Calculus III Note-taking Guide Booklet

Created by: Nicole Buczkowski, Worcester Polytechnic Institute
These open-source mathematics note taking guides are created to help students with note-taking and correspond to chapters in OpenStax Calculus Volume $\mathrm{I}^{1}, \mathrm{II}^{2}$, and III^{3}. They were created through the Worcester Polytechnic Institute Women's Impact Network EMPOwER grant program.
${ }^{1}$ Herman, Edwin, Gilbert Strang, Joseph Lakey, Elaine A. Terry, Alfred K. Mulzet, Sheri J. Boyd, Joyati Debnath et al. "Calculus Volume 1." (2016).
${ }^{2}$ Herman, Edwin, Gilbert Strang, William Radulovich, Erica A. Rutter, David Smith, Kirsten R. Messer, Alfred K. Mulzet et al. "Calculus Volume 2." (2016).
${ }^{3}$ Herman, Edwin, Gilbert Strang, Nicoleta Virginia Bila, Sheri J. Boyd, David Smith, Elaine A. Terry, David Torain et al. "Calculus Volume 3." (2016).

Table of Contents

From Volume 1

1. 4.8 L'Hôpital's Rule

From Volume 2

2. 3.7 Improper Integrals
3. 5.1 Sequences
4. 5.2 Infinite Series
5. 5.3 The Divergence and Integral Tests
6. 5.4 Comparison Tests
7. 5.5 Alternating Series
8. 5.6 Ratio and Root Tests
9. 6.1 Power Series and Functions
10. 6.2 Properties of Power Series
11. 6.3 Taylor and Maclaurin Series
12. 6.4 Working with Taylor Series
13. 7.1 Parametric Equations
14. 7.2 Calculus of Parametric Curves
15. 7.3 Polar Coordinates
16. 7.4 Area and Arc Length in Polar Coordinates

From Volume 3

17. 2.1 Vectors in the Plane
18. 2.2 Vectors in Three Dimensions
19. 2.3 The Dot Product
20. 2.4 The Cross Product
21. 2.5 Equations of Lines and Planes in Space
22. 3.1 Vector-Valued Functions and Space Curves
23. 3.2 Calculus of Vector-Valued Functions
24. 3.3 Arc Length and Curvature
25. 3.4 Motion in Space

1 4.8 L'Hôpital's Rule

Problem Set 1.1. Find the following limits
1.
$\lim _{x \rightarrow 0} \frac{x^{3}}{x}=$
2.
$\lim _{x \rightarrow 0} \frac{x}{x^{3}}=$
3.

$$
\lim _{x \rightarrow 0} \frac{x}{x}=
$$

4.

$\lim _{x \rightarrow 0} \frac{x+x^{3}}{2}=$
5.

$$
\lim _{x \rightarrow 0} \frac{x}{x+4 x^{2}}=
$$

Theorem 1.2. L'Hôpital's Rule

Problem Set 1.3. Evaluate the following limits.
1.
$\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=$
2.
$\lim _{x \rightarrow 0} \frac{e^{1 / x}-1}{e^{1 / x}}=$
3.

$$
\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{2}}=
$$

Other Indeterminant Forms
-
\bullet
-

Example 1.4.

$\lim _{x \rightarrow 0^{+}} \frac{1}{x^{2}}-\frac{1}{\tan (x)}$

Indeterminant Powers

If $\lim _{x \rightarrow a} \ln (f(x))=L$, then

Example 1.5. Evaluate

$$
\lim _{x \rightarrow \infty} x^{\frac{1}{x}}
$$

2 3.7 Improper Integrals

Definition 2.1. Integrating over an Infinite Interval

1. If $f(x)$ is continuous on $[a, \infty)$, then
2. If $f(x)$ is continuous on $(-\infty, b]$, then
3. If $f(x)$ is continuous on $(-\infty, \infty)$, then

In each cases, if the limit exists, then the improper integral is said to \qquad Otherwise, if the limit does not exist, then the improper integral is said to \qquad
Example 2.2. We evaluate

$$
\int_{1}^{\infty} \frac{1}{x} d x=
$$

Problem Set 2.3. Evaluate

$$
\int_{-\infty}^{0} \frac{1}{x^{2}+4} d x
$$

Definition 2.4. Integrating a Discontinuous Integrand

1. If $f(x)$ is continuous on $[a, b)$, then
2. If $f(x)$ is continuous on $(a, b]$, then
3. If $f(x)$ is continuous on $[a, b]$ except at c in (a, b), then

In each case, if the limit exists and is finite, then the improper integral is said to \qquad . Otherwise, the improper integral is said to \qquad _.

