

Calculus III Note-taking Guide Booklet

Created by: Nicole Buczkowski, Worcester Polytechnic Institute

These open-source mathematics note taking guides are created to help students with note-taking and correspond to chapters in OpenStax Calculus Volume I¹, II², and III³. They were created through the Worcester Polytechnic Institute Women's Impact Network EMPOwER grant program.

¹ Herman, Edwin, Gilbert Strang, Joseph Lakey, Elaine A. Terry, Alfred K. Mulzet, Sheri J. Boyd, Joyati Debnath et al. "Calculus Volume 1." (2016).

² Herman, Edwin, Gilbert Strang, William Radulovich, Erica A. Rutter, David Smith, Kirsten R. Messer, Alfred K. Mulzet et al. "Calculus Volume 2." (2016).

³ Herman, Edwin, Gilbert Strang, Nicoleta Virginia Bila, Sheri J. Boyd, David Smith, Elaine A. Terry, David Torain et al. "Calculus Volume 3." (2016).

Table of Contents

From Volume 1

1. 4.8 L'Hôpital's Rule

From Volume 2

- 2. 3.7 Improper Integrals
- 3. 5.1 Sequences
- 4. 5.2 Infinite Series
- 5. 5.3 The Divergence and Integral Tests
- 6. 5.4 Comparison Tests
- 7. 5.5 Alternating Series
- 8. 5.6 Ratio and Root Tests
- 9. 6.1 Power Series and Functions
- 10. 6.2 Properties of Power Series
- 11. 6.3 Taylor and Maclaurin Series
- 12. 6.4 Working with Taylor Series
- 13. 7.1 Parametric Equations
- 14. 7.2 Calculus of Parametric Curves
- 15. 7.3 Polar Coordinates
- 16. 7.4 Area and Arc Length in Polar Coordinates

From Volume 3

- 17. 2.1 Vectors in the Plane
- 18. 2.2 Vectors in Three Dimensions
- 19. 2.3 The Dot Product
- 20. 2.4 The Cross Product
- 21. 2.5 Equations of Lines and Planes in Space
- 22. 3.1 Vector-Valued Functions and Space Curves
- 23. 3.2 Calculus of Vector-Valued Functions
- 24. 3.3 Arc Length and Curvature
- 25. 3.4 Motion in Space

1 4.8 L'Hôpital's Rule

Problem Set 1.1. Find the following limits

1.

$$\lim_{x \to 0} \frac{x^3}{x} =$$

2.

$$\lim_{x \to 0} \frac{x}{x^3} =$$

3.

$$\lim_{x\to 0}\frac{x}{x}=$$

4.

$$\lim_{x\to 0}\frac{x+x^3}{2}=$$

5.

$$\lim_{x \to 0} \frac{x}{x + 4x^2} =$$

Theorem 1.2. $L'H\hat{o}pital's$ Rule

Problem Set 1.3. Evaluate the following limits.

1.

$$\lim_{x\to 0}\frac{\sin(x)}{x}=$$

2.

$$\lim_{x \to 0} \frac{e^{1/x} - 1}{e^{1/x}} =$$

3.

$$\lim_{x \to 0} \frac{\sin x - x}{x^2} =$$

Other Indeterminant Forms

•

•

•

Example 1.4.

$$\lim_{x \to 0^+} \frac{1}{x^2} - \frac{1}{\tan(x)}$$

Indeterminant Powers

If $\lim_{x\to a} \ln(f(x)) = L$, then

Example 1.5. Evaluate

$$\lim_{x\to\infty}x^{\frac{1}{x}}$$

.

2 3.7 Improper Integrals

Definition 2.1. Integrating over an Infinite Interval

1. If f(x) is continuous on $[a, \infty)$, then

2. If f(x) is continuous on $(-\infty,b]$, then

3. If f(x) is continuous on $(-\infty, \infty)$, then

In each cases, if the limit exists, then the improper integral is said to ______. Otherwise, if the limit does not exist, then the improper integral is said to ______.

