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SIGNIFICANT PORTIONS OF THIS PROJECT WORK HAVE BEEN REPORTED IN AN
INTERNAL LABORATORY REPORT. MOST OF THAT TEXT WILL NOT BE REPEATED
HEREIN.

Abstract

In outer space, the motion of targets is governed by Newton’s laws of motion in three
dimensions subject only to the force of rocket thrust. Radars can only make accurate
measurements in one dimension as range (and range rate). The inability of radar
systems to accurately obtain data beyond range measurements stimulated our research
into the practical uses of radar data through the analysis of two scenarios: a rocket with
an offset thrust and a tumbling two-part rocket separated by an offset impulse. The
parameter space for both rocket scenarios was explored which resulted in relationships
being observed between changing physical parameters and generated radar data. In

certain cases, individual parameters were also found to have been quantifiable.



Executive Summary

Radar systems are great at detecting the range of objects in flight. However,
there are limits on what other information they can ascertain. These limitations are the
motivation for our project, which is focused on researching what useful information can
be obtained from data retrieved from radar systems. There are many instances in which

there is a need to know more about a given situation than just the range of an object.

The general plan for accomplishing this objective was to explore parameter
space and try to link changes in parameter values with the effects they had on the
trajectories and radar returns. The first task was to derive physical models for each
situation so we could have a basis to generate the radar data from, and to which we
could compare our results. From these equations of motion we determined parameters
of interest which we thought would have an impact on the radar data. Once we derived
these equations of motion and chose the parameters we wished to study we plotted the
effects of varying these parameters on radar returns in the form of range time intensity
(RTI) and Doppler time intensity (DTI) plots. Having the knowledge of what is going on
physically and what the radar can see will let us compare them and link changes in

physical parameters to changes in the radar data.

We were also able to calculate some relationships and specific parameters in
both the offset thrust and separating scenarios from the radar data. For the offset
rocket we were able to find a relationship between the steady state slope of the
trajectory and the offset angle of the thrust. We were also able to determine that the
angular velocity of the rocket was the only aspect of the trajectory that affected the RTI
and DTI plots. In addition, we were able to determine which parameters changed the
angular velocity. We learned that we could calculate the instantaneous velocity from
DTI plots and use this as a piece of data to find a single parameter if we know all of the

other parameters.



For the separating rocket we determined that, if we knew all other parameters,
we could calculate the distance that the impulse was offset from the center of mass. For
a rocket where less information was known, we could calculate many of the rocket’s
unknown parameters including the length of the objects in question, the magnitude of
the angular velocities, and the angular orientation of the rocket at the separation. With
some simplifying assumptions this can then be used to estimate the ratio of the changes

in angular velocity for the two children and determine each of their shapes.



1 Introduction

1.1 Problem Statement and Motivation

Although radar systems are great at detecting the range of objects in flight, they
have limits on what other information it can ascertain. It is because of these limitations
that our project is focused on researching what useful information can be obtained from
data retrieved from radar systems such as range time intensity (RTI) plots and Doppler
time intensity (DTI) plots. There are many situations in which there exists a need to

know more about a situation than the range of an object from a radar system.

For this project in particular, we will be looking at two situations. The first
involves tracking the trajectory of a rocket which has its thrust at an angle offset from its
center of mass. The second scenario involves looking at an already tumbling rocket that
separates as a result of an impulse into its two constituent child components: a payload
and a tank. In addition to the initial tumbling, the separating impulse may be offset from

the center of mass which results in a change in angular velocity as well as linear velocity.

Previous work on this topic has been performed. In their 2006 Major Qualifying
Project performed at MIT Lincoln Laboratory, Allen and Carveth discuss the observability
of separation events using radar data. They looked at RTls of separating rockets in an
attempt to determine what parameters could be calculated from radar data. Although
they started exploring the problem they were not able to reach any conclusions with in

depth evidence (Allen & Carveth, 2006).



1.2 Background

1.2.1 History of Radar

Heinrich Hertz was the first to demonstrate the basic concept of radar. (History
of Radar, 2005) He experimentally verified James Clerk Maxwell’s theory of the
electromagnetic field using an apparatus similar in principle to a pulse radar. He showed
that radio waves could be reflected from metallic objects and refracted by dielectric

prisms.

In the early 1900s Christian Hulsmeyer assembled a single pulse radar which was
much improved over the apparatus used by Hertz. Hulsmeyer marketed his device for
the detection of ships at sea in order to prevent collisions. However, there was not

much interest in a collision-avoidance device. (Skolnik, 2001)

Other evidence of the radar method appeared in the 1920s. S.G. Marconi
observed radio detection of targets in his experiments and urged its use in a 1922
speech delivered to the Institute of Radio Engineers. In 1922 A. Hoyt Taylor and Leo C.
Young accidentally observed a fluctuating signal at their receiver when a ship passed
between the receiver and transmitter, which were located on opposite sides of a river.
Today, this is known as bistatic CW radar. Since the transmitter and receiver must be

widely separated, this type of radar does not have significant utility. (Skolnik, 2001)

Military use of radar arose as a response to the heavy bomber aircraft of the late
1920s and early 1930s. Long range detection of an approaching bomber was important.
In the 1930s, the radar method in which transmitter and receiver were located at a
single site and pulsed waveforms were used, was developed independently by the
United States, United Kingdom, Germany, Soviet Union, France, Italy, Japan, and the

Netherlands. (Skolnik, 2001)

Early radars generally operated around 100-200 MHz, much lower than modern

radars. The Chain Home radar system of Great Britain operated at 30 MHz, the low end



for pre-WWII, while the German Wurzburg radars operated at the high end of the pre-
war spectrum: 600 MHz. The technology utilized for radar was mostly an extension of

then leading-edge radio communications technology. (Skolnik, 2001)

