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Calculus III

1 4.8 L’Hôpital’s Rule

Problem Set 1.1. Find the following limits

1.

lim
x→0

x3

x
=

2.

lim
x→0

x

x3
=

3.

lim
x→0

x

x
=

4.

lim
x→0

x+ x3

2
=

5.

lim
x→0

x

x+ 4x2
=

Theorem 1.2. L’Hôpital’s Rule
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Problem Set 1.3. Evaluate the following limits.

1.

lim
x→0

sin(x)

x
=

2.

lim
x→0

e1/x − 1

e1/x
=

3.

lim
x→0

sinx− x

x2
=

Other Indeterminant Forms

•

•

•
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Example 1.4.

lim
x→0+

1

x2
− 1

tan(x)

Indeterminant Powers

If limx→a ln(f(x)) = L, then

Example 1.5. Evaluate

lim
x→∞

x
1
x

.

2 3.7 Improper Integrals

Definition 2.1. Integrating over an Infinite Interval

1. If f(x) is continuous on [a,∞), then

2. If f(x) is continuous on (−∞, b], then

3. If f(x) is continuous on (−∞,∞), then
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In each cases, if the limit exists, then the improper integral is said to . Otherwise,

if the limit does not exist, then the improper integral is said to .

Example 2.2. We evaluate∫ ∞

1

1

x
dx =

Problem Set 2.3. Evaluate∫ 0

−∞

1

x2 + 4
dx

Definition 2.4. Integrating a Discontinuous Integrand

1. If f(x) is continuous on [a, b), then

2. If f(x) is continuous on (a, b], then
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3. If f(x) is continuous on [a, b] except at c in (a, b), then

In each case, if the limit exists and is finite, then the improper integral is said to .

Otherwise, the improper integral is said to .

Example 2.5. We evaluate∫ 1

−1

1

x3
dx =

Theorem 2.6. The Direct Comparison Test Let f, g be continuous on [a,∞) and assumme that 0 ≤ f(x) ≤ g(x)

for all x ≥ a. Then

1. If
∫∞
a

g(x)dx , then
∫∞
a

f(x)dx also .

2. If
∫∞
a

f(x)dx , then
∫∞
a

g(x)dx also .

Example 2.7. Consider for p < 1∫ ∞

1

(x+ 7)pdx

3 5.1 Sequences

Definition 3.1. An is an ordered list a of numbers of the form

Each of the numbers is called a . The symbol n is called the

for the sequence.

We also use the notation
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Example 3.2. Examples of sequences:

We sometimes would like to write sequences using its .

Problem Set 3.3. Write each sequences given using its explicity formula. We will do the second one together:

• 1, 2, 3, 4, ...

• 2, 4, 6, 8, 10

• 1,−1, 1,−1, ...

• 1, 1, 2, 3, 5, 8, ...

3.1 Limit of a Sequence

Definition 3.4. Given a sequence {an}, if the terms of an become to a

as , we say {an} is a

and L is the . In this case, we write

If a sequence is not convergent, we say it is .

More formally, we can instead use the definition:

Definition 3.5. A sequence {an} to the number if for

every ε > 0 there corresponds an integer N such that if n ≥ N ,

The number L is the and we write
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Example 3.6. Let {an} = { 1
n} and {bn} = {(−1)n}. We investigate the convergence or divergence of each.

3.2 Calculating Limits of Sequences

Theorem 3.7. Limit of a Sequence Defined by a function Consider a sequence {an} such that an = f(n). If

such that

then {an} converges and

.

Theorem 3.8. Algebraic Limit Laws: Given sequences {an} and {bn} and a real number C, if there exist

constants A,B such that limn→∞ an = A, limn→∞ bn = B. Then

1.

2.

3.

4.

5.

9



Theorem 3.9. Consider a sequence {an} and suppose there exists a real number L such that the sequence {an}
converges to L. Suppose f is a continuous function at L. Then there exists an integer N such that f is defined at

all values an for n ≥ N , and the sequence

This allows us to use things like L’Hôpital’s rule for sequences.