Example 2.2. We evaluate

$$\int_{1}^{\infty} \frac{1}{x} dx =$$

Problem Set 2.3. Evaluate

$$\int_{-\infty}^{0} \frac{1}{x^2 + 4} dx$$

Definition 2.4. Integrating a Discontinuous Integrand

1. If f(x) is continuous on [a,b), then

2. If f(x) is continuous on (a, b], then

3. If $f(x)$ is continuous on $[a,b]$ except	$t \ at \ c \ in \ (a,b), \ then$
In each case, if the limit exists and is finit Otherwise, the improper integral is said to	te, then the improper integral is said to
Example 2.5. We evaluate	
$\int_{-1}^{1} \frac{1}{x^3} dx =$	
Theorem 2.6. The Direct Compariso for all $x \geq a$. Then	n Test Let f, g be continuous on $[a, \infty)$ and assumme that $0 \le f(x) \le g(x)$
1. If $\int_a^\infty g(x)dx$, then $\int_a^\infty f(x)dx$ also
2. If $\int_a^\infty f(x)dx$, then $\int_a^\infty g(x)dx$ also
Example 2.7. Consider for $p < 1$	
$\int_{1}^{\infty} (x+7)^{p} dx$	
J_1	
3 5.1 Sequences	
•	is an ordered list a of numbers of the form
Definition 3.1. An	is an oraerea list a of numbers of the form
Each of the numbers is called a	The symbol n is called the
for the sequence.	
We also use the notation	

We sometimes would like to write sequences using its		
Problem Set 3.3. Write each sequences given using its explicity for	rmula. We will do the second of	one together:
• 1, 2, 3, 4,		
• 2, 4, 6, 8, 10		
• 1, -1, 1, -1,		
• 1,1,2,3,5,8,		
3.1 Limit of a Sequence Definition 3.4. Given a sequence $\{a_n\}$, if the terms of a_n become as	, we say $\{a_n\}$ is a	to a
If a sequence is not convergent, we say it is		
More formally, we can instead use the definition:		
Definition 3.5. A sequence $\{a_n\}$	_ to the number	if for
The number L is the and we writ	e	

Example 3.6. Let $\{a_n\} = \{\frac{1}{n}\}$ and $\{b_n\} = \{(-1)^n\}$. We investigate the convergence or divergence of	each.
3.2 Calculating Limits of Sequences	
Theorem 3.7. Limit of a Sequence Defined by a function Consider a sequence $\{a_n\}$ such that a $\underbrace{\qquad \qquad \qquad }$ such that	$f_n = f(n)$. If
then $\{a_n\}$ converges and	
Theorem 3.8. Algebraic Limit Laws: Given sequences $\{a_n\}$ and $\{b_n\}$ and a real number C , is constants A, B such that $\lim_{n\to\infty} a_n = A, \lim_{n\to\infty} b_n = B$. Then	there exist
1.	
2.	
3.	
4.	
<i>5</i> .	

	a continuous function at L. The	exists a real number L such that the sequence $\{a_n\}$ in there exists an integer N such that f is defined at
This allows us to use things lil	ke L'Hôpital's rule for sequences.	
Theorem 3.10. The Squee	ze Theorem for Sequences C for all $n \ge N$ for some N .	Consider sequences $\{a_n\},\{b_n\},\{c_n\}$ and suppose that If
then		
Problem Set 3.11. If possib	le, find the limits of the following	$g\ sequences.$
1. 1, 2, 3, 4,		
2. 5, 19, 5, 19, 5, 19,		
3. $\{\frac{1}{n^2}\}$		
3.3 Bounded and Mo	notonic Sequences	
Definition 3.12. A sequence for all n .	$\{a_n\}$ is	if there exists a number M so that
A sequence $\{a_n\}$ is for all n .	if there ex	xists a number m so that
A sequence $\{a_n\}$ is a	t is an if it is	s bounded above and bounded below.
		if for all
	if or	for all n. A sequence is
	Convergence Theorem If {a, }	is a sequence and
Theorem 3.14. Montone C	onvergence incorem if (an)	1

