# **Tube Furnace Measurements of Combustion Byproducts**

A Draft of the Major Qualifying Project Report Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

And

Nation Institute of Standards and Technology (NIST)

In partial fulfillment of the requirements for the Degree of Bachelor of Science

By:

Kyle Geder

Jonathan Levin

Adam Schwartz

Date: 10 March 2008

Approved:

Professor Kathy Notarianni, Advisor

Professor David DiBiasio, Advisor

# Abstract

The goal of this project was to measure yields of combustion byproducts using a tube furnace and to test the sensitivity of these measurements to changes in test parameters and methodology. Multiple testing parameters were varied on four separate materials and the effects on the yields of combustion byproducts were observed. Toxic gas data were compiled and analyzed. From this research a set of recommendations was created and presented to the National Institute of Standards and Technology in Gaithersburg, Maryland.

# **Authorship Page**

- 1. Abstract
  - a. Written by Kyle Geder
  - b. Revised by Kyle Geder and Jonathan Levin
  - c. Edited by Kyle Geder
- 2. Acknowledgements
  - a. Written by Kyle Geder
  - b. Revised by all group members
  - c. Jonathan Levin
- 3. Introduction
  - a. Written by Jonathan Levin
  - b. Revised by Kyle Geder
  - c. Edited by all group members
- 4. Background
  - a. Introduction
    - i. Written by Jonathan Levin
    - ii. Revised by all group members
    - iii. Edited by all group members
  - b. Fire Hazard Analysis
    - i. Written by Kyle Geder and Adam Schwartz
    - ii. Revised by Kyle Geder and Jonathan Levin
    - iii. Edited by all group members
  - c. Toxicity
    - i. Written by Kyle Geder
    - ii. Revised by Kyle Geder and Adam Schwartz
    - iii. Edited by all group members
  - d. Toxicity Studies
    - i. Written by Jonathan Levin
    - ii. Revised by Kyle Geder
    - iii. Edited by Jonathan Levin
  - e. Code Development
    - i. Written by Kyle Geder
    - ii. Revised by Kyle Geder and Jonathan Levin
    - iii. Edited by Kyle Geder and Jonathan Levin
- 5. Methodology
  - a. Introduction
    - i. Written by Adam Schwartz
    - ii. Revised by Jonathan Levin
    - iii. Edited by Jonathan Levin and Adam Schwartz
  - b. Review of Existing Test Methods
    - i. Written by Jonathan Levin
    - ii. Revised by Kyle Geder
    - iii. Edited by Kyle Geder and Jonathan Levin

- c. Developing Order of Tests
  - i. Written by Adam Schwartz
  - ii. Revised by Jonathan Levin
  - iii. Edited by Jonathan Levin
- d. Test Procedure
  - i. Written by Kyle Geder
  - ii. Revised by Jonathan Levin
  - iii. Edited by Jonathan Levin and Adam Schwartz
- e. Test Parameters
  - i. Written by Jonathan Levin
  - ii. Revised by Kyle Geder
  - iii. Edited by Jonathan Levin
- f. Compiling and Analyzing Data
  - i. Written by Adam Schwartz
  - ii. Revised by Jonathan Levin
  - iii. Edited by Adam Schwartz
- g. FDS Simulations
  - i. Written by Kyle Geder
  - ii. Revised by Jonathan Levin
  - iii. Edited by Kyle Geder
- 6. Results and Discussion
  - a. Test Results
    - i. Written by Adam Schwartz
    - ii. Revised by Jonathan Levin
    - iii. Edited by Jonathan Levin
  - b. FDS Results
    - i. Written by Kyle Geder
    - ii. Revised by all group members
    - iii. Edited by all group members
- 7. Conclusions
  - a. Written by Kyle Geder and Adam Schwartz
  - b. Revised by Jonathan Levin
  - c. Edited by Jonathan Levin
- 8. Recommendations
  - a. Written by Kyle Geder and Adam Schwartz
  - b. Revised by Jonathan Levin
  - c. Edited by Jonathan Levin

# Acknowledgements

The group would like to thank our gracious host, NIST, for providing us with the means to complete our project. In particular, we would like to thank Mr. Jason Averill, Dr. Richard Gann, Dr. Nathan Marsh, Dr. Marc Nyden, Mr. Brian Klein, Ms. Barbara Faverty, Mr. Richard W. Bukowski, Mr. Thomas Cleary, Ms. Erica Kuligiowski, and Mr. Michael Selepak for their guidance in helping us complete our project. Finally, we would like to thank our advisor Dr. Kathy Notarianni and co-advisor Dr. David DiBiasio.

# **Table of Contents**

| Abstract                                                     | 2   |
|--------------------------------------------------------------|-----|
| Authorship Page                                              | 3   |
| Acknowledgements                                             | 5   |
| Table of Contents                                            | 6   |
| Table of Figures                                             | 8   |
| Table of Tables                                              | 9   |
| Nomenclature                                                 | .10 |
| Introduction                                                 | .12 |
| Background                                                   | .14 |
| Fire Hazard Analysis                                         | .14 |
| Toxicity                                                     | .15 |
| Toxicity Studies                                             | .16 |
| NIST Cup Furnace                                             | .18 |
| NIST/SwRI Method                                             | .19 |
| Tube Furnace Method                                          | .20 |
| Cone Calorimeter                                             | .22 |
| Full-Scale Testing                                           | .23 |
| Methodology                                                  | .25 |
| Project Timeline                                             | .26 |
| Review of Existing Test Methods                              | .26 |
| Order of Tests                                               | .27 |
| Test Parameters                                              | .28 |
| Test Procedure                                               | .29 |
| Compiling and Analyzing Data                                 | .30 |
| FDS Simulations                                              | 31  |
| Results and Discussion                                       | .32 |
| Test Results and Repeatability                               | 32  |
| Temperature                                                  | .33 |
| Conformation                                                 | 34  |
| Primary Air Flow                                             | 35  |
| Feed Velocity                                                | .37 |
| Size                                                         | .38 |
| FDS Results                                                  | .39 |
| FDS Conclusions                                              | .42 |
| Conclusions                                                  | .43 |
| Recommendations                                              | .45 |
| Test Parameters                                              | .45 |
| Apparatus                                                    | .46 |
| Data Analysis                                                | .46 |
| FDS Simulations                                              | .47 |
| References                                                   | .49 |
| Appendix A: Brief Background of NIST                         | .51 |
| Appendix B: Detailed Process of a Fire Hazard Analysis (FHA) | .53 |

| Appendix C: Code Development Process                         | 54 |
|--------------------------------------------------------------|----|
| Appendix D: Final Test Matrix                                | 56 |
| Appendix E: Identification Code Explained                    | 57 |
| Appendix F: Startup Procedure                                | 58 |
| Appendix G: Shutdown Procedure                               | 59 |
| Appendix H: Detailed Test Procedure                          | 60 |
| Appendix I: Sample Page from Laboratory Notebook             | 61 |
| Appendix J: Steady State Average Concentrations for Each Run | 62 |

# Table of Figures

| Figure 1: NBS Cup Furnace method.                                                                  | 18 |
|----------------------------------------------------------------------------------------------------|----|
| Figure 2: NIST/SwRI Method.                                                                        | 19 |
| Figure 3: Tube Furnace Method.                                                                     | 21 |
| Figure 4: Mirror setup for a Fourier Transform Infrared spectrometer.                              | 22 |
| Figure 5: Cone calorimeter.                                                                        | 23 |
| Figure 6: Two-compartment assembly used in full-scale toxicity testing at NIST                     | 24 |
| Figure 7: NIST tube furnace from various angles.                                                   | 30 |
| Figure 8: CO <sub>2</sub> concentrations at each probe location for first bookcase FDS simulation  | 40 |
| Figure 9: CO <sub>2</sub> concentrations at each probe location for second bookcase FDS simulation | 41 |
| Figure 10: Final test matrix                                                                       | 56 |
| Figure 11: Sample entry from laboratory notebook taken on January 24, 2008                         | 61 |

# **Table of Tables**

| Table 1: Project Timeline                                                    |    |
|------------------------------------------------------------------------------|----|
| Table 2: Repeatability data for Test 1                                       |    |
| Table 3: Average concentrations of combustion byproducts for each material   |    |
| tested at different temperatures                                             |    |
| Table 4: Average concentrations of combustion byproducts for different       |    |
| conformations at 650 °C                                                      | 34 |
| Table 5: Average concentrations of combustion byproducts for different       |    |
| conformations at 825 °C                                                      | 34 |
| Table 6. Average concentrations of combustion byproducts for different       |    |
| primary air flow rates at 650 °C                                             | 36 |
| Table 7. Average concentrations of combustion byproducts for different       |    |
| nrimary air flow rates at 825 °C                                             | 36 |
| Table 8: A versue concentrations of combustion byproducts for different feed |    |
| valocities at $650 ^{\circ}\text{C}$                                         | 37 |
| Table 9: A versue concentrations of combustion byproducts for different feed |    |
| valocities at 825 °C                                                         | 37 |
| Table 10: Average concentrations of combustion by products for different     |    |
| rable 10. Average concentrations of combustion byproducts for different      | 20 |
|                                                                              |    |
| Table 11: Average concentrations of combustion byproducts for different      | 20 |
| sample sizes at 825 °C                                                       |    |
| Table 12: Steady state averages for FDS simulations (CO values were all 0)   |    |

# Nomenclature

| ASET: Available Safe Egress Time                            |
|-------------------------------------------------------------|
| BFRL: Building and Fire Research Laboratory                 |
| CH <sub>2</sub> O: formaldehyde                             |
| CH <sub>4</sub> : methane                                   |
| CO: carbon monoxide                                         |
| CO <sub>2</sub> : carbon dioxide                            |
| FDS: fire dynamics simulator                                |
| FEC: fractional effective concentration                     |
| FED: fractional effective dose                              |
| FHA: fire hazard analysis                                   |
| FTIR: Fourier Transform Infrared                            |
| HCl: hydrochloric acid                                      |
| HCN: hydrogen cyanide                                       |
| HRR: heat release rate                                      |
| ISO: International Standards Organization                   |
| kW/m <sup>2</sup> : kilowatts per square meter              |
| LC <sub>50</sub> : Lethal Concentration 50                  |
| LD <sub>50</sub> : Lethal Dose 50                           |
| L/min: liters per minute                                    |
| MJ/kg: megajoules per kilogram                              |
| mm/min: millimeters per minute                              |
| NIAID: National Institute of Allergy and Infectious Disease |

NBS: National Bureau of Standards

NDIR: Non-Dispersing Infrared

NIST: National Institute of Standards and Technology

O<sub>2</sub>: oxygen

PVC: polyvinyl chloride

PMMA: polymethyl methacrylate

RSET: Required Safe Egress Time

SMV: Smokeview

SwRI: Southwest Research Institute

T: temperature

# Introduction

The majority of fire-related fatalities are due to the inhalation of toxic gases (Babrauskas, et al., 1991). Studies dating back to the 1930s show that many victims of fatal fires succumb to inhalation of toxic effluent gases. However, there was not much testing done to record fire toxicity levels up until the 1970s. Since then, research groups across the world have developed numerous methods for testing toxicity of fire effluent gases. Due to the cost and time consumption of full-scale testing, many of the test methods are designed using bench-scale apparatus. The research discussed in this report validated the use of one bench-scale apparatus in particular, the tube furnace.

In order to validate the tube furnace method as an applicable test method for fire toxicity, the group tested the tube furnace's sensitivity to various test parameters. All of the research discussed in this report was conducted at the National Institute of Standards and Technology (NIST) in Gaithersburg, MD. For a description of NIST, refer to Appendix A. The tested parameters included furnace temperature, material conformation and size, feed velocity, and primary air flow rate. The group also tested four different materials: polymethyl methacrylate (PMMA), sofa, particleboard, and electric cable. NIST had already conducted research using different testing apparatus and a full-scale situation, and used the same four materials. Therefore, toxicity data for these four materials is widely available for comparison.

The group used a Fourier Transform Infrared (FTIR) Spectrometer and a Non-Dispersing Infrared (NDIR) Spectrometer to analyze the effluent gases and collect data. After collecting the data, the group analyzed the toxicity levels and made comparisons amongst the results for CO and CO<sub>2</sub> that variation of different parameters yielded. In the future, NIST will be able to use the group's conclusions and recommendations to refine the test method and to compare the results with other bench-scale methods. In doing so, NIST will be able to determine which bench-scale apparatus best simulates a full-scale toxicity test.

## Background

In the field of fire research, fire hazard analysis is one of the many important subjects examined. The results of a fire hazard analysis help to determine whether a building's occupants will have enough time to evacuate safely during an emergency. In determining the time needed for occupant evacuation, one must perform a toxicity assessment, because the occupants are exposed to the toxic byproducts of combustion during a fire. Consequently, this exposure is one of the many factors that contribute to slower egress times. In the past, toxicity assessment has been performed numerous times on the bench-scale level, and less frequently at full-scale. The following section of this report includes details on what a fire hazard analysis is and how it applies to toxicity and the underlying goal of this project, as well as a review of previous toxicity assessment studies.

#### Fire Hazard Analysis

Historically, the majority of fire safety regulations have been based on designing by disaster, i.e., changing codes and standards following major loss. However, when one wants to consider a full range of potential outcomes of a fire emergency, one must perform a fire hazard analysis (FHA). Performing a hazard analysis goes hand in hand with performing a risk assessment. According to Richard Bukowski, an engineer at NIST, "hazard analysis can be thought of as a component of risk analysis. That is, a risk analysis is a set of hazard analyses that have been weighted by their likelihood of occurrence" (1997). In other words, a fire hazard analysis of a given situation is performed when assessing overall risk of an entire building or situation.

Performing an FHA is a straightforward procedure that can be broken down into seven steps of engineering analysis. Refer to Appendix B for a detailed description of the process of performing an FHA.

One of the major goals of performing an FHA is the preservation of life in an emergency. Preserving life means that all occupants are able to escape, or egress. Egress is defined as a means of travel from any point in a building or facility to an exit or public way. When performing an FHA, egress is one of many important factors to consider. However, it is difficult to devise an exact formula to determine the required egress time during a fire, because of the many variables that can affect a fire such as fuel source, wind speed, enclosure size, etc. Likewise, human reaction is not the same for every situation and not all humans behave similarly in an egress situation. In an effort to alleviate complexity, a set of regulations have been set in ISO 13571 to help determine the available safe egress time (ASET). According to the standards, ASET must be greater than the required safe egress time (RSET) in order for safe and timely egress to take place (ISO, 2007). When determining ASET, many factors are considered. The following section explains one of these many constituents, toxicity.

#### Toxicity

When combustible material undergoes a combustion reaction, toxic gases are emitted into the air. Thus, the concentration of these toxic gases in the air is associated with the term toxicity. Toxicity may vary depending on the material burned and the manner in which it is burned. Depending on the chemical makeup of the combustible material, two different types of toxins can be emitted, asphyxiant gases and irritant gases.

Asphyxiant gases are toxins that cause the exposed subject to intake insufficient amounts of oxygen leading to asphyxiation. Some examples of asphyxiant gases are carbon

monoxide (CO) and hydrogen cyanide (HCN). When inhaled, CO enters the upper respiratory tract and lungs and begins replacing the oxygen in the bloodstream. As an effect the brain, heart, and body of the exposed subject are starved of oxygen. High amounts of CO in the bloodstream are likely to cause disorientation, loss of consciousness and even death (National Institute of Allergy and Infections Disease [NIAID], 2007). On the other hand, HCN is lethal in much smaller doses than CO. Inhalation of HCN inhibits cellular respiration where cells extract oxygen from the blood and convert the energy in sugar molecules into useful forms of energy for cells. Exposure to HCN can lead to seizures, respiratory failure, and death (NIAID, 2007).

On the other hand, irritant gases are toxins that burn and irritate the sensory organs they are exposed to upon contact as well as the lungs when inhaled. Examples of irritant gases are halogen acids, such as hydrochloric acid (HCl). Another common irritant gas that exists as an effluent gas of fire is an aldehyde, such as formaldehyde (CH<sub>2</sub>O). Overall, inhalation of HCl gas or formaldehyde, like other severe irritant gases, can lead to death along with the burning and irritation of the skin and sensory organs. Due to the severity of irritant gases, as well as asphyxiant gases, it has been a focus of many research laboratories to attempt to study toxicity during a fire.

