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Limit Cases of the p-Laplace Operator via
Mosco Convergence

April 24, 2013

Abstract

In the classic theory, p-Laplace operator (1 < p < +∞) joined several main parts of
the mathematics in a fruitful way, and one important principle of mathematics is that
extreme cases reveal interesting structure. Looking at p-Laplace operator as subgradi-
ents of a sequence of convex functionals {Ep}, as p goes to 1 and to infinity, we study
the connection of the dual problem between 1-Laplace operator and infinity-Laplace
operator using tools from convex analysis and the notion of Mosco convergence.

1 Introduction

This paper is a study about the limit cases of the family of Laplace operators. With parameter
p, the (strong) p-Laplace operator, 4p is defined as

4pu = div
(
|∇u|p−2∇u

)
= |∇u|p−4

{
|∇u|24u+ (p− 2)

N∑
i,j=1

uxi
uxj

uxixj

}
.

for
1 < p < 2, p = 2, 2 < p <∞.

When p = 2, it is the classic Laplace operator, which is the sum of the second order
partial derivatives. For the limit cases, the parameter p goes to 1 and to ∞,

1. The 1-Laplace operator. Setting p = 1,

41u : = div

(
∇u
|∇u|

)
=

N∑
i,j=1

1

|∇u|

(
δij −

uxi
uxj

|∇u|2

)
uxixj

.
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2. The ∞-Laplace operator. Letting p→∞,

4∞u =
N∑

i,j=1

1

|∇u|2
uxi
uxj

uxixj
.

It is derived formally by dividing the p-Laplace equation −4pu = 0 by (p− 2)|∇u|p−2

then letting p tends to infinity.

Both limit cases have many applications in fields such as image processing, game theory,
etc [9, 10]. This paper will also introduce one of the applications in modeling growing sandpile
via Laplace operator and Mosco convergence [1].

The notion of Mosco-convergence plays an important role in many aspects of mathematics
such as Functional Analysis, Convex Analysis, mathematical modeling [4, 5]. In 1971, Mosco
established that the “sequential bicontinuity” of convex conjugate in reflexive spaces: if {fn}
is a sequence of closed proper convex functions on a Banach space, then fn Mosco converges
to f if and only if {f ∗n} Mosco converges to f ∗ [3]. In 1977, Attouch established that a
sequence of closed proper convex functions Mosco converges to a convex functions if and only
if the functions’ subdifferentials graph converge to the subdifferential of the limiting function
[6, 7]. The definition of Mosco convergence is given later in Section 4, and the graph
convergence of the subdifferentials will be explained in Section 5.

2 Sobolev Space

Some basic facts of the Sobolev space are introduced, the (weak) p-Laplace operator and the
energy functionals are also defined in this section.

Let Ω be a bounded open set in RN and let 1 ≤ p ≤ ∞. With C1
c (Ω) denoting functions

with compact support and continuous first order derivatives, recall the definition of Sobolev
Space

W 1,p(Ω) =

{
u ∈ Lp(Ω) | ∃gi ∈ Lp(Ω) such that

∫
Ω

uφxi
= −

∫
Ω

giφ ∀φ ∈ C1
c (Ω)

}
,

||u||pW 1,p = ||u||pLp +
N∑
i=1

||uxi
||pLp .

The following norm is equivalent to the one from above,

||u||pW 1,p =

∫
Ω

|u|pdx+

∫
Ω

|∇u|pdx

where

|∇u| =

(
N∑
i=1

(uxi
)2

) 1
2

.
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For 1 < p <∞, W 1,p(Ω) is separable, reflexive. The space

W 1,p
0 (Ω) = the closure of C∞c (Ω) in the space W 1,p(Ω)

is a closed subspace of W 1,p(Ω), hence it is a Banach Space under the same norm and it is a
reflexive space as well.

The dual space
(
W 1,p

0 (Ω)
)∗

is denoted by W−1,q(Ω), where 1
p

+ 1
q

= 1. It is equipped with
the dual norm

||u∗||∗ = sup
{
〈u∗, v〉 | v ∈ W 1,p

0 (Ω) and ||v||W 1,p
0

= 1
}
.

With the setup from above, the weak p-Laplace operator (1 < p < ∞) “−Ap” is an
operator from the Sobolev Space W 1,p

0 (Ω) to its dual W−1,q(Ω),

−Ap : W 1,p
0 (Ω)→ W−1,q(Ω)

〈−Apu, v〉 =

∫
Ω

|∇u|p−2∇u · ∇v dx, for all u, v ∈ W 1,p
0 (Ω).