In 1940, the British invented the high-power microwave magnetron, enabling the
use of higher frequencies for radar. In the fall of 1940 the British disclosed the
magnetron invention to the U.S. for further development. With the cavity magnetron
providing the technological basis, microwave radar technology developed rapidly in the
United Kingdom and at MIT Radiation Laboratory and Bell Telephone laboratories in the
United States during WWII. The MIT Radiation Lab was created specifically for this
purpose, (History of Radar, 2005) and developed more than 100 different radar systems

for military applications. (Skolnik, 2001)

1.2.2 Overview of Radar Systems
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Figure 1-1: A radar antenna sends an electromagnetic pulse to a target which sends back an echo to
the radar. (Edde, 1995)

RADAR is an acronym which stands for Radio Detection and Ranging. Radar
systems help retrieve information about target positions in 3-d space as well as
information about their velocities and orientation. The very basics of a radar system are
illustrated by Figure 1-1. Here, a radio wave is first emitted from the radar antenna to
the target. An echo is then sent back from the target to the radar antenna, due to back
scatter. Certain information about the target can then be extracted based on the timing,
power density, and other parameters of the echo signal received. Assuming for

simplicity’s sake that radio waves travel at the speed of light, c, in the atmosphere, the



round trip time it takes for a signal to be returned to the radar antenna from the time of

transmission can be calculated as

o 2XRange
Round trip time = — Isl

Equation 1-1

Before we can go into some of the details of radar systems we first must
define a coordinate system that can help explain some of the advantages and
limitations of using radar systems. It's best to use spherical coordinates here as
shown in Figure 1-2 since we will be discussing range (the 3-d distance from the
radar, taken to be the origin, to the target) and angular position. The azimuthal
angle is defined to be the beam angle position along the horizontal plane and the

elevation angle to be the beam angle position along the vertical plane. (Edde, 1995)
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Figure 1-2: Coordinate system with the radar taken to be the origin. (Edde, 1995)

If we start out with a very basic radar antenna for a radar system we have what’s
called an isotropic antenna. That is, the power transmitted from the antenna is
independent of angle and spreads out evenly over 3-d space. However, it is most often
desirable to concentrate the transmitted power in a particular direction which can lead
to greater range. To do this, the antenna’s gain needs to be increased. Gain describes
the ability to focus the radar beam in a given direction. Figure 1-3 illustrates the

differences between a low gain antenna and a high gain antenna. (Edde, 1995)
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Figure 1-3: The larger the antenna gain, the more concentrated a radar’s energy in one particular
direction is. (Edde, 1995)

Another important parameter of radar systems is the angular resolution which is

described by the radar’s beam width in the azimuthal, A¢, and elevation directions, AO.

A ~ 2/d [rad]
Equation 1-2

A8 ~ A/d [rad]

Equation 1-3

d simply refers to the diameter of the antenna. Figure 1-4 gives a good illustration of
beam width and why it is so important. The first antenna has a beam width so large that
the radar is not able to resolve the two targets. The second radar has a much smaller
beam width than the first antenna and thus has a greater angular resolution, which

allows the radar the ability to recognize the two targets in space. (Edde, 1995)
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Figure 1-4: It's desirable to have as small a beam width as possible to help with resolution of targets.
(Edde, 1995)

An important point to note here is that due to radio waves having much longer
wavelengths than optical waves in the electromagnetic spectrum, their beam width is
comparatively larger which results in their angular resolution to be low according to
Equation 1-2 and Equation 1-3. The cross-range resolution, which is the ability of a radar
system to separate targets at the same range, is also lowered dramatically due to low

angular resolution. (Edde, 1995)

Another parameter of the radar system that is also affected by this lower angular
resolution is the gain of an antenna. Taking into account inefficiencies such as losses due
to heat dissipation, the gain of an antenna can be expressed in terms of the azimuthal

and elevation beam width as
G . 47T [d. - l ]
ain = —— [dimensionless|.
ABAQD
Equation 1-4
Due to the increased beam widths along the azimuthal and elevation direction from

using radio waves, the gain of an antenna is limited which furthers decreases the radar’s

ability to resolve targets. (Edde, 1995)



1.2.2.1 Radar Signature

All of the data collected from a particular target to the radar system is known as
the target’s radar signature. This information includes data about the radar cross section
of the target and the target’s Doppler spectrum. We explain in overview some of the
components that make up the radar signature. (Cebula, Uftring, Whitmore, & Haddad,

2005)

1.2.2.2 Radar Cross Section

An important parameter to understand when analyzing the data collected from
radar systems is the concept of the radar cross section (RCS), o, of a target. The RCS
simply describes how “big” the target appears to the radar and has units of [m?]. It
depends on the following three factors: the geometric cross section of the target, the
reflectivity of the target, and the directivity of the backscattered beam from the target

to the radar antenna. (Scott, 2004) (Adamy, 2004)

The geometric cross section refers to the cross sectional area of the target that
actually intercepts the incident beam and is represented by A [m?]. This depends
primarily on the angle that the target makes with respect to the radar, also known as
the aspect angle, with the zero angle referring to the nose of a target directly facing the
radar antenna. Reflectivity refers to the fraction of the power scattered by the target to

the power intercepted by the target and is defined as

Pscatter

Reflectivity = [dimensionless]

intercepted
Equation 1-5
where Pintercepted = A X Pincidgent.  Directivity refers to the ratio of the power backscattered

from the target that is actually directed back to the radar antenna to the power of the

backscattered beam if it were to be radiated isotropically per unit solid angle,



(%)Psmm, and is defined as
V1

P
Directivity = —;’ad{scatter [rad]

E) Pscatter
Equation 1-6

Since the RCS is defined as the product of the geometric cross section, the reflectivity of

the target, and the directivity of the backscattered beam, the RCS is given as

P
o = (41_[) t;)ackscatter [mz]
incident

Equation 1-7

One really effective way of showing the RCS of a target is with a polar plot as
shown in Figure 1-5. Here, a picture of the target is overlaid in the middle of the plot.
The 2-d vector magnitude values here simply represent how large the RCS is from each
angle of the target (in units of [dBsm] instead of [m?]) relative to the radar. The largest
RCS values appear along the side of the target due to the large geometric cross section

and the lowest values are around the corners and nicks around the plane. (Scott, 2004)




