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Abstract

Influence maximization in social networks has been intensively studied in recent

years, where the goal is to find a small set of seed nodes in a social network that

maximizes the spread of influence according to a diffusion model. Recent research

on influence maximization mainly focuses on incorporating either user opinions or

competitive settings in the influence diffusion model. In many real-world appli-

cations, however, the influence diffusion process can often involve both real-valued

opinions from users and multiple parties that are competing with each other. In this

paper, I present the problem of competitive opinion maximization (COM), where

the game of influence diffusion includes multiple competing products and the goal

is to maximize the total opinions of activated users by each product. This prob-

lem is very challenging because it is #P-hard and no longer keeps the property of

submodularity. I propose a novel model, called ICOM (Iterative Competitive Opin-

ion Maximization), that can effectively and efficiently maximize the total opinions

in competitive games by taking user opinions as well as the competitor’s strategy

into account. Different from existing influence maximization methods, I inhibit the

spread of negative opinions and search for the optimal response to opponents’ choices

of seed nodes. I apply iterative inference based on a greedy algorithm to reduce the

computational complexity. Empirical studies on real-world datasets demonstrate

that comparing with several baseline methods, the ICOM approach can effectively

and efficiently improve the total opinions achieved by the promoted product in the

competitive network.
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Chapter 1

Introduction

As John Donne wrote, “No man is an island.” Individuals are linked together by

different relationships: family, friends, etc. These interactions determine a social

network, where information propagates and influence spreads among the members.

A lot of studies investigate how people are affected by their “neighbors” in this un-

derlying network and the diffusion processes of “word-of-mouth” effects, especially

for the application in viral marketing [33]. Motivated by the increasing applications

(such as viral marketing, rumor control, public opinion formation, and personalized

recommendation), the problem of influence maximization has been studied inten-

sively in recent years.

1.1 Overview

The influence maximization problem intends to identify the influential users in a

social network, so as to maximize the coverage of an item (e.g., a product or a

political view) by the propagation. More formally, given a social network and a

diffusion model, the influence maximization problem aims at selecting a small set

of seed nodes that maximizes the spread of influence in the social network. This
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Figure 1.1: The problem of competitive opinion maximization in social networks
has two major features: (a) Two parties compete in the diffusion. A party with
larger influence weight (relationship strength) wins. (b) Infected users have their
own opinions. Total opinions of a party are the sum of its infected users’ opinions.

problem is especially important in viral marketing. For example, with a limited bud-

get of product promotion, a company may want to selectively choose a small set of

users to distribute free samples, hoping they would recommend the product to their

friends or followers, consequently increases the product sales or brand awareness by

word-of-mouth marketing.

Influence maximization (IM) problem was first formalized by Domingos et al.

in [13], and Kempe et al. then proposed two popular diffusion models, i.e., the inde-

pendent cascade (IC) model and the linear threshold (LT) model [22]. Conventional

influence maximization problem assumes that the influence propagating in the net-

work is positive, i.e., the more users get exposed to the target item, the better the

goal of promotion will be achieved, e.g., the higher the sales or reputation of the

item will have. Later, lots of the works focus on studying the diffusion of a single

item in a social network. However, in many real-world applications, neither of these

two assumptions is true (as shown in Figure 1.1). On the one hand, it is often the

case that multiple parties start promotion in a social network simultaneously, and

their target items are of the same type, i.e., with same features and competing with

each other. A user will choose the item which is widely adopted by its neighbors

or by its close friends. On the other hand, if users who get exposed to the target

2



item express negative opinions towards it, its reputation will be harmed. The opin-

ions depend on users’ preference, so the promoters should try to cover more users

with positive opinions as the target audience. Thus the promoters should take user

opinions as well as the competitor’s strategy into account.

In this thesis, I study the problem of competitive opinion maximization (COM)

under a competitive linear threshold (CLT) model. In CLT model, each party

propagates the same way as it does in the linear threshold model, but an activated

node cannot be influenced again by another party. An inactive node which receives

influence from different parties at the same time will be activated by the one who

sends the highest influence weight. Formally, the competitive opinion maximization

problem corresponds to selecting a small set of seed users as the optimal response to

the observed or assumed opponent’s choices of seeds. The objective of selection is

to maximize the total opinions gained after a competitive diffusion. Any two parties

of the competition can be divided as a first mover and a second mover. A second

mover can simply make its selection based on known opponent’s selection, but the

first mover needs to search for the optimal choices to maximize the total opinions

under the disadvantage of being observed by its opponent. The problem of opinion

maximization in CLT diffusion model has not been studied in this context so far.

1.2 Challenge

The major research challenges on competitive opinion maximization can be summa-

rized as follows:

• Users’ Opinions: Conventional influence maximization problems and compet-

itive influence maximization (CIM) problems [4, 5, 6, 21], a natural extension of

influence maximization assuming multiple items to be propagated in a social net-

3



1

1

11

1

Seed
Infected

(a) Influence Maximization [22]. Diffusion
result:|I| = 4

-1

-1

1
0.7

0.8

Seed
Infected

(b) Opinion Maximization [31, 34]: O = 1.7

1

1
1

1

1

A
B

Seed
Infected
Fail to infect

(c) Competitive Influence Maximization [3]:
|Iblue first| = 3, |Ired second| = 2

1

1
10.5

1-1

A

B
Seed
Infected
Fail to infect

0.8

(d) Competitive Opinion Maximization (this
thesis): Oblue first = 2, Ored second = 1.5

Figure 1.2: Comparison of four related problems and the results of their influence
diffusion. Here I represents the set of nodes infected in the diffusion. O represents
the total opinions of the infected users. Iblue first represents the users being infected
by the blue party (first mover) in the competitive diffusion.
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work, all assume the users who are influenced will adopt or like the item (as shown

in Figures 1.2(a) and 1.2(c)). However, there are unpopular items that most of

the users in the social network will express negative opinions. In such case, the

promotion without considering opinions will lead to a bad overall reputation. From

a long-term perspective, a promoter hopes most of the expressed opinions in the

social network are positive.

The importance of users’ opinions can also be explained by market segmentation

or niche product. For example, literary film, experimental music or anime culture is

well accepted by certain customer groups, but disliked by other groups. As shown

in Figure 1.2(b), the best seed node can only infect one node (|I| = 2 < 3), but its

total opinions are maximized (O = 1.7 > 0.8). The same rule applies to the seed

selection in Figure 1.2(d).

