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Abstract
Research on humanoid robots often involves prohibitively expensive hardware. Using

modern manufacturing techniques and off-the-shelf components, a small-scale humanoid robot
can be manufactured at a much lower price point while still demonstrating many of the same
capabilities as larger robots. Such robots can be used in many different applications including
rehabilitation, research, and teaching. This paper presents a 4 kg, 85 cm tall humanoid robot with
27 degrees of freedom based on the open-source Poppy Project. The robot is constructed from
DLP/SLA printed components that are easily modified to support alternative motor choices.
Resin 3D printing is used to minimize weight via pocketing and allows types of resin to be
mixed in ratios based on whether a part needs stiffness or overall strength. Each joint is
controlled by one of several types of smart actuators with integrated position control. The Poppy
project exclusively uses 25 Dynamixel motors, which make up the bulk of the robot’s cost. We
replaced most of these motors with the less expensive HerkuleX DRS-0201 motors that have
comparable form factor and power to the Dynamixel MX-28. Physical changes included adaptors
for the HerkuleX motors to mount to the preexisting mounting patterns.

Pivoting away from the Poppy Project’s exclusive use of the more expensive Dynamixel
motors required the codebase to be written from scratch. An onboard Arduino communicates
with the different actuators, while a Raspberry Pi performs higher level processing. The Arduino
supports multiple actuators using different communication buses. It provides a layer of
abstraction allowing the Raspberry Pi to control motors without accounting for the specific
actuator or motion limits at each joint. The robot now uses batteries to allow for completely
untethered operation. It is able to walk with human assistance but has the capability for future
implementation of self-balancing for unassisted walking. Control is based on a primitive system
that allows multiple actions to occur simultaneously. This allows either multiple actions using
different parts of the body (walking and waving arm), or by averaging positions to combine
actions utilizing the same part of the body (a normal walking gait and adjustments to terrain
based on sensor feedback). We demonstrate the robot’s functionality using a record/play system
that allows a human operator to manually position the robot and then record those positions for
later playback along with functions that highlight the capabilities of individual systems of the
robot. The paper will describe the implementation, challenges faced, and future work to further
added capabilities.
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1 Introduction
A robot is a machine capable of carrying out a complex set of tasks, either with an

external or internal controller (Robot 2021). Robots are used for a wide variety of tasks, from
assembling cars to vacuuming homes to dangerous material cleanup (Robotics 2021). Currently,
most are used in industrial applications such as assembly, welding, packaging, or moving
products. This is because it is typically faster, cheaper, or safer to use robots, especially for
repetitive or dangerous tasks. Common manufacturers of industrial robots are Fanuc, ABB, and
Universal Robots, where Fanuc and ABB focus on larger applications (welding, car assembly),
and Universal Robots focuses on cobots, or robots that work closely with humans. Most of these
robots are 6 degree of freedom (DOF) arms. Despite industrial settings being the largest market
for robots, and 6 DOF robots being the most common, research is being pursued for other
applications and types of robots as well.

Since the first robot was made in the early 1950s, research on robotic technologies has
quickly grown (Roberts, 1999). This research involves a wide variety of areas, including military
robots, humanoid robots, and soft robots. Up until now, the three main categories for humanoid
robot application are high risk environments (mines, rescue, military, nuclear, industries,
astronavigation), competitive (RoboCup, FIRA, DARAPA), and service (education, cognitive,
home, medical, entertainment) (Saeedvand et al., 2019). However, it is important to note that the
robots can fall in multiple categories. Examples are given in Table 1.1 below.
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Table 1.1: Examples of Humanoid Robots

Category Robot Name Robot Weight
(kg)

Cost (USD) Research or For
Sale

High Risk
Environments

ASIMO 50 $2,500,000
(What happened
to the Honda
Robot? 2022)

Research

HUBO 2 45 $400,000
(The HUBO 2
humanoid robot
is priced at
$400,000 2017)

Research

Competitive NAO 5.5kg
(Programmable
Humanoid Robot
NAO V6)

$10,500
(Nao Robot V6)

For sale

Igus 15
(Heney, 2018)

$6,200
(Heney, 2018)

For sale

Service Poppy 3.5 $10,637.59 For sale

iCub 30
(Maggiali et al.,
2019)

$270,000
(Saeedvand et
al., 2019)

Research

Humanoid robots are very different from those that are typically used in industry since industrial
robots are typically 6 degrees of freedom (DOF) arms (shown in Figure 1.1). In addition to this
difference, humanoid robots also face the unique challenge of walking on their own. Humanoid
robots can be designed to walk on a variety of surfaces, such as flat ground, grass, or uneven
environments. They can even be designed for more complicated movement tasks, such as
climbing stairs, skiing, ice skating, and sloped environments (Saeedvand et al., 2019). Since
humanoid robots are able to walk, they can access areas that may be difficult for other robots,
especially ones on wheels. Therefore, it is also advantageous to give humanoid robots other
abilities, such as the ability to grasp and hold objects. This allows them to access uneven areas
and complete tasks, similarly to a human.
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Figure 1.1: 6 Degree of Freedom Arm from ABB (reproduced as is from
https://roboticsys.com/robot-retrofit/)

One limitation of humanoid robots is the high cost. As shown in Table 1 above,
humanoid robots can cost anywhere from $40 to $2.5 million (Ruko 6088 programmable robot;
What happened to the Honda Robot? 2022). Lower-end humanoid robots tend to lack the ability
to walk, instead using wheels under the feet to move around. The steep price of walking
humanoid robots makes it more difficult to expose students to this technology. Therefore, the
objective of this research is to evaluate the Poppy humanoid robot and develop a low-cost
version. Then we will give it the ability to walk on its own and grasp objects using actuated
grippers.

1.1 Poppy
Work has been done to make humanoid robots more accessible to the general public. The

Poppy project, a 3D printed open-source project, is a key example (Figure 1.1.1). Created by
Matthieu Lapeyre, Pierre Rouanet, and Jonathan Grizou, Poppy is a 83cm tall robot that can be
used for education, art, or science (Lapeyre et al., Poppy humanoid: Advanced and easy to use
open source humanoid robot). Poppy is able to do a lot. It can replicate walking motions and
dance, but the main goal of the project is to be a base so that others can add capabilities. The
Poppy kit (which comes with all the necessary parts and assembly instructions) is available for
purchase at €9,039.00 ($10,637.59 USD) (Discover the poppy open-source technology created at
INRIA), or can be made from scratch using the bill of materials and assembly instructions
(https://docs.poppy-project.org/en/). The Bill of Materials for Poppy is in Appendix A.
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Figure 1.1.1: Poppy humanoid robot (reproduced as is from https://www.poppy-project.org/en/)

In addition to the full Poppy humanoid robot, it is also possible to purchase the Poppy
Torso. The Torso is the top half of the full Poppy. It is less expensive since it uses less motors
and parts, and it can be sat on a desk (shown in Figure 1.1.2). The Poppy Torso kit (which comes
with all the necessary parts and assembly instructions) is available for purchase at €5,300.00
($6,066.62 USD) (www.generationrobots.com/en/281-robot-poppy-torso), or can be made from
scratch using the bill of materials and assembly instructions
(docs.poppy-project.org/en/assembly-guides/poppy-torso/bom.html).

Figure 1.1.2: Poppy Torso humanoid robot (reproduced as is from
https://www.pinterest.com.au/pin/758715868446282498/)
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The creators of Poppy have published their research, including experiment results and
design discussions. Their goal was to build a robotic platform allowing them to experiment in the
real world (Lapeyre et al., 2014a). The project was initially a research project “to explore the role
of embodiment and morphology properties on cognition and on the learning of sensori-motor
tasks” (The story behind the Poppy Project).

The robot as a whole was designed with the ability for 3D printed parts to be quickly
swapped out or added (Lapeyre et al., 2014a). Experiments such as testing the best thigh shape
for stability utilize this capability. This also adds the possibility for future experimentation, such
as trying to give Poppy the ability to jump or move more quickly. One interesting aspect of
Poppy’s design is its proportionality to human dimensions. This allows for a human-like walking
gait (Lapeyre et al., 2013) making the project and research relevant to humans.

Poppy’s legs were the parts that required the most design time. The legs are made up of
the hip, thigh, and feet. As mentioned previously, Poppy was designed with similar proportions
to a human. For example, the designers of Poppy put its thigh at an inwards incline of 6°,
matching a human thigh (Lapeyre et al., 2013). This increases stability when Poppy is walking.
By keeping the robot’s base towards the center of mass, it increases the time it takes for Poppy to
fall over when standing on just one foot, as shown in Figure 1.1.3 below (Lapeyre et al., 2013).

Figure 1.1.3: Thigh incline affects the center of mass (reproduced as is from Lapeyre et al., 2013)

The hip joints, the most powerful joints on Poppy, were created in a way to keep Poppy
as stable as possible. Instead of having the hip be a ball joint, the designers placed the motors on
the frontal plane as the left to right stability is greater than the rear to front stability (Lapeyre et
al., 2013). By no longer using a ball joint, they are able to limit the mass on the back of the robot
(Lapeyre et al., 2013).

Despite their small size, the feet also went through a large amount of design. Each foot
has a single motor, weighing less than 200 grams (Lapeyre et al., 2013). Additionally, each foot
has 8 FSF pressure sensors to provide accurate feedback of the state of the robot (Lapeyre et al.,
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2013). The design of the legs, hips, and feet provide Poppy with the physical capability to
balance and walk on its own.

Poppy is not the only child-sized humanoid robot. In fact, there are multiple humanoid
robots around the same size as Poppy, in a range of materials and prices. A comparison of some
common child-sized humanoid robots is shown in Table 1.1.1 below.

Table 1.1.1: Comparing specifications and hardware of child-sized humanoid robots (many 3D
printed child-sized robots) (reproduced as is from Saeedvand et al., 2019)

As shown in the table above, Poppy is fairly expensive at $10,250 USD. The majority of
Poppy’s price comes from the motors, with motors costing nearly $7,000 USD. Poppy’s motors
and motor cost are shown in Table 1.1.2 below. The motor locations are shown in Figure 1.1.4
below.

Table 1.1.2: Poppy motor prices

Motor Number of Units Cost per Unit Total Cost

AX-12A 2 $58.43
$6,829.68

MX-28AT 19 $310.56

MX-64AT 4 $406.13
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Figure 1.1.4: Poppy’s 25 motors (reproduced as is from Lapeyre, 2014b)

These 25 motors are divided into several groups: head, torso, arms, and legs. The head
group is the smallest, consisting of 2 AX-12 neck motors. These motors provide the head with
the ability to swivel and nod. The arms each contain 4 joints, each powered by an MX-28 motor.
This gives Poppy’s arms 3 degrees of freedom at the shoulder and one at the elbow. The torso
contains 5 motors. One MX-28 rotates the torso. Above and below this point is a double rotation
section consisting of coaxial motors giving 2 degrees of freedom at the same point. The upper
double rotation (“bust” in the image above) uses MX-28’s while the lower double rotation
(“abs”) uses more powerful MX-64 motors to support the robot’s weight. Finally, each leg
consists of 5 joints: 3 hip joints (2 MX-28 and 1 MX-64), an MX-28 knee joint with spring
support, and an MX-28 ankle.

Poppy is undergoing continuous improvement. One area for future work highlighted by
the designers is giving Poppy the ability to grasp (Lapeyre et al., 2013). This would be done by
actuating Poppy’s hands in a compliant way (Lapeyre et al., 2013). This is in contrast to the
hands Poppy was designed with, which are solid, non-compliant models in the shape of a human
hand.
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1.2 Poppy Redesigns
Many teams have worked to make a less expensive Poppy. As mentioned previously, the

total cost for Poppy’s 26 motors is nearly $7,000, making them by far the most expensive
component of Poppy. Due to this high price, most of the Poppy remakes have looked into using
less expensive motors. This often meant that the motors needed to be modified in order to
contain the needed sensors. One Poppy remake used SpringRC SR-518 motors ($53), which
have 2Nm of stall torque and use RS485 bus connections (Popov et al., 2017). To fit the new
motors, the researchers modified the mounting places on the 3D printed parts.. These motors
were successful in most joints, but the researchers recommend using stronger motors in the hip
joints (Popov et al., 2017). Additionally, these motors are currently unavailable for purchase.
Prasanna, who worked on another Poppy remake, used modified Hitec servos (HS-7954SH,
$120) as they are cheaper than the original Dynamixel motors (Prasanna & Ashok, 2021). Their
modifications included removing all the original electronics and adding in a motor driver
(VNH5180A-E), a magnetic encoder (Austria Microsystems AS5145), and an arduino
microcontroller. Unfortunately, these motors are currently unavailable for purchase. Iglesias used
the same motors and setup as the Prasanna remake. Table 1.2.1 compares the original Dynamixel
MX-28AT motors to the Hitec HS-7954SH used by Prasanna and Iglesias (Iglesias et al., 2016).

Table 1.2.1: Comparing Dynamixel motor with Hitect motor (reproduced as is from Iglesias
et al., 2016)

Due to the different motors used, most of the Poppy remakes needed to redesign Poppy in
order to fit the new actuators. Some of these modifications were slight, such as modifying the
motor horn hole pattern, but Iglesias’s team had to widen the thigh and shin to fit the larger
actuators, which required more time (Iglesias et al., 2016). This is because the Hitec actuators are
1.6 x 0.8 x 1.5 inches (HS-7954SH High Voltage Ultra Torque Servo), while the Dynamixel
actuators are 1.4 x 1.99 x 1.4 inches (Dynamixel MX-28AT). Additionally, some of these remakes
modified the parts just so that they are easier to 3D print. Iglesias made the thigh straight so that
it is easier to print on an FDM printer (Iglesias et al., 2016). They also split both the thighs and
shins into two parts for easier assembly and reparability. The modified thighs can be seen in
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Figure 1.2.1a and 1.2.1b below. These larger, straight legs can be seen in Figure 1.2.2 below.
These modified legs are 434.1mm tall and 61.7mm wide, while the original Poppy legs are about
401.2mm tall and 52.7mm wide (Iglesias et al., 2016; poppy cad).

Figure 1.2.1a: The first version of the
modified thigh compared to the original
Poppy thigh (reproduced as is from Iglesias et
al., 2016)

Figure 1.2.1b: The first version of the
modified thigh compared to the final thigh
design (reproduced as is from Iglesias et al.,
2016)

Figure 1.2.2: Poppy remake legs (reproduced as is from Iglesias et al., 2016)



Section 1: Introduction 15

Despite all the research that has gone into them, none of these remakes give Poppy the
ability to walk unassisted. Therefore, giving Poppy the ability to walk on its own is another
objective of this project. This could involve a mixture of hardware changes - such as leg and foot
variations - or software changes to add new balancing algorithms.