Example 2.5. We evaluate

$$
\int_{-1}^{1} \frac{1}{x^{3}} d x=
$$

Theorem 2.6. The Direct Comparison Test Let f, g be continuous on $[a, \infty)$ and assumme that $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then

1. If $\int_{a}^{\infty} g(x) d x \longrightarrow$, then $\int_{a}^{\infty} f(x) d x$ also \qquad
2. If $\int_{a}^{\infty} f(x) d x \longrightarrow$, then $\int_{a}^{\infty} g(x) d x$ also \qquad
Example 2.7. Consider for $p<1$
$\int_{1}^{\infty}(x+7)^{p} d x$

3 5.1 Sequences

Definition 3.1. $A n$ \qquad is an ordered list a of numbers of the form

Each of the numbers is called a \qquad The symbol n is called the
for the sequence.
We also use the notation

Example 3.2. Examples of sequences:

We sometimes would like to write sequences using its \qquad
Problem Set 3.3. Write each sequences given using its explicity formula. We will do the second one together:

- $1,2,3,4, \ldots$
- $2,4,6,8,10$
- $1,-1,1,-1, \ldots$
- $1,1,2,3,5,8, \ldots$

3.1 Limit of a Sequence

Definition 3.4. Given a sequence $\left\{a_{n}\right\}$, if the terms of a_{n} become \qquad to a \qquad
\qquad as \qquad , we say $\left\{a_{n}\right\}$ is a
and L is the \qquad In this case, we write

If a sequence is not convergent, we say it is \qquad
More formally, we can instead use the definition:
Definition 3.5. A sequence $\left\{a_{n}\right\}$ \qquad to the number \qquad if for every $\varepsilon>0$ there corresponds an integer N such that if $n \geq N$,

The number L is the \qquad and we write

Example 3.6. Let $\left\{a_{n}\right\}=\left\{\frac{1}{n}\right\}$ and $\left\{b_{n}\right\}=\left\{(-1)^{n}\right\}$. We investigate the convergence or divergence of each.

3.2 Calculating Limits of Sequences

Theorem 3.7. Limit of a Sequence Defined by a function Consider a sequence $\left\{a_{n}\right\}$ such that $a_{n}=f(n)$. If
\qquad such that
then $\left\{a_{n}\right\}$ converges and

Theorem 3.8. Algebraic Limit Laws: Given sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ and a real number C, if there exist constants A, B such that $\lim _{n \rightarrow \infty} a_{n}=A, \lim _{n \rightarrow \infty} b_{n}=B$. Then
1.
2.
3.
4.
5.

Theorem 3.9. Consider a sequence $\left\{a_{n}\right\}$ and suppose there exists a real number L such that the sequence $\left\{a_{n}\right\}$ converges to L. Suppose f is a continuous function at L. Then there exists an integer N such that f is defined at all values an for $n \geq N$, and the sequence

This allows us to use things like L'Hôpital's rule for sequences.
Theorem 3.10. The Squeeze Theorem for Sequences Consider sequences $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ and suppose that \ldots for all $n \geq N$ for some N. If
then

Problem Set 3.11. If possible, find the limits of the following sequences.

1. $1,2,3,4, \ldots$
2. $5,19,5,19,5,19, \ldots$
3. $\left\{\frac{1}{n^{2}}\right\}$

3.3 Bounded and Monotonic Sequences

Definition 3.12. A sequence $\left\{a_{n}\right\}$ is \qquad if there exists a number M so that
for all n.
A sequence $\left\{a_{n}\right\}$ is \qquad if there exists a number m so that \qquad
for all n.
A sequence $\left\{a_{n}\right\}$ is a \qquad if it is bounded above and bounded below.
If a sequence is not bounded, it is an \qquad
Definition 3.13. A sequence $\left\{a_{n}\right\}$ is \qquad if \qquad for all n. It is \qquad if \qquad for all n. A sequence is \qquad if is either \qquad or \qquad

Theorem 3.14. Montone Convergence Theorem If $\left\{a_{n}\right\}$ is a \qquad sequence and
there exists a positive integer n_{0} such that $\left\{a_{n}\right\}$ is \qquad for all $n \geq n_{0}$, then $\left\{a_{n}\right\}$

Problem Set 3.15. Classify each sequence as bounded or not and monotonic or not. Then using that information, decide if we know if the sequence converges.

1. $1,2,3,4, \ldots$
2. $5,19,5,19,5,19, \ldots$
3. $\left\{(-1)^{n}\right\}$
4. $\left\{\frac{1}{n}\right\}$
5. $a_{n}=a_{1}$, where $a_{1}=7$

4 5.2 Infinite Series

Definition 4.1. $A n$ \qquad is a sum of infinitely many terms and is written in the form

For each k, S_{k} is \qquad

If we can describe the convergence of a series to S, we call S the \qquad and we write

If the sequence of partial sums diverges, we have the \qquad
Example 4.2. Decide whether each sum converges or diverges.
-

$$
\sum_{n=1}^{\infty} 1
$$

-

$$
\sum_{n=1}^{\infty} 0
$$

Example 4.3. Find the sum of the telescoping series

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+1)}
$$

Theorem 4.4. Let $\sum a_{n}, \sum b_{n}$ be convergent series. Then we have:

1. Sum/Difference Rule:
2. Constant Multiple Rule:

4.1 Geometric Series

Definition 4.5. A \qquad is any series that we can write in the form
where a, r are fixed and $a \neq 0$.
Problem Set 4.6. Identify if each is a geometric series. If it is, what are a,r?