I assume opinions will not influence the adoption of other nodes, but the infection

of unwanted nodes damages the effect of promoting. It is important to target the

appropriate customers because maximizing the spread of influence during diffusion

is no longer the optimal solution.

• Rational Competitors: Another challenge comes from the fact that multiple

parties are competing in the market. If a user has already adopted an item, he or

she will not accept another of the same type. It is possible that the user adopt

both of the items in a very special case that receives same influence at the same

time, then I assume the volume of his or her opinion will be weaken to half of the

original. We assume all the parties in the market are rational, which means they

are likely to choose similar ideal customers if ignoring the competitors. The failure

in a competition can block the diffusion of influence and significantly lower the total

opinions.

For example, as shown in Figure 1.2(d), the first mover, the blue party will choose
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node B as a seed if it ignores the red party, expecting Oblue = 3.5. But in that case,

node A will be selected by red party and block blue party’s diffusion, Oblue = 1.5.

It is worth noting that knowing node B is chosen, the red party will not select B

again to get half of the opinions of four nodes, Ored = 1.75 < 2. So the best seed

node for party blue is node A, Oblue = 2. Similarly, the blue party will select node

A instead of B because Iblue = 3 > 2.

A wise decision should take opponents’ choices into consideration and estimate

the outcome based on the possible failure.

• Scalability: Different from the problems that maximize the influence, our COM

problem is neither submodular or monotone, which means a naive greedy algorithm

has no guarantee to the approximation ratio in [4]. Still, if the opponents’ choices of

seeds are observed, we can use a greedy algorithm as a heuristics to search through

the network. However, in some cases, the promoter can only make decisions based

on the known opponent’s strategy and will be observed by competitors as the first

mover. Due to the passive position, a naive greedy algorithm for a first mover

requires a lot of simulations, which is very slow for large networks. To address the

problem, I utilize the inference from iterative simulation and design an efficient and

effective heuristic algorithm.

1.3 Contribution

The main contributions of this thesis can be summarized as follows:

• I present a novel problem of Competitive Opinion Maximization (COM) about

how to effectively select a set of seeds to maximize opinions under competition in a

social network.

• I propose a novel solution, called ICOM (Iterative Competitive Opinion Maximiza-
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tion) method, to solve COM problem. By explicitly exploiting the users’ opinions

and opponents’ information, our ICOM method can effectively find a set of seeds to

compete with other parties for total opinions with an iterative inference procedure.

• Empirical studies on real-world tasks demonstrate that the proposed iterative

opinion maximization approach can significantly boost the performances in terms

of total opinions achieved by the promoter with competitors in real-world data sets.

The rest of the thesis is organized as follows. Chapter 3 introduces the nota-

tion and basic theory used throughout the thesis. Chapter 4 presents the ICOM

algorithm based on greedy method. Chapter 5 presents the experimental setup and

reports the experiment results over three real-world data sets. Chapter 6 concludes

the thesis.
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Chapter 2

Related Works

To the best of our knowledge, this paper is the first work on competitive opinion

maximization. This work is related to influence maximization, opinion maximization

and competitive influence maximization.

2.1 Influence Maximization

Influence maximization is to study how to choose a small set of seed nodes in a

network, which has the best opportunity to influence the most number of nodes

through a given diffusion model. Domingos et al. [13] first proposed to model the

customer’s network value that derives from his or her influence on other customers

for viral marketing. Richardson et al. [33] extended the work by proposing a less

computational cost model and applied it to the data from a knowledge-sharing site.

In [22] Kempe et al. obtained the first provable approximation guarantee for the two

basic stochastic influence cascade models they proposed, the independent cascade

(IC) model and the linear threshold (LT) model. The objective function under these

two models has nice properties of monotonicity and submodularity.

Later, many works have been proposed to tackle the limitation of the simple
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greedy algorithm. Chen et al. designed a scalable algorithm for the IC model

that can handle large-scale social networks with more than a million edges, and

proposed the first scalable influence maximization algorithm tailored for the LT

model [9, 10, 11]. In [17], an alternative algorithm is proposed to compute the

spread under LT model, which outperforms LDAG heuristic in [9]. While using

heuristics to estimate the spread is one way to improve the efficiency, an efficient

algorithm called CELF proposed by Leskovec et al. [27] exploits submodularity

and dramatically improves the efficiency of the greedy algorithm. Based on that,

Goyal et al. [16] introduces a further optimized approach CELF++ for influence

maximization in social networks.

Several extensions, like distinguishing specific users from others and differentiat-

ing product adoption from influence, have been proposed to describe the real world

situation more accurately [2, 24]. An alternative data-based approach was proposed

by Goyal et al. to directly estimate influence spread by exploiting historical data,

i.e., traces of past action propagation.

2.2 Opinion Maximization

Traditional influence maximization problem has an assumption that people always

hold positive opinions towards the promoted products, which is not satisfied in

reality. Therefore, it is meaningful to study the extended problem, opinion max-

imization, where infected people can hold negative opinions. Instead of selecting

the most influential nodes, the aim of opinion maximization is to make the item

favorable and get more positive opinions.

In [8], Chen et al. proposed a model that incorporates the emergence and prop-

agation of negative opinions into the IC model to maximize the expected number

9



of positive activated nodes. Zhang et al. [34] considered the negative and neutral

opinions, proposed an adapted IC model to maximize the total opinions of activated

users. While the users’ opinions are generated randomly in [34], Gionis et al. [15]

took the process of opinion formation into consideration. They assumed the opinions

of individuals get formed dynamically by the mutual influence of internal opinions

and the neighbors’ opinions. The goal is to find a set of users whose positive opinions

about an item will maximize the overall opinions for the item in a social network.

Some studies [25, 26, 28] exploit opinions in a different way. They assume there

are both positive and negative relationships in the network, thus people are more

likely to adopt their friends’ opinions and do the opposite to the foe’s opinions.

Such works extend influence maximization problem for the signed networks, and are

different from the opinion maximization problem discussed in this thesis.

2.3 Competitive Influence Maximization

The problem is to study the simultaneous propagation of multiple items in a social

network. The solutions for competitive influence maximization can basically be

classified into two types: opponent strategy known or opponent strategy unknown.