〈−Apu, ·〉 is linear by construction and

|〈−Apu, v〉| = |
∫

Ω

|∇u|p−2∇u · ∇v dx| ≤
∫

Ω

|∇u|p−1|∇v| dx

≤
(∫

Ω

|∇u|p dx
) p−1

p
(∫

Ω

|∇v|p dx
) 1

p

≤ ||u||p−1

W 1,p
0

||v||W 1,p
0

,

thus 〈−Apu, ·〉 ∈ W−1,q(Ω).

With the following two properties,

1. The space W 1,2
0 (Ω) = H1

0 (Ω) is a Hilbert spaces with the inner product

(u, v)H1
0

=

∫
Ω

∇u · ∇v dx;

2. W 1,p1
0 (Ω) ⊂ W 1,p2

0 (Ω) whenever p1 > p2,

we now define the energy functionals.
For 1 < p <∞,

Ep : H1
0 (Ω)→ R ∪ {+∞}

Ep(u) =

{ ∫
Ω

1
p
|∇u|pdx if u ∈ H1

0 (Ω) ∩W 1,p
0 (Ω)

+∞ if u ∈ H1
0 (Ω)\W 1,p

0 (Ω),

and for p =∞,

E∞ : H1
0 (Ω)→ R ∪ {+∞}

E∞(u) =

{
0 if |∇u| ≤ 1 a.e.
+∞ otherwise.
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3 Gâteaux Derivative

Gâteaux derivative is the generalized concept of directional derivative. From different au-
thors, the definition may vary. To be consistent, the following definition will be used through
this paper.

Definition. Let X be a Banach space and f : X →,R ∪ {+∞}, for all v ∈ X

δf(u; v) = lim
t→0

f(u+ tv)− f(u)

t
u ∈ X

where δf(u; v) is a linear functional with respect to v, δf(u; ·) is called the Gâteaux differ-
ential of f at u, and the linear operator is called the Gâteaux derivative. A function is
differeniable in the Gâteaux sense in an open subset S ⊂ X if it has a Gâteaux derivative at
every point of S.

Remark: Here, the Gâteaux derivative is only required to be linear; it is not necessarily in
the dual space. Some authors require the Gâteaux derivative to be both linear and continuous;
some require neither.

Lemma: Ep is Gâteaux differentiable on the subspace H1
0 (Ω) ∩W 1,p

0 (Ω), and

δEp(u; ·)
∣∣∣
H1

0 (Ω)∩W 1,p
0 (Ω)

= 〈−Apu, ·〉 u ∈ H1
0 (Ω) ∩W 1,p

0 (Ω).

Proof. The proof related to the Laplace operator has two parts, 2 ≤ p < ∞ and 1 < p < 2.
The Gâteaux differentiability of Ep is followed since the Laplace operator is continuous linear
and δEp(u; v) =∞ in H1

0 (Ω)/W 1,p
0 (Ω).
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2 ≤ p <∞: H1
0 (Ω) ∩W 1,p

0 (Ω) = W 1,p
0 (Ω), with u, v ∈ W 1,p

0 (Ω)

δEp(u; v) = lim
t→0

Ep(u+ tv)− Ep(u)

t

= lim
t→0

1

t

(∫
Ω

1

p
|∇(u+ tv)|pdx−

∫
Ω

1

p
|∇u|pdx

)
= lim

t→0

1

t

(∫
Ω

∫ 1

0

d

ds

[
1

p
|∇(u+ stv)|p

]
ds dx

)

= lim
t→0

1

t

∫
Ω

∫ 1

0

d

ds

1

p

(
N∑
i=1

(uxi
+ stvxi

)2

) p
2

 ds dx


= lim
t→0

1

t

∫
Ω

∫ 1

0

1

p

p

2

(
N∑
i=1

(uxi
+ stvxi

)2

) p−2
2
(

N∑
i=1

2(uxi
+ stvxi

)tvxi

)
ds dx

= lim
t→0

∫
Ω

∫ 1

0

(
N∑
i=1

(uxi
+ stvxi

)2

) p−2
2
(

N∑
i=1

(uxi
+ stvxi

)vxi

)
ds dx

=

∫
Ω

∫ 1

0

(
N∑
i=1

(uxi
)2

) p−2
2
(

N∑
i=1

uxi
vxi

)
ds dx

=

∫
Ω

∫ 1

0

|∇u|p−2∇u · ∇v ds dx

=

∫
Ω

|∇u|p−2∇u · ∇v dx

= 〈−Apu, v〉

Remark: The underlined term
(∑N

i=1(uxi
+ stvxi

)2
) p−2

2
might take the form 0

p−2
2 and is not

well defined when p < 2.