1.3 Objectives
Therefore, using the research we have found and the experiments and prototyping we

plan to do, our objectives are to:
● Build a full humanoid robot based on the Poppy Project
● Select alternative components to reduce the total cost
● Give Poppy the ability to walk on its own
● Give Poppy the ability to grasp and manipulate objects with actuated hands

1.4 Section Overview
The rest of the paper is laid out as follows:

● Chapter 2 discusses the literature review conducted on both humanoid gait and hand
actuation methods.

● Chapter 3 discusses the project plan and an overview of the methods and processes used
to complete tasks throughout the project.

● Chapter 4 discusses the specific design changes made from the Poppy project to Koalby
with primarily a mechanical focus, along with a brief section on electrical changes.

● Chapter 5 discusses the manufacturing and assembly processes used throughout the
project.

● Chapter 6 discusses the electronic side of the project including both power and control.
● Chapter 7 discusses the code behind the project including both the firmware and the

high-level code.
● Chapter 8 discusses the various testing methods used throughout the project to evaluate

the system.
● Chapter 9 discusses the final state of all the various goals and challenges that were

encountered along the way.
● Chapter 10 discusses the final state of the project as a whole, the future work that can be

done to further the project, and the experience group members had during the project.
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2 Literature Review

2.1 Humanoid Gait
While Poppy is currently unable to walk on its own, the math and models for biped

robots have been developed in other humanoid robot projects. The current standard for biped
gaits is based on the linear inverted pendulum model (Iverach-Brereton et al., 2014). As given by
the name, this gait models the robot as an inverted pendulum. The robot’s support foot (the foot
on the ground) is the fulcrum, the robot’s support leg (connected to the support foot) is the rod,
and the robot’s upper body is the mass, as shown in Figure 2.1.1 below.

Figure 2.1.1: Inverted pendulum model for the human gait (reproduced as is from
Iverach-Brereton et al., 2014)

The zero moment point, ZMP, at the end of the pendulum can be manipulated by varying the
length and angle of the rod. This controls the robot’s center of mass (CoM), which controls if the
robot is able to balance as it walks or not (Iverach-Brereton et al., 2014). In the pendulum model,
there are two gait phases: the single support phase (SSP) and the double support phase (DSP).
DSP is when the robot is statically stable with both feet on the ground, and the CoM is above the
support polygon formed by the feet (Iverach-Brereton et al., 2014). SSP is essentially when the
robot is walking; the front foot is the support leg, and the robot pivots about the ZMP, causing it
to fall forwards in a walking motion (Iverach-Brereton et al., 2014). Many humanoid robots use
gyroscopes to measure a robot’s angular velocity along the X, Y, and Z axis, which allows them
to detect when a robot has transitioned from the SSP to the DSP (Iverach-Brereton et al., 2014).

Additionally, it is possible to give robots the ability to walk with assistance. One example
is pushing a shopping cart, where the shopping cart helps to balance the robot. As mentioned
previously, Poppy has the hardware (joints, surface area, center of mass) needed to walk on its
own. What is currently missing from Poppy is the balancing algorithms. Our goal is to
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implement a balancing algorithm for Poppy to walk. If this proves to be too difficult, then we
will implement an assistance tool, such as a shopping cart.

2.2 Actuated Hands
In addition to walking, research was conducted on humanoid robots with the ability to

grasp. One such robot is Epi, an open-source humanoid robot. This humanoid robot is a bit larger
than Poppy at 101cm tall and weighing 12kg (while Poppy is 83cm tall and weighs 3.5kg)
(Johansson et al., 2020; Poppy humanoid: Advanced and easy to use open source humanoid
robot). Despite the size difference, Epi is also a 3D printed robot with similar proportions to a
human (Johansson et al., 2020). Epi’s hands each have 4 moveable fingers and a stationary
thumb, somewhat similar to a human, seen in Figure 2.2.1 below.

Figure 2.2.1: Epi 5 figure hand design (reproduced as is from Johansson et al., 2020)

Each hand is actuated with a single Dynamixel MX-106 servo motor (Johansson et al., 2020).
This allows the hands to lift objects up to 1kg in weight. The fingers are mounted at angles to
each other so that when closed, the fingertips all meet at one point, which produces a grasp
movement (Johansson et al., 2020). The fingers are actuated using 3D printed rubber tendons, as
shown in the image above (Johansson et al., 2020). Epi has one such robotic hand design that
may be integrated into Poppy.

NICO is another open-source 3D printed humanoid robot project that explored grasping,
though it did so with three-fingered hands (Kerzel et al., 2017). All three fingers were actuated
with 3-segments, and the symmetry in the design means that the hand could be duplicated on the
right or left arm without affecting its ability or the aesthetic appearance in any way. The hand can
be seen in Figure 2.2.2 below. In total, this resulted in 10 degrees of freedom with only two
actuators, and included wrist rotation. They were also equipped with force sensors at the
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“thumb” finger tip for tactile sensing to assist with the gripping ability. These hands were
provided through a company Seed Robotics which has since discontinued the product (RH2D
Advanced manipulator).

Figure 2.2.2: NICO 3 finger hand design (reproduced as is from Kerzel et al., 2017)

Vizzy is yet another humanoid robot project focused on the ability of the robot to grasp
objects. Vizzy’s fingers are actuated using 3 motors and strings. Each motor pulls one or more
strings that are attached to the tips of the fingers. The thumb and pointer finger are each actuated
with one motor; the last two fingers are actuated by the 3rd motor (Moreno et al., 2015). One of
the largest differences between the Vizzy project and NICO, the previous projects mentioned, is
that Vizzy’s multi-motor arrangement allows for the hand to perform a few different types of
grasping techniques, including three types of power grasps (cylindrical, spherical and hook) and
one type of precision grip (tip-to-tip) (Moreno et al., 2015). The CAD of the hand and pictures of
the grasping ability of the hand are pictured in Figure 2.2.3 below.

Figure 2.2.3: Vizy 4 finger robotic hand (reproduced as is from Moreno et al., 2015)



Section 2: Literature Review 19

Research was also done into previous robotic hand projects at Worcester Polytechnic
Institute. All the robotic hands developed at Worcester Polytechnic Institute are closer to the size
of a human hand, much larger than what Poppy would have. Despite this, these projects can still
help to develop our own, smaller, robotic hand. One of the projects done was named Accurate
Prosthetic Hand. The hand was designed to be analogous to parts of a human hand, such as bones
and joint caps, muscular tendon simulant, the thumb, and the wrist. The fingers move just like in
a human hand, with the use of tendons pulling the fingers. The hand design can be seen in Figure
2.2.4 below. The complete hand has 9 DOFs, uses 9 motors, and costs $350 (Larrier et al., 2017).

Figure 2.2.4: Prosthetic hand from 2017 MQP (reproduced as is from Larrier et al., 2017)

Another robotic hand project at WPI was IRIS Hand. IRIS Hand works very similarly to
the Accurate Prosthetic Hand; it uses tendons to move each of the fingers. The hand design can
be seen in Figure 2.2.5 below. The complete hand has 6 DOFs, uses 6 motors, and costs $1,800
(Casley et al., 2014).

Figure 2.2.5: Prosthetic hand from 2014 MQP (reproduced as is from Casley et al., 2014)
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3 Project Plan and Methodology
This chapter discusses the process of adapting, manufacturing, and building the team’s

version of the Poppy robot. The modified robot is called Koalby, and it uses a different motor to
reduce cost, necessitating changes to hardware, electrical systems, and software.

3.1 Motor Selection
To decrease system cost, Koalby uses a less expensive smart motor in place of the

Dynamixel MX-28 (MX-28). This alternative motor, the HerkuleX DRS-0201 (HerkuleX), is
similar in size and power output to the MX-28 but uses a different 4-wire bus system and form
factor. The motor comparison is shown in Table 3.1.1 below.

Table 3.1.1: Comparing the MX-28 to the HerkuleX

Motor Cost Stall Torque
(Nm)

No load speed
(RPM)

Form Factor
(mm)

Dynamixel MX-28 $260 2.5 55 32 x 50 x 40

HerkuleX DRS-0201 $132 2.35 68 24.0 x 45 x 31

With 17 MX-28 motors on the full system, the total cost savings from this change is ~$2210.
This is the largest difference between Koalby and the base Poppy Project, as it necessitates a
series of further hardware and electronic changes to install and control these motors. Poppy uses
3 types of Dynamixel motors: the large MX-64, medium MX-28, and small AX-12, all of which
communicate on a 3 wire bus, which is not compatible with the 4-wire HerkuleX motors.
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Table 3.1.2: HerkuleX Library Functions

With their lower price, HerkuleX motors have correspondingly lower capabilities.
Control of these motors is effectively limited to setting the target position, getting the current
position, and enabling or disabling torque as shown in the library documentation above (Table
3.1.2). This is more limited than the Dynamixel motors, which feature the ability to set torque
and velocity limits, allowing for features like compliant mode, where the motor holds its position
with low torque so that it can be repositioned by the user. Poppy utilizes some of these advanced
features, and Koalby required additional programming to account for the more limited sensing
and control the HerkuleX motors provide.

3.2 Redesigning for HerkuleX
The HerkuleX motors have a different form factor than the MX-28s that the Poppy robot

was originally designed for (specific dimensions shown in Table 3.1.2 above). Numerous small
redesigns (see section 4.1) were required to adapt the existing Poppy CAD files to utilize the new
motors.

The team started by redesigning the parts in the robot’s torso and arms. This allowed
preliminary testing to begin concurrently with the redesign of the pelvis and legs. All of the
joints that used MX-28 motors (see section 1.1) had to be redesigned. The AX-12 in the head of
the robot and the MX-64 joints in the lower torso and hips of the robot were both kept in the
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design as there were no viable alternatives which would decrease costs enough to justify the
engineering effort required to modify the robot to utilize them.

The HerkuleX motors are smaller than the MX-28’s in all dimensions (see Table 3.1.1
above). Therefore, swapping to these motors did not require a major redesign, as HerkuleX
motors could be inserted with adaptors that allow them to use the hole patterns originally
designed for the larger MX-28. There also were certain locations in the robot where two motors
were linked together to create two axes of rotation. The team designed a few new parts to allow
the HerkuleX motors to be linked together in the same fashion, but again did not need to majorly
redesign the robot as this new assembly could be installed in the same way as the MX-28 without
any changes to the main part.

3.3 Printing the Structure
Poppy is an open source 3D printed robot, and the robot the team was creating was

designed to be manufactured the same way. The team utilized two different methods of 3D
printing, Fused Deposition Modeling (FDM) and Digital Light Processing (DLP). FDM printers
feed continuous plastic filament from a spool through a moving and heated toolhead to lay the
plastic in stacked layers. DLP printers use an LCD screen to cure layers of liquid resin onto a
print bed. Using an LCD screen in place of the moving toolhead of an FDM printer allows for
much higher resolution parts to be created, and allows for an entire layer to be created at the
same time.

3.3.1 FDM Printing
For initial testing, the team printed using polylactic acid (PLA) filament on FDM 3D

printers. After the PLA parts proved too fragile, the team switched to using polyethylene
terephthalate glycol (PETG) filament. PETG is a thermoplastic polyester that is less rigid than
PLA, but has a higher tensile strength (7700 psi) (PETG) than PLA (7250 psi) (Langnau).

The team began by printing the left arm subassembly. We printed the hand, forearm,
upper arm, shoulder, and arm connector. Figure 3.3.1 shows an example of one of these parts, the
upper arm, being printed. However, even when printing in PETG it was clear that FDM printing
was not suited for the complex geometry of the parts. Prints would repeatedly fail and even when
they did succeed, they would have many small imperfections. While the arm was possible to
print using FDM techniques, the torso and legs seemed unlikely to succeed, and each failed print
was only a waste of time.
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Figure 3.3.1: Photograph showing the upper arm being 3D printed in PLA filament

3.3.2 Resin Printing
Due to the challenges of FDM printing these parts, the team decided to print the parts

using a resin printer as the Poppy Project originally designed them for. For this, the team utilized
Elegoo Mars 2 Pro and Elegoo Saturn DLP printers with print areas of 5 in x 3 in x 6 in and 7.55
in x 4.72 in x 7.87 in respectively. The Mars 2 Pro printer is able to print most parts of the Poppy
robot; however, several parts - specifically the torso and the shins - are too large for the relatively
small print volume, which necessitated the purchase of the larger Saturn printer. The team’s
printer set up can be seen in Figure 3.3.2 below.

Figure 3.3.2: Elegoo Mars resin printer (right) and washing/curing machine (left)
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3.4 Using the HerkuleX motors
HerkuleX motors can be controlled directly from the Arduino without further electronics

(see section 7.1). Their 4 wire bus has separate unidirectional communication lines which work
with Arduino input and output pins, while the shared data wire of the Dynamixels requires
additional hardware. Each motor was tested individually to verify its functionality and configure
them with a hexadecimal ID used to communicate with the specific motor on the shared bus.

The standard Arduino HerkuleX library was used for this process, primarily the set_ID
and moveOneAngle functions. The set_ID function sets the motor ID, a value from 0 to 253, that
allows individual motors to be contacted through the shared bus communication lines. Each
motor has a unique ID assigned before installation on the robot. The team also used the function
moveOneAngle, which moves a motor to a given angle over a certain period of time.These
controls are further explained in chapter X This function takes motor ID as a parameter, so
commands can be sent to individual motors.

3.5 Programming Koalby
As the robot was being assembled, the team also started to dedicate resources to writing

code to control Koalby’s mixture of HerkuleX and Dynamixel actuators. This included
understanding how the code for the Poppy project had originally worked and whether it could be
adapted for the Koalby project.

The team used an Arduino Mega 2560 to demonstrate initial motor functionality and
verify successful mechanical design and electrical hardware selection at various levels of
assembly en route to a fully functioning robot. This Arduino also provides an abstract interface
for the Raspberry Pi to communicate with the separate types of smart motors. The Poppy Project
did not use an Arduino because they had a custom electronic control board
(https://www.generationrobots.com/en/402420-carte-pixl.html) that plugged directly into the
GPIO pins on the Raspberry Pi. Koalby uses two separate motor bus systems, and the Arduino
helps translate the Pi commands into messages on the correct bus.