decide if we know if the sequence converges.		
1. 1, 2, 3, 4,		
2. 5, 19, 5, 19, 5, 19,		
3. $\{(-1)^n\}$		
4. $\{\frac{1}{n}\}$		
4. (n)		
5. $a_n = a_1$, where $a_1 = 7$		
4 5.2 Infinite Series		
Definition 4.1. An	$_{-}$ is a sum of infinitely many terms and is wri	itten in the form
For each k , S_k is		
	n c u	
If we can describe the convergence of a series to S , we	call S the	_, and we write
If the sequence of partial sums diverges, we have the _		
Example 4.2. Decide whether each sum converges or		
•		
$\sum_{i=1}^{\infty} 1$		
n=1		

Problem Set 3.15. Classify each sequence as bounded or not and monotonic or not. Then using that information,

$$\sum_{n=1}^{\infty} 0$$

Example 4.3. Find the sum of the telescoping series

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Theorem 4.4. Let $\sum a_n$, $\sum b_n$ be convergent series. Then we have:

- 1. Sum/Difference Rule:
- 2. Constant Multiple Rule:

4.1 Geometric Series

where a, r are fixed and $a \neq 0$.

Problem Set 4.6. Identify if each is a geometric series. If it is, what are a, r?

1.
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots$$

2.
$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \dots$$

3.
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

4.
$$5+5+5+5+...$$

4.1.1 Convergence of the Geometric Series

Goal: Write S_n in terms of a, r. This way we know what the partial sum is of any geometric series. Consider

$$S_n = a + ar + \dots + ar^{n-1}$$

Theorem 4.7. If _______in a geometric series, then

If ______ in a geometric series, then it _____

Problem Set 4.8. Decide whether each geometric series converges or diverges. If it converges, what is its sum?

1.
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \left(\frac{1}{2}\right)^{n-1} + \dots$$

2.
$$2 - \frac{2}{3} + \frac{2}{9} - \frac{2}{27} + \dots$$

3.
$$5+5+5+5+...$$

5 5.3 The Divergence and Integral Tests

Theorem 5.1. Divergence Test If $\lim_{n\to\infty} a_n = c \neq 0$ or does not exist, then $\sum_{n=1}^{\infty} a_n$

Example 5.2. Consider

$$\sum_{n=1}^{\infty} \frac{1}{n}, \ \int_{1}^{\infty} \frac{1}{x} dx.$$

Let $f(x) = \frac{1}{x}$. Then

Theorem 5.3. Integral Test Suppose $\sum_{n=1}^{\infty} a_n$ is a series with positive terms. Suppose there exists a function f and a positive integer N such that the following three conditions are satisfied:

- 1.
- 2.
- 3.

Then

both _____ or both _____.

Problem Set 5.4. Use the integral test to decide whether each series converges or diverges.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p > 1$$

Definition 5.5. For any real number p, the series

is called a _____

6 5.4 Comparison Tests

Theorem 6.1. 1. Suppose there exists an integer N such that $0 \le a_n \le b_n$ for all $n \ge N$. If
then
2. Suppose there exists an integer N such that $a_n \ge b_n \ge 0$ for all $n \ge N$. If, then
Example 6.2. We investigate the convergence or lack thereof of $\sum \frac{1}{n^3+3n+1}$.
Problem Set 6.3. Investigate the convergence or lack thereof of $\sum \frac{1}{2^n-1}$.
Theorem 6.4. Limit Comparison Test Let $a_n, b_n > 0$ for all $n \ge 1$.
1.
2.
<i>3.</i>

Example 6.5. We use LCT to determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^2}$.

Problem Set 6.6. Using LCT, determine whether or not each series converges or diverges.

1.
$$\sum \frac{2n+1}{n^2+2n+1}$$

$$2. \sum \frac{5^n}{3^n+2}$$

7 5.5 Alternating Series

Definition 7.1. Any series whose terms alternate between positive and negative values is called an ________ can be written in the form

Theorem 7.2. Alternating Series Test An alternating series converges if

1.

2.