Given the opponent’s selected seed nodes, a popular solution is to minimize the

opponent’s influence, i.e., Influence Blocking Maximization [4, 5, 21]. Borodin et al.

and He et al. proposed the greedy algorithms based on the LT model, while Budak

et al. provided a greedy algorithm for the IC model. Carnes et al. [6] studied

the competitive influence maximization problem from a follower’s perspective, i.e.,

finding a best response to the first mover’s selection. For competitive influence

maximization problems with known and fixed competitor’s strategy but not seed

set, to some extend we can observe or predict the opponent’s seed selection and

10



then search for the best response directly.

For the problem where the opponents’ strategy and choices are not known,

Bharathi et al. [3] proposed a natural generalization of the IC model and used

game theory to study the diffusion with multiple competing items. In [7], Chen et

al. proposed a data-driven approach to study the multi-player influence maximiza-

tion and proposed a game to collect the picking strategies from human or AI to

analysis. In [29], Lin et al. proposed a learning-based framework using reinforce-

ment learning and game theory to address the multi-round competitive influence

maximization problem. Zhang et al. studied the maximization problem of multiple

competing or complementary products in a social network at the same time in[35].

11



Chapter 3

Problem Formulation

In this section, we will define important notations, the competitive linear thresh-

old (CLT) diffusion model and competitive opinion maximization (COM) problem

separately.

3.1 Concept Definitions

We first define some important concepts, which will be used throughout this paper.

Definition 1 (Social Network): An online social network can be represented as

G(V , E ,W), where nodes V = {u1, · · · , un} is the set of users, E is the set of social

links among users in V and W = {wij|i = 1, · · · , n; j = 1, · · · , n} is the set of

link weights. In the network, user (node) ui can be influenced by its neighbor uj

according to the weight wij. The set of items (products) associated with G is denoted

by I = {i1, · · · , im}. Each item it has a rating vector rt = (r1t, · · · , rnt), where rit

denotes the rating user ui gives product it.

Definition 2 (Opinions): ot = (o1t, o2t, · · · , ont) is the opinion vector of item t,

where oit ∈ [−1, 1] represents the opinion of user ui towards item it. The opinion is

mapped from the rating rit using minmax normalization, oit = 2· rit−rtmin

rtmax−rtmin
−1, where

12



Table 3.1: Important Notations.

Symbol Definition

V = {u1, · · · , un} the set of nodes
E = {ei ∈ V × V} the set of edges or links
I = {i1, · · · , im} the set of items (products)
P = {p1, · · · , pc} the set of parties competing

in the network
S = (S1,S2, · · · ,Sc) the set of seed node selection

of c parties
ui user (node) i
wij influence weight from ui to uj
it item (product) t
pv party (promoter) v
rit the rating of it assigned by ui

oit ∈ [−1, 1] ui’s opinion towards it
svi ∈ [0, 1] the active status of ui

promoted by pv
Sv the seed user selection of pv

rt = (r1t, · · · , rnt) the vector of ratings on item it
assigned by all users in V

ot = (o1t, o2t, · · · , ont) the vector of opinions on item
it hold by all users in V

sv = (sv1, s
v
2, · · · , svn) the vector of status of users

activated by pv

rtmax and rtmin are the minimum and maximum rating of product it.

Definition 3 (Party): There are multiple parties P = {p1, · · · , pc} promoting com-

peting products in the network. These competing products are identical, thus users

will express the same opinions (preferences) on the competing items from different

parties. In other words, these parties share the same opinion vector when they

promote competing items.

Definition 4 (Active User Vector): Users who are influenced by Party v to adopt

the promoted item are defined to be activated by pv, while others are inactive.

Active user vector sv = (sv1, s
v
2, · · · , svn) represents the activated status of all users in

the network by party pv. Given the target item it, when user ui is activated by party

pv and adopt the product with opinion oit, s
v
i = 1, otherwise svi = 0 (inactivated).

13



In special cases svi ∈ (0, 1) when ui is activated by more than one party.

Definition 5 (Seed Set): The decisions made under the marketing strategies of

c competing parties can be represented as seed user set list S = (S1,S2, · · · ,Sc),

while S−v = (S1, · · · ,Sv−1,Sv+1, · · · ,Sc) defines the known or predicted seed sets

selected by all parties except pv.

3.2 Problem Definition

Definition 6 (Competitive Linear Threshold): Competitive Linear Threshold (CLT)

model is similar to the naive LT model, but with multiple participants. Each node

ui in the network has an activation threshold θi and is possibly influenced by each

neighbor j with weight wij. The influences of different parties start to propagate

at the same time. At any timestamp T , if the total received weight of an in-

active node i from party pv’s activated neighbors is higher than that from other

parties and θi, then ui is activated by pv at timestamp T + 1 (as shown in Fig-

ure 3.1(a)). Once a node is activated by one party, it cannot be activated by any

other party. When more than one party selects the same node as seed node or is

eligible to activate the same node at the same timestamp T , e.g., p1 and p2, having∑n
i=0wijs

1
i =

∑n
i=0 wijs

2
i > θj, node j will be equally activated by both parties p1

and p2 at T + 1, denoted as s1
i = s2

i = 1
2
. The influence process repeats until no new

node becomes active by any party (as shown in Figure 3.1(b)).

Then we define the competitive opinion maximization problem with CLT model

as follows.

Definition 7 (Competitive Opinion Maximization): Given the network G, an item

it ∈ I, corresponding opinion ot, the budget of seeds k and the CLT diffusion model,

the goal of each party pv in COM is to select a marketing strategy, i.e., a set of seed

nodes Sv(|Sv| = k) among V to propagate the influence to maximize the total

14
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Figure 3.1: An example of CLT diffusion process. In this undirected network, the
threshold of bold circle nodes are 1, while the light ones are 0.5. Weights of influence
are on the edge, and opinions are in the node.
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opinions towards item it achieved at the end of the diffusion, i.e., sv = I(Sv|S−v),

Sv = arg max
Sv

∑
svi >0

svi oit

s.t. |Sv| ≤ k

where I(Sv|S−v) denotes the influence function of party pv on item it given the

known seed user sets S−v.

In other words, for pv, the objective is to select seed set Sv to maximize the total

opinions of eventually-influenced users σ(Sv).

For simplicity, we set |P| = 2 in the following method description and experi-

ment. We assume the opinions towards the items promoted by different parties are

given and the same as ot, if the items and it are competing products. This is con-

sistent with the general case that users have relatively fixed preferences towards the

same kind of products. The parties can be classified into two types: the first-mover

who only knows the strategy of the opponents, by which it can estimate S−v, and

the second-mover who also knows the competitors’ exact choices of seed users S−v.