At the same time, the team began to examine the original Poppy project code in hopes of
being able to incorporate this code into the Koalby project, with only minor adjustments to
account for motor changes and geometry adjustments. This proved to be more complicated than
initially anticipated. The first issue they ran into was with inconsistencies between the latest
documentation and the code itself. Tutorials created for the Poppy project and instructions on
setting up the code (https://docs.poppy-project.org/en/programming/python.html) were not
always consistent with how the code worked due to refactoring and renaming that had occured
after the tutorial had been last updated. This was something the team knew could be the case
given the Poppy project is around 7 years old, but the issues still took significant debugging time.

https://www.generationrobots.com/en/402420-carte-pixl.html
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After completing initial code setup and connecting key libraries, the team investigated
how the Poppy code controls the robot. First, the team wanted to understand how humanoid
actions, like moving the arms in planned motions, were implemented. This would be helpful for
using the code itself, or applying the concepts to new code specifically written for Koalby if the
structure of the project was not directly usable. The second goal was to determine how the
specific motors were controlled through the code. Instead of sending commands to motors
directly, the team needed to send all commands to the Arduino, which would relay those to the
appropriate motors due to the combination of using both Dynamixel and HerkuleX motors.

Over the course of a few weeks of study, the team developed an understanding of how the
Poppy project used a system it referred to as primitives to essentially schedule tasks to be done
by the motors. Primitives allow actions to be combined for better control of the robot. A relevant
example of this is the robot walking on uneven terrain. Sensor input would help the robot to
maintain balance, and the primitive system would merge sensor feedback with the original stride
of the robot to adjust for the terrain appropriately.

As the team continued to explore the code, the list of modifications needed in order for
Koalby to work with the code kept growing. It started with an expectation that perhaps the robot
class and a configuration file would need to be changed, and continued to grow with nearly every
class the team examined. Additionally, there were many features the team did not need, such as
the ability to work with a virtual robot, and the other versions of the Poppy project like the
Poppy Torso and Poppy Ergo. These features added complexity, which would make the entire
coding process take longer, or revolved around flexibility to work with other platforms when the
humanoid robot was all that was needed for this project. Direct communication with the
Dynamixel motors is integral to how the Poppy project code works. This direct communication
is not necessary with Koalby’s Arduino-message system since the Arduino can handle all
incoming messages and send them forwards to the appropriate motors. These issues mean that
adapting the Poppy code would take more effort than developing new code from scratch based
on Koalby’s design. The concepts of the code were understood, but implementing the code itself
would take time, so the team instead pivoted to writing their own code specifically for Koalby.
This code would include basic motor communication from the Pi to the Arduino, kinematic
control of the robot, and a primitive system similar to that of the Poppy project. Many features,
such as kinematics, will be inspired by their Poppy implementation. Overall, it will be much
more simplistic than the Poppy code and include room to grow into future projects. This code
development is detailed in section 7.

3.6 Gantt Chart Details
The project can largely be divided into two phases: Preliminary Research and Part

Validation (August-November), and Assembly and Systems Testing (October-May). The first
phase focused on understanding the Poppy Project, acquiring components, and testing
modifications to the project such as FDM printing or HerkuleX motors. In the second phase, the
team built the full humanoid robot, tested it, and made a number of improvements for our end of
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year demonstrations. The team used a Gantt chart (see tables 3.6.1 and 3.6.2 below) to track
progress, prioritize work, and assign tasks over the course of the year.

Table 3.6.1: Gantt Chart for Research and Part Validation

Table 3.6.2: Gantt Chart for Assembly and Systems Testing
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3.7 Term Progress
The Gantt charts above show term progress. The team spent A-term familiarizing itself

with the Poppy Project, purchasing parts, and testing individual components and small substems,
ending by starting work on the complete HerkuleX torso. The team spent B-term building the
first version of Koalby. C-term was used for completing assembly, working on code, and fixing
numerous issues that were found through full robot testing. In D-term, the team readied Koalby
for demonstrations and completed documentation for future groups to take over the project.

3.7.1 A Term - Research and Purchasing
Once the team decided on our goal of reducing the costs of building Poppy, they saw that

the easiest way to do so is to use less expensive motors. Therefore, the first step in A Term was
finding less expensive motors that are comparable to the Dynamixel’s torque and form factor.
Once the team found motors, they ordered some to build one of Poppy’s arms, this way the team
could test that the motors would work as a suitable replacement. This required the team to also
modify the arm so that the new motors could fit.

Research was also done on our other goal, making Koalby battery operated. The team
looked specifically at what voltage and current was needed to operate the motors, and therefore
determined the battery requirements.

While this was taking place, the team also did research on other existing humanoid robots
to see what can be applied to Koalby. Interest was taken specifically in how humanoid robots
walk and in actuated grasping hands. The results of this research can be seen in section 2.

This term ended with the beginning of robot assembly and printing. The team tested
FDM printing (section 3.3.1) alongside Resin printing (section 3.3.2) and assembled prototype
arms with both techniques. Testing was done on these arm prototypes (section 8.1), which
determined the new Herkulex motors are adequate replacements for the original MX-28’s. Once
this was confirmed, the rest of the robot could be redesigned for HerkuleX motors, starting with
the torso. The team printed the torso parts as the redesign was completed.

3.7.2.B Term - Initial Assembly
With the redesign for HerkuleX motors in progress, the team began to assemble the

newly designed torso while continuing to develop the modified legs. During this term, the team
selected batteries for the robot (section 6.1) as the leg redesign added space to install these
batteries in the shins (section 4.2.1).

With the torso assembly concluded, the team began programming the robot (section 3.5).
Here the team began to develop Arduino firmware to control the HerkuleX motors. It was at this
point that the team realized that the existing Poppy code could not be used, and began to rewrite
it for Koalby. As the torso programming continued, the team also worked on completing the leg
redesign and printing the parts to complete assembly in the beginning of C term.
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3.7.3 C Term - Code and Revisions
While C term began with the complete robot being assembled for the first time, assembly

was not the primary focus of this term. Development of the code and the routine testing (section
8.2) that went along with this progress was primarily how time was spent throughout the term.
This was the term where all the final code for the robot was developed including the primitive
manager and the record/replay functionality (section 7). The goal of creating graspable hands
was also addressed this term with the creation and assembly of a simple 1-dof hand (section
4.2.2).

3.7.4 D Term - Finalizing Year’s Progress
D term was the least developmental term of the project with a focus on finalizing the

polished demonstrable robot and documenting all progress for future work to pick up where this
project left off. This term was still key in testing the robot through events like the WPI
TouchTomorrow event (section 8.3) which allowed for battery life to be thoroughly tested.
Additionally, documentation like the assembly instructions (Appendix D) were created
specifically to allow for the project to be recreated and continued both by future WPI teams who
are already planning to continue the work, as well as any other groups who would be interested
in continuing to develop this platform.
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4 Design Changes
This MQP is based on the open source Poppy Project; however, many changes were

made to the project to achieve the team’s goals, as well as when encountering issues in getting
the project to perform as expected. These changes primarily occurred in the areas of design
changes and code changes.

4.1 Design Modifications for HerkuleX
One of the largest goals of the project was to reduce the original ~$7,000 cost of

assembly the Poppy Project required. To accomplish this goal, the team decided to switch away
from the MX-28 motors that the Poppy Project uses and utilize the cheaper HerkuleX DRS-0201.
These motors do not have the same form factor as the original motors, which necessitated a
number of design changes to use these motors. The original and new costs for the robot are
shown in Appendix B.

4.1.1 Motor Adapter
The first change that was made to the design revolved around the motor’s form factor.

The HerkuleX motors are significantly thinner and slightly smaller than the MX-28 motors in
most other dimensions (see Table 3.1.1). This meant they fit in the space previously filled by
MX-28 motors, but their mounting holes do not align with the existing mounting points. To solve
this issue, the team created a motor adapter that mounts to the HerkuleX motors and allows the
motor to be mounted to the robot using the original MX-28 mounting points. This adapter piece
is shown in gray in Figure 4.1.2 and is attached to both sides of the motor. Creating this motor
adapter significantly reduced the time it would have taken to modify the CAD since this
sub-assembly could be used wherever a MX-28 had been used in the original project.

Figure 4.1.1: Two Horn Dynamixel motor
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Figure 4.1.2: HerkuleX Motor CAD with the motor adapter prints attached

This was not the only change needed to substitute the HerkuleX motors. MX-28 motors
utilize a two horn design with one horn on either side of the motor as shown in Figure 4.1.1.
HerkuleX motors only came with one horn. Additionally, the total width from horn to horn on
the MX-28 motors (41mm) was much larger than the HerkuleX motor (~33.5mm). The team
developed a 7.4mm spacer that connects to the other side of the HerkuleX motor to solve both of
these issues. This cylindrical piece can be seen in Figure 4.1.3 and the comparison of its spacing
to that of a MX-28 can be seen in Figure 4.1.4. The spacer has a hole pattern matching that of a
HerkuleX servo horn to support the motor on both sides.

Figure 4.1.3: HerkuleX motor with spacer
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Figure 4.1.4: Comparison of the Spacing of the original MX-28 implementation (left) and the
modified HerkuleX implementation of the spacer (right)

4.1.2 Motor Double Rotation
HerkuleX motors can be installed in place of 19 MX-28 motors with the simple addition

of the adapter and spacer discussed above. However, there are two locations in the torso where
two motors are linked together to allow for rotation on two separate axes. Figure 4.1.5 shows this
assembly and the version created for the HerkuleX motors to accomplish the same functionality.
The middle linking piece length was created to match the positions of the Herkulex motor horns
with the original MX-28 positions. The piece where the spacer is mounted is positioned to give a
2.5mm buffer for a screw to be mounted without scraping the motor itself.

Figure 4.1.5: Comparison of original Dynamixel double rotation assembly (left)
and the HerkuleX version (right)
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4.1.3 Arm
Modifying the individual parts of the robot required much less work due to the motor

adaptor prints. However, the hole patterns for the servo horns had to be modified to match the
hole pattern of the HerkuleX motors. All of these hole patterns had to be converted from the 8
hole design of the MX-28 motors to a 12 hole design. This design change can be seen in Figure
4.1.6. This was the one major change needed to allow a Herkulex motor with an adaptor to
replace an MX-28.

Figure 4.1.6: Comparison of original Dynamixel servo horn hole pattern (left)
and the HerkuleX version (right)

The only other change that needed to be made to accommodate the motors was to check
for interference. While the HerkuleX motors were almost uniformly smaller than their
Dynamixel equivalent, there were a few locations where the HerkuleX motor could run into
issues with interference with the arm itself. Figure 4.1.7 illustrates this with the arm connector
piece that links the upper arm to the shoulder. In this print, the motor interferes with the print
where it is circled in red. This was resolved by creating a cut-out wherever interference was
happening. This interference check had to be performed for each HerkuleX motor added.

Figure 4.1.7: HerkuleX motor interference where the motor is clipping into the print
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4.1.4 Torso
The torso was the next piece that the team redesigned. While it experienced many of the

same small modifications needed for the arm, such as the changes in mounting hole patterns, it
additionally required the removal of the handle from the Poppy torso (shown in blue in the image
below). The original Poppy design included a handle built into the chest piece to allow for Poppy
to be picked up (Figure 4.1.8). However this design did not fit on the resin print bed. This
required the removal of the handle (Figure 4.1.9). With the handle removed, the chest piece was
still too large for the print bed; however, it could be sliced such that a small edge at the bottom of
the servo horn mounting holes was removed while the remaining torso fit on the print bed. This
does not affect the robot’s function, and the chest piece was printed in that configuration.

Figure 4.1.8: Original Poppy Chest Piece with Handle

Figure 4.1.9: Koalby Redesign to fit on print bed

4.1.5 Lower Limbs
The lower limbs of Poppy are made up of the hip and pelvis assembly, thigh, and shin

and foot assembly, all shown in Figure 4.1.10 below.
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Figure 4.1.10: Poppy lower limb assembly.

Modifications to the pelvis assembly were minimal. As with the other parts, the motor
horn attachment holes were modified to match the 12-hole motor horn on the HerkuleX motor.
Additionally, the motor mounting holes for the hip joint needed to be moved in order to have the
motor be at the same height. At the original position, the center of the servo horns had a height
difference of 2.91mm. The HerkuleX motors at the original, incorrect position is shown in Figure
4.1.11 below.

Figure 4.1.11: Incorrect location of the motor mounting holes.

The new locations of the motor mounting holes were determined by making the center of
the servo horns concentric with the center of the circular cutout in the pelvis piece that they are
attached to. The original pelvis assembly and the modified pelvis assembly are shown in Figure
4.1.12 below.
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Figure 4.1.12: Original pelvis assembly (left) and modified pelvis assembly (right)

4.2 Mechanical Additions
In order to accomplish our goals of making Koalby battery powered and giving it

actuating hands, larger additions to his design were required rather than the more modest
redesigns required for motor substitution.

4.2.1 Shin and Foot
In addition to modifying the shin and foot servo horn holes to match the HerkuleX servo

horn, modifications were made to fit a battery in the shin. One goal of the project is to make
Koalby wireless with the use of two 7.4 V batteries (47.5mm x 26.5mm x 140mm batteries). The
team decided that the best place to store the batteries was in the shin since it was the part with the
largest amount of open space. Storing the batteries in the shin also helps to keep the center of
mass lower to the ground. It was calculated that the thigh motors will be strong enough to lift the
legs with the batteries in the shins (shown in Appendix F).

To fit the batteries, we made the shin 30mm taller and 19mm longer (front to back) as
shown in figure 4.2.4. At its current height, the shin is too tall to fit on the DLP printer (shown in
Figure 4.2.1 left), so it was split into two pieces that would be attached (shown in Figure 4.2.1
right).
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Figure 4.2.1: The shin was too tall to fit on the DLP printer (left) so it was split into two pieces
(right).

A battery holding platform and upper stop were added to the shin to keep the battery from
interfering with the motors (shown in Figure 4.2.2).

Figure 4.2.2: Battery platforms in the shin.

With the shin being 19mm longer front to back, the bottom of the shin interfered with the
ankle joint’s upward motion, restricting elevation from the intended 30° to 10°. To improve this,
the bottom of the shin and the top of the foot were both pulled in to decrease interference and
increase the foot’s range of motion. The change in upwards motion is shown in Figure 4.2.3a and
4.2.3b below.
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Figure 4.2.3a: Before modifying the range of
the foot and shin.

Figure 4.2.3b: After modifying the range of
the foot and shin.

With all the modifications, the modified shin is similar to the original, but has increased
height, length, modifications to range of motion, and the split design for batteries. The original
shin and the modified shin can be seen in Figure 4.2.4 below.

Figure 4.2.4: Comparing the original shin (left) to the modified shin (right).
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Modifying the shin’s length meant it did not interact with the thigh as it had previously.
Shown in Figure 4.2.5 below, the top of the shin is 8.48mm too far forward and 5.29mm lower
than the bottom of the thigh.

Figure 4.2.5: Gap between modified shin and original thigh

To fix this, the bottom of the thigh was lengthened by 8.48mm, and brought 5.29mm lower. The
lengthening is shown in Figure 4.2.6a , and the lowering is shown in Figure 4.2.6b.