Example 7.3. Consider

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}.$$

	inder		denote the N th	
	A series $\sum a_n$ exhibits			
	ons 6. Decide whether or not $\sum \frac{cc}{c}$			
	ey converge, does they converge			
8 5.6 Rat	tio and Root Tests			
	D .: //	. 7	, T	
Theorem 8.1.	Ratio Test Let $\sum a_n$ be any s	eries be a series with no	nzero terms. Le	t
Theorem 8.1.	Ratio Test Let $\sum a_n$ be any s	eries be a series with no	nzero terms. Le	t
Theorem 8.1.	Ratio Test Let $\sum a_n$ be any s	eries be a series with no	nzero terms. Le	it .
				et .
1. If	, then $$		_	et .
 If If 	, then			et .
 If If If 	, then, then, then			et .
 If If If Note: This external	, then, thennds the knowledge we already	had for geometric series.		et .
 If If If Note: This external	, then, then, then	had for geometric series.		et .
 If If If Note: This external	, then, thennds the knowledge we already	had for geometric series.		et .
 If If If Note: This external	, then, thennds the knowledge we already	had for geometric series.		
 If If If Note: This exte Theorem 8.2.	, then, thennds the knowledge we already	had for geometric series. $\sum a_n. \ Let$		
1. If	, then	had for geometric series. $\sum a_n. \ Let$		
1. If	, then, then, then, then, and the knowledge we already Root Test Consider the series	had for geometric series. $\sum a_n. \ Let$		
1. If	, then, then, then mods the knowledge we already a linear consider the series green consider green green consider green consider green green consider green	had for geometric series. $\sum a_n. \ Let$		
1. If	, then	had for geometric series. $\sum a_n. \ Let$		

2. $\sum \frac{(-1)^n (n!)^2}{(2n)!}$	
3. $\sum \left(\frac{1}{n}\right)^n$	
9 6.1 Power Series and Definition 9.1. A series of the form	$\mathbf{Functions}$
Definition 9.1. A series of the form	
is a	A series of the form
is a	
Example 9.2. $\sum_{n=0}^{\infty} x^n$	
Theorem 9.3. Convergence of a Power exactly one of the following properties:	wer Series Consider the power series $\sum_{n=0}^{\infty} c_n(x-a)^n$. The series satisfies
1.	
2.	
3.	

the	If there exists a real number $R > 0$ such that	the series
and	\ldots , then R is the \ldots	
If the series converges or	and $at x = a$, we say the radius of convergence is	If the series converges
for all real numbers x, w	e say the radius of convergence is	

- to find the largest open interval where the series converges
- 2.
- 3.

Example 9.5. Determine where the Power Series $\sum (-1)^{n-1} \frac{x^n}{n}$ converges or diverges.

Problem Set 9.6. Determine where the power series below converge or diverge.

1. $\sum \frac{x^n}{n!}$

2. $\sum n!x^n$

10 6.2 Properties of Power Series

to the functions f and g , respectively, on a common interval I .
1.
2.
3.
Theorem 10.2. Suppose that the power series $\sum_{n=0}^{\infty} c_n x^n$ and $\sum_{n=0}^{\infty} d_n x^n$ converge to f and g , respectively, on a common interval I . Let
Then
and
Theorem 10.3. Term-by-Term Differentiation and Integration of Power Series Suppose that the power series $\sum_{n=0}^{\infty} c_n x^n$ converges on the interval $(a-R,a+R)$ for some $R>0$. Let f be the function defined by the series
Then f is on the interval $(a - R, a + R)$ and we can find f' by differentiating the series term by-term:
for $ x - a < R$. Also, to find, we can integrate the series term-by-term. The resulting series converges on $(a - R, a + R)$, and we have
for $ x-a < R$.
Warning! This may not work for series that are not Power Series.

$$f(x) = \sum_{0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}, -1 \le x \le 1$$

We identify this as a function we more commonly know.

11 6.3 Taylor and Maclaurin Series

The Taylor series for f at ______ is known as the _____

Definition 11.2. If f has n derivatives at x = a, then the nth _______ for f at a is

Example 11.3. We find the Taylor series generated by $1/x^2$ at a = 1.