#### **Toxicity Studies**

In an attempt to study toxicity levels during fires, numerous efforts have been previously made. Due to the fact that full-scale testing takes a lot of time and material and therefore high cost, a majority of the testing has been bench-scale. Four different testing apparatus have been widely used in bench-scale testing, the cup furnace, radiant heat furnace, cone calorimeter, and tube furnace. Each of these testing apparatus has been implemented multiple times by different research groups interested in evaluating toxicity, each yielding their own test method. Many of

these different methods along with the applied testing apparatus are observed in a paper titled, "Evaluation of Toxic Potency Values for Smoke from Products and Materials" by Richard G. Gann and Julie L. Neviaser (2004).

One characteristic that many of the bench-scale tests mentioned by Gann and Neviaser have in common is the utilization of animal testing. Animal testing, although no longer used in many parts of the world for toxicity tests, was a prominent part of the various toxicity testing procedures for years (Cimons, 2001). Animals were normally placed in closed chambers in which the fire effluent gases accumulated. The toxicity levels of the effluent gases from the burning material were then determined by calculating the lethal concentration 50 (LC<sub>50</sub>). The LC<sub>50</sub>, also referred to as LD<sub>50</sub> when dealing with dosage instead of concentration, is "the concentration of toxic gas or fire effluent statistically calculated form concentration-response data to produce lethality in 50% of test animals of a given species under specified conditions" (Hull, 2007). In other words, the toxic level of an effluent gas was determined when it caused death to half of the animals in the chamber.

Depending on which type of gas, asphyxiant or irritant, two other parameters are also calculated when determining toxicity. For asphyxiant gases, the fractional effective dose (FED) is calculated. The FED is "the ratio of exposure dose for an asphyxiant toxicant to that exposure dose of the asphyxiant expected to produce a specified effect on an exposed subject of average susceptibility" (Hull, 2007). If the LD<sub>50</sub> is the expected dosage of the asphyxiant, then the FED is ratio of the amount of that asphyxiant in the air compared to the already measured LD<sub>50</sub> of that gas. Likewise, for irritant gases, the fractional effective concentration (FEC) is "the ratio of the concentration of an irritant to that expected to produce a specified effect on an exposed

subject of average susceptibility" (Hull, 2007). The FED and FEC were the benchmarks for determining toxic potency of a fire effluent gas.

Bench Scale Toxicity ApparatusAlthough all of the methods listed in Gann and Neviaser's report included some form of animal testing, not all used the same testing apparatus. Gann and Neviaser made mention of methods involving the cup furnace, radiant heat furnace, and tube furnace in their report (2004). One of the cup furnace methods, the NBS Cup Furnace method is discussed in the "NIST Technical Note 1284: The Role of Bench-Scale Test Data in Assessing Real-Scale Fire Toxicity" (Babrauskas, et al., 1991). This report also includes benchscale tests using a radiant heat furnace and a cone calorimeter and medium and full-scale tests.

#### **NIST Cup Furnace**

The NBS Cup Furnace method used a cup furnace with a 200 L animal exposure chamber attached to its top. The animal exposure chamber contained six animal ports and multiple gas sampling ports as shown below in Figure 1 (Birky, et al., 1982).



Figure 1: NBS Cup Furnace method. (Source: Babrauskas, et al., 1991)

When running toxicity tests using the NBS Cup Furnace, the sample fuel was combusted in the furnace, and the effluent gases were released into the animal chamber. The animals were then exposed for 30 minutes to the effluent gases. During the tests, effluent gas concentrations were analyzed by NDIR spectrometers and through ion chromatography. All surviving test animals were then observed for a 14 day period, and all deaths recorded were considered to be due to the toxic gases. After the observation period, the  $LC_{50}$  values were determined (Babrauskas, et al., 1991).

#### **NIST/SwRI** Method

Another test method mentioned by Gann and Neviaser is the radiant heat method. One of these methods is also mentioned in the "NIST Technical Note 1284: The Role of Bench-Scale Test Data in Assessing Real-Scale Fire Toxicity" and is named the NIST/SwRI Method. The NIST/SwRI Method used the same animal chamber setup as the NBS Cup Furnace with the exception of a radiant heat source used instead of a cup furnace (Babrauskas, et al., 1991). See Figure 2 below for a schematic of the apparatus used in the NIST/SwRI Method.



**Figure 2: NIST/SwRI Method.** (Source: Babrauskas, et al., 1991)

In contrast with the NBS Cup Furnace, the NIST/SwRI Method was designed to simulate post-flashover conditions. Flashover occurs when all of the combustibles in an enclosed space ignite spontaneously. The NBS Cup Furnace was not particularly designed to simulate post-flashover conditions. On the other hand, the NIST/SwRI Method implemented a similar animal exposure procedure. However, NIST's report does not include information on whether the specimens were observed for the following 14 days as in the NBS Cup Furnace testing (Babrauskas, et al., 1991).

#### **Tube Furnace Method**

The third and final method mentioned by Gann and Neviaser is the Tube Furnace Method. Although researchers at NIST have not done much work with a tube furnace, it has been used in various other studies. One such study, also mentioned in Gann and Neviaser's work, is the University of San Francisco Method (2004). However, this method did not include a traditional tube furnace. Instead, this method applied a semi-hemispherical animal chamber connected to a tube with a boat containing the combustible sample centered in the middle of the tube (Cumming et al., 1979). A schematic of a more traditionally used tube furnace for toxicity studies is displayed in Figure 3.



Figure 3: Tube Furnace Method. (Source: ISO 19700, 2006)

The Tube Furnace Method used in the applied methodology for this report is very

similar to the one shown above in Figure 3. As described in ISO 19700:

The apparatus consists of a tube furnace and a quartz tube which passes through the furnace and into a mixing and measurement chamber. A drive mechanism pushes the specimen boat into the furnace at a preset, controlled rate. A constant, predetermined stream of primary air is provided at the furnace-tube entry and a preset, secondary supply into the mixing and measurement chamber. Gas samples are taken from the mixing and measurement chamber. (2006)

In this experiment, the gas samples are analyzed using FTIR spectroscopy. An FTIR is a

spectrometer that "consists of two mirrors located at a right angle to each other and oriented

perpendicularly, with a beamsplitter placed at the vertex of the right angle at a 45° angle relative

to the two mirrors" (Wolfram Research, 2008). The movable mirror and the beamsplitter

produce an interference pattern as the two split beams interfere with one another when

redirected back into one beam. Finally, the interference patterns produced encode the

corresponding spectrum (Wolfram Research, 2008). A schematic of the mirror orientation is shown below in Figure 4.



**Figure 4: Mirror setup for a Fourier Transform Infrared spectrometer.** (Source: Wolfram Research, 2008)

Like most other spectrometers, the FTIR is used to analyze gas compositions. When used in conjunction with the tube furnace, the FTIR can produce a spectrum of compositions over time, typically the period of combustion. This is useful in the sense that one can observe the combustion visually and analytically in terms of gas compositions at the same time.

#### **Cone Calorimeter**

Along with the three methods described in Gann and Neviaser's report, NIST has also done toxicity testing with a cone calorimeter. Although originally developed "as an improved technique for measuring rate of heat release on bench-scale specimens" (Babrauskas, et al., 1991), the cone calorimeter can also be used in conjunction with a gas analyzer for toxicity testing. NIST used ion chromatography for the analysis of the combustion effluent gases in their research.

The cone calorimeter's operation is based on the oxygen consumption principal. This principal states "for most combustibles there is a unique constant, 13.1 MJ/kg O<sub>2</sub>, relating the

amount of heat released during a combustion reaction and the amount of oxygen consumed from the air" (Babrauskas, et al., 1991). The sample is combusted using an electric cone-shaped heater, and the effluent gases are exhausted into a hood where they are sent for further analysis if necessary. See Figure 5 below for a schematic of a cone calorimeter.



**Figure 5: Cone calorimeter.** (Source: Babrauskas, et al., 1991)

#### **Full-Scale Testing**

With multiple bench-scale tests done, a full-scale test was necessary in order to obtain the most accurate fire toxicity data. The "NIST Technical Note 1453: Smoke Component Yields form Room-scale Fire Tests" presents the methods and results for a full-scale toxicity test done on NIST's facilities. A two-compartment assembly with an open doorway as the only source of

ventilation between the two rooms was used for the tests (Averill, et al., 2003). See Figure 6 below for a schematic of the assembly.



Figure 6: Two-compartment assembly used in full-scale toxicity testing at NIST. (Source: Averill, et al., 2003)

Four different fuel sources were burnt in the burn room. These fuel sources, of which guided the fuel sources used in the methodology applied in this report, included sofas, particleboard bookcases, rigid PVC, and electric power cables. Multiple gas sampling ports allowed for observation of the absorbance of effluent gases into the walls. Effluent gases were measured using FTIR spectroscopy and gas chromatography (Averill, et al., 2003).

Since NIST has done full-scale testing, along with all the aforementioned bench-scale tests except the tube furnace, comparison can now be made as to which bench-scale apparatus yields the most accurate results. However, before doing so, NIST along with the help of the authors of this paper needed to perform their own tube-furnace tests. With all the data, NIST will be able to propose a standard for studying bench-scale toxicity using a tube furnace. For information on how standards are developed, refer to Appendix C.

# Methodology

The goal of this project was to measure yields of combustion byproducts using a tube furnace and to test the sensitivity of the method. In order to test the sensitivity, multiple testing parameters were varied, and their effects on the results were observed. NIST will use our data with data to compare the tube furnace method with other bench-scale test methods, as well as to their full-scale tests. After completing their comparison, NIST will use the data to propose an ISO standard for using the tube furnace for bench-scale toxicity testing.

Project goals:

- Obtain background information on toxicity testing
- Establish order for testing
- Determine naming system for testing
- Acquire data
- Analyze data
- Assist NIST with comparison

How goals were accomplished:

- Completed literature review using resources at NIST
- Ordered tests based on time efficiency
- Designed naming system to easily link data with test name
- Ran tests on tube furnace while taking detailed notes
- Compared different parameters of tube furnace test to verify data
- Provided thorough analysis and recommendations on tube furnace method

## **Project Timeline**

| Task                  | Week |   |   |   |   |   |   |
|-----------------------|------|---|---|---|---|---|---|
|                       | 1    | 2 | 3 | 4 | 5 | 6 | 7 |
| Background Research   |      |   |   |   |   |   |   |
| Data Collection       |      |   |   |   |   |   |   |
| Data Analysis         |      |   |   |   |   |   |   |
| FDS Simulations       |      |   |   |   |   |   |   |
| Complete Final Report |      |   |   |   |   |   |   |
| Final Presentation    |      |   |   |   |   |   |   |

Refer to Table 1 below for the group's project timeline.

Table 1: Project Timeline.

#### **Review of Existing Test Methods**

Before running tests in the laboratory, more comprehensive background research was done on the different types of test methods used in past toxicity research. Included with these different types of tests were the different testing apparatus used. Nathan Marsh, a chemical engineer at NIST and one of the leaders of this project, provided numerous papers on previous tube furnace studies. Additional papers on toxicity, ISO standards, and NIST technical reports were obtained from the Building and Fire Research Laboratory (BFRL) Library.

The research was guided by a paper written by Richard Gann and Julie Neviaser entitled "Evaluation of Toxic Potency Values for Smoke from Products and Materials" (2004). This paper is a critical review of multiple toxicity testing apparatus and methods. As previously mentioned this paper included reviews of the cup furnace methods, radiant heat methods, tube furnace methods and the specific individual studies that used each method. More thorough research on each method provided a good sense of the positives and negatives of each apparatus and method along with the differences and similarities of each. Having this information was advantageous when making recommendations at the completion of this project.

#### Order of Tests

The order the tests scheduled in was determined by grouping the test parameters and arranging them in a manner that would allow the tests to be completed efficiently and accurately as possible. A base testing matrix was provided and included the following test parameters: material, conformation, furnace temperature, primary air flow rate, feed velocity of the material, and the size of the material. The group modified the matrix to include a test number and an identification code, and the matrix can be found in Appendix D. In addition, a description of the identification code can be obtained in Appendix E.

In determining the order to the tests in the matrix, the biggest contributing factor was the furnace temperature. This was because the furnace took up to an hour to heat up to the required temperature and several hours to cool to ambient temperature. Due to the nature of the furnace, the group attempted to run only one temperature each day.

Another important factor in determining the test order was the material being tested. The group tested four different materials: polymethyl methacrylate (PMMA), foam and fabric, particleboard, and electric cable. The order of the tests was chosen so that more than one material would not be tested on the same day. This kept the different material toxins and residues from being compounded in the mixing chamber, which would have yielded less accurate data.

Lastly, the tests were grouped by feed velocity of the material into the furnace. A laptop computer controlled the feed velocity of the material. In order to save time, the feed rate was adjusted as few times as possible.

#### **Test Parameters**

As mentioned, the group tested four types of material. Each material was tested at two different temperatures, 650 °C and 825 °C. These conditions were intended to simulate preflashover and post-flashover conditions respectively. At each temperature, the group tested each material, with the exception of PMMA at various primary air flow rates. The standard that the tests were based from, ISO/TS19700, suggested that the primary air flow rate be set to 10 L/min (ISO, 2006) for tests at 650 °C. The group increased this flow by 30% and rant test at 13 L/min as well. At 825 °C, the flow rates were adjusted to keep similar stoichiometry by multiplying the average O<sub>2</sub> depletion from the corresponding run at 650 °C by a factor of 1.1933. This method was provided in ISO/TS19700 (ISO, 2006).

Besides the primary air flow rate, the group also varied the feed velocity of the material to see if the experiment was sensitive to feed velocity. With the exception of PMMA, which was only run at the standard feed velocity of 40 mm/min, the group tested each material at feed velocities of 40 mm/min and a 50% increase at 60 mm/min for both temperatures. The primary air flows were also increased by 50% for the runs at 60 mm/min to maintain a constant equivalence ratio.

Finally, the group varied the material conformation and size of each material at both temperatures, with the exception of PMMA. Again, this was done to see if the experiment was sensitive to both of these parameter. The group tested the electric cable and particle board at two different conformations, 45 cm strips and diced. Multiple attempts were made to test the sofa in

a diced conformation. However, the group experienced difficulty in keeping the diced foam in place on the quartz boat, and the diced foam was burning too fast. As a result, it was agreed that the group would not test any diced foam. Additionally, the group tested the electric cable and particle board at two different sizes, standard and double. For the tests that called for double size, the group used two side by side samples of material. Because of the large size of the foam sample, the group tested a half-sized sample instead of the double material. Once again, the primary air flows were adjusted accordingly to maintain a constant equivalence ratio.

#### **Test Procedure**

After developing an order of how the tests were to be run and a naming convention, Nathan Marsh provided formal startup, testing, and shutdown procedures. The startup and shutdown procedures were followed once for each day of testing, while the testing procedure was followed during individual tests. Refer to Appendices F, G, and H for startup, shutdown, and testing procedures.

Once daily startup procedures were followed, one group member set up the first laboratory notebook entry. Each notebook entry contained information including identification code, sample description, sample weight for before and after the test, initial and average gas concentrations as observed from the NDIR, the depletion of oxygen, and all other observations from each run. Refer to Appendix I for a sample page from the laboratory notebook.

While one group member was preparing the notebook, another member began to prepare the sample. With the exception of the electric cable, all samples were properly sized and provided to the group. Before each test, a group member massed each sample individually, and then again once they placed the sample into the quartz boat. Before the boat was loaded, the group took a picture of the sample inside the boat. Once the boat was loaded and the system was

closed, the group member in charge of the notebook set up the NDIR and FTIR file names and checked to make sure the primary and secondary air flows matched the flows needed for each run. When the NDIR and FTIR began collecting data, the boat with the loaded sample began passing through the tube at the set feed velocity. Upon completion of the run, the sample was allowed to cool and then massed on final time. A picture of the boat and what remained of the sample were then taken. The group repeated this procedure three times for each test number to ensure accuracy. See Figure 7 below for a picture of the tube furnace apparatus used for all of the testing.