1. $1+\frac{1}{2}+\frac{1}{4}+\ldots+\left(\frac{1}{2}\right)^{n-1}+\ldots$.
2. $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\ldots$
3. $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\ldots$
4. $5+5+5+5+\ldots$

4.1.1 Convergence of the Geometric Series

Goal: Write S_{n} in terms of a, r. This way we know what the partial sum is of any geometric series. Consider

$$
S_{n}=a+a r+\ldots+a r^{n-1}
$$

Theorem 4.7. If \qquad in a geometric series, then

If \qquad in a geometric series, then it \qquad
Problem Set 4.8. Decide whether each geometric series converges or diverges. If it converges, what is its sum?

1. $1+\frac{1}{2}+\frac{1}{4}+\ldots+\left(\frac{1}{2}\right)^{n-1}+\ldots$.
2. $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\ldots$
3. $5+5+5+5+\ldots$

5 5.3 The Divergence and Integral Tests

Theorem 5.1. Divergence Test If $\lim _{n \rightarrow \infty} a_{n}=c \neq 0$ or does not exist, then $\sum_{n=1}^{\infty} a_{n} \longrightarrow$.

Example 5.2. Consider

$$
\sum_{n=1}^{\infty} \frac{1}{n}, \int_{1}^{\infty} \frac{1}{x} d x
$$

Let $f(x)=\frac{1}{x}$. Then

Theorem 5.3. Integral Test Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series with positive terms. Suppose there exists a function fand a positive integer N such that the following three conditions are satisfied:
1.
2.
3.

Then
both \qquad or both \qquad
Problem Set 5.4. Use the integral test to decide whether each series converges or diverges.

1. $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p>1$

Definition 5.5. For any real number p, the series
is called a \qquad

6 5.4 Comparison Tests

Theorem 6.1. 1. Suppose there exists an integer N such that $0 \leq a_{n} \leq b_{n}$ for all $n \geq N$. If \qquad
then \qquad
2. Suppose there exists an integer N such that $a_{n} \geq b_{n} \geq 0$ for all $n \geq N$. If \qquad then \qquad
Example 6.2. We investigate the convergence or lack thereof of $\sum \frac{1}{n^{3}+3 n+1}$.

Problem Set 6.3. Investigate the convergence or lack thereof of $\sum \frac{1}{2^{n}-1}$.

Theorem 6.4. Limit Comparison Test Let $a_{n}, b_{n}>0$ for all $n \geq 1$.
1.
2.
3.

Example 6.5. We use LCT to determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{2}}$.

Problem Set 6.6. Using LCT, determine whether or not each series converges or diverges.

1. $\sum \frac{2 n+1}{n^{2}+2 n+1}$
2. $\sum \frac{5^{n}}{3^{n}+2}$

7 5.5 Alternating Series

Definition 7.1. Any series whose terms alternate between positive and negative values is called an \qquad . $A n$ \qquad can be written in the form

Theorem 7.2. Alternating Series Test An alternating series converges if 1.
2.

Example 7.3. Consider

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

Theorem 7.4. Remainders in Alternating Series Consider an alternating series that satisfies the hypotheses of the alternating series test. Let S denote the sum of the series and S_{N} denote the N th partial sum. For any integer $N \geq 1$, the remainder \qquad satisfies

Definition 7.5. A series $\sum a_{n}$ exhibits \qquad if \qquad A series $\sum a_{n}$ exhibits \qquad $i f$ \qquad but

Problem Set 7.6. Decide whether or not $\sum \frac{\cos (n \pi)}{n^{2}}$ and $\sum \frac{\cos (n \pi)}{n}$ are alternating series and whether they converge or diverge. If they converge, does they converge absolutely or conditionally?

8 5.6 Ratio and Root Tests

Theorem 8.1. Ratio Test Let $\sum a_{n}$ be any series be a series with nonzero terms. Let

1. If \qquad then \qquad
2. If \qquad then \qquad
3. If \qquad then \qquad
Note: This extends the knowledge we already had for geometric series.
Theorem 8.2. Root Test Consider the series $\sum a_{n}$. Let
4. If \qquad then \qquad
5. If \qquad then \qquad
6. If \qquad then \qquad
Problem Set 8.3. Determine if the following series converge absolutely.
7. $\sum \frac{2^{n}}{n!}$
8. $\sum \frac{(-1)^{n}(n!)^{2}}{(2 n)!}$
9. $\sum\left(\frac{1}{n}\right)^{n}$

9 6.1 Power Series and Functions

Definition 9.1. A series of the form
is a \qquad A series of the form
is a \qquad

Example 9.2.

$$
\sum_{n=0}^{\infty} x^{n}
$$

Theorem 9.3. Convergence of a Power Series Consider the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. The series satisfies exactly one of the following properties:
1.
2.
3.

