {

 this.setCurrentWeatherType(payload.data);

 }

 },

 });

To use this module, add it to the modules array in the config/config.js file:

modules: [

 {

 module: "compliments",

 position: "lower_third", // This can be any of the regions.

 // Best results in one of

the middle regions like: lower_third

 config: {

 // The config property is optional.

 // If no config is set, an example calendar is shown.

 // See 'Configuration options' for more information.

 }

 }

]

To edit this file:

https://github.com/MichMich/MagicMirror/tree/master/modules/default/compliments

https://github.com/MichMich/MagicMirror/tree/master/modules/default/compliments

It is also important to note that this is the section our team edited to make the Smart

Mirror more user friendly to the Atwater Kent Community. This is also where we

encouraged users to email the MQP team if they would like to be involved with designing

modules.

Additional Modules

Instagram

The Instagram feature was added to feature WPI’s Instagram feed. How the team did this

is can be found within the MQP report. Additional API keys and password can be found

in the operational manual given to the ECE technician, Bill Appleyard and Professor

Mazumder.

1. Navigate into your MagicMirror's modules folder and execute git clone

https://github.com/kapsolas/MMM-Instagram.git.

2. A new folder will appear, navigate into it.

3. Execute npm install to install the node dependencies.

To use this module, add it to the modules array in the config/config.js file:
{

 module: 'MMM-Instagram',

 position: 'top_right',

 config: {

 access_token: 'API_KEY from instagram',

 count: 200,

 min_timestamp: 0,

 animationSpeed: 2500,

 updateInterval: 12500

 }

},

Code for MMM-Instagram:

Module.register

('MMM-

Instagram', {

 defaults: {

 format: 'json',

 lang: 'en-us',

 id: '',

 animationSpeed: 1000,

 updateInterval: 60000, // 10 minutes

 access_token: '',

 count: 200,

 min_timestamp: 0,

 loadingText: 'Loading...'

 },

 // Define required scripts

 getScripts: function() {

 return ["moment.js"];

 },

 /*

 // Define required translations

 getTranslations: function() {

 return false;

 },

 */

 // Define start sequence

 start: function() {

 Log.info('Starting module: ' + this.name);

 this.data.classes = 'bright medium';

 this.loaded = false;

 this.images = {};

 this.activeItem = 0;

 this.url = 'https://api.instagram.com/v1/users/self/media/recent'

+ this.getParams();

 this.grabPhotos();

 },

 grabPhotos: function() {

 // the notifications are not working for some reason... so we

won't do anything asynchronously

 // we will just make the call to the method to get the object

with photo links....

 //Log.info('sending socket notification: INSTAGRAM_GET and URL: '

+ this.url);

 this.sendSocketNotification("INSTAGRAM_GET", this.url);

 // this may not be needed... need to think about it.

 //setTimeout(this.grabPhotos, this.config.interval, this);

 },

 getStyles: function() {

 return ['instagram.css', 'font-awesome.css'];

 },

 // Override the dom generator

 getDom: function() {

 var wrapper = document.createElement("div");

 var imageDisplay = document.createElement('div'); //support for

config.changeColor

 if (!this.loaded) {

 wrapper.innerHTML = this.config.loadingText;

 return wrapper;

 }

 // set the first item in the list...

 if (this.activeItem >= this.images.photo.length) {

 this.activeItem = 0;

 }

 var tempimage = this.images.photo[this.activeItem];

 // image

 var imageLink = document.createElement('div');

 //imageLink.innerHTML = "<img

src='https://www.google.com/images/branding/googlelogo/1x/googlel

ogo_color_272x92dp.png'>";

 imageLink.id = "MMM-Instagram-image";

 imageLink.innerHTML = "";

 imageDisplay.appendChild(imageLink);

 wrapper.appendChild(imageDisplay);

 return wrapper;

 },

 /* scheduleUpdateInterval()

 * Schedule visual update.