This thesis focuses on the competitive LT model, but the proposed model shall be

able to be adapted to competitive IC model.

Computing the conventional influence is #P-hard, but the influence function

I(S) is monotone and submodular[22], where S is the initial seed set. However,

for COM problem, the activated users with negative opinions can harm the final

performance and lower the total opinions achieved, which makes the problem no

longer keeps the property of submodularity or monotonicity.
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Chapter 4

Method

In this section, the proposed method is introduced in details. We first propose an

adapted greedy algorithm on competitive opinion maximization (GCOM) by incor-

porating the competitive setting and opinions objective into greedy algorithm for

influence maximization. Based on GCOM, we propose an iterative method (ICOM)

to efficiently and effectively maximize the total opinions under CLT model. Finally

we compare the time complexity of ICOM and GCOM.

4.1 Preliminary

In [22], Kempe et al. proposed the greedy algorithm which is a (1−1/e) approxima-

tion to solve the influence maximization problem. It is a simple strategy for influence

maximization (IM) without considering competition or users’ opinions. The objec-

tive function is the expected number of activated users at the end. However, it can

be easily adapted to chase opinion maximization (OM) by modifying the objection

function from σ(S) = |I(S)| to σ(S) = I(S) · ot. The seed selection made by this

strategy should outperform IM in terms of total opinions. The pseudo-code of the

OM algorithm is available in Algorithm 1.
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Algorithm 1 Greedy Alogorithm for OM

Input: social network G, opinion vector ot, seed set size k
Output: the seed user selection S

1: initialize S ← ∅
2: while V \ S 6= ∅ ∧ |S| 6= k do
3: Omax ← −∞
4: for each u in V \ S do
5: S ← S ∪ {u}
6: s← I(S)
7: O ← s× ot

8: if O > Omax then
9: Omax ← O, ubest ← u

10: S ← S ∪ {ubest}
11: Return S

It is worth noting that there are many improved algorithm to solve influence

maximization problem [1, 12, 14, 19, 20, 32]. Algorithms like CELF++[16] and

LDAG[9] are able to dramatically improve the efficiency under LT model. However,

in this thesis, I do not focus on improving the efficiency of seed selection algorithm

in influence maximization as these studies. Instead, I propose a strategy that can

solve COM problem effectively with opinions and opponent’s information better

than conventional IM strategies without additional consideration.

4.2 Greedy Algorithm on COM

Although two parties start to propagate in the network at the same time, they

can be classified into the first mover and the second mover based on the accessible

information. A second mover in the competition knows the competitor’s exact

choices of seed users S−v, while a first mover only knows the competitor’s seed user

selection strategy M .

We first use an analogous greedy algorithm GCOM to search the optimal re-

sponse to the competitors’ observed or simulated choices directly (Figure 4.1).
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Figure 4.1: Flow chart of greedy competitive opinion maximization strategy: A
second mover knows competitor’s selection (blue), while a first mover only knows
competitor’s strategy (red or green). The first mover tries to simulate all opponent’s
possible selection to make optimal response.
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Algorithm 2 Greedy Alogorithm for COM

Input: social network G, opinion vector ot, seed user size k, competitors’ strat-
egy(algorithm) M , competitors’ choices of seed users S−v (optional)

Output: the seed user selection Sv

1: initialize Sv ← ∅
2: if S−v = ∅ ∧M ignores competition then
3: S−v ←M(G,ot, k)

4: if S−v 6= ∅ then
5: while V \ Sv 6= ∅ ∧ |Sv| 6= k do
6: σ(Sv)← I(Sv|S−v) · ot

7: ubest ← arg maxu∈V\Sv σ(Sv ∪ {u})− σ(Sv)
8: Sv ← Sv ∪ {ubest}
9: else

10: while V \ Sv 6= ∅ ∧ |Sv| 6= k do
11: Omax ← −∞
12: for each u in V \ Sv do
13: S ← Sv ∪ {u}
14: S−v ←M(G,ot, k,S)
15: sv ← I(S|S−v)
16: O ← sv · ot

17: if O > Omax then
18: Omax ← O, ubest ← u

19: Sv ← Sv ∪ {ubest}
20: Return Sv

If pv is a second mover who has observed the competitor’s choices of seed users

S−v, to form its own seed set, the promoter will search through all the nodes in

V to greedily select the seeds. Before the diffusion, Every node in the network is

inactive because the propagation of different parties starts at the same time. The

party v selects the seed nodes one by one until the budget of k is achieved. When

searching for the qth (q < k) seed user, it tries every node that is not selected in the

previous q − 1 seeds to form different temporary Sv. The final result O simulated

by the temporary Sv and the fixed S−v will be recorded. Let the qth seed of pv be

the available node with the maximum simulated total opinion σ(Sv ∪ {u}.

The selecting process of a first mover who only knows the opponent’s strategy
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M is similar. If the opponent’s strategy M does not consider competition, knowing

M is the same as knowing S−v. The first mover can estimate competitor’s seed set

applying M . However, if the opponent’s strategy takes competition into account,

every time to find a node with maximum marginal gain, the promoter needs to

simulate the S−v based on the temporary Sv repeatedly. The pseudo-code of the

algorithm is available in Algorithm 2.

However, it will be impractical and not scalable for the first mover when the

opponent’s seed set depends on its seed set and can not be predicted before selection

due to the extra cost of simulating second movers’ choices. So I adapt GCOM by

using iterative inference and propose an efficient and effective method to address

the COM problem.

4.3 Iterative Algorithm on COM

Now that I propose the iterative competitive opinion maximization (ICOM) method

(Algorithm 3) to improve the GCOM algorithm by simplifying the work flow for first

movers. As discussed in section 4.2, reducing the simulation times required by a first

mover whose opponent seed set is not fixed is a key point to tackle the limitation of

simple greedy method. Inspired by the tit for tat strategy in game theory, ICOM is

a heuristic method based on a small batch of multi-round simulation to approximate

the strategic dominance.