Figure 7: NIST tube furnace from various angles.

#### Compiling and Analyzing Data

The NDIR and FTIR were equipped with instruments that automatically recorded the data from each run. The NDIR recorded the  $CO_2$ , CO, and  $O_2$  levels along with the position and flow rates. The FTIR was used to record the other toxin levels such as  $CH_4$  and HCN and also to ensure the accuracy of the NDIR. After each run was over, the data was copied into a template

designed in Microsoft Excel in order to graph the data and take the averages of the byproduct levels over different time spans. Based on the graphs, the group determined where the steady state burning occurred. From this, the appropriate time span was chosen with the corresponding averages. These averages were then compiled and can be found in Appendix J.

#### FDS Simulations

A thorough analysis of the effluent gas concentrations and the thermo-fluid mechanics throughout the tube and collection box were conducted by the group members. Fire dynamics simulator (FDS), a relatively new technology that models fire-driven fluid flow through a computational fluid dynamics model, was used in conjunction with Smokeview (SMV), a visually based program that is used to display the output of FDS. An input file representing the tube furnace was constructed with the help of Nathan Marsh and Brian Klein. The group ran simulations with respect to upstream airflow and materials combusted. Data regarding temperature, CO, CO<sub>2</sub> and O<sub>2</sub> concentrations were recorded in multiple locations of the collection box. Temperature and velocity profiles of the tube and collection box were also documented.

The group ran FDS simulations representing a sample of PMMA burning at a heat release rate (HRR) of  $600 \text{ kW/m}^2$  and a sample of bookcase burning at a heat release rate (HRR) of  $100 \text{ kW/m}^2$ . Simulations were also run doubling the HRR and primary airflow to gather data for comparison. Graphs were compiled for analysis of temperature and effluent gases. Finally group members formulated conclusions and recommendations made to NIST.

### **Results and Discussion**

The following section includes results from the laboratory work and results from the FDS simulations. Each section includes commentary on the actual results obtained and a comparison of the measured results to those expected based on principles of chemistry and fire dynamics.

#### Test Results and Repeatability

For the laboratory test results, data tables including average concentrations for given runs and the percent change between the two runs were compiled. These averages were determined by taking the average concentrations over a time period, in which the group estimated a steady state burn was occurring. Since each run was done three times to ensure repeatability of the results, the average of the data from the three runs was then determined and included in these tables. Each table includes the effect of varying a test parameter on the concentration of CO<sub>2</sub>. Also, the average CO concentrations were included run for each run. The group also collected data on gases that could not be analyzed in the NDIR due to the limitations of the appartatus, such as HCN and HCl. Although NDIR data is not presented in this report, NIST will analyze this data which will be valuable for future studies of the tube furnace.

Tables 3 through 11 below show the average concentrations of  $CO_2$  for each material at each different test parameter. However, PMMA was only run at two different temperatures, while the rest of the parameters remained untested. These averages were obtained by averaging the steady state values from the three repeated runs for each test. In all cases, the tests showed good repeatability with a low standard deviation for all gases. An example of the test repeatability is shown below for Test 1, PMMA at 650 °C, in Table 2.

| Material | Conformation | Temperature<br>(°C) | $CO_2$ (% by vol.) | CO<br>(ppm) | $O_2$ (% by vol.) |
|----------|--------------|---------------------|--------------------|-------------|-------------------|
| DMMA     | Whole        | 650                 | 2.26               | 0           | 18.20             |
| FIVIIVIA | whole        | 030                 | 2.20               | 0           | 16.30             |
| PMMA     | Whole        | 650                 | 2.31               | -1          | 18.23             |
| PMMA     | Whole        | 650                 | 2.27               | 0           | 18.28             |
|          |              | Average             | 2.28               | 0           | 18.27             |
|          |              | Standard Deviation  | 0.03               | 1           | 0.03              |

| Table 2: | Repeatability | data | for | Test | 1. |
|----------|---------------|------|-----|------|----|
|          |               |      |     |      |    |

Since nearly all tests showed good repeatability, the group considered the data to be

valid and was able to draw conclusions.

#### **Temperature**

When the temperature was varied, the concentration of combustion byproducts also

changed. Table 3 shows a comparison of each material tested at both 650 °C and 825 °C.

|         | Material      | Temperature | $CO_2$      | % Change           | СО    |
|---------|---------------|-------------|-------------|--------------------|-------|
|         |               | (°C)        | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 1  | PMMA          | 650         | 2.28        |                    | 0     |
| Test 17 | PMMA          | 825         | 0.55        | 75.9%              | 2472  |
| Test 2  | Particleboard | 650         | 1.71        |                    | -4    |
| Test 18 | Particleboard | 825         | 0.41        | 76.0%              | 1086  |
| Test 7  | Foam          | 650         | 1.18        |                    | 348   |
| Test 23 | Foam          | 825         | 0.47        | 60.2%              | 2021  |
| Test 12 | Cable         | 650         | 1.05        |                    | 1078  |
| Test 28 | Cable         | 825         | 0.52        | 50.5%              | 656   |

 Table 3: Average concentrations of combustion byproducts for each material tested at different temperatures.

When the temperature was increased from  $600^{\circ}$ C to  $825^{\circ}$ C, CO<sub>2</sub> levels decreased to approximately less than half of the original values for all four materials. For three of the four materials, there was a substantial increase in CO concentrations. Cable was the only material that did not show an increase in CO with the increased temperature. The CO levels in cable decreased as the temperature was increased. This could be due to the metal pieces of the cable coming closer to their melting points and starting to decompose.

An increase in CO concentrations coinciding with an increase in temperature corresponds to less complete combustion at higher furnace temperatures. However, combustion involving an open flame is expected to come closer to completion as temperature increases. One reason for this unexpected result may be that the flame is burning in an enclosed space possibly limiting oxidation.

#### Conformation

When the group varied the conformation of each material, the byproduct concentrations remained relatively similar. Tables 4 and 5 below show a comparison of each material, with the exception of PMMA, tested at two different conformations, long strips and diced.

|         | Material      | Conformation | CO <sub>2</sub> | % Difference       | CO    |
|---------|---------------|--------------|-----------------|--------------------|-------|
|         |               |              | (% by vol.)     | of CO <sub>2</sub> | (ppm) |
| Test 2  | Particleboard | Whole        | 1.71            |                    | -4    |
| Test 3  | Particleboard | Diced        | 1.66            | 2.9%               | -8    |
| Test 7  | Foam          | Whole        | 1.18            | No Data            | 348   |
| Test 8  | Foam          | Diced        |                 | No Data            |       |
| Test 12 | Cable         | Whole        | 1.05            |                    | 1077  |
| Test 13 | Cable         | Diced        | 1.21            | 15.2%              | 1192  |

Table 4: Average concentrations of combustion byproducts for different conformations at 650 °C.

|         | Material      | Conformation | $CO_2$      | % Difference       | СО    |
|---------|---------------|--------------|-------------|--------------------|-------|
|         |               |              | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 18 | Particleboard | Whole        | 0.41        |                    | 1086  |
| Test 19 | Particleboard | Diced        | 0.31        | 24.4%              | 680   |
| Test 23 | Foam          | Whole        | 0.47        | No Data            | 2021  |
| Test 24 | Foam          | Diced        |             | No Data            |       |
| Test 28 | Cable         | Whole        | 0.31        |                    | 603   |
| Test 29 | Cable         | Diced        | 0.30        | 3.2%               | 549   |

Table 5: Average concentrations of combustion byproducts for different conformations at 825 °C.

CO levels decreased, when the sample conformation was changed from whole to diced, but not significantly. The diced sample provides a greater surface area for the oxygen to come in contact, which in turn may allow for more complete combustion. Because the  $CO_2$  levels did not vary greatly at either conformation, it shows that the conformation of the material has little effect on the burn rate of the material.

The group was unable to obtain reliable and repeatable test results for diced foam, due to the low density and fast burn rate of the foam. Because of the larger surface area and air pockets in the foam, the flame would burn out of the furnace and draw back into the tube during all testing. This unexpected burn behavior prevented the group from collecting data that met expected values for nearly all tests. Once the foam was diced, it would burn even more quickly due to an even greater increase in surface area. Also, because of the low density, the primary air that flowed through the tube would blow the diced pieces of foam around.

#### **Primary Air Flow**

As the primary air flow was increased from 10 to 13 L/min, a 30% increase, (which increased the equivalence ratio as well), there was slightly less  $CO_2$  produced and a nominally equal amount or small decrease in observed CO. Tables 6 and 7 below show a comparison of each material, with the exception of PMMA, tested at two different primary air flows for each temperature.

|         | Material      | Primary Air Flow | $CO_2$      | % Difference       | CO    |
|---------|---------------|------------------|-------------|--------------------|-------|
|         |               | (L/min)          | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 2  | Particleboard | 10               | 1.71        |                    | -4    |
| Test 4  | Particleboard | 13               | 1.82        | 6.4%               | -10   |
| Test 7  | Foam          | 10               | 1.18        |                    | 348   |
| Test 9  | Foam          | 13               | 0.86        | 27.1%              | 305   |
| Test 12 | Cable         | 10               | 1.05        |                    | 1078  |
| Test 14 | Cable         | 13               | 1.02        | 2.9%               | 935   |

Table 6: Average concentrations of combustion byproducts for different primary air flow rates at 650 °C.

|         | Material      | Primary Air Flow | CO <sub>2</sub> | % Difference       | CO    |
|---------|---------------|------------------|-----------------|--------------------|-------|
|         |               | (L/min)          | (% by vol.)     | of CO <sub>2</sub> | (ppm) |
| Test 18 | Particleboard | 2.2              | 0.41            |                    | 1086  |
| Test 20 | Particleboard | 1.5              | 0.23            | 43.9%              | 1015  |
| Test 23 | Foam          | 2.5              | 0.47            |                    | 2021  |
| Test 25 | Foam          | 1.7              | 0.33            | 29.8%              | 2202  |
| Test 28 | Cable         | 1.9              | 0.31            |                    | 603   |
| Test 30 | Cable         | 1.3              | 0.21            | 32.2%              | 1384  |

Table 7: Average concentrations of combustion byproducts for different primary air flow rates at 825 °C.

Assuming that 10 L/min was sufficient for complete combustion, the group expected minimal changes by increasing the primary air. This hypothesis holds true at 650  $^{\circ}$ C, with the exception of foam. However, at 825  $^{\circ}$ C, the difference in CO<sub>2</sub> levels became more severe. One thing that may have caused this result is the fact that at 825  $^{\circ}$ C, the primary air flows were very low possibly starving the combustion process of enough oxygen. In contrast, the CO levels remained similar for the particleboard and foam, but not the cable. It was difficult to make any correlations based on this data, so the group decided that for lower temperatures and higher primary flows, the tube furnace is not sensitive to an increase in primary air flow, but at higher temperatures the data was inconclusive.

#### **Feed Velocity**

As the feed velocity was increased from 40mm/min to 60mm/min, a 50% increase, the CO<sub>2</sub> levels increased, although not exactly 50% as expected. Tables 8 and 9 below show a comparison of each material, with the exception of PMMA, tested at two different feed velocities for each temperature.

|         | Material      | Feed Velocity | $CO_2$      | % Difference       | СО    |
|---------|---------------|---------------|-------------|--------------------|-------|
|         |               | (mm/min)      | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 2  | Particleboard | 40            | 1.71        |                    | -4    |
| Test 6  | Particleboard | 60            | 2.09        | 22.2%              | -2    |
| Test 7  | Foam          | 40            | 1.18        |                    | 348   |
| Test 11 | Foam          | 60            | 0.46        | 61.0%              | 39    |
| Test 12 | Cable         | 40            | 1.05        |                    | 1078  |
| Test 16 | Cable         | 60            | 1.50        | 42.9%              | 1299  |

Table 8: Average concentrations of combustion byproducts for different feed velocities at 650 °C.

|         | Material      | Feed Velocity | CO <sub>2</sub> | % Difference       | СО    |
|---------|---------------|---------------|-----------------|--------------------|-------|
|         |               | (mm/min)      | (% by vol.)     | of CO <sub>2</sub> | (ppm) |
| Test 18 | Particleboard | 40            | 0.41            |                    | 1086  |
| Test 21 | Particleboard | 60            | 0.62            | 51.2%              | 2008  |
| Test 23 | Foam          | 40            | 0.47            |                    | 2021  |
| Test 27 | Foam          | 60            | 0.37            | 21.3%              | 2825  |
| Test 28 | Cable         | 40            | 0.31            |                    | 603   |
| Test 32 | Cable         | 60            | 0.58            | 80.6%              | 1757  |

Table 9: Average concentrations of combustion byproducts for different feed velocities at 825 °C.

Since the material was fed at a faster rate, and the same amount of material was combusted, the burn rate of the material was expected to proportionally increase with the 50% increase in feed velocity. Although there was not exactly a 50% increase in all runs, each run at 60 mm/min showed a substantial increase in  $CO_2$  levels, with the exception of foam which behaved opposite of what was expected. This data proves that changing the mass charge has an effect on the results.

#### Size

When the material size was doubled, or cut in half for foam, the  $CO_2$  levels increased proportionally. Foam samples were cut in half because the foam pieces were too large. Tables 10 and 11 below show a comparison of each material, with the exception of PMMA, tested at two different sizes.

|         | Material      | Material Size | $CO_2$      | % Difference       | CO    |
|---------|---------------|---------------|-------------|--------------------|-------|
|         |               |               | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 2  | Particleboard | Whole         | 1.71        |                    | -4    |
| Test 5  | Particleboard | Double        | 3.38        | 97.7%              | -7    |
| Test 7  | Foam          | Whole         | 1.18        |                    | 348   |
| Test 10 | Foam          | Half          | 0.38        | 67.8%              | 124   |
| Test 12 | Cable         | Whole         | 1.05        |                    | 1078  |
| Test 15 | Cable         | Double        | 1.96        | 86.7%              | 2150  |

Table 10: Average concentrations of combustion byproducts for different sample sizes at 650 °C.

|         | Material      | Material Size | $CO_2$      | % Difference       | СО    |
|---------|---------------|---------------|-------------|--------------------|-------|
|         |               |               | (% by vol.) | of CO <sub>2</sub> | (ppm) |
| Test 18 | Particleboard | Whole         | 0.41        |                    | 1086  |
| Test 21 | Particleboard | Double        | 0.62        | 51.2%              | 2008  |
| Test 23 | Foam          | Whole         | 0.47        |                    | 2021  |
| Test 26 | Foam          | Half          | 0.09        | 80.9%              | 519   |
| Test 28 | Cable         | Whole         | 0.31        |                    | 603   |
| Test 31 | Cable         | Double        | 0.71        | 129.0%             | 1353  |

Table 11: Average concentrations of combustion byproducts for different sample sizes at 825 °C.

As expected, when the material size was adjusted and the primary air flow was adjusted accordingly to maintain a constant equivalence ratio, the amount of  $CO_2$  changed proportionally. This was due to the fact that either double or half of the material was burning in the same amount of time, and the stoichiometry did not change. Therefore, either double or half of the amount of  $CO_2$  was expected.

At 650 °C the results match what was expected. However, at 825 °C, the  $CO_2$  levels did not correlate to exactly what was expected for the bookcase or the foam. In examining the CO data though, the combustion occurred as expected. Although the data did not correlate completely, this data shows for the most part that material size does have an effect on the results.

#### **FDS Results**

The group ran four simulations in FDS with two different types of fuel. Two simulations were run with laminated particle board (bookcase) and two with a thermoplastic (PMMA). The simulations provided data from two separate locations in the mixing chamber. Temperature, carbon dioxide, carbon monoxide, and oxygen concentrations were recorded. The bookcase results were compared to the tube furnace experimental data, however, the PMMA data wasn't comparable to any experimental data available. See Table 12 below for steady state average concentrations for all runs.

|                      | Т    | $CO_2$          | $O_2$           |
|----------------------|------|-----------------|-----------------|
|                      | (°C) | (mole fraction) | (mole fraction) |
| Bookcase 1 / Probe 1 | 35   | 0.0008          | 0.206           |
| Bookcase 1 / Probe 2 | 30   | 0.0007          | 0.206           |
| Bookcase 2 / Probe 1 | 45   | 0.0014          | 0.205           |
| Bookcase 2 / Probe 2 | 35   | 0.0013          | 0.205           |
| PMMA 1 / Probe 1     | 35   | 0.0048          | 0.198           |
| PMMA 1 / Probe 2     | 30   | 0.0043          | 0.200           |
| PMMA 2 / Probe 1     | 45   | 0.0085          | 0.193           |
| PMMA 2 / Probe 2     | 35   | 0.0075          | 0.194           |

Table 12: Steady state averages for FDS simulations (CO values were all 0)

Temperature was representative of the experimental thermocouple data so that wasn't analyzed in depth. The CO data was all zero from FDS because the program assumes complete combustion.  $CO_2$  was the only data that significant conclusions could be drawn from.