Definition 9.4. Consider the power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$. The set of real numbers x where the series converges is
the \qquad . If there exists a real number $R>0$ such that the series
\qquad and \qquad , then R is the \qquad
If the series converges only at $x=a$, we say the radius of convergence is \qquad If the series converges for all real numbers x, we say the radius of convergence is \qquad

How to Test a Power Series for Convergence

1. Use the \qquad to find the largest open interval where the series converges
2.
3.

Example 9.5. Determine where the Power Series $\sum(-1)^{n-1} \frac{x^{n}}{n}$ converges or diverges.

Problem Set 9.6. Determine where the power series below converge or diverge.

1. $\sum \frac{x^{n}}{n!}$
2. $\sum n!x^{n}$

10 6.2 Properties of Power Series

Theorem 10.1. Combining Power Series Suppose that the two power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ and $\sum_{n=0}^{\infty} d_{n} x^{n}$ converge to the functions f and g, respectively, on a common interval I.
1.
2.
3.

Theorem 10.2. Suppose that the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ and $\sum_{n=0}^{\infty} d_{n} x^{n}$ converge to f and g, respectively, on a common interval I. Let

Then
and

Theorem 10.3. Term-by-Term Differentiation and Integration of Power Series Suppose that the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges on the interval $(a-R, a+R)$ for some $R>0$. Let f be the function defined by the series

Then f is \qquad on the interval $(a-R, a+R)$ and we can find f^{\prime} by differentiating the series term-by-term:
for $|x-a|<R$. Also, to find \qquad , we can integrate the series term-by-term. The resulting series converges on $(a-R, a+R)$, and we have
for $|x-a|<R$.
Warning! This may not work for series that are not Power Series.

Example 10.4. Let

$$
f(x)=\sum_{0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1},-1 \leq x \leq 1
$$

We identify this as a function we more commonly know.

11 6.3 Taylor and Maclaurin Series

Definition 11.1. If f has derivatives of all orders at $x=a$, then the is

The Taylor series for f at \qquad is known as the \qquad
Definition 11.2. If f has n derivatives at $x=a$, then the nth \qquad for f at a is

Example 11.3. We find the Taylor series generated by $1 / x^{2}$ at $a=1$.

Problem Set 11.4. Find the Taylor Series generated by $f(x)=x^{3}$ at $x=3$.

Example 11.5. We find the Taylor Polynomial of degree n of e^{x}.

Theorem 11.6. Taylor's Theorem with Remainder Let f be a function that can be differentiated $n+1$ times on an interval I containing the real number a. Let p_{n} be the nth Taylor polynomial of f at a and let
be the \qquad . Then for each x in the interval I, there exists a real number c between a and x such that

If there exists a real number M such that \qquad for all $x \in I$, then for all x in I.

Example 11.7. We find the Taylor Series of $\sin (x)$.

12 6.4 Working with Taylor Series

Note: We can use the following from here on without proof

$$
\begin{aligned}
e^{x} & = \\
\cos (x) & = \\
\sin (x) & =
\end{aligned}
$$

Example 12.1. We express $\int e^{-x^{2}} d x$ as an infinite series.

Problem Set 12.2. Find the Taylor Series for $\sinh (x)$. Hint: Recall $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$.

13 7.1 Parametric Equations

Definition 13.1. If x and y are continuous functions of t on an interval I, then the equations
are called \qquad and \qquad is called the \qquad -

The set of points (x, y) obtained as varies over the interval I is called the \qquad
The graph of parametric equations is called a \qquad or plane curve, and is denoted by C.

Example 13.2. Consider $x=\sin \frac{\pi t}{2}, y=2 t+4,0 \leq t \leq 4$.

Problem Set 13.3. Sketch the curve

$$
x=3 t+2, y=t^{2}+1,-\infty<t<\infty .
$$

Example 13.4. We find two different parametric equations to represent the graph of $y=2 x^{2}+3$.

13.1 Cycloids

Example 13.5. A wheel of radius a rolls along a horizontal straight line. We find parametric equations for the path traced by a point on the wheel. The path is called a

14 7.2 Calculus of Parametric Curves

14.1 Derivatives of Parametric Equations

Parametric Formula for $\frac{d y}{d x}$

Parametric Formula for $\frac{d^{2} y}{d x^{2}}$

Example 14.1. Find the tangent line to the plane curve defined by the parametric equations

$$
x(t)=t^{2}-3, y(t)=2 t-1, t \geq 0
$$

at $t=0$.