Figure 1-5: Radar cross section of two targets. (Scott, 2004)

Now that the radar cross section is defined, one last thing to look at is how the
energy of the signal that is returned back to the radar antenna, S, after backscattering
off of a target behaves as the range between the antenna and the target increases. The

returned signal energy can be expressed in a proportionality relation as

Equation 1-8

where R is the range between the target and the radar. The R? term comes from the fact
that the transmitted radio wave signal is dissipating power over a region of the surface
of a sphere roughly both ways (assuming the antenna has a relatively high gain). The
significance of the return signal’s energy dependence on the RCS can be quickly
understood by Figure 1-6. As the range increases little by little, the energy of the signal
coming back to the radar decreases rapidly. This means that the need to maximize the
return energy signal by increasing the RCS as large as possible becomes even more

important. (Scott, 2004)
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Figure 1-6: Plot of the return energy signal to the radar antenna versus the range between the
antenna and the target. As you start increasing the range little by little, the return signal energy
rapidly decreases. (Scott, 2004)



1.2.2.3 Doppler Spectrum

Another important component of the radar signature is the target Doppler
spectrum. The Doppler spectrum is based on the Doppler shift which measures the
change in frequency between two different waves. A Doppler shift is only measured
when there exists moving targets with a radial velocity component. If the target is flying
at a constant range with respect to the radar through time then no Doppler shift is

recorded as shown in Figure 1-7.
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Figure 1-7: Targets that have a non-zero radial velocity register a Doppler shift. (Edde, 1995)

The Doppler shift, f,, is defined as

fa=1f—folHz]
Equation 1-9
where fy is the frequency of the original transmitted signal and f is the frequency

received at the observer. fis defined as

v+vR)
v+ v

F=h
Equation 1-10

where v is the velocity of the signal relative to the medium, vy is the velocity of the
observer relative to the medium, and vs is the velocity of the source relative to the
medium. From Equation 1-9 and Equation 1-10, a positive Doppler shift occurs when the

range between the radar and the target decreases (the target is approaching the radar



which results in a return frequency larger than the transmitted frequency) and a
negative shift is recorded when the range increases between the radar and the target
(the target is moving away from the radar which results in return frequency lower than

the transmitted frequency). (Russell)

The Doppler spectrum comes into play when there are different parts of a target
moving at different speeds relative to the radar. These differences in measured speed in
turn gives different Doppler shifts which may be used to help identify the target’s
orientation and positioning. The relationship that describes the linear velocity at a point

of a rotating object is given by

U =TXw
where r is the distance from the point to the object’s center of mass and w is the

object’s angular velocity.

One particular problem with the longer wavelength radio waves is that the
Doppler shift measured is relatively small (due to the large wavelength) when
transmitted signals scatter off of a target. This means that the time needed for the radar
to be spent on the target must be greater in order to gather as many Doppler cycles as
possible as the time needed to resolve the signals becomes greater. (Edde, 1995)

(Kingsley & Quegan, 1999)

1.2.3 Space Vehicle Dynamics

There are many applications of rockets in space flight. Whether they are carrying
a space shuttle, satellite, or nuclear warhead they must obey the basic laws of physics.
Regardless of their purpose, most space vehicles have three main stages in their

trajectory: Boost, Midcourse, and Re-entry (Weiner, 2004), see Figure 1-8.
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Figure 1-8: Rocket Trajectory

1.2.3.1 Boost Phase

The Boost Phase is the stage in which the rocket exits the Earth’s atmosphere.
The rocket’s engines eject mass called “propellant” at very high speeds through its
nozzles (Sellers, 1994). The force exerted on the propellant by the rocket causes the
propellant to exert a force on the rocket due to Newton’s third law: “every action has an
equal and opposite reaction”. The propellant is also exerting a force on the rocket. This
process involves three main components. The first is “the combustion chamber” where
the propellant is burned to produce hot gas. “The throat” controls the pressure in the
combustion chamber and the flow rate of the gas. Finally the gas leaves through “the

nozzle” which directs the expelled gas in the appropriate direction. (Sellers, 1994)

The magnitude of the force exerted by the ejected mass on the rocket is
governed by conservation of momentum, which states that the total momentum of a
system will remain constant in the absence of external forces. This implies that the
change in momentum of the rocket must be equal to the change in momentum of the

propellant being ejected. This change in momentum is simply the propellant’s exhaust



velocity, Vex, multiplied by the mass flow rate of the rocket, 7 .. This leaves us with

Equation 1-11 (Taylor, 2005).

mv = —mb,
Equation 1-11

The right side of this equation is called the Thrust and can be understood as the cause of
the force exerted on the rocket. Solving this equation by separation of variables and

integrating gives Equation 1-12 (Taylor, 2005).

mo
Av = VexIn (—7)

Equation 1-12
This is the ideal rocket equation can be used to determine how much propellant is

needed to obtain a certain change in velocity, Av, with the difference between mgand m

being the mass of the propellant (Sellers, 1994).

1.2.3.2 Midcourse Phase

The next phase of a rocket’s trajectory is called Midcourse Phase. When the
rocket runs out of fuel it is called “burnout”. From there the objects follow a ballistic
trajectory. Since the majority of this path takes place outside of the atmosphere, it can
be assumed that air resistance is negligible, leaving only gravity to act on the rocket

(Sellers, 1994).

The motion of the rocket is given by Equation 1-13 with R being the radial distance from
the center of earth to the rocket, G being the Gravitational Constant, and M the mass of

the earth. (Sellers, 1994)

GM

R+—2R:0

Equation 1-13



This equation, along with the velocity and position vectors at the time of burnout,
defines the path that the rocket will take. What happens next depends on the original
purpose of the rocket. When the payload separates from the booster it will either return

to earth or continue on a trajectory through space.