Primary airflow was set to 10 L/min in the first bookcase simulation and secondary airflow was accordingly 40 L/min. The sample vent was assigned a HRR of 100 kW/m<sup>2</sup>. Figure 8 below illustrates the  $CO_2$  concentrations at each of the sample probe locations for the first bookcase FDS simulation.



Figure 8: CO<sub>2</sub> concentrations at each probe location for first bookcase FDS simulation.

The graph's x-axis has units of time steps which are approximately 1 time step for every 0.6 seconds. Each simulation was the equivalent of 5 minutes real time. The results are slightly skewed by about 20% which indicates insufficient mixing in the chamber. This is a result of the direction of the secondary airflow. It is located in the correct position but directs air straight to the back of the mixing chamber instead of at a 45 degree angle as specified in the standard. The correction of the secondary airflow will correct insufficient mixing issues. Although the data is skewed by approximately 20% from each probe location, conclusions can still be drawn from

the data. In the experiment mixing chamber the argument can be made that mixing is less than 20% insufficient, which illustrates that experimental conditions are close to well mixed.

As expected when the HRR and primary airflow were doubled the combustion rate was doubled and as a result  $CO_2$  concentrations were doubled as well. Figure 9 below illustrates the increase of  $CO_2$  concentrations by a factor of 2 from Figure 8.



Figure 9: CO<sub>2</sub> concentrations at each probe location for second bookcase FDS simulation.

When compared to experimental data, each of the bookcase  $CO_2$  concentrations was low by a factor of 10. This was caused by two differences from the simulations to the experiment. First, the surface area of the sample vent in the simulation had a lower surface area then the sample in the experiment by a factor of 4. The sample vent is dimensionless while the bookcase in the experiment is a three-dimensional rectangle. The low surface area decreases the combustion from radiation and limits the  $CO_2$  concentrations produced. Second, the simulation assumes that all radiation in the tube is normal to the sample surface. This isn't representative of the experiment as radiation comes from all directions in the tube. Accounting for both of these differences would significantly increase the  $CO_2$  concentrations and be much more representative of the actual experimental results. The PMMA simulations results were not analyzed because there was no experimental data available to compare them with.

#### **FDS Conclusions**

The group concluded that the FDS simulation was not a good indicator of what was happening experimentally. Compared to experimental data, FDS  $CO_2$  concentrations were low by a factor of 10. It was found that temperature in the mixing chamber was representative to experimental temperatures. However, with adjustments to the input parameters such as airflow rates, HRR and planar area of combustion, and a finer grid size, the data should match up more accurately. For example, based on the bookcase simulation data, the group concluded that doubling the HRR and primary airflow would result in an increase in  $CO_2$  concentrations by approximately a factor of 2.

# Conclusions

A total of 32 tests were run, each being triplicated to ensure repeatability. Based on the results from those tests, the group was able to make conclusions on both the appropriateness of the tube furnace for testing each of the four materials and on the sensitivities of the tube furnace to the various operations. The following sections provide conclusions based on the experimental data.

The results demonstrated that the apparatus was appropriate for all of the materials with the exception of foam. Consistently the foam behaved opposite of what was expected. Also, the foam could not be tested for conformation because of its low density. The primary air flow through the tube caused the low density diced pieces of foam to blow out of the quartz boat, thus, making it extremely difficult to test.

It was concluded that the furnace temperature had an effect on the amount of  $CO_2$ produced, but not as expected. It was expected that with a higher furnace temperature, the burn rate would also increase, yielding a higher concentration of  $CO_2$ , but that did not occur. Instead, when the furnace temperature was increased, a decrease in burning rate was observed. This could be due to a decrease in the primary air flow per the standard for runs at 825 °C. Due to the low primary air flows, combustion may not have been as complete and an increased pyrolysis rate may have occurred. The pyrolysis also could have been occurring faster than the material could combust, which could account for the lower  $CO_2$  levels at the higher temperature runs.

Next, the group concluded that the conformation of the material had no effect on the combustion byproducts. The data showed that there were small differences in the gas concentrations, which were within the standard deviation, when testing the conformation. The

gas concentrations were relatively the same when only the conformation was changed. From this it was concluded that the conformation did not affect the combustion of the material.

Varying the primary air flow rate at the lower temperature had little effect on the concentrations of gases. It was expected that there would not be much change in the concentrations when the primary air flow was increased by 30%, because the total air in the mixing chamber remained constant at 50 L/min for every test. Since the total air never changed, the dilution in the mixing chamber was not affected by the primary air flow. Had the gases been analyzed right at the end of the tube, there's a possibility the results may have differed.

At the higher temperature, when the primary air flow was increased by 30%, the concentrations were much lower than what was expected for  $CO_2$ , however, the CO levels did not change. The constant CO concentrations show that the same amount of combustion was occurring. However, the unexpected decrease in  $CO_2$  discredits that claim. There is a possibility that since the  $CO_2$  levels were already showing up lower than expected at higher temperatures, that it was just the temperature that was causing this unexpected result and not the increase in primary air.

It was concluded that the size of the specimen was proportional to the mass burn rate. As expected, when the size of the specimen was doubled, and the equivalence ratio was maintained, the mass burn rate approximately doubled. The specimen was fed at the same rate and the total air in the box was constant.

The feed velocity was also proportional to the mass burn rate. Similar to the size tests, when testing the affect of the feed velocity the equivalence ratio was preserved. It was expected that the mass burn rate would increase 50% with a 50% increase in the feed velocity because the same amount of material was burning in less time. The data proved that this was true.

# Recommendations

All of the recommendations presented here are based on experience and observations from the experimental phase of the project. The aim of the group's recommendations is to minimize problems. The key is to minimize problems with the conduct of the experiments and to help ensure that other groups that use this standard can replicate the results. Included in the following section are recommendations for altering the test parameters, modifying the apparatus, more precise data analysis, and improved FDS simulations.

#### **Test Parameters**

One suggestion the group has, is to test a wider range of primary air flow rates without preserving the equivalence ratio. More air flow rates should be tested to ensure that the burn rate is not affected by the primary air flow, which was the drawn conclusion thus far. With the issues arising at a higher temperature, another suggestion would be to have a different method to calculate the primary air flow rate when increasing the furnace temperature, instead of being based on the oxygen depletion from the runs at 650  $^{\circ}$ C.

The next recommendation is to test more temperatures to observe whether  $CO_2$  levels actually decrease with an increase in temperature. This suggestion arose because the data from the experiment did not match what was expected to happen. With an increase in temperature, it is expected that the  $CO_2$  levels would increase with temperature. Due to the fact this did not occur, more temperatures should be tested to see if the equipment is adequate for higher temperatures or to determine if the conclusions are indeed correct.

Because of the difficulties testing foam, the group made recommendations for future testing of foam. If the standard includes foam for testing, it is recommended that half the size of

the foam be used. Using half the size would eliminate the problem of not being able to double the size for the foam. When run at full size, the foam barely fits in the tube which may have blocked some of the primary air flowing through the tube. This also is important when comparing data because the data should be consistent, that is all the testing should not have double sized material with one material at half size instead of full size.

#### Apparatus

In regards to the apparatus itself, one recommendation is to test to ensure the mixing chamber contents are well mixed. The FDS simulations showed a difference in the  $CO_2$  levels at the two different measure locations meaning the contents were not completely well mixed throughout the chamber. In the actual experiment, the probe should be moved to another location, or a second probe should be added to test how well-mixed the mixing chamber is.

Next, it is suggested to have a window in the furnace to observe what is occurring during the run. Currently, during each run, the combustion cannot directly be observed to see where the actual burning is occurring. Instead the combustion of the material can only be viewed from obscure angles. Because of this issue, the group suggests having a viewing window on the side of the furnace. It is important to be able to observe what is occurring during the run with the flame as well as the smoke.

#### Data Analysis

One suggestion for improved data analysis is to calculate mass loss based on percent loss of original weight. When analyzing the data, it is unclear how the mass loss would be of importance without knowing the original weight. Because of this, it is suggested that the mass

loss is calculated as a percent of the original weight. This would allow the data to be used in a more efficient and unambiguous manner.

#### FDS Simulations

Finally, the group also made recommendations for improving the FDS simulations. There were multiple areas regarding improvements to the group's FDS simulations but the biggest restraint on the project was time. There was not a significant amount of things that need to be changed but rather things that need to be investigated further. Also, there was not a significant amount of simulations conducted because each run was very time consuming.

The secondary airflow needs to be readjusted to a 45 degree angle. Doing this would ensure well mixed conditions in the mixing chamber and reduce discrepancies in data from the probe locations. If this did not completely fix the insufficient mixing issues then the sensors need to be repositioned to areas with well mixed conditions.

Next, the sample needs to be readjusted to more accurately model the planar area of the sample combusting. The simulation sample was estimated based on approximations to what was happening. Since the furnace cannot be opened during experiments it was impossible to tell the exact dimensions of the combusting area of the sample.

HRRs were provided by NIST and need to be reevaluated. Changing HRRs would significantly alter the simulation data. The group recommends increasing the gasification rate by increasing the irradiated sample surface. Sample surface currently is low by a factor of 4. Finally, the computational resolution of the sample needs to be enhanced. Simulation run time drastically increases with enhanced resolution; however, it is necessary to produce the most accurate experiment representation. Cell density increases as computational resolution is

increased which will enable programmers to position all objects in the simulation to their exact locations. It would also significantly increase the overall performance of each simulation.

The group believes that the recommendations presented for changes to the test parameters, tube furnace apparatus, and data analysis will provide for improved measurement of combustion byproducts using the tube furnace. Likewise, recommendations for varying the input parameters in the FDS simulations will provide for results that more closely match experimental data.

## References

- Averill, Jason D. "Smoke Component Yields from Room-scale Fire Tests."*NIST*. Technical Note 1453, April 2003.
- Babrauskas, Vytenis, et al. "The Role of Bench-Scale Test Data in Assessing Real-Scale Fire Toxicity." *NIST*. Technical Note 1284, January 1991.
- Birky, Merritt M., et al. "Further Development of a Test Method for the Assessment of the Acute Inhalation Toxicity of Combustion Products." *NBS*. NBSIR 82-2532, June 1982.
- Bukowski, Richard W, PE. "Fire Hazard Analysis." *NFPA Fire Protection Handbook.* 18<sup>th</sup> Edition, 1997.
- Bukowski, Richard W, PE. "An Overview of Fire Hazard and Fire Risk Assessment in Regulation." 2006.
- Cimons, Marlene. "R&D toxicity test to be eliminated." *Nature Medicine*. Volume 7, 2001. Retrieved January 16, 2008, from http://www.nature.com/nm/journal/v7/n10/full/nm1001-1077a.html
- Cumming, Heather J., et al. "Relative Toxicity of Pyrolysis Gases from Materials: Effects of Temperature, Air Flow and Criteria." *Fire and Materials*. Vol. 3, No. 4, 1979.
- Gann, Richard G. and Neviaser, Julie L.. "Evaluation of Toxic Potency Values for Smoke from Products and Materials." *Fire Technology*. Vol. 40, 2004.
- Hull, Richard T., and Paul, Keith T. "Bench-scale assessment of combustion toxicity A critical analysis of current protocols." *Fire Safety Journal*. Vol. 42, Issue 5, 2007.
- ISO (2008a). "About ISO." 2008. Retrieved January 17, 2008, from http://www.iso.org/iso/about.htm
- ISO. "Controlled equivalence ratio method for the determination of hazardous components of fire effluents." ISO/TS 19700, 2006.
- ISO. "Life-threatening components of fire Guidelines for the estimation of time available for escape using fire data." ISO 13571, 2007.
- ISO (2008b). "Stages of the development of International Standards." 2008. Retrieved January 17, 2008, from http://www.iso.org/iso/standards\_development/processes\_and\_procedures/stages\_description.htm

- NIAID. "NIH Strategic Plan and Research Agenda for Medical Countermeasures Against Chemical Threats." *National Institute of Health*. August 2007. Retrieved January 16, 2008, from http://www3.niaid.nih.gov/topics/BiodefenseRelated/ChemicalCountermeasures/PDF/NI HStrategicPlanChem.pdf
- NIST. "General Information." November 2, 2001. Retrieved January 22, 2008, from http://www.nist.gov/public\_affairs/general2.htm
- NIST. "Building and Fire Research Laboratory." Retrieved January 22, 2008, from http://bfrl.nist.gov/
- Wolfram Research. "Fourier Transform Spectrometer." *Science World*. Retrieved January 17, 2008, from http://scienceworld.wolfram.com/physics/FourierTransformSpectrometer.html

#### Appendix A: Brief Background of NIST

The sponsoring organization for this project is the National Institute of Standards and Technology (NIST). "Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life" (NIST, 2001). NIST carries out its mission through four cooperative programs. NIST Laboratories conduct research used for the advancement of the nation's technology infrastructure. The Baldridge National Quality Program conducts outreach programs to help promote performance excellence among various U.S. organizations. The Hollings Manufacturing Extension Partnership offers technical and business assistance to smaller manufacturers through a nationwide network of local centers. A newly created program, the Technology Innovation Program, is planned to provide industry, universities and consortia cost-shared awards for research on potentially revolutionary technologies that address critical national and societal needs (NIST, 2001).

NIST employs roughly 2,800 engineers, technicians, scientists, and support and administrative employees. NIST also hosts roughly 2,600 associates and facility users from industry, academia, and other government agencies. In addition, NIST collaborates around the country with 1,600 manufacturing specialists and staff at approximately 440 MEP service locations. NIST has an operational budget of approximately \$843 million and operates in two locations: Gaithersburg, MD and Boulder, CO (NIST, 2001).

The Building and Fire Research Laboratory (BFRL) located within NIST works, "To promote U.S. innovation and competitiveness by anticipating and meeting the measurement science, standards, and technology needs of the U.S. building and fire safety industries in ways

that enhance economic security and improve the quality of life" (NIST, 2008). The BFRL accomplishes its goal through the continual study of computer-integrated construction practices; fire science and fire safety engineering; building materials; and mechanical, structural, and environmental engineering (NIST, 2008).

# Appendix B: Detailed Process of a Fire Hazard Analysis (FHA)

The first step of an FHA is to select a target outcome. Most common target outcomes involve the avoidance of fatalities of occupants in the building. The second step is determining the scenario(s) of concern that could result in that outcome. Next, design fire(s) are selected. This step is very important to conducting a valid analysis, because "the purpose of the design fire is similar to the assumed loading in a structural analysis; i.e., to answer the question of whether the design will perform as intended under the assumed challenge" (Bukowski, 1997). An appropriate method(s) for prediction is selected in the fourth step. In order to choose an appropriate model, a solid understanding of the assumptions and limitations of the model in question are necessary. In the fifth step, an evacuation calculation is performed. Comparable to selecting an appropriate method(s) for prediction, it is also important to predict a relevant egress model. A sound understanding of the egress methods is necessary to obtain an accurate model. The sixth step is analyzing the impact of exposure. According to Bukowski, "In most cases, the exposure will be to people, and the methods used to assess the impacts of exposure of people to heat and combustion gases involves the application of combustion toxicology models" (1997). The seventh and final step is accounting for uncertainty. A discussion of uncertainty should be included in the FHA report.

#### **Appendix C: Code Development Process**

The government, public and private sectors commonly coordinate with various organizations to conduct research in which standards are implemented, but occasionally such organizations will conduct research on their own accord. If NIST performs research that proves old standards incorrect or misleading then often groups such as the International Standards Organization (ISO) will amend their documents based upon the new conclusions proposed by NIST.