Theorem 3.10. The Squeeze Theorem for Sequences Consider sequences {an}, {bn}, {cn} and suppose that

for all n ≥ N for some N . If

then

Problem Set 3.11. If possible, find the limits of the following sequences.

1. 1, 2, 3, 4, ...

2. 5, 19, 5, 19, 5, 19, ...

3. { 1
n2 }

3.3 Bounded and Monotonic Sequences

Definition 3.12. A sequence {an} is if there exists a number M so that

for all n.

A sequence {an} is if there exists a number m so that

for all n.

A sequence {an} is a if it is bounded above and bounded below.

If a sequence is not bounded, it is an

Definition 3.13. A sequence {an} is if for all

n. It is if for all n. A sequence is

if is either or

Theorem 3.14. Montone Convergence Theorem If {an} is a sequence and

there exists a positive integer n0 such that {an} is for all n ≥ n0, then {an}
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Problem Set 3.15. Classify each sequence as bounded or not and monotonic or not. Then using that information,

decide if we know if the sequence converges.

1. 1, 2, 3, 4, ...

2. 5, 19, 5, 19, 5, 19, ...

3. {(−1)n}

4. { 1
n}

5. an = a1, where a1 = 7

4 5.2 Infinite Series

Definition 4.1. An is a sum of infinitely many terms and is written in the form

For each k, Sk is

If we can describe the convergence of a series to S, we call S the , and we write

If the sequence of partial sums diverges, we have the

Example 4.2. Decide whether each sum converges or diverges.

•

∞∑
n=1

1
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•

∞∑
n=1

0

Example 4.3. Find the sum of the telescoping series

∞∑
n=1

1

n(n+ 1)

Theorem 4.4. Let
∑

an,
∑

bn be convergent series. Then we have:

1. Sum/Difference Rule:

2. Constant Multiple Rule:

4.1 Geometric Series

Definition 4.5. A is any series that we can write in the form

where a, r are fixed and a ̸= 0.

Problem Set 4.6. Identify if each is a geometric series. If it is, what are a, r?

1. 1 + 1
2 + 1

4 + ...+
(
1
2

)n−1
+ ....

2. 2− 2
3 + 2

9 − 2
27 + ...

3. 1 + 1
2 + 1

3 + 1
4 + 1

5 + ...

4. 5 + 5 + 5 + 5 + ...
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4.1.1 Convergence of the Geometric Series

Goal: Write Sn in terms of a, r. This way we know what the partial sum is of any geometric series. Consider

Sn = a+ ar + ...+ arn−1

Theorem 4.7. If in a geometric series, then

If in a geometric series, then it .

Problem Set 4.8. Decide whether each geometric series converges or diverges. If it converges, what is its sum?

1. 1 + 1
2 + 1

4 + ...+
(
1
2

)n−1
+ ....

2. 2− 2
3 + 2

9 − 2
27 + ...

3. 5 + 5 + 5 + 5 + ...

5 5.3 The Divergence and Integral Tests

Theorem 5.1. Divergence Test If limn→∞ an = c ̸= 0 or does not exist, then
∑∞

n=1 an .
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Example 5.2. Consider
∞∑

n=1

1

n
,

∫ ∞

1

1

x
dx.

Let f(x) = 1
x . Then

Theorem 5.3. Integral Test Suppose
∑∞

n=1 an is a series with positive terms. Suppose there exists a function

fand a positive integer N such that the following three conditions are satisfied:

1.

2.

3.

Then

both or both .

Problem Set 5.4. Use the integral test to decide whether each series converges or diverges.

1.
∑∞

n=1
1
np , p > 1

Definition 5.5. For any real number p, the series

is called a .
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6 5.4 Comparison Tests

Theorem 6.1. 1. Suppose there exists an integer N such that 0 ≤ an ≤ bn for all n ≥ N . If ,

then

2. Suppose there exists an integer N such that an ≥ bn ≥ 0 for all n ≥ N . If ,

then

Example 6.2. We investigate the convergence or lack thereof of
∑

1
n3+3n+1 .

Problem Set 6.3. Investigate the convergence or lack thereof of
∑

1
2n−1 .