Problem Set 14.2. Find $\frac{d^{2} y}{d x^{2}}$ as a function of t if $x=1-t^{2}, y=t-t^{2}$.

Example 14.3. We set up, but do not evaluate, an integral that gives the area under the curve of the cycloid defined by the equations

$$
x=t-\sin (t), y=1-\cos (t), 0 \leq t \leq 2 \pi
$$

Definition 14.4. Consider the plane curve defined by the differentiable parametric equations $x=x(t), y=y(t)$, $t_{1} \leq t \leq t_{2}$. Then the \qquad is given by

$$
L=
$$

Problem Set 14.5. Find the length of the circle of radius r defined parametrically by

$$
x=r \cos t, y=\sin t, 0 \leq t \leq 2 \pi
$$

Areas of Surface of Revolution for Parametrized Curves

1. Revolution about the x-axis:
2. Revolution about the y-axis:

15 7.3 Polar Coordinates

Definition 15.1. The point P has Cartesian coordinates (x, y). The line segment connecting the origin to the point P measures the distance from the origin to P and has \qquad The \qquad

This is the basis of the \qquad In the \qquad each point also has two values associated with it: \qquad

Example 15.2. We find all of the polar coordinates for the point $P(2, \pi / 6)$.

Theorem 15.3. Converting Points between Coordinate Systems: Given a point P in the plane with \qquad and \qquad the following conversion formulas hold true:

Example 15.4. We find the polar equation for the circle $x^{2}+(y-3)^{2}=3^{2}$ (circle centered at (0,3) with radius 3).

15.1 Polar Curves

Example 15.5. We graph $r=4 \sin \theta$.

Problem Set 15.6. Graph the curve $r=1-\cos (\theta)$.

Example 15.7. Polar objects can have multiple representations

Problem Set 15.8. Graph the sets of points using the conditions:

- $1 \leq r \leq 3$ and $0 \leq \theta \leq \pi / 2$
- $-3 \leq r \leq 2$ and $\theta=\pi / 4$
- $2 \pi / 3 \leq \theta \leq 5 \pi / 6$

15.2 Transforming Polar Equations to Rectangular Coordinates

Problem Set 15.9. Write the polar equation as a Cartesian equation.

- $r \cos (\theta)=2$
- $r=6 \cos \theta-8 \sin \theta$
- $r=1-\cos (\theta)$

16 7.4 Area and Arc Length in Polar Coordinates

16.1 Slope of Polar Curves

Recall: Slope of a curve in Cartesian is $\frac{d y}{d x}$. This is not true in polar. When $r=f(\theta)$:

Areas of Regions Bounded by Polar Curves

Theorem 16.1. Suppose f is continuous and nonnegative on the interval $\alpha \leq \theta \leq \beta$ with \qquad The area of the region bounded by the graph of \qquad between the radial lines $\theta=\alpha$ and $\theta=\beta$ is

Problem Set 16.2. Find the area of the region enclosed by $r=1-\cos \theta$.

Example 16.3. We find the area of the region that lies outside the cardioid $r=2+2 \sin \theta$ and inside the circle $r=6 \sin \theta$.

16.2 Arc Length in Polar Coordinates

Theorem 16.4. Let f be a function whose derivative is continuous on an interval $\alpha \leq \theta \leq \beta$. The length of the graph of $r=f(\theta)$ from $\theta=\beta$ to $\theta=\beta$ is

Problem Set 16.5. Find the arc length of the $r=2+2 \cos \theta$.

17 2.1 Vectors in the Plane

Definition 17.1. A \qquad is a quantity that has both \qquad and
\qquad -.

Definition 17.2. Vectors are said to be \qquad vectors if they have the \qquad

Definition 17.3. The vector with initial point $(0,0)$ and terminal point (x, y) can be written in component form as

The scalars x and y are called the \qquad of \boldsymbol{v}.
Example 17.4. Consider $\boldsymbol{v}=\overrightarrow{\mathrm{PQ}}$ with $P(-3,4)$ and $Q(-5,2)$. The vector \boldsymbol{v} has components
-
-
So the component form is \qquad The length is

17.1 Combining Vectors

Definition 17.5. Let k be a scalar (a real number). Then if $\boldsymbol{u}, \boldsymbol{v}$ are vectors then we have

- Addition/Subtraction:
- Scalar Multiplication:

Problem Set 17.6. If $\boldsymbol{u}=\langle-1,3\rangle$ and $\boldsymbol{u}=\langle 4,7\rangle$ find:

- $2 \boldsymbol{u}-3 \boldsymbol{v}$
- $\left\|\frac{1}{2} \boldsymbol{u}\right\|$
- $\frac{1}{2}\|\boldsymbol{u}\|$