Instead of considering every available node for qth seed to form possible tem-

porary seed sets and then simulating the possible responses from second movers,

ICOM randomly chooses k nodes as the very first seed set of first mover Ŝv. Given

the opponent’s strategy M , we can easily infer the possible response S−v from the

competitor to the initial Ŝv. Then the iterative selection begins, and it includes
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Algorithm 3 Iterative Greedy Alogorithm for COM

Input: social network G, opinion vector ot, seed user size k, competitors’ strat-
egy(algorithm) M , competitors’ choices of seed users S−v (optional), maximum
round of iteration r

Output: the seed user selection Sv

1: initialize Sv ← ∅
2: if S−v = ∅ and M is a competitive model then
3: Randomly generate an initial Ŝv

4: S−v ←M(G,ot, k, Ŝv)
5: Omax ← −∞
6: for round in 1, · · · , r do
7: Sv ← GCOM(G,ot, k,M,S−v)
8: S−v ←M(G,ot, k,Sv)
9: sv ← I(S|S−v)

10: O ← sv · ot

11: if O > Omax then
12: Omax ← O, Sv

best ← Sv

13: Sv ← Sv
best

14: else
15: if S−v = ∅ then
16: S−v ←M(G,ot, k)

17: Sv ← GCOM(G,ot, k,M,S−v)
18: Return Sv

following steps: First, a new temporary Sv can be selected based on GCOM and

the inferred S−v, i.e., first mover pv can search for a optimal response towards S−v

as a second mover. Then a new inferred S−v can be predicted based on the new

temporary Sv and fixed strategy M model. The final active users of pv diffused by

Sv after competing with S−v will be sv, which is used to estimate the total opinions

O achieved in this round. Repeat such iterative inference until the maximum round

r is reached. We choose the Sv with the highest total opinion Omax in all these

rounds as the seed set of pv.
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4.4 Complexity Analysis

In this section, we simply compare the time complexity of ICOM with GCOM to

validate the advantage of iterative inferences. We assume two parties are competing

in the market using GCOM or ICOM. ICOM and GCOM use the same CLT model

for propagation, which we use O(|A|) to denote its time complexity. For the second

mover, it is not hard to realize that both methods have the same work flow and

therefore the same complexity O(k|V||A|), since O(|V|) < O(|A|). However, for the

first mover, GCOM has to simulate the second mover’s decision process repeatedly,

which leads to a complexity of O(k2|V|2|A|). Using ICOM, we do not need to search

all inactive nodes for selecting a seed to run the second mover simulation repeatedly,

but just iterate several times to find the optimal solution. The complexity of ICOM

for a first mover is O(rk|V||A|).
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Chapter 5

Experiments

To test the effectiveness of ICOM in addressing opinion maximization problem under

the CLT model, I conduct experiments on three real-world datasets. In this chapter,

I first introduce the data sets as well as the experiment setup. After that I present

the results of different strategy combination under competitive propagation model

to show the effectiveness of ICOM. At last we discuss and analyze the influence of

parameter.

5.1 Data Collection

In order to evaluate the performance of the proposed approach for opinion maxi-

mization under competitive environment, I tested the approach on three real-world

networks with ratings (Summarized in Table 5.1).

CiaoDVD: Ciao is a website for product reviews and price comparison. The dataset

is crawled from the entire category of DVDs from the website (http://dvd.ciao.

co.uk) by Guo et al. in [18]. The trust relationships between users are presented

by the directed edges of the networks. The ratings of the product have a scale of

one to five. Items with less than 5 ratings are filtered from the graph.
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Table 5.1: Summary of experimental datasets.

Data Sets

Characteristics CiaoDVD Flixster Filmtrust

# Nodes 2,740 5,320 1,642
# Links 20.8k 44.3k 44.6k
# Items 13.1k 3,470 2,071
# Ratings 34.3k 110k 35.5k
Link type directed undirected directed

Flixster: Flixster is a website and a mobile app for movie information and ratings.

The data set is consist of 137,925 nodes and 1,269,373 edges, with ratings of 48,794

items given by the users. It is hard to perform experiments on the large size of

networks, so I used the smaller dataset sampled by Graclus [2]. The users of Flixster

link with each other in the form of “friendship”, which are shown as undirected links

in the network. The movies are rated on a scale from 0.5 to 5. I also remove the

items with less than 5 ratings from the users in the subgraph.

Filmtrust: FilmTrust is a small dataset crawled from the entire FilmTrust website

in June, 2011. The website integrates social networks with movie ratings and re-

views. Similar to CiaoDVD, this is a directed network that users links others with

“trust”. The ratings of movies are given on a scale of 0.5 to 4. Items with less than

5 ratings are filtered from the graph.

5.2 Experiment Setting

To make the link type of Flixster consistent with other datasets, we replace the

undirected links with directed links. For example, friendship between ui and uj is

represented by two directed links ui → uj and ui ← uj.

In CLT model, a user ui can influence neighbors with certain weights. The

25



weight of a directed link eij measures the influence from ui to uj. We calculate

the weight of eij using Jaccard coefficient, which is widely used in social influence

analysis. The strength of relationship, i.e., the weight of link is defined as
Γ(ui)∩Γ(uj)

Γ(ui)∪Γ(uj)
.

The threshold of users [θ1,...,θm], is randomly generated from a uniform distribution

within [0, 1].

Complete ratings of an item from all the users can be estimated by the incomplete

rating vector in datasets. To predict unknown ratings based on observed ratings, I

use the matrix factorization method for collaborative filtering following [23, 30, 31].

The rating of user ui towards item it can be approximated by the inner product of

user profile and item profile, which can be learned given the observed ratings. The

approximated ratings which exceed the scope are replaced by the highest or lowest

rating allowed in corresponding data set.

I then convert the ratings to opinions using minmax normalization. The opinion

oit=2· rit−rtmin

rtmax−rtmin
−1, where rtmax and rtmin are the minimum and maximum rating of

product it. The entire range of ratings of it are mapped to the range -1 to 1, which

distinguishes the influence of positive or negative opinion towards the item. The

reason to convert the ratings to opinions is that ratings in real-world dataset are

always positive. It cannot model the damage of negative opinions.

Given the network represented by the weighted adjacency matrix, and the opin-

ions converted from ratings, I randomly choose three items from each data set to

perform the experiments. For each experiment, there are two parties in the market:

a first mover and a second mover. There are five strategies for each party to take,

i.e., for an item in a network, there are 25 kinds of setting to simulate the possible

result in the competitive market. The experiments were conducted on a Linux server

with 8GB of RAM at the Turing cluster.
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Table 5.2: Summary of compared methods.

Method Competition Objective Publication

Random No None [22]

IM No Influence [22]

OM No Opinion [31, 34]

ICIM Yes Influence this thesis

ICOM Yes Opinion this thesis

5.3 Compared Methods

In order to demonstrate the effectiveness of the iteratively inferred competitive opin-

ion maximization approach, I test with following methods.

