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Abstract

Dynamic materials (DM) comprise spatial material frameworks and their

energetic interactions with the environment responsible for temporal changes

in material properties [7]. Theoretical work has been done to understand DM

systems, and now practical means are being developed for the engineering of

physical systems. In this paper a checkerboard pattern of variable perme-

ability µ and permittivity ε in space-time is studied which permits energy

accumulation and concentration in electromagnetic waves travelling through

the pattern. Impedance mismatch causes reflection of energy which one would

expect to slow energy accumulation, but this does not happen until noticeable

impedance mismatch. To explore why this occurs, the exchange of energies

of the right-going and left-going families of waves in the DM are tracked over

time, and some analysis is performed. Impedance mismatch was found to pro-

duce energy accumulation effects separate from those of velocity mismatch. In

most of the simulations, these effects more than make up for the losses from

reflection out of limit cycles, but some of the simulations suggest parameters

exist for which energy loss may occur.
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1 Executive Summary

Space-time checkerboard patterns with varying electromagnetic properties ε and µ

have been observed to add energy to and increase the frequency of electromagnetic

waves travelling through them. Furthermore it has been observed that electromag-

netic waves travelling in these dynamic materials may still accumulate energy when

the impedance γ is mismatched, causing reflection.

A finite volume method (FVM) wave equation example code from Clawpack 5.4

[6, 1, 10] was modified to simulate electromagnetic wave propagation in a 1+1D

checkerboard structure with various impedance mismatches and material parame-

ters m and n corresponding to the sharp checkerboard used in [14]. Initial energy

of the wave is separated into the energy associated with left-going and right-going

families of characteristics using the energy flux and energy density per volume ele-

ment. These energies are graphed along with total energy and an approximation of

the theoretical limit curve. This allows closer inspection of the effect of impedance

mismatch on energy accumulation.

It was found that in a certain range of parameters, impedance mismatch of a

checkerboard DM with velocity mismatch adds more energy than it removes by re-

flection out of limit cycles. The mechanism by which it adds energy was explored,

and it was found for example, that due to the symmetric nature of the impedance

term in the reflection and transmission coefficients, impedance mismatch could lead

to exponential growth even in a pure temporal laminate, and thus outside the gen-

eration range found for velocity mismatch by [14]. Preliminary data suggests the

generation range for velocity was not substantially decreased size even for notice-

able impedance mismatch. Although energy accumulation by velocity mismatch
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was quite stable against impedance mismatch, a set of parameters for the DM was

found with both impedance mismatch and velocity mismatch but no net growth

of energy over time. This case exhibited a lack of exchange of energy or tendency

towards equilibrium between the right-going and left-going wave families although

their initial values differed and there did not appear to be symmetries to prevent

net energy exchange.
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3 Introduction

Dynamic materials (DM) provide a new perspective for analyzing materials in gen-

eral. By definition, DM are material assemblies that change their properties in space

and time. Temporal change is necessarily accompanied by mass/momentum/energy

exchange with the environment [7]. So the DM is essentially a union of the material

framework and the flux of mass/momentum/energy between it and the environ-

ment. This definition means that DM is a thermodynamically open system [7]. It

is through DM like muscle tissue that life typically interacts with the environment.

This new way of looking at materials promises both the development of a better

understanding of biological systems, and the development of practical engineered

constructions. This paper analyzes a DM construction in which wave speed and

impedance vary in space-time, causing the accumulation of energy and power of

electromagnetic waves travelling through the dielectric DM.

3.1 Motivation

A 1+1D transmission line with varying inductance and capacitance in space and time

was recently studied [9, 8]. The inductance and capacitance were piecewise constant,

taking alternating values within evenly-spaced doubly periodic rectangular regions

in 1+1D space-time. This material geometry takes the shape of a checkerboard

with spatial and temporal material boundaries. The wave velocities in this DM

were alternating, but the wave impedance was kept constant. At spatial boundaries

energy flux is preserved; at the temporal boundaries, the energy density changes by

the ratio of the wave speed after the transition over the wave speed before it [15, 12,

8]. When this ratio exceeds 1, energy is accumulated and the frequency increases. At

the same time, for special ranges of geometric parameters of a checkerboard, waves

5



tend to concentrate in regions where this ratio exceeds 1 [15]. This concentration

brings the wave routes into progressively sharpening beams that approach selected

wave routes named stable limit cycles. The energy is accumulated along those wave

routes as time is running. In the limit, once the energy supply from the external

agent has no bounds, the beams converge to delta pulses carrying infinite energy and

infinite power. Unlike a laser which exhibits resonant amplification of energy in a

wave by interaction with excitations of the atoms, the DM transmission line exhibits

non-resonant energy accumulation by interaction with its time varying properties,

and power concentration for a wide range of frequencies [9]. Similar DM with

accumulation and concentration behaviors could have many practical applications,

and thus warrant further study.

4 Background

Dynamic materials, introduced above, are open systems described by a material

framework and its energetic interactions with the environment. DM are not in

equilibrium: they exchange energy with their environment and therefore are ther-

modynamically open systems[7]. In general this means that the properties of the

material framework may vary in both space and time. Time-independent laminates

and composites are in numerous applications, but time variability in properties gives

rise to novel physical effects. Property changes may happen without material mo-

tion due to the effect of an external agent; such systems are called activated DM. An

example is given by a piezoelectric structure in a time-varying electric field, causing

the material to change shape over time and emit sound. Alternatively, DM may be

produced by relative motion of the material fragments. Such DM are called kinetic.

An example of kinetic DM comes from electrodynamics of moving bodies where
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relative mechanical motion is known to affect the constitutive material relations

(Minkowskian formulae).

The focus of this paper is an activated DM checkerboard with rectangular regions

of constant ε and µ in 1+1D, with sharp transitions to different material properties in

adjacent rectangular regions. At the temporal interfaces, the boundary conditions

cause changes in frequency and energy of waves travelling in the medium. This

energy comes from the work done by an external agent against the electromagnetic

wave travelling through the framework during temporal transition. We look to the

case of a polarized plane wave propagating in a checkerboard DM, which is simple

but allows us to understand the fundamental behaviors of waves in property patterns

of higher dimension.

4.1 Electromagnetic Plane Wave in Space-Time Dependent

Medium

Electromagnetic plane waves obey the Maxwell’s equations:

∂
−→
B

∂t
+∇×

−→
E = 0,

∂
−→
D

∂t
−∇×

−→
H = 0, (1)

and the material relationships
−→
D = ε

−→
E and

−→
B = µ

−→
H [4, 2]. The coefficients ε and

µ take two different pairs of constant values: (ε1, µ1) in material 1, and (ε2, µ2) in

material 2, alternating in the cells of a DM checkerboard. The model is simplified

by assuming a polarized plane wave travelling in the x-direction, with
−→
B = B3 k̂

and
−→
D = D2 ĵ, so that

(B3)t + (
D2

ε
)x = 0, (D2)t + (

B3

µ
)x = 0, (2)
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In the DM checkerboard ε and µ are constant within rectangular regions and jump

between constant values at the boundaries between regions. Similarly to the exam-

ples in [7], in order to solve for the variable coefficient case, we introduce potentials

φ and ψ which satisfy

(φ)x = B3, (ψ)x = D2, −(φ)t =
D2

ε
, −(ψ)t =

B3

µ
. (3)

Note that φtx − φxt = 0 and ψtx − ψxt = 0, obeying equality of mixed partials. We

rewrite the system of PDEs in terms of the potentials

ψt + (
1

µ
φx) = 0, φt + (

1

ε
ψx) = 0, (4)

which is a hyperbolic system of conservation laws solvable by Clawpack 5.4 [1, 6, 10],

and corresponding to the second order, variable coefficient wave equations

(−εφt)t + (
1

µ
φx)x = 0, (−µψt)t + (

1

ε
ψx)x = 0, (5)

which are easily found by substituting definitions of the potentials into the equalities

of mixed partials.

4.2 Reflection and Transmission at Spatial and Temporal

Boundaries

For reflection and transmission at a spatial boundary between linear isotropic ma-

terial regions 1 and 2 of differing ε and µ,

[E‖]
2
1 = 0, [H‖]

2
1 = 0, (6)

[4, 5]. which for a boundary located at x0 produces the system of equations
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Eie
(k1x0−ωt) + Ere

(−k1x0−ωt) = Ete
(k2x0−ωt), (7)

1

µ1v1

(
Eie

(k1x0−ωt) − Ere(−k1x0−ωt)
)

=
1

µ2v2
Ete

(k2x0−ωt). (8)

Where v1 = 1√
µ1ε1

and v2 = 1√
µ2ε2

are the wave speeds in materials 1 and 2. Note

that H = ± 1
µv
E plus for right-going, and minus for left-going wave. Frequency ω

of an electromagnetic wave is preserved across the spatial boundary, so that the

temporal derivative may be continuous, but for that to hold, the wave number k

must differ because wave speeds differ. From 7 and 8 reflection and transmission

coefficients for electric field can be found:

Er =
1− (µ1v1

µ2v2
)

1 + (µ1v1
µ2v2

)
Ei, Et =

2

1 + (µ1v1
µ2v2

)
Ei. (9)

Reflection and transmission coefficients for energy in terms of electric field,

U =
1

2
(εE2 + µH2) = εE2, (10)

are determined completely by the wave impedance γ =
√

µ
ε
through the formulae

R =
Ur
Ui

= (
γ1 − γ2
γ1 + γ2

)2, T =
Ut
Ui

=
γ2
γ1

(
2γ1

γ1 + γ2
)2. (11)

[3] Note that at a spatial boundary R + T = 1, thus energy is conserved. This is

not true at a temporal interface where D and B field are continuous instead of E

and H. At a sharp temporal switch from material 1 to material 2,

[D‖]
2
1 = 0, [B‖]

2
1 = 0. (12)
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[12] This produces the system of equations for an incident right-going wave

ε1Eie
(kx−ω1t0) = ε2

(
Ere

(kx+ω2t0) + Ete
(kx−ω2t0)

)
, (13)

1

v1
Eie

(kx−ω1t0) =
1

v2

(
−Ere(kx+ω2t0) + Ete

(kx−ω2t0)
)
, (14)

at time t0. Note that wave number k is continuous across the temporal interface, but

frequency changes due to the difference in wave speed. For the temporal interface,

the reflection and transmission coefficients in terms of E then become

Er =
1

2
(
ε1
ε2
−
√
µ1ε1√
µ2ε2

)Ei, Et =
1

2
(
ε1
ε2

+

√
µ1ε1√
µ2ε2

)Ei. (15)

[12] Reflection and transmission coefficients of energy at the temporal boundary

then take the form

T =
Ut
Ui

=
1

2

[
1

2
(
ε1
ε2

+
µ1

µ2

) +

√
µ1ε1√
µ2ε2

]
, (16)

R =
Ur
Ui

=
1

2

[
1

2
(
ε1
ε2

+
µ1

µ2

)−
√
µ1ε1√
µ2ε2

]
. (17)

[12] These coefficients can then be expressed in terms of wave impedance γ =
√

µ
ε

and wave speed v (note that ε = 1
γv

and µ = γ
v
)

T =
Ut
Ui

=
1

2

[
1

2

v2
v1

(
γ2
γ1

+
γ1
γ2

) +
v2
v1

]
=

1

2

v2
v1

[
1

2
(
γ2
γ1

+
γ1
γ2

) + 1

]
, (18)

R =
Ur
Ui

=
1

2

[
1

2

v2
v1

(
γ2
γ1

+
γ1
γ2

)− v2
v1

]
=

1

2

v2
v1

[
1

2
(
γ2
γ1

+
γ1
γ2

)− 1

]
, (19)

Expressing the coefficients in this way demonstrates that energy changes at tem-
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poral boundaries according to

R + T =
Ut + Ur
Ui

=
1

2
(
ε1
ε2

+
µ1

µ2

) =
1

2

v2
v1

(
γ2
γ1

+
γ1
γ2

). (20)

[12] For proper choices of checkerboard geometry and material parameters v and γ,

waves will tend to gather in the slow material before each temporal transition, so

energy tends to increase. Such choices exist even for surprisingly large impedance

mismatch.

It is worth noting that energy remains positive for both the reflected and trans-

mitted wave at the temporal boundary in both right-handed and left-handed mate-

rials for which v1 > 0, v2 > 0, γ1 > 0, γ2 > 0 are real numbers but ε and µ may be

both positive or both negative. This is because

F =
γ2
γ1
,

1

F
=
γ1
γ2
,

1

2

v2
v1

[
1

2
(F +

1

F
)± 1

]
≥ 0, (21)

Reflection is zero when F = 1
F

because this represents the case of matched

impedance, but otherwise both reflection and transmission coefficients are positive

as expected.

4.3 Wave Energy at Corners in 1+1D Checkerboards

At corners of a 1+1D checkerboard DM, finite jumps in the derivatives of the po-

tentials originate which do not affect energy. To illustrate, consider the case of a

DM of matched wave impedance and a square grid m = n = 0.50 (see figure 1).

Wave speeds in the DM are a1 = n
m

= 1 ≥ a2 for material 1 and 2 respectively.

’Diagonal’ characteristics which pass from corner to corner exist in material 1 of

the material property pattern. The function f(x− a1t) is a wave potential which is
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initially nonzero in one material region with speed a1 and continuously differentiable

there. According to equations (6) and (12), φ and ψ as defined in equation (3) have

continuous spatial derivatives across temporal interfaces and continuous temporal

derivatives across spatial interfaces. The function f will be assumed to share these

properties. Function f propagating through its first corner is shown in the following

figure:

Figure 1: Derivative discontinuity forms across diagonal characteristic

where regions 1 through 4 have wave speeds differing from adjacent regions, and

region 1 has speed a1. fn(±) represents f in each region and specifies whether the

argument x − a1t is positive or negative in a subset of that region partitioned by

the diagonal characteristic, along which x − a1t = 0 for this example. Because the

potential is continuously differentiable across the diagonal characteristic in region 1

we have
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f ′1(+) = f ′1(−) = f ′1(0). (22)

This means that limx−at→0+ f
′ = limx−at→0− f

′ = C(x, t) along the diagonal charac-

teristic in material region 1. Then, as (mδ, nτ) is approached along x− at = 0, this

remains the case so limx→mδ limt→nτ C(x, t) = f ′1(0) although continuity no longer

holds at the exact point (mδ, nτ). For the other boundaries between regions of dif-

fering material properties or across other segments of the diagonal characteristic,

we have similar equalities. For example,

a1f
′
1(+) = a2f

′
4(+), (23)

which means that along the segment of (mδ, t), that is the boundary between ma-

terial regions 1 and 4 not including corner points, a1 limx→mδ−0 f
′ = a2 limx→mδ+0 f

′

arbitrarily close to (mδ, nτ). Additionally,

f ′1(−) = f ′2(−), (24)

which means that along the segment of (x, nτ) that is the boundary between material

regions 1 and 2 not including corner points, limt→nτ+0 f
′ = limt→nτ−0 f

′ arbitrarily

close to (mδ, nτ). Also,

a2f
′
2(−) = a1f

′
3(−), (25)

which means that along the segment of (mδ, t) that is the boundary between mate-

rial regions 2 and 3 not including corner points, a2 limx→mδ−0 f
′ = a1 limx→mδ+0 f

′

arbitrarily close to (mδ, nτ). And finally

13



f ′3(+) = f ′4(+), (26)

which means that along the segment of (x, nτ) that is the boundary between material

regions 3 and 4 not including corner points, limt→nτ+0 f
′ = limt→nτ−0 f

′ arbitrarily

close to (mδ, nτ). Thus for a square around the corner (mδ, nτ) of side ∆x as ∆x

tends to zero, we can treat the above terms as a system of equations and solve to

express f ′3 in terms of f ′1. First we use (23) and (26) to find

f ′1(0) =
a2
a1
f ′4(+) =

a2
a1
f ′3(+), (27)

then we use (24) and (25) to find

f ′1(0) = f ′2(−) =
a1
a2
f ′3(−), (28)

and using these two new equations we get

f ′3(−) =
a2
a1
f ′1(0) = (

a2
a1

)2f ′3(+), (29)

so approaching the diagonal characteristic interface between f ′3(−) and f ′3(+), a

jump in derivative limits is introduced which is proportional to (a2
a1

)2. The function

f itself remains continuous as long as it was initially continuous, because spatial

boundaries require continuity so that the temporal derivative may be continuous,

and temporal boundaries require continuity of the spatial derivatives, so a jump in

potential cannot be introduced where there was none previously. Since no jumps

in the function are present and countably many finite jumps are introduced in its

derivative introduced at countably many corner points, the energy integral should

be unaffected. This fact does not change if derivative discontinuities travel through

14



corner points again. To illustrate, consider the next corner point the diagonal char-

acteristic would have gone through from the previous example, (δ, τ). The regions

surrounding this point can be represented as

Figure 2: Discontinuity amplifies subsequently

Where the new regions over which potentials are defined are denoted f∗ and the

new region 1* is the old region 3, so we know that along the diagonal characteristic in

region 1*, a2
a1

)2 limx−at→0+ f
′∗ = limx−at→0− f

′∗ which remains true as we approach

arbitrarily close to (δ, τ). We can represent this known discontinuity in terms of

f ′1(0) using

f ′∗1 (+) = f ′3(+) =
a1
a2
f ′1(0), f ′∗1 (−) = f ′3(−) =

a2
a1
f ′1(0). (30)
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As in the previous example,

a1f
′∗
1 (+) = a2f

′∗
4 (+), (31)

which means that along the segment of (δ, t) that is the boundary between mate-

rial regions 1* and 4* not including corner points, a1 limx→δ−0 f
′ = a2 limx→δ+0 f

′

arbitrarily close to (δ, τ). Additionally

f ′∗1 (−) = f ′∗2 (−), (32)

which means that along the segment of (x, τ) that is the boundary between material

regions 1* and 2* not including corner points, limt→τ+0 f
′ = limt→τ−0 f

′ arbitrarily

close to (δ, τ). Furthermore

a2f
′∗
2 (−) = a1f

′∗
3 (−), (33)

which means that along the segment of (δ, t) that is the boundary between mate-

rial regions 2* and 3* not including corner points, a2 limx→δ−0 f
′ = a1 limx→δ+0 f

′

arbitrarily close to (δ, τ). And finally

f ′∗3 (+) = f ′∗4 (+). (34)

which means that along the segment of (x, τ) that is the boundary between material

regions 3* and 4* not including corner points, limt→τ+0 f
′ = limt→τ−0 f

′ arbitrarily

close to (δ, τ). Thus for a square around the corner (δ, τ) of side ∆x as ∆x tends to

zero, we can treat the above terms as a system of equations and put f ∗3 in terms of

f ′1(0) as
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f ′1(0) =
a2
a1
f ′3(+) = (

a2
a1

)2f ′∗4 (+) = (
a2
a1

)2f ′∗3 (+), (35)

using (31) and (34), and

f ′1(0) =
a1
a2
f ′3(−) =

a1
a2
f ′∗2 (−) = (

a1
a2

)2f ′∗3 (−), (36)

using (32) and (33). With the above two equations we then get

f ′∗3 (−) = (
a2
a1

)2f ′1(0) = (
a2
a1

)4f ′∗3 (+). (37)

This makes clear that the jump in derivative across x − a1t is multiplied by an

additional term (a2
a1

)2 after propagation across a second corner region, and is still

finite. This should remain true for jumps in derivatives of other finite sizes, as they

pass through corner points. Thus there are still countably many finite jumps in

derivative, which do not affect energy. When impedance mismatch is introduced it

at most doubles the amount of jumps in derivative, which is still countably many,

so energy remains unaffected.

5 Methodology

A Finite Volume Method (FVM) is used to simulate a polarized electromagnetic

plane wave travelling in a space-time checkerboard DM with differing impedance

mismatch and material geometry in each simulation. An FVM was used due to the

stability allowed by integral solvers and conservation forms of the wave equation.

The FVM solver is the Python package Clawpack, and visualization of the data used

various methods. Clawpack allows high-level implementation of FVMs in Python,

but allows use of Fortran for fast computation of solutions [6, 1, 10].
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5.1 Wave Energy Density and Energy Flux

To study impedance mismatch in a checkerboard DM, the energy of the left-going

and right-going families of the wave routes is tracked by decomposing local energy

density and local net flux. Poynting vector in the 1+1D checkerboard DM becomes

−→
S = Sî =

−→
E ×

−→
H = E2H3î = ψtφtî =

1

µε
ψxφxî. (38)

Similarly, local energy density can be expressed as

U =
1

2
(
(ψx)

2

ε
+

(φx)
2

µ
). (39)

Spatial derivative approximations are used so that single time steps can be analyzed

independently. For an element of the FVM in 1+1D, it is possible to solve for the

energy of the left-going and right-going wave families with

Uright + Uleft = U, Uright − Uleft =
S

v
, (40)

where the total energy U is the sum of left-going and right-going energy, and the î

component of the Poynting vector divided by velocity to give units of energy S
v
is

their difference. This means that for a point xi at index i in the FVM, the energies

for that volume element can be approximated as

Uright(i) = 0.5 ∗

[
1

2
(
(ψi−ψi+1

xi−xi+1
)2

εi
+

(φi−φi+1

xi−xi+1
)2

µi
) +

1
√
µiεi

ψi − ψi+1

xi − xi+1

φi − φi+1

xi − xi+1

]
, (41)
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Uleft(i) = 0.5 ∗

[
1

2
(
(ψi−ψi+1

xi−xi+1
)2

εi
+

(φi−φi+1

xi−xi+1
)2

µi
)− 1
√
µiεi

ψi − ψi+1

xi − xi+1

φi − φi+1

xi − xi+1

]
. (42)

This method introduces error at interfaces where material properties change; this

becomes negligible in practice for higher resolution FVMs. Special treatment at

boundaries may reduce error in future implementations if additional performance is

needed.

5.2 Introduction to Clawpack

The simulations in this paper are run in Clawpack, which is an open-source Python

package which uses a finite volume method (FVM) to simulate a system of hyperbolic

conservation laws of the form

(κ(x)q)t + (f(q, x, t))x = ψ(q, x, t) (43)

in 1+1D, 2+1D or 3+1D [1, 6, 10]. These are called conservation forms because

the change over time in the conserved quantities which are elements of the vector

q are equal to the flux f entering or leaving the volume element plus any quantity

added or removed by the forcing term ψ. Such equations are used in modelling to

enforce conservation of energy, momentum, mass, or anything else which should be

conserved in a physically realistic simulation. For our electromagnetic simulation

we solve the more specific case

(q(x, t))t + (f(q, x, t))x = 0 (44)
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Clawpack is given a hyperbolic system of equations of this form as its input. It

then iteratively updates a piece-wise constant approximation of the solution of the

hyperbolic system by a FVM procedure which guarantees as best it can that the

quantities conserved by the physical conservation laws remain conserved in the code.

Clawpack uses a Riemann solver to calculate the fluxes of waves through the sur-

faces of each volume element. It then adds and subtracts all fluxes from their

corresponding volume elements to update to the next time step [1, 6, 10]. There are

a number of Riemann solvers available in Clawpack and the programmer chooses

the one that works best for their system of conservation laws. In this paper rie-

mann.vc_acoustics_2D is used; it still works well for a 1D problem and is built for

a problem analogous to the electromagnetic system explored. It is worth noting that

the CFL condition for this system implies that the fluctuations must not completely

cross a cell or information is lost. Thus sδt < δx our spatial interval limits our time

step. Also worth noting is that for our system (q(x, t))t + (f(q, x, t))x = 0 the wave

speeds are based on the eigenvalues of f ′.

6 Results

FVM simulations were performed in Clawpack for varying impedance mismatch, ini-

tial conditions, and DM parameters m and n. For each set of parameters, exchange

of energy between right-going and left-going wave families was graphed along with

total energy and an approximate limit curve for energy growth where applicable.

The limit curve, as defined in [14], is the theoretical maximum energy growth possi-

ble in a checkerboard DM withmatching wave impedances and differing wave speeds.

It increases by the factor (
vfast
vslow

)2 per temporal period. The mesh used by the graphs

shown below is comprised of 50 evenly spaced time steps per temporal period (see
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small hatch marks on the horizontal axis). Any slight slopes in energy exchange at

temporal boundaries are due to this lower resolution when graphing, as the temporal

transitions happen instantly in these models. Impedance mismatches are calculated

by the difference of the impedances over the larger impedance: γlarge−γsmall
γlarge

.

6.1 Impedance mismatch in the square checkerboard

The graphs in this section all have initial conditions describing a single right-going

wave. As expected for the case of matched impedance, there is no reflected wave

and therefore no energy transfer takes place.

Figure 3: Square checkerboard DM with matched impedance

As impedance mismatch appears, reflection and energy exchange between right-

and left-going waves become noticeable, and energy still increases, though there is

the potential for decrease because reflected waves may lose energy by leaving the

fast material into the slow material through the temporal interface.
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Figure 4: Square checkerboard DM with 16.66% impedance mismatch

In fact energy grows beyond the limit curve describing energy accumulation only

due to the velocity pattern, without the impedance mismatch.
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Figure 5: Square checkerboard DM with 28.57% impedance mismatch

As we increase impedance mismatch, the excess energy accumulation seems to

occur faster later in the simulation.
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Figure 6: Square checkerboard DM with 37.5% impedance mismatch

6.2 Energy Growth from Impedance Mismatch

The excess energy growth appears due to the effect of impedance mismatch. This

is evident in the behavior of purely temporal DM laminates, which may still exhibit

energy growth. In a pure temporal laminate without impedance mismatch, no energy

growth is observed (see figure 7).
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Figure 7: Pure temporal laminate

However, in a temporal laminate with 28.57% impedance mismatch, but also

phase velocities of 0.6 and 1.1, some changes in energy over time are visible, but

it is unclear whether energy continues to accumulate later on. There also appears

to be energy loss at times which may be dependent on the shape of the wave,

but it could also be due to a numerical issue. In a temporal laminate with 37.5%

impedance mismatch (see figure 8), energy accumulation by impedance mismatch

becomes more evident. If there is numerical error, the error eventually becomes

small relative to the energy accumulation behavior:
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Figure 8: Temporal laminate with mismatch of both impedance and velocity

In figure 8, when total energy increases, both right-going and left-going energies

increase, but when total energy is not increasing, left-going and right-going energy

remain different and do not have net energy exchange over one temporal period.

It should also be mentioned that the initial conditions used in this section all have

characteristic wavelengths within an order of magnitude of the product of the tem-

poral period of the laminate, and the wave speed. Other wavelengths for the initial

condition may have different energy accumulation or attenuation in the same DM

laminate. If wave speeds are matched and impedance varies instead, this growth

effect can be isolated from the effects of wave speed:

Figure 9: Temporal laminate with only impedance mismatch, for differing initial

conditions

The numerical results show that temporal laminates with only impedance mis-
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match initially grow slower than expected from the associated energy growth factor

(11). The symmetric initial condition also apparently grows faster because it starts

out with half of the energy but ends with a similar energy to the example with a

right-going initial condition, suggesting that the form of the initial conditions af-

fects the numerical results. It should be explored whether this is purely numerical or

has some physical significance. Simulations of temporal laminates with impedance

mismatch can be run for many more temporal periods than checkerboard DM with

velocity mismatch and material geometry in the generation range:

Figure 10: Temporal laminate with with 50% impedance mismatch over a 15 tem-

poral periods

This is because for a temporal laminate with impedance mismatch, energy ac-

cumulation happens via a transmission and reflection with greater energy and the

same frequency as the initial wave, so frequency does not build towards the resolu-

tion limit of the simulation.
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6.3 Impedance Mismatch in Various Checkerboard Geome-

tries

For a wide variety of parameters m and n, and even outside the generation range for

velocity specified by [14], impedance mismatch leads to energy growth. Impedance

mismatches as large as 50% apparently do not change the shape of the generation

range for velocity significantly. Inside the generation range, any energy loss from

reflection onto paths that will enter the slow material temporally is overcome by the

contribution to energy by impedance mismatch at the temporal boundary.

Figure 11: Mismatched impedance for DM checkerboard parameters m=0.55 n=0.5

Figure 12: Mismatched impedance for DM checkerboard parameters m=0.5 n=0.55

This is probably because even for 50% impedance mismatch, the reflections in-

duced do not alter the fundamental geometry of the limit cycles towards which
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transmitted and reflected characteristics branching from an initial characteristic

converge. More simulations should be run to better characterize the size and shape

of the generation range with impedance mismatch. It is interesting to note that

energy growth from impedance mismatch played a larger role when n was varied

than when m was varied, even though impedance mismatch energy accumulation is

maximized for a temporal laminate where m = 1.0, n = 0.5.

Outside the generation range, the behavior of energy accumulation changes dra-

matically. Characteristics occasionally focus and accumulate energy when they pass

through spatial and temporal interfaces one after the other, but then energy growth

stops as they begin entering and leaving two temporal gates consecutively, and fi-

nally energy reduces as the characteristics diverge, returning to the start of this

cyclic process. This has been observed in [14]. Adding impedance mismatch does

not appear to alter this behavior, but it does allow for additional energy accumula-

tion by the mechanism shown in figure 10 which can happen during intervals where

temporal laminate behavior is expressed.

Figure 13: Matched and mismatched impedance for DM checkerboard parameters

m=0.5 n=0.5

At the center of the generation range, exponential energy accumulation is no-

ticeable and both impedance and wave speed mismatches contribute to the effect.
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Figure 14: Matched and mismatched impedance for DM checkerboard parameters

m=0.6 n=0.6

Slightly outside the generation range, exponential growth occurs for a couple

time steps, allowing the wave from the initial condition to sharpen into a pulse.

Because the pulse is concentrated enough, all the energy in the pulse follows similar

characteristics begins entering two temporal interfaces consecutively, evident by a

sharp transition to quasi-temporal laminate behavior. Energy growth still occurs

for the case with impedance mismatch.

Figure 15: Matched and mismatched impedance for DM checkerboard parameters

m=0.7 n=0.7

Further from the generation range, the wave energy accumulates less and quickly

transitions to behavior similar to a temporal laminate. Impedance mismatch again

adds some energy.
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Figure 16: Matched and mismatched impedance for DM checkerboard parameters

m=0.5 n=0.7

Outside the generation range, nearer to spatial laminate behavior, less overall

energy growth happens. This makes sense because contributions of impedance and

velocity to energy accumulation should vanish as a spatial laminate geometry is

approached. This is in contrast to inside the generation range, where varying n

away from 0.5 appears to aid energy growth more than varying m.

Figure 17: Matched and mismatched impedance for DM checkerboard parameters

m=0.7 n=0.5

Moving the same distance toward a temporal laminate in the checkerboard pa-

rameter space, energy accumulation is approximately 5 times greater before the tran-

sition to temporal laminate behavior. This is because energy growth by impedance

mismatch may continue during temporal laminate behavior but vanishes for geome-
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tries approaching the spatial lamination.

Figure 18: Matched and mismatched impedance for DM checkerboard parameters

m=0.8 n=0.5

As the temporal lamination is approached, the wave energy accumulates less,

and the transition to temporal laminate behavior begins sooner and occurs over a

longer amount of time.

Figure 19: Matched and mismatched impedance for DM checkerboard parameters

m=0.9 n=0.5

Even closer to the temporal boundary, energy growth from velocity mismatch

becomes very small and the energy behavior becomes very similar to that of a

pure temporal laminate. There is still some contribution to energy by impedance

mismatch.
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7 Discussion

The appearance of energy accumulation by impedance mismatch was initially sur-

prising, but it makes sense in terms of (21) since for equal velocities but mismatched

impedances, the coefficient of energy accumulation at the temporal boundary be-

comes (F+ 1
F
)

2
≥ 1. Unlike velocity mismatch, the sum of the ratios of impedances

is symmetric across interfaces in a temporal laminate, so energy growth results in a

pure temporal laminate. Delay in the appearance of exponential energy growth (as

in figure 9) for temporal laminates with impedance mismatch may be an issue of nu-

merical implementation, or it may be a physical effect due to the violation of some

assumption taken when deriving (20). Temporal laminates with only impedance

mismatch likely alter amplitudes of reflected and transmitted waves at a temporal

boundary while preserving frequency. If it were otherwise, it would not be practical

to simulate 10 for the full 15 temporal periods because the frequency of the wave

would approach the resolution limit of the simulation.

Over time, spatial periodicity may develop in waves in temporal laminates with

impedance mismatch. To illustrate, imagine a temporal laminate with extremely

high impedance mismatch for which the transmission and reflection coefficients are

approximately equal. Define a factor η =
γ1
γ2

+
γ2
γ1

2
to be their average. Consider an

initial condition which is a spatially symmetric pulse that is solely amplified by

impedance mismatch, with an amplitude of 1 and which approaches zero outside a

radius from its maximum to a distance of v∆t which is the phase velocity v and the

temporal period ∆t of the temporal laminate. Before the first temporal transition

there will be one pulse with a maximum energy density amplitude of 1. Before

the following temporal transition, there will be 2 pulses spaced apart by v∆t with

amplitudes of approximately 1 ∗ η
2
and 1 ∗ η

2
. Before the third temporal transition,
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there will be three pulses with energy density amplitudes 1∗(η
2
)2, 4∗(η

2
)2, and 1∗(η

2
)2.

Before the fourth temporal transition, There will be four groups of Gaussian pulses

with amplitudes 1 ∗ (η
2
)3, 9 ∗ (η

2
)3, 9 ∗ (η

2
)3, 1 ∗ (η

2
)3 and it becomes evident that

the peaks of energy density can approximate the squares of the values of Pascal’s

triangle. More generally the term η may vary if there are families of waves that grow

and other families that attenuate in the initial conditions, but many of the spatial

periodicities that can form depending on the initial conditions may still share a

relationship with Pascal’s triangle, perhaps even when their wavelengths are very

different from v∆t.

When there are both velocity and impedance mismatch, energy accumulation is

not guaranteed in the simulations. Velocity mismatch and impedance mismatch are

each capable of producing energy accumulation on their own in a DM of appropriate

geometry, but when they are both present they can compete and reduce the overall

effect. It is evident that γ1
γ2

+ γ2
γ1

is maximized as one impedance approaches infinity

and the other approaches zero, but are there other local or global maxima once both

impedance and velocity vary? There may even be ranges of parameters m, n, γ1,

v1, γ2 and v2 where energy is reduced over time. If such ranges of parameters exist,

they would require that energy loss from reflections into regions with unfavorable

velocities is greater than energy gain from impedance mismatch and transmission

into favorable regions. The idea that impedance mismatch should reduce energy

presumes that energy concentrated near limit cycles where reflection would cause

it to decrease, but for many DM geometries this may not be accurate. It may

be valuable to measure the amount of energy on trajectories along which it will

attenuate and compare it to energy on trajectories along which it will accumulate.

This can be done by selective space-dependent sums of left-going and right-going

energy, dependent on the material geometry. If energy loss can be made exponential
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over time in a certain range of parameters, these DM may be used instead of the

Perfectly Matched Layer (PML) boundary condition, which exhibits similar behavior

in terms of exponential attenuation of energy but can be quite computationally

intense.

In most of the figures, net energy exchange between left- and right-going waves

meant that eventually the values of left- and right-going energy would converge

towards half of the total energy. This happened whether or not we observed ex-

ponential growth or temporal laminate behavior, except for the case with 28.57%

impedance mismatch in figure 8. In this case, with mismatch in both impedance

and velocity in a temporal laminate, it seems reasonable to expect energy accumula-

tion over time, but this does not happen. This unexpected behavior is accompanied

by convergence of left-going and right-going energy to very different values. It is

possible these unexpected behaviors are related, so by understanding energy ex-

change we may understand what is different about this system. For a preliminary

understanding of energy exchange we can look to the following figure:

Figure 20: Exchange of energy between left-going and right-going waves only once

symmetry is broken.

In figure 20 we see that when the initial conditions share a symmetry with the

DM, all reflection and transmission events are balanced by mirror images across the

symmetry, and no net energy exchange happens between left- and right-going waves.
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When the symmetry is broken, there may be net energy exchange and initially

differing energies of left- and right-going waves converge. Thus figure 8 must show a

special case where some matching of symmetries or perhaps asymmetries guarantees

that no net energy exchange can happen. Perhaps such spaces of parameters for

DM can be modeled abstractly with Markov chains.

8 Conclusion

Impedance mismatch in space-time checkerboard DM is not necessarily destructive

of energy accumulation, and can even augment it by the energy contribution of

impedance mismatch at the temporal boundary. The energy accumulation from

impedance mismatch has a larger generation range than that of velocity mismatch

found in [14], with accumulation disappearing only as the DM geometry approaches

the spatial lamination. Generally speaking, impedance mismatch allows exchange

of energy between right-going and left-going waves proportional to the size of the

incident waves in the reflection. For example, for an initially right-going wave,

right-going energy increases by less than v2
v1

and left-going energy increases by more,

according to how much energy was exchanged by reflection. Thus it is expected

that left-going and right-going energy will converge toward equality. Most sets of

parameters of the DM behaved this way, but an example was found that does not,

and this set of parameters also unexpectedly lacked energy accumulation over time.

This hints at the possibility of parameters of the DM for which energy attenuation

occurs. The relationship of a special case of the temporal laminate with impedance

mismatch to Pascal’s triangle underscores the richness of the mathematical field

opened by the understanding that impedance mismatch may allow energetic inter-

actions at temporal interfaces as well as velocity.
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9 Future Research

Energy growth by impedance mismatch opens up a new and rich avenue of research.

Because energy increases via amplitude of the wave instead of frequency (in the

absence of wave speed mismatch), it is easier to simulate. Because the temporal

laminate where energy growth occurs is simpler than the corresponding checkerboard

which allows energy growth under velocity mismatch, energy growth by impedance

mismatch may also be easier to implement as a real device. It may be possible

to modify the permittivity tensor of a polarizable dielectric through which waves

travel by introducing an external electric field. Thus for waves of each particular

polarization, the apparent permittivity would change, and the impedance should

change accordingly. In this implementation, energy accumulation from impedance

mismatch can be thought of as a sort of trapped electron laser as opposed to a

free electron laser - where the dipoles of the dielectric material act as driven dipole

antennas to add or remove energy from a travelling wave.

If physically meaningful, the odd case of 28.57% impedance mismatch shown

in figure 8 suggests some unforseen interaction between velocity mismatch and

impedance mismatch for certain geometric parameters of the DM checkerboard,

including stabilization of left-going and right-going energies at unequal values, a so

far unexplained lack of energy growth, and the possibility of DM parameters for

which energy might decrease instead of increasing. All of these possibilities merit

further study.

Figure 1 and the surrounding argument about discontinuities introduced at cor-

ner points of the checkerboard DM is avoided when taking dispersion into account,

according to [11]. It would be interesting to introduce dispersion into the DM

checkerboard geometries to observe their effect on the form of limit cycles one ve-
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locity becomes frequency dependent. Additionally it may be interesting to explore

the behavior of DM checkerboards with absorption or gain; for which µ and ε are

complex numbers. In such systems it is not immediately clear whether energy terms

will always be positive, so that should be explored analytically.

Another implementation of Clawpack called EMCLAW was developed specif-

ically for electromagnetic simulations in more general cases than what has been

explored in this paper [13]. If this software can be utilized instead of just clawpack,

future simulations of electromagnetic DM can be done in higher dimensions and in

more intricate geometries than just a 1+1D checkerboard laminate.
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