The world's largest developer and publisher of International Standards is ISO. ISO is a network comprised of international standards of 157 countries across the globe. The system is coordinated by one member from each of the countries involved. Though ISO is a non-governmental organization it still holds a unique position between the public and private sectors of standards development. This coincides with a portion of its members holding government positions in their respective countries as well as a portion of its members involved with the private sector. The bridging of the public and private sectors allow for compromise between the requirements of business organizations and the needs of society such as stakeholder groups like users and consumers (ISO, 2008a).

When the member bodies of the ISO come to agreement on standards they become an international standard. When a standard becomes international it may be used in any of the participating countries that make up ISO. International standards are developed by ISO technical committees (TC) and subcommittees (SC) in a six-step process. The first step requires a new proposal to be agreed upon by the majority of the members of the TC/SC with at least 5 members agreeing to work with the development of the standard personally. A group of experts constructs a working draft of the standard in the second step. Once a working draft is

established it is again voted on by the TC/SC until a consensus is reached in step 3. At which point, the draft international standard (DIS) is circulated to all members of ISO over a period of 5 months in step 4. ISO states, "It is approved for submission as a final draft International Standard (FDIS) if a two-thirds majority of the P-members of the TC/SC are in favor and not more than one-quarter of the total number of votes cast are negative" (ISO, 2008b). Once a FDIS has been approved in step 6, only minor editorial changes are made to the final document. The international standard is then published and made available to the public (ISO, 2008b).

| Idetification Code       | Test Number      | Product        | L.     | Conformation                                                  | Air F       | lows       | Specim       | e a  |           |
|--------------------------|------------------|----------------|--------|---------------------------------------------------------------|-------------|------------|--------------|------|-----------|
|                          |                  |                |        | 4 - Wheele                                                    | Primarv     | Secondary  | Feed<br>Rate | Size | Obiective |
| (see below)              |                  |                | ပ္စ    | 2 - Diced                                                     | l/min       | l/min      | mm/min       |      |           |
| Test Number, Product Let | ter, Conformatic | on, Temp, Prim | lary A | ir Flow, Feed Rate, Size, Run Number                          |             |            |              |      |           |
| 1-P-1-650-10-40-1-xxx    | -                | PMMA           | 650    | Long Strip                                                    | See 9.3.4   | 50 – Prim. | 40           |      | m         |
| 2-B-1-650-10-40-1-xxx    | 2                | Bookcase       | 650    | Long strip, with laminate face up                             | See 9.3.4   | 50 – Prim. | 40           | -    | 1.a, (b)  |
| 3-B-2-650-10-40-1-xxx    | m                | Bookcase       | 650    | Diced strip, with same mass as 1.a                            | See 9.3.4   | 50 – Prim. | 40           | 1    | 2.C       |
| 4-B-1-650-1.3-40-1-xxx   | 4                | Bookbase       | 650    | Long strip, with laminate face up                             | 1.3 (9.3.4) | 50 – Prim. | 40           | 1    | 2.d       |
| 5-B-1-650-2-40-2-xxx     | 5                | Bookcase       | 650    | Long strip, with laminate face up                             | 2 (9.3.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 6-B-1-650-1.5-60-1-xxx   | 9                | Bookcase       | 650    | Long strip, with laminate face up                             | 1.5 (9.3.4) | 50 – Prim. | 60           | 1    | 2.e.2     |
| 7-S-1-650-10-40-1-xxx    | 7                | Sofa           | 650    | Long strip of foam, with proportionate layer of fabric on tip | See 9.3.4   | 50 – Prim. | 40           | -    | 1.a, (b)  |
| 8-S-2-650-10-40-1-xxx    | ω                | Sofa           | 650    | Diced, with same mass and proportion as 1.a                   | See 9.3.4   | 50 – Prim. | 40           |      | 2.C       |
| 9-S-1-650-13-40-1-xxx    | 5                | Sofa           | 650    | Long strip of foam, with proportionate layer of fabric on tip | 1.3 (9.3.4) | 50 – Prim. | 40           |      | 2.d       |
| 10-S-650-20-40-2-xxx     | 10               | Sofa           | 650    | Long strip of foam, with proportionate layer of fabric on tip | 2 (9.3.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 11-S-650-15-60-1-xxx     | 11               | Sofa           | 650    | Long strip of foam, with proportionate layer of fabric on tip | 1.5 (9.3.4) | 50 – Prim. | 60           |      | 2.e.2     |
| 12-C-1-650-10-40-1-xxx   | 12               | Cable          | 650    | Full-length, intact strip(s)                                  | See 9.3.4   | 50 – Prim. | 40           |      | 1.a, (b)  |
| 13-C-2-650-10-40-1-xxx   | 13               | Cable          | 650    | Diced, with same mass as 1.a                                  | See 9.3.4   | 50 – Prim. | 40           | 1    | 2.C       |
| 14-C-1-650-13-40-1-xxx   | 14               | Cable          | 650    | Full-length, intact strip(s)                                  | 1.3 (9.3.4) | 50 – Prim. | 40           | 1    | 2.d       |
| 15-C-2-650-20-40-2-xxx   | 15               | Cable          | 650    | Full-length, intact strip(s)                                  | 2 (9.3.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 16-C-1-650-15-60-1-xxx   | 16               | Cable          | 650    | Full-length, intact strip(s)                                  | 1.5 (9.3.4) | 50 – Prim. | 09           | 1    | 2.e.2     |
| 17-P-1-825-3-40-1-xxx    | 17               | PMMA           | 825    | rong Strip                                                    | 5ee 9.4.4   | 50 – Prim. | 40           | 1    | 3         |
| 18-B-1-825-5-40-1-xxx    | 18               | Bookcase       | 825    | Long strip, with laminate face up                             | See 9.4.4   | 50 – Prim. | 40           | 1    | 1.a, (b)  |
| 19-B-2-825-1-40-1-xxx    | 19               | Bookcase       | 825    | Diced strip, with same mass as 1.a                            | See 9.4.4   | 50 – Prim. | 40           | 1    | 2.C       |
| 20-B-1-825-3-40-1-xxx    | 20               | Bookbase       | 825    | Long strip, with laminate face up                             | 2/3 (9.4.4) | 50 – Prim. | 40           | 1    | 2.d       |
| 21-B-1-825-10-40-2-xxx   | 21               | Bookcase       | 825    | Long strip, with laminate face up                             | 2 (9.4.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 22-B-1-825-5-60-1-xxx    | 22               | Bookcase       | 825    | Long strip, with laminate face up                             | 1.5 (9.4.4) | 50 – Prim. | 09           | 1    | 2.e.2     |
| 23-S-1-825-2-40-1-xxx    | 23               | Sofa           | 825    | Long strip of foam, with proportionate layer of fabric on tip | See 9.4.4   | 50 – Prim. | 40           | 1    | 1.a, (b)  |
| 24-S-2-825-2-40-1-xxx    | 24               | Sofa           | 825    | Diced, with same mass and proportion as 1.a                   | See 9.4.4   | 50 – Prim. | 40           | 1    | 2.C       |
| 25-S-1-825-1-40-1-xxx    | 25               | Sofa           | 825    | Long strip of foam, with proportionate layer of fabric on tip | 2/3 (9.4.4) | 50 – Prim. | 40           | 1    | 2.d       |
| 26-S-1-825-4-40-1-xxx    | 26               | Sofa           | 825    | Long strip of foam, with proportionate layer of fabric on tip | 2 (9.4.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 27-S-1-825-2-60-1-xxx    | 27               | Sofa           | 825    | Long strip of foam, with proportionate layer of fabric on tip | 1.5 (9.4.4) | 50 – Prim. | 60           | 1    | 2.e.2     |
| 28-C-1-825-40-5-1-xxx    | 28               | Cable          | 825    | Full-length, intact strip(s)                                  | See 9.4.4   | 50 – Prim. | 40           | 1    | 1.a, (b)  |
| 29-C-2-825-5-40-1-xxx    | 29               | Cable          | 825    | Diced, with same mass as 1.a                                  | See 9.4.4   | 50 – Prim. | 40           | 1    | 2.C       |
| 30-C-1-825-3-40-1-xxx    | 30               | Cable          | 825    | Full-length, intact strip(s)                                  | 2/3 (9.4.4) | 50 – Prim. | 40           | 1    | 2.d       |
| 31-C-1-825-10-40-2-xxx   | 31               | Cable          | 825    | Full-length, intact strip(s)                                  | 2 (9.4.4)   | 50 – Prim. | 40           | 2    | 2.e.1     |
| 32-C-1-825-2-60-1-xxx    | 32               | Cable          | 825    | Full-length, intact strip(s)                                  | 1.5 (9.4.4) | 50 – Prim. | 60           | 1    | 2.e.2     |

# Appendix D: Final Test Matrix

# **Appendix E: Identification Code Explained**

The naming system was designed to allow users to identify the test parameters by looking at the file name and not having to open the file. Results from each test were stored with a file name equivalent to the test's identification code. Identification codes were arranged by assigning each parameter of the test either a letter or number to identify the test parameter (i.e. 1-P-1-650-10-40-1-001). The identification code was arranged in the following order:

- 1. Test number
- 2. Product letter
- 3. Conformation
- 4. Temperature
- 5. Primary air flow
- 6. Feed velocity
- 7. Size
- 8. Run number

# **Appendix F: Startup Procedure**

#### Startup:

- 1) Set valve on left end of bench to Air
- 2) Turn on Motion Flow Controllers
- 3) Turn on Air (both sides of room)
- 4) Open valve on  $N_2$  cylinder
- 5) Run LabView (filename "test" or similar)
- 6) Set Primary and Secondary Air flow rates and LED's green
- 7) Verify flow rates reported back (horizontal green bars)
- 8) Turn on furnace
- 9) Set furnace set point (arrows + "enter")
- 10) Plug in motion controller
- 11) Put ice water coil in bucket, fill with ice, top off with water
- 12) Connect the rest of the sample train snug with wrenches
- 13) Put dry ice around the glass trap (HEAVY GLOVES!)
- 14) Check NDIR calibration and record
- 15) NDIR valve to "chamber"
- 16) Turn on pumps (NDIR + FTIR)
- 17) Check O<sub>2</sub> (span value) on NDIR and record

# **Appendix G: Shutdown Procedure**

#### Shutdown:

- 1) Turn off furnace
- 2) Turn off Motion Flow Controllers
- 3) Unplug motion controller (top plug)
- 4) Turn off air (both sides of room)
- 5) Close valve on  $N_2$  tank
- 6) Verify  $CO/CO_2$  tank valve is closed
- 7) Stop / exit LabView
- 8) Turn off pump(s)
- 9) NDIR to standby (MAIN / F7)
- 10) Disconnect dry ice trap (both sides)
- 11) Return unused dry ice to cooler
- 12) Open disk filter housing, dispose of filter (record anything unusual)
- 13) Disconnect ice water coil
- 14) Pour ice water in sink
- 15) Blow out ice water coil\*

#### \*To blow out the ice water coil:

- 1) Hold coil over trash and open valve
- 2) Hang coil in trash
- 3) Connect top of coil to air line
- 4) Plug other end of coil
- 5) Turn on air
- 6) Reverse 1-5

# **Appendix H: Detailed Test Procedure**

#### **Before Each Test:**

- 1) Verify LabView is stopped
- 2) Verify desired Furnace T on controller
- 3) Verify CO / CO<sub>2</sub> / O<sub>2</sub> baseline is within bounds ( $\pm 10 \text{ ppm} / \pm 0.04 \% / 20.5 \%$  to 21 %)
- 4) Verify NDIR flows within bounds (Ch. 1 and Ch. 2: 1.00 L/min to 1.10 L/min; Ch. 2: 0.2 L/min)
- 5) Record sample description and dimensions
- 6) Weigh sample and record (GLOVES)
- 7) Weigh sample in boat and record (GLOVES)
- 8) Take a photograph of sample with label
- 9) Load sample boat into tube furnace (GLOVES)
- 10) Set push rod over boat end
- 11) Place cap on tube, attach springs, rotate cap to form seal
- 12) Check the thumbscrew on the pushrod
- 13) Enter new file name and start Autoquant (3.3 P/P is normal on FTIR)
- 14) Enter new file name and start LabView
- 15) Verify Primary and Secondary Air flow rates (look at both the set point AND the value reported back)
- 16) Press button to start motion controller

#### **During Each Test:**

- 1) Observe steady state and record gas concentrations (CO /  $CO_2$  /  $O_2$  from the NDIR and anything "interesting" from the FTIR
- 2) Calculate D<sub>O2</sub> (Oxygen Depletion)

#### **After Each Test:**

- 1) If the sample smolders at all, turn the value at the left end of the bench from Air to  $N_2$
- 2) Wait 5 minutes for sample boat to cool, and then weigh before cleaning (GLOVES)
- 3) Weigh the boat with the burned sample (GLOVES)
- 4) Take photograph with label



# **Appendix I: Sample Page from Laboratory Notebook**

Figure 11: Sample entry from laboratory notebook taken on January 24, 2008.