• ICOM: ICOM is the proposed method based on CLT diffusion model.

• ICIM: ICIM is a degenerative version of ICOM, which neglects the preference of

users on target item, aiming to get wider spread. It takes the number of infected

nodes as optimal objective instead of total opinions.

• Random: Method Random is a baseline method that selects inactive nodes as

seeds randomly.

• IM: Method IM is a greedy method for influence maximization problem under

linear threshold model.

• OM: Method OM is an adapted version of IM, which also greedily selects seeds.

Instead of selecting the node with largest marginal spread, it selects the one that

can gain highest opinion.

All methods except Random include a simple greedy method to select the next

seed with largest marginal objective, so IM, OM, ICIM are sensible to be the baseline

of ICOM. I can improve the efficiency of these algorithms by adapting that common

step, the greedy algorithm in the future study. However, in this thesis I do not put

emphasis on that.
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The comparison shows the advantage of combining opinions and competitors

information into the strategy for COM problem. All of the experiments are evaluated

under competitive environment, even though Method Random, IM or OM selects

seeds as if it is the only promoter in the diffusion. In different settings, I use

corresponding strategies to get the seed nodes of the first mover and the second

mover. I then use CLT diffusion model to propagate the influence at same time and

output the total opinions of each mover at the end as measurement. For models

with randomness, their performances are measured by the 5-time average results.

5.4 Performances on ICOM

I first study the effectiveness of the proposed ICOM method on competitive opinion

maximization. I present the total opinions achieved by the first mover in Table 5.3.

The performance is grouped by the opponent’s strategy. Experiments are conducted

over 9 randomly chosen items from 3 different networks. The budget of seed sets

is 10, while the inferring methods will only do 5 rounds inference. Performance

ranks of each model within the group are also listed. We use the average rank to

compare the general performance of the model on items with different popularity

and in various networks. The performance of second mover are shown in Table 5.4.

Similarly, the result is grouped by the first mover’s strategy.

The first observation Table 5.3 and Table 5.4 is as follows: almost all the methods

that explicitly exploit the opinions of the item can achieve higher total opinions than

the baseline Random, and the corresponding degenerate method IM or CIM which

only chases for the influence spread. These results can support the importance

of considering users’ opinions and seed selection jointly. Maximizing the number

of activated users is not guaranteeing the total opinions gained for the item. In
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Table 5.3: Results of different strategies as first movers. The budget of seed set
k = 10, and the maximum inference round r = 5. The results are reported as
“average opinions + (rank)”.

Ciao Flixster Filmtrust Avg.

Competitor Methods Item C1 Item C2 Item C3 Item X1 Item X2 Item X3 Item T1 Item T2 Item T3 Rank

Random+

Random 310.1 (5) 210.8 (5) 197.6 (5) 67.3 (3) 49.7(4) -90.0(4) 83.9 (5) 76.6 (5) 18.3 (5) (4.6)
IM 583.4 (3) 372.0 (3) 355.6 (2) 28.0 (5) 18.7(5) -51.4(3) 130.5 (4) 120.7 (4) 28.3 (4) (3.7)

OM 595.6 (1) 389.4 (1) 378.5 (1) 66.3 (4) 56.9(3) 15.5(1) 137.7 (3) 126.5 (3) 36.9 (3) (2.2)
ICIM 564.0 (4) 353.7 (4) 341.0 (4) 100.1 (2) 91.2(2) -200.7(5) 166.9 (2) 152.9 (2) 37.9 (2) (3)

ICOM 586.4 (2) 382.8 (2) 352.5 (3) 117.4 (1) 121.9(1) -51.3(2) 173.6 (1) 222.1 (1) 39.4 (1) (1.6)

IM+

Random 76.8 (5) 51.5 (5) 48.3 (5) 163.9 (4) 132.0 (4) -276.9 (4) 261.0 (3) 238.5 (3) 58.7 (3) (4)
IM 255.5 (4) 170.2 (4) 164.5 (4) 5.9 (5) 4.3 (5) -6.7 (3) 171.1 (5) 157.1 (5) 37.2 (5) (4.4)

OM 287.2 (3) 299.0 (3) 248.8 (3) 185.6 (3) 157.7 (3) 15.7 (2) 178.1 (4) 164.1 (4) 46.0 (4) (3.2)
ICIM 542.8 (2) 369.2 (2) 353.8 (2) 211.8 (2) 162.9 (2) -348.8 (5) 398.1 (2) 364.4 (2) 89.6 (2) (2.3)

ICOM 553.2 (1) 378.5 (1) 364.2 (1) 226.6 (1) 179.7 (1) 20.4 (1) 402.4 (1) 368.9 (1) 96.3 (1) (1)

OM+

Random 75.1 (5) 48.0 (5) 46.0 (5) 140.1 (3) 112.9 (4) -343.5 (5) 261.0 (3) 238.3 (3) 58.7 (3) (4)
IM 347.2 (3) 125.5 (4) 154.8 (4) 20.9 (4) 10.0 (5) -354.4 (3) 171.0 (5) 158.1 (5) 37.4 (5) (4.2)

OM 254.8 (4) 174.8 (3) 169.0 (3) 3.1 (5) 50.6 (3) 3.3 (2) 174.6 (4) 160.1 (4) 41.5 (4) (3.6)
ICIM 565.2 (2) 370.8 (2) 353.2 (2) 207.5 (2) 160.7 (2) -354.4 (3) 395.0 (2) 362.7 (2) 88.4 (2) (2.1)

ICOM 558.5 (1) 380.2 (1) 358.2 (1) 226.1 (1) 184.9 (1) 12.9 (1) 402.4 (1) 368.9 (1) 96.3 (1) (1)

ICIM+

Random 11.6 (5) 6.2 (5) 6.4 (5) 0.8 (4) 1.3 (4) -1.4 (4) 75.3 (3) 68.8 (3) 15.8 (3) (4)
IM 92.2 (3) 37.2 (4) 38.2 (4) -1.6 (5) -1.6 (5) -0.8 (3) 1.4 (5) 2.3 (5) -0.3 (5) (4.3)

OM 78.2 (4) 55.8 (3) 60.2 (3) 5.6 (3) 10.1 (3) 15.7 (1) 8.6 (4) 8.3 (4) 8.3 (4) (3.2)
ICIM 306.0 (1) 210.8 (2) 196.0 (1) 80.4 (1) 59.1 (2) -132.0 (5) 369.4 (1) 338.6 (2) 78.6 (2) (1.9)

