Student Teaching Practicum at Worcester Technical High School

An Interactive Qualifying Project Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the DEGREE OF BACHELOR OF SCIENCE

Benjamin Petkie 2021

Abstract

My student teaching in 2021 began in the midst of the COVID 19 virus, which was a very unique scenario to complete my practicum. I delivered lessons both online and inperson which required me to create lesson plans could be taught virtually or hybrid. A majority of my time was spent refining these lesson plans to the point I felt comfortable teaching. In order to obtain my Massachusetts teaching license, I followed the Candidate Assessment of Performance (CAP) cycle. Some aspects of the program included demonstrating my skills in six key areas which were, content knowledge, reflective practice, safe learning environment, meeting diverse needs, well-structured lessons, and High Expectations. I was required to meet at least the needs improvement evaluation in all of these sections but generally scored as Proficient. Through this experience I had a Supervising Practitioner, Thomas Noviello, who was in charge of assessing my teaching ability. He also collaborated with my Mentor Teacher Jackie Kalisz to evaluate if I was ready to obtain my teaching license. To detail my student teaching experience, I created an online e-portfolio to display information about Worcester Tech and the students, but also lesson plans and how I adhered to each of these CAP Elements.

Acknowledgements

The COVID pandemic made this project more difficult for not only myself but those supervising me, without their continual support and contact (in person and virtually) I would not have had nearly the same experience. My supervising practitioner (Thomas Noviello) did a fantastic job staying in contact and evaluating my progress, his observations were always unintrusive and gave great constructive criticism, thank you TJ! My mentor teacher Jackie Kalisz was such a great part of my practicum, her energy and support really helped show me how great it can be to be a teacher. Not only this but her feedback was beyond helpful and she has been so pivotal in shaping me into a great teacher, thank you Jackie! Melenith Rivera was the Classroom Assistant for the SPS/ELL student in the classroom, without her support the entire experience would have been at least a notch or two up in the stress category. Finally, Shari Weaver, Jacklyn Bonneau, and Terri Gerhardt (from the WPI STEM education center) offered great materials and seminars to help us through the struggles of the practicum which helped relieve some tension that builds up with teaching.

Table of Contents

I created a website (e portfolio) to showcase all I learned during my project. A table of contents is located below, and this link can be followed to view the site:

https://sites.google.com/view/petkieteachingpracticum/home?authuser=0

Page	Description	
Home	Brief background on where my practicum was	
	located and some of my pedagogical beliefs	
Worcester Technical High	General information about Worcester Technical	
School	High School	
Student Demographics	Overview of the demographics and selected	
	populations in the school	
State Performance	The performance of Worcester Tech students on	
	the MCAS state tests and graduation rates	
	compared to the other schools in the Worcester	
	Public Schools District	
My Classes	Overview of the classes I instructed	
My Education	Basic description of Worcester Polytechnic Institute	
	(WPI) and project-based learning, relevant	
	coursework, and pedagogical coursework.	
K-12 Education in	Introduction to Massachusetts education including	
Massachusetts	nationwide ranking	
No Child Left Behind	An overview of the No Child Left Behind act and	
	how it influenced Massachusetts K-12 education	
Every Student Succeeds Act	An overview of the Every Students Succeeds Act and	
	how it influenced Massachusetts K-12 education	
Essential Elements of CAP	Brief description of the CAP/ELAR system	
Safe Learning Environment	The definition of the Safe Learning Environment CAP	
	element along with how I achieve this in my	
	classroom supplemented by evidence	
Meeting Diverse Needs	The definition of the Meeting Diverse Needs CAP	
	element along with how I achieve this in my	
	classroom supplemented by evidence	
Subject Matter Knowledge	The definition of the Subject Matter Knowledge	
	element along with how I achieve this in my	
	classroom supplemented by evidence	

Adjustments to practice	The definition of the <i>Adjustments to practice</i> CAP	
	element along with how I achieve this in my	
	classroom supplemented by evidence	
High Expectations	The definition of the <i>High Expectations</i> CAP element	
	along with how I achieve this in my classroom	
	supplemented by evidence	
Reflective Practice	The definition of the <i>Reflective Practice</i> CAP	
	element along with how I achieve this in my	
	classroom supplemented by evidence	
Appendices	An appendix of some of the instructional material	
	used during my teaching practicum	
References	Cited references utilized to create the e portfolio	

Lesson Plan

Lesson Plan Title: Conservation of Thermal Energy

Teacher's Name: Benjamin Petkie
Unit: Thermodynamics.Subject/Course: Physics
Grade Level: 10/11

Overview of and Motivation for Lesson:

Introduce students to thermodynamics including the first law and how that relates to conservation of energy. Students will identify that energy is still conserved no matter what form it takes (thermal in this case). Types of energy will be overviewed to strengthen understanding of conservation.