# Appendix J: Steady State Average Concentrations for Each Run

|             | PMMA                    |          | 1                                                                                                               |       |       |         |          |        |         |        |        |      |
|-------------|-------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-------|-------|---------|----------|--------|---------|--------|--------|------|
| Toot Number | Cutting                 | Primary  | Poplicato t                                                                                                     | 002   |       | STD CO2 | <u></u>  | STD CO | 02      | STD O2 | Mace   | Loce |
|             | Single Laver            | 10       | Replicate #                                                                                                     | 1     | 2.26  | 0.03    | 0.19     | 0.06   | 18 30   | 0.03   | IVIASS | 11.4 |
| 1           | Single Layer            | 10       |                                                                                                                 | 2     | 2.20  | 0.00    | -0.97    | 2 49   | 18.23   | 0.06   |        | 13.6 |
| 1           | Single Layer            | 10       |                                                                                                                 | 3     | 2.27  | 0.03    | -0.37    | 0.06   | 18.28   | 0.04   |        | 13.7 |
|             | enigie Layer            |          | Average                                                                                                         |       | 2.28  |         | -0.38    |        | 18.27   |        |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.03  |         | 0.58     |        | 0.03    |        |        |      |
|             |                         |          |                                                                                                                 |       |       |         |          |        |         |        |        |      |
|             |                         | Primary  |                                                                                                                 |       |       |         |          |        |         |        |        |      |
| Test Number | Cutting                 | Air Flow | Replicate #                                                                                                     | ¢ CO2 | 0.75  | STD CO2 | CO       | STD CO | 02      | STD 02 | Mass   | Loss |
| 17          | Single Layer            | 10       |                                                                                                                 | 1     | 0.75  | 0.01    | 3105.68  | 88.13  | 19.66   | 0.02   |        |      |
| 17          | Single Layer            | 10       |                                                                                                                 | 2     | 0.40  | 0.01    | 2114.71  | 29.00  | 19.92   | 0.01   |        |      |
|             | Olligie Layer           | 10       | Average                                                                                                         | 5     | 0.55  | 0.00    | 2472.20  | 01.10  | 19.84   | 0.01   |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.17  |         | 550.12   |        | 0.15    |        |        |      |
|             |                         |          |                                                                                                                 |       |       |         |          |        |         |        |        |      |
|             |                         |          |                                                                                                                 |       |       |         |          |        |         |        |        |      |
|             | DOOKOAS                 |          | •                                                                                                               |       |       |         |          |        |         |        |        |      |
|             | BOOKCAS                 | ETEST    | S                                                                                                               |       |       |         |          |        |         |        |        |      |
| Test Number | Cutting                 | Primary  | Deplicate t                                                                                                     | 1002  | (9/)  | STD CO2 | CO (DDM) | STD CO | 02 (%)  | STD 02 | Mace   | 1000 |
| rest Number | Single Laver            | 10       | Replicate #                                                                                                     | 1     | 1.68  | 0.09    | -3.21    | 2.87   | 19 16   | 0.09   | IVIASS | 14.8 |
| 2           | Single Layer            | 10       |                                                                                                                 | 2     | 1.00  | 0.03    | -5.33    | 5.56   | 19.08   | 0.21   |        | 13.7 |
| 2           | Single Layer            | 10       |                                                                                                                 | 3     | 1 68  | 0.10    | -2.92    | 1.79   | 19.17   | 0.11   |        | 14.2 |
|             | enigie zajei            |          | Average                                                                                                         |       | 1.71  |         | -3.82    |        | 19.14   |        |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.05  |         | 1.32     |        | 0.05    |        |        |      |
|             |                         |          |                                                                                                                 |       |       |         |          |        |         |        |        |      |
|             |                         | Primary  |                                                                                                                 |       |       |         |          |        |         |        |        |      |
| Test Number | Cutting                 | Air Flow | Replicate #                                                                                                     | ¢ CO2 | (%)   | STD CO2 | CO (PPM) | STD CO | 02 (%)  | STD 02 | Mass   | Loss |
| 3           | Diced                   | 10       |                                                                                                                 | 1     | 1.73  | 0.05    | -11.26   | 4.42   | 19.12   | 0.05   |        | 14.7 |
| 3           | Diced                   | 10       |                                                                                                                 | 2     | 1.57  | 0.11    | -16.35   | 1.88   | 19.27   | 0.11   |        | 12.9 |
| 3           | Diced                   | 10       | A.u.o.ro.g.o.                                                                                                   | 3     | 1.67  | 0.10    | 3.00     | 4.82   | 19.17   | 0.10   |        | 13.1 |
|             |                         |          | Average<br>St Dov                                                                                               |       | 0.08  |         | -7.50    |        | 0.08    |        |        |      |
|             |                         |          | SLDEV                                                                                                           |       | 0.00  |         | 10.40    |        | 0.00    | 1      |        |      |
|             |                         | Primary  | 1                                                                                                               |       |       |         |          |        |         |        |        |      |
| Test Number | Cutting                 | Air Flow | Replicate #                                                                                                     | ¢ CO2 | (%)   | STD CO2 | CO (PPM) | STD CO | 02 (%)  | STD O2 | Mass   | Loss |
| 4           | Single Layer            | 13       |                                                                                                                 | 1     | 1.80  | 0.14    | -11.81   | 1.42   | 19.01   | 0.13   |        | 13.8 |
| 4           | Single Layer            | 13       |                                                                                                                 | 2     | 1.77  | 0.15    | -14.78   | 1.24   | 19.04   | 0.15   |        | 13.3 |
| 4           | Single Layer            | 13       |                                                                                                                 | 3     | 1.90  | 0.12    | -3.68    | 1.36   | 18.92   | 0.13   |        | 14.2 |
|             |                         |          | Average                                                                                                         |       | 1.82  |         | -10.09   |        | 18.99   |        |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.07  |         | 5.74     |        | 0.06    | 1      |        |      |
|             |                         | Primary  | 1                                                                                                               |       |       |         |          |        |         |        |        |      |
| Test Number | Cutting                 | Air Flow | Replicate #                                                                                                     | E CO2 | (%)   | STD CO2 | CO (PPM) | STD CO | 02 (%)  | STD 02 | Mass   | Loss |
| 5           | Single Laver            | 20       | rtephoute #                                                                                                     | 1     | 3.41  | 0.36    | -2.70    | 2.49   | 17.28   | 0.39   |        | 26.5 |
| 5           | Single Layer            | 20       |                                                                                                                 | 2     | 3.42  | 0.45    | -8.10    | 2.50   | 17.28   | 0.49   |        | 27.7 |
| 5           | Single Layer            | 20       |                                                                                                                 | 3     | 3.30  | 0.39    | -11.37   | 3.46   | 17.39   | 0.41   |        | 29.0 |
|             |                         |          | Average                                                                                                         |       | 3.38  |         | -7.39    |        | 17.32   |        |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.07  |         | 4.38     |        | 0.06    | ]      |        |      |
|             |                         |          | 1                                                                                                               |       |       |         |          |        |         |        |        |      |
| Test No.    | Cuttin -                | Primary  | Danlinste d                                                                                                     | 1000  | (0/)  | STD CO2 | CO (PDM) | STD CO | 02 (9/) | STD 02 | Mass   | Lose |
| lest Number | Cutting<br>Single Lever | AIF FIOW | Replicate #                                                                                                     | 1     | 2 1 9 | 0.20    | 1 55     | 0.30   | 18 52   | 0.21   | wid55  | 14 3 |
| 6           | Single Layer            | 15       |                                                                                                                 | 2     | 2.10  | 0.20    | -2.50    | 2.58   | 18 64   | 0.21   |        | 13.0 |
| 6           | Single Laver            | 15       |                                                                                                                 | 3     | 2.00  | 0.22    | -3.42    | 4.63   | 18.72   | 0.24   |        | 13.8 |
| 0           | onigio Layer            | 10       | Average                                                                                                         |       | 2.09  | 0.66    | -2.49    |        | 18.63   |        |        |      |
|             |                         |          | St Dev                                                                                                          |       | 0.09  |         | 0.93     |        | 0.09    |        |        |      |
|             |                         |          | Later and the second |       |       |         |          |        |         | -      |        |      |

|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
|-------------|----------------------|----------|--------------|-----|----------|---------|-----------|---------|---------|--------|------|--------|
| Test Number | Cutting              | Air Flow | Replicate #  |     | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 18          | Single Laver         | 2.2      |              | 1   | 0.57     | 0.01    | 1673.42   | 192.56  | 20.09   | 0.01   |      |        |
| 18          | Single Layer         | 2.2      |              | 2   | 0.34     | 0.01    | 794.03    | 170.06  | 20.33   | 0.04   |      |        |
| 18          | Single Laver         | 2.2      |              | 3   | 0.31     | 0.01    | 791.23    | 104.86  | 20.44   | 0.01   |      |        |
|             |                      |          | Average      | T   | 0.41     |         | 1086.23   |         | 20.29   |        |      |        |
|             |                      |          | St Dev       |     | 0.14     |         | 508.53    |         | 0.18    |        |      |        |
|             |                      |          |              |     |          |         |           |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
| Test Number | Cutting              | Air Flow | Replicate #  | T   | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 19          | Single Laver         | 2.2      |              | 2   | 0.30     | 0.00    | 582.76    | 46.35   | 20.44   | 0.01   |      |        |
| 19          | Single Laver         | 22       |              | 3   | 0.33     | 0.01    | 810.88    | 99.91   | 20.40   | 0.01   |      |        |
| 19          | Single Laver         | 2.2      |              | 4   | 0.32     | 0.01    | 645.80    | 115.15  | 20.41   | 0.02   |      |        |
|             | enigie Lajer         |          | Average      | Ť   | 0.31     |         | 679.81    |         | 20.42   |        |      |        |
|             |                      |          | St Dev       |     | 0.02     |         | 117.80    |         | 0.02    |        |      |        |
|             |                      |          | 01001        | -   |          |         |           |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
| Test Number | Cutting              | Air Flow | Replicate #  |     | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 20          | Single Laver         | 3.5      | reprioute #  | 1   | 1 09     | 0.00    | 71.80     | 94.54   | 19.66   | 0.00   | made | 13.4   |
| 20          | Single Layer         | 3.5      |              | 2   | 1.00     | 0.01    | 669 15    | 241.50  | 19.68   | 0.01   |      | 14.6   |
| 20          | Single Layer         | 3.5      |              | 3   | 1.00     | 0.01    | 000.10    | 211.00  | 10.00   | 0.01   |      | 14.2   |
| 20          | Olligie Layer        | 0.0      | Average      | -   | 1 07     |         | 370 47    |         | 19.67   |        |      | 1 1.45 |
|             |                      |          | St Dev       |     | 0.03     |         | 422.39    |         | 0.01    |        |      |        |
|             |                      |          | 01 001       | +   | 0.00     |         | 122100    |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
| Test Number | Cutting              | Air Flow | Replicate #  | T   | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 20r         | Single Laver         | 1.5      | itopiioato " | 1   | 0.22     | 0.01    | 1186.11   | 61.49   | 20.49   | 0.01   |      |        |
| 20r         | Single Layer         | 1.5      |              | 2   | 0.22     | 0.01    | 621 77    | 197 30  | 20.51   | 0.01   |      |        |
| 20r         | Single Layer         | 1.5      |              | 3   | 0.25     | 0.01    | 1236.28   | 79.79   | 20.46   | 0.01   |      |        |
| 201         | Olligio Edyor        | 1.0      | Average      | -   | 0.23     |         | 1014.72   |         | 20.49   |        |      |        |
|             |                      |          | St Dev       |     | 0.02     |         | 341.23    |         | 0.03    |        |      |        |
|             |                      |          | 01001        | -   |          |         |           |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
| Test Number | Cutting              | Air Flow | Replicate #  | Π   | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 21          | Single Laver         | 10.4     |              | 1   | 2.14     | 0.06    | 22.60     | 16.24   | 18.62   | 0.07   |      | 28.5   |
| 21          | Single Laver         | 10.4     |              | 2   | 2.10     | 0.11    | 326.43    | 382.43  | 18.65   | 0.15   |      | 28.3   |
| 21          | Single Laver         | 10.4     |              | 3   | 2.12     | 0.04    | 15.13     | 15.28   | 18.62   | 0.05   |      | 27.5   |
|             | 5 <u>9</u> .e _e.,e. |          | Average      | T   | 2.12     |         | 121.39    |         | 18.63   |        |      |        |
|             |                      |          | St Dev       |     | 0.02     |         | 177.61    |         | 0.01    |        |      |        |
|             |                      |          |              | Т   |          |         |           |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
| Test Number | Cutting              | Air Flow | Replicate #  | 1   | CO2 (%)  | STD CO2 | CO (PPM)  | STD CO  | 02 (%)  | STD O2 | Mass | Loss   |
| 21r         | Single Laver         | 4.3      |              | 1   | 0.65     | 0.01    | 2095.97   | 364.70  | 20.00   | 0.02   |      |        |
| 21r         | Single Layer         | 4.3      |              | 2   | 0.637    | 0.005   | 2151.634  | 166.374 | 20.010  | 0.009  |      |        |
| 21r         | Single Layer         | 4.3      |              | 3   | 0.57     | 0.01    | 1777.02   | 144.09  | 20.10   | 0.01   |      |        |
|             |                      |          | Average      |     | 0.62     |         | 2008.21   |         | 20.04   |        |      |        |
|             |                      |          | St Dev       |     | 0.04     |         | 202.14    |         | 0.06    |        |      |        |
|             |                      |          |              | 1   |          |         |           |         |         |        |      |        |
|             |                      |          |              |     |          |         |           |         |         |        |      |        |
|             |                      |          |              |     |          |         |           |         |         |        |      |        |
|             |                      |          |              |     |          |         |           |         |         |        |      |        |
|             | SOFA TES             | TS       |              |     |          |         |           |         |         |        |      |        |
|             |                      | Primary  | 1            |     |          |         |           |         |         |        |      |        |
|             |                      | 1        |              | . 1 | 000 (0/) |         | OO (DDIA) | 070 00  | 00 (0/) | OTD OO | 84   | 1000   |