ICOM 300.8 (2) 222.0 (1) 191.4 (2) 73.7 (2) 70.4 (1) 14.2 (2) 231.3 (2) 338.9 (1) 84.5 (1) (1.6)

ICOM+

Random 9.8 (5) 3.6 (5) 4.7 (5) -2.9 (4) -0.3 (4) -339.6 (3) 73.7 (3) 4.2 (4) 0.0 (4) (4.1)
IM 83.2 (4) 35.5 (4) 26.8 (4) -4.6 (5) -5.1 (5) -356.7 (4) 1.4 (5) 2.1 (5) -0.7 (5) (4.6)

OM 94.5 (3) 40.8 (3) 53.2 (3) 4.2 (3) 3.9 (3) 14.7 (1) 8.6 (4) 8.1 (3) 7.9 (2) (2.8)
ICIM 291.6 (1) 184.3 (2) 173.1 (2) 118.6 (1) 89.1 (1) -358.1 (5) 362.8 (1) 74.2 (2) 7.6 (3) (2)

ICOM 287.6 (2) 195.5 (1) 184.4 (1) 105.2 (2) 81.4 (2) 13.8 (2) 294.3 (2) 334.5 (1) 67.5 (1) (1.6)

some cases, e.g., when diffusing an item with distinct feature that makes opinions

from different people in stark contrast, or an unpopular item that many people

host negative opinions, the attempt to maximize the spread can even lead to a

result worse than to select seed nodes randomly. The strategies like IM or ICIM

will choose some nodes that have a high infecting ability, but also belong to a social

circle that it and its neighbors have negative opinion towards the item. For example,

for the item X3, whatever strategy the opponent takes, ICOM outperforms ICIM

and Random by exploiting the opinion to this item from every users in the network.

This also explains the reason why OM outperforms IM and Random.

It can also be observed that in many situations, the performance of models

considering competition have a significant improvement compared with the ones that

ignore. These results support the claim that in a multi-player propagation, taking
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Table 5.4: Results of different strategies as second movers. The budget of seed set
k = 10, and the maximum inference round r = 5. The results are reported as
“average opinions + (rank)”.

Ciao Flixster Filmtrust Avg.

Competitor Methods Item C1 Item C2 Item C3 Item X1 Item X2 Item X3 Item T1 Item T2 Item T3 Rank

Random+

Random 273.9 (5) 185.5 (5) 181.6 (5) 121.4 (4) 98.9 (4) -230.1 (4) 315.3 (3) 287.1 (3) 69.0 (3) (4)
IM 583.4 (4) 372.0 (4) 355.6 (4) 28.0 (5) 18.7 (5) -51.4 (3) 130.5 (5) 120.7 (5) 28.3 (5) (4.4)

OM 595.6 (3) 389.4 (3) 378.4 (3) 66.2 (3) 56.9 (3) 15.5 (2) 137.7 (4) 126.5 (4) 36.9 (4) (3.2)
ICIM 643.2 (2) 412.6 (2) 394.4 (2) 210.0 (2) 162.3 (2) -345.1 (5) 321.9 (2) 294.7 (2) 72.3 (2) (2.3)

ICOM 655.8 (1) 429.4 (1) 416.3 (1) 229.2 (1) 182.5 (1) 20.6 (1) 328.8 (1) 364.2 (1) 93.0 (1) (1)

IM+

Random 76.8 (5) 51.5 (5) 48.3 (5) 163.9 (4) 132.0 (4) -276.9 (4) 261.0 (3) 238.5 (3) 58.7 (3) (4)
IM 255.5 (4) 170.2 (4) 164.5 (4) 5.9 (5) 4.3 (5) -6.7 (3) 171.1 (5) 157.1 (5) 37.2 (5) (4.4)

OM 287.2 (3) 299.0 (3) 248.8 (3) 185.6 (3) 157.7 (3) 15.7 (2) 178.1 (4) 164.1 (4) 46.0 (4) (3.2)
ICIM 542.8 (2) 369.2 (2) 353.8 (2) 211.8 (2) 162.9 (2) -348.8 (5) 398.1 (2) 364.4 (2) 89.6 (2) (2.3)

ICOM 553.2 (1) 378.5 (1) 364.2 (1) 226.6 (1) 179.7 (1) 20.4 (1) 402.4 (1) 368.9 (1) 96.3 (1) (1)

OM+

Random 75.1 (5) 48.0 (5) 46.0 (5) 140.1 (3) 112.9 (4) -343.5 (5) 261.0 (3) 238.3 (3) 58.7 (3) (4)
IM 347.2 (3) 125.5 (4) 154.8 (4) 20.9 (4) 10.0 (5) -354.4 (3) 171.0 (5) 158.1 (5) 37.4 (5) (4.2)

OM 254.8 (4) 174.8 (3) 169.0 (3) 3.1 (5) 50.6 (3) 3.3 (2) 174.6 (4) 160.1 (4) 41.5 (4) (3.6)
ICIM 565.2 (2) 370.8 (2) 353.2 (2) 207.5 (2) 160.7 (2) -354.4 (3) 395.0 (2) 362.7 (2) 88.4 (2) (2.1)

ICOM 558.5 (1) 380.2 (1) 358.2 (1) 226.1 (1) 184.9 (1) 12.9 (1) 402.4 (1) 368.9 (1) 96.3 (1) (1)

ICIM+

Random 87.5 (4) 64.1 (3) 58.2 (4) 84.8 (2) 55.7 (3) -124.7 (4) 230.1 (1) 210.0 (2) 49.7 (2) (2.8)
IM 92.2 (3) 37.2 (5) 38.2 (5) -1.6 (5) -1.6 (5) -0.8 (3) 1.4 (5) 2.3 (5) -0.3 (5) (4.6)

OM 78.2 (5) 55.8 (4) 60.2 (3) 5.6 (4) 10.1 (4) 15.7 (2) 8.6 (4) 8.3 (4) 8.3 (4) (3.8)
ICIM 299.1 (2) 193.4 (2) 188.0 (2) 101.0 (1) 83.8 (1) -172.8 (5) 24.6 (3) 21.4 (3) 8.5 (3) (2.4)

ICOM 314.8 (1) 215.6 (1) 210.2 (1) 76.5 (3) 63.2 (2) 20.6 (1) 31.8 (2) 286.7 (1) 81.9 (1) (1.4)