12 6.4 Working with Taylor Series

Note: We can use the following from here on without proof

$$e^x =$$

$$\cos(x) =$$

$$\sin(x) =$$

Example 12.1. We express $\int e^{-x^2} dx$ as an infinite series.

Problem Set 12.2. Find the Taylor Series for sinh(x). Hint: Recall $sinh(x) = \frac{e^x - e^{-x}}{2}$.

13 7.1 Parametric Equations

Definition 13.1. If x and y are continuous functions of t on an interval I, then the equations

are called	$and\ ___$	is called the $_$		·
The set of points (x, y) obtained as t varies over	the interval I is call	led the		
The graph of parametric equations is called a			or plane curve,	and is denoted by
C.				
Example 13.2 Consider $x = \sin^{\pi t} u = 2t$	- 1 0 < t < 1			

Example 13.2. Consider $x = \sin \frac{\pi t}{2}, y = 2t + 4, 0 \le t \le 4$.

Problem Set 13.3. Sketch the curve

$$x = 3t + 2$$
, $y = t^2 + 1$, $-\infty < t < \infty$.

Example 13.4. We find two different parametric equations to represent the graph of $y = 2x^2 + 3$.

13.1 Cycloids

Example 13.5. A wheel of radius a rolls along a horizontal straight line. We find parametric equations for the path traced by a point on the wheel. The path is called a _______.

14 7.2 Calculus of Parametric Curves

14.1 Derivatives of Parametric Equations

Parametric Formula for $\frac{dy}{dx}$

Parametric Formula for $\frac{d^2y}{dx^2}$

Example 14.1. Find the tangent line to the plane curve defined by the parametric equations

$$x(t) = t^2 - 3, \ y(t) = 2t - 1, \ t \ge 0$$

at t = 0.

Areas of Surface of Revolution for Parametrized Curves

1. Revolution about the x -axis:		
2. Revolution about the y-axis:		
5 7.3 Polar Coordinates		
efinition 15.1. The point P has Cartesian coordinates the distance from the origin to P and has $_$		
ais is the basis of the	In the	, each point
o has two values associated with it:	·	
cample 15.2. We find all of the polar coordinat	es for the point $P(2,\pi/6)$.	
neorem 15.3. Converting Points between Co		
		v

Problem Set 15.8. Graph the sets of points using the conditions:

•
$$1 \le r \le 3$$
 and $0 \le \theta \le \pi/2$

•
$$-3 \le r \le 2$$
 and $\theta = \pi/4$

•
$$2\pi/3 \le \theta \le 5\pi/6$$

15.2 Transforming Polar Equations to Rectangular Coordinates

Problem Set 15.9. Write the polar equation as a Cartesian equation.

•
$$r\cos(\theta) = 2$$

•
$$r = 6\cos\theta - 8\sin\theta$$

•
$$r = 1 - \cos(\theta)$$

16 7.4 Area and Arc Length in Polar Coordinates

16.1 Slope of Polar Curves

Recall: Slope of a curve in Cartesian is $\frac{dy}{dx}$. This is **not** true in polar. When $r = f(\theta)$:

Areas	of l	Regions	Bounded	$\mathbf{b}\mathbf{y}$	Polar	Curves
-------	------	---------	---------	------------------------	-------	--------

Theorem 16.1. Suppose f is continuous and nonnegative on the	$interval \ \alpha \le \theta \le \beta \ with$
The area of the region bounded by the graph of	between the radial lines $\theta = \alpha$ and $\theta = \beta$
is	
Problem Set 16.2. Find the area of the region enclosed by $r =$	$1-\cos\theta$.
Example 16.3. We find the area of the region that lies outsid	e the cardioid $r = 2 + 2\sin\theta$ and inside the circle
$r = 6\sin\theta$.	