1.2.3.3 Reentry Phase

The final phase of a rocket’s trajectory occurs when the space vehicle returns to
earth. During the Re-entry Phase, the payload travels through the atmosphere towards
the earth’s surface. Due to the object’s large velocity you can assume that drag and lift
are the dominant forces. When the object hits the atmosphere it is subject to immense

drag, which causes massive deceleration of the payload. Energy lost from a space

shuttle during Re-entry can reach 3.23x1012 Joules (Sellers, 1994). This energy is
dissipated in the form of heat, which means that the vehicle re-entering the atmosphere
must able to withstand both large decelerations and high temperatures. Objects not
designed to withstand these conditions, for example the boosters, will simply burn up

during re-entry.

1.2.3.4 Scenarios of Interest

For this project we will be looking at two specific situations during space flight.
The first scenario involves a rocket in the Boost Phase. This particular rocket has its
nozzle at a slight offset so the thrust does not go straight through the body’s center of
mass. The result is that the thrust not only creates a linear force but also a torque on the

rocket causing it to rotate.

The second scenario takes place in the Midcourse Phase. We will be looking at
the separation of a rocket into its payload and boosters. In this example the rocket is
initially tumbling and is then instantly separated by an impulse. However this impulse,
similar to the thrust on the first rocket, is offset so it doesn’t go through the center of
mass. This means that not only will the impulse separate the two components of the

rocket, but it will change their rates of rotation.



Space vehicles are complicated, dynamic systems, which can lead to many
troubling situations. The rocket systems must be engineered perfectly to ensure
success. And even then external factors such as weather and atmospheric conditions
can affect the rocket’s performance. (Chun, 2006) There is too much at stake in any
space mission to leave anything up to chance, whether it’s the extreme costs of a
satellite, the human lives on a space shuttle, or the threat of a nuclear warhead in an
Intercontinental Ballistic Missile (ICBM). That is why radar data of these space vehicles
must be interpreted flawlessly to gather the most information possible about what is
actually going on up there. This allows scientist and engineers to accurately test space

systems, diagnose any problems that occur, and respond to any possible threats.

1.2.4 Scattering Centers

Scattering centers are places on radar targets from which the radar signal is
returned. These centers are often places of discontinuity such as the nose of a cone or
where the side of the cone meets the base. The two main categories of scatterers are
point scatterers and specular scatterers. Point scatterers are so named because they
represent a, more or less, point discontinuity that reflects waves back to the receiver.
Specular scatterers are essentially the flat sides of objects. When these flat sides are
perpendicular to the radar they return so much signal that it can be difficult for the
radar to determine exactly where the scatterer is. The phenomenon that results from
this is having sidelobes around the specular scatterer where the radar gives weaker

returns across a wider range.

Not every part of a target will reflect enough of the signal back to the receiver to
be detectable, leaving only small portions of each target that the radar can detect.
Furthermore, each scatterer is not always visible. With rotating targets in particular,
scattering centers are often shadowed by the rest of the target or by another target and

go undetected because the radar waves cannot reach them.



1.2.5 Augmented Point Scatterer Model

The Augmented Point Scatterer Model (APSM) is a tool that is used to generate
radar signatures. As discussed earlier, radar signatures contain all pertinent information
about a target and APSM provides a convenient way to generate this information.
Targets in APSM are defined by XML files, called configuration files, that include the
coordinates of its center of mass and its various scattering centers. The scattering
center’s definition consists of a scattering type and strength, position relative to the
center of mass, and the aspect angles for which it is in the radar’s line of sight. (Cebula
D., Uftring, Whitmore, & Haddad, 2005) These files are crucial for defining the radar

signature of a target and will be used when generating simulated radar data.

1.2.6 Range Time Intensity Plots

The Range Time Intensity (RTI) plot is one of the traditional ways of displaying

radar returns. The range relative to the center of mass is plotted on the x axis, time on
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Figure 1-9: RTI plot and illustration (Martin, Static Pattern, 2009)

the y axis, and the intensity of the radar return on the color axis. The relative range is
measured in the Radar Line of Sight (RLOS) axis, which points directly from the radar to

the observed object where negative values are closer to the radar and positive values



farther away. These RTI plots are much different than a photograph of a situation and

must be treated and analyzed much differently.

Figure 1-9 shows the simulated RTI plot of a tumbling cone. One of the scattering
centers for a cone is at the nose, and the other two are where the sides meet the base.
When the cone is facing the radar ‘nose-on’, as in the bottom left illustration, the radar
waves are returned from the nose as well as the corners of the base of the cone. This
corresponds to the RTI plot at t = 0 seconds where there are returns from the base at 2
meters and from the nose at -2 meters. As the cone rotates anti-clockwise the nose and
back get closer to the center of mass in the RLOS frame. There are only two visible paths
because one of the scatterers on the base of the cone is shadowed from the radar by

the front of the cone.

The next interesting phenomena occurs just after t = 2 seconds and is shown in
the middle left illustration. When the side of the cone is completely perpendicular to the
RLOS there is a specular scatterer effect where the radar return is so strong that it is
difficult for the radar to tell where exactly the signal is coming from. This results in the

horizontal light blue band which is called a specular sidelobe.

After the cone has its side perpendicular it continues rotating with the nose
getting farther away from the radar and the base getting closer. Just beforet=4
seconds the nose disappears and another track appears next to the base scatterer. This
is due to the nose getting shadowed by the base of the cone and the second scatterer

on the base of the cone coming into view of the radar.

The cone then continues to rotate until it has completed a 180 degree rotation
by t = 5 seconds and the base is completely perpendicular to the RLOS. This causes both
of the base scatterers to be the same distance away from the center of mass and results
in their two tracks merging. We can note that, if the target were rotating clockwise, the

RTI would look the same as in Fig 1-9. However, a DTI plot would look different.



