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Abstract 

In this thesis, a cell traction force microscopy method is developed for measuring 

traction forces of connective tissue cells. This method includes an improved methodology in 

traction force microscopy of live cells cultured on an elastic substrate. Tissue cells, such as 

skin and muscle cells respond to the mechanical stimuli of their microenvironment by adhering 

to their substrate and exerting forces on the proteins of the extracellular matrix (ECM). These 

forces are called cell traction forces. Fibroblasts are grown on polyacrylamide (PA) gels 

embedded with fluorescent beads and coated with different types of ECM ligands. Traction 

forces of NIH 3T3 fibroblasts are calculated from the measured deformations of PA gels by 

using a 3-D finite element method.  The advantages of this method compared to the traditional 

methods of cell traction force microscopy (CTFM) are that this method takes into account the 

finite thickness of the substrate by applying a 3-D FEM analysis to reduce the errors of using 

an infinite half space approximation for a substrate with a finite thickness and that it uses a 

novel method for embedding the substrate with fluorescent markers that decreases the 

measurement uncertainties. In our approach fluorescent beads were embedded on the top of 

substrate instead of getting mixed with the gel. This decreases the effect of out-of-focus 

fluorescent beads on the measured deformation fields which enhances the accuracy of cell 

traction force measurements. 
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1. Introduction 

1.1.  Cell mechanotransduction: 

Mechanotransduction is the mechanism by which cells convert mechanical signals into 

biochemical responses. By the other definition, mechanotransduction is the activation of cell 

surface receptors via extracellular or intracellular signaling molecule. Integrins, myosin 

motors, cytoskeletal filaments, nuclei and extracellular matrix are the factors that in concert 

have a significant contribution in mechanotransduction [1-2]. Previous studies suggest that 

mechanical properties of the cell microenvironment such as stiffness of the substrate could 

play an important role in generating the mechanical signals for cells. Many proteins 

associated with cell-Extracellular Matrix (ECM) adhesions; for example, integrins are a class 

of transmembrane receptors, responsible to transmit the mechanical signals from ECM to the 

cell. Integrins are one of the major receptors for signal transduction; there are, however, other 

types of receptors like cadherin transmit the signals between cells [3-4]. 

Mechanosensing has two major aspects: One is how the cell responds to external forces 

while and the other is related to the forces generated by the cell itself. Cells adhere to a 

substrate through focal adhesion sites on the cell surface (figure 1) which also enables them to 

receive the mechanical signals from their microenvironment. Specifically cells can sense the 

physical environment of the ECM, other cells in neighborhood and physical stress τ by 

translating mechanical forces into biochemical signals. In response to these stimuli, cells exert 

internal forces generated in the cytoskeleton to the substrate. These forces are called traction 

forces.  
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The signal transduction between a cell and its microenvironment takes place through 

mechanotransduction and through cell surface transmembrane receptors. Therefore, the 

adhesive function of transmembrane receptors such as integrins and cadherins is a key 

element in mechanotransduction which means that study of their structure and how they 

transmit signals are important. Studies on the cells responses to the stiffness of the substrate 

indicates that cells adhere better and spread more on the stiff matrix, whereas on the soft 

substrate, their spreading area is smaller and cells maintain a round shape on the substrate [5-

8]. Figure 2 shows NIH3T3 fibroblast morphological response to different matrix stiffness. 

The results suggest that cells respond to the stiffness of their substrate and, as the response, 

they change their stiffness to match that of their substrate. Cell rigidity is likely to be 

regulated by intracellular contractile force that causes the stiffening of the cell cytoskeleton. 

Therefore, cell traction forces indicate the cellular response to their microenvironments and 

hence studying them is of significant importance [9-10]. 

 

 

Figure 1. The illustration of CTF in an adherent cell [15] 
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1.2.  Traction force 

Most tissue cells such as skin, muscle and brain cells are not viable in fluids. In order to 

survive and grow, cells need to anchor on and spread over a substrates. As mentioned earlier, 

adherent cells generate internal traction forces (CTFs) on the substrate which are crucial in 

many vital cellular functions such as cell migration and mechanical signal transduction, as 

well as in many biological processes including inflammation, angiogenesis, and wound 

healing. There are two primary causes of traction force in the cell. One is the force generated 

by actomyosin interactions that cross-bridges between the actin bundles or stress fibers and 

hence generates tension that contracts the cell body (Figure 1) [10-11]. The second source of 

CTFs generation is through actin polymerization that gives rise to the forward locomotion of 

the cells, leading to the cell migration. CTFs are transmitted to the extracellular matrix (ECM) 

through stress fibers via focal adhesion. Focal adhesions (FA) are assemblies of ECM 

proteins, transmembrane receptors, and cytoplasmic structural and signaling proteins 

including integrins, paxilin and talin [12-14]. 
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Figure 2. 3T3 fibroblast morphological response to different extracellular matrix rigidity 
(A) & (B) are the phase image of the fibroblast on the soft and stiff gel. Cells on stiff gels are less rounded than those on 

the soft gel. Fluorescence images of fibroblasts on soft gel(C) and stiff gel (D) shows no stress fibers on the soft cell 
whereas stiff cells include bundles of actin filaments in their cytoskeleton [9]. 

 

1.3.  Integrins 

Integrins are transmembrane receptors which mediate the attachment between a cell and 

its surroundings. They consist of α and β subunits which are associated non-covalently [16]. 

Integrins attach to the ECM ligands on one side (the extracellular domain) and to the cell actin 

cytoskeleton (the integrin cytoplasmic tail) on other side; therefore, integrins mediate the 

adhesion between the cell cytoplasm and the cell microenvironment. In other words integrins 

pass the chemical and mechanical information of ECM to the cell cytoskeleton (outside-in 

signaling) and from the cell cytoskeleton to the ECM or other cells (inside-out signaling) [17]. 

In order to transmit the mechanical forces; integrins undergo conformational changes in 

their extracellular domain to regulate their attachment to extracellular matrix ligands. This 
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conformational change is the response of the integrin to the signals that are imposed from the 

integrin cytoplasmic tail [18]. 

Hence, by binding both extracellular and intracellular ligands, integrins provide a 

transmembrane link for the bidirectional transmission of mechanical force and biochemical 

signals across the plasma membrane. Proteins such as talin play an important role in integrin 

activation [18]. They interact with integrin β subunit to activate integrin and hence transmit 

the signals into ECM.  

An important characteristic of integrins is that they bind to a variety of ligands; yet 

each type of ligands also can activate different types of integrins. For instance, collagen 

activates α1β1 and α2β1 integrins, and fibronectin can activate α5β1, α8 β1 and, αVβ1 

integrins [19] 

1.3.1.  Integrins Structure 

All integrins contain an α and a β subunit. The α- and β- subunits are constructed from 

several domains with flexible linkers between them. α - and β -subunits contain around 1000 

and 750 amino acids, respectively. Mammalian genomes contain 18 α subunit and 8 β subunit 

genes. These subunits assemble into 24 different α-β receptor combinations with different 

binding properties [20].  

. 
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Figure 3. Schematic of integrin heterodimer and its extracellular-intracellular domains 
 (http://www.scq.ubc.ca/the-role-of-integrins-in-wound-healing)  

 

 

1.3.2. The structure of α subunit 

The structure of α subunit is represented in Figure 4.C α subunit [21-22]: 

 Consists of four or five extracellular domains: a seven-bladed β-propeller, a tigh and two 

calf domains (Calf 1 and Calf2),  

 These domains are followed by a single transmembrane helix and a small cytoplasmic 

domain. 

 Nine of 18 integrin α chains have an α-I or αA domain of around 200 amino-acids, 

inserted between blades 2 and 3 of the β- propeller 

 The I domain has five β-sheets surrounded by seven α helices  
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Figure 4. Integrin structure 
 (A) Domain structure of αxβ2; (B) structure of αxβ2 using same color code as A; (C) cartoon representation of bent and 

upright conformations showing approximate dimensions [23] 
 

 

 

1.3.3. The structure of β subunit 

    The structure of β -subunit is also indicated in Figure 4.C and consists of [22]: 

  Seven domains with flexible and complex interconnections. 

 A β-I domain is inserted in a hybrid domain 

 An N-terminal Plexin-semaphorin-integrin (PSI) domain which is linked via an S-S bond 

to EGF1(cysteine-ich epidermal growth factor) domain 

 C-terminal of the hybrid  are four EGF-like domains (EGF1-4)  

 A β-tail domain followed by transmembrane helix and cytoplasmic domain 

 β -I domain is homologous to the α-I domain 

 β -leg seems to be more flexible than the α-leg domain   
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1.3.4. Cation binding sites 

The last three or four blades of the β-propeller contain domains that bind Ca
2+

on the 

lower side of the blade and binding of Ca
2+ 

to these sites influences ligand binding. In 

integrins with no α-I, the ligand binds at the largest interface between the two subunits 

(the β-propeller / β-I domain interface) and binding is dependent on the cations Mg
2+

, 

Ca
2+

, and Mn
2+

.  

Integrin ligand binding involves an Mg2+ ion, a “metal-ion-dependent adhesion site” 

(MIDAS).  Three β –I domain metal-binding sites in αXβ2 are; MIDAS, ADMIDAS and 

SYMBS (synergistic metal ion binding site). Mg2+ is assigned to central MAIDAS and 

Ca2+ is assigned to ADMIDAS and SYMBS [22-23]. 

1.3.5. Integrin – ligand partners 

 Despite their wide variety, integrin-ligand combinations are clustered into four main 

groups [23-24]: 

1) RGD-binding integrins: Integrins such as αVβ1, αVβ3, and α5β1 are able to bind to 

the ligands with an RGD tripeptide active site. RGD binds at an interface between α and β 

subunits. Fibronectin activates α5β1, α8 β1, αVβ1, αVβ6, αVβ3, IIbβ3 integrins by its 

RGD binding site which is an acidic motif LDV peptites like RGD bind to the integrins at 

the junction between  α and β subunits. 

2) LDV-binding integrins:  α4β1, α4β7, α9β1, etc. are integrins that bind to ligands with 

LDV binding site which is an acidic motif.  LDV peptites like RGD bind to the integrins at 

the junction between α and β subunits. Fibronectin type III contains the LDV binding site 

that binds to integrins α4β1 and α4β7. 
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3) αA – domain – β1 integrins ; Collagen and laminin are the ligands that contain this 

binding site. Four α subunits containing αA-domain (α 1, α 2, α10 and α11) combine with 

β 1 and form a distinct laminin/collagen subfamily: α1β1, α2β1- α10β1- α11β1 

4) Non – αA – domain integrins;  α3β1, α6β1 have no α A domain and are highly 

selective laminin receptors 
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1.4.  Methods of traction force measurements 

Cellular response determines whether or not a cell is able to accomplish its vital 

biological functions. Cancer or unhealthy cells could be recognized via their different 

behavior or morphology from healthy cells. Thus, developing novel methods which are able 

to measure the exact amount of cellular forces as the response to mechanical stimuli are 

important. So far, different methods have been developed to measure the CTFs of single cells 

as well as a population of cells. Numerous approaches for measuring CTFs have been 

developed due to the advances in micro- and nanotechnology; these methods include Cell-

populated collagen gel (CPCG), and Traction force microscopy (CTFM) using a flat elastic 

substrate (Figure 6), such as hydrogels of polyacrylamide (PA) or arrays of micro- or nano- 

pillars (Figure 5) made of Polydimethylsiloxane (PDMS) [25-29].  

1.4.1. CTFM using arrays of micro- or nano- pillars  

Tan et al.  measured cellular traction forces using polydimethylsiloxane (PDMS)-

based elastic substrates with a micropillar array for the first time. Traction forces F were 

determined using the equation F = k δ, where k and δ are the spring constant and deflection of 

the micropillars. The spring constant of the pillars k was obtained from Young's modulus of 

the substrate and the pillar geometry. However, the stiffness of PDMS substrate cannot be 

adjusted low enough to sense small deformations [29]. 

http://www.sciencedirect.com/science/article/pii/S0021929011005458#bib24
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Figure 5. Micro pillar posts on a PDMS substrate [28] 
The spring constant depends on the micro-pillar geometry, moment of inertia I, and elasticity of micro-pillar E 

1.4.2. CTFM methods using a continuous hydrogel 

Using a PA gel as the flexible substrate, different groups such as Dembo and Wang 

(DW) [30], Butler et al [31] and Yang et al. [32] have developed new approaches to measure 

CTF of tissue cells. There are three primary steps to measure the CTF in all TFM methods. 

The first step is to fabricate the elastic substrate which is a polyacrylamide gel with embedded 

fluorescent beads. The second step is to compute the bead displacements on the substrate from 

a pair of “null-force” and “force-loaded” images, and the third step is to determine the cell 

traction forces from the substrate displacements. The first step is common to all methods, but 

the second and third steps may differ [9].  

       Cell traction force microscopy using a hydrogel is now among the most efficient methods 

for determining traction forces of the cells adhering to the surface of the elastic substrate due 

to the advantages that they provide. Using Polyacrylamide (PA) gel as a substrate retains 
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advantages compared to the other methods because PA gels are highly elastic, transparent, 

mechanically stable and easy to prepare. In addition, the stiffness of PA gels is tunable by 

changing the ratio of base to cross linker in the stock solution hence producing gels with 

varying Young’s modulus. These properties also make PA gel an excellent substrate for 

CTFM methods. Therefore, we performed a cell traction force microscopy of cells grown on a 

hydrogel. Although this CTFM method has many advantages compared to the other methods, 

there are still some limitations regarding the CTFM method using a continuous hydrogel 

which is described in the following paragraph. 

 

 

Figure 6. CTF measurement using a continuous hydrogel [31] 

 

1.4.3. Shortcomings of current methods using a hydrogel 

         The problems with the current hydrogel method includes1) embedding the fluorescent 

beads within the gel solution and 2) considering the thin polyacrylamide substrate to be an 

infinite half-space in order to use the Boussinesq analytical solution (DW and Butler et al) . 
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Cells are grown on the gel with finite volume and finite thickness; therefore, considering an 

infinite half-space model introduces errors. Yang et al. evaluated this error [31].They assessed 

the effect of substrate thickness on an induced point surface load. They found that using 

Boussinesq solution for infinite half-space approximation generated larger errors for gel 

thicknesses of 70 and 200 µm, while this approximation worked well for gel with 1000 µm 

thickness. Therefore, for a finite thickness of substrate the Boussinesq solution does not work 

well. 

To overcome this limitation and, in order to take the finite thickness of gel into account, 

we applied a 3-D finite element method analysis (FEM) in ANSYS. In this FEM analysis, 

substrate is modeled as a rectangular volume with the dimension of the fluorescent images 

and a height approximately equal to the gel thickness. The significant purpose of this project 

is to develop methods to limit the beads on the gel top instead of mixing them with the gel and 

hence increase the accuracy of measurements. Therefore, we coated the gel with the beads on 

the gel surface. It is shown later that embedding the beads on the top increases the accuracy of 

CTF results; however, some beads go into the gel and will not remain on the top. These beads 

are out of the microscope focus and reduce the accuracy of CTF measurements. Our next 

purpose is to develop methods to precisely evaluate the effect of beads out of focus on the 

results and hence improve the accuracy of results based on this evaluation. 
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2. Method 

      PA gels with varying stiffness from 3.5 kPa to 20 kPa were made changing the ratio of 

base to cross linkers. Then fluorescent beads were coated on the gel top 3T3 fibroblast cells 

were then grown on the substrate.  A fluorescent microscope was used to take the images of 

the substrate with cell after the cell was detached from the substrate. Displacement fields due 

to small movements of the fluorescent beads on gel were then calculated by correlating the 

fluorescent images using the MATLAB image processing toolbox. A 3-D Finite element 

analysis of the gel with the displacements on the top was then applied to calculate the stress 

due to the cell contractile force.  Further experiments and analysis were performed to validate 

the model and evaluate the accuracy of results by evaluating the effect of out-of-focus beads.   
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2.1. PA gel  

Polyacrylamide gels are well known to be one of the commonly used substrate to 

measure the CTFs. The gel surface is inert and non-adherent to the cell surface receptors and 

the other proteins of the cell. Thus, only the ligands can bind to the surface with the covalent 

bonds. These characteristic enable PA gel to be a proper material for studying the effect of 

ligands on cellular responses [33-34] 

The other advantage of PA gels is that their stiffness is tunable through changing the 

concentration of acrylamide to bis-acrylamide (base to cross-linker) in the solution, allowing 

for control over the substrate stiffness.  The first usage of PA gels as cell culture substrate was 

in 1978 [35]; however, the first study using PA gels of different stiffness was undertaken by 

Pelham and Wang [36]. 

 The substrate material is presumed to be isotropic, meaning its properties are the same 

in all directions. The substrate can be mathematically modeled with Hooke’s law as a spring 

with a spring constant k that exerts a force   proportional to the distance,  , by which it is 

extended, following the expression      . The spring constant,  , is related to the 

material’s shear modulus, a constant for the material that describes its resistance to shear, 

expressed as stress over strain. 

2.2. PA gel fabrication 

PA gels were prepared and made on the cover slip glasses in order to make a flat 

surface of the gel.  The glass surface must be prepared and activated to bind to the gel. 25x25 

mm cover glasses were soaked in ethanol and cleaned with a sonicator for five minutes, and 
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the plasma cleaned with a SPI Supplies Plasma Prep II machine. Then they were placed in a 

10% (3-Aminopropyl) trimethoxysilane aqueous solution with a stir bar and were stirred for 

30 minutes. After this time, the slides were flushed with distilled water and heated in an oven 

until all water had evaporated. The slides were then allowed to dry and were placed in a 

Glutaraldehyde bath and refrigerated for three hours. 

The other glasses with the same size were soaked in ethanol and cleaned with a 

sonicator for five minutes. Next they were dried and plasma treated for 45 seconds. The slides 

were then each coated with 50 µl of the 0.5% bead solution in order to cover the whole glass 

surface with a favorable concentration of beads. The glasses were immediately placed in an 

oven at 150
o
C in order to rapidly evaporate the ethanol to prevent the beads aggregation. The 

bead solution was made using ethanol and 0.2 µm diameter red fluorescent carboxylate-

modified microbeads.  

 Polyacrylamide solution was made by mixing acrylamide with N, N-methylene-BIS-

acrylamide (BIS) and HEPES buffer. Gels with different stiffness were made by changing the 

concentration of BIS and hence changing the ratio of acrylamide to BIS concentration (base to 

cross-linker). The acrylamide/BIS solutions prepared were 5% PA 0.1% Bis, 8% PA 0.1% 

Bis, and 12% PA 0.14% Bis.  The solution was polymerized by adding 2.5 µl of ammonium 

persulfate and 0.9 µl of tetramethyl ethylenediamine (TEMED) to 250 microliter of the 

solution. 64 µl of the gel solution were dropped on the bead-coated surface of a slide, and 

then a glutaraldehyde-treated slide was positioned on top of the surface. After seven minutes, 

the slides were pried apart, resulting in a solidified gel adhering to the gluteraldehyde-treated 
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slide. The gels were kept moisturized with HEPES buffer solution. Gels were glued into petri 

dishes and kept moist with HEPES buffer. 

2.3.  Stiffness characterization 

The stiffness of the polyacrylamide gels was characterized by microindentation using 

an atomic force microscope. The cantilevers used were model DNP-D (Bruker, USA) with a 

force constant of 0.06 – 0.1 N/m. After calibrating the cantilever for the spring constant and 

deflection sensitivity, indentation was performed using an approach velocity of10 μm/s and a 

maximum deflection (trigger point) of 50 nm. The acquired force curves were fitted to the 

Hertz model to determine the elastic modulus. 

2.4.  ECM ligands coating 

A solution was made using 1mg of sulfo-sanpah, [30], 8 microliters of dimethyl 

siloxide, and 1000 microliters of HEPES buffer.  Buffer was aspirated from the gels and in 

order to activate the polyacrylamide 250 microliters of sulfo-sanpah solution was pipetted 

onto each gel.  The gels were left in a sterile hood with UV light shining on them for 10 

minutes in order to bind the sulfo-sanpah to the gel surfaces.  The gels were then rinsed with 

HEPES buffer 5 times in order to remove any excess sulfo-sanpah.  Next, a 0.1 mg/mL 

collagen solution was prepared in HEPES buffer and 50 microliters of the solution was 

pipetted onto each gel.  The collagen was allowed to settle on the gel surfaces for 1 hour.  

After this time, the gels were once again rinsed with HEPES buffer 5 times in order to remove 

excess collagen, and then were submerged in HEPES and stored in a refrigerator until cells 

were ready to be seeded on the gels. Fibronectin was coated on the gel with the similar 

protocol. 
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2.5. Cell Culture 

 NIH 3T3 fibroblasts were maintained at 37
o
C and 5% CO2 in Dulbecco’s Modified 

Eagle’s Medium supplemented with 10% Fetal Bovine Serum and 1% penicillin-

streptomycin. Cells were left for one day to grow. 

2.6. Traction force microscopy 

Cells were seeded onto the gels at a low concentration and left to incubate overnight.  

The next day, cell images were taken using a Zeiss Axiovert 200M Microscope.  Healthy, 

isolated cells were imaged at 40x magnification and red fluorescence was used to capture 

images of the microbeads below them.  After the initial images were taken, the cell medium 

was extracted from the petri dish and replaced with phosphate-buffered saline.  After several 

minutes, images were taken again.  The PBS was extracted and replaced with 0.5% trypsin.  

The trypsin was reapplied until all selected cells had been removed from the gel surface.  

Images were then taken of the positions where the cells had formerly been, so that the bead 

positions with and without cell traction force applied could be compared. 

2.7.  Image analysis of the live cells 

 The traction stresses generated by the cells are transmitted to the substrate, causing 

small movements of the beads. The fluorescent beads are used as the markers for tracking the 

drift on the gel under the cell. Fluorescent images of the gel with microbead markers are taken 

before and after cells were detached from ECM with trypsin. This image change from “load” 

(with cell medium) to “relax” (with trypsin) image is called Optical Flow [37]. Each pixel on 

an image has a gray value determined by an 8-bit integer. MATLAB image processing tools 

are used to read and analyze these images. Figure 5 shows the sets of images were analyzed. 
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Figure 7.A is the fluorescent image of the substrate with the fluorescent markers with the cell 

medium (load) and Figure 7.B is the substrate with trypsin (relax). Figure 7.C represents an 

overlaid RGB image of their optical flow.  This image indicates how the beads are drifted 

from their positions on image 7.A to those on image 7.B and Figure 7.D is the phase contrast 

cell image.  
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Figure 7. Fluorescent and phase images acquired from cell traction force microscopy: A) With the cell medium (force 
load), B)With Trypsin (null force), C) A color image of force load and null force overlaid , D) Phase contrast cell image 
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2.8.  Pre-processing of images 

The original size of the images in Figure 7 is (1030  918 pixels); However, before 

performing further analysis in MATLAB and ANSYS, the images were cropped within a 

smaller area including and slightly greater than the cell boundary for to shorten the analysis 

time by analyzing smaller windows of images and to consequently reduce the errors due to the 

measurements. Cells apply traction force on the underlying substrate; however, this force is 

restricted to a small area around the cell boundary which enables us to precisely measure the 

traction force of individual cells.  

In addition, microscope objective position was changed across the dish to find the 

healthy cells and acquire the force load images. In order to acquire the null force images, the 

microscope objective was then returned to the original cell positions after dissociating the 

cells from ECM.  This process results in a small drift between the optical flow images. This 

drift was calculated and then removed from the total displacements in order to acquire the 

actual displacement due to the cell traction. The image cropping and drift removing (de-

drifting) process is described as the following. 

2.8.1. Image Cropping 

To evaluate the effect of cropping on the CTF results and to determine the minimum 

size for cropping, CTFs were measured for different cropped areas by our method described 

in the current chapter.  The results of four different cropped areas are indicated in table 1. 

CTF changes slightly by increasing the cropping area. Furthermore, figure 8 shows different 

crops (A-D). None of these areas are proper for cropping as A is very large and hence results 

in a long time analysis, and D is very small that results in losing the displacements fields next 
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to the cell edges. Therefore, the cropping area size must be between these two sizes, in order 

not to lose the traction forces corresponding to CTF at the edges.  B or C crop size appears to 

be the proper sizes for cropping considering the slight changes in traction forces between 

them. Therefore, when cropping the images the sizes must be large enough to include the 

traction displacements around the cell edge, but not too large to result in increase in the 

analysis time. 

Table 1. Effect of image cropping on CTF 

  

Crop 1 2 3 4 

CTF [nN] 321 300 275 250 

Cropped 
Area [pixel2] 

477365 270865 149265 96240 
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Figure 8. Displacement fields on different crop sizes: The largest A and the smallest D 
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2.8.2. Drift removing 

To find the drift of the microscope stage four corners on the cell phase image were 

selected. These regions were picked because the cell traction force does not apply on the 

distances far from the cell territory; meaning that on the image corners, displacement vectors 

are merely due to the microscope stage drift, while at the cell boundary; displacement vectors 

are due to both traction forces and microscope stage drift. This drift was then calculated by 

cross-correlating the null force and the force load images and then taking the average of the 

displacements computed in these regions. The average was then subtracted from the bead’s 

location on the force load image or was added to those on the null load image. This process 

was called as de-drifting or drifts removing process. Figure 9.A, B indicates the optical flow 

overlaid images before and after de-drifting respectively. The cell boundary is also plotted on 

the image to show the area involved in the CTF. Figure 9.B shows how the cell is displacing 

the substrate. Once the drift is found, the phase contrast image is cropped by the area around 

cell region. The null force and force load images are cropped correspondingly. Having the 

fluorescent images de-drifted and cropped, the next step is to find the displacement fields that 

the movement of beads generates on gel.  
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                                      A 

 

                                    B 

             

Figure 9.  Removing the microscope stage drift. Optical flow overlaid image (A) before and (B) after cropping and de-
drifting the microscope drift with the cell boundary shown by red line 
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2.9. Determination of displacement fields 

To determine the displacement fields due to the small movements of the fluorescent beads, 

two different analysis methods were applied on the cropped and the de-drifted images of null 

load and force load. The first method applied was using MATLAB Particle Tracking toolbox 

and the second one was using MATLAB Particle Image Velocimetry (MPIV). Then, the 

results were compared with further analysis to evaluate the limitations of these methods and 

selecting the one which is more accurate.  

In Particle Tracking method, MATLAB functions are used to track the beads location from 

null force image to force load image. In PIV, the particles are not tracked, however, and are 

instead cross-correlated from relax to load image. These methods are described in details in 

the following. 

2.9.1 MATLAB Particle Tracking  

MATLAB functions used in this toolbox are: bpass.m, pkfnd.m and cntrd.m developed by 

Daniel Blair and Eric Dufresne. The first step in this process is to spatially filter the images. 

First the images are spatially filtered by a function called “bpass” which is a spatial bandpass 

filter that smooths the image and subtracts the background. Inputs of bpass are the images and 

the diameter of the particles in pixels. Diameter value could be manipulated, in order to 

acquire an image with clear circular blobs (fluorescent beads). “bpass” outputs the position of 

these blobs. The next step is to identify the blobs that “bpass” has found as the particles. 

Given the threshold value and the diameter of the blobs “pkfnd” function finds the location of 

all of the peaks that are above the given threshold value. This function provides a first 

estimate of particle locations to “pixel-level accuracy”. Another function called “cntrd” is 
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then used to find a more precise location of the particles. The exact locations of the center of 

the particles whose intensity are above the defined threshold value are detected. The last or 

the most important step is to track the beads whose locations have been detected using a 

function called “track”. The inputs of Track include a matrix made of position of beads 

locations and the beads labels. The second input has to be a value smaller than the mean inter 

particle separation. Mean inter particle separation is calculated using the following formula 

 ( )  
 ( )

    
                  (2.2) 

where  ( ) is the probability distribution function of distance to the nearest neighbor particle. 

N(r) is the number of beads in distance r from center of a bead. This value is found by plotting 

the histogram of distance calculated for each bead from other beads and    is the bin. Mean 

inter particle distance is the distance at which the average  ( ) value is maximum. Track 

function tracked the beads’ movements and found the displacements. These beads have 

moved from (    ,    ) in the “null load” image to (    ,    ) positions in the “force load” 

image. The output is a matrix that includes the beads number, beads locations, and their 

corresponding displacement fields. Track function tracks the beads whose displacements are 

smaller than their separation from the closest neighbors.  

2.9.2 MATLAB particle image velocimetry (MPIV)  

MPIV is the particle image velocimetry (PIV) toolbox written in MATLAB by 

Nobuhito Mori (Osaka City University, Japan) and Kuang-An Chang (Texas A&M 

University). We used MQD (minimum Quadratic Difference) algorithm in the program to find 

the displacements vectors.  Input variables for the MPIV function are: Two images with the 
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double precision, window size that should be larger than 20 pixels, and maximum and 

minimum displacement along x- and y-direction in pixels.  In the program the ratio of the 

values of the highest peak to the second highest peak and the ratio of the values of the highest 

peak to the r.m.s. (root-mean-square) noise are calculated in each window.  If the first ratio 

exceed a predefined threshold value, and if the second ratio also exceeds a preset (determine 

by trial and error) threshold value,   the distance between these two peak is retained as valid. 

The spatial resolution increases by reducing the small window size and consequently 

increasing the number of vectors which would increase the accuracy of the process. Output of 

MPIV results is post processed by the function mpiv_filter. This function uses a small area of 

the image which includes 3×3 to 9×9 vectors to calculate the mean, median, standard 

deviation and the number of valid vectors in the area. These values are used to determine 

whether the vector in the area of interest is a valid vector or not. If the target vector is within 

the range of vector standard deviation from the mean or the median value, it is then 

considered as good vector. Otherwise, it is removed from the valid vectors.   

2.9.3 Limitations of particle tracking 

Having applied these methods to the optical flow images, an investication was 

performed to determine which is more accurate and has fewer limitations. To address this 

question, displacements vectors were calculated by PIV as well as Particle Tracking and are 

shown in Figure 10. Although figure 10.A indicates similarity between the results (red vector 

represents PIV and blue vectors Track), Figure 10.B does not prove equality by representing 

the difference between the vectors lengths along x and y-directions. The scattered plot shows 

a non-zero difference corresponding to some beads, and zero difference for the others. The 

next step is to evaluate such beads and their intensity profiles as well as to determine the 
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method which does not work for these beads.  As such, the beads found using MATLAB had 

an intensity profile as well as PIV-Track difference are indicated in Figure 11. Figure 11.A to 

D show that at such positions, beads are aggregated and hence have small distances with their 

closest neighbors. As pointed out in Section 2.9.1, Track tools do not track the beads whose 

displacements are greater than the mean inter particle separation; therefore, the aggregated 

beads are not tracked using this approach. Thus, Track gives zero displacements 

corresponding to the aggregated beads which cause the non-zero difference between Track 

and PIV. In figure 12, two isolated beads as well as their intensity profiles along x- and y- 

axis and the difference between PIV and Track measurements are indicated. Looking at their 

intensity peaks which are in general greater than those of aggregated beads, and PIV-Track 

differences, which are very small compared to those of aggregated beads, confirms that 

isolated beads are well tracked and hence PIV matches with Track. However, this is not true 

for the aggregated beads. Therefore, PIV which is able to find the movements of aggregated 

beads by not including the mean inter particle separation limitation, is used for the 