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Abstract

Recent work described techniques that could be used by ransomware to evade be-

havioral ransomware detectors by using multiple benign-looking processes to coop-

eratively encrypt files. We designed and evaluated two classifiers that each detect

the presence of ransomware that uses those techniques with greater than 99 percent

recall and with 100 percent precision. One of the classifiers can also determine which

processes are part of the ransomware with greater than 95 percent recall but with

a significant trade-off between precision and speed, achieving 92.4 percent precision

after hundreds of files are encrypted. We prepared for a user study to collect a new

dataset, developing the necessary client and server software.
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Chapter 1

Introduction

The Naked Sun [1] [2] describes techniques that could be used by future ran-

somware to evade state-of-the-art behavioral ransomware detectors. The authors’

prototype ransomware, named Cerberus, successfully evades two state-of-the-art

academic detectors, ShieldFS [3] and RWGuard [4], and evaded a commercial

anti-ransomware product [5]. With ransomware attacks a booming industry, it is

conceivable that ransomware may soon use evasion techniques like those described

in The Naked Sun.

The contributions of this thesis are as follows: We replicated some of the results

of The Naked Sun and of ShieldFS. We analyzed the ShieldFS dataset and

identified a shortcoming in the malicious dataset. We prepared for a user study

to collect a new dataset, developing the necessary client and server software. We

developed two classifiers that can detect the presence of ransomware that uses the

evasion techniques described in The Naked Sun with high precision and recall.

The second classifier can also determine which processes are part of the ransomware

in the face of the functional splitting technique, but not of the process splitting

technique. Determining which processes are part of the ransomware requires many

1



files to be encrypted in order to have good precision, creating a trade-off between

detection speed and precision.

We provide background in §2. Our evaluation of the ShieldFS dataset is in

§2.5.1. The replication of the results of ShieldFS is described in §3.4 and the

results are in §4.1. The replication of the results of The Naked Sun is described

in §3.5 and the results are in §4.2. The first classifier, which we call the straw man

classifier, is described in §3.3 and evaluated in §4.3. The second classifier, which we

call the new classifier, is described in §3.6 and evaluated in §4.4. The preparation

for the user study is described in §3.7 and §4.5. We discuss the results in §5 and

conclude in §6.
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Chapter 2

Background

2.1 Behavioral Ransomware Detection

Ransomware is a kind of malware that takes computers or data hostage, denying

users access to their computers or data until a ransom is paid to the attacker.

Crypto-ransomware is a type of ransomware that denies access to data by encrypting

the data such that decryption is possible only by obtaining a decryption key from

the attacker after paying the ransom. Other kinds of ransomware exist, including

screen lockers, which prevent the user from logging into the infected device until

the ransom is paid [6] [7]. Crypto-ransomware has become the predominant form of

ransomware in recent years [8]. In this paper, we are concerned only with crypto-

ransomware and we hereafter refer to crypto-ransomware simply as ‘ransomware’.

Ransomware is a growing problem for businesses. In 2020, a survey [9] conducted

by Sophos found that 51 percent of surveyed organizations experienced a ransomware

attack in the preceding year. The U.S. Cybersecurity and Infrastructure Security

Agency said that ransomware is “costing billions of dollars” per year [10].

As the ransomware ‘industry’ matures, not only are more organizations being

3



attacked, but also infrastructure is being built with which to make the ransomware

attacks of tomorrow more advanced and scalable. Sophos [9] states the current trend

in ransomware attacks is toward “highly-targeted, sophisticated attacks that take

more effort to deploy.” In addition to more sophisticated attacks, 2020 also brought

a rise in ransomware-as-a-service (RaaS) services that lowered the barrier to entry

for new cybercriminals to get into the ransomware business [11]. Today, there are

even state actors developing ransomware and engaging in ransomware attacks [12].

The traditional approach to malware detection involves static analysis of ex-

ecutable files and pattern-matching against the memory space of processes [13].

These methods are becoming increasingly ineffective in the face of obfuscation, poly-

morphism, and metamorphism [14] [15], which allow malware to achieve the same

malignant outcomes while appearing different to the detector each time it is seen.

Recent work in the detection of ransomware, including ShieldFS [3] and RW-

Guard [4] which are discussed in §2.4.1, has focused on the use of behavioral

characteristics of ransomware processes, such as filesystem activity and use of en-

cryption routines, to detect the presence of ransomware on a machine. Behavioral

detection techniques are more difficult for ransomware to evade because the behav-

ior hunted by the detector is semantically related to the goals of the ransomware;

for example, for ransomware to encrypt files it must necessarily read those files, en-

crypt the contents, and write out the encrypted version of the files. For this reason,

behavioral ransomware detection is resistant to the obfuscation, polymorphism, and

metamorphism techniques that thwart traditional detection techniques and exhibits

good recall when faced with previously unseen ransomware.

A downside of behavioral ransomware detection is the increased potential for false

positives. The encryption of files is a behavior that is shared by ransomware and

many benign programs, such as full-disk encryption programs. In some cases, ran-
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somware has been found to install and use a legitimate full-disk encryption program

as its encryption mechanism [16], blurring the line between benign and malicious

behavior.

Behavioral ransomware detection may, but need not, use machine learning tech-

niques, including supervised learning and unsupervised learning, and may use dif-

ferent kinds of behavioral measurements, such as filesystem activity, system calls,

hardware performance counters, decoy files, and more. For reasons that will become

apparent in the next section, this report focuses on behavioral ransomware detection

through supervised learning on filesystem activity.

2.2 The Naked Sun

The Naked Sun [1] [2] describes techniques that could be used by future ran-

somware to evade state-of-the-art behavioral ransomware detectors. The authors’

prototype ransomware, named Cerberus, successfully evades two state-of-the-art

academic detectors [3] [4] and evaded a commercial anti-ransomware product [5].

The authors of The Naked Sun take advantage of an assumption that is implicit

to the design of state-of-the-art academic behavioral ransomware detectors—that

ransomware can be identified by the behavior of individual processes. Cerberus vi-

olates this assumption by using multiple benign-looking processes to cooperatively

encrypt the user’s files. The authors of The Naked Sun found that dividing the

ransomware workload among many processes in such a manner that each process

mimics the behavioral characteristics of a benign program allows ransomware to

successfully evade the detectors.

The Naked Sun describes three different evasion techniques: process splitting,

whereby different processes are assigned different groups of files to encrypt; func-
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tional splitting, whereby different functions, such as directory listing, reading, en-

crypting, writing, and renaming, are performed by different processes; and mimicry,

which combines both process and functional splitting such that the ransomware pro-

cesses emulate the behavioral characteristics of benign processes.

ShieldFS [3], one of the academic detectors that the Cerberus prototype evades,

relies heavily on supervised machine learning models trained on the filesystem activ-

ity of processes. RWGuard [4], the other academic detector evaded by the Cerberus

prototype, uses supervised machine learning on filesystem activity for one compo-

nent, but also has several other components that use different behavioral features

and classification techniques. The component that uses supervised machine learning

on filesystem activity is treated as a necessary, but not sufficient, indicator for classi-

fying processes as ransomware. The authors of The Naked Sun chose ShieldFS

and RWGuard to test Cerberus against because they “were published in highly

visible venues, and in both cases the authors kindly provided enough material (code

and/or datasets) and support to enable us to run their software” [1].

Insofar as they evade ShieldFS, the techniques used by the Cerberus prototype

are instances of adversarial example attacks against supervised machine learning

models. The models exhibit feature vulnerability ; the features do not adequately

capture the difference between benign programs and ransomware, leaving the door

open for ransomware that appears to be benign as measured by those features. Bene-

fitting from the knowledge that the filesystem activity of individual processes is being

fed into a classifier, and of the specific features being used, the Cerberus prototype

generates processes that imitate the behavior of benign processes with regard to the

features being used by the classifier while still cooperatively encrypting all of the

user’s files. Indeed, the design of the Cerberus prototype was heavily informed by

the design of ShieldFS and the processes generated by Cerberus mimic behavioral
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characteristics extracted from the benign training dataset used by ShieldFS.

However, the techniques described in The Naked Sun cannot be written-off as

merely whitebox adversarial example attacks against a known model with a known

training set. The RWGuard detector has many components besides the single

component that uses a model and features similar to ShieldFS. Malwarebytes

Anti-Ransomware [5], the commercial anti-ransomware product evaded by the

Cerberus prototype, was a black box to the authors of The Naked Sun; they had

no knowledge of how it works other than the information posted on Malwarebytes’

website.

Therefore, the core contribution of The Naked Sun is not a whitebox attack

on a supervised machine learning model. The Naked Sun identifies and exploits

an invalid assumption made in the selection of features for the state-of-the-art ran-

somware detectors. State-of-the-art detectors assume that the behavior of individual

processes can be classified as benign or malicious in a vacuum, without needing any

other information. Both ShieldFS and RWGuard contain components that look

at activity on the machine without distinguishing between processes, but those com-

ponents are used only as secondary indicators and are not empowered to sound the

alarm on their own. In order for ShieldFS or RWGuard to sound the alarm, the

detector must be able to recognize a specific process as ransomware. The Naked

Sun figuratively asks the question, ‘What happens if no individual process appears

to be ransomware?’ State-of-the-art ransomware detectors fail when that is the case.

2.3 Windows Filesystem I/O Logging

In Microsoft Windows, a request by a user-space process to perform filesystem I/O

results in the generation of an I/O Request Packet (IRP) or a Fast I/O Request
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(FIO request). A filter driver is a software component that is run in kernel mode

and that intercepts IRPs and/or FIO requests as they are processed by the operating

system. The filter driver can then transform or analyze the requests. A minifilter

driver serves the same purpose as a filter driver, but it interfaces with the Filter

Manager, which itself is a filter driver. [17] [18] [19] [20]

The evaluations performed by ShieldFS and The Naked Sun involved log-

ging filesystem activity on Microsoft Windows systems and deriving features for a

supervised learning model from those logs. To capture filesystem activity and pro-

duce the logs, the ShieldFS authors developed a tool that they named IRPLogger.

The ShieldFS authors describe IRPLogger as “a low-level I/O filesystem sniffer” of

which the core is “a minifilter driver that intercepts the I/O requests generated for

each filesystem primitive invoked by userland code (e.g., CreateFile, WriteFile,

ReadFile). IRPLogger enriches the raw IRPs with data including timestamp, writes

entropy, and PID” [3]. The authors of The Naked Sun reimplemented [21] the

IRPLogger tool to use for evaluating their Cerberus prototype.

2.4 Ransomware Detection Techniques

2.4.1 Behavioral Ransomware Detectors

ShieldFS

ShieldFS [3] is one of the academic ransomware detectors that The Naked Sun

evades. ShieldFS uses 242 random forest classifiers, each with 100 trees. The

features for the classifiers are derived from the IRP traces in the ShieldFS dataset,

which is discussed in §2.5. The features are number of folders listed, number of files

read, number of files written, number of files renamed, number of files of a given
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Figure 2.1: The tiers and ticks into which the random forest classifiers used by
ShieldFS are arranged. Each bar represents a tier and each differently-colored
portion of a bar represents a tick.

file extension accessed, and write entropy. The features are calculated with respect

to each process—referred to as process-centric features—and among all processes—

referred to as system-centric features. 121 of the random forest classifiers use the

process-centric features and the other 121 random forests use the system-centric

features. Within each group of 121 random forests, each random forest uses features

calculated over a different window. Windows are defined not with respect to time but

with respect to the number of files that have been touched by the relevant process

or by all processes. The windows are organized into tiers and ticks as shown in

Figure 2.1.

ShieldFS’ primary mechanism for identifying ransomware is the process-centric

random forests. According to the ShieldFS authors, “the system-centric model is

used only in combination to the process-centric model.” “Proccesses can enter a

‘suspicious’ state when the process-centric classifier is not able to cast a decision. In

this case, ShieldFS queries the system-centric model.” “The rationale is that the
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system-centric model has a good recall for multi-process malware, but has potentially

more false positives.” [3] The Cerberus prototype developed by the The Naked

Sun authors is always classified as benign by the process-centric model, and therefore

the system-centric model is not consulted.

ShieldFS also scans for the presence of cryptographic primitives in a process’s

memory as an additional factor used in its determination.

RWGuard

RWGuard [4] is the other academic ransomware detector evaded by The Naked

Sun. Like ShieldFS, RWGuard uses a random forest classifier with features de-

rived from filesystem activity; however, RWGuard also uses several other detection

methods.

The DMon module “deploys decoy files” that “should not be modified in normal

situations” [4]. A process that tries to write to a decoy file is labeled as malicious.

The PMon module uses a random forest classifier with features derived from

filesystem activity. IRPs and FIO requests are logged using a method virtually

identical to that used by ShieldFS and The Naked Sun; the logging is performed

on Microsoft Windows by a filesystem minifilter driver that the RWGuard authors

call IRPLogger. The features used are the numbers of write, read, open, create,

and close requests and the number of temporary files created. The features are

per-process.

The FCMon module looks for changes in the type, size, entropy, and similarity

of files during write operations. Like the DMon and PMon modules, this module

performs classification with respect to processes.

The FCls module classifies the activity on a file as benign or malicious without

respect to processes. This module is only engaged “after the PMon and FCMon
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modules’ detection that a process is making significant changes in the file(s)” [4].

The CFHk module analyzes a process’ use of CryptoAPI library functions.

UNVEIL

UNVEIL [22] is a dynamic analysis system for detecting ransomware. In order

to label a program as ransomware or benign, it executes the program in a sand-

box environment and monitors filesystem activity and any changes to the machine’s

graphical user interface. The method used by UNVEIL to monitor filesystem ac-

tivity is the same as that used by ShieldFS, RWGuard, and The Naked Sun;

IRPs are logged by a filesystem minifilter driver. Like ShieldFS, UNVEIL aug-

ments the traces with the Shannon entropy of the data being read or written. The

UNVEIL paper does not specify the exact features derived from the traces nor the

architecture of the classifier into which the features are fed; however, it does specify

that UNVEIL compares the entropy of read and write requests to and from the

same file offset, and that UNVEIL examines “the I/O access sequence for each file

in a given run”. UNVEIL achieves a recall of 0.963 and a precision of 1.

Redemption

Redemption [23], the successor to UNVEIL, analyzes the filesystem behavior of

processes in real time and can undo the filesystem changes made by detected ran-

somware, like ShieldFS and RWGuard. Redemption assigns a “malice score”

to each process and uses a fixed threshold of the malice score for classifying pro-

cesses as malicious or benign. The malice score is the weighted average of six

different scores derived from different behavioral features. The first three features

are categorized by the Redemption authors as content-based features, whereas the

remaining three features are behavior-based features. The content-based features are
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the entropy difference between a read and a write to the same part of a file, the

portion of a file written with respect to its total size, and deletion of a file. The

behavior-based features are the number of files written in a directory, the number of

different types of files written, and the frequency of write requests. Redemption

achieved a sensitivity of 1 and a specificity of 0.995. The Redemption authors

found that the specificity was reduced to only 0.941 when using only the content-

based features without the behavior-based features. The I/O performance overhead

of Redemption is 2.6% “for realistic workloads” and up to 9% for some workloads.

Redemption “typically” reports file encryption and secure deletion applications as

malicious.

CryptoDrop

CryptoDrop [24] is another behavioral ransomware detector that can suspend ran-

somware processes, although it does not undo the changes made by the ransomware.

Like ShieldFS, RWGuard, UNVEIL, Redemption, and The Naked Sun, a

Windows driver is used to intercept and analyze filesystem I/O requests. The be-

havioral features used by CryptoDrop are file type changes, dissimilarity between

old and new file content, higher average entropy of write operations than of read

operations for a process, and file deletions. CryptoDrop maintains a reputation

score for each process and classifies a process as ransomware when the score ex-

ceeds a threshold. In the CryptoDrop authors’ testing, CryptoDrop produced

no false negatives out of 492 ransomware samples and one false positive out of 30

benign programs.
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2.4.2 Potential Approaches for Detecting Multiprocess Ran-

somware

Decoy Files

Some academic ransomware detectors [25] [26] [27] [28] use decoy files, which are

files created for the sole purpose of detecting ransomware. No legitimate purpose

exists for a process to access a decoy file, so any process that accesses a decoy file is

assumed to be malicious. Despite the limitations [29] of decoy files, the use of decoy

files is a promising method for detecting ransomware that uses multiprocess evasion

techniques.

TheThe Naked Sun authors state that decoy files are outside the scope of their

work, and that “decoys are a promising strategy, but they raise usability concerns”

[1]. One component of RWGuard uses decoy files, but that component was not

present in the code shared with the The Naked Sun authors and was not included

in their testing.

Graph-Based Intrusion Detection

Graph-based intrusion detection, with its ability to identify relations between pro-

cesses and correlate their activity, is another promising technique for detecting ran-

somware that uses multiprocess evasion techniques. Graph-based intrusion detection

has been applied to the detection of APT (advanced persistent threat) activity in

works including StreamSpot [30], HOLMES [31], and Unicorn [32]. Graph-

based intrusion detection could be used to identify related processes that should be

grouped together when performing behavioral ransomware detection, allowing the

processes that are part of a multiprocess ransomware program to be identified as

related and then analyzed by existing detectors as if they were one process. This
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would allow existing ransomware detectors to be used for detecting multiprocess

ransomware with little modification.

2.5 The ShieldFS Dataset

The authors of The Naked Sun obtained the dataset that was used for training and

testing the ShieldFS ransomware detector. The ShieldFS dataset is comprised

of IRP traces—logs of all IRPs and FIO Requests—and is divided into ransomware

and benign portions. The ransomware portion consists of 383 IRP traces, taking

up 19 GiB, that were each captured from a virtual machine while ransomware was

executing, covering a total of 383 different ransomware samples obtained from Virus-

Total. The benign portion consists of 45,102 IRP traces, taking up 24 GiB, that

were captured from 11 real user workstations over a period of several weeks. The

ShieldFS dataset also contains information about the sizes of files on the machines

from which the data were collected. The ransomware traces contain some simulated

benign activity in addition to the ransomware activity in an attempt to make them

more realistic. For a description of how the traces were collected, see §2.3.

IRPLogger records, among other things, the name of the process originating each

I/O request and the path of the file that is the subject of the operation. These two

pieces of information are masked in the ShieldFS dataset for user privacy. The

masking is performed by replacing each filesystem path component with a salted

hash thereof. The only parts of a path that are exempt from masking are the drive

letter, the file extension (the portion of the file name that comes after the final

‘.’ if any is present) and certain whitelisted directories such as C:\Windows\ and

C:\Program Files\.

The information about file sizes is masked in a similar manner to the IRP traces.

14



The masking performed on the IRP traces and on the file sizes information prevents

discerning the size of a particular file in a trace. The file sizes information is useful

only for statistical purposes, such as calculating the average and standard deviation

of file sizes for a particular file extension on a particular machine.

2.5.1 Evaluation of the Simulated Benign Activity in the

ShieldFS Ransomware Traces

Regarding the simulated benign activity contained in the ransomware IRP traces,

the ShieldFS authors state, “We installed common utilities such as Adobe Reader,

Microsoft Office, alternative Web browsers, and media players. . . . At runtime, our

analysis environment emulates basic user activity (e.g., moving the mouse, launching

applications).” We evaluated the simulated benign activity in the ransomware traces

by comparing it to the activity in the benign traces.

We measured the average operations per second of each benign program over

each trace. For the benign traces, we included all programs located outside of the

C:\Windows\ directory. For the ransomware traces, we listed every program that

appears anywhere in any of the 383 traces and we counted the number of traces

that each program appeared in. We excluded programs that appeared in only one

trace. We excluded programs located under the C:\Windows\ directory. We then

considered the remaining programs one by one and kept only the ones that appear

to be benign based on the path of the executable.

Figure 2.2 and Figure 2.3 display the average operations per second of each

benign program over each trace for the benign and for the ransomware traces. In

our opinion, the simulated benign activity in the ransomware traces leaves much

to be desired. Although both the benign and the ransomware charts show a high

peak at the far left, the drop after this initial peak is one order of magnitude in the
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benign chart whereas it is 2-3 orders of magnitude in the ransomware chart. This

means that the portion of the benign processes in the ransomware traces that exhibit

very low operations per second is much larger than the corresponding portion in the

benign traces. After the drop from the initial peak, both charts are fairly flat until

around 1000 operations per second, where both charts drop off.

The operations per second measurements are obtained by taking the total num-

ber of operations for a given program in a given trace and dividing by the duration

of the trace in seconds. Therefore, there are two possibilities—either the benign

processes in the ransomware traces perform less operations per second than the pro-

cesses in the benign traces or, more likely, the benign processes in the ransomware

traces were performing I/O for only a portion of the trace (such as if they were

launched and then left idle for the rest of the trace) whereas processes in the benign

traces were being actively used by a user for the entire trace.

These potential deficiencies are relevant only for particular uses of the ShieldFS

dataset. With regard to ShieldFS, the potential problems with the dataset are

relevant only with respect to the training and testing of the system-centric model

and not the process-centric model. The authors of The Naked Sun used only

the process-centric model when they tested their ShieldFS reimplementation. In

this work, we use the system-centric model of the ShieldFS reimplementation as

the straw man classifier discussed in §3.3. Given the potential issues with the

ShieldFS dataset, it is possible that the straw man classifier is over-fitting, as we

state in §4.3. Should that be the case, it provides more justification for the new

classifier we develop and for the user study we work towards. We believe that the

potential issues with the ShieldFS dataset are not relevant to our new classifier.
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Figure 2.2: Log-log histogram of operations per second of non-system programs in
the ShieldFS benign dataset.

Figure 2.3: Log-log histogram of operations per second of select benign programs in
the ShieldFS ransomware dataset.
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Chapter 3

Methods

3.1 Definition of the Problem

The goal of this M.S. thesis was to detect the (as-yet hypothetical) category of

ransomware that uses the multiprocess evasion strategies described in The Naked

Sun to make per-process activity look benign, and that uses an undetectable means

for communicating between the cooperating processes. The research question was

To what extent is it possible to detect multiprocess ransomware when each individual

ransomware process appears benign and the inter-process communication is unde-

tectable?

There are a variety of different strategies for covert inter-process communication

described in the literature and the methods of detecting them are equally diverse. If

we assumed a specific method of inter-process communication, then our work could

be defeated by swapping out the inter-process communication technique, and our

work would be more about detecting that inter-process communication technique

than it would be about detecting ransomware. Having chosen not to assume a

specific method of inter-process communication, our remaining alternatives were to
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detect all possible means of inter-process communication or to assume that the inter-

process communication is undetectable. The former is not straightforward, although

graph-based intrusion detection techniques like those used by StreamSpot [30],

HOLMES [31], and Unicorn [32] show promise. To keep the task of a reasonable

scale for an M.S. thesis, we chose the latter option, assuming undetectable inter-

process communication.

More specifically, the goals of this thesis, in order of priority, were:

1. Correctly detect the presence of multiprocess ransomware on the machine.

2. Detect the presence of multiprocess ransomware on the machine quickly enough

that the encryption process can be interrupted and the user’s data can be

saved.

3. Determine which processes are part of the ransomware.

4. Determine which processes are part of the ransomware quickly enough that

the encryption process can be interrupted and the user’s data saved without

causing a denial of service condition for the machine. That is to say, crashing

the machine would not be an acceptable way to stop the ransomware under

this goal, unlike Goal 2.

It is not necessary to achieve all four of these goals for success. Achieving only the

first two would be sufficient.

3.1.1 Threat Model

The threat model for this thesis makes the following assumptions:

• Ransomware may be installed on the machine. If present, the ransomware will

try to encrypt the user’s files.
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• The ransomware operates with only user privileges and cannot gain adminis-

trative privileges.

• The ransomware splits its actions between multiple processes in a way such

that each process’s activity viewed alone does not look like ransomware.

• The processes have access to an undetectable means of inter-process commu-

nication.

3.2 Code Obtained from Other Researchers

The authors of The Naked Sun state, “As we could not obtain the original

code or a prototype for ShieldFS due to patenting issues, we re-implemented the

ShieldFS classifier exactly as described, interacting with the ShieldFS’s authors

to clarify any potential misunderstanding” [1]. We obtained the ShieldFS reim-

plementation from the The Naked Sun authors and adapted parts of it for this

work, as described in §3.3.

The authors of The Naked Sun also reimplemented [21] the IRPLogger tool

described in ShieldFS. We used the IRPLogger reimplementation as the starting

point for developing the user study client software, which we describe in §3.7.

We obtained an IRP trace of the Cerberus prototype from the authors of The

Naked Sun.

We obtained the trained EnCoD [33] model in HDF5 format from the EnCoD

authors, and we integrated the model into the user study client software.
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3.3 Straw Man Classifier

As a first, low-hanging-fruit approach to solving the problem, we decided to try

running the system-centric half of ShieldFS alone, independent of the process-

centric half. We refer to this as the straw man classifier in this paper. Because

the ShieldFS authors had been unwilling to share their code with the authors of

The Naked Sun for patent-related reasons, the authors of The Naked Sun had

reimplemented ShieldFS. We obtained this reimplementation of ShieldFS and

used it as the starting point to build this solution. After our modifications, the

ShieldFS reimplementation is 1915 lines of Python code.

The results of testing the straw man classifier against the ShieldFS dataset and

against the Cerberus prototype are in §4.3.

3.3.1 Development Process

The code we received from the authors of The Naked Sun consisted of several

Python scripts. Each script was designed to be run iteratively or in parallel, passing

different parameters each time to tell the script which small part of the ShieldFS

dataset to process that time. After modifying the scripts to work with our copy

of the ShieldFS dataset, we added progress bars to the scripts and made them

process the entire dataset (benign or ransomware) in one go. We then tried running

the scripts. Table 3.1 shows the amounts of time that it took for us to run the

scripts. These times were achieved by running the scripts on a virtual machine with

8 vCPUs and 4GB of memory. We aborted the system-centric scripts because they

were showing estimated time remaining of multiple weeks. It was clear that we

needed to rework the system-centric feature calculation procedures to have higher

performance, maybe by multithreading.
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Script Duration
benign process-centric 1 day, 18:05:14

ransomware process-centric 1 day, 8:20:32
benign system-centric Aborted after 4 days, 3:15:41

ransomware system-centric Aborted after 2 days, 4:15:36

Table 3.1: Run times for the ShieldFS reimplementation.

Figure 3.1: The confusion matrix for tier 1, tick 6 of the process-centric model of
ShieldFS.

After the process-centric scripts were done running, we tried running the process-

centric half of the ransomware detector. The model training and testing procedure

output a series of confusion matrices as PNG images, one for each of the 121 random

forests. One of the confusion matrices is displayed in Figure 3.1. The ransomware

detector built, trained, and tested all 121 of the individual random forest classifiers

that make up the process-centric half of the ShieldFS detector, but it did not

perform the final step of the ShieldFS detector, which is using the outputs of

those models to render a single overall verdict of whether a process is ransomware

or benign. In fact, we realized that the feature calculation scripts (the ones that took

a long time to run) had not preserved information necessary to correlate between

the 121 different classifiers using the method described in ShieldFS.

We asked the authors of The Naked Sun about the apparent incompleteness
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of the ShieldFS reimplementation. They explained that they had taken the arith-

metic average of the accuracy of the 121 process-centric random forests to arrive at

their accuracy metric.

We modified the feature calculation procedures to add the machine ID and pro-

cess ID to each feature vector so that the results of the 121 classifiers could be

correlated. We then modified the ransomware detector to remove the machine IDs

and PIDs from the feature vectors when training the models and to use them to

correlate the results of the classifiers within each tier. Per the ShieldFS paper, if K

consecutive ticks within a tier label a process as ransomware, then ShieldFS labels

the process as ransomware. Otherwise, ShieldFS labels the process as benign. The

ransomware detector now outputs a confusion matrix for each tier and a single over-

all ShieldFS confusion matrix in addition to the confusion matrices for each (tier,

tick) tuple that it already made.

We performed a large amount of refactoring on the codebase for usability reasons.

We tried to improve the performance of the feature calculation through multi-

threading. After modifying the benign process-centric feature calculation procedure

to use multiple threads, we tested it and was surprised to find that despite using

7 threads to calculate the features, the process overall was only using 120% CPU

as reported by top. Before, when the feature calculation was done with a single

thread, the reported CPU usage was 100%, so we had expected using 7 threads

to result in 700% CPU usage unless there was a disk bottleneck. We checked the

disk activity and the disk was clearly not causing a bottleneck. We did some per-

formance profiling of the code with cProfile and the results did not help explain

what was happening. We then discovered while searching online that multithread-

ing in Python does not work how we expected it to: in Python, multiple threads

cannot execute at the same time. Python itself is not thread-safe. Multiprocess-
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ing is the only way for a Python program to truly execute on multiple CPU cores

simultaneously.

We modified the feature calculation procedures to use multiprocessing instead

of multithreading. We decided to use the initial process as a supervisor process

that spawns worker processes to do the feature calculation. Each worker process

performs the feature calculation for a trace and then tells the supervisor process

that it is ready for another trace. The supervisor then gives the worker another

trace to work on. If the supervisor has no traces left to hand out, it tells the worker

to die. Once all workers exit, the overall procedure is complete.

The multiprocessing approach was successful, with each worker process using

100% CPU as reported by top. We configured the program to use one less worker

process than there are CPU cores on the machine. The supervisor process is asleep

most of the time and consistently uses less than 1% CPU as reported by top. This

leaves most of one CPU core’s capacity available so that the system does not lag or

hang.

After completing the conversion to multiprocessing, we ran the feature calcula-

tion again. This time we ran it on a physical machine with 64 CPU cores and 503GB

of memory. Therefore, 63 worker processes were used. Table 3.2 shows the amounts

of time that it took for us to run the feature calculation. We do not know why

the ransomware system-centric feature calculation takes so much longer than the

ransomware process-centric feature calculation. We deemed the feature calculation

fast enough for our needs.
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Script Duration
benign process-centric 02:10:36

ransomware process-centric 00:19:52
benign system-centric 02:12:58

ransomware system-centric 16:44:38

Table 3.2: Run times for the ShieldFS reimplementation.

3.4 Replication of Results of ShieldFS

Before testing the straw man classifier against the techniques described in The

Naked Sun, we performed some tests to confirm that the ShieldFS reimplemen-

tation remained faithful to ShieldFS after our modifications. The results of the

tests are in §4.1.

For most of our tests, the benign and ransomware feature vectors were combined

into one pool that was randomly split into 70% training / 30% test. For the tests

where “1-machine-off cross-validation” is indicated, the following procedure was

used: For the benign dataset, one machine’s feature vectors were used as the test

set and the rest were the training set. For the ransomware dataset, the feature

vectors of 42 randomly-chosen traces were the test set and the rest were the training

set. This was repeated 11 times so that each of the 11 benign machines was used

for the test set once.

We tested the process-centric and the system-centric halves of ShieldFS sep-

arately because ShieldFS [3] does not provide enough detail about how the two

halves are integrated in order for us to reimplement the integration.

3.5 Replication of Results of The Naked Sun

Before testing the straw man classifier (the system-centric half of the ShieldFS

reimplementation) against the techniques described in The Naked Sun, we per-
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formed some tests to see if we could reproduce the results of The Naked Sun with

regard to the process-centric half of the ShieldFS reimplementation.

The authors of The Naked Sun were able to evade the process-centric classifier

in multiple ways, which they categorize into process splitting, functional splitting,

and mimicry. Within the functional splitting category, the methods were: splitting

the activity of the ransomware into four groups—directory list (DL), read (RD),

write (WT), and rename (RN)—and further dividing each group into 5 separate

processes; splitting the ransomware activity into only two groups of (DL,RD) and

(WT,RN) and further dividing each group into 10 processes; and splitting the ran-

somware activity into two groups of (DL,RN) and (RD,WT) and further dividing

each group into 10 processes. Each of these three methods resulted in complete eva-

sion of the process-centric model (recall of 0). The mimicry category was comprised

of the Cerberus prototype. [1]

We tested the process-centric classifier in six test cases: first, we trained and

tested the process-centric classifier with the unmodified ShieldFS dataset as a con-

trol; second, we trained the process-centric classifier with the unmodified ShieldFS

dataset and then tested it with (DL,RD), (WT,RN) splitting; third, we trained the

process-centric classifier with the unmodified ShieldFS dataset and then tested

it with (DL,RN), (RD,WT) splitting, fourth, we trained and tested the process-

centric classifier with (DL,RD), (WT,RN) splitting; fifth, we trained and tested the

process-centric classifier with (DL,RN), (RD,WT) splitting; and sixth, we trained

the process-centric classifier with the unmodified ShieldFS dataset and then tested

it against Cerberus (mimicry). We varied the number of processes per group. For

the tests where the same dataset was to be used for training and testing, we used a

70%/30% train/test split. K = 3 was used in all cases.

The results of the tests are in §4.2.
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3.6 New Classifier

The straw man classifier detects whether ransomware is present on a machine but it

does not provide any insight as to which processes comprise the ransomware. After

testing the straw man classifier, we designed a new classifier with the goal of not

only detecting the presence of ransomware that uses the techniques described in

The Naked Sun, but also identifying which processes comprise the ransomware.

In order to avoid having the same weakness as the ransomware detectors that

The Naked Sun evades, we must not calculate features on a per-process basis.

Instead, we calculate features on a per-file basis. We classify files as attacked or not

attacked and then correlate the results of the per-file classifier to label processes as

malicious or benign.

Computing features for files instead of processes tightens the semantic relation-

ship between the features used by the detector and the objectives of the ransomware.

As explained in §2.1, the advatange of behavioral ransomware detection over more

traditional methods of ransomware detection is the semantic relationship between

the goals of the ransomware and the behavior hunted by the detector. For ran-

somware to encrypt files it must necessarily read those files, encrypt the contents,

and write out the encrypted version of the files. By focusing our detector on what

is happening to files, we make it more difficult for ransomware to avoid detection.

In particular, the functional splitting, process splitting, and mimicry techniques

described in The Naked Sun will not fool the file classifier.

The file classifier is a random forest of 100 trees that uses features calculated

over a 10-second window from an IRP trace.
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3.6.1 File-Based Features

The features used by the file classifier are byte-wise percent of file read during the

window, byte-wise percent of file written during the window, byte-wise percent of

file read and then written in that order, file entropy at the end of the window, and

file entropy delta over the window. The features were chosen to have a high semantic

relation to the goal of ransomware to encrypt files. To achieve its goal, ransomware

must read the entire file and then write out the encrypted version of the file. It

must also either delete or overwrite the unencrypted version of the file.

Byte-wise Percent of File Read During the Window

This value is the number of byte positions read divided by the length of the file.

Byte-wise Percent of File Written During the Window

This value is the number of byte positions written divided by the length of the file.

If the file is deleted during the window, that pegs this value to 100%.

Redemption [23] uses the portion of a file written with respect to its total size

as one of the features for their detector, and they find that their detector has an

I/O performance overhead of 2.6% for realistic workloads.

Byte-wise Percent of File Read and Then Written, in That Order

This value is the number of byte positions that were read and then written, in that

order, divided by the length of the file. If the file is deleted during the window, that

counts as a write of all byte positions.
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File Entropy at the End of the Window

This value is calculated by starting at the end of the window and working backwards,

greedily collecting write operations until for every byte position in the file, you have

the latest write operation in the window that operated on that byte position, then

calculating a byte-wise weighted average entropy for the file.

File Entropy Delta Over the Window

This value is calculated as follows: First calculate the file entropy at the beginning

of the window by starting at the beginning of the window and greedily collecting

read operations until for every byte position in the file, you have the earliest read

operation in the window that operated on that byte position, then calculating a byte-

wise weighted average entropy for the file. Then calculate the delta by subtracting

the beginning entropy from the end entropy.

Redemption [23] compares the entropy of reads and writes to the same byte

positions in a file as one of the features for their detector, and they find that their

detector has an I/O performance overhead of 2.6% for realistic workloads.

3.6.2 Dataset Limitations

The original intention had been to use the dataset gathered by the user study

described in §3.7; however, for reasons explained in §3.7 the user study was not yet

conducted. Therefore, we used the ShieldFS dataset for testing the new classifier.

The ShieldFS dataset does not contain the lengths of files, so we assumed that

the highest byte position of the file observed being accessed during the window is

the last byte of the file. The expected effect of this assumption is to decrease the

accuracy of the classifier, so our accuracy measurements are still valid as a lower
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bound.

3.6.3 Correlation of File Classifier Output to Classify Pro-

cesses

We assign a malice score to each process, like Redemption [23]. Each time a file

is classified as attacked by the file classifier, we increment the malice score of each

process that read the file during the window and then increment the malice score of

each process that wrote (or deleted) the file during the window. If a process both

read and wrote the file during the window, then its score increases by two. We

classify a process as ransomware when its malice score exceeds a threshold.

3.6.4 Implementation

The classifier is implemented in 1097 lines of Python code. The file classifier is imple-

mented using the random forest classifier from the scikit-learn Python package.

The feature generation is a parallel operation that will use as many processes as

there are CPU cores on the machine. During feature generation, each IRP trace is

loaded entirely into a SQLite in-memory database, which is then queried to extract

the features for that trace. This architecture was used for ease of development.

Redemption [23] uses features that are similar to the features that we use, so

we take Redemption’s performance measurements as evidence that our features

can be calculated with similar performance and we do not attempt to achieve such

performance in our implementation.
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3.7 User Study

The ShieldFS dataset does not contain the sizes of files as noted in §3.6.2. The

features we use in our new classifier depend on the sizes of files, so we planned to

conduct a new user study to collect a better dataset. Given the potential issues

with the ShieldFS dataset identified in §2.5.1, it is possible that the straw man

classifier is over-fitting, as we state in §4.3, providing more reason to collect a new

dataset.

We developed the necessary software for the user study, including a client appli-

cation to be installed on subject machines and a web server application that receives

collected data from the clients and makes the data available through a REST API.

We were not, unfortunately, able to conduct the user study because during the

final correctness testing of the software following the completion of software devel-

opment, we discovered a problem that halted progress on the user study for over two

months. The entropy measurements and EnCoD results appeared to be incorrect.

After performing controlled tests with low, medium, and high entropy test files as

well as a variety of real files of different types, we determined that the entropy mea-

surements and EnCoD results were always off by one line in the trace. The entropy

value and EnCoD results for a given operation were actually for the immediately

previous operation. We determined that timing did not affect the issue. We deter-

mined that, at runtime, the buffer from which the entropy and EnCoD results were

calculated contained the data of the immediately previous operation instead of the

data of the current operation.

We replicated the problem using the the IRPLogger tool [21] written by the

authors of The Naked Sun, which we had used as a starting point for building

the client application. Therefore, the problem was not a result of our code, but was
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inherited from the IRPLogger. We informed the authors of The Naked Sun that

we believed there was a defect in their code and they investigated the issue. They

were unable to isolate the defect and they believe the defect is not in their code.

We still do not know the cause of the problem, but based on both our and The

Naked Sun authors’ investigations, we believe that the effect of the defect can

be corrected after the fact. We therefore implemented a workaround in the server

application that applies a correction operation to every IRP trace received from

the clients. Unfortunately, by the time the authors of The Naked Sun finished

investigating the defect, there was not sufficient time left for this author to proceed

with conducting the user study.

3.7.1 Client Software

Requirements

• The software should have an installer that installs the client software without

user interaction.

• The software should start running automatically after installation.

• The software should have an uninstaller that uninstalls the client software

without user interaction.

• The software should run automatically at boot.

• The software should collect data periodically.

• The software should upload the collected data to the server.

• The software should collect data both when the machine is actively in use and

when the machine is idle.
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• The software should notify all users of the machine about the user study.

Data to Collect

The user study client software periodically decides to perform a data collection.

When a data collection is performed, all filesystem activity on the machine is logged.

For each I/O request, the following data are recorded: the type of filesystem op-

eration; a timestamp; the process ID; the process name, the size of data buffer /

number of bytes involved in the filesystem operation; the entropy of the data; the

file path; and the output of the EnCoD [33] model, which indicates whether the

data being read/written appear to be encrypted, compressed, or neither. Before

collecting filesystem activity, the client software records the size of each file on the

machine. During a data collection, the software records how many users are logged

into the machine. The purpose of this is to determine whether the machine is in

active use or is idle.

Machine identifiers including network card MAC addresses are recorded. These

are used for correlating traces from the same machine in case the client software is

reinstalled. The computer name is also recorded, for more conveniently identifying

a machine if there is a problem with the client and the client needs to be reinstalled

on one particular machine.

Anonymization / Privacy Protection

The names of files within the C:\Users directory should not be available to the

researchers because those filenames may contain private information of users. Be-

cause the machines on which the client software will be installed are WPI-owned

machines, the names of files elsewhere on the system will not contain any private

information.
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For the names of the files that are the subject of I/O operations, for the names

of the processes that performed the I/O, and in the lists of file sizes, all paths

that begin with C:\Users\ are masked to protect users’ privacy using the following

procedure: Each path component (directory name or file name) after the C:\Users\

is SHA-256 hashed with a salt that is specific to the machine. For a given machine,

the same salt is always used after it is initially generated upon the first start of the

user study client. The salt is never sent to the server, but a SHA-256 hash of the

salt is sent to the server each time a trace is uploaded. The file extension (the part

of the filename that comes after the last ‘.’ if any is present) is appended (along

with a preceding ‘.’) to the hash of the filename, so the extension is not protected.

Architecture

The client software is comprised of 4649 lines of C and C++ code.

UserStudyDriver.sys is a filesystem minifilter driver that logs I/O Request

Packets and Fast I/O Requests to produce the IRP traces.

UserStudyApp.exe is the userland application that retrieves the IRP traces from

the driver, collects the other data, and uploads collected data to the server. It

normally runs as a Windows service named UserStudyApp but it can also be invoked

from the command line for debugging purposes. It also has a command-line flag that

causes it to just display a message box and then exit instead of its usual activity.

UserStudyInstallerHelper.exe is a program that assists with the installation

and uninstallation process. It is invoked by the installer.

User Study Notice

While the user study client software is installed, every user that logs into the ma-

chine is presented with a pop-up message box explaining the user study and stating
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that the user should use a different machine if the user does not want to partic-

ipate in the study. This is accomplished using the registry key HKLM\Software\

Microsoft\Windows\CurrentVersion\Run. A value is added to that registry key

causing UserStudyApp.exe to be called with the command-line argument /w when-

ever a user logs in. When UserStudyApp.exe is called with the /w argument, it uses

the MessageBox [34] Windows API function to display the user study message box

and then exits.

Main Loop

The main loop of the UserStudyApp service follows the following procedure, depicted

in Figure 3.2: The program sleeps for t seconds and then decides whether to collect

data using the decision procedure should collect data defined below. It then collects

data if it decided to do so. Then the program checks if there are any data collections

stored on disk that have not yet been uploaded to the server. If any exist, the

program attempts to upload all such data collections. Regardless of whether the

previous operations succeeded, the program now repeats this procedure, starting by

sleeping another t seconds. The value t is configured on the server and retrieved

from the server by the client.

If the program is instructed to terminate while sleeping or collecting data, the

program exits promptly. If the program is instructed to terminate while uploading

data, the program tries to finish uploading data before terminating.

Trace Collection

Each time a data collection is performed, the collection runs until one of the following

conditions occurs:

• 100MB (before compression) has been written to the IRP trace file
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Figure 3.2: Activity diagram of the main loop of the user study client program.

• the collection has been going for 15 minutes

• the collection is interrupted, for example by a system shutdown

At the beginning of data collection and every minute while collecting data, the

program retrieves the number of active sessions on the machine. These numbers are

recorded. If the median of these measurements for a given data collection is at least

1, then the data collection is considered an active data collection for the purposes

of this program. If the median is 0, then the data collection is considered an idle

data collection.

The program keeps count of how many idle data collections and how many active

data collections it has collected over a 24-hour sliding window.
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Trace Uploading

After collecting data, the program uploads any data collections that have not been

uploaded yet. After successfully uploading a data collection, the program deletes it

from the disk. Each trace is compressed before being uploaded.

should collect data Procedure

The should collect data decision procedure is as follows: Check the number of active

sessions on the machine. If the number of active sessions is greater than 0 and the

number of active data collections in the last 24 hours is less than 10, or if the number

of active sessions is 0 and the number of idle data collections in the last 24 hours is

less than 5, collect data with 0.25 probability. Otherwise, do not collect data.

This procedure limits the rate at which data collections are produced to ten active

data collections per machine per day and five idle data collections per machine per

day. The sleep time t and the 0.25 probability of collecting data both function to

spread out the data collections so they are not all collected during a short period of

time each day.

Installer

The installer for the client software is made using the Visual Studio Installer Projects

extension [35]. The Visual Studio extension produces both EXE and MSI installers.

Both can be run silently (without user interaction) using the /q flag.

The installer copies the client software’s files to the installation directory, which is

C:\Program Files\Worcester Polytechnic Institute\User Study\ by default.

It then invokes UserStudyInstallerHelper.exe. UserStudyInstallerHelper.exe

calls InstallHinfSectionW [36] to install the UserStudyDriver.sys driver and

create the UserStudyApp service. UserStudyInstallerHelper.exe then starts the
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UserStudyApp service. The installer also creates a value in the HKLM\Software\

Microsoft\Windows\CurrentVersion\Run registry key so that the user study warn-

ing message box will be displayed upon user login.

The uninstaller first invokes UserStudyInstallerHelper.exe, which calls

InstallHinfSectionW [36] to uninstall the UserStudyDriver.sys driver and delete

the UserStudyApp service. The uninstaller deletes the value in the HKLM\Software\

Microsoft\Windows\CurrentVersion\Run registry key that was created by the in-

staller. The uninstaller deletes the client software’s files.

3.7.2 Server Software

Requirements

• The server should receive and store the collected data from the client.

• The server should have a web interface that provides the researchers with

enough information to tell whether everything is working properly / if a client

is broken.

• The server should provide an API that the researchers can use to retrieve the

collected data from the server.

• The web interface and API should be accessible only to authenticated users.

Architecture

The server runs a web application written in Python using the Django framework.

The application is comprised of 1115 lines of Python and HTML code.
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Web Interface

The web interface displays information about the machines enrolled in the study

and the number of data collections that have been received. The web interface also

allows the user to create API keys. The web interface can be accessed using user

accounts with username/password.

API for Retrieving Collected Data

The web application provides a REST API that users can use to retrieve data that

have been uploaded by the client software. The REST API is accessible only to

users with the correct permissions.

Determining Which Machine is Submitting a Data Collection

When the client software submits collected data, it identifies itself with a UUID.

This UUID is generated by the client software at the first time it is started following

installation on a machine. The client software calls the /api/client/ping endpoint

on startup and before each time it attempts to submit a data collection. The

/api/client/ping call contains the UUID and other identifying information about

the machine. When the client calls /api/client/data-collection to submit a

data collection, the UUID it provides must have been previously used in a call to

/api/client/ping; otherwise, the server rejects the request.

When a client calls /api/client/ping using a UUID that the server has not

seen before, the server inspects the other identifying information. If any network

card MAC addresses are provided and at least one matches a machine that the server

has talked to before, then the new UUID is associated with that existing machine.

Otherwise, a new machine object is created and associated with the UUID. This

procedure ensures that uninstalling and reinstalling the client software does not
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cause the server to think that the same machine is multiple different machines.

The computer name is not used for the purpose of matching different UUIDs to

the same machine. It is for human use in case it is convenient to identify a machine

by computer name. Whenever the computer name changes, the name is updated in

the server’s database and no record of the previous name is kept.

Storage of Collected Data

IRP traces and file sizes lists are stored as files in the server’s filesystem and served

by whatever web server program the server is using. All other data are stored in the

database (whatever DBMS the web application is using) and retrieved by interacting

with the REST API provided by the web application. The file names of IRP traces

and file sizes lists contain random strings to make guessing the file names infeasible.

For a user to download an IRP trace, the user must obtain the file name from the

REST API.
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Chapter 4

Results

In §3.1, we state four specific goals for this thesis. In this chapter, we present our

results. The straw man classifier and the new classifier both accomplish Goal 1,

which is detecting the presence of multiprocess ransomware. The new classifier ac-

complishes, and the straw man classifier somewhat accomplishes, Goal 2, which is

detecting the ransomware quickly enough that the encryption process can be inter-

rupted and the user’s data can be saved. The new classifier partially accomplishes

Goal 3, which is determining which processes make up the ransomware. The new

classifier only slightly accomplishes Goal 4, which is identifying the ransomware pro-

cesses quickly enough that they can be stopped and the user’s data can be saved

without taking severe measures like halting the machine.

The research question was To what extent is it possible to detect multiprocess

ransomware when each individual ransomware process appears benign and the inter-

process communication is undetectable? We determine that the presence of such

ransomware on a machine can be detected with high recall, precision, and speed,

but our classifier has a significant precision/speed trade-off for determining which

processes make up the ransomware.
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4.1 Replication of Results of ShieldFS

Table 4.1 displays the accuracy of the ShieldFS reimplementation along with the

accuracy of the original ShieldFS implementation as stated in ShieldFS [3] and

the accuracy of the reimplementation as stated in The Naked Sun [1]. The results

in Table 4.1 lead us to believe that the ShieldFS reimplementation, after our

modifications, is faithful to ShieldFS. The sensitivity and specificity of the process-

centric half of the reimplementation are close to the values given in ShieldFS. §4.1.1

contains the confusion matrices that were used to produce the metrics in Table 4.1.
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4.1.1 Detailed Results

Process-Centric Confusion Matrices

Figure 4.1: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 6 and 70%/30% train/test split.

Figure 4.2: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 5 and 70%/30% train/test split.
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Figure 4.3: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 4 and 70%/30% train/test split.

Figure 4.4: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.
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Figure 4.5: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 2 and 70%/30% train/test split.

Figure 4.6: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 1 and 70%/30% train/test split.
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System-Centric Confusion Matrices

Figure 4.7: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 6 and 70%/30% train/test split.

Figure 4.8: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 5 and 70%/30% train/test split.

47



Figure 4.9: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 4 and 70%/30% train/test split.

Figure 4.10: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.
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Figure 4.11: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 2 and 70%/30% train/test split.

Figure 4.12: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 1 and 70%/30% train/test split.
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Splitting Proc. per group Recall
None (control) N/A 1
(DL,RD), (WT,RN) 1 0.469
(DL,RN), (RD,WT) 1 0.430
(DL,RD), (WT,RN) 2 0.307
(DL,RN), (RD,WT) 2 0.281
(DL,RD), (WT,RN) 5 0.283
(DL,RN), (RD,WT) 5 0.318
(DL,RD), (WT,RN) 10 0
(DL,RN), (RD,WT) 10 0

Table 4.2: Results for the process-centric model of the ShieldFS reimplementation
when trained with the unmodified ShieldFS dataset and tested with the functional
splitting evasion technique.

4.2 Replication of Results of The Naked Sun

Table 4.2 and Figure 4.13 show the results of training the process-centric half of the

ShieldFS reimplementation on the ShieldFS dataset and then testing it against

the functional splitting. Table 4.3, Figure 4.14, and Figure 4.15 show the results of

training and testing the process-centric half of the ShieldFS reimplementation on

the functional splitting. Figure 4.16 shows the results of testing the process-centric

half of the ShieldFS reimplementation against the Cerberus prototype. More de-

tailed results, including detection speed, feature importance, confusion matrices, and

accuracy for the individual random forests that comprise the ShieldFS detector,

are in §4.2.1.

The functional splitting techniques successfully decrease the recall of the process-

centric model. The effect is of the same degree as expected. Cerberus successfully

evades the process-centric model for all K ≥ 2 but is detected for K = 1.
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Figure 4.13: Recall for the process-centric model of the ShieldFS reimplementation
when trained with the unmodified ShieldFS dataset and tested with the functional
splitting evasion technique.

Splitting Proc. per group Recall Precision Specificity Accuracy
None (control) N/A 0.997 1 1 0.99998
(DL,RD), (WT,RN) 10 0.952 1 1 0.993
(DL,RN), (RD,WT) 10 0.953 1 1 0.993
(DL,RD), (WT,RN) 20 0.922 1 1 0.981
(DL,RN), (RD,WT) 20 0.916 1 1 0.979
(DL,RD), (WT,RN) 40 0.864 1 1 0.947
(DL,RN), (RD,WT) 40 0.844 1 1 0.938
(DL,RD), (WT,RN) 80 0.753 1 1 0.862
(DL,RN), (RD,WT) 80 0.718 1 1 0.840
(DL,RD), (WT,RN) 160 0.572 1 1 0.694
(DL,RN), (RD,WT) 160 0.525 1 1 0.659
(DL,RD), (WT,RN) 320 0.377 1 1 0.485
(DL,RN), (RD,WT) 320 0.353 1 1 0.467

Table 4.3: Results for the process-centric model of the ShieldFS reimplementation
when trained and tested with the functional splitting evasion technique.
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Figure 4.14: Recall for the process-centric model of the ShieldFS reimplementation
when trained and tested with the functional splitting evasion technique.

Figure 4.15: Exponential regression of recall for the process-centric model of the
ShieldFS reimplementation when trained and tested with the functional splitting
evasion technique.
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Figure 4.16: Labels output by the 121 random forests for process-centric half of
the ShieldFS reimplementation when tested against Cerberus. If K ≥ 2, then
Cerberus is not detected.
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4.2.1 Detailed Results

Training and Testing the Process-Centric Model with the ShieldFS Dataset

(Control)

Figure 4.17: Confusion matrix for the process-centric half of the ShieldFS reim-
plementation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.

Figure 4.18: Accuracy of the 121 random forests for the process-centric half of the
ShieldFS reimplementation using the ShieldFS dataset for K = 3 and 70%/30%
train/test split.
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Figure 4.19: Detection speed for the process-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.

Figure 4.20: Feature importances for the 121 random forests for the process-centric
half of the ShieldFS reimplementation using the ShieldFS dataset for K = 3 and
70%/30% train/test split.
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Testing the Process-Centric Model with (DL,RD), (WT,RN) Splitting

with 1 Process per Group

Figure 4.21: Confusion matrix for the process-centric half of the ShieldFS reim-
plementation when trained with the unmodified ShieldFS dataset and tested with
(DL,RD), (WT,RN) splitting for K = 3, 70%/30% train/test split, and 1 process
per group.

Figure 4.22: Accuracy of the 121 random forests for the process-centric half of the
ShieldFS reimplementation when trained with the unmodified ShieldFS dataset
and tested with (DL,RD), (WT,RN) splitting for K = 3, 70%/30% train/test split,
and 1 process per group.
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Figure 4.23: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained with the unmodified ShieldFS dataset and tested with
(DL,RD), (WT,RN) splitting for K = 3, 70%/30% train/test split, and 1 process
per group.
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Testing the Process-Centric Model with (DL,RN), (RD,WT) Splitting

with 1 Process per Group

Figure 4.24: Confusion matrix for the process-centric half of the ShieldFS reim-
plementation when trained with the unmodified ShieldFS dataset and tested with
(DL,RN), (RD,WT) splitting for K = 3, 70%/30% train/test split, and 1 process
per group.

Figure 4.25: Accuracy of the 121 random forests for the process-centric half of the
ShieldFS reimplementation when trained with the unmodified ShieldFS dataset
and tested with (DL,RN), (RD,WT) splitting for K = 3, 70%/30% train/test split,
and 1 process per group.
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Figure 4.26: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained with the unmodified ShieldFS dataset and tested with
(DL,RN), (RD,WT) splitting for K = 3, 70%/30% train/test split, and 1 process
per group.
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Testing the Process-Centric Model with (DL,RD), (WT,RN) Splitting

with 10 Processes per Group

Figure 4.27: Confusion matrix for the process-centric half of the ShieldFS reim-
plementation when trained with the unmodified ShieldFS dataset and tested with
(DL,RD), (WT,RN) splitting for K = 3, 70%/30% train/test split, and 10 processes
per group.

Figure 4.28: Accuracy of the 121 random forests for the process-centric half of the
ShieldFS reimplementation when trained with the unmodified ShieldFS dataset
and tested with (DL,RD), (WT,RN) splitting for K = 3, 70%/30% train/test split,
and 10 processes per group.
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Testing the Process-Centric Model with (DL,RN), (RD,WT) Splitting

with 10 Processes per Group

Figure 4.29: Confusion matrix for the process-centric half of the ShieldFS reim-
plementation when trained with the unmodified ShieldFS dataset and tested with
(DL,RN), (RD,WT) splitting for K = 3, 70%/30% train/test split, and 10 processes
per group.

Figure 4.30: Accuracy of the 121 random forests for the process-centric half of the
ShieldFS reimplementation when trained with the unmodified ShieldFS dataset
and tested with (DL,RN), (RD,WT) splitting for K = 3, 70%/30% train/test split,
and 10 processes per group.
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Training and Testing the Process-Centric Model with (DL,RD), (WT,RN)

Splitting with 10 Processes per Group

Figure 4.31: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RD), (WT,RN) splitting for K = 3,
70%/30% train/test split, and 10 processes per group.

Figure 4.32: Accuracy of the 121 random forests for the process-centric half of
the ShieldFS reimplementation when trained and tested with (DL,RD), (WT,RN)
splitting for K = 3, 70%/30% train/test split, and 10 processes per group.
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Figure 4.33: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RD), (WT,RN) splitting for K = 3,
70%/30% train/test split, and 10 processes per group.

Figure 4.34: Feature importances for the 121 random forests for the process-centric
half of the ShieldFS reimplementation when trained and tested with (DL,RD),
(WT,RN) splitting for K = 3, 70%/30% train/test split, and 10 processes per
group.
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Training and Testing the Process-Centric Model with (DL,RN), (RD,WT)

Splitting with 10 Processes per Group

Figure 4.35: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RN), (RD,WT) splitting for K = 3,
70%/30% train/test split, and 10 processes per group.

Figure 4.36: Accuracy of the 121 random forests for the process-centric half of
the ShieldFS reimplementation when trained and tested with (DL,RN), (RD,WT)
splitting for K = 3, 70%/30% train/test split, and 10 processes per group.
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Figure 4.37: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RN), (RD,WT) splitting for K = 3,
70%/30% train/test split, and 10 processes per group.

Figure 4.38: Feature importances for the 121 random forests for the process-centric
half of the ShieldFS reimplementation when trained and tested with (DL,RN),
(RD,WT) splitting for K = 3, 70%/30% train/test split, and 10 processes per
group.
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Training and Testing the Process-Centric Model with (DL,RD), (WT,RN)

Splitting with 80 Processes per Group

Figure 4.39: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RD), (WT,RN) splitting for K = 3,
70%/30% train/test split, and 80 processes per group.

Figure 4.40: Accuracy of the 121 random forests for the process-centric half of
the ShieldFS reimplementation when trained and tested with (DL,RD), (WT,RN)
splitting for K = 3, 70%/30% train/test split, and 80 processes per group.
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Figure 4.41: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RD), (WT,RN) splitting for K = 3,
70%/30% train/test split, and 80 processes per group.

Figure 4.42: Feature importances for the 121 random forests for the process-centric
half of the ShieldFS reimplementation when trained and tested with (DL,RD),
(WT,RN) splitting for K = 3, 70%/30% train/test split, and 80 processes per
group.
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Training and Testing the Process-Centric Model with (DL,RN), (RD,WT)

Splitting with 80 Processes per Group

Figure 4.43: Confusion matrix for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RN), (RD,WT) splitting for K = 3,
70%/30% train/test split, and 80 processes per group.

Figure 4.44: Accuracy of the 121 random forests for the process-centric half of
the ShieldFS reimplementation when trained and tested with (DL,RN), (RD,WT)
splitting for K = 3, 70%/30% train/test split, and 80 processes per group.
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Figure 4.45: Detection speed for the process-centric half of the ShieldFS reimple-
mentation when trained and tested with (DL,RN), (RD,WT) splitting for K = 3,
70%/30% train/test split, and 80 processes per group.

Figure 4.46: Feature importances for the 121 random forests for the process-centric
half of the ShieldFS reimplementation when trained and tested with (DL,RN),
(RD,WT) splitting for K = 3, 70%/30% train/test split, and 80 processes per
group.
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Recall 0.992
Precision 1
Specificity 1
Accuracy 0.999

Table 4.4: Results for the system-centric half of the ShieldFS reimplementation
for K = 3 and 70%/30% train/test split.

Figure 4.47: Confusion matrix for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.

4.3 Straw Man Classifier

4.3.1 Testing Against the ShieldFS Dataset

The results of training and testing the system-centric half of the ShieldFS reim-

plementation, referred to as the straw man classifier, on the ShieldFS dataset are

shown in Table 4.4, Figure 4.47, Figure 4.48, Figure 4.49, and Figure 4.50. The

recall is very good and the precision is 100 percent. The results should be taken

with a grain of salt because of the deficiencies in the ShieldFS ransomware dataset

identified in §2.5.1, which may cause the straw man classifier to over-fit. Even with

that possibility, we believe that the straw man classifier is likely to have very good

real precision and recall.
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Figure 4.48: Accuracy of the 121 random forests for the system-centric half of the
ShieldFS reimplementation using the ShieldFS dataset for K = 3 and 70%/30%
train/test split.

Figure 4.49: Detection speed for the system-centric half of the ShieldFS reimple-
mentation using the ShieldFS dataset for K = 3 and 70%/30% train/test split.

Figure 4.50: Feature importances for the 121 random forests for the system-centric
half of the ShieldFS reimplementation using the ShieldFS dataset for K = 3 and
70%/30% train/test split.
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Notably, the random forests for the final one or few ticks in each tier appear

to have learned to always label everything as ransomware. This can be seen in

Figure 4.50 because all of the feature importances drop to zero for those ticks. This

means that if a benign program were to touch all or nearly all of the files on the

machine, it would be labelled as ransomware. This also means that no such benign

program was present in the ShieldFS benign dataset, because the precision of the

straw man classifier was 1. This could be viewed as a deficiency in ShieldFS benign

dataset, but the ShieldFS benign dataset was collected from real machines under

real use.

The straw man classifier accomplishes Goal 1 of this thesis as described in §3.1.

It correctly detects the presence of ransomware on the machine with high recall

and precision. The straw man classifier somewhat accomplishes Goal 2, regarding

the speed of detection. It detects the ransomware slightly more slowly than the

process-centric model of the ShieldFS reimplementation; the comparison is be-

tween Figure 4.49 and Figure 4.19. Both are far slower than the detection speeds

described in ShieldFS [3], but are quick enough to save a significant portion of the

user’s files. The straw man classifier does not accomplish Goal 3 of detecting which

processes make up the ransomware, and does not accomplish Goal 4 regarding the

speed of identifying the ransomware processes.

4.3.2 Testing Against Cerberus

The results of testing the straw man classifier against the Cerberus prototype de-

veloped by the The Naked Sun authors are shown in Figure 4.51. Cerberus is

detected after encrypting 11.25% of files.

72



Figure 4.51: Labels output by the 121 random forests for system-centric half of the
ShieldFS reimplementation when tested against Cerberus.
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Recall 0.580
Precision 0.644
Specificity 0.995
Accuracy 0.989

Table 4.5: Accuracy of classifying files as attacked or not attacked using the
ShieldFS dataset with a window size of the entire trace and with 70%/30%
train/test split.

Figure 4.52: Confusion matrix for classifying files as attacked or not attacked using
the ShieldFS dataset with a window size of the entire trace and with 70%/30%
train/test split.

4.4 New Classifier

The new classifier was trained and tested with the ShieldFS dataset. Two window

sizes were used: the entire trace and 10 seconds. The results of testing the new

classifier using the ShieldFS dataset with a window size of the entire trace are

displayed in Table 4.5, Figure 4.52, Figure 4.53, Table 4.6, and Figure 4.54. The

results of testing the new classifier using the ShieldFS dataset with a window

size of 10 seconds are displayed in Table 4.7, Figure 4.55, Figure 4.56, Table 4.8,

Figure 4.57, Figure 4.58, and Figure 4.59.

If the new classifier, with the 10 second window, is used to merely detect the pres-

ence of ransomware rather than detect which processes are part of the ransomware,
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Figure 4.53: Feature importances for classifying files as attacked or not attacked us-
ing the ShieldFS dataset with a window size of the entire trace and with 70%/30%
train/test split.

Recall 0.924
Precision 1
Specificity 1
Accuracy 0.9993

Table 4.6: Accuracy of detecting the mere presence of ransomware on the ma-
chine using the ShieldFS dataset with a window size of the entire trace and with
70%/30% train/test split.

Figure 4.54: Accuracy of classifying processes as ransomware or benign using the
ShieldFS dataset with a window size of the entire trace and with 70%/30%
train/test split.
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Recall 0.961
Precision 0.953
Specificity 0.983
Accuracy 0.977

Table 4.7: Accuracy of classifying files as attacked or not attacked using the
ShieldFS dataset with a window size of 10 seconds and with 70%/30% train/test
split.

Figure 4.55: Confusion matrix for classifying files as attacked or not attacked us-
ing the ShieldFS dataset with a window size of 10 seconds and with 70%/30%
train/test split.

Figure 4.56: Feature importances for classifying files as attacked or not attacked the
new classifier using the ShieldFS dataset with a window size of 10 seconds and
with 70%/30% train/test split.
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Recall 1
Precision 1
Specificity 1
Accuracy 1

Table 4.8: Accuracy of detecting the mere presence of ransomware on the machine
using the ShieldFS dataset with a window size of 10 seconds and with 70%/30%
train/test split.

Figure 4.57: Accuracy of classifying processes as ransomware or benign using the
ShieldFS dataset with a window size of 10 seconds and with 70%/30% train/test
split.

Figure 4.58: Detection speed of classifying processes as ransomware or benign us-
ing the ShieldFS dataset with a window size of 10 seconds and with 70%/30%
train/test split.
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Figure 4.59: Detection speed of classifying processes as ransomware or benign us-
ing the ShieldFS dataset with a window size of 10 seconds and with 70%/30%
train/test split.

then the new classifier achieves perfect recall and precision after about 10 files are

encrypted. This detection speed is higher than that of the straw man classifier.

For detecting which processes are part of the ransomware, the new classifier with

the 10 second window has excellent recall. However, the precision is very poor for

low score thresholds. Using a score threshold of 600, the classifier has good recall and

good precision. However, with such a high threshold, about 300 files are encrypted

by the time the ransomware is detected. Since the detection speed for the straw man

classifier is measured in percent of files encrypted rather than absolute number of

files of encrypted, it is necessary to convert the 300 number to a percent in order to

make a comparison. Considering the total number of files on each of the machines in

the ShieldFS benign dataset, 300 ranges from 1.1 percent to 16.6 percent, with an

average of 6.8 percent. The straw man classifier detects 94.5 percent of ransomware

by the time that 6.8 percent of files are encrypted, which is shown in Figure 4.49.

The new classifier detects 95.8 percent of ransomware by that same point (300 files).

By the reasoning of the preceding paragraph, the new classifier has a detection
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speed that is as good as that of the straw man classifier. However, the straw man

classifier can detect many ransomwares more quickly than 6.8 percent, whereas the

new classifier, with a threshold of 600, will not detect any rasomware before 300

files are encrypted. Also, the straw man classifier detects further ransomwares as

they encrypt more files, whereas the new classifier, with a threshold of 600, has a

flat recall of 95.8 that does not improve further as even more files are encrypted.

The random forest that classifies files as attacked or not attacked has good

precision and recall for the 10-second window. The poor precision of the process

classification is not a result of poor precision of the file classifier, but rather results

from the imprecision of the method of correlating from files to processes.

The new classifier accomplishes Goal 1 of this thesis as described in §3.1. It

correctly detects the presence of ransomware on the machine with good recall and

precision. The new classifier accomplishes Goal 2, regarding the speed of detection.

It detects the presence of ransomware with perfect recall and precision after about

10 files are encrypted. The new classifier partially accomplishes Goal 3, detecting

which processes are part of the ransomware; it accomplishes that goal with respect

to ransomware that uses functional splitting, but not ransomware that uses process

splitting. For functional splitting, the new classifier somewhat accomplishes Goal 4,

regarding the speed of identifying the ransomware processes. It detects 95 percent

of the ransomware processes about as quickly as the straw man classifier detects 95

percent of ransomware. However, it does not detect any processes before 300 files

are encrypted because doing so would result in poor precision. For process splitting

the new classifier does not accomplish Goal 4.
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4.5 User Study

After two months of delay caused by the defect described in §3.7, the user study

software is ready for use. We have a plan to move forward with code-signing the

client software and deploying it on WPI-owned machines with the help of WPI’s IT

Services. The server is already deployed. This author plans to conclude his studies

as a Master’s student sooner than the user study can initiate.
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Chapter 5

Discussion

The straw man classifier detects the presence of ransomware with high recall and

precision. However, due to an isssue with the ShieldFS ransomware dataset de-

scribed in §2.5.1, it may be slightly over-fitting. The new classifier detects the

presence of ransomware with high recall and precision more quickly than the straw

man classifier. Unlike the straw man classifier, the new classifier can also indicate

which processes are part of the ransomware. The new classifier classifies processes

with good recall, but it has good precision only after at least 300 files are encrypted

by a given process. At that point, the recall of the straw man classifier and the new

classifier are similar. The straw man classifier is theoretically immune to process

and functional splitting, and detects the Cerberus prototype developed by the The

Naked Sun authors. With regard to the detection of the presence of ransomware,

the new classifier is theoretically immune to process and functional splitting. With

regard to the classification of processes, the new classifier is theoretically immune

to functional splitting, but it is not immune to process splitting.

The component of the new classifier that classifies files as attacked or not at-

tacked has good recall and precision and is theoretically immune to both process
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and functional splitting. The reason for requiring at least 300 files to be encrypted

before labeling a process as ransomware is to have good precision with respect to

the classification of processes, not files. The recall of the process classification is

excellent at lower thresholds than 600, but the precision is poor. The vulnerability

to process splitting is introduced at the correlation step where file classifications are

translated into process classifications.

§3.1 lists the goals of this thesis. The straw man classifier accomplishes Goal

1 and somewhat accomplishes Goal 2. The new classifier accomplishes Goal 1 and

Goal 2, and partially accomplishes Goal 3.

We believe that a better method of correlating the results of the file classifier

to classify processes is needed. Such a method should maintain the immunity to

process splitting and should have better precision when less than 300 files have been

encrypted.

Even if the precision of the process classification is not improved, the new clas-

sifier may still be of practical use. It can detect the mere presence of ransomware

with high recall, precision, and speed. It can detect which processes are part of the

ransomware with high recall and speed, but low precision, or with high recall and

precision, but low speed. It could be used to detect the presence of ransomware

and then to provide a list of candidate ransomware processes which could then be

analyzed with some other system.

All software needed for the user study has been created and tested. The user

study has also passed the IRB review and should be able to initiate quickly. The

user study should collect a new dataset that will not have the shortcomings of the

ShieldFS dataset identified in §2.5.1 and §4.3 and that will include the additional

data of the sizes of files and EnCoD [33] labels on operations.

82



Chapter 6

Conclusion

The multiprocess evasion techniques described in The Naked Sun allow ran-

somware to evade state-of-the-art ransomware detectors. We replicated some of

the results of The Naked Sun and of ShieldFS. We then developed two clas-

sifiers that detect the presence of ransomware that uses the multiprocess evasion

techniques, the first being based on the system-centric portion of the ShieldFS

detector, and the second being based on classifying files as attacked or not attacked.

Both detect the presence of such ransomware with high precision and recall. The

second classifier can also determine which processes are part of the ransomware in

the face of the functional splitting technique, but not of the process splitting tech-

nique. Determining which processes are part of the ransomware requires many files

to be encrypted in order to have good precision. We also prepared for a user study

to collect a new dataset, developing the necessary client and server software.

Future work involves detecting which processes are part of the ransomware even

in the face of process splitting and with a better precision/speed trade-off than the

current detector. Future work should also execute the user study and collect a new

ransomware dataset.
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