1.2.7 Doppler Time Intensity Plots

Doppler Time Intensity (DTI) plots are quite similar to RTI plots with the
difference being that they plot relative frequency against time instead of relative range
against time. Shown below is the general Doppler shift formula for electromagnetic
waves with fy being the initial frequency, ¢ being the speed of light, v, being the velocity
of the receiver, vs being the velocity of the source, and f; is the Doppler shifted

frequency.

c+vr>
c+v/’°

fa=(

Equation 1-14: Doppler Shift Formula

In the case that a moving object reflects electromagnetic waves back to the
source of the waves, we can manipulate the Doppler formula to find the velocity of the

moving object, as seen below.

b= C(fdf;fo)

Equation 1-15: Obtaining Velocity from Doppler Shift

Armed with the linear velocity of a scattering center it is possible to find its

angular velocity if we know how far its distance from the center of mass, r.

V=r*w
Equation 1-16: Linear Velocity
Figure 1-10 below shows the situation where the measured Doppler shift is zero.
This is because the scattering centers at the nose and the base have all of their relative

linear velocity oriented perpendicular to the RLOS. This creates zero net linear velocity

in the RLOS frame, which leads to no Doppler shift.
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Figure 1-10: Diagram with Lowest Doppler Shift

Figure 1-11 shows when the Doppler shift would be highest because both the nose and
back have all of their relative linear velocity parallel to the RLOS. This creates the highest
possible v in the Doppler shift formula, which in turn creates the highest possible

Doppler shift.
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Figure 1-11: Diagram when Doppler Shift is Greatest
A sample DTI plot is shown in Figure 1-12. As you can see, with the cone oriented

as in Figure 1-10 at t = 0 there is zero Doppler shift. With the cone oriented as in Figure

1-11 at t = 2.3, there is the highest Doppler shift..
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Figure 1-12: DTI plot of a tumbling cone

1.2.8 Radio Frequency Signature Toolbox

Radio Frequency Signature (RF Sig) is a software package that runs in MATLAB
and is used for “... calculating radar returns from all objects in the complex using sensor
parameters and producing range-time-intensity plots, Doppler-time-intensity plots, and
range-Doppler images” (Carpenter & Cebula, 2005). RF Sig uses trajectory data from the
standard output files to determine the location and orientation of each object, the sum
total of all of the objects is called the complex, and combines that with APSM scatterer
definition xml file for each object to create simulated radar returns. RF Sig can be used

to create RTI, DTl and Range Doppler plots.



1.3 Plan for Tackling Problem

The general plan for tackling the problem of learning as much as possible from
radar data is to explore the different parameters and try to link the changes to see what
effect they have on the trajectories and radar returns. The first order of business is to
derive the physical models for each situation so we can know what is going on. From
these equations of motion we will determine parameters of interest to study that we
think would have an impact on the radar returns. Once we have the equations of motion
and the parameters we wish to study we will plot the effects of varying these
parameters on radar returns derived from the equations we created. Having the
knowledge of what is going on physically and what the radar can see will let us compare

them and link changes in physical parameters to changes in the radar data.



2 Methodology
2.1 Create Physical Models

The first step of this project was to create physical models for the two scenarios
that we are looking at. Using the laws of physics we had to solve for the equations of
motion for both the offset rocket and the tumbling separating rocket. For both
situations, we needed to first determine general specifications for a sample two part
rocket. We looked up the mass and size of standard payloads and empty fuel tanks.
From these sizes and masses we calculated the moment of inertia for both the offset

rocket and the separating rocket.

To find the moment of inertia for the offset rocket about its center of mass, we
employed the Parallel Axis Theorem which allows us to find the moment of inertia of an
object in terms of the moment of inertia of its component objects. This is found by
summing the individual moments of inertia for each component and also summing the
products of each of the component masses with the square of the distance between the
axis through each of the center of masses of each object parallel to the axis through the

center of mass of the entire rocket.

Although the coordinate system will be discussed later on in the methodology of
the report, the motion of the rocket in both scenarios will be restricted to the zx plane

of the ENU coordinate frame.

2.1.1 Offset Rocket

In order to solve for the rocket’s trajectory, the rocket’s angular position as a
function of time, ¢(t) must be solved for. This can be accomplished by solving the

analogue of Newton’s Second Law for rotational bodies for torque as follows

7 =1()$(t) = DXF.



lis the (time dependent) moment of inertia of the rocket, D is the vector from
the center of mass to the nozzle and F is the thrust vector. The z and x position of the

offset rocket can be found as a function of time by solving Newton’s Second Law

M@®)a) =F

in both the z and x directions
M(t)Z(t) = F cos(¢p(t) — a)

M(t)i(t) = F sin(¢(t) — a).
where ¢(t) is the orientation of the rocket relative to the z-axis and o is the offset angle

of the rocket’s nozzle from the main axis of its body.

2.1.2 Separating Rocket

To create a physical model of the separating rocket we assumed that the net force and
torque on the rocket were zero. We then calculated equations for the position and

orientation of the rocket before separation using Equations 2-1 and 2-2.

Xt)=X,+Vt

Equation 2-1: X Position

() = ¢, + wt
Equation 2-2: Phi position
Next, we calculated the trajectories of the fuel tank and payload after
separation. We assumed that they were separated by an impulse that acted as an

instantaneous change in momentum and angular momentum governed by Equations 2-

3 and 2-4.



IM = mAV
Equation 2-3: Effect of Impulse on linear velocity
x*IM=1Aw
Equation 2-4: Effect of Impulse on Angular velocity

The variable x is the distance that the impulse is offset from the center of mass and / is
the moment of inertia. Using these equations and conservation of momentum we were
able to calculate the velocities and angular velocities of both the tank and the payload.

From there we used equations 2-1 and 2-2 again to calculate the trajectories.

Another issue that needs to be addressed when developing a physical model for
the separating rocket is determining if the two components are going to collide after
separation. Any collision would affect the trajectories and need to be taken into
account. We created a Matlab script that modeled the motion of the center of masses
of each object and then expanded that to model the trajectory of each of the corners as
the object tumbled through space. Next, we added code to see if any of the corners of
one object crossed between a line connecting two corners of the other object. Finally,

we animated this to visually verify that our script accurately tested for collisions.