16.2 Arc Length in Polar Coordinates

Theorem 16.4. Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r = f(\theta)$ from $\theta = \beta$ to $\theta = \beta$ is

Problem	Set	16.5.	Find t	the	arc	lenath.	of	the r =	= 2 -	$+2\cos\theta$	
T LODICIL	$\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}$	10.0.	I titte t		$u_I c$	<i>iChiqui</i>	v_I	<i>016</i> C 1 -	- 4	1 2 0000	

1	7	2	1	1	act		30	in	4	ha	\mathbf{D}	lan	
	1	<i>Z</i> .		v	ecu	OI	S	m	L,	ne	М	ıar	е

Definition 17.1. A	is a quantity that has both	and
	vectors if they have the	
Definition 17.3. The vector with initial point	Let $(0,0)$ and terminal point (x,y) can be written in composite	onent form as
The scalars x and y are called the	$$ of $oldsymbol{v}.$	
Example 17.4. Consider $v = \overrightarrow{PQ}$ with $P(-3)$	$(3,4)$ and $Q(-5,2)$. The vector \boldsymbol{v} has components	
•		
So the commonent form is	The length is	

17.1 Combining Vectors

Definition 17.5. Let k be a **scalar** (a real number). Then if u,v are vectors then we have

- $\bullet \ \ Addition/Subtraction:$
- $\bullet \ \ Scalar \ Multiplication:$

Problem Set 17.6. If $u = \langle -1, 3 \rangle$ and $u = \langle 4, 7 \rangle$ find:

- \bullet 2u 3v
- $\|\frac{1}{2}\boldsymbol{u}\|$

• $\frac{1}{2} \| \boldsymbol{u} \|$

Properties of Vector Operations			
1. $u + v =$			
2. $u + 0 =$			
3. $0u =$			
4. $a(b\mathbf{u}) =$			
5. $(a+b)\mathbf{u} =$			
$6. \ (\mathbf{u} + \mathbf{v}) + \mathbf{w} =$			
7. $u - u =$			
8. 1 u =			
9. $a(\mathbf{u} + \mathbf{v}) =$			
17.2 Unit Vectors			
Definition 17.7. A	is a vector with		
Problem Set 17.8. Find a unit vector u in the	he direction of the vector from F	$_{1}(1,0)$ and $P_{2}(3,2)$.	
18 2.2 Vectors in Three Dir		$rdinate\ system\ consists\ of\ three\ p$	oer
pendicular axes: the x-axis, the y-axis,section of the axes.		and an origin at the point of in	ter
Theorem 18.2. Thegiven by the formula	between points	and	_ <i>i</i> s

Definition 18.3. A	is the set of all points in space
from a fixed point, the	of the sphere. In a sphere, the distance from the center to a point
on the sphere is called the	
The sphere with center (a, b, c) and radius r	can be represented by the equation

18.1 Graphing Other Equations in Three Dimensions

Example 18.4. We describe the set of points in three-dimensional space that satisfies $(x-2)^2 + (y-1)^2 = 4$, and graph the set.

18.2 Working with Vectors in 3D

Example 18.5. Let \overrightarrow{PQ} be the vector with initial point P = (3, 12, 6) and terminal point Q = (-4, -3, 2). We express \overrightarrow{PQ} in both component form and using standard unit vectors.

Problem Set 18.6. If $\mathbf{u} = \langle -1, 3, 0 \rangle$ and $\mathbf{v} = \langle 4, 7, 11 \rangle$ find:

- 2u 3v
- $\|\frac{1}{2}\boldsymbol{u}\|$
- $\frac{1}{2} \| \boldsymbol{u} \|$

19 2.3 The Dot Product

Definition 19.1. The ______ of two vectors is $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$

Theorem 19.2. The ______ of two vectors is the product of the _____ of each vector and the _____ of the angle between them:

Problem Set 19.3. 1. Find the dot product of $\mathbf{u} = \langle 1, -2, -2 \rangle$ and $\mathbf{v} = \langle -6, 2, -3 \rangle$.

2. Find the angle between $\mathbf{u} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} + 0\mathbf{k}$.

Theorem 19.4. The nonzero vectors \mathbf{u} and \mathbf{v} are _______ if and only if ______.