|             |              | Filliary |             | 1     |       |         |          |        |        |        |           |
|-------------|--------------|----------|-------------|-------|-------|---------|----------|--------|--------|--------|-----------|
| Test Number | Cutting      | Air Flow | Replicate # | # CO2 | 2 (%) | STD CO2 | CO (PPM) | STD CO | 02 (%) | STD O2 | Mass Loss |
| 7           | Single Layer | 10       |             | 1     | 1.27  | 0.24    | 320.63   | 62.45  | 19.30  | 0.26   | 10.1      |
| 7           | Single Laver | 10       |             | 2     | 1.24  | 0.15    | 253.87   | 59.22  | 19.34  | 0.15   | 10.3      |
| 7           | Single Layer | 10       |             | 3     | 1.03  | 0.47    | 470.78   | 173.07 | 19.57  | 0.55   | 9.4       |
|             |              |          | Average     |       | 1.18  |         | 348.43   |        | 19.40  |        |           |
|             |              |          | St Dev      |       | 0.13  |         | 111.09   |        | 0.15   |        |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | Primary                                                                                                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting                                                                                                                                                                                                                 | Air Flow                                                                                                                                                                                       | Replicate #                                                                                                                                                     | CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STD CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO (PPM) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STD CO                                                                                                                                          | 02 (%)                                                                                                                                                                                                                     | STD O2 M                                                                                                                                                                  | ass Loss                                                                     |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Layer                                                                                                                                                                                                            | 13                                                                                                                                                                                             | 1                                                                                                                                                               | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.33                                                                                                                                           | 19.91                                                                                                                                                                                                                      | 0.22                                                                                                                                                                      | 10.0                                                                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Layer                                                                                                                                                                                                            | 13                                                                                                                                                                                             | 2                                                                                                                                                               | 2 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 289.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.89                                                                                                                                           | 19.85                                                                                                                                                                                                                      | 0.36                                                                                                                                                                      | 10.6                                                                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Layer                                                                                                                                                                                                            | 13                                                                                                                                                                                             | 3                                                                                                                                                               | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 424.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.27                                                                                                                                           | 19.81                                                                                                                                                                                                                      | 0.19                                                                                                                                                                      | 10.6                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 31 - 52 -                                                                                                                                                                                                             |                                                                                                                                                                                                | Average                                                                                                                                                         | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 305.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | 19.86                                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                | St Dev                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 111.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | 0.05                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | Primary                                                                                                                                                                                        | 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting                                                                                                                                                                                                                 | Air Flow                                                                                                                                                                                       | Replicate #                                                                                                                                                     | CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STD CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO (PPM) S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STD CO                                                                                                                                          | 02 (%) 5                                                                                                                                                                                                                   | STD O2 M                                                                                                                                                                  | ass Loss                                                                     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Laver                                                                                                                                                                                                            | 5                                                                                                                                                                                              | 4                                                                                                                                                               | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 124.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 68.57                                                                                                                                           | 20.32                                                                                                                                                                                                                      | 0.13                                                                                                                                                                      |                                                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Laver                                                                                                                                                                                                            | 5                                                                                                                                                                                              | 1                                                                                                                                                               | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.41                                                                                                                                           | 20.26                                                                                                                                                                                                                      | 0.11                                                                                                                                                                      |                                                                              |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Laver                                                                                                                                                                                                            | 5                                                                                                                                                                                              |                                                                                                                                                                 | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.95                                                                                                                                           | 20.20                                                                                                                                                                                                                      | 0.14                                                                                                                                                                      |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onigio cajor                                                                                                                                                                                                            |                                                                                                                                                                                                | Average                                                                                                                                                         | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 | 20.26                                                                                                                                                                                                                      |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                | St Dev                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | 0.06                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | Primary                                                                                                                                                                                        | 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting                                                                                                                                                                                                                 | Air Flow                                                                                                                                                                                       | Replicate #                                                                                                                                                     | CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STD CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STD CO                                                                                                                                          | 02 (%)                                                                                                                                                                                                                     | STD 02 M                                                                                                                                                                  | ass Loss                                                                     |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Laver                                                                                                                                                                                                            | 15                                                                                                                                                                                             | Interpretate #                                                                                                                                                  | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 96.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.84                                                                                                                                           | 20.26                                                                                                                                                                                                                      | 0.45                                                                                                                                                                      | 9.7                                                                          |
| 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Layer                                                                                                                                                                                                            | 15                                                                                                                                                                                             |                                                                                                                                                                 | 0,-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.83                                                                                                                                           | 20 19                                                                                                                                                                                                                      | 0.38                                                                                                                                                                      | 9.9                                                                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Layer                                                                                                                                                                                                            | 15                                                                                                                                                                                             |                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.83                                                                                                                                           | 20 36                                                                                                                                                                                                                      | 0.33                                                                                                                                                                      | 10.1                                                                         |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Layer                                                                                                                                                                                                            | 10                                                                                                                                                                                             | Average                                                                                                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £1.03                                                                                                                                           | 20.27                                                                                                                                                                                                                      | 0.00                                                                                                                                                                      | 19.1                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                | St Desi                                                                                                                                                         | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | 0.08                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                                | at Dev                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 | 0.00                                                                                                                                                                                                                       |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         | Delense                                                                                                                                                                                        | 1                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                       | Primary                                                                                                                                                                                        | D                                                                                                                                                               | 000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OTD OOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CO (DDIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TD CO                                                                                                                                           | 02/9/14                                                                                                                                                                                                                    | STD O2 M                                                                                                                                                                  | aee   acc                                                                    |
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting                                                                                                                                                                                                                 | Air Flow                                                                                                                                                                                       | Replicate #                                                                                                                                                     | 1002 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1810 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1905 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120 70                                                                                                                                          | 20 24                                                                                                                                                                                                                      | 0.04                                                                                                                                                                      | ass L055                                                                     |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Layer                                                                                                                                                                                                            | 2.5                                                                                                                                                                                            |                                                                                                                                                                 | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1895.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.76                                                                                                                                          | 20.24                                                                                                                                                                                                                      | 0.01                                                                                                                                                                      | 9.0                                                                          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Layer                                                                                                                                                                                                            | 2.5                                                                                                                                                                                            | 4                                                                                                                                                               | 2 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2538.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 151.89                                                                                                                                          | 20.23                                                                                                                                                                                                                      | 0.01                                                                                                                                                                      | 10.3                                                                         |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single Laver                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                                                                           |                                                                              |
| - 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | alligie Layer                                                                                                                                                                                                           | 2.5                                                                                                                                                                                            |                                                                                                                                                                 | 3 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227.02                                                                                                                                          | 20.33                                                                                                                                                                                                                      | 0.02                                                                                                                                                                      | 0.0                                                                          |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jingle Layer                                                                                                                                                                                                            | 2.0                                                                                                                                                                                            | Average                                                                                                                                                         | 3 0.44<br>0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2021.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 227.02                                                                                                                                          | 20.33                                                                                                                                                                                                                      | 0.02                                                                                                                                                                      | 0.5                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Juligie Layer                                                                                                                                                                                                           | 2.0                                                                                                                                                                                            | Average<br>St Dev                                                                                                                                               | 3 0.44<br>0.47<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227.02                                                                                                                                          | 20.33<br>20.27<br>0.05                                                                                                                                                                                                     | 0.02                                                                                                                                                                      | 0.0                                                                          |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Juligie Layer                                                                                                                                                                                                           | 2.5                                                                                                                                                                                            | Average<br>St Dev                                                                                                                                               | 3 0.44<br>0.47<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227.02                                                                                                                                          | 20.33<br>20.27<br>0.05                                                                                                                                                                                                     | 0.02                                                                                                                                                                      | 0.0                                                                          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single Layer                                                                                                                                                                                                            | Primary                                                                                                                                                                                        | Average<br>St Dev                                                                                                                                               | 3 0.44<br>0.47<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227.02                                                                                                                                          | 20.33<br>20.27<br>0.05                                                                                                                                                                                                     | 0.02                                                                                                                                                                      | 0.0                                                                          |
| Test Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting                                                                                                                                                                                                                 | Primary<br>Air Flow                                                                                                                                                                            | Average<br>St Dev<br>Replicate #                                                                                                                                | 3 0.44<br>0.47<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227.02<br>STD CO                                                                                                                                | 20.33<br>20.27<br>0.05                                                                                                                                                                                                     | 0.02<br>STD 02 M                                                                                                                                                          | ass Loss                                                                     |
| Test Number<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cutting<br>Single Layer                                                                                                                                                                                                 | Primary<br>Air Flow<br>1.7                                                                                                                                                                     | Average<br>St Dev<br>Replicate #                                                                                                                                | 3 0.44<br>0.47<br>0.03<br>CO2 (%)<br>1 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22<br>CO (PPM) 5<br>2302.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227.02<br>STD CO<br>131.78                                                                                                                      | 20.33<br>20.27<br>0.05<br>02 (%) 3<br>20.39                                                                                                                                                                                | 0.02<br>STD O2 M<br>0.01                                                                                                                                                  | ass Loss<br>10.2                                                             |
| Test Number<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cutting<br>Single Layer<br>Single Layer                                                                                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7                                                                                                                                                              | Average<br>St Dev<br>Replicate #                                                                                                                                | 0.44<br>0.47<br>0.03<br>CO2 (%)<br>1 0.35<br>2 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22<br>CO (PPM)[5<br>2302.65<br>2146.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STD CO<br>131.78<br>159.30                                                                                                                      | 20.33<br>20.27<br>0.05<br>02 (%)<br>20.39<br>20.41                                                                                                                                                                         | 0.02<br>STD O2 M<br>0.01<br>0.02                                                                                                                                          | ass Loss<br>10.2<br>10.1                                                     |
| 25<br>Test Number<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | 2.5<br>Primary<br>Air Flow<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #                                                                                                                                | 0.44<br>0.47<br>0.03<br>CO2 (%)<br>0.35<br>2 0.33<br>3 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1629.46<br>2021.09<br>467.22<br>CO (PPM) 5<br>2302.65<br>2146.64<br>2158.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 227.02<br>STD CO<br>131.78<br>159.30<br>330.38                                                                                                  | 20.33<br>20.27<br>0.05<br>02 (%)<br>20.39<br>20.41<br>20.19                                                                                                                                                                | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02                                                                                                                                  | ass Loss<br>10.2<br>10.1<br>9.6                                              |
| 25<br>Test Number<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | 2.5<br>Primary<br>Air Flow<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #                                                                                                                                | 3 0.44<br>0.47<br>0.03<br>CO2 (%)<br>1 0.35<br>2 0.33<br>3 0.33<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 227.02<br>STD CO<br>131.78<br>159.30<br>330.38                                                                                                  | 20.33<br>20.27<br>0.05<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33                                                                                                                                                         | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02                                                                                                                                  | ass Loss<br>10.2<br>10.1<br>9.6                                              |
| 25<br>Test Number<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | 2.5<br>Primary<br>Air Flow<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev                                                                                                           | CO2 (%)<br>1 0.35<br>2 0.33<br>3 0.33<br>0.33<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227.02<br>STD CO<br>131.78<br>159.30<br>330.38                                                                                                  | 20.33<br>20.27<br>0.05<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12                                                                                                                                                 | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02                                                                                                                                  | ass Loss<br>10.2<br>10.1<br>9.6                                              |
| 25<br>Test Number<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | 2.5<br>Primary<br>Air Flow<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev                                                                                                           | 3 0.44<br>0.47<br>0.03<br>CO2 (%)<br>1 0.35<br>2 0.33<br>3 0.33<br>0.33<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38                                                                                                  | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12                                                                                                                                                         | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02                                                                                                                                  | ass Loss<br>10.2<br>10.1<br>9.6                                              |
| Test Number<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev                                                                                                           | 3 0.44<br>0.47<br>0.03<br>0.35<br>2 0.33<br>3 0.33<br>0.33<br>0.33<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38                                                                                                  | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12                                                                                                                                                         | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02                                                                                                                                  | ass Loss<br>10.2<br>10.1<br>9.6                                              |
| Test Number<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #                                                                                            | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO                                                                                        | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12<br>0.12                                                                                                                                                 | 5TD 02 M<br>0.01<br>0.02<br>0.02<br>STD 02 M                                                                                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>Test Number<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cutting<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow                                                                                                                                           | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #                                                                                            | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO                                                                                        | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12<br>02 (%)                                                                                                                                               | 5TD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M                                                                                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>Test Number<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7<br>Air Flow                                                                                                                                    | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a                                                                                | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) \$<br>575.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85                                                                               | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>02 (%)                                                                                                                    | 5TD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00                                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>7<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow<br>1<br>1                                                                                                                     | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a                                                                          | 3 0.44<br>0.47<br>0.03<br>1 0.35<br>2 0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>[CO2 (%)<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) \$<br>575.99<br>461.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12                                                                     | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>02 (%) 3<br>20.59<br>20.58                                                                                                | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>7<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow<br>1<br>1<br>1                                                                                                                | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a                                                                          | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) [<br>575.99<br>461.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12                                                                     | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.59<br>20.59<br>20.58<br>20.59                                                                                                  | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow                                                                                                                               | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev                                                     | CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) 5<br>575.99<br>461.39<br>518.69<br>81.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12                                                                     | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.58<br>20.59<br>20.58                                                                                          | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow<br>1<br>1                                                                                                              | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev                                                     | CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) 5<br>575.99<br>461.39<br>518.69<br>81.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12                                                                     | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>0.00                                                                                  | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1                                                                                                                     | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev                                                     | 3 0.44<br>0.47<br>0.03<br>1 0.35<br>2 0.33<br>3 0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) [<br>575.99<br>461.39<br>518.69<br>81.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12                                                                     | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>20.58<br>20.59<br>0.00                                                                                  | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01                                                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>Test Number<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow<br>1<br>1<br>1<br>Primary<br>Air Flow                                                                                         | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev                                                     | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>575.99<br>461.39<br>518.69<br>81.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO                                                           | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>0.00                                                                                  | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>STD O2 M                                                                                          | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>Test Number<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>Air Flow                                                                                    | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #                                      | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0 | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) 5<br>575.99<br>461.39<br>518.69<br>81.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO                                                           | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.59<br>0.00                                                                                                    | 5TD 02 M<br>0.01<br>0.02<br>0.02<br>5TD 02 M<br>0.00<br>0.01                                                                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss                                  |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                    | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6                                                                                         | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev                                                     | CO2 (%)<br>CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>STD CO2<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) \$<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>138.17                                       | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.00                                                      | 5TD O2 M<br>0.01<br>0.02<br>0.02<br>5TD O2 M<br>0.00<br>0.01<br>5TD O2 M<br>0.01                                                                                          | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0                           |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6                                                                                  | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b                                | CO2 (%)<br>CO2                                                                                                                                                                                                                                 | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM) 3<br>2679.62<br>2743.41<br>2679.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>STD CO                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>0.00<br>02 (%)                                                                        | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>STD O2 M<br>0.01<br>0.01<br>0.01<br>0.01                                                          | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0                           |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6<br>1.6<br>1.6                                                             | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b                                | CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO3<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.03<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.39<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.34<br>0.32<br>0.34<br>0.32<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38<br>0.38       | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1629.46<br>2021.09<br>487.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.65<br>2202.45<br>86.96<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.       | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12<br>20.59<br>20.58<br>20.59<br>0.00<br>02 (%)<br>20.59<br>20.58<br>20.59<br>0.00                                                       | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>ass Loss<br>9.0               |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average                     | CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO2 (%)<br>CO3<br>CO3<br>CO3<br>CO3<br>CO3<br>CO3<br>CO3<br>CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM)]<br>2679.62<br>2743.41<br>3053.25<br>2825.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>0.00<br>02 (%)<br>20.59<br>20.58<br>20.59<br>0.00                                                       | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>ass Loss<br>9.0               |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>Air Flow<br>1.6<br>1.6<br>1.6                                                                                                          | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average<br>St Dev           | 3 0.44<br>0.47<br>0.03<br>1 0.35<br>2 0.33<br>3 0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM) [5<br>2679.62<br>2743.41<br>3053.25<br>2825.43<br>199.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.58<br>20.59<br>0.00<br>02 (%)  <br>20.17<br>20.02<br>19.99<br>20.06<br>0.10                                   | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0                           |
| Test Number<br>25<br>25<br>25<br>7<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6                                                                             | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average<br>St Dev           | 3 0.44<br>0.47<br>0.03<br>1 0.35<br>2 0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>202.45<br>86.96<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM) 3<br>2679.62<br>2743.41<br>3053.25<br>2825.43<br>199.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.00<br>0.00                                               | 5TD 02 M<br>0.01<br>0.02<br>0.02<br>5TD 02 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                              | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0                           |
| Test Number           25           25           25           25           7           26           26           7           27           27           27           27                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cutting<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer<br>Single Layer                                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6<br>1.6<br>1.6                                                                    | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Replicate #<br>2b<br>St Dev | CO2 (%)<br>CO2 (%)<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.33<br>0.01<br>CO2 (%)<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.0 | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>86.96<br>202.45<br>81.04<br>202.05<br>202.65<br>202.45<br>81.04<br>202.05<br>202.65<br>202.65<br>202.45<br>81.04<br>202.05<br>202.65<br>202.65<br>202.45<br>202.65<br>202.45<br>202.65<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>202.45<br>200 | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.19<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.00<br>20.17<br>20.02<br>19.99<br>20.06<br>0.10                   | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01                                                                      | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0                           |
| Test Number           25           25           25           25           25           25           26           26           26           26           26           26           27           27           27           27           27           27           27           27           7           27           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7           7 | Cutting<br>Single Layer<br>Single Layer                                 | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6                                               | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average<br>St Dev           | CO2 (%)<br>CO2 (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>STD CO2<br>0.01<br>0.01<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>CO (PPM) \$<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM) \$<br>2679.62<br>2743.41<br>3053.25<br>2825.43<br>199.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 227,02<br>311,78<br>159,30<br>330,38<br>STD CO<br>40,85<br>119,12<br>STD CO<br>138,17<br>198,18<br>158,63<br>STD CO                             | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.59<br>20.69<br>20.69<br>20.17<br>20.02<br>19.99<br>20.06<br>0.10                   | 5TD O2 M<br>0.01<br>0.02<br>0.02<br>5TD O2 M<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.0                                                               | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0<br>ass Loss               |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                      | Cutting<br>Single Layer<br>Single Layer | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6                   | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average<br>St Dev           | CO2 (%)<br>CO2                                                                                                                                                                                                                                 | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.00<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>STD CO2<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46           2021.09           467.22           2302.65           2146.64           2158.06           2202.45           86.96           575.99           461.39           518.69           81.04           2679.62           2743.41           3053.25           2825.43           199.87           CO (PPM)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 227,02<br>311.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63<br>STD CO<br>99.91                    | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.39<br>20.33<br>0.12<br>20.59<br>20.58<br>20.59<br>20.58<br>20.59<br>20.59<br>20.59<br>20.69<br>20.69<br>20.00<br>20.17<br>20.02<br>19.99<br>20.00<br>0.10 | 5TD O2 M<br>0.01<br>0.02<br>0.02<br>5TD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>5TD O2 M<br>0.03          | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0<br>ass Loss<br>7.2        |
| Test Number<br>25<br>25<br>25<br>25<br>25<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cutting<br>Single Layer<br>Single Layer | Primary<br>Air Flow<br>1.7<br>1.7<br>1.7<br>Air Flow<br>1<br>1<br>1<br>1<br>Primary<br>Air Flow<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.0<br>10                                         | Average<br>St Dev<br>Replicate #<br>Average<br>St Dev<br>Replicate #<br>1a<br>2a<br>3a<br>Average<br>St Dev<br>Replicate #<br>2b<br>Average<br>St Dev           | CO2 (%)<br>CO2                                                                                                                                                                                                                                 | 0.02<br>STD CO2<br>0.01<br>0.01<br>0.01<br>0.01<br>STD CO2<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.03<br>0.33<br>0.33<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1629.46<br>2021.09<br>467.22<br>2302.65<br>2146.64<br>2158.06<br>2202.45<br>86.96<br>2202.45<br>86.96<br>CO (PPM)]<br>575.99<br>461.39<br>518.69<br>81.04<br>CO (PPM)]<br>2679.62<br>2743.41<br>3053.25<br>2825.43<br>199.87<br>CO (PPM)]<br>287.962<br>2743.41<br>3053.25<br>2825.43<br>199.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 227,02<br>STD CO<br>131.78<br>159.30<br>330.38<br>STD CO<br>40.85<br>119.12<br>STD CO<br>138.17<br>198.18<br>158.63<br>STD CO<br>99.91<br>67.39 | 20.33<br>20.27<br>0.05<br>20.39<br>20.41<br>20.39<br>20.41<br>20.33<br>0.12<br>20.59<br>20.59<br>20.58<br>20.59<br>20.58<br>20.59<br>0.00<br>02 (%)]<br>20.17<br>20.02<br>19.99<br>20.06<br>0.10                           | 0.02<br>STD O2 M<br>0.01<br>0.02<br>0.02<br>STD O2 M<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>M<br>0.02<br>0.02 | ass Loss<br>10.2<br>10.1<br>9.6<br>ass Loss<br>9.0<br>ass Loss<br>7.2<br>7.1 |