Stage 1-Desired Results

Standard(s):

- HS-PS3-1. Use algebraic expressions and the principle of energy conservation to calculate the change in energy of one component of a system when the change in energy of the other component(s) of the system, as well as the total energy of the system including any energy entering or leaving the system, is known. Identify any transformations from one form of energy to another, including thermal, kinetic, gravitational, magnetic, or electrical energy, in the system.
- O Clarification Statement: Systems should be limited to two or three components and to thermal energy; kinetic energy; or the energies in gravitational, magnetic, or electric fields.

Aim/Essential Question:

- What is the definition of heat?
- What is the definition of temperature?
- What is the first law of thermodynamics?
- Is energy conserved in a thermal energy transition?
- What are the 5 different types of energy?

Understanding(s):

Students will understand that ...

- Heat is the transfer of thermal energy where temperature is the measure of total KE of system
- Energy is not created or destroyed which also applies to thermodynamics, this is explained by the first and second law of thermodynamics
- The 5 types of energy are: Light, electrical, chemical, mechanical, and thermal and we can transfer between these forms

Language Objectives:

item. Students will be able to .

item. Students will be able to .

• Click here to enter

ELD Level Choose an

ELD Level Choose an

. . in English

text.

. in English

Content Objectives:

Students will be able to . . .

- Identify that energy is not created or destroyed only transferred and that this also applies to thermodynamics
- Identify an unknown in the 1st law equation $\Delta U=O-W$

	• Click here to enter			
	• Click here to enter text.			
Key Vocabulary	UVILU			
heat				
temperature				
thermal equilibrium				
energy conservation				
thermal energy				
• mechanical energy				
Chemical energy				
Light energyElectrical energy				
Stage 2-Assessment Evidence				
Performance Task or Key Evidence				
• WS on heat transfer and thermodynamic's first law at end of class/HW				
Key Criteria to measure Performance Task or Key Eviden	ice			
Participation in interactive peardeck				
WS solutions				
Stage 3- Learning Plan	Stage 3- Learning Plan			
L earning Activities: Do Now/Bell Ringer/Opener: Play the history of thermodyna students fill out the form while we are doing it: (15 min)	mics crash course and have			
0	and temperature and ed to be the transfer of ic Energy of the system. This ypes of energy is still dynamics tells us the change			

Application

WS on types of heat transfer and conservation, started in breakout rooms and to be				
finished for homework (10 min)				
Summary/Closing Finish the WS!				
Multiple Intelligences Addressed:				
	-kinesthetic			
□ Spatial □ Interpersonal □ Intrapersonal □ Natur				
Student Grouping				
🗖 Whole Class 🛛 🗖 Small Group 🗆 Pairs 🗔 Indiv	vidual			
Instructional Delivery Methods				
Teacher Modeling/Demonstration 🛛 Lecture 🔲 Discussion				
Cooperative Learning 🛛 Centers 🗖 Problem Solv	ing			
Independent Projects				
Accommodations Modifi	cations			
Breakout room with struggling students with me, self sufficient N/A				
students with Ms. Kalisz during work time				
Homework/Extension Activities:				
Finish heat transfer WS				
Materials and Equipment Needed:				

Adapted from Grant Wiggins and Jay McTighe-Understanding by Design

References

Werra, E. (2018, July 12). *Maslow and the Modern Learning Environment*. Advancing K12. https://www.skyward.com/discover/blog/skyward-blogs/skyward-executive-blog/july-2018/maslow-learning-motivation.

Klein, A. (2020, December 7). *No Child Left Behind: An Overview*. Education Week. https://www.edweek.org/policy-politics/no-child-left-behind-an-overview/2015/04.

Every Student Succeeds Act (ESSA). Every Student Succeeds Act (ESSA) | U.S. Department of Education. (n.d.). https://www.ed.gov/essa.

Massachusetts School and District Profiles. Contact Information - Worcester Technical High (03480605). (n.d.). https://profiles.doe.mass.edu/general/general.aspx?topNavID=1&leftNavId=100&orgcod e=03480605&orgtypecode=6.

Tomlinson, C. and McTighe, T. (2006). Integrating Differentiated Instruction and Understanding by design. Alexandria, VA: ASCD

Home. Worcester Technical High School. (n.d.). https://techhigh.us/.