Figure 4.2.6a: Lengthening the thigh so that it
matches the shin.

Figure 4.2.6b: Lowering the thigh so that it
matches the shin.

4.2.2 Grasping Hands
As a part of the objectives, the team aimed to give Koalby grasping hands. Grasping

hands would increase the capability and applications for Koalby, as he would then be able to pick
up and place objects, more similarly to an industrial robot. While not a part of the official Poppy
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project, a community member created actuating hands and a wrist for Poppy (Figure 4.2.7). The
hand with wrist is made up of 5 Dynamixel XL320 motors.

Figure 4.2.7: Actuating hands on a wrist design for Poppy (reproduced from Sosa (2015))

Since the team only wanted an actuating hand and did not require a wrist, only the hand
portion was reused from the arm above. This creates a 1 DOF hand. Since the hand on the arm
above connects to a motor a part of the wrist, the team created a forearm connector so the hand
can be attached to Koalby’s existing forearm. The hand with forearm connection piece is shown
in Figure 4.2.8 below.

Figure 4.2.8: Actuated hand for Koalby

The team printed and assembled two actuating hands, shown in Figure 4.2.9 below. They
are put together using the OLLO Rivet Set RS-10 that is designed to interface with the motor
horn (https://www.generationrobots.com/en/401870-ollo-rivet-set-rs-10.html).

https://www.generationrobots.com/en/401870-ollo-rivet-set-rs-10.html
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Figure 4.2.9: The assembled actuating hands for Koalby

Due to time constraints, the assembled hands were not attached to Koalby or tested, but they are
able to be used by future projects.

4.3 Electronic Design Changes
In order to have full control of Koalby and to make him more functional, the team needed

to modify the electronics. The team added three batteries and an Arduino Mega 2560 as a second
control board.

4.3.1 Batteries
The original Poppy Project used two 12V power supplies that connected to a wall outlet.

The key design change the team added was two 7.4V 5200mAh batteries (Figure 4.3.1) in the
shins, and one 11.1V 2200mAh battery (Figure 4.3.2) in the head. All three of these batteries use
Lithium Polymer cells. The reason the team chose Lithium Polymer batteries is because they
have a high discharge rate. The 7.4V batteries have a discharge rate of 260 Aand the 11.1V
battery has a discharge rate of 66 A.

Figure 4.3.1: 7.4V 5200mAh Battery (reproduced as is from
https://www.amazon.com/dp/B092CZGW2P/ref=cm_sw_r_cp_api_i_VB839KW2VMXDSXXD

GA2C)
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Figure 4.3.2: 11.1V 2200mAh Battery (reproduced as is from
https://www.amazon.com/dp/B08KD1YN9F?ref_=cm_sw_r_cp_ud_dp_4DS7S8H5P9X01JRT5

0C4)

4.3.2 Control Boards
The original Poppy Project used a Raspberry Pi and a custom built shield

(https://www.generationrobots.com/en/402420-carte-pixl.html) that can be seen in Figure 4.3.3
below. The team was not able to purchase the shield because it had to be shipped internationally.
Since the team could not gain access to this shield, the team decided to use an Arduino Mega
2560  (Figure 4.3.4) with the Dynamixel Shield (Figure 4.3.5). The Arduino Mega 2560 allowed
for both the control of the Herkulex motors and the Dynamixel motors.

Figure 4.3.3: Raspberry Pi (Left), Poppy Shield (Right)

https://www.generationrobots.com/en/402420-carte-pixl.html
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Figure 4.3.4: Arduino Mega 2560 (reproduced as is from
http://store.arduino.cc/products/arduino-mega-2560-rev3)

Figure 4.3.5: Arduino Dynamixel Shield (reproduced as is from
https://www.generationrobots.com/en/403360-dynamixel-shield-for-arduino.html)

http://store.arduino.cc/products/arduino-mega-2560-rev3
https://www.generationrobots.com/en/403360-dynamixel-shield-for-arduino.html
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5 Manufacturing and Assembly
This section looks to expand upon the processes used to physically construct all the

components of the robot and assemble the system together once these are gathered.
Manufacturing of the parts primarily used resin 3D printing, however a few parts were required
to be laser cut out of aluminum. Assembly of the robot itself was done using various fasteners. 

5.1 3D Printing
All structural components used on Koalby were resin DLP printed using the Elegoo

Saturn model of printer. A full list of all printed parts used in the Koalby robot can be found in
appendix F.

Originally, the team used eSun’s hard-tough resin product to ensure that the parts would
not be brittle and could survive wear and tear, stress from the weight of the motors, and any
accidental drops that may occur. After testing with the right arm assembly, it became apparent
that the hard-tough resin was too flexible for some of the thinner parts of the robot, specifically
the shoulder. While the parts would not break, they would bend and flex such that the motors
were put under significant load.

To solve this issue, the team took advantage of one of the benefits of resin printing: ratio
mixing. Multiple resins can be mixed in different ratios to give properties between either of the
two resins. The team used both the hard-tough resin and a hi-temp resin from eSun, with the
latter being much more rigid (specifications for both shown in Table 5.1.1 below). Mixing the
more rigid resin with the tough, but more flexible, resin produces parts that are suitably rigid
while also being strong enough to not easily break.

Table 5.1.1: Properties of hard-tough and hi-temp resin

Resin Shore Hardness Tensile Strength (MPa) Flexural Strength (MPa)

Hard-tough 81
(Hard-tough resin
__blue: Esun 3D
printing materials)

50-60
(Know Your Materials: SLA
Tough Resin: Fast Radius
2022)

70-80
(Know Your Materials: SLA
Tough Resin: Fast Radius
2022)

Hi-temp 82-84
(High temp resin)

70-85
(High temp resin)

95-105
(High temp resin)

All of the redesigned parts of the Koalby robot were first sliced using the Chitubox
software provided with the printers, and then printed on print beds laid out for minimized print
times. This meant arranging parts such that as many smaller parts could fit on the same bed as a
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larger print. For example, a print bed containing one of Koalby’s entire arms is shown in figure
5.1.1 below.

Figure 5.1.1: Right arm print bed layout in Chitubox software

The curing parameters for all prints were the same, except for the head, for which the
support density was raised to 60%. The support parameters are shown in Figure 5.1.2 and the
curing parameters are shown in Figure 5.1.3 below.
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Figure 5.1.2: DLP Chitubox Support Parameters

Figure 5.1.3: DLP Chitubox Curing Parameters

5.2 Laser Cutting
The MX-64 motors use a separately purchased servo horn (HN05-N102,

www.robotis.us/hn05-n102-set/) which costs $11.90. Originally, the group 3D printed a
substitute (Figure 5.2.1), but it was too brittle to work reliably (see section 8.2). This part has a
relatively simple geometry, so the group had our own version laser cut to save money and
shipping time. Figure 5.2.2 shows the original servo horn.

http://www.robotis.us/hn05-n102-set/
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Figure 5.2.1: 3D printed Servo Horn

Figure 5.2.2: HN05-N102 MX-64 servo horn

The geometry of this servo horn is not entirely 2-dimensional, as it features a raised
washer-like extrusion to house a screw which holds the horn in place. In order to manufacture the
servo horn more cheaply, that raised section was omitted, and instead the central screw holds the
horn in place with a washer. The 2D geometry is shown below in Figure 5.2.3.
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Figure 5.2.3: Koalby aluminum Servo horn

This servo horn was ordered from SendCutSend (sendcutsend.com), which can
manufacture 2 dimensional parts from a wide range of materials. The team had the part laser cut
from ⅛ inch thick 7075 aluminum, and ordered 14 for a unit cost of $2.21, less than 20% the cost
of the original servo horn.

5.3 Assembly
Koalby is assembled using 3D printed components, 19 HerkuleX motors, 6 Dynamixel

motors of several types, and several hundred M2-M3 fasteners. Full assembly (see instructions in
Appendix D) takes approximately 20 hours excluding part print time. The general process
requires setting up each motor with the required adaptors and spacers, then attaching the motors
to the main body parts. Each main piece is connected to the motors via four M2 screws, where
each piece is either at the rotation axis or at the motor mounting points. The total hardware cost
of the system is around $4200, reduced from the $7000 Poppy Project. Costs are detailed in
Appendix B.

http://sendcutsend.com/
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6 Electronics
Koalby’s electronics differ significantly from the base Poppy Project. With Koalby,

power is distributed to motors and the control system from onboard batteries instead of a wall
tether, like Poppy. Additionally, the control wiring runs signals to the Arduino from the separate
HerkuleX and Dynamixel bus systems. This section will discuss how the electronics of Koalby
are configured and how they control the robot.

6.1 Electrical Power
The original Poppy project was powered from a 120V AC wall outlet through a 12V DC

converter. This configuration restricts motion by requiring a tether to the wall so the team
decided to power Koalby with two 7.4V and one 11.1V lithium polymer batteries instead. The
two 7.4V batteries have a capacity of 5200mAh and contain two cells. The third 11.1V battery
has a capacity of 2200 mAh with three cells. These batteries can be seen below in Figure 6.1.1.

Figure 6.1.1: The batteries used in Koalby

Since Koalby uses two different motors with different operating voltages, the battery
pack needs to supply both 7.4V and 14V. To achieve this, the two 7.4V batteries were put in
parallel to power the Herkluex motors (which can run on anywhere from 6 to 9 V), Raspberry Pi
4, and Arduino Mega. The Arduino Mega has an integrated voltage regulator, so it can be
powered directly from the 7.4V batteries. In contrast, the Raspberry Pi does not have a voltage
regulator. Hence, Koalby uses a LM7805CV Linear voltage regulator to power the Raspberry Pi.
This regulator supplies up to 1.8A and is sufficient for the Raspberry Pi, which needs 1.6A to
operate.  In order to achieve 11.1V, the third 11.1V battery is used to power the Dynamixel
motors. The wiring configuration can be seen below in Figure 6.1.2.
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Figure 6.1.2: Power Electronic Schematic

6.2 Electronic Control
Poppy was designed using entirely Dynamixel motors. In the Poppy robot, these motors

were connected directly to the Raspberry Pi via a custom built PCB that connected directly to the
GPIO pins. This architecture is shown in  Figure 6.2.1. This board is not easily available in the
United States and the HerkuleX motors use a different four wire bus standard than the three wire
Dynamixel setup. The team redesigned the electronics for Koalby to support multiple motor bus
systems.

Figure 6.2.1: Poppy Electronics Setup
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The team decided to add an Arduino in place of the smaller adaptor board. Using a
microcontroller means that messages from the Raspberry Pi can be interpreted and set to the
relevant motor bus. HerkuleX motors can be controlled directly from the Arduino, while
Dynamixel motors require an additional shield. The Raspberry Pi will be responsible for the
same high level control it is in the Poppy architecture, while offloading some of the motor
control to the Arduino microcontroller. The full design structure is shown below in Figure 6.2.2.

Figure 6.2.2: Koalby Electronics Setup

This new electronics setup will require additional space to store the relatively large
Arduino, which cannot fit in the original Poppy head (Figure 6.2.3a) alongside the Raspberry Pi.
An alternative design for the head was developed to contain Koalby’s larger electronics. The new
head design (Figure 6.2.3b) is based around the maximum print size of the Elegoo Mars 3D
printer, giving it a boxy shape. This head design provides significant internal volume, and is able
to comfortably store the Arduino and Dynamixel shield, the Raspberry Pi, and the small 11.1V
Dynamixel battery, as shown in Figure 6.2.4 below.

Figure 6.2.3a: Poppy EVE head Figure 6.2.3b: Koalby’s Modified Head
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Figure 6.2.4: Internals of Koalby’s Modified Head

This requires that the underlying firmware running on the Pi be changed to support
communication with the Arduino rather than the Dynamixel motors directly. The Arduino will
listen for serial communication from the Raspberry Pi over USB, and interpret those messages to
communicate with the correct motors. This abstracts the specific motor type from the perspective
of the Raspberry Pi, as the Arduino will select the motor (type and address) to communicate with
based on an assigned identifier agreed upon with the Raspberry Pi - this identifier can remain
constant even if the physical motor is changed in any way - such as its bus ID being reset or even
being replaced by another motor.

Serial communication is accomplished via a USB-serial adaptor. This is necessary
because the Arduino uses the Serial pins for the USB port. The Dynamixel shield is designed for
the Arduino Uno, which features only 1 serial port, and as such is restricted to using Serial,
disabling the USB port. The adapter connects pins from the Raspberry Pi’s USB port to the
Serial2 pins of the Arduino, as the separate serial lines can be used simultaneously to allow for
communication with different devices.
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Figure 6.2.5: Koalby Arduino Serial Port Usage

In total, the Arduino uses 3 of its 4 serial ports (Figure 6.2.5). Serial is used for the
Dynamixel Shield. The shield attaches to the top of the Arduino, and contains circuits to
combine the separate TX and RX pins of the serial port into a single signal pin for the 3-wire
Dynamixel bus. The HerkuleX motors use the Serial1 pins. These motors use a 4-wire bus
with 2 signal pins, and as such they connect directly to the Arduino TX/RX without needing any
adaptor circuitry. Serial2 is used for communication with the Pi through the adapter, and the
Arduino listens on this port for communication during regular operation.
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7 Coding
Koalby’s code is made up of two components: low level Arduino firmware and high

level RaspberryPi control code. The Arduino code, in C++, interfaces directly with the motors,
controlling them with signals through its serial ports. The Raspberry Pi code, in Python,
communicates with the Arduino and performs high level tasks by sending a sequence of
commands.

7.1 Arduino Firmware
The Arduino code is based around a two part continuous loop. In each iteration, it first

checks the serial buffer for communication from the Pi, and then performs any maintenance
tasks. If no command is available, the state machine loops again rather than continuing to wait.
This ensures that any tasks in the maintenance part of the loop are executed regularly, even if the
robot is idle.

Commands are sent in a comma separated integer format. The first parameter is the
command. These numbers are specified in an enum in the firmware. The available commands are
shown in Table 7.1.1 below.

Table 7.1.1: Koalby Commands

Command Number Additional
Parameters

Description

Init 1 0 Initialize all motors, move them to home positions

GetPosition 5 1 Return position of the motor, normalize to 0-100
range

SetPosition 10 2 Set position of the motor to a given value,
normalize to 0-100 range

SetPositionT 11 3 Move the motor to a given value in 0-100 range,
take the specified amount of time to travel there

ArmMirror 15 1 Right arm is disabled, left arm moves to a position
based on where the user moves the robot’s right
arm. This is primarily a proof of concept and will
be housed on the Pi in the final version

SetTorque 20 2 Set the torque of a motor to either on or off

SetCompliant 21 2 Sets the motor to either normal or compliant mode

Shutdown 100 0 Disable all motors
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Each of these commands takes a variable number of parameters. Once the command is
received, the Arduino waits for the correct number of values to be passed in before continuing. In
typical usage, the Pi will send the entire command at once, and delay will be negligible. If this
were not the case, this waiting would disrupt maintenance tasks. Because both the Pi and
Arduino are being programmed together, this system can work with the Pi responsible for
sending data in a single message instead of sending partial commands. This reduces the need for
error checking of input data.