Theorem 6.4. Limit Comparison Test Let an, bn > 0 for all n ≥ 1.

1.

2.

3.

Example 6.5. We use LCT to determine the convergence or divergence of
∑∞

n=1
ln(n)
n2 .

15



Problem Set 6.6. Using LCT, determine whether or not each series converges or diverges.

1.
∑

2n+1
n2+2n+1

2.
∑

5n

3n+2

7 5.5 Alternating Series

Definition 7.1. Any series whose terms alternate between positive and negative values is called an

. An can be written in the form

Theorem 7.2. Alternating Series Test An alternating series converges if

1.

2.

Example 7.3. Consider
∞∑

n=1

(−1)n+1 1

n
.
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Theorem 7.4. Remainders in Alternating Series Consider an alternating series that satisfies the hypotheses

of the alternating series test. Let S denote the sum of the series and SN denote the N th partial sum. For any integer

N ≥ 1, the remainder satisfies

Definition 7.5. A series
∑

an exhibits if . A

series
∑

an exhibits if , but .

Problem Set 7.6. Decide whether or not
∑ cos(nπ)

n2 and
∑ cos(nπ)

n are alternating series and whether they converge

or diverge. If they converge, does they converge absolutely or conditionally?

8 5.6 Ratio and Root Tests

Theorem 8.1. Ratio Test Let
∑

an be any series be a series with nonzero terms. Let

1. If , then

2. If , then

3. If , then

Note: This extends the knowledge we already had for geometric series.

Theorem 8.2. Root Test Consider the series
∑

an. Let

1. If , then

2. If , then

3. If , then

Problem Set 8.3. Determine if the following series converge absolutely.

1.
∑

2n

n!
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2.
∑ (−1)n(n!)2

(2n)!

3.
∑(

1
n

)n

9 6.1 Power Series and Functions

Definition 9.1. A series of the form

is a . A series of the form

is a .

Example 9.2.
∞∑

n=0

xn

Theorem 9.3. Convergence of a Power Series Consider the power series
∑∞

n=0 cn(x−a)n. The series satisfies

exactly one of the following properties:

1.

2.

3.
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Definition 9.4. Consider the power series
∑∞

n=0 cn(x−a)n. The set of real numbers x where the series converges is

the . If there exists a real number R > 0 such that the series

and , then R is the .

If the series converges only at x = a, we say the radius of convergence is . If the series converges

for all real numbers x, we say the radius of convergence is .

How to Test a Power Series for Convergence

1. Use the to find the largest open interval where the series converges

2.

3.

Example 9.5. Determine where the Power Series
∑

(−1)n−1 xn

n converges or diverges.

Problem Set 9.6. Determine where the power series below converge or diverge.

1.
∑

xn

n!

2.
∑

n!xn

19



10 6.2 Properties of Power Series

Theorem 10.1. Combining Power Series Suppose that the two power series
∑∞

n=0 cnx
n and

∑∞
n=0 dnx

n converge

to the functions f and g, respectively, on a common interval I.

1.

2.

3.

Theorem 10.2. Suppose that the power series
∑∞

n=0 cnx
n and

∑∞
n=0 dnx

n converge to f and g, respectively, on a

common interval I. Let

Then

and

Theorem 10.3. Term-by-Term Differentiation and Integration of Power Series Suppose that the power

series
∑∞

n=0 cnx
n converges on the interval (a − R, a + R) for some R > 0. Let f be the function defined by the

series

Then f is on the interval (a− R, a + R) and we can find f ′ by differentiating the series term-

by-term:

for |x − a| < R. Also, to find , we can integrate the series term-by-term. The resulting series

converges on (a−R, a+R), and we have

for |x− a| < R.

Warning! This may not work for series that are not Power Series.
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Example 10.4. Let

f(x) =

∞∑
0

(−1)nx2n+1

2n+ 1
, −1 ≤ x ≤ 1

We identify this as a function we more commonly know.