The passing of the limit is adjusted using Lebesgue Dominated Convergence theorem.
Let

ft(x, s) =

(
N∑
i=1

(uxi
+ stvxi

)2

) p−2
2
(

N∑
i=1

(uxi
+ stvxi

)vxi

)
,

apply Cauchy-Schwartz inequality to the second product term,

N∑
i=1

(uxi
+ stvxi

)vxi
≤

(
N∑
i=1

(uxi
+ stvxi

)2

) 1
2
(

N∑
i=1

(vxi
)2

) 1
2

,
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then

ft(x, s) ≤

(
N∑
i=1

(uxi
+ stvxi

)2

) p−2
2
(

N∑
i=1

(uxi
+ stvxi

)2

) 1
2
(

N∑
i=1

(vxi
)2

) 1
2

=

(
N∑
i=1

(uxi
+ stvxi

)2

) p−1
2
(

N∑
i=1

(vxi
)2

) 1
2

Using the fact that
|a+ b| ≤ |a|+ |b| ≤ 2 max{|a|, |b|}

|a+ b|c ≤ 2c max{|a|, |b|}c ≤ 2c(|a|c + |b|c) ∀a, b, c ∈ R, c ≥ 0,(
N∑
i=1

|ai|

)c

≤ N c

N∑
i=1

|ai|c ∀ai, c ∈ R, c ≥ 0,

since by assumption, 2 ≤ p <∞ ⇒ 0 ≤ p− 1, 0 ≤ p−1
2

,

ft(x, s) ≤

(
N∑
i=1

(uxi
+ stvxi

)2

) p−1
2
(

N∑
i=1

(vxi
)2

) 1
2

≤ N
p−1
2

(
N∑
i=1

|uxi
+ stvxi

|p−1

)
N

1
2

(
N∑
i=1

|vxi
|

)

≤ N
p−1
2

(
N∑
i=1

2p−1
(
|uxi
|p−1 + |stvxi

|p−1
))

N
1
2

(
N∑
i=1

|vxi
|

)

≤ N
p
2 2p−1

(
N∑
i=1

(
|uxi
|p−1 + |stvxi

|p−1
))( N∑

i=1

|vxi
|

)
,

and since t→ 0, we can assume |t| ≤ 1. Let us take t = 1 and define the function

g(x, s) : = N
p
2 2p−1

(
N∑
i=1

(
|uxi
|p−1 + |svxi

|p−1
))( N∑

i=1

|vxi
|

)

= N
p
2 2p−1

N∑
i=1

N∑
j=1

(
|uxi
|p−1|vxj

|+ |s|p−1|vxi
|p−1|vxj

|
)
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We show that g is integrable,∫
Ω

∫ 1

0

g(x, s) ds dx

=

∫
Ω

∫ 1

0

N
p
2 2p−1

N∑
i=1

N∑
j=1

(
|uxi
|p−1|vxj

|+ |s|p−1|vxi
|p−1|vxj

|
)
ds dx

= N
p
2 2p−1

N∑
i=1

N∑
j=1

∫
Ω

∫ 1

0

|uxi
|p−1|vxj

|+ sp−1|vxi
|p−1|vxj

| ds dx

= N
p
2 2p−1

N∑
i=1

N∑
j=1

∫
Ω

|uxi
|p−1|vxj

|+ 1

p
|vxi
|p−1|vxj

| dx

= N
p
2 2p−1

N∑
i=1

N∑
j=1

[∫
Ω

|uxi
|p−1|vxj

| dx
]

+
1

p

[∫
Ω

|vxi
|p−1|vxj

| dx
]
,

Since u, v ∈ W 1,p
0 (Ω), all the integrals over Ω in “[ ]” are finite for i, j = 1, 2, ..., N by

Hölder’s Inequality,∫
Ω

|uxi
|p−1|vxj

| dx ≤
(∫

Ω

(
|uxi
|p−1
) p

p−1
dx

) p−1
p
(∫

Ω

|vxj
|p dx

) 1
p

=

(∫
Ω

|uxi
|p dx

) p−1
p
(∫

Ω

|vxj
|p dx

) 1
p

∫
Ω

|vxi
|p−1|vxj

| dx ≤
(∫

Ω

(
|vxi
|p−1
) p

p−1
dx

) p−1
p
(∫

Ω

|vxj
|p dx

) 1
p

=

(∫
Ω

|vxi
|p dx

) p−1
p
(∫

Ω

|vxj
|p dx

) 1
p

,

which means

N
p
2 2p−1

N∑
i=1

N∑
j=1

[∫
Ω

|uxi
|p−1|vxj

| dx
]

+
1

p

[∫
Ω

|vxi
|p−1|vxj

| dx
]

is finite, thus g is integrable. From how we defined g, we have |ft(x, s)| ≤ g(x, s). By
Lebesgue Dominated Convergence Theorem, we can pass the limit t→ 0 inside the integral.