The init command is sent by the Pi on startup, or when resetting from a failure state. It
takes no parameters, as the Arduino motor definitions contain the data required to initialize each
motor. This replaces much of Poppy’s python motor definition and initialization process.

The GetPosition command returns the position of a given motor. It takes one parameter,
the motor’s communication ID. It returns the motor’s position. This is mapped to a 0-100 integer
value, with 0 and 100 as the limits of the joint’s motion. The range can be variable, so the Pi
holds a list of motor limits in terms of angle from a certain reference, and translates that to the
0-100 value. This communication value is useful as motors are not always zeroed to a logical
position. By storing the actual motor values on the Arduino and the limits in reasonable real
world terms on the Pi, this intermediate value translates easily between the two.

The SetPosition command takes two parameters, motor communication ID, and target
position. The target position is in the same 0-100 range as GetPosition, and the motor moves to
that position at a default speed set so that the motion will take one second. The SetPositionT
command functions just like SetPosition, but it has an additional parameter to set the time of
motion in milliseconds.

The ArmMirror command maps the values read from one arm’s motors to the other. The
right arm motors are disabled, so that they move freely. The left arm motors are set to positions
calculated by reading the right motor positions and mapping between their respective limits. This
command will be located on the Pi in the future, however its presence allows for testing key
features of the Arduino code, including ensuring the state machine can perform regular updates
while dealing with other commands.

The SetTorque command sets the torque of a motor to on or off. When on, the internal
controller of the motor will actively maintain the desired position. When torque is off, the motor
rotates freely.

The SetComplaint command allows motors to be manipulated without letting them be
moved by gravity the way disabling torque would allow. The Dynamixels support this feature
natively, but the HerkuleX’s do not. The Arduino uses a pulse width modulation (PWM) based
approach to simulate this. With PWM, the motors are turned on and off intermittently at a high
frequency to provide an illusion of fractional torque. For example, a motor on half the time and
off the other half behaves as though it is at half of its maximum torque output. Each compliant
motor is added to a set of motor IDs. During every iteration of the control loop, the motor has its
target position set to the current position. This means that when displaced, the motors will hold at
the new position instead of returning to their original position. In order to reduce the torque
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required to move the motor, the motor’s torque is turned off for some iterations of the loop, and
on for others. As the loop executes rapidly, it creates the illusion of reduced but constant motor
torque.

The Pi code utilizes these basic commands to translate high level processing into simple
discrete steps, which are sent to the Arduino which directs motors to perform those discrete steps
while the Pi performs high level processing.

Motors are stored in an array of structs. Each motor struct contains the information that
the Arduino needs to translate the commands from the Pi into messages on the motor bus. Table
7.1.2 shows the content of each motor struct.

Table 7.1.2: Koalby Motor Definitions

Parameter Description

Communication number
(implicit from the array)

The number used by the Pi to indicate which motor to access.
This is the index in the array of that motor, and does not
inherently relate to its hexID. It is unique

HexID The motor ID, a hexadecimal number. This can be duplicated,
where the same ID is used for a HerkuleX and Dynamixel

MinPos Minimum angle of the motor, corresponds to a 0 command

MaxPos Maximum angle of the motor, corresponds to a 100 command

HomePos Home position of the motor, used during initialization

Type Type of the motor, HerkuleX or Dynamixel. This allows the
Arduino to send commands on the correct motor bus

Each motor has a unique communication identifier assigned to it. This corresponds to the
index in the motor array, and as such it is sequential starting at 0. These are referenced by the Pi
when sending commands directed to specific motors. When the Arduino receives the command,
it retrieves the motor’s data from the struct in that motor array.

The HexID is the address assigned to the motor itself. This is the value used by the
Arduino when sending commands to the motor. This is a separate value from the communication
ID because of the separate bus systems. The messages to HerkuleX and Dynamixel motors are
sent on their respective buses, and because of this, a HerkuleX motor and a Dynamixel motor can
share the same hexadecimal ID number without conflict. To avoid this ambiguity of which motor
is being referenced by the hexadecimal ID, the Pi refers to motors using a unique communication
ID. The Arduino can then use this ID to look up the motor information, which includes both the
motor’s address and its type, which is sufficient to uniquely identify a motor. This also allows for
motors to be replaced by new motors using different addresses without changing the Pi code.
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The motor limits are often unintuitive as the HerkuleX motors have no clear way to
visually determine them. To account for this, all communication between the Pi and the Arduino
treats the motor position as a value from 0-100. MinPos and MaxPos are the encoder angles of
the motor’s minimum and maximum range of motion. These limits define the “0” and “100”
positions respectively. HomePos is also an angle reading, but corresponds to the motor’s
initialization position. Often this is halfway between the motor limits, but in many cases it is not.

The final value in the struct is the motor type. This can be either HerkuleX or Dynamixel
and is used by the Arduino to determine how to communicate with the motor. This could be
modified to support an arbitrary number of actuator types by adding values to this field. For
instance, if the hand is controlled by small hobby servos, these could be added to the same motor
array and treated as any other motor, even though their actual behavior and control mechanisms
are significantly different.

7.2 Python Control Code
The Raspberry Pi code can be described by a few subsections. The first was the basic

communication between the PI and the Arduino. Setting this up allowed for any high level code
or sensors running on the PI to affect the motors connected to the Arduino, and the PI to get
readings from the Arduino on motor values. The second subsection of the code was establishing
the kinematics of the robot in the code. By doing this, certain functionalities would become
simpler to implement, especially any high complexity motions in the future. The third and last
subsection the code can be divided into is the primitive system that the team worked to replicate
from the Poppy project. This system would enable the scheduling and combining of commands
just like in the Poppy project, which would be important for tasks like self-balanced walking if
any future projects wish to expand upon what has been done with Koalby thus far.

7.2.1 Pi/Arduino Communication
In order for Koalby’s Raspberry Pi 4B to communicate with the Arduino, it must be

plugged in with a serial usb cable. This requires the Raspberry Pi 4B to physically be on the
robot, which poses a problem for communication between Koalby and a user’s computer. The
original Poppy used a custom operating system with a Wi-Fi enabled hotspot that controlled the
robot. The team decided instead, it was best to set up a Wi-Fi hotspot and use a standard
operating system for the Raspberry Pi on Koalby. This would allow Python scripts to run directly
on Koalby’s Raspberry Pi 4B and would not require a custom human machine interface for
controlling the robot. The full setup instructions for the Raspberry Pi can be found in
Appendix E.

The first problem the team needed to solve was creating a Wi-Fi hotspot. The easiest way
to have a Wi-Fi hotspot would have been to buy an inexpensive router and connect devices to it.
Instead, the team used a second Raspberry Pi 3B+ as a hotspot because this route was more cost
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effective, only costing the team another $30 for the Pi. Additionally, using a second Pi as a
hotspot was more time effective too because we used an existing Raspberry Pi hotspot OS to
quickly set it up. Using the Linux hostapd (https://packages.debian.org/stretch/hostapd) and
dnsmasq (https://launchpad.net/ubuntu/+source/dnsmasq) packages , the team was able to
configure a Raspberry Pi 3B+ to act as a hotspot. For a website interface, the team used the
RaspAP hotspot software (https://raspap.com/). The website interface can be seen in Figure 7.2.1
below.

Figure 7.2.1: Raspberry Pi 3B+ RaspAP Website Interface

Once the team had the hotspot setup, the team needed to create a way to remotely control
the Raspberry Pi 4B with our computers. To do this, the team used a virtual network computing
(VNC) software called VNC Viewer (https://www.realvnc.com/en/). VNC Viewer is a
cross-platform screen sharing system that was created to remotely control another computer. The
VNC Viewer software interface controlling the Raspberry Pi 4B running on a MacOS computer
can be seen in Figure 7.2.2 below.

https://packages.debian.org/stretch/hostapd
https://launchpad.net/ubuntu/+source/dnsmasq
https://raspap.com/
https://www.realvnc.com/en/
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Figure 7.2.2: VNC Viewer running on Raspberry Pi 4B

7.2.2 Robot Kinematics
Precise control of multiple degree of freedom robots depends on knowing the kinematics

of each joint chain. The complex math required by kinematics can be simplified by code. The
team studied how the Poppy project implemented kinematics and found that they were contained
in the library ikpy. This library calculates both forward and inverse kinematics automatically, and
was built to integrate with the Poppy code. The team was not using the Poppy codebase due to its
unnecessary complexity and poor documentation, but the similar structure of the team’s new
code should have been able to integrate with this library. Any classes that the library would call
for were already being implemented in the structure of the new Koalby code.

This meant that the biggest changes would come in the URDF file and the Robot class.
The URDF file defines the relative dimensions and orientations of each joint. Using a URDF file,
the inverse kinematics generate all the Denavit–Hartenberg (DH) parameters used for forward
and inverse kinematics. This URDF file would just need updated joint locations according to any
changes in lengths due to the remodeling for HerkuleX motors.

The Robot class is important to the kinematics because it is where the kinematic chains
are created. For example, one chain might be the left arm chain of the forearm, upper arm, arm
connector, and shoulder as the links, and the motors between these points as the joints. These
chains are created through the URDF file and functions in the ikpy library, but the declarations
for the chains are in the robot class for any other classes to reference and use in the future.

The team did, however, run into an issue when working to implement this library. When
generating the forward and inverse kinematics on the robot, the code would return an invalid
division error within the scipy.optimize.minimize() function. Looking into this error, the team
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found that code that worked on scipy version 1.4.x may sometimes error on version 1.5.x and
this error code was a sign of this being the case. This meant that the code that originally had
worked for the Poppy project kinematics would no longer work on the latest versions without
modification. Given the time spent on this issue, and the future work, it would require to either
rewrite the code to get around this new error, or create inverse kinematics code from scratch, the
team decided it was best to shelve this feature for future work in order to accomplish more the
pressing goals of the project.

7.2.3 Koalby Primitive System
The Poppy project implements a control system called a primitive manager. Looking

further into the code, the team worked out how this primitive manager and primitives system
worked. The original Poppy creators had implemented the system to quickly merge commands
through a multi-threaded queue. The primitive system works as a kind of interceptor for any
command sent to the robot. Whenever a command, like setting a motor to a position, is sent to
the robot through a primitive, the primitive manager logs it in a queue instead of sending it
directly to the robot. Once in the queue, it will then merge the command with other commands of
like-type that are in the queue at the same time, averaging their values for a merged output that
gets sent to the robot. This output value can be changed based on the merging filter set, which in
the original code is an average of all queued values. In practice, an example may be that one
primitive tells the robot to walk forward without any sensor input, moving the joints to
predetermined points. Simultaneously, another primitive reads in pressure sensor data from the
feet and tells the robot to move the left leg to a certain position to maintain balance. These two
sets of motor positions would then be caught by the primitive manager and merged such that the
actual position that the robot moves its left leg to is an average between the two positions,
allowing it to rebalance, but still move forward. The team originally speculated that this system
was implemented by the creators to help with position corrections while walking, however, the
primitive manager could be useful for any merging behaviors.

The team began editing the original primitive system to work for the new Koalby library.
First, much of the original code could be trimmed down to remove anything pertaining to direct
dynamixel control, then edits were begun to update methods such as gotoposition() and
setgoalspeed(). After the basic edits were made, the team began to work to change the
MockupMotor and MockupRobot classes that are used to contain the fake motor data used to
allow queuing.

At this point, the team realized that it may be easier to trim down the primitive manager.
This new version would be a class that would similarly run a queue of values to be merged and
would have the ability to be toggled on or off. However, this new class would not need to
implement the MockupMotor or MockupRobot classes as it could set values to motors without
actually sending them to the robot through the Arduino. This would simplify the system to a
timed queuing dictionary that updates the physical robot over a predetermined time interval with
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the merged values from anything queued during that time. This could be separated into motors
and sensors as two separate dictionaries to allow for future changes.

In implementation, Koalby’s primitive manager was made to merge the dictionaries of
multiple different motion primitives to output a final filtered value, which was an average of all
input values in this case, that would then be sent to the physical robot. Each individual primitive
class inherits the basic primitive fields from a KoalbyPrimitive class. These fields are the motor
dictionary of all relevant motors and their positions for that primitive motion, all sensor indexes
and their values, and an isActive boolean value that can be used to enable or disable individual
primitives from the robot class.

When in use, Koalby runs multiple threads, including one thread per primitive running, a
thread for the primitive manager update cycle, and a master thread. Koalby’s primitive manager
update method then references all active primitives, reads their motor dictionaries, and then
merges those values and sends them to the physical robot. This can be seen in Figure 7.2.3
below.

Figure 7.2.3:  Flowchart of the Primitive Manager

7.2.4 Record / Replay Primitive
The most useful primitive the team developed was the record/replay primitive. This

primitive consisted of two main parts: the recordMotion method and the playMotion method.
The recordMotion method is a utility method used for recording animated pose-based

motions and is not run through the primitive manager. To achieve this, recordMotion first
requests a user input of the number of poses to be recorded in a motion set. It then sets all motors
on the robot to compliance so that the user may move joints freely. From this point on, the
method runs a loop that awaits user input on each run through. When the user has posed the
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robot in the desired position, they type any integer into the console and hit enter. The method
will then read all motors on the robot at this position and log them into a motors dictionary that is
added to a list of poses. This process is then repeated for all subsequent poses until the entered
pose number has been met. At this point, the method will then ask for a desired file name input,
parse the list of motor dictionaries into a CSV file format, and save this CSV file for later
playback. Poses from of these recorded motions, the wave and handsOnKnees motions, are
showin in figures 7.2.4a and 7.2.4b below.

Figure 7.2.4a: Recorded wave Motion Figure 7.2.4b: Recorded handsOnKnees Motion

The playMotion method is a primitive method which is meant to be run using the
primitive manager system. The method will first request three inputs: a file name, a pose time,
and a pose delay. Pose time refers to the time of which the robot will spend moving from one
pose to the next (i.e. speed of motion), whereas the pose delay refers to the time the robot will
wait in between motions. Once these inputs have been received, playMotion will then parse the
CSV file requested into a list of motor dictionaries, and then send each motor dictionary to the
primitive manager at the desired times with the desired speeds. There are currently two main use
files for this method: ReplayPlay and ReplayPlayLoop. When run, ReplayPlay will request the
filename, pose time, and pose delay, then play the requested motion a single time. It will then
request the inputs again and wait until they have been given to play the next motion. This is for
single action motions, such as the dab motion. Alternatively, ReplayPlayLoop can be used to
play motions with a number of iterations. When run, filename, pose time, and pose delay inputs
will be requested as before, but now a number of iterations will also be requested. The number of
iterations will determine how many times the robot will play through a motion with the same
parameters before asking for a new set of inputs. Videos of the motions developed using this
method can be found in Appendix H.