11 6.3 Taylor and Maclaurin Series

Definition 11.1. If f has derivatives of all orders at x = a, then the

is

The Taylor series for f at is known as the

Definition 11.2. If f has n derivatives at x = a, then the nth for f at a is

Example 11.3. We find the Taylor series generated by 1/x2 at a = 1.
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Problem Set 11.4. Find the Taylor Series generated by f(x) = x3 at x = 3.

Example 11.5. We find the Taylor Polynomial of degree n of ex.

Theorem 11.6. Taylor’s Theorem with Remainder Let f be a function that can be differentiated n+ 1 times

on an interval I containing the real number a. Let pn be the nth Taylor polynomial of f at a and let

be the . Then for each x in the interval I, there exists a real number c between a

and x such that

If there exists a real number M such that for all x ∈ I, then

for all x in I.

Example 11.7. We find the Taylor Series of sin(x).
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12 6.4 Working with Taylor Series

Note: We can use the following from here on without proof

ex =

cos(x) =

sin(x) =

Example 12.1. We express
∫
e−x2

dx as an infinite series.

Problem Set 12.2. Find the Taylor Series for sinh(x). Hint: Recall sinh(x) = ex−e−x

2 .

23



13 7.1 Parametric Equations

Definition 13.1. If x and y are continuous functions of t on an interval I, then the equations

are called and is called the .

The set of points (x, y) obtained as t varies over the interval I is called the .

The graph of parametric equations is called a or plane curve, and is denoted by

C.

Example 13.2. Consider x = sin πt
2 , y = 2t+ 4, 0 ≤ t ≤ 4.

Problem Set 13.3. Sketch the curve

x = 3t+ 2, y = t2 + 1, −∞ < t < ∞.

Example 13.4. We find two different parametric equations to represent the graph of y = 2x2 + 3.

24



13.1 Cycloids

Example 13.5. A wheel of radius a rolls along a horizontal straight line. We find parametric equations for the path

traced by a point on the wheel. The path is called a .

14 7.2 Calculus of Parametric Curves

14.1 Derivatives of Parametric Equations

Parametric Formula for dy
dx

Parametric Formula for d2y
dx2

Example 14.1. Find the tangent line to the plane curve defined by the parametric equations

x(t) = t2 − 3, y(t) = 2t− 1, t ≥ 0

at t = 0.
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Problem Set 14.2. Find d2y
dx2 as a function of t if x = 1− t2, y = t− t2.

Example 14.3. We set up, but do not evaluate, an integral that gives the area under the curve of the cycloid defined

by the equations

x = t− sin(t), y = 1− cos(t), 0 ≤ t ≤ 2π.

Definition 14.4. Consider the plane curve defined by the differentiable parametric equations x = x(t), y = y(t),

t1 ≤ t ≤ t2. Then the is given by

L =

Problem Set 14.5. Find the length of the circle of radius r defined parametrically by

x = r cos t, y = sin t, 0 ≤ t ≤ 2π.
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Areas of Surface of Revolution for Parametrized Curves

1. Revolution about the x-axis:

2. Revolution about the y-axis:

15 7.3 Polar Coordinates

Definition 15.1. The point P has Cartesian coordinates (x, y). The line segment connecting the origin to the point P

measures the distance from the origin to P and has . The

.

This is the basis of the . In the , each point

also has two values associated with it: .

Example 15.2. We find all of the polar coordinates for the point P (2, π/6).

Theorem 15.3. Converting Points between Coordinate Systems: Given a point P in the plane with

and the following conversion formulas hold true:
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Some curves are easier to express in polar and some are easier to express in Cartesian.

Example 15.4. We find the polar equation for the circle x2 + (y− 3)2 = 32 (circle centered at (0,3) with radius 3).

15.1 Polar Curves

Example 15.5. We graph r = 4 sin θ.

Problem Set 15.6. Graph the curve r = 1− cos(θ).

Example 15.7. Polar objects can have multiple representations

•

•
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Problem Set 15.8. Graph the sets of points using the conditions:

• 1 ≤ r ≤ 3 and 0 ≤ θ ≤ π/2

• −3 ≤ r ≤ 2 and θ = π/4

• 2π/3 ≤ θ ≤ 5π/6

15.2 Transforming Polar Equations to Rectangular Coordinates

Problem Set 15.9. Write the polar equation as a Cartesian equation.