2.2 Transforming physical models into Radar Data

2.2.1 DAT File Creation

In order to generate radar plots based on a rocket’s trajectory which include RTI and
DTI plots, we must first create a DAT file specific to each particular rocket trajectory.
DAT files are 22 column ASCII files which contain all of the necessary information about
an object to create simulated radar plots during its flight. The 22 pieces of information

about the object include the following:



OO NI AWDNR

w,

x-body-x
x-body-y
x-body-z
y-body-x
y-body-y
y-body-z
z-body-x
z-body-y
z-body-z
Latitude [deg]
Longitude [deg]
Altitude [km]



Earth Centered Inertial (ECI)

Prime Meridian

Figure 2-1: The ECI coordinate system at time

Before we begin to explain what each of the individual columns are, we first
must mention the coordinate systems that will be used when creating our physical
models. The first one is the Earth Centered Inertial (ECI) coordinate system as shown in
Figure 2-1. In this coordinate system the origin is located at the center of the Earth, with
the x- axis pointing towards the Prime Meridian and 0° latitude, the y-axis pointing
towards 90° East and 0° latitude, and the z-axis pointing towards the North Pole
orthogonal to both the x-axis and y-axis at time t = 0 [s]. Here, time is measured relative
to the Greenwich Mean Time (GMT) time zone. To make our physical model simple,
we’ll position our rocket such that its motion will only be in the GMT time zone within
the period of time that we run our simulation. The time passed during the rocket’s flight
from the initial time t = 0 to some future time t is what constitutes the data in column 1

in the DAT file.

Using ECI coordinates is important mainly due to the fact that DAT files require
the parameters of an object’s trajectory in ECI coordinates for its position and velocity
vectors. It’s also important due to the fact that it’s an inertial coordinate frame meaning

that its axes stay fixed in space with increasing time (even as the Earth rotates). This



makes it easy to use without having to deal with as many coordinate transformations as

required by using other coordinate systems.

East North Up (ENU) Frame
z North

Prime Meridian

Figure 2-2: The ENU coordinate system at time ¢t = 0 [s].

One other coordinate system that is being used for our project is called the East,
North, Up (ENU) coordinate system as shown in Figure 2-2 where it is overlaid on the ECI
coordinate system at time t =0 [s]. Here, the origin of the coordinate frame is actually
fixed on the location of the radar sensor itself. By default, the radar sensor will be
placed on the surface of the Earth at the intersection of the Prime Meridian and the
equator giving it a coordinate of (0°, 0°, 0 [km]). The grey plane shows that the
coordinate system is tangential to the surface of the Earth at that point. The x-axis is
defined to be pointing towards East, the y-axis as pointing towards North, and the z-axis

as pointing up (or perpendicular to the surface of the Earth).

Using ENU coordinates is useful because measurements made on the Earth are
made in ENU coordinate space which means that they don’t need to be transformed
when working only in the ENU Frame. However, coordinate transformation from ENU to
ECl is necessary for the creation of the DAT files and is accomplished easily by calling a
coordinate transformation Java method from the MIT Lincoln Laboratory BMD Toolbox.

From this point on, assume all motion of the rocket to be in reference to the ENU



coordinate frame unless explicitly stated otherwise.

Columns 2-4 of the DAT file simply specify the rocket’s Cartesian coordinates in
3-d space in ECI coordinates. To simplify things at the current time, we’ll restrict the
rocket’s trajectory and its tumbling to the zx plane only in ENU coordinates which means
the y component of the rocket will always be 0 (in ECI, this corresponds to the z
component being with the rocket traveling in the xy plane). The z and x position of the

rocket can be found as a function of time by solving Newton’s Second Law

M@®)a() =F

in both directions
M(t)Z(t) = F cos(¢p(t) — a)
M(t)i(t) = F sin(¢(t) — a).

where ¢(t) is the orientation of the rocket relative to the z-axis and a is the offset angle
of the rocket’s nozzle, respectively. One note to mention here is that we must be sure to
give the rocket an initial position such that the rocket will not travel below the surface

of the Earth in order to make the simulation match physical reality as close as possible.

Columns 5-7 refer to the rocket’s velocity in the x, y and z direction in ECI
coordinates. In the process of solving for the rocket’s position as a function of time by
using Newton’s Second Law, the velocity of the rocket is easily found along the z and x
directions in the ENU frame (and in the x and y directions in the ECI frame by using the
coordinate transformation Java method). And similar to the reasoning for the y
component of the position of the rocket being equal to 0, the velocity along the y

direction will also be 0 here as well.
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Figure 2-3: The rocket’s own internal body axis.

Columns 8-10 refer to the rocket’s angular velocity with respect to its own body
axis. Figure 2-3 shows how the axis of the rocket’s own internal coordinate system is
oriented relative to its direction of propagation. It is convention for the x-axis to be
pointed along the direction of the object’s propagation, the y-axis pointed along the
right wing of the object and orthogonal to the x-axis, and the z-axis pointed downward
and orthogonal to all of the other axes. Figure 2-4 shows how the rocket is oriented
relative to the ENU coordinate system. Using the fact that we are restricting the rocket
to travel only in the zx plane, this means that the angular velocity of the rocket is 0
about both the x and y axes. The angular velocity of the rocket about the z-axis can be

found by solving the analogue of Newton’s Second Law for rotational bodies as follows

7 =1()$(t) = DXF

1()¢(t) = DFsin(a).)



Top-down View

ENU Frame Body Axis
X

Figure 2-4: Orientation of the rocket relative to the ENU coordinate system.