7.2.5 Multi-Threading and Test Files
The original Poppy project had a library called pypot that had three files for

multithreading. These multithreading files were very complicated as Poppy had the ability to
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start and stop different threads. Initially, the team decided we were not going to use
multithreading as it added complexity to the project, but later decided we needed to use it.

In Python, multithreading works by creating a function that loops forever and then having
a thread point to that function to run it forever. The issue with this is that once a thread is
stopped, the program cannot restart a thread. The way used to get around this issue was to have
each primitive either active or not. This allowed a thread to keep looping, but have the code
inside be skipped if not needed. Initially this method worked. Since the primitive manager
needed to update as fast as possible it was on its own thread. Consequently, every other primitive
needed to be in its own thread. The problem with this solution is that once more than 3-4 threads
were running, the code started to visibly slow down because the hardware could not keep up with
the tasks running. For demonstration, the test files created would have one thread for the
primitive manager and then one thread for the primitive.

In order to fix the problem with multiple threads, a stoppable thread class needs to be
created to create a new thread when a primitive is activated and then stop it when the primitive is
turned off. This was done in the pypot library, and should be mimicked for future work.

7.2.6 User Interface
Since the original Poppy project had a user interface that was built into the operating

system on the Raspberry Pi, the team decided it would be useful to create a basic user interface
in Python. The team wanted the user interface to start and stop primitives as well as initialize and
shutdown the robot. The team used the Tkinter Python package
(https://docs.python.org/3/library/tkinter.html) to design the user interface. The user interface
had one main window with multiple buttons on it. The user interface can be seen in Figure 7.2.5.

Figure 7.2.5: User Interface Design

Each of the buttons on the user interface would allow a function to start when it was
pressed. When the main test file started, it would trigger each of the threads to start. Then, the
user interface thread would wait for input and trigger the boolean of another primitive’s thread to

https://docs.python.org/3/library/tkinter.html


Section 7: Coding 63

start. Finally, the primitive manager thread would take the calculated motor dictionaries and send
it to the robot. This allowed each button to control a boolean in a thread to start and stop
primitives. The control logic can be seen in Figure 7.2.6.

The control logic shows the main script with the “Main” block. This then starts the “User
Interface Thread”, “Dance Thread”, and “Replay Thread”. The “User Interface Thread” has the
buttons and text for the user interface. The “Dance Thread” is running the dance method from
dance.py. The “Replay Thread” is running the replay functions from replay.py. Both the “Dance
Thread” and “Replay Thread” communicate to the “Primitive Manager” what motors need to
move with the robot dictionary.

Figure 7.2.6: User Interface Flowchart
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8 Testing
Testing for Koalby was conducted through planned testing sessions, code

implementation, and full demos of the system. Testing in these methods both exposed Koalby to
calculated loads as well as typical usage which helped diagnose and fix any issues with the
system and solidify the constraints of the system. 

8.1 Arm Testing
The team first tested the right arm. This was the first sub-system constructed, and the

goals of testing were to figure out the capabilities of the motors and the code controlling the
system. The first tests included a motion test and a load test.

The motion test was primarily a test of the code to ensure motors could be controlled to
move to desired positions consistently, and to ensure the range of motion of the system was as
expected. To accomplish this test, the team designed a simple wave motion where the robot
would raise its arm from its side and perform a wave three times before restarting the cycle.
Setting the positions all the motors should move to took a significant amount of time because
each motor had a unique range of motion and values it could move to. This meant each position
was a trial and error process to code in. Performing this test helped the team determine that it
would be important to simplify the code by constraining all motor movements to a mapped range
of values as was further discussed in section 7.1. By mapping the motion in this way, the high
level code does not need to know the specific encoder values that each motor is rotating to, but
only needs to know where in a motors range it should move to. This is something that would
have simplified motion testing. Additionally, motion testing also showed the team that a method
of recording positions and all the encoder values that make up a position would be extremely
valuable to rapidly developing motions. This feature was later added and is discussed in section
7.2.4.

Load testing was conducted in a far more empirical manner. The team attached a small
bottle to a piece of rope and attached that rope through the weight saving holes in Koalby’s
middle finger. The bottle was filled with water to specific weights, which varied and were
recorded for each test. Koalby was then to lift his arm sideways and bring his arm upward,
moving only his shoulder for a total rotation of 130°. Once the maximum point was reached,
Koalby would lower his arm and repeat the test. This setup can be seen in Figure 8.1.1 below.
Through this testing, it was found that Koalby could easily lift up to ~175g without issue.
However, when reaching 200g, the arm would begin to stall at around 100° of motion. When the
HerkuleX motors stalled, they disconnected immediately, so the angle was recorded visually.
This testing also revealed that the HerkuleX motors are prone to stalling more frequently after
constant use under high load conditions. Overall though, this testing was a positive sign for the
robot and the goals of the project. Specifically, the goal of adding graspable hands was directly
impacted by this testing. This testing proved that the robot could lift objects if it only had a
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method of grabbing them. However that method would have to be lightweight and likely simple
to maximize the weight of objects that Koalby could pick up. This is what led to the development
of a simple 1-dof grasping hand as explained in section 4.2.2.

Figure 8.1.1: Weight Testing of Right Arm at ~150 grams

8.2 Routine Testing
While the first tests were conducted as a structured testing session, most of the remaining

testing during the project was conducted naturally while developing code and testing it on the
robot. The code development process is detailed more in section 3.5 and section 7; however, this
testing also helped test mechanical aspects of the system.

One of the first issues revealed through routine use of the robot was failure of the printed
parts at hardware mounting points, as shown in Figure 8.2.1 below. Often when only two screws
were securing a printed part to a motor, the part would snap due to the unevenly distributed loads
at the mounting points. While printed parts are fairly simple and inexpensive to replace, the time
cost would delay testing and would come at unexpected times. If this happened right before a
demonstration of the robot, it could cripple the functionality. This issue was resolved by ensuring
four evenly distributed screws held all printed parts together instead of the two that originally
were put in place. Testing with four screws proved the life cycle of these parts was more than
sufficient as none have broken since implementing this change. This has included lasting through
the bulk of motion development and all robot demonstrations.
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Figure 8.2.1: Broken hip print due to unusual torquing of the leg

Another part that proved insufficient to handle typical robot loads was a printed version
of the Dynamixel servo horn detailed in section 5.2. The team wanted to minimize robot cost,
and printing these horns was the least expensive option. However, these horns quickly proved
insufficient. When working to initialize Dynamixel MX-64 control, bugs in the code caused the
motors to jerk to their physical limits. Every time this happened, the printed servo horns would
snap. While this action is technically an action the robot should not perform under normal
circumstances, bugs in development will happen. It would be acceptable if these parts broke
occasionally when experiencing atypical motion, but for them to break every single time
indicated that they were not suited for a developing system. This is what led to the laser cut
option explained in section 5.2.

Routine testing also revealed the importance of wire management. Wires that were routed
through joints out of convenience or lack of attention proved to be problematic when running
repetitive motions of those joints. The wires would rub and grind against the printed parts, which
would damage the wire insulation. Without insulation, the wires were prone to shorting, causing
damage to the electrical systems of the robot. These shorts would cause large delays and costs
while electronics had to be replaced throughout the robot. By carefully routing wires away from
rotating joints and building in sufficient slack, as shown in figures Figure 8.2.2a and Figure
8.2.2b, the robot is able to operate without risk of damaging any electronics.
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Figure 8.2.2a: Before Image of Faulty Wiring Figure 8.2.2b: After Image of Full Rewire

8.3 Battery Endurance Testing (TouchTomorow)
While routine testing allowed the physical endurance of parts to be tested, the team

needed an extended demonstration to test the endurance of the batteries. The TouchTomorrow
event hosted by Worcester Polytechnic Institute (WPI) gave the perfect opportunity for such
testing. This event ran for roughly 7 hours and the robot would need to be running continuously
as a constant stream of people wandered by and approached the team to learn more about the
project. Originally the Poppy project had operated with the use of a powered tether which would
of course have no issues with an event such as this. However, one of the major goals of the
project had been to eliminate that tether through the use of onboard batteries. The untethered
approach primarily extends the walking applications of Koalby in the future by avoiding the need
to operate only in precise locations. However, for these batteries to truly be a worthwhile
improvement, they also would need to provide power over an extended period of time like the
TouchTomorrow demo. The team set a goal of one set of batteries lasting at least half of the
event. This would mean that for the robot to operate through the entire event, it would only need
to swap batteries once. For longer events one set of batteries could always be charging while
another was in use for theoretically unlimited use. Previous routine testing had lasted only a
maximum of around two hours, so for this event to be a success the batteries would need to last
nearly double their previously demonstrated capability.

The batteries proved a success. Koalby ran continuously throughout the event doing a
combination of dancing, waving, marching, and shaking hands until the first set of batteries
began to die at around the four hour mark. With this testing complete, the team was able to
confidently compare between a tethered and untethered system in regards to their operating
capabilities.
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9 Discussion
In this chapter, the original project goals will be reviewed, followed by discussions on

mechanical design, construction of the robot, Koalby’s battery power capabilities, the overall
cost reduction achieved by the team, Koalby’s abilities with respect to walking, and Koalby’s
abilities with respect to grasping objects. In addition, all demonstrations by the team and Koalby
will be reviewed, highlighting core learning moments gained from each.

9.1 Goals
The goals of this project were to:

● Construct a full humanoid robot based on the Poppy Project
● Reduce total cost by selecting less expensive components
● Power Koalby from onboard batteries
● Give Koalby the ability to walk on its own
● Give Koalby the ability to grasp objects

9.2 Mechanical Design and Construction of the Robot
The goal of constructing a full humanoid robot based on the Poppy Project was achieved.

Parts were taken from the open source Poppy project and modified to fit our needs. A majority of
modifications came from the implementation of different motors, requiring a motor bracket to be
designed and implemented into the assembly. Modifications included lengthening and widening
the shins to fit the batteries, and splitting the shin so that batteries could fit inside it, discussed in
section 4.2.1. Some difficulties were faced when modifying the existing parts as not all
modifications worked well with the parts’ designs. One example is the thigh. Due to constraints
within the printer’s bed size (Elegoo Mars), the thigh was too tall to be printed on it. The team
tried modifying the thigh so it could be printed in two pieces. Since this part has a bend feature in
its design, modifications to it would either be bent and warped, or would not be allowed by
Solidworks due to the part geometry. Since splitting the thigh into two pieces would not be
possible, the thigh needed to be printed on a taller printer (Elegoo Saturn).

Robot assembly was successful. However, testing revealed many areas of the assembly
process that could be improved. The first version of Koalby was assembled as quickly as
possible to enable testing. Due to a shortage of fasteners, the team secured parts initially with
only 2 screws instead of the 4 detailed in section 5.3 and Appendix D to avoid delaying testing
while waiting for parts to ship. With only two screws, stress concentrated at specific points,
causing parts to fail and snap. As a result, the team later dedicated a week to a complete
disassembly and reassembly to install the correct number of fasteners. With this new standard,
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the parts are held up through all remaining testing and demos without issue, and the four screw
requirement is defined in all documentation.

Another challenge with the assembly is with wiring the motors. The Poppy Project parts
were designed for Dynamixel motors with ports located on their sides. HerkuleX motors instead
have ports on the rear of the motor case, which were sometimes difficult to install or resulted in
wires running dangerously close to joints. To resolve this, some wires had to be connected to the
motors before the motors were installed in the printed frame as they were inaccessible after
installation.

It also was important to route these wires away from rotating joints. During testing, a
wire had been mistakenly routed through the rotating section of a hip motor. This wore away the
insulation until it caused a major short which destroyed much of the wiring in the lower half of
the robot. All of these issues can be avoided by spending extra effort in initial assembly to ensure
the wires never run through the rotation portions of the robot.

9.3 Battery Power
The original Poppy design was powered by a wall mounted tethered power supply. This

power delivery option limited Poppy’s ability to walk far away from walls and also hindered its
ability to walk on its own by posing an entanglement risk.  Since Poppy was constrained by the
wall mounted power supply, the team decided early in the project one of the goals for Koalby
was to make the robot fully battery powered. Doing so would allow Koalby to have more
flexibility when moving around because the robot would not have to be tethered to a wall for
power.

Koalby uses three batteries to power all the motors and electronics. Koalby uses two 7.4V
5200mAh Lithium Polymer batteries with a maximum discharge rate of 250A. These batteries
are located in the shins, and power the Herkulex motors, Ardunio, and Raspberry Pi. The
location of these batteries can be seen in Figure 9.3.1. Koalby also uses one 11.1V 2200mAh
Lithium Polymer battery with a maximum discharge rate of 100A. This battery is located in the
head and is used to power the Dynamixel Motors.
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Figure 9.3.1: Location of 7.4V Batteries

9.4 Cost Reduction
The largest source of cost reduction was using HerkuleX 0201 motors rather than the

Dynamixel MX-32 motors used in the Poppy project. This reduced the cost by ~$2,500 by itself
(Appendix B). Despite their significantly lower price, the HerkuleX motors worked comparably
to the MX-28’s they replaced.

The HerkuleX motors’ torque was sufficient to replace the MX-28 and the team designed
an adaptor mount and spacer to easily insert the new motors into the design. HerkuleX motors
were easy to implement electrically as their wiring busses can be daisy-chained, and the signal
wires can directly connect to an Arduino serial port. Some complexity was added to the system
due to needing two different operating voltages for the HerkuleX motors and Dynamixels,
however this complexity was worth the cost savings.

The biggest challenge in installing these low cost motors was developing code for them.
If Koalby used the original MX-28 motors, then the Poppy project codebase could have been
usable, significantly reducing initial setup time. However, expanding off of this code could have
proved to be difficult based on the scale and complexity of the codebase. Issues like the version
conflict found in inverse kinematics (section 7.2.2) would have still been present, leaving the
team to debug the already written code. This makes it difficult to analyze the programming
benefits of choosing to stay with Dynamixel motors. The team’s newly designed programming
framework has some advantages over the legacy code. Its scope is smaller, aiming to control
Koalby alone instead of providing a flexible framework for multiple robots with computer
simulation capabilities. This narrow initial scope makes the team’s new framework more
readable and easier to debug. By designing around the addition of HerkuleX motors, the system
should allow for any motor from standard servos to new types of smart motor to be substituted in
with far more ease than with the Poppy project, allowing for continuing improvement as motor
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technology continues to develop. Despite the fact that the old and new programming systems
cannot be fully compared, the benefits of the new system again point towards the motor
substitution being a worthwhile and successful change.