• r cos(θ) = 2

• r = 6 cos θ − 8 sin θ

• r = 1− cos(θ)

16 7.4 Area and Arc Length in Polar Coordinates

16.1 Slope of Polar Curves

Recall: Slope of a curve in Cartesian is dy
dx . This is not true in polar. When r = f(θ):
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Areas of Regions Bounded by Polar Curves

Theorem 16.1. Suppose f is continuous and nonnegative on the interval α ≤ θ ≤ β with .

The area of the region bounded by the graph of between the radial lines θ = α and θ = β

is

Problem Set 16.2. Find the area of the region enclosed by r = 1− cos θ.

Example 16.3. We find the area of the region that lies outside the cardioid r = 2 + 2 sin θ and inside the circle

r = 6 sin θ.

16.2 Arc Length in Polar Coordinates

Theorem 16.4. Let f be a function whose derivative is continuous on an interval α ≤ θ ≤ β. The length of the

graph of r = f(θ) from θ = β to θ = β is
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Problem Set 16.5. Find the arc length of the r = 2 + 2 cos θ.

17 2.1 Vectors in the Plane

Definition 17.1. A is a quantity that has both and

.

Definition 17.2. Vectors are said to be vectors if they have the

.

Definition 17.3. The vector with initial point (0, 0) and terminal point (x, y) can be written in component form as

The scalars x and y are called the of v.

Example 17.4. Consider v =
−→
PQ with P (−3, 4) and Q(−5, 2). The vector v has components

•

•

So the component form is . The length is

17.1 Combining Vectors

Definition 17.5. Let k be a scalar (a real number). Then if u,v are vectors then we have

• Addition/Subtraction:

• Scalar Multiplication:

Problem Set 17.6. If u = ⟨−1, 3⟩ and u = ⟨4, 7⟩ find:

• 2u− 3v

• ∥ 1
2u∥
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• 1
2∥u∥

Properties of Vector Operations

1. u+ v =

2. u+ 0 =

3. 0u =

4. a(bu) =

5. (a+ b)u =

6. (u+ v)+w =

7. u− u =

8. 1u =

9. a(u+ v) =

17.2 Unit Vectors

Definition 17.7. A is a vector with .

For any nonzero vector v, we can use scalar multiplication to find a unit vector u that has the same direction as v.

Problem Set 17.8. Find a unit vector u in the direction of the vector from P1(1, 0) and P2(3, 2).

18 2.2 Vectors in Three Dimensions

Definition 18.1. The rectangular coordinate system consists of three per-

pendicular axes: the x-axis, the y-axis, , and an origin at the point of inter-

section of the axes.

Theorem 18.2. The between points and is

given by the formula
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Definition 18.3. A is the set of all points in space

from a fixed point, the of the sphere. In a sphere, the distance from the center to a point

on the sphere is called the .

The sphere with center (a, b, c) and radius r can be represented by the equation

18.1 Graphing Other Equations in Three Dimensions

Example 18.4. We describe the set of points in three-dimensional space that satisfies (x− 2)2 + (y − 1)2 = 4, and

graph the set.

18.2 Working with Vectors in 3D

Example 18.5. Let
−→
PQ be the vector with initial point P = (3, 12, 6) and terminal point Q = (−4,−3, 2). We

express
−→
PQ in both component form and using standard unit vectors.

Problem Set 18.6. If u = ⟨−1, 3, 0⟩ and v = ⟨4, 7, 11⟩ find:

• 2u− 3v

• ∥ 1
2u∥

• 1
2∥u∥
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19 2.3 The Dot Product

Definition 19.1. The of two vectors is u = ⟨u1, u2, u3⟩ and v = ⟨v1, v2, v3⟩

Theorem 19.2. The of two vectors is the product of the

of each vector and the of the angle between them:

Problem Set 19.3. 1. Find the dot product of u = ⟨1,−2,−2⟩ and v = ⟨−6, 2,−3⟩.