Properties of the Dot Product

- 1. $\mathbf{u} \cdot \mathbf{v} =$
- 2. $c\mathbf{u} \cdot \mathbf{v} =$
- 3. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) =$
- 4. $\mathbf{u} \cdot \mathbf{u} =$
- 5. $\mathbf{0} \cdot \mathbf{u} =$

19.1 Vector Projections

The	is	s the vector labeled
		same, and
		. If θ represents
the angle between ${\bf u}$ and ${\bf v}$, then	the length of $proj_{\mathbf{u}}\mathbf{v}$ is	When expressing $\cos \theta$ in terms of the dot
product, this becomes		
777 1.: 1 1 · · ·		
We now multiply by a unit vecto	r in the direction of \mathbf{u} to get $proj_uv$	
The length of this vector is also l	known as the	and
is denoted by		

Problem Set 19.5. Find the vector projection of $\mathbf{u} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$ onto $\mathbf{v} = \mathbf{i} - 0\mathbf{j} - 0\mathbf{k}$.

20 2.4 The Cross Product

 $\textbf{Definition 20.1.} \ \textit{The cross product} \ \textit{of two vectors is}$

where $m{n}$ is the	
Parallel Vectors Nonzero vectors u, v are	if and only if
Properties of the Cross Product If u, v, w are vector	rs and r, s are scalars, then
1. $r(\mathbf{u}) \times (s\mathbf{v}) =$	
2. $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) =$	
3. $\mathbf{v} \times \mathbf{u} =$	
4. $(\mathbf{v} + \mathbf{w}) \times \mathbf{u} =$	
5. $0 \times \mathbf{u} =$	
6. $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) =$	

Example 20.2. Area of a Parallelogram

Example 20.3. We find the cross product of the three dimensional vectors $\mathbf{u} = 2\mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = -4\mathbf{i} + 3\mathbf{j} + \mathbf{k}$.

Problem Set 20.4. Find the cross product of the three dimensional vectors u = i and v = j.

21 2.5 Equations of Lines and Planes in Space

21.1 Distance between a Point and a Line

is known as the	
The containing point $P = (x_0, y_0, z_0)$ with normal vector \boldsymbol{n}	$=\langle a,b,c\rangle$
is	
This equation can be expressed as where where	
This form of the equation is sometimes called the	
Problem Set 21.5. Find an equation for the plane through $P_0(-3,0,7)$ perpendicular to	
$oldsymbol{n}=2oldsymbol{j}-oldsymbol{k}.$	

Example 21.6. We find an equation for the plane through A(0,0,1), B(2,0,0), and C(0,3,0).

Example 22.2. We sketch $r(t) = \cos(t)i + \sin(t)j + tk$.

Problem Set 22.3. Describe how the following compare to $r(t) = \cos(t)i + \sin(t)j + tk$.

- $r(t) = \cos(2t)\mathbf{i} + \sin(2t)\mathbf{j} + t\mathbf{k}$.
- $r(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + 2t\mathbf{k}$.

Definition 22.4. A vector-valued function r approaches the ______ as t approaches a, written

provided

Theorem 22.5. Let f, g, and h be functions of t. Then the limit of the vector-valued function $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ as t approaches a is given by

provided the limits exist.

Problem Set 22.6. Let $r(t) = \frac{2t-4}{t+1}i + \frac{t}{t^2+1}j + (4t-3)k$. Find $\lim_{t\to 3} r(t)$.

	Then, the vector-valued function $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ is f the following three conditions hold:
•	
•	
•	
23 3.2 Calculus of Vector-V	Valued Functions
Theorem 23.1. Let f, g, h be differentiable fu	unctions of t and let $r(t) = f(t)i + g(t)j + h(t)k$. Then
Problem Set 23.2. Let $r(t) = t \ln(t) i + 5e^{t} j$	$+\cos(t)\mathbf{k}$. Find $\mathbf{r}'(t)$ and $\mathbf{r}''(t)$.
23.1 Tangent Vectors and Unit T	Cangent Vectors
_	$m{r}$ a vector-valued function $m{r}$, and assume that $m{r}'(t)$ exists when $t=t_0$
A	$oldsymbol{v}$ at $t=t_0$ is any vector such that, when the tail of the vector is
	to curve C. Vector is an example at t is defined to be
of a tangent vector at point t = t0. The	
Problem Set 23.4. Find the a tangent vector	or and the unit tangent vector for each of $\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j}$.
99 9 J. J	7
23.2 Integrals of Vector-Valued F	
Definition 23.5. The	of a vector-valued function ${m r}(t) = f(t){m i} + g(t){m j} +$