Using resin printing versus other forms of manufacturing also played into the final cost of
the full assembly. While it is difficult to compare this cost to other models and versions of the
Poppy platform, it can be said that due to the reliability of resin printing, cost of failed prints was
minimized. The total cost breakdown of the printed parts of the robot can be found in Appendix
G. 3D printing allows precise geometries to be manufactured at low cost, and as per Appendix B,
resin costs make up less than 2% of the robot’s cost.

9.5 Walking
While automated walking and self-balancing were originally goals of this project, these

proved to be outside the scope of the available time frame. Instead, the team opted to aim
towards the beginnings of assisted walking cycles using the replay primitive.

Through this method, two early versions of assisted walking were achieved. Both
versions of walking require at least half of Koalby’s weight to be supported externally, either
through use of a stand and harness, or through user help. The first walking cycle (raiseKnees.csv)
allows Koalby to take very small steps backwards, using only the knee and ankle motors in the
legs. The second walking cycle (wk3.csv) implements all leg motors and allows Koalby to take a
number of steps forward equal to the imputed iteration number multiplied by two. One issue that
arose during these walking tests was the ankle strength. For automated walking, it is very likely
that the strength of the ankle motors will need to be increased. Unfortunately, this will raise the
weight of the leg.

9.6 Grasping
The team designed and assembled actuated grasping hands for Koalby based on the

Dynamixel XL-320. The hands can be easily attached to the forearm, allowing for
interchangeability with the existing parts. These hands were not attached or tested on Koalby due
to time constraints. While one initial goal of the project was to grasp objects with actuated hands,
this goal will instead be passed on to a future project, with the team’s existing hand design
available as a starting point.

9.7 Demonstration at TouchTomorrow 2022
The WPI TouchTomorrow event was the first opportunity for the team to demonstrate

their project (see Figure 9.7.1). Overall the event was a big success. The robot was able to
perform numerous different actions including dances like the disco and macarena, interactions
like waving and shaking hands, and even a marching motion (see Appendix H). These actions
were able to run continuously as a constant stream of people wandered by and interacted with the
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team. The batteries proved to be an effective solution to powering the robot without a tether
(section 8.3) and mechanically the robot had no issues.

Figure 9.7.1: Koalby on test stand at TouchTomorrow

More important than all of this though was that the team was able to accomplish their
goal of inspiration first hand. Many of the participants of this event were families with young
children who would point at the robot because that was the exhibit they wanted to go look at.
They would gain a huge smile after shaking Koalby’s hand and would dance with him as he did
the disco. Some would ask how the team accomplished the project and they could share about
3D printing and the ability to record and replay the motions. It was clear that Koalby had a huge
positive impact that day on the people who visited. The capability of a small-scale humanoid
robot to inspire and excite people, especially young children was demonstrated to its full extent,
as shown in Figure 9.7.2 below.

Figure 9.7.2: Children watching Koalby at TouchTomorrow
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9.8 Demonstration at Project Presentation Day
The team demonstrated the project at WPI’s Project Presentation Day. Similarly to the

TouchTomorrow event, Project Presentation Day proved successful for the team. This event
allowed the team to demonstrate and present their project at a higher level, speaking to
professors and engineering professionals. Koalby had no mechanical, software, or electrical
failures throughout the day and the team won first place in the Department of Mechanical and
Materials Engineering division.

Figure 9.8.1: Robotics Engineering Project Presentation Day

Figure 9.8.2: Awarded 1st Place in Mechanical and Materials Engineering
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10 Conclusions
At the end of this project, the team was successfully able to reproduce the functionalities

demonstrated in the original Poppy Project robot, and was able to achieve the other
predetermined objectives outlined at the beginning of the project timeline.

Beyond recreating the functionalities of the Poppy robot, the team’s first objective was to
find alternate components to replace pieces of the Poppy design that would ultimately reduce the
cost of creation. The team was successfully able to achieve this goal with a cost reduction of
approximately $6,000 - 3,000, with the original Poppy design costing ~$10,000 - $7,000,
depending on whether parts were obtained through the Poppy group or through external means,
and the new Koalby design costing ~$4,000.

In addition, the team’s second and tertiary goals of giving Koalby the ability to walk, and
to be able to grasp objects were both partially achieved. The team was successfully able to
untether the robot by supplying fully onboard battery power and wifi capabilities for remote
operation which was the first major step towards achieving walking. Koalby also achieved the
ability to walk short distances with user assistance, and is planned to walk independently through
the work of future projects. Finally, actuated grasping hands were fully designed and assembled
for Koalby’s use, however, were not fully implemented due to time constraints. These graspers
could easily be implemented through future work as well.

10.1 Broader Impacts

10.1.1 Engineering Ethics
The applications of this project include making a cost accessible humanoid robot for the

purpose of human kinematic study, human robot interaction, education, and inspiration. These
applications promote the enhancement of human welfare. For one, improving knowledge about
human kinematics can help the medical field, specifically comparing the motion of limbs under
normal and abnormal conditions (An & Chao, 1984). Creating a platform to study human robot
interaction, especially with a humanoid robot, allows for further insight into how humans react to
their robotic counterparts, and specifically how youth can interact with these types of robots.
Lastly, this project promotes the welfare of children through education and inspiration. This
project could be used to teach students about how to create a humanoid robot, and the fun
movements of the robot can create awe within children and inspire them to go into STEM fields.

The methods and results of this project were reported honestly and impartially. All steps
and data are accurately portrayed in this report. Additionally, this project is an advanced creation
of a low-cost humanoid robot. With 25 degrees of freedom and motion nearly identical to that of
a human, this project increases the prestige of the engineering profession.
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10.1.2 Societal Impact
The completion of this project and its successful achievement of cost reduction could

lead towards larger societal impacts. Firstly, the large reduction in cost will make Koalby’s
design more accessible to a wider number of researchers. In the spirit of the original open source
Poppy design, Koalby’s mechanical, electrical, and software materials will be accessible online.
With the lower price point as well as an accessible manufacturing method of 3D printing, Koalby
should be more reasonable to reproduce to continue research into human robot interaction (HRI),
human kinematic studies, and to use in educational fields. In the areas of education and
inspiration, this design may also be able to be scaled down further to reduce the cost even
further, allowing schools to use the design as an educational model and to teach complex robotic
theories such as kinematics and advanced control algorithms.

10.2 Future work
Despite the team’s success this year, there are a number of areas where Koalby can be

improved by future groups. These areas include hardware (design simplification, motor selection,
implementing grasping hands) and software (sensors and control code).

10.2.1 Hardware
The robot’s hardware is sufficient as a proof of concept, but it has a number of areas that

can be improved. These include simplifying the design to reduce the number of 3D printed parts
and screws needed to assemble the robot, selecting motors more carefully at each joint to
maximize torque where needed, and fully implementing grasping hands to allow Koalby to
manipulate objects.

10.2.1.1 Design Simplification

In order to quickly modify the Poppy design to support less expensive HerkuleX motors,
the team developed an adaptor (as shown in Figure 10.2.1) that includes both MX-28 and
HerkuleX holes. This can be connected to a HerkuleX motor and slotted directly into an existing
Poppy part. This adaptor reduced the design work required to build Koalby by a significant
amount.
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Figure 10.2.1: Adaptor Pieces (gray) connect a HerkuleX to Poppy hole spacing

The disadvantage of this adaptor is that it significantly increases the number of printed
parts and screws used on Koalby. Each adaptor needs 2 sets of screws, one set to connect it to the
motor and another set to connect it to the printed part. Future work could improve the design by
including the correct mounting holes for the new HerkuleX motors directly on the larger parts
instead of using adaptors. This change would help to reduce cost, weight, print time, and
assembly time.

Another design simplification that could be investigated is an easier battery removal
system. Koalby uses onboard batteries instead of external power. These include two large
batteries in the leg to power the HerkuleX motors, and a smaller battery to power the
Dynamixels which is located in the head. Each battery is accessed by removing a set of 4 screws.
Figure 10.2.2a shows the screws securing the shin battery, and figure 10.2.2b shows the head lid
screws.

Figure 10.2.2a: Modified shin with battery Figure 10.2.2b: Head with lid
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Because these screws must be undone to remove the batteries, accessing them is difficult
to do on short notice. To improve this, the screw based connector could be replaced with some
sort of snap fit that could make the batteries accessible without tools. With a battery life of only 4
hours, the ability to rapidly swap batteries would improve the ability of the robot to be used for
prolonged testing/demonstrations.

10.2.1.2 Motor Selection

The team’s motor selection this year was based on direct substitution of HerkuleX motors
for MX-28’s, leaving the design otherwise unchanged. However, Dynamixel actuators are
available in many sizes. Especially relevant are the newer X-series motors
(https://www.robotis.us/x-series/), which were developed after the Poppy Project. These motors
can be purchased from the same source, and use the same communication protocol, so the
difficulty of acquiring and using more types of actuators should be negligible. Table 10.2.1
below shows a section of the selection guide, illustrating the number of options available.

Table 10.2.1: Dynamixel Selection guide (reproduced as is from
http://en.robotis.com/service/selection_guide.php)

With these options, a future team could spend more time on the motor selection phase of
the project, and calculate or simulate the torque required at each joint to select the correct motor.
Some joints, like the leg joints, seem to have difficulty moving the heavy batteries and could

https://www.robotis.us/x-series/
http://en.robotis.com/service/selection_guide.php
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benefit from a higher torque actuator. Other joints are unlikely to need the full torque of their
motor, and these could be scaled down to reduce cost.

Specific Dynamixel motors of note are the dual axis 2XC-430
(robotis.us/dynamixel-2xc430-w250-t/) and smaller 2XL-430
(robotis.us/dynamixel-2xl430-w250-t/). These motors contain 2 Dynamixels packaged in a single
casing, providing two degrees of freedom with 1 motor. The larger 2XC-430 motors are similar
in torque to the HerkuleX motors, while the smaller 2XC-430 could potentially replace the head
AX-12s. Figure 10.2.3 below shows these theoretical locations.

Figure 10.2.3: Dual axis motor locations (2XC-430 yellow, 2XL-430 green)

The primary advantage of these motors would be reducing complexity. Joints like the
shoulder and double rotation use a number of printed parts and adaptors to get 2 axes of motion.
Replacing these pairs of motors with a single motor would reduce the number of printed parts
required, helping to simplify the design. Table 10.2.2 below shows the comparison between the
HerkuleX motor and the Dynamixel 2XC-430.

Table 10.2.2: Comparing HerkuleX and Dynamixel 2XC-430 motors

Motor Torque Speed Weight Cost

HerkuleX 0201 2.35 Nm 68 RPM 120 g (for 2 motors) $264 (for 2 motors)

Dynamixel 2XC-430 1.8 Nm 57 RPM 102 g $239.9

This table illustrates the differences between these motors. The 2XC-430 has only 80% of
the torque of the HerkuleX 0201, but is otherwise similar in price, weight, and speed. If
simulations showed this torque loss was an acceptable tradeoff, then this motor could
significantly simplify the design.

https://www.robotis.us/dynamixel-2xc430-w250-t/
http://robotis.us/dynamixel-2xl430-w250-t/
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10.2.1.3 Grasping hands

One of the goals for this project was to add grasping hands in place of Poppy’s humanoid
hands. The team designed and printed a prototype based on a hand design for Poppy made by a
community member (Figure 10.2.4). This hand uses Dynamixel XL-320
(https://www.robotis.us/dynamixel-xl-320/) actuators and was assembled, but the team was
unable to test it due to time constraints. Future work would include attaching it to Koalby, testing
it, and perhaps adding more degrees of freedom if desired.

Figure 10.2.4: Grasping hand design

10.2.2 Software
Future software changes for Koalby can focus on the high-level control, modifying the

Arduino firmware if needed to enable additional features.

10.2.2.1 Sensing

Koalby currently features no sensors outside of those integrated into the motors.
Implementing more advanced features will require more sensing power. Potential options from
the Poppy project include IMU’s, cameras, and pressure sensors.

An IMU could allow Koalby to measure its orientation relative to gravity, which could
greatly enable self-balancing, walking, and motions that require Koalby to bend at the waist.
Cameras could help allow object detection once grasping is added, object avoidance for walking,
or even motion detection and replication for Koalby to mirror what someone is doing in front of
it. Pressure sensors would lead the way for precise grasping of objects or detecting when to fully
put weight on a foot while walking.

10.2.2.2 Kinematics

Implementing kinematics was initially something that this team had hoped to accomplish.
While the overall goals were still able to be accomplished without kinematics, there are still
many benefits to continuing the work to build this into the Koalby system. Kinematics allow for
more precise and controlled motions rather than just recording and replaying them. It also allows
for the robot to actually know where it is functioning in space. This is important for developing
motions that avoid hitting obstacles or itself. Implementing kinematics can also help smooth out

https://www.robotis.us/dynamixel-xl-320/
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motions and make Koalby look less robotic and more humanoid. More complex motions that
future teams would look to implement - such as walking - depend on the precise control that
kinematics allows.

10.2.2.3 Self-Balancing

Currently Koalby can stand upright without any assistance. However, nothing in the code
prevents Koalby from unbalancing itself and falling, or ensures that it starts in a balanced state.
This means that Koalby needs to operate almost entirely within the constraints of a supporting
stand. Koalby can attempt to walk, but is nearly guaranteed to fall without support for a stand or
human correction. One of the goals for this project was to move to battery power to allow for
Koalby to walk independently of a tether. With this goal accomplished, Koalby primarily needs
development of balancing walking algorithms integrated with sensor feedback to allow for
balancing to be accomplished. The goals of the current project and the route development took
was chosen with future applications of self-balancing and walking in mind. While the system is
not currently ready to accomplish this task, it should be feasible for a future group to allow for
Koalby to balance on its own.

10.3 Project Experience
The two most important skills the team utilized to successfully complete Koalby were

good time and team management as well as keeping everything organized. Since MQP has the
requirement to work on the project for 15-17 hours per week, delegating tasks, asking others for
help when needed, and consistently reporting progress were key factors in the success of the
team. Additionally, each member of the team brought different skills and knowledge to the
project. The members of the team can be contacted at the email addresses provided in Appendix
I for any inquiries about the project.