2. Find the angle between u = i− 2j− 2k and v = 6i+ 3j+ 0k.

Theorem 19.4. The nonzero vectors u and v are if and only if .

Properties of the Dot Product

1. u · v =

2. cu · v =

3. u · (v+w) =

4. u · u =

5. 0 · u =
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19.1 Vector Projections

The is the vector labeled .

It has the same as u and v and the same , and

represents the that acts in the . If θ represents

the angle between u and v, then the length of projuv is . When expressing cos θ in terms of the dot

product, this becomes

We now multiply by a unit vector in the direction of u to get projuv

The length of this vector is also known as the and

is denoted by

Problem Set 19.5. Find the vector projection of u = 6i+ 3j+ 2k onto v = i− 0j− 0k.
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20 2.4 The Cross Product

Definition 20.1. The cross product of two vectors is

where n is the

Parallel Vectors Nonzero vectors u,v are if and only if .

Properties of the Cross Product If u,v,w are vectors and r, s are scalars, then

1. r(u)× (sv) =

2. u× (v+w) =

3. v× u =

4. (v+w)× u =

5. 0× u =

6. u× (v×w) =

Example 20.2. Area of a Parallelogram

Example 20.3. We find the cross product of the three dimensional vectors u = 2i+ j+ k and v = −4i+ 3j+ k.

Problem Set 20.4. Find the cross product of the three dimensional vectors u = i and v = j.
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21 2.5 Equations of Lines and Planes in Space

Recall:

• Slope-intercept form of a line: y = mx+ b

• A parametric form of a line: x(t) = m1t+ x0, y(t) = m2t+ b,−∞ < t < ∞

Definition 21.1. A parallel to vector and passing through point

can be described by the following parametric equations:

If the constants a, b, and c are all nonzero, then L can be described by the symmetric equation of the line:

Problem Set 21.2. Find parametric and symmetric equations of the line passing through points (1, 0,−2) and

(−3, 5, 0).

Example 21.3. A mouse travels from its home (the origin) to a piece of cheese in the direction of the point (1,1,1)

at a speed of 60 cm per second. What is its position after 10 seconds?
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21.1 Distance between a Point and a Line

21.2 Equations for a Plane

Definition 21.4. Given a point P and vector n, the set of all points Q satisfying the equation

forms a . The equation

is known as the .

The containing point P = (x0, y0, z0) with normal vector n = ⟨a, b, c⟩
is

This equation can be expressed as where .

This form of the equation is sometimes called the

Problem Set 21.5. Find an equation for the plane through P0(−3, 0, 7) perpendicular to

n = 2j− k.

Example 21.6. We find an equation for the plane through A(0, 0, 1), B(2, 0, 0), and C(0, 3, 0).
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Problem Set 21.7. Find a vector parallel to the line of intersection of the planes 3x−6y−2z = 15 and 2x+y−2z = 5.

Hint: This line of intersection is perpendicular to both planes normal vectors.

Example 21.8. We find the point where the line

x(t) =
8

3
+ 2t, y(t) = −2t, z(t) = 1 + t

intersects the plane 3x+ 2y + 6z = 6.

22 3.1 Vector-Valued Functions and Space Curves

Definition 22.1. A is a function of the form

where the f, g, h, are real-valued functions of the parameter t. Vector-

valued functions are also written in the form
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Example 22.2. We sketch r(t) = cos(t)i+ sin(t)j+ tk.

Problem Set 22.3. Describe how the following compare to r(t) = cos(t)i+ sin(t)j+ tk.

• r(t) = cos(2t)i+ sin(2t)j+ tk.

• r(t) = cos(t)i+ sin(t)j+ 2tk.

Definition 22.4. A vector-valued function r approaches the as t approaches a, written

provided

Theorem 22.5. Let f, g, and h be functions of t. Then the limit of the vector-valued function r(t) = f(t)i+ g(t)j+

h(t)k as t approaches a is given by

provided the limits exist.