 */

 scheduleUpdateInterval: function() {

 var self = this;

 Log.info("Scheduled update interval set up...");

 self.updateDom(self.config.animationSpeed);

 setInterval(function() {

 Log.info("incrementing the activeItem and refreshing");

 self.activeItem++;

 self.updateDom(self.config.animationSpeed);

 }, this.config.updateInterval);

 },

 /*

 * getParams()

 * returns the query string required for the request to flickr to

get the

 * photo stream of the user requested

 */

 getParams: function() {

 var params = '?';

 params += 'count=' + this.config.count;

 params += '&min_timestamp=' + this.config.min_timestamp;

 params += '&access_token=' + this.config.access_token;

 return params;

 },

 // override socketNotificationReceived

 socketNotificationReceived: function(notification, payload) {

 //Log.info('socketNotificationReceived: ' + notification);

 if (notification === 'INSTAGRAM_IMAGE_LIST')

 {

 //Log.info('received INSTAGRAM_IMAGE_LIST');

 this.images = payload;

 //Log.info("count: " + this.images.photo.length);

 // we want to update the dom the first time and then schedule

next updates

 if (!this.loaded) {

 this.updateDom(1000);

 this.scheduleUpdateInterval();

 }

 this.loaded = true;

 }

 }

 });

6.9 Code from LED Panels

6.9.1 Power Panel Section

AK History Section

AK MQP Menu Section

AK News Section

 About Navigation Section

Campus Event Section

Game Menu Section

MQPs Section

 Map Section

Pong

 SolarData Section

TopMenu Section

KeyPressed Section

KeyReleased Section

 6.9.2 Children Panels Section

HorizontalTicker Section

 Pizza Friday Countdown Section

 Weather Section

iFacts Section

 iGif1 Section

 iGif2 Section

 TimeDate Section

 Wpi twitter timeline Section

7. References

 ODROID | Hardkernel." ODROID. Hardkernel, n.d. Web. 1 Dec. 2016.

<http://www.hardkernel.com/main/products/prdt_info.php?g_code=G1434522398

25>

 Grid Independent Charging Station with Power Flow Display MQP Report, WPI,

2012

 M. Patkar, "6 best raspberry pi smart mirror projects we’ve seen so far," in

MakeUseOf, 2016. [Online]. Available: http://www.makeuseof.com/tag/6-best-

raspberry-pi-smart-mirror-projects-weve-seen-far/.

 B. Buy, "BenQ - GL2760H 27" LED HD monitor - glossy black," Best Buy, 2016.

[Online]. Available: http://www.bestbuy.com/site/benq-gl2760h-27-led-hd-

monitor-glossy-black/4648606.p?skuId=4648606.

 "2-Way Mirrored Acrylic Sheets," in Tap Plastics. [Online]. Available:

http://www.tapplastics.com/product/plastics/cut_to_size_plastic/two_way_mirrore

d_acrylic/558.

 "Raspberry pi 3 - model B - ARMv8 with 1G RAM ID: 3055 - $39.95: Adafruit

industries, unique & fun DIY electronics and kits," in Adafruit. [Online].

Available: https://www.adafruit.com/product/3055.

 "SparkFun RGB and Gesture Sensor - APDS-9960," in SparkFun. [Online].

Available: https://www.sparkfun.com/products/12787.

 "Mini Push Button Switch," in SparkFun. [Online]. Available:

https://www.sparkfun.com/products/97.