Alexandria Lehman
The main skill I learned at WPI and applied to this project is my knowledge in

Solidworks. I learned Solidworks in ES 1310 (Introduction to Computer Aided Design). This
class taught me how to use the different tools in Solidworks, and what is possible to do. The
majority of my contribution to this project was modifying the Poppy robot to match our goals,
such as modifying joints to match the HerkuleX motors, or lengthening and splitting the shin for
the batteries. The class also taught me about Solidworks assemblies. I created a full robot
assembly and different body part subassemblies, which allowed us to see the robot in its entirety.
It also allowed me to check for interferences between systems. I was also able to apply soft skills
that I have learned over the years at WPI. Specifically, working on a team and how to divide up
tasks based on everyone’s strengths. This has been very useful in this project as it has made it so
everyone has a task to work on, increasing the efficiency of the team.
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This project also taught me various technical skills I can apply to future projects. Over
the last year, I learned a lot about resin 3D printing, a technology I did not know existed before
the project. After 3D printing the entirety of the robot using resin printing, I now know how resin
printing works and how to print with a resin printer, including how to design for this type of
manufacturing.

One thing I wish I knew at the beginning of the project is when to stop trying one
solution and move onto another. I spent a majority of B term working on modifying and splitting
the thigh part since it was too tall to print on the resin printer we had at the time. The problem is
that the thigh part had a bend feature in it, meaning it could not be cut in half on a flat plane as
the cut feature would be bent. In the end, we decided to get a larger printer to allow for the thigh.
Had I realized earlier that splitting the thigh would not work, I would have been able to allocate
my time to other tasks that ended up falling behind schedule, such as assembling the legs of the
robot and designing and prototyping hands.

Anthony Galgano
This project gave me the opportunity to work in a team to solve problems and deliver a

final product. Overall, I used my knowledge and skills of time management and working as a
team so that each person on the team was working effectively. In my previous coursework, I
learned a lot about motors in RBE 1001 and battery powered systems in ECE 2799. ECE 2799
taught me about different types of batteries and how to calculate loads from a system. This was
helpful when deciding what size batteries we would be using. Additionally, RBE 1001 taught me
about basic motor selection and the different abilities and constraints of motors. This was helpful
when the team was researching new motors to replace the Dynamixel MX-28AT motors.

While I was using my existing skills to work on Koalby, I also learned many new skills.
Since we switched to DLP printing, I learned how resin printing works and the strengths and
weaknesses of it. Before this year, I never knew what resin printing was and now I have realized
how accurate and precise it can print parts especially with no visible layer lines. Another skill I
learned was how to use multi-threading in Python. Before this project I had never needed to
write a multi-threading program so it was interesting to learn the capabilities of multi-threading
to create more powerful scripts in Python.

One key thing I wish I knew before the project is that resin printing is far better than
FDM printing. The team spent about 3-4 weeks trying to FDM print parts which was a waste of
time in the end because FDM could not give us the resolution we needed. Another realization I
wish the team had earlier is that the Poppy Project ended in 2014, meaning that many aspects
about it were outdated, and software platforms have changed significantly. For example, when
trying to use the Poppy Projects original code base, the team used 2-3 weeks to read through it
and was not able to use it. Overall, this project experience was very beneficial to me and my
career and I enjoyed working on Koalby.
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David Fournet
During this project, I was able to put many of the skills I had learned in previous

coursework and projects at WPI to use. The first of these skills was the use of DLP resin 3D
printing, which I had been aware of for a number of years but finally learned to use during the
summer prior to this project through my work on a partial hand prosthetic team at WPI. I was
also able to put my skills in code structure, data types, and programming into use on this project
which I have learned and honed during my time at WPI through courses such as software
engineering, object-oriented programming, and the robotics course series. Finally, I felt that my
knowledge of github and version control was very useful during this project to keep our team’s
work clean, well documented, and safe from coding mishaps.

One new skill that I got the privilege of encountering while working on Koalby was the
use of multithreading in Python. I had not previously used multithreading in the past and I
enjoyed learning how to use its functionalities to bolster our capabilities in Koalby’s codebase. I
also enjoyed working with and getting to explore more of the capabilities of DLP printing and
ways to ensure successful, clean prints.

Something that I wish I had known at the beginning of this project would be that our
team was going to need to move over to building our own code library from scratch rather than
use the poppy project library. Due to poor documentation and outdated libraries and
functionalities, the original poppy library simply did not apply well for our goals. If we had
known this going into the project, we could have devoted more time towards more
functionalities, such as auto balancing algorithms, rather than time spent reviewing and
understanding the original library’s logic.

Overall, I very much enjoyed my time working on this project and feel incredibly lucky
to have gotten to work with everyone on this team. Our group worked well together, delegated
tasks easily and fairly, and became good friends over the course of this year. I cannot wait to see
what everyone does going forward and am excited to see where Koalby ends up through the
work of future MQPs.

Raymond Beazley
This project allowed me to use skills I had already learned and also develop my skills

further while bringing the project to its final state. In the project I worked on many different
aspects including initial design, code development, assembly, testing, and documentation. I
started by using my knowledge in Solidworks, which had been developed through many other
projects and classes at WPI, to design the motor adaptor and spacer which were able to be used
through nearly all subsystems of the robot. I then continued to use Solidworks to help redesign
all the segments of the arms and torso to work with the new adaptor.

At this point I stepped away from the CAD when developing the code became a key
priority. Given my experience coding in the Robotics curriculum I was able to transition quickly
to diving into the Poppy project code base (written in Python) to better understand how it worked
and whether it was feasible to adapt it for our purposes. After we decided that the scope of the
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entire Poppy project was both too broad and complicated for the goals of our project I worked on
developing our own kinematics using the same library as the Poppy project. I was able to get this
running on our system to the point of locating and diagnosing the key bug that would prevent
future progress. With this bug understood, we decided to pause progress on kinematics to pursue
more pressing goals of the project, and I shifted towards assisting with testing and debugging.
After the system was complete I wrote documentation for the project, including the assembly
instructions which will allow for future groups to recreate our project.

This project may have not taught me any new skills that can be broadly categorized, but it
did certainly teach me a lot. I was able to develop my skills and comfort using Solidworks and
writing/understanding code in Python. I was able to experience a year-long group project and
learn how to communicate, plan, and complete such a large scale project when compared with all
my previous project experience. I was able to learn about methods of control like the primitive
manager system which could be used effectively in other robotic applications. I grew as a
student, an engineer, and a person through this project.

William Engdahl
In this project I used and further  many of the skills I learned at WPI both in and out of

classes. In this project, I worked primarily on motor control and communication. This involved
programming Koalby’s Arduino firmware, developing the USB communication protocol, and
understanding the operation of HerkuleX and Dynamixel motors. My previous robotics
coursework gave me significant experience using and programing Arduinos which I was able to
use when programming Koalby.

One of the areas I focused on was testing and understanding the HerkuleX and
Dynamixel motors. In order to program the low-level motor control, I spent significant amounts
of time reading the motor datasheets and library documentation to figure out the exact mechanics
of these motors. In order to test this behavior, I wrote a number of testing programs separate
from the main firmware which I could upload to verify motor behavior or assist in setting up
firmware.

Throughout the project, I did not so much learn new skills as much as applied the skills I
had learned previously. In addition to working on the Python code, I also helped with CAD,
documentation, and testing Python code. The biggest new skill I gained was familiarity with the
resin printing process. My prior experience with 3D printing involved FDM machines, and the
team’s resin printer used a dramatically different process. Overall, I gained a lot of practical
experience during the course of this project and hope that future groups are able to build on the
work we have completed this year.
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12. Appendices

Appendix A: 3D printing (resin) Guide
Resin Printing Instructions 

https://docs.google.com/document/d/1UpJHPfzRCEARCTsiDu4Fe1rfUhEgAGO7lIvqrENxuvU/edit

https://docs.google.com/document/d/1UpJHPfzRCEARCTsiDu4Fe1rfUhEgAGO7lIvqrENxuvU/edit
https://docs.google.com/document/d/1UpJHPfzRCEARCTsiDu4Fe1rfUhEgAGO7lIvqrENxuvU/edit
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Appendix B: Cost Breakdown Between Poppy and Koalby

Component Unit cost Quantity (Poppy) Cost (Poppy) Quantity (Koalby) Cost (Koalby)
3D Printed Parts (kilograms of resin) $73.56 1 $73.56 1 $73.56

Motors

Dynamixel MX-28AT Motors $260.00 19 $4,940.00 - -

Dynamixel MX-64AT Motors $340.00 4 $1,360.00 4 $1,360.00

Dynamixel AX-12A Motors $49.00 2 $98.00 2 $98.00

HerkuleX DRS-0201 $132.00 - - 19 $2,508.00

Servo Horns

HN07-N101 (MX-28 Servo Horn) $9.70 19 $184.30 $0.00

HN07-I101 (MX-28 Idler Horn) $15.40 9 $138.60 $0.00

HN05-N102 (MX-64 Servo Horn) $11.90 4 $47.60 $0.00

Custom Dynamixel Horn MX-64, set of
14 (Ordered from SendCutSend) - $30.00

Hardware

M3 Socket head screws $0.06 300 $18.00 300 $18.00

Electronics

Raspberry Pi 4 $35.00 1 $35.00 1 $35.00

Arduino Mega Clone $20.00 $0.00 1 $20.00

Raspberry Pi Screen $55.00 1 $55.00 1 $55.00

Total Cost: $6,950.06 $4,197.56
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Appendix C: Setup of Github/Grabcad/Google Drive
The team stored part models on GrabCad and code on Github

GrabCAD:
The GrabCad repository contains all Solidworks part files and assemblies. This is not publicly available online, access can be
requested from any of the team members.

To modify this repository, download GrabCad desktop and set up the project. Instructions can be found here:
help.grabcad.com/article/103-workbench-desktop-app-users-manual

As shown in the image above, there are a number of folders within the repository:
● CTB print files - LCD printer

○ Sliced print files for the LCD printer
● Eve Head

○ Parts for Poppy’s Eve head design. These are not used on Koalby

http://help.grabcad.com/article/103-workbench-desktop-app-users-manual
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● Original Poppy
○ Poppy Project model, used as reference

● Parts
○ Models for 2-axis Dynamixel motors

● Redesigned for HerkuleX
○ Main folder, contains Solidworks models for Koalby and its parts

● STLs
○ STL files for Koalby parts

Github:
https://github.com/Poppy-MQP
The github contains several repositories, each of which is documented internally:

● Kolby-Humanoid
○ Rewritten Python code to control the robot, interfaces with firmware

● Arduino Code
○ Arduino firmware, receives commands from Python code
○ Testing programs, used at various points to verify features of the motors
○ Setup programs, assign motor ID’s and read motor positions to set limits

● Torso-Poppy
○ Legacy code: cloned from Poppy repository, not currently in use

Appendix D: Assembly Instructions
Assembly Instructions

https://docs.google.com/document/d/1U__MpuTLPrrsCEsMbUcS0TH0UsqzTJfTEnFXiUKoMfY/edit?usp=sharing

https://docs.google.com/document/d/1U__MpuTLPrrsCEsMbUcS0TH0UsqzTJfTEnFXiUKoMfY/edit?usp=sharing
https://github.com/Poppy-MQP
https://docs.google.com/document/d/1U__MpuTLPrrsCEsMbUcS0TH0UsqzTJfTEnFXiUKoMfY/edit?usp=sharing
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Appendix E: Raspberry Pi Setup Instructions
Raspberry Pi Setup Instructions

https://docs.google.com/document/d/1wLcgCzkZAloFGVNLbetXEDFZKqFWlZXvcgTQgD8AIDI/edit?usp=sharing

Appendix F: Shin Torque Calculations and Initial Arm Testing
Motor Testing Suite

https://docs.google.com/spreadsheets/d/1adM1Q3Fr-XuB6N-HMxxCtSWlMH2_WFpea7laKOW5xFM/edit#gid=1399018677

https://docs.google.com/document/d/1wLcgCzkZAloFGVNLbetXEDFZKqFWlZXvcgTQgD8AIDI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1adM1Q3Fr-XuB6N-HMxxCtSWlMH2_WFpea7laKOW5xFM/edit#gid=1399018677
https://docs.google.com/document/d/1wLcgCzkZAloFGVNLbetXEDFZKqFWlZXvcgTQgD8AIDI/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1adM1Q3Fr-XuB6N-HMxxCtSWlMH2_WFpea7laKOW5xFM/edit#gid=1399018677
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Appendix G: Cost and Time Breakdown of DLP Resin Printed Parts
List of Printed Parts:

2 Hand

2 Forearm

2 Upper Arm

2 Arm Connector

2 Shoulder

30 Motor adaptor prints

2 Dynamixel idler servo horns

10 HerkuleX idler servo horns

2 Foot

2 Shin

2 Thigh

2 Hip Connector

2 Hip

1 Pelvis

1 spine

1 abdomen

1 torso

1 neck

1 head

Total printed parts: 68
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Assuming use of eSun Hard-Tough
Resin (Blue):

Part List Volume (mL) Weight (g)
Price of Resin
(USD)

Print Time
(hh:mm:ss)

Left Arm 109.24 120.2 6.45 8:00:00

Right Arm 109.24 120.2 6.45 8:00:00

30 hercule motor adaptors 81.79 90 4.83 2:00:00

Servo horns + double rotation
mounts 46.89 51.6 2.77 2:00:00

Head + lid + neck 246.76 271.4 14.56 9:30:00

Left Leg 224.12 246.5 13.22 9:18:20

Right Leg 224.12 246.5 13.22 9:18:20

pelvis + abdomen + spine + chest 204.48 224.9 12.06 9:45:17

TOTAL: 1246.64 1371.3 73.56 60:00:00

Printed Parts List, Volume, Costs, and Times
https://docs.google.com/spreadsheets/d/1uizXj__CDjPUXfgwjGYP6_BqxEv3_nt3z98dCcQkBm0/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1uizXj__CDjPUXfgwjGYP6_BqxEv3_nt3z98dCcQkBm0/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1uizXj__CDjPUXfgwjGYP6_BqxEv3_nt3z98dCcQkBm0/edit?usp=sharing
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Appendix H: Koalby Demonstration Videos

Description Link

TouchTomorrow 2022 https://photos.app.goo.gl/2dwA4Xcs7rhoTkiB7

Project Presentation Day https://photos.app.goo.gl/acxoQDFuzY5LWkbT9

Final Compilation of Koalby Motions https://youtu.be/GyYreHS-OyM

Koalby Interview - David Fournet https://youtu.be/vohqdSPZAiw

https://photos.app.goo.gl/2dwA4Xcs7rhoTkiB7
https://photos.app.goo.gl/acxoQDFuzY5LWkbT9
https://youtu.be/GyYreHS-OyM
https://youtu.be/vohqdSPZAiw
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Appendix I: Team Contact Information

Team Member Email

Alexandria Lehman alexlehman722@gmail.com

Anthony Galgano anthony.galgano@gmail.com

David Fournet davfournet@sbcglobal.net

Raymond “Ian” Beazley raymondibeazley@gmail.com

William Engdahl wengdahl1@gmail.com