Properties of Vector Operations

1. $\mathbf{u}+\mathbf{v}=$
2. $\mathbf{u}+\mathbf{0}=$
3. $0 \mathbf{u}=$
4. $a(b \mathbf{u})=$
5. $(a+b) \mathbf{u}=$
6. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=$
7. $\mathbf{u}-\mathbf{u}=$
8. $1 \mathbf{u}=$
9. $a(\mathbf{u}+\mathbf{v})=$

17.2 Unit Vectors

Definition 17.7. A \qquad is a vector with \qquad
For any nonzero vector \boldsymbol{v}, we can use scalar multiplication to find a unit vector \boldsymbol{u} that has the same direction as v.

Problem Set 17.8. Find a unit vector \boldsymbol{u} in the direction of the vector from $P_{1}(1,0)$ and $P_{2}(3,2)$.

$18 \quad$ 2.2 Vectors in Three Dimensions

Definition 18.1. The \qquad rectangular coordinate system consists of three perpendicular axes: the x-axis, the y-axis, \qquad and an origin at the point of intersection of the axes.

Theorem 18.2. The \qquad between points \qquad and \qquad is given by the formula

Definition 18.3. A \qquad is the set of all points in space \qquad
from a fixed point, the \qquad of the sphere. In a sphere, the distance from the center to a point on the sphere is called the \qquad _.

The sphere with center (a, b, c) and radius r can be represented by the equation

18.1 Graphing Other Equations in Three Dimensions

Example 18.4. We describe the set of points in three-dimensional space that satisfies $(x-2)^{2}+(y-1)^{2}=4$, and graph the set.

18.2 Working with Vectors in 3D

Example 18.5. Let $\overrightarrow{\mathrm{PQ}}$ be the vector with initial point $P=(3,12,6)$ and terminal point $Q=(-4,-3,2)$. We express $\overrightarrow{\mathrm{PQ}}$ in both component form and using standard unit vectors.

Problem Set 18.6. If $\boldsymbol{u}=\langle-1,3,0\rangle$ and $\boldsymbol{v}=\langle 4,7,11\rangle$ find:

- $2 \boldsymbol{u}-3 \boldsymbol{v}$
- $\left\|\frac{1}{2} u\right\|$
- $\frac{1}{2}\|\boldsymbol{u}\|$

19 2.3 The Dot Product

Definition 19.1. The \qquad of two vectors is $\boldsymbol{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\boldsymbol{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$

Theorem 19.2. The \qquad of two vectors is the product of the of each vector and the \qquad of the angle between them:

Problem Set 19.3. 1. Find the dot product of $\boldsymbol{u}=\langle 1,-2,-2\rangle$ and $\boldsymbol{v}=\langle-6,2,-3\rangle$.
2. Find the angle between $\boldsymbol{u}=\boldsymbol{i}-2 \boldsymbol{j}-2 \boldsymbol{k}$ and $\boldsymbol{v}=6 \boldsymbol{i}+3 \boldsymbol{j}+0 \boldsymbol{k}$.

Theorem 19.4. The nonzero vectors \boldsymbol{u} and \boldsymbol{v} are \qquad if and only if \qquad
Properties of the Dot Product

1. $\mathbf{u} \cdot \mathbf{v}=$
2. $c \mathbf{u} \cdot \mathbf{v}=$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=$
4. $\mathbf{u} \cdot \mathbf{u}=$
5. $\mathbf{0} \cdot \mathbf{u}=$

19.1 Vector Projections

The \qquad is the vector labeled \qquad
It has the same \qquad as \mathbf{u} and \mathbf{v} and the same \qquad and represents the \qquad that acts in the \qquad If θ represents the angle between \mathbf{u} and \mathbf{v}, then the length of $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ is \qquad When expressing $\cos \theta$ in terms of the dot product, this becomes

We now multiply by a unit vector in the direction of \mathbf{u} to get $\operatorname{proj}_{u} v$

The length of this vector is also known as the \qquad and is denoted by

Problem Set 19.5. Find the vector projection of $\boldsymbol{u}=6 \boldsymbol{i}+3 \boldsymbol{j}+2 \boldsymbol{k}$ onto $\boldsymbol{v}=\boldsymbol{i}-0 \boldsymbol{j}-0 \boldsymbol{k}$.

Definition 20.1. The cross product of two vectors is
where \boldsymbol{n} is the \qquad

Parallel Vectors Nonzero vectors \mathbf{u}, \mathbf{v} are \qquad if and only if \qquad
Properties of the Cross Product If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors and r, s are scalars, then

1. $r(\mathbf{u}) \times(s \mathbf{v})=$
2. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=$
3. $\mathbf{v} \times \mathbf{u}=$
4. $(\mathbf{v}+\mathbf{w}) \times \mathbf{u}=$
5. $\mathbf{0} \times \mathbf{u}=$
6. $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=$

Example 20.2. Area of a Parallelogram

Example 20.3. We find the cross product of the three dimensional vectors $\boldsymbol{u}=2 \boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$ and $\boldsymbol{v}=-4 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k}$.