Problem Set 23.6. Calculate $\int_{1}^{3} ((2t+4)i - t^{2}j) dt$.

24 3.3 Arc Length and Curvature

Recall: Arc Length of a Parametric Curve

Theorem 24.1. Given a smooth curve C defined by the function $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$, where t lies within the interval [a, b], the _______ of C over the interval is

Problem Set 24.2. Calculate the arc length for $r(t) = \sin(t)\mathbf{i} + \cos(t)\mathbf{j} + (10 - t)\mathbf{k}$, from t = 0 to $t = 2\pi$.

Theorem 24.3. Let r(t) describe a smooth curve for $t \ge a$. Then the arc-length function is given by

 $Furthermore, ____$

24.1 Curvature

	rve in the plane or in space given by $r(s)$, where s is the arc-length parameter.
The	
Theorem 24.5. If C is a smooth curve	e given by $r(t)$, then the curvature κ of C at t is given by
or	
If C is the graph of a function $y = f(x)$	and both y' and y'' exist, then the curvature at point (x,y) is given by
We show the first formula:	
we show the first formula.	
Problem Set 24.6. Find the curvature	e for each of the following curves at the given point:
r	$f(t) = 4\cos t\mathbf{i} + 4\sin t\mathbf{j} + 3t\mathbf{k}, t = 4\pi/3$

24.2 The Normal and Binormal Vectors

Definition 24.7. Let C be a three	dimensional smooth curve represented by r over an open interval I . If $T(t) \neq 0$		
then the	$\underline{\hspace{1cm}}$ is		
The	is		
1100			
where $T(t)$ is the unit tangent vect	r.		
Note:			
note:			
Problem Set 24 & Find the prin	ipal unit normal vector and the binormal vector for $\mathbf{r}(t) = 4\cos t\mathbf{i} + 4\sin t\mathbf{j} + 3t$		
1 10blem Set 24.8. I'ma me prin	that the internal vector and the observable vector for $I(t) = 4\cos t t + 4\sin t J + 3t$		
	a a circle in the osculating plane of C at point P on the curve. Assume the		
	as the curve does at point P and let the circle have is given by		
Inen, t	e is given by		
	of the curve, and it is equal to the reciprocal of the curvature. If this circ		
lies on the	side of the curve and is		
at point P, then this circle is called	the		

Example 24.10. Find the equation of the oscul at the origin.	ating circle of the curve defined by the vector-valued function $y = x^2$
25 3.4 Motion in Space	
	iable vector-valued function of the parameter t that represents the ion of time. The is
The	$_is$
The	$_{-}$ is
Problem Set 25.2. Find the velocity, speed, an	nd acceleration of a particle whose path is
$m{r}(t)$	$=t^2\boldsymbol{i}+(t+2)\boldsymbol{j}+3t\boldsymbol{k}.$

25.1 Components of the Acceleration Vector				
Theorem 25.3. The accelerat	ion vector $oldsymbol{a}(t)$ of an object moving a	ong a curve traced out by a twice-differen	ntiable	
function $r(t)$ lies in the plane for to C . Furthermore,	rmed by the	and the		
The coefficients of $\mathbf{T}(t)$ and $\mathbf{N}(t)$ respectively.) are referred to as the	and the		
Problem Set 25.4. A particle moves in a path defined by the vector-valued function $\mathbf{r}(t) = t^2 \mathbf{i} + (2t-3)\mathbf{j} + (3t^2-3t)\mathbf{k}$, where t measures time in seconds and distance is measured in feet. Find a_T and a_N .				