Columns 11-19 are values that relate how the rocket’s own internal coordinate
system is oriented relative to the ENU coordinate system (or any other coordinate
system for that matter). In fact, they’re simply elements of what’s known as the
direction cosine matrix (sometimes abbreviated as DCM). The direction cosine matrix, A,

is defined as the product of individual matrices as

A =[A]]4,]14,]

where A,, A, and A, are the matrices for rotations only about the x, y and z-axes,

respectively. They are each defined as

r1 0 0
A, =|0 cos(¢p) sin(¢)
[0 —sin(¢)) cos(¢)]

cos(8) 0 —sin(@)]
A, = 0 1 0
[sin(@) 0 cos(O) |




cos() sin(yp) O
A, = [—=sin(yp) cos(y) O
0 0 1

with ¢, 0 and y being the angular displacement about the x, y and z-axis following
convention, respectively. Since the rocket is restricted to motion in only the zx plane in
ENU coordinates, the only angular displacement we need to be concerned about is
rotation about the rocket’s z body axis since the rotations about the x and y axis are zero
and, as a result, reduces matrices A, and A, both down to the identity matrices. This
leaves us with only the z component of the direction cosine matrix as the value of the

direction cosine matrix itself as follows

From here on out, we will use ¢(t) to represent the angular position of the object rather

than y(t) to reduce the amount of different symbols used.

Column 20 refers to the latitudinal coordinate of the rocket at time t. Exploiting
the fact that we are restricting the rocket’s motion to only the plane again, this means

that the rocket’s latitudinal position is always going to be 0° for all time t.



East North Up (ENU) Frame
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Prime Meridian

Figure 2-5: The radar sensor and the rocket (not shown here) both move with the rotational speed of
the Earth.

Column 21 refers to the longitudinal coordinate of the rocket. Because we are
using ENU coordinates by default, we do not have to take into account the rotation of
the Earth when calculating the longitude of the rocket (since the longitude is defined
relative to the Prime Meridian which moves with the rotation of the Earth as well as the
rotation of the sensor and the rocket as shown in Figure 2-5). Using simple trigonometry

as shown in Figure 2-6, the longitudinal position of the rocket is calculated as



ENU Top-down View
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Figure 2-6: The longitudinal position of an object is easily computed using simple trigonometry.

t 180
Longitude(t) = arctan< x(©) ) (

Radius + z(t) T ) [deg]

where the factor (%) is used for converting the angle from [rad] to [deg].



ENU Top-down View

Figure 2-7: The altitude of the rocket can be calculated using simple geometry.

The last column of the DAT file is the altitude of the rocket at time t. By using
simple trigonometry again as shown in Figure 2-7, the altitude of the rocket can be

simply calculated as

(Radius + z(t))2 + x(t)? = (Radius + Altitude(t))2

Altitude(t) = \/(Radius + z(t))2 + x(t)? — Radius [m]

J(Radius + z(t))2 + x(t)? — Radius

Altitude(t) = 103

[km].

We have just shown how to calculate each of the individual columns of the DAT
file for different rocket trajectories which is again important in creating radar plots such
as RTls and DTls. This entire process of creating DAT files based solely on a rocket’s

trajectory was automated using Matlab and some of the Java methods from the MIT

Lincoln Lab BMD Toolbox.



2.2.2 Transforming Dat Files to Radar Data

Once the trajectory information is stored in dat files, there are still more steps
that need to be taken to create simulated radar returns for analysis. In one of the
oddities of programming, after all of the trajectory data is written to the dat files it has
to be read back into memory. Each entity in the simulation (unitary rocket, tank,
Payload, etc.) has its own trajectory dat file which gets input into a separate java
trajectory object in memory. This is necessary for the Matlab script to interpret the data

correctly.

The next step is to create a time history java object for each entity. This is
accomplished by using a java method which combines sensor data defined in the
variable initialization script testsim.m with each trajectory object to create a unique
time history object for each entity. What this essentially does is convert the trajectory
information from coordinates that are relative to the earth (the ECI X,Y,Z positions and
velocities, and latitude, longitude, altitude) and the internal coordinate frame (direction
cosine matrix and rotation rates) into information that is all relative to the sensor. The
22-columns of trajectory information are converted into 11- columns that are: Time,
Azimuth, Elevation, Range, Aspect, Roll, Orientation, Offset, NoiseFloor, PulseNumber,

and Center Freq.

It is at this point that radar imperfection like range limits, horizon limits, angular
uncertainties, and many other aspects of realistic radars can be added. For our project
we ignored these aspects for the most part. We determined that things like being able
to look over the horizon and having a low signal to noise ratio at long distances would
allow us to focus more on the physics of the project and less on the technical details of

radar systems.

The last step in converting all of the data is to create a java object called a track
for each entity in the simulation. This is done by combining the time history information

for each entity with the xml scattering definition file. What this does is attach the



“frame” of scattering centers to the point object that we have been working with until
now. There is an important difference between the separating rocket situation and the
offset rocket situation in this step. With the separating rocket, there is a cell array of
tracks that gets created from the individual java objects, while in the offset rocket there

is only one object to track.

Once there are ‘track’ java objects for each entity, we used the RF Sig software
to generate simulated radar returns in the form of RTl and DTI plots. The RF Sig software
takes the tracks and combines them with inputs that control how the returns are
plotted like the maximum relative range in RTI plots or the timeframe to calculate the
returns for. One input parameter that can have a large impact on what the plots look
like is the centering track in the separating rocket situation. The centering track is the
zero relative range that all of the other tracks are based off of. The effect this has is that
if the other entities translate away from the centered track, then the relative ranges of
their scattering centers are no longer relative to their individual centers of gravity, but

to the center of gravity of the centered track.



2.3 Data Analysis

In order to begin our analysis we first needed to choose which physical
parameter to explore for both the offset and separating rocket. We focused on the
parameters that we thought would have an impact on the trajectory of the rocket and
the radar data in the form of RTl and DTI plots. We also went over this set of parameters

with our advisors to receive input and ratification on our choices.

2.3.1 Offset Rocket

Table 2-1 below shows the baseline parameters we chose and the minimum and
maximum values we assigned them when varying them. These values were selected

based on our knowledge of what would be possible for a rocket to have.

Parameter Baseline Value Lowest Value Highest Value
Offset Angle (rad) /18 0 /2

Mass of Fuel (kg) 10000 100 100000

Mass of Payload (kg) 1000 100 100000
Burnout Time (s) 60 15 240

Exhaust Velocity 600 10 5000
k_inertia 5 1 20

Torque Arm (m) 3.6 | 6

Initial Z Velocity (m/s) 0 0 ??