Problem Set 22.6. Let r(t) = 2t−4
t+1 i+ t

t2+1 j+ (4t− 3)k. Find limt→3 r(t).
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Definition 22.7. Let f, g, h functions of t. Then, the vector-valued function r(t) = f(t)i + g(t)j + h(t)k is

if the following three conditions hold:

•

•

•

23 3.2 Calculus of Vector-Valued Functions

Theorem 23.1. Let f, g, h be differentiable functions of t and let r(t) = f(t)i+ g(t)j+ h(t)k. Then

Problem Set 23.2. Let r(t) = t ln(t)i+ 5etj+ cos(t)k. Find r′(t) and r′′(t).

23.1 Tangent Vectors and Unit Tangent Vectors

Definition 23.3. Let C be a curve defined by a vector-valued function r, and assume that r′(t) exists when t = t0.

A v at t = t0 is any vector such that, when the tail of the vector is

placed at point r(t0) on the graph, vector v is to curve C. Vector is an example

of a tangent vector at point t = t0. The at t is defined to be

Problem Set 23.4. Find the a tangent vector and the unit tangent vector for each of r(t) = cos(t)i+ sin(t)j.

23.2 Integrals of Vector-Valued Functions

Definition 23.5. The of a vector-valued function r(t) = f(t)i+g(t)j+

h(t)k is
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The of the vector-valued function is

Problem Set 23.6. Calculate
∫ 3

1

(
(2t+ 4)i− t2j

)
dt.

24 3.3 Arc Length and Curvature

Recall: Arc Length of a Parametric Curve

Theorem 24.1. Given a smooth curve C defined by the function r(t) = f(t)i + g(t)j + h(t)k, where t lies within

the interval [a, b], the of C over the interval is

Problem Set 24.2. Calculate the arc length for r(t) = sin(t)i+ cos(t)j+ (10− t)k, from t = 0 to t = 2π.

Theorem 24.3. Let r(t) describe a smooth curve for t ≥ a. Then the arc-length function is given by

Furthermore, .
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24.1 Curvature

Definition 24.4. Let C be a smooth curve in the plane or in space given by r(s), where s is the arc-length parameter.

The is

Theorem 24.5. If C is a smooth curve given by r(t), then the curvature κ of C at t is given by

or

If C is the graph of a function y = f(x) and both y′ and y′′ exist, then the curvature at point (x, y) is given by

We show the first formula:

Problem Set 24.6. Find the curvature for each of the following curves at the given point:

r(t) = 4 cos ti+ 4 sin tj+ 3tk, t = 4π/3
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24.2 The Normal and Binormal Vectors

Definition 24.7. Let C be a three-dimensional smooth curve represented by r over an open interval I. If T(t) ̸= 0,

then the is

The is

where T(t) is the unit tangent vector.

Note:

Problem Set 24.8. Find the principal unit normal vector and the binormal vector for r(t) = 4 cos ti+4 sin tj+3tk.

Definition 24.9. Suppose we form a circle in the osculating plane of C at point P on the curve. Assume that

the circle has the as the curve does at point P and let the circle have

. Then, the is given by

.

We call of the curve, and it is equal to the reciprocal of the curvature. If this circle

lies on the side of the curve and is

at point P , then this circle is called the .
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Example 24.10. Find the equation of the osculating circle of the curve defined by the vector-valued function y = x2

at the origin.

25 3.4 Motion in Space

Definition 25.1. Let r(t) be a twice-differentiable vector-valued function of the parameter t that represents the

of an object as a function of time. The is

The is

The is

Problem Set 25.2. Find the velocity, speed, and acceleration of a particle whose path is

r(t) = t2i+ (t+ 2)j+ 3tk.
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25.1 Components of the Acceleration Vector

Theorem 25.3. The acceleration vector a(t) of an object moving along a curve traced out by a twice-differentiable

function r(t) lies in the plane formed by the and the

to C. Furthermore,

The coefficients of T(t) and N(t) are referred to as the and the ,

respectively.

Problem Set 25.4. A particle moves in a path defined by the vector-valued function r(t) = t2i+(2t−3)j+(3t2−3t)k,

where t measures time in seconds and distance is measured in feet. Find aT and aN .
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