Problem Set 20.4. Find the cross product of the three dimensional vectors $\boldsymbol{u}=\boldsymbol{i}$ and $\boldsymbol{v}=\boldsymbol{j}$.

21 2.5 Equations of Lines and Planes in Space

Recall:

- Slope-intercept form of a line: $y=m x+b$
- A parametric form of a line: $x(t)=m_{1} t+x_{0}, y(t)=m_{2} t+b,-\infty<t<\infty$

Definition 21.1. A \qquad parallel to vector \qquad and passing through point \qquad can be described by the following parametric equations:

If the constants a, b, and c are all nonzero, then L can be described by the symmetric equation of the line:

Problem Set 21.2. Find parametric and symmetric equations of the line passing through points $(1,0,-2)$ and $(-3,5,0)$.

Example 21.3. A mouse travels from its home (the origin) to a piece of cheese in the direction of the point $(1,1,1)$ at a speed of 60 cm per second. What is its position after 10 seconds?

21.1 Distance between a Point and a Line

21.2 Equations for a Plane

Definition 21.4. Given a point P and vector \boldsymbol{n}, the set of all points Q satisfying the equation
forms a \qquad The equation
is known as the \qquad
The \qquad containing point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\boldsymbol{n}=\langle a, b, c\rangle$ is

This equation can be expressed as \qquad where \qquad
This form of the equation is sometimes called the \qquad
Problem Set 21.5. Find an equation for the plane through $P_{0}(-3,0,7)$ perpendicular to

$$
\boldsymbol{n}=2 \boldsymbol{j}-\boldsymbol{k} .
$$

Example 21.6. We find an equation for the plane through $A(0,0,1), B(2,0,0)$, and $C(0,3,0)$.

Problem Set 21.7. Find a vector parallel to the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$. Hint: This line of intersection is perpendicular to both planes normal vectors.

Example 21.8. We find the point where the line

$$
x(t)=\frac{8}{3}+2 t, y(t)=-2 t, z(t)=1+t
$$

intersects the plane $3 x+2 y+6 z=6$.

22 3.1 Vector-Valued Functions and Space Curves

Definition 22.1. A \qquad is a function of the form
where the \qquad f, g, h, are real-valued functions of the parameter t. Vectorvalued functions are also written in the form

Example 22.2. We sketch $\boldsymbol{r}(t)=\cos (t) \boldsymbol{i}+\sin (t) \boldsymbol{j}+t \boldsymbol{k}$.

Problem Set 22.3. Describe how the following compare to $\boldsymbol{r}(t)=\cos (t) \boldsymbol{i}+\sin (t) \boldsymbol{j}+\boldsymbol{t}$.

- $\boldsymbol{r}(t)=\cos (2 t) \boldsymbol{i}+\sin (2 t) \boldsymbol{j}+t \boldsymbol{k}$.
- $\boldsymbol{r}(t)=\cos (t) \boldsymbol{i}+\sin (t) \boldsymbol{j}+2 t \boldsymbol{k}$.

Definition 22.4. A vector-valued function r approaches the \qquad as t approaches a, written
provided

Theorem 22.5. Let f, g, and h be functions of t. Then the limit of the vector-valued function $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+$ $h(t) \boldsymbol{k}$ as t approaches a is given by
provided the limits exist.
Problem Set 22.6. Let $\boldsymbol{r}(t)=\frac{2 t-4}{t+1} \boldsymbol{i}+\frac{t}{t^{2}+1} \boldsymbol{j}+(4 t-3) \boldsymbol{k}$. Find $\lim _{t \rightarrow 3} \boldsymbol{r}(t)$.

Definition 22.7. Let f, g, h functions of t. Then, the vector-valued function $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+h(t) \boldsymbol{k}$ is if the following three conditions hold:

23 3.2 Calculus of Vector-Valued Functions

Theorem 23.1. Let f, g, h be differentiable functions of t and let $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+h(t) \boldsymbol{k}$. Then

Problem Set 23.2. Let $\boldsymbol{r}(t)=t \ln (t) \boldsymbol{i}+5 e^{t} \boldsymbol{j}+\cos (t) \boldsymbol{k}$. Find $\boldsymbol{r}^{\prime}(t)$ and $\boldsymbol{r}^{\prime \prime}(t)$.