1 < p < 2, as mentioned before, the term
(∑N

i=1(uxi
+ stvxi

)2
) p−2

2
is not well defined when(∑N

i=1(uxi
+ stvxi

)2
) 1

2
= |∇(u+ stv)| = 0.
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Again, let us look at

lim
t→0

∫
Ω

∫ 1

0

(
N∑
i=1

(uxi
+ stvxi

)2

) p−2
2
(

N∑
i=1

(uxi
+ stvxi

)vxi

)
ds dx

=: lim
t→0

∫
Ω

∫ 1

0

ft(x, s)ds dx.

In order to solve this problem, we first assume u ∈ C1
0(Ω). Let Ω1,Ω2 ⊂ Ω defined as

below
Ω1 := {x ∈ Ω : |∇u| = 0}

Ω2 := {x ∈ Ω : |∇u| > 0}.

Since |∇u| is the sum and product of measurable functions, it is also a measurable func-
tion. The pre-image at zero is a measurable set, thus Ω1 is measurable, which means Ω2 is
measurable as well.

lim
t→0

∫
Ω

∫ 1

0

ft(x, s) ds dx = lim
t→0

∫
Ω1

∫ 1

0

ft(x, s) ds dx+ lim
t→0

∫
Ω2

∫ 1

0

ft(x, s) ds dx.

The second integral over Ω2 can be calculated similarly as before, since the bounding function
g ≥ 0, ∫

Ω2

∫ 1

0

g(x, s) ds dx ≤
∫

Ω

∫ 1

0

g(x, s) ds dx <∞.

For the first integral over Ω1, uxi
≡ 0, then it becomes

lim
t→0

∫
Ω1

∫ 1

0

(
N∑
i=1

(stvxi
)2

) p−2
2
(

N∑
i=1

stv2
xi

)
ds dx = lim

t→0

∫
Ω1

∫ 1

0

|st|p−2st

(
N∑
i=1

(vxi
)2

) p
2

ds dx

Again using Lebesgue Dominated Convergence Theorem,

|st|p−2st

(
N∑
i=1

(vxi
)2

) p
2

≤ |st|p−1

(
N∑
i=1

(vxi
)2

) p
2

≤ |st|p−1N
p
2

(
N∑
i=1

|vxi
|p
)
.

Take |t| = 1 since t→ 0, and define

g(x, s) := |s|p−1N
p
2

(
N∑
i=1

|vxi
|p
)
.
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To show g(x, s) is integrable,∫
Ω1

∫ 1

0

g(x, s) ds dx ≤
∫

Ω

∫ 1

0

g(x, s) ds dx

=

∫
Ω

∫ 1

0

|s|p−1N
p
2

(
N∑
i=1

|vxi
|p
)
ds dx

= N
p
2

N∑
i=1

∫
Ω

∫ 1

0

sp−1|vxi
|p ds dx

= N
p
2

N∑
i=1

∫
Ω

1

p
|vxi
|p dx = N

p
2

1

p

N∑
i=1

[∫
Ω

|vxi
|p dx

]
.

Since v ∈ W 1,p
0 (Ω), the above is finite and we could pass the limit inside the integral and get

lim
t→0

∫
Ω1

∫ 1

0

ft(x, s) ds dx =

∫
Ω1

∫ 1

0

0 ds dx = 0,

which means
δE(u; v) = 0 = 〈−Apu, v〉 on Ω1

δE(u; v) = 〈−Apu, v〉 on Ω2,

thus
δE(u; v) = 〈−Apu, v〉 on Ω.

Now in general for any u ∈ H1
0 (Ω), let un ∈ C1

0(Ω) converge strongly to u in H1
0 (Ω). We

have
〈−Apun, v〉 → 〈−Apu, v〉,

using the fact that the p-Laplace operator is demicontinuous and the space is reflective.
Here we will give the definition of demicontinuous,

Definition. Let X be a reflexive Banach Space, an operator A : X → X∗ is demicontinuous

if xn → x strongly in X, then Axn
w∗−→ Ax weakly∗ in X∗.