Initial X Velocity (m/s) 0 0 ??

Table 2-1:Table of Baseline, Minimum, and Maximum Values for Parameters

2.3.1.1 Steady State Trajectory

One of the aspects of the offset rocket that we were interested in investigating

was where it would eventually end up going. To do this we plotted the trajectory of the



rocket with the baseline parameters and determined whether there was a way to define
the trajectory after a long time or the steady state trajectory. We calculated a line of
best fit and determined that its slope would be a good indication of the rocket’s

destination.

To see what effect different parameters had on the trajectory slope, we varied
all of the parameters and plotted the resulting slopes against the baseline slope we
calculated. The parameters we varied in this manner were the nozzle offset, mass of the
payload, the exhaust velocity, the mass of the fuel, the burnout time, and the distance

from the back of the rocket to the center of mass.

2.3.1.2 Radar Returns

In order to determine the effect of varying different parameters on radar
returns, we varied the parameters of the offset rocket then looked at the effect created
on the RTl and DTI plots. We also computed final angular velocities and the resulting
final angular positions in order to get numerical results we could more easily analyze.
We then determined what correlation there was, with any of the parameters varying
the parameters of the offset rocket by comparing these final angular velocities and
positions. The parameters we studied were the offset angle, the mass of the fuel, the
mass of the payload, the initial velocity in the Z direction, the initial velocity in the X

direction, the exhaust velocity, and the burnout time.

2.3.2 Separating rocket

One parameter was systematically varied using “For” loops in Matlab, while all
other parameters were held constant. The resulting radar images were visually
compared in order to determine if we could observe the differences predicted by the
equations. After correcting errors found in the Matlab code, we were able to observe
that variations of the independent variables affected the expected characteristics of the

radar images.



We next wrote Matlab code that enabled us to quantify and record the RTI
variations which we were observing. The data for each dependent variable was plotted

vs. the independent variable in order to determine if any trends exist.



3 Results/Discussion

We were able to calculate some relationships and specific parameters in both
the offset thrust and separating scenarios from the radar data. For the offset rocket we
were able to find a relationship between the steady state slope of the trajectory and the
offset angle of the thrust. We were also able to determine that the angular velocity of
the rocket was the only aspect of the trajectory that affected the RTI and DTI plots. In
addition, we were able to determine which parameters changed the angular velocity.
We learned that we could calculate the instantaneous velocity from DTI plots and use

this as a piece of data to find a single parameter if we know all of the other parameters.

For the separating rocket we determined that, if we knew all other parameters,
we could calculate the distance that the impulse was offset from the center of mass. For
a rocket where less information was known, we could calculate many of the rocket’s
unknown parameters including the length of the objects in question, the magnitude of
the angular velocities, and the angular orientation of the rocket at the separation. With
some simplifying assumptions this can then be used to estimate the ratio of the changes

in angular velocity for the two children and determine each of their shapes.

Specific results and discussion of the results are documented in a separate internal

Lincoln Laboratory report.

4 Conclusions

Radar systems are great at detecting the range of objects in flight. However,
there are limits on what other information they can ascertain since they only

measure range (and range rate) accurately. These limitations are the motivation for



our project, which is focused on researching what useful information can be
obtained from data retrieved from radar systems for the physical scenarios
considered. There are many instances in which there is a need to know more about

a given situation than just the range of an object.

More detailed conclusions for the specific problems addressed are documented

in a separate internal Lincoln Laboratory report.



Works Cited

Adamy, D. (2004). EW 102: A Second Course in Electronic Warfare. ArTech House, Inc.

Allen, B., & Carveth, C. (2006). Observability of Separation Events Using Radar Data.

Worcester: Worcester Polytechnic Institute; MIT Lincoln Laboratory.

Carpenter, M., & Cebula, D. P. (2005). MATLAB Radar Scene Generation Toolbox.

Lexington: MIT Lincoln Laboratory.

Cebula, D. P., Uftring, S., Whitmore, M., & Haddad, P. (2005). Radar Signature
Generation Using the Augmented Point Scatterer Model (APSM) v3.1. Lexington: MIT

Lincoln Laboratory.
Chun, C. (2006). Thunder Over the Horizon. Westport: Praeger Security International.

Edde, B. (1995). Radar Principles, Technology, Applications. Upper Saddle River: Prentice
Hall, PTR.

History of Radar. (2005). Retrieved August 31, 2009, from Fact-Archive:

http://www.fact- archive.com/encyclopedia/History_of radar##Comparison

Kingsley, S., & Quegan, S. (1999). Understanding Radar Systems. Mendham: SciTech
Publishing, Inc.

Martin, J. (2009, Aug 10). LL6D. Retrieved Aug 28, 2009, from Renegade Confluence:
http://renegade/confluence/display/RMW/LL6D

Martin, J. (2009, August 10). Static Pattern. Retrieved August 21, 2009, from Renegade

Confluence: http://renegade/confluence/display/RMW/Static+pattern

Russell, D. A. (n.d.). The Doppler Effect and Sonic Booms. Retrieved October 14, 2009,



from Kettering University:

http://paws.kettering.edu/~drussell/Demos/doppler/doppler.html

Scott, J. (2004, March 21). Aerospaceweb.org | Ask Us - Radar Cross Section. Retrieved
September 3, 2009, from Aerospaceweb.org: Aerospaceweb.org | Ask Us - Radar Cross

Section

Sellers, J. J. (1994). Understanding Space:An Introduction to Astronautics. New York:

McGraw-Hill, Inc.

Skolnik, M. I. (2001). Introduction to Radar Systems, Third Edition. New York: McGraw-
Hill.

Taylor, J. R. (2005). Classical Mechanics. Sausalito: University Science Books.

Weiner, S. (2004, February 24). BMD Systems Analysis Lecture. Lexington, MA, USA:
Unpublished.