23.1 Tangent Vectors and Unit Tangent Vectors

Definition 23.3. Let C be a curve defined by a vector-valued function \boldsymbol{r}, and assume that $\boldsymbol{r}^{\prime}(t)$ exists when $t=t_{0}$. A \qquad \boldsymbol{v} at $t=t_{0}$ is any vector such that, when the tail of the vector is placed at point $\boldsymbol{r}\left(t_{0}\right)$ on the graph, vector \boldsymbol{v} is \qquad to curve C. Vector \qquad is an example of a tangent vector at point $t=t_{0}$. The \qquad at t is defined to be

Problem Set 23.4. Find the a tangent vector and the unit tangent vector for each of $\boldsymbol{r}(t)=\cos (t) \boldsymbol{i}+\sin (t) \boldsymbol{j}$.

23.2 Integrals of Vector-Valued Functions

Definition 23.5. The \qquad of a vector-valued function $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+$ $h(t) \boldsymbol{k}$ is
\qquad of the vector-valued function is

Problem Set 23.6. Calculate $\int_{1}^{3}\left((2 t+4) \boldsymbol{i}-t^{2} \boldsymbol{j}\right) d t$.

24 3.3 Arc Length and Curvature

Recall: Arc Length of a Parametric Curve

Theorem 24.1. Given a smooth curve C defined by the function $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+h(t) \boldsymbol{k}$, where t lies within the interval $[a, b]$, the \qquad of C over the interval is

Problem Set 24.2. Calculate the arc length for $\boldsymbol{r}(t)=\sin (t) \boldsymbol{i}+\cos (t) \boldsymbol{j}+(10-t) \boldsymbol{k}$, from $t=0$ to $t=2 \pi$.

Theorem 24.3. Let $\boldsymbol{r}(t)$ describe a smooth curve for $t \geq a$. Then the arc-length function is given by
\qquad

24.1 Curvature

Definition 24.4. Let C be a smooth curve in the plane or in space given by $\boldsymbol{r}(s)$, where s is the arc-length parameter. The \qquad is

Theorem 24.5. If C is a smooth curve given by $\boldsymbol{r}(t)$, then the curvature κ of C at t is given by
or

If C is the graph of a function $y=f(x)$ and both y^{\prime} and $y^{\prime \prime}$ exist, then the curvature at point (x, y) is given by

We show the first formula:

Problem Set 24.6. Find the curvature for each of the following curves at the given point:

$$
\boldsymbol{r}(t)=4 \cos t \boldsymbol{i}+4 \sin t \boldsymbol{j}+3 t \boldsymbol{k}, t=4 \pi / 3
$$

24.2 The Normal and Binormal Vectors

Definition 24.7. Let C be a three-dimensional smooth curve represented by \boldsymbol{r} over an open interval I. If $\boldsymbol{T}(t) \neq 0$, then the \qquad is

The \qquad is
where $\boldsymbol{T}(t)$ is the unit tangent vector.

Note:

Problem Set 24.8. Find the principal unit normal vector and the binormal vector for $\boldsymbol{r}(t)=4 \cos t \boldsymbol{i}+4 \sin t \boldsymbol{j}+3 t \boldsymbol{k}$.

Definition 24.9. Suppose we form a circle in the osculating plane of C at point P on the curve. Assume that the circle has the \qquad as the curve does at point P and let the circle have
\qquad . Then, the \qquad is given by \qquad
\qquad -.
We call \qquad of the curve, and it is equal to the reciprocal of the curvature. If this circle lies on the \qquad side of the curve and is \qquad
at point P, then this circle is called the \qquad _.

Example 24.10. Find the equation of the osculating circle of the curve defined by the vector-valued function $y=x^{2}$ at the origin.

25 3.4 Motion in Space

Definition 25.1. Let $\boldsymbol{r}(t)$ be a twice-differentiable vector-valued function of the parameter that represents the of an object as a function of time. The \qquad is

The \qquad is

The \qquad is

Problem Set 25.2. Find the velocity, speed, and acceleration of a particle whose path is

$$
\boldsymbol{r}(t)=t^{2} \boldsymbol{i}+(t+2) \boldsymbol{j}+3 t \boldsymbol{k}
$$

25.1 Components of the Acceleration Vector

Theorem 25.3. The acceleration vector $\boldsymbol{a}(t)$ of an object moving along a curve traced out by a twice-differentiable function $\boldsymbol{r}(t)$ lies in the plane formed by the \qquad and the \qquad to C. Furthermore,

The coefficients of $\boldsymbol{T}(t)$ and $\boldsymbol{N}(t)$ are referred to as the \qquad and the respectively.

Problem Set 25.4. A particle moves in a path defined by the vector-valued function $\boldsymbol{r}(t)=t^{2} \boldsymbol{i}+(2 t-3) \boldsymbol{j}+\left(3 t^{2}-3 t\right) \boldsymbol{k}$, where t measures time in seconds and distance is measured in feet. Find a_{T} and a_{N}.