 WPA supplicant. (n.d.). Retrieved April 26, 2017, from

https://wiki.archlinux.org/index.php/WPA_supplicant

 Connect to WPI Wireless using Linux. (n.d.). Retrieved April 26, 2017, from

https://it.wpi.edu/Article/Connect-to-WPI-Wireless-using-Linux

http://www.makeuseof.com/tag/6-best-raspberry-pi-smart-mirror-projects-weve-seen-far/
http://www.makeuseof.com/tag/6-best-raspberry-pi-smart-mirror-projects-weve-seen-far/
http://www.makeuseof.com/tag/6-best-raspberry-pi-smart-mirror-projects-weve-seen-far/
http://www.bestbuy.com/site/benq-gl2760h-27-led-hd-monitor-glossy-black/4648606.p?skuId=4648606
http://www.bestbuy.com/site/benq-gl2760h-27-led-hd-monitor-glossy-black/4648606.p?skuId=4648606
http://www.bestbuy.com/site/benq-gl2760h-27-led-hd-monitor-glossy-black/4648606.p?skuId=4648606
http://www.tapplastics.com/product/plastics/cut_to_size_plastic/two_way_mirrored_acrylic/558
http://www.tapplastics.com/product/plastics/cut_to_size_plastic/two_way_mirrored_acrylic/558
http://www.tapplastics.com/product/plastics/cut_to_size_plastic/two_way_mirrored_acrylic/558
http://www.tapplastics.com/product/plastics/cut_to_size_plastic/two_way_mirrored_acrylic/558
https://www.adafruit.com/product/3055
https://www.adafruit.com/product/3055
https://www.sparkfun.com/products/12787
https://www.sparkfun.com/products/12787
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/97
https://www.sparkfun.com/products/97
https://wiki.archlinux.org/index.php/WPA_supplicant
https://it.wpi.edu/Article/Connect-to-WPI-Wireless-using-Linux

 Play, W. W. (n.d.). Automatically connect a Raspberry Pi to a Wifi network.

Retrieved April 26, 2017, from http://weworkweplay.com/play/automatically-

connect-a-raspberry-pi-to-a-wifi-network/

 How do I type on the next line in the Terminal? (n.d.). Retrieved April 26, 2017,

from http://askubuntu.com/questions/226204/how-do-i-type-on-the-next-line-in-

the-terminal

 Working with File Permissions on Your Raspberry Pi. (n.d.). Retrieved April 26,

2017, from http://www.dummies.com/computers/raspberry-pi/working-with-file-

permissions-on-your-raspberry-pi/

 K. (2016, June 15). Complete Setup Tutorial. Retrieved April 26, 2017, from

https://forum.magicmirror.builders/topic/236/complete-setup-tutorial/6

 How to generate an Instagram Access Token. (n.d.). Retrieved April 26, 2017,

from http://jelled.com/instagram/access-token

 Ubuntu Documentation. (n.d.). Retrieved April 26, 2017, from

https://help.ubuntu.com/community/Lubuntu/Documentation/CustomizingTheClo

ck

 “Americanizing” the Raspberry Pi. (2012, April 21). Retrieved April 26, 2017,

from http://rohankapoor.com/2012/04/americanizing-the-raspberry-pi/

 M. (n.d.). MichMich/MagicMirror. Retrieved April 26, 2017, from

https://github.com/MichMich/MagicMirror/wiki/Auto-Starting-MagicMirror

 M., L., S., L., T., & X. (2017, April 12). IpWhitelist HowTo. Retrieved April 26,

2017, from https://forum.magicmirror.builders/topic/1326/ipwhitelist-howto/2

 K. (2016, July 29). Kapsolas/MMM-Instagram. Retrieved April 26, 2017, from

https://github.com/kapsolas/MMM-Instagram

http://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
http://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
http://askubuntu.com/questions/226204/how-do-i-type-on-the-next-line-in-the-terminal
http://askubuntu.com/questions/226204/how-do-i-type-on-the-next-line-in-the-terminal
http://www.dummies.com/computers/raspberry-pi/working-with-file-permissions-on-your-raspberry-pi/
http://www.dummies.com/computers/raspberry-pi/working-with-file-permissions-on-your-raspberry-pi/
https://forum.magicmirror.builders/topic/236/complete-setup-tutorial/6
http://jelled.com/instagram/access-token
https://help.ubuntu.com/community/Lubuntu/Documentation/CustomizingTheClock
https://help.ubuntu.com/community/Lubuntu/Documentation/CustomizingTheClock
http://rohankapoor.com/2012/04/americanizing-the-raspberry-pi/
https://github.com/MichMich/MagicMirror/wiki/Auto-Starting-MagicMirror
https://forum.magicmirror.builders/topic/1326/ipwhitelist-howto/2
https://github.com/kapsolas/MMM-Instagram