ICOM+

Random 73.6 (5) 49.2 (3) 62.4 (3) 90.7 (2) 42.3 (3) -264.7 (3) 228.5 (1) 145.4 (1) 53.2 (1) (2.4)
IM 83.2 (4) 35.5 (5) 26.8 (5) -4.6 (5) -5.1 (5) -356.7 (5) 1.4 (5) 2.1 (5) -0.7 (5) (4.9)

OM 94.5 (3) 40.8 (4) 53.2 (4) 4.2 (4) 3.9 (4) 14.7 (1) 8.6 (4) 8.1 (4) 7.9 (3) (3.4)
ICIM 302.4 (2) 178.4 (2) 192.6 (2) 105.0 (1) 75.4 (1) -353.6 (4) 162.3 (2) 22.7 (3) 4.4 (4) (2.3)

ICOM 310.3 (1) 208.4 (1) 198.3 (1) 83.6 (3) 70.9 (2) 14.3 (2) 100.7 (3) 26.7 (2) 19.4 (2) (1.9)

opponent’s strategy into consideration usually enhance competitiveness. Making

decision based on the known or simulated seeds of opponents can avoid the possible

failure in the competition or weaken performances brought by sharing the same

customers with opponents. For example, when the opponent takes OM as the model,

ICOM outperforms OM by exploiting the mechanism of competition. If both of the

players ignore the competitor, greedily choosing the users that can achieve highest

opinion after diffusion, they will choose the same seed users. As a result, they have

to share the same activated users in the end, and it is a waste of seed budget. Thus,

a market with multiple players should take competition into account and apply a

more flexible and effective strategy to choose its seed users.

These two main observations indicate the necessity and superiority of ICOM to

achieve maximum opinions in a competitive environment. The overall results showed
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that no matter as a first mover or a second mover and no matter what strategy

the opponent takes, ICOM strategy, which exploits both opinion and competition

information, is better than other baseline methods.

5.5 Discussion of Parameters

In this section, I first compare the total outcomes from both parties of 5 different

setting in the market with various seed user budget k. Then I present the influence

of different maximum number of round r on the performance of ICOM model.

To have a better understand in how the competitive strategy works in the mar-

ket, I fix the second mover strategy and change the first mover strategy, to see how

the overall market grows as the budget k grows. Figure 5.1 presents the perfor-

mances from both participants in terms of opinions and influence spread. One can

see that as the budget k grows, the total gain over opinions or spread got by the

two parties increases, which supports the intuition that increasing the budget can

improve the final performances. However, the choice of first mover model makes

the outcome different, while the second mover’s strategy is ICOM. As discussed in

previous section, the first mover will achieve more opinions if it takes competitive

strategy. But from the figure, A competitive strategy will significantly decreases the

second mover’s gain and the overall gain of both parties. Therefore when both par-

ties try to take a competitive strategy, maximizing its own gain, the overall market

in terms of opinions or spread would decline.

Figure 5.2 shows the convergence of the proposed ICOM by testing the perfor-

mance after each iteration step. I randomly select an item from each of the dataset

to run an experiment that both players are using ICOM, and each setting repeats

5 times to measure the performance. The budget k is 10 and the maximum tested
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Figure 5.1: Performances of two parties in Ciao network when the second mover
uses ICOM and the first mover chooses different strategies (r = 5).
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round r is 15. In Figure 5.2(a) I demonstrate the relationship between r and the

cost of time in the experiment of Ciao dataset, while other two figures are similar

and omitted. It indicates that the time cost of ICOM linearly grows along with the

parameter r.

Figure 5.2(b) to 5.2(d) shows the total opinions achieved along with different r.

It shows that the iterative inference of ICOM converges after six iterations in Flixster

dataset and five iterations in Filmtrust dataset. For Ciao dataset, the performance

slow down the growth after five rounds and converges after 12 iterations. From these

results, we can see that the performance of ICOM converges very fast after the first

few iterations, and is not sensitive to the maximum number of rounds as long as r

is assigned with a modest number. Thus in previous experiment, we use 5 as the

default maximum number of rounds. This also supports our intuition that using

inference makes the cost of time controllable and exploiting competitor’s selection

is important and effective for competitive opinion maximization.
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Figure 5.2: Influence of parameter round r
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Chapter 6

Conclusion

In this thesis, I study the competitive opinion maximization (COM) problem and

defines a competitive propagation model based on LT model, where different parties

compete to activate nodes. Previous work has either applied competitive setting or

taken expected opinions as the objective function, but this is the first attempt to

conclude both setting.

To solve this problem, I first introduce a simple greedy method and then pro-

pose an adapted method ICOM to improve the efficiency. ICOM estimates the users’

opinions towards the target item and optimizes the seed selection collectively by ex-

ploiting the information from competitors. It also utilizes the iterative inferences to

improve the performance of opinions and reduce time complexity when competitors’

seed selections are unknown. A brief theoretical analysis shows it is able to reduce

the time complexity significantly comparing to the simple greedy method.

Based on three real-world social networks, the experimental results show that the

strategies consider opinions outperforms those do not, and taking competition into

consideration leads to a better performance than fixed seed selection. The results

validate the effectiveness and efficiency of the proposed model ICOM, which is a
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smart marketing strategy combining both competition and opinion information.

As mentioned in the thesis, there are some state-of-art methods that are able to

improve the efficiency of algorithm for influence maximization. Therefore it could

be interesting to apply these improvement to the proposed iterative framework. An-

other future work direction could be generalizing the COM problem under different

diffusion model.
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Appendix A

Algorithm Experiment

A.1 Space limitation and Beam Search

I run experiments on a sampled small dataset to validate the conclusion we get in

section 4.4. Figure A.1 shows that ICOMs significantly outperform GCOMs and cost

less time. Besides the basic GCOM and ICOM, I try another two simple settings

for GCOM and ICOM.

First, to reduce the time complexity, I introduce a parameter l to control the

search area of a seed for the first mover, where l = 0.2 indicates the search area is
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Figure A.1: Performances for (adapted) GCOM and ICOM in a sampled 400-node
Ciao network (k = 5, r = 10).

37



20% of the original one. The results show that such “pruning” setting improves the

performance of GCOM, although it is still not as well as ICOM.

Then to improve the performance in terms of opinions, I try to apply beam

search in ICOM. After a few preliminary experiments for parameter setting, I use

beam b = 3 to test the effect. In this pilot test, the beam search setting slightly

increases the opinions achieved, but also the cost of time. Thus such setting doesn’t

bring great improvement.
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