| 100               | Single Layer | 10       |            | 3 | 0.86         | 0.23     | 142.80   | 49.39  | 19.79  | 0.25   | 7.0       |
|-------------------|--------------|----------|------------|---|--------------|----------|----------|--------|--------|--------|-----------|
|                   |              |          | Average    |   | 0.99         |          | 224.22   |        | 19.65  |        |           |
|                   |              |          | St Dev     | _ | 0.15         |          | 78.16    |        | 0.17   |        |           |
|                   | CABLE TE     | STS      |            |   |              |          |          |        |        |        |           |
|                   |              | Primary  | 1          |   |              |          |          |        |        |        |           |
| Test Number       | Cutting      | Air Flow | Replicate  | # | CO2 (%) ST   | TD CO2   | CO (PPM) | STD CO | 02 (%) | STD O2 | Mass Loss |
| 12                | Single Layer | 10       |            | 1 | 1.09         | 0.04     | 1022.95  | 53.53  | 19.37  | 0.06   | 10.7      |
| 12                | Single Laver | 10       |            | 2 | 1.03         | 0.05     | 943.72   | 79.81  | 19.45  | 0.06   | 7.2       |
| 12                | Single Laver | 10       |            | 3 | 1.03         | 0.08     | 1266.87  | 159.09 | 19.47  | 0.10   | 10.8      |
|                   |              |          | Average    |   | 1.05         |          | 1077.85  |        | 19,43  |        |           |
|                   |              |          | St Dev     |   | 0.03         |          | 168.43   |        | 0.05   |        |           |
|                   |              | Deimana  | 1          |   |              |          |          |        |        |        |           |
| Test Number       | Cutting      | Air Flow | Replicate  | # | CO2 (%) ST   | TD CO2   | CO (PPM) | STD CO | 02 (%) | STD O2 | Mass Loss |
| 13                | Diced        | 10       | 1          | 1 | 1.27         | 0.09     | 1134.58  | 78.85  | 19.18  | 0.10   | 10.8      |
| 13                | Diced        | 10       |            | 2 | 1.18         | 0.12     | 1283.05  | 302.81 | 19.25  | 0.17   | 11.0      |
| 13                | Diced        | 10       | 30         | 1 | 1.18         | 0.10     | 1159.61  | 157 64 | 19.26  | 0.13   | 10.9      |
|                   | Dioba        | 10       | Average    | - | 1.10         | 0.10     | 1102.41  | 101.01 | 10 23  | 0.10   | 1010      |
|                   |              |          | St Day     |   | 0.05         |          | 79 49    |        | 0.05   |        |           |
|                   |              |          | SUDEV      | - | 0.05         |          | 10.40    |        | 0.00   |        |           |
|                   |              | Primary  | 1          |   |              |          |          |        |        |        |           |
| Test Number       | Cutting      | Air Flow | Replicate  | # | CO2 (%) S1   | TD CO2   | CO (PPM) | STD CO | 02 (%) | STD O2 | Mass Loss |
| 14                | Single Layer | 13       |            | 2 | 1.04         | 0.05     | 958.59   | 104.82 | 19.42  | 0.06   | 10.7      |
| 14                | Single Layer | 13       |            | 3 | 1.00         | 0.03     | 948.79   | 104.61 | 19.48  | 0.04   | 10.4      |
| 14                | Single Layer | 13       |            | 4 | 1.03         | 0.07     | 898.85   | 39.35  | 19.42  | 0.09   | 10.6      |
|                   |              |          | Average    |   | 1.02         |          | 935.41   |        | 19.44  |        |           |
|                   |              |          | St Dev     | _ | 0.02         |          | 32.04    |        | 0.03   |        |           |
|                   |              |          | 7          |   |              |          |          |        |        |        |           |
| Test Number       | Cutting      | Air Flow | Replicate  | # | CO2 (%) ST   | TD CO2   | CO (PPM) | STD CO | 02 (%) | STD 02 | Mass Loss |
| 15                | Single Laver | 20       |            | 1 | 1.88         | 0.20     | 1919.26  | 224.70 | 18.22  | 0.26   |           |
| 15                | Single Layer | 20       |            | 2 | 1 99         | 0.08     | 1861.16  | 73.50  | 18.03  | 0.10   |           |
| 15                | Single Layer | 20       |            | 3 | 2.00         | 0.14     | 2668 10  | 290.13 | 17.96  | 0.23   |           |
|                   | ongle cayer  | 20       | Averane    |   | 1.96         | 4.19     | 2149 50  | 200.10 | 18.07  |        |           |
|                   |              |          | St Dev     |   | 0.07         |          | 450.05   |        | 0.14   |        |           |
|                   |              | <u>.</u> |            |   |              |          |          |        |        |        |           |
|                   | 0.00         | Primary  | Dealisate  |   | 002/8/1 103  | FD CO2 4 | CO (DDM) | STD CO | 02/9/1 | STD 02 | Maee Lose |
| Test Number       | Cutting      | AIFFIOW  | Replicate  | # | 140          | 0.10     | 1307 30  | 106.00 | 19.96  | 0.14   | 10.0      |
| 10                | Single Layer | 10       |            | 1 | 1.48         | 0.10     | 1321.00  | 80.23  | 18.90  | 0.14   | 10.0      |
| 16                | Single Layer | 15       |            | 4 | 1.55         | 0.00     | 1314.37  | 79.00  | 10.00  | 0.17   | 10.1      |
| 16                | Single Layer | 15       | 1.         | 3 | 1.49         | 0.15     | 1203.78  | 70.09  | 40.00  | 0.17   | 10.1      |
|                   |              |          | Average    |   | 1.50         |          | 1290.09  |        | 0.03   |        |           |
|                   |              |          | St Dev     | - | 0.02         |          | 39.31    |        | 0.03   |        |           |
|                   |              | Drimany  | 1          |   |              |          |          |        |        |        |           |
| Teet Number       | Cutting      | Air Flow | Replicate  | Ħ | CO2 (%) 151  | TD CO2   | CO (PPM) | STD CO | 02 (%) | STD 02 | Mass Loss |
| 28                | Single Laver | 4.9      | Inchineare | 1 | 0.65         | 0.01     | 839.82   | 38.52  | 19.91  | 0.02   | 10.9      |
| 28                | Single Layer | 4.0      |            | 2 | 0.55         | 0.01     | 716.66   | 77.83  | 20.02  | 0.02   | 10.7      |
| 20                | Single Layer | 4.0      |            | 5 | 0.36         | 0.02     | 412.89   | 81.11  | 20.30  | 0.03   | 10.7      |
| 20                | Single Layer | 4.2      | Auorago    |   | 0.50         | 0.04     | 656 45   | 91.11  | 20.00  | 0.00   | 10-1      |
|                   |              |          | St Dev     |   | 0.52         |          | 219.74   |        | 0.20   |        |           |
|                   |              |          |            | - |              |          |          |        | 318.4  |        |           |
| -                 | 1            | Primary  |            |   | 1000 mm 1    |          |          |        | 00.001 | OTD OC | Mana Law  |
| Test Number       | Cutting      | Air Flow | Replicate  | # | 1002 (%) IST | ID CO2   | CO (PPM) | STD CO | 02 (%) | 510 02 | wass Loss |
| 28r               | Single Layer | 1.9      |            | 2 | 0.34         | 0.00     | 663.58   | 18.94  | 20.16  | 0.01   |           |
| 28r               | Single Layer | 1.9      |            | 3 | 0.32         | 0.00     | 618.86   | 18.63  | 20.19  | 0.01   |           |
| 28r               | Single Layer | 1.9      |            | 4 | 0.28         | 0.00     | 527.32   | 15.59  | 20.23  | 0.01   |           |
| And Andrew Street |              |          | Average    |   | 0.31         |          | 603.25   |        | 20.20  |        |           |
|                   |              |          | St Dev     |   | 0.03         |          | 69.45    |        | 0.03   |        |           |

|                |                                              | Primary           | 1                |             |          |          |                                          |                 |                         |           |                   |
|----------------|----------------------------------------------|-------------------|------------------|-------------|----------|----------|------------------------------------------|-----------------|-------------------------|-----------|-------------------|
| Test Number    | Cutting                                      | Air Flow          | Replicate #      | # CC        | 02 (%)   | STD CO2  | CO (PPM) S                               | TD CO           | 02 (%)                  | STD O2    | Mass Loss         |
| 29             | Diced                                        | 4.9               | St. 10           | 1           | 0.39     | 0.01     | 874.52                                   | 205.09          | 20.22                   | 0.03      | 9.4               |
| 29             | Diced                                        | 4.9               | 2a               |             | 0.30     | 0.02     | 303.39                                   | 124.98          | 20.34                   | 0.05      | 10.               |
| 29             | Diced                                        | 4.9               |                  | 3           | 0.33     | 0.01     | 384.03                                   | 17.53           | 20.30                   | 0.01      | 11.               |
|                |                                              |                   | Average          |             | 0.34     | Ú.       | 520.64                                   |                 | 20.29                   |           |                   |
|                |                                              |                   | St Dev           | _           | 0.04     |          | 309.11                                   |                 | 0.06                    | 2         |                   |
|                |                                              | Deimen            | 1                |             |          |          |                                          |                 |                         |           |                   |
| Test Number    | Cutting                                      | Air Flow          | Renlicate        |             | 12 (%)   | STD CO2  | CO (PPM) S                               | TD CO           | 02 (%)                  | STD 02    | Mass Los          |
| 20r            | Dicad                                        | 1.0               | interprioate a   | 1           | 0.32     | 0.00     | 500.05                                   | 48.52           | 20 17                   | 0.07      | 11000 200         |
| 20r            | Diced                                        | 1.0               |                  | 2           | 0.27     | 0.01     | 511 43                                   | 63.90           | 20.36                   | 0.01      |                   |
| 291            | Diced                                        | 19                |                  | 3           | 0.30     | 0.01     | 536.45                                   | 70.42           | 20.30                   | 0.01      |                   |
|                | 01000                                        | 1.1.02.           | Average          | <u>.</u>    | 0.30     | 0.01     | 549 28                                   | 10.12           | 20.27                   | 0.01      |                   |
|                |                                              |                   | St Dev           |             | 0.02     |          | 45.63                                    |                 | 0.09                    |           |                   |
|                |                                              |                   |                  |             |          |          |                                          |                 |                         |           |                   |
| T              | 0                                            | Primary           | Dealizated       |             | 10 (0/ ) | INTE COS |                                          | TD CO           | 02 (8/3)                | STD O2    | Masslas           |
| rest Number    | Single Laws                                  | AIFFIOW           | Replicate #      | 100         | 14 (70)  | 101002   | 1272.02                                  | 168.24          | 20 14                   | 0.02      | Mdss Loss         |
| 30             | Single Layer                                 | 3.3               |                  | 2           | 0.55     | 0.01     | 11213.02                                 | 49.02           | 20,14                   | 0.02      | 10.               |
| 30             | Single Layer                                 | 3.3               |                  | 4           | 0.55     | 0.01     | 1087.80                                  | 40.03           | 10.02                   | 0.01      | 10.               |
| 30             | Single Layer                                 | 3.3               | Augeneg          | 2           | 0.00     | 0.01     | 1007.09                                  | 42.90           | 19.93                   | 0.02      | 10.               |
|                |                                              |                   | Average          |             | 0.00     |          | 106.43                                   |                 | 0.12                    |           |                   |
|                |                                              |                   | OL DEV           |             | 0.00     |          | 100.45                                   |                 | 0.12                    | 8         |                   |
|                |                                              | Primary           | 1                |             |          |          |                                          | _               |                         |           |                   |
| Test Number    | Cutting                                      | Air Flow          | Replicate #      | # CC        | 02 (%)   | STD CO2  | CO (PPM) S                               | TD CO           | O2 (%)                  | STD O2    | Mass Los          |
| 30r            | Single Layer                                 | 1.3               |                  | 1           | 0.21     | 0.01     | 1678.51                                  | 136.92          | 20.34                   | 0.01      |                   |
| 30r            | Single Layer                                 | 1.3               |                  | 2           | 0.21     | 0.00     | 1346.08                                  | 105.83          | 20.36                   | 0.01      |                   |
| 30r            | Single Layer                                 | 1.3               |                  | 3           | 0.22     | 2 0.00   | 1128.52                                  | 85.04           | 20.36                   | 0.00      |                   |
|                |                                              |                   | Average          |             | 0.21     |          | 1384.37                                  |                 | 20.35                   |           |                   |
|                |                                              |                   | St Dev           |             | 0.00     | )        | 276.99                                   |                 | 0.01                    | l,        |                   |
|                |                                              | Primary           | 1                |             |          |          |                                          |                 |                         |           |                   |
| Test Number    | Cutting                                      | Air Flow          | Replicate #      | # CC        | )2 (%)   | STD CO2  | CO (PPM) S                               | TD CO           | 02 (%)                  | STD O2    | Mass Loss         |
| 31             | Single Layer                                 | 9.8               |                  | 1           | 1.49     | 0.04     | 1152.40                                  | 101.06          | 18.81                   | 0.07      | 20.               |
| 31             | Single Layer                                 | 9.8               |                  | 2           | 1.50     | 0.04     | 1336.86                                  | 96.68           | 18.80                   | 0.07      | 20.               |
| 31             | Single Layer                                 | 9.8               |                  | 3           | 1.46     | 0.05     | 1159.98                                  | 72.17           | 18,90                   | 0.07      | 20.               |
|                |                                              |                   | Average          |             | 1.48     | 1        | 1216.41                                  |                 | 18.83                   |           |                   |
|                |                                              |                   | St Dev           | _           | 0.02     | !        | 104.38                                   |                 | 0.05                    |           |                   |
|                |                                              | Delesered         | 1                |             |          |          |                                          |                 |                         |           |                   |
| Test Number    | Cutting                                      | Air Flow          | Replicate #      | # CC        | 2 (%)    | STD CO2  | CO (PPM)                                 | TD CO           | 02 (%)                  | STD O2    | Mass Loss         |
| 31r            | Single Laver                                 | 3.8               | I. colorisones a | 1           | 0.70     | 0.03     | 1392.24                                  | 89.93           | 19.74                   | 0.03      |                   |
| 31r            | Single Laver                                 | 3.8               |                  | 2           | 0.73     | 0.02     | 1275.74                                  | 51.47           | 19.83                   | 0.02      |                   |
| 31r            | Single Laver                                 | 3.8               |                  | 3           | 0.72     | 0.02     | 1391.03                                  | 64.92           | 19.72                   | 0.03      |                   |
| 0.11           | emigne corjet                                |                   | Average          | -           | 0.71     |          | 1353.00                                  |                 | 19.76                   |           |                   |
|                |                                              |                   | St Dev           |             | 0.01     |          | 66.91                                    |                 | 0.06                    | c:        |                   |
|                |                                              |                   |                  |             |          |          |                                          |                 |                         | f an ar   |                   |
| W              | 0.41                                         | Primary           | Deallaste        | 100         | 0 /0/ >  | OTD COS  | CO (DDM)                                 | TD CO           | 02/8/1                  | STD 02    | Maga Loo          |
| lest Number    | CUTTING                                      | Air Flow          | Replicate #      | FICC        | 12 (%)   | 1510 002 | CO (PPM) S                               | 140.02          | 10.04                   | 0.02      | mass Los          |
| .00            | Single Lower                                 | 22                |                  | 4           | 0.68     | C 0.01   | 1742.80                                  | 14000 000       | 1 34 March              | 1.1.1.1.2 |                   |
| 32             | Single Layer                                 | 2.3               |                  | 1 2         | 0.58     | 0.01     | 1742.89                                  | 140.03          | 19.94                   | 0.02      | 10                |
| 32<br>32       | Single Layer<br>Single Layer                 | 2.3<br>2.3        |                  | 1 2 3       | 0.58     | 0.01     | 1742.89<br>1755.38<br>1772.89            | 106.77          | 19.93                   | 0.02      | 10.               |
| 32<br>32<br>32 | Single Layer<br>Single Layer<br>Single Layer | 2.3<br>2.3<br>2.3 | Average          | 1<br>2<br>3 | 0.58     | 0.01     | 1742.89<br>1755.38<br>1772.89<br>1757.06 | 106.77<br>89.49 | 19.93<br>19.92<br>19.93 | 0.02      | 10.<br>10.<br>10. |