4 Mosco Convergence

Definition. Let X be a reflexive Banach space and fn : X → R ∪ {+∞}. The sequence

{fn} Mosco converges to f (fn
M−→ f) provided for each x ∈ X{

∀xn
w−→ x f(x) ≤ lim infn fn(xn)

∃xn
s−→ x f(x) ≥ lim supn fn(xn),

where “w” and “s” denote the weak and the strong topology of X.
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Recall that for p <∞

Ep(u) =

{ ∫
Ω

1
p
|∇u|pdx if u ∈ H1

0 (Ω) ∩W 1,p
0 (Ω)

+∞ if u ∈ H1
0 (Ω)\W 1,p

0 (Ω),

and for p =∞,

E∞ : H1
0 (Ω)→ R ∪ {+∞}

E∞(u) =

{
0 if |∇u| ≤ 1 a.e.
+∞ otherwise.

Theorem 4.1. Ep Mosco converges to E∞.

Before the proof, recall the definition of essential domain and the following diagonalization
lemma by H. Attouch [8],

Definition. The essential domain of a function f : X → R ∪ {+∞} is the set dom(f),
given by

dom(f) := {x ∈ X : f(x) < +∞}.

Lemma (Attouch). Let an,m be a doubly indexed family in R. Then, there exists a mapping
n 7→ m(n) increasing to +∞, such that:

lim sup
n→∞

an,m(n) ≤ lim sup
m→∞

(lim sup
n→∞

an,m).

Proof. 1. We first show that

∀u ∈ dom(E∞) ∃up ∈ dom(Ep) : up
H1

0−→ u and E∞(u) ≥ lim sup
n→∞

Ep(up).

It suffices to show ∀u ∈ dom(E∞) instead of ∀u ∈ H1
0 (Ω) is because that the inequality

is trivial for u 6∈ dom(E∞).

First assume u ∈ dom(E∞) ∩ C1
0(Ω), construct up := ufp for a sequence of smooth

functions {fp} with bounded derivatives. By product rule, the derivative is

|∇up| = |(∇u)(fp) + (u)(∇fp)|,

and we will see that each up ∈ dom(Ep) since its derivative is bounded by construction.
By assumption u ∈ dom(E∞)∩C1

0(Ω), we get ||∇u||∞ = supΩ |∇u| ≤ 1 and E∞(u) = 0,
in order to prove the strong limsup inequality, we need∫

Ω

1

p
|(∇u)(fp) + (u)(∇fp)|pdx→ 0 as p→∞,

thus we want
∣∣(∇u)(fp) + (u)(∇fp)

∣∣p to be bounded.

11



Now ||∇u||∞ ≤ 1⇒ u is bounded. To see this, fix an x ∈ Ω such that u(x) <∞, then
for each y ∈ Ω, we have

|u(x)− u(y)| ≤ ||∇u||∞|x− y|,

since Ω is bounded, |x− y| is finite, thus u must be a bounded function on Ω.

Then we have the following inequality

|∇up| =
∣∣∣(∇u)(fp) + (u)(∇fp)

∣∣∣p ≤ (|fp|+ C|∇fp|
)p
,

we want fp → 1 pointwise and ∇fp → 0 pointwise as p → ∞. To construct fp, define
g to be a smooth function that takes the value 1 in B1(0), value 0 in RN/B2(0), and
0 < g < 1 in B2(0)/B1(0) with 0 < ||∇g||∞ < 2 in B2(0)/B1(0). Let fp(x) = g(x/p),
we see that

0 ≤ fp ≤ 1 and |∇fp| ≤
2

p
.

Continue from the inequality above, we have

|∇up| ≤
(
|fp|+ C|∇fp|

)p
≤
(

1 +
2C

p

)p
Thus, we get

lim sup
p→∞

Ep(up) = lim sup
p→∞

∫
Ω

1

p

∣∣∣(∇u)(fp) + (u)(∇fp)
∣∣∣pdx

=

(
lim sup
p→∞

1

p

)(
lim sup
p→∞

∫
Ω

∣∣∣(∇u)(fp) + (u)(∇fp)
∣∣∣pdx)

≤
(

lim sup
p→∞

1

p

)(
lim sup
p→∞

∫
Ω

(
1 +

2C

p

)p

dx

)
=

(
lim sup
p→∞

1

p

)(
lim sup
p→∞

(
1 +

2C

p

)p ∫
Ω

1dx

)
=

(
lim sup
p→∞

1

p

)
e2C |Ω|

= 0 = E∞(u).

To show that up = ufp → u in W 1,2
0 (Ω),∫

Ω

|∇u−∇up|2dx =

∫
Ω

|∇u−
(
(∇u)(fp) + (u)(∇fp)

)
|2dx

=

∫
Ω

|∇u(1− fp)− u∇fp|2dx

≤
∫

Ω

(
|∇u(1− fp)|+ |u∇fp|

)2

dx

≤
∫

Ω

(
1(1− fp) + C

2

p

)2

dx

12



By Bounded Convergent Theorem,

lim
p→∞

∫
Ω

|∇u−∇up|2dx ≤ lim
p→∞

∫
Ω

(
1(1−fp)+C

2

p

)2

dx =

∫
Ω

lim
p→∞

(
1(1−fp)+C

2

p

)2

dx = 0

For general u ∈ dom(E∞), first approximate u with un ∈ dom(E∞)∩C1
0(Ω) strongly in

H1
0 (Ω), then construct the sequence up,n in dom(Ep)∩C1

0(Ω) converging to un strongly
in H1

0 (Ω) as above. By the diagonalization lemma, we have

lim sup
p→∞

Ep(up,n(p)) ≤ lim
n→∞

(lim sup
p→∞

Ep(up,n))

≤ lim sup
n→∞

E∞(un)

= lim sup
n→∞

0

= 0 = E∞(u),

which is the desired inequality.

2. Now we show that

∀u ∈ H1
0 (Ω),whenever up ∈ dom(Ep) and up ⇀ u in H1

0 (Ω), then lim inf
p→∞

Ep(up) ≥ E∞(u).

Once again, it suffices to work with ∀up ∈ dom(Ep) instead of H1
0 (Ω) because else the

inequality becomes trivial.

Let x ∈ Ω be a Lebesgue point (Lebesgue points are almost everywhere in Ω) for
|∇u| ∈ L2(Ω) ⊂ L1(Ω), and r sufficiently small such that Br(x) ⊂ Ω.∫

Br(x)

|∇up|dy ≤
(∫

Br(x)

|∇up|pdy
) 1

p

|Br(x)|
p−1
p

=

(
p

∫
Br(x)

1

p
|∇up|pdy

) 1
p

|Br(x)|
p−1
p

= (pEp(up))
1
p |Br(x)|

p−1
p

Now if lim infp→∞Ep(up) is not bounded, the proof for the inequality

lim inf
p→∞

Ep(up) ≥ E∞(u)

is done. Else if lim infp→∞Ep(up) <∞, we have lim infp→∞(pEp(up))
1
p ≤ 1. And

lim inf
p→∞

∫
Br(x)

|∇up|dy ≤ lim inf
p→∞

(pEp(up))
1
p |Br(x)|

p−1
p ≤ |Br(x)|.

A well known theorem about the boundedness of weakly converging sequences states
that suppose

∇up ⇀ ∇u in L1(Ω),

13



then
||∇u||L1 ≤ lim inf

p→∞
||∇up||L1 .

Using this theorem and the fact that the weak convergence in L2 implies weak conver-
gence in L1, we have∫

Br(x)

|∇u|dy ≤ lim inf
p→∞

∫
Br(x)

|∇up|dy ≤ |Br(x)|,

or
1

|Br(x)|

∫
Br(x)

|∇u|dy ≤ 1.

The Lebesgue differentiation theorem states that for almost every point, the value
of an integrable function is the limit of infinitesimal averages taken about the point
(Lebesgue points are almost everywhere). Taking the limit as r → 0, for almost every-
where

|∇u(x)| = lim
r→0

1

|Br(x)|

∫
Br(x)

|∇u|dy ≤ 1.

The desired inequality follows since u ∈ dom(E∞),

lim inf
p→0

Ep(up) ≥ 0 = E∞(u).

5 Subdifferential

Definition. Let f : X → (−∞,+∞] be a convex function defined on a Banach space X, a
functional x∗ in the dual space X∗ is called subgradient at x0 ∈ dom(f) in X if

f(x)− f(x0) ≥ 〈x∗, x− x0〉 ∀x ∈ X.

The set of all subgradients at x0 is called the subdifferential at x0 and is denoted with
∂f(x0). If f(x0) = ∞, ∂f(x0) = ∅. The subdifferential can also be seen as an operator
∂f(·) : X → 2X∗ .

The reason for studying the subdifferential is because of the following theorem due to
Attouch [6],

Theorem 5.1 (Attouch). LetX be a reflexive Banach space and let f, fn : X → R∪{+∞} be
proper lower semicontinuous convex functions. Then the following assertions are equivalent:

(i) fn
M−→ f

(ii)

 ∂fn
G−→ ∂f

Normalization condition: there exist (a, a∗) ∈ ∂f and a sequence (an, a
∗
n) ∈ ∂fn

such that an → a strongly in X, a∗n → a∗ strongly in X∗, f(an)→ f(a).

The graph convergence of the subdifferentials is defined as

14



• for any convergent sequence {(an, a∗n) ∈ X × X∗ | a∗n ∈ ∂fn(an)} with (a, a∗) as its
limit, one has a ∈ ∂f(a);

• for any (a, a∗) with a∗ ∈ ∂f(a), there exists at least one such sequence {(an, a∗n) ∈
X ×X∗ | a∗n ∈ ∂fn(an)} converging to it.

For p <∞ and u ∈ H1
0 (Ω) ∩W 1,p

0 (Ω), the Gâteaux derivative δEp(u; ·) is not necessarily
continuous for p > 2. However, when restricting to the subspace, δEp(u; ·)

∣∣
H1

0 (Ω)∩W 1,p
0 (Ω)

=

〈−Apu, ·〉 is a continuous linear functional.

Theorem 5.2 (Hahn-Banach). Let X be a normed vector space, and let Y be a subspace
of X. Then any continuous linear functional u∗ ∈ Y ∗ on Y can be extended to a continuous
linear functional û∗ ∈ X∗ on X. If Y is a dense subspace of X, then there exists a unique
element û∗ ∈ X∗ such that the restriction of û∗ to Y is u∗. That is, u∗ has a unique continuous
extension to all of X.

By Hahn-Banach Theorem, there should be a unique continuous extension〈−Âpu, ·〉 ∈
H−1(Ω) such that

〈−Âpu, ·〉
∣∣∣
H1

0 (Ω)∩W 1,p
0 (Ω)

= 〈−Apu, ·〉 for each 1 < p <∞.

This is still a work in progress to give an explicit expression for the continuous extension
−Âp(u). It is easy to show that −Âpu ∈ ∂Ep(u),

Ep(v)− f(u) ≥ 〈−Âpu, v − u〉.

The right hand side is ∞ whenever v ∈ H1
0 (Ω)/W 1,p

0 (Ω); for v ∈ H1
0 (Ω) ∩ W 1,p

0 (Ω), by
convexity,

Ep(u+ tv)− Ep(u) = Ep(tu+ tv + (1− t)u)− Ep(u)

≤ tEp(u+ v) + (1− t)Ep(u)− Ep(u)

= t
(
Ep(u+ v)− Ep(u)

)
,

and we have

〈−Âpu, v〉 = 〈Apu, v〉 = δEp(u; v) = lim
t→0

Ep(u+ tv)− Ep(u)

t

≤ lim
t→0

t
(
Ep(u+ v) + Ep(u)

)
t

= Ep(u+ v)− Ep(u),

this is just the subdifferential inequality in a different form.
For the infinity case, it is more delicate. The subdifferential of E∞ is the normal cone

over the convex set ||∇u||∞ ≤ 1, defined as

∂E∞(u) = {v∗ | 〈v∗, v − u〉 ≤ 0 ∀|∇v| ≤ 1 a.e. }.

The connection with −A∞ is still being studied as part of the future work.
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6 Convex Conjugate

Definition. LetX be a reflexive Banach space, and letX∗ be its dual space, for the functional

f : X → (−∞,+∞],

the convex conjugate
f ∗ : X∗ → (−∞,+∞]

is defined by
f ∗(x∗) := sup

x∈X
{〈x∗, x〉 − f(x)}.

Recall that Ω is a bounded open set in RN , and

Ep : H1
0 (Ω)→ R ∪ {+∞}

Ep(u) =

{ ∫
Ω

1
p
|∇u|pdx if u ∈ H1

0 (Ω) ∩W 1,p
0 (Ω)

+∞ if u ∈ H1
0 (Ω)\W 1,p

0 (Ω)

Ep
∗(v∗) = sup

u∈H1
0 (Ω)

{〈v∗, u〉 − Ep(u)}.

When 1 < q ≤ 2 ≤ p <∞, and 1
p

+ 1
q

= 1, we have

Ep
∗(v∗) = sup

u∈H1
0 (Ω)

{〈v∗, u〉 − Ep(u)}

= sup
u∈H1

0 (Ω)

{(v, u)H1
0
− Ep(u)}

= Eq(v),

where {
−A2v = v∗

−Apu = v∗.

For the calculation, since H1
0 (Ω) is a Hilbert space with the inner product

(u, v)H1
0

=

∫
Ω

∇u · ∇v dx u, v ∈ H1
0 (Ω),

the convex conjugate

Ep
∗ : H−1(Ω)→ R ∪ {+∞}

Ep
∗(v∗) = sup

u∈H1
0 (Ω)

{〈v∗, u〉 − Ep(u)}

= sup
u∈W 1,p

0 (Ω)

{
〈v∗, u〉 −

∫
Ω

1

p
|∇u|pdx

}
.
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For each fixed v∗, we calculate the Gâteaux derivative of F (u) = 〈v∗, u〉 −
∫

Ω
1
p
|∇u|pdx.

Let φ ∈ W 1,p
0 (Ω),

δF (u;φ) = lim
t→0

F (u+ tφ)− F (u)

t

= lim
t→0

〈v∗, u+ tφ〉 − 〈v∗, u〉
t

− lim
t→0

∫
Ω

1
p
|∇(u+ tφ)|p − 1

p
|∇u|pdx

t

= 〈v∗, φ〉 −
∫

Ω

|∇u|p−2∇u · ∇φ dx

= 〈v∗, φ〉 − 〈−Apu, φ〉,

and setting δF (u;φ) = 0, we get
−Apu = v∗.

By Reisz’s Theorem, for each v∗, there exists a unique v ∈ H1
0 (Ω) such that 〈v∗, ·〉 =

(v, ·)H1
0
, that is

〈v∗, u〉 =

∫
Ω

∇v · ∇udx,

which can be seen as
〈v∗, u〉 = 〈−A2v, u〉

or
v∗ = −A2v.

Since v∗ = −A2u = −Apv, which means ∇u = |∇v|p−2∇v,

∫
Ω

∇v · ∇u− 1

p
|∇u|pdx =

∫
Ω

|∇u|p−2∇u · ∇u− 1

p
|∇u|pdx

=

∫
Ω

|∇u|p − 1

p
|∇u|pdx

=

∫
Ω

p− 1

p
|∇u|pdx

=

∫
Ω

p− 1

p

(
|∇v|

1
p−1

)p
dx

=

∫
Ω

p− 1

p
|∇v|

p
p−1dx

=

∫
Ω

1

q
|∇v|qdx

= Eq(v),

where 1
p

+ 1
q

= 1, and 1 < q ≤ 2 ≤ p <∞.
The convex conjugate of E∞ is more delicate and we will only present the basic form from

the definition,
E∞

∗(v∗) = sup
u∈H1

0
|∇u|≤1 a.e.

{〈v∗, u〉}.
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Due to a theorem by U. Mosco [3], we know

Ep
M−→ E∞ iff Ep

∗ M−→ E∞
∗.

As part of the future work, we will study the convergence of Eq
?−→ E1, and especially the

connection between E∞
∗ and E1.

7 Application

In this section, we will take a look at the model of growing sandpile studied by M. Bocea,
M. Mihailescu, M. Perez-Llanos and J.D. Rossi [1]. Let us look at the following quasilinear
parabolic problem {

∂vp(t)

∂t
−4pvp = f(t) a.e. t ∈ (0, T )

vp(x, 0) = u0(x) in RN ,

f is nonnegative, and can be interpreted physically as a source term that adds material to
an evolving system whithin which mass particles are continually rearranged by diffusion. Let
us consider the following functionals

Fp : L2(RN)→ [0,+∞]

Fp(u) =

{ ∫
Ω

1
p
|∇u|pdx if u ∈ L2(RN) ∩W 1,p(RN)

+∞ if u ∈ L2(RN)\W 1,p(RN).

The quasilinear parabolic problem above has the standard reformulation{
f(t)− ∂vp(t)

∂t
∈ ∂Fp(vp(t)) a.e. t ∈ (0, T )

vp(x, 0) = u0(x) in RN .

When u0 and f satisfy certain conditions, it is shown that there exists a sequence p → ∞
and a limit function v∞ such that, for each T > 0,{

vp → v∞ a.e. and in L2((0, T )× RN),

Dvp ⇀ Dv∞, vp,t ⇀ v∞,t weakly in L2((0, T )× RN),

where D is the weak derivative. Moreover, v∞ is a solution to the problem{
f(t)− ∂v∞(t)

∂t
∈ ∂F∞(v∞(t)) a.e. t ∈ (0, T )

v∞(x, 0) = v0(x) in RN ,

where

F∞ : L2(RN)→ [0,+∞]

F∞(u) =

{
0 if |∇u| ≤ 1 a.e.
+∞ otherwise.

The limit problem governs the movement of a sandpile, with v∞(x,t) describing the amount
of sand at the point x at time t, under the assumption that the sandpile is stable if the slope
is less than or equal to one and unstable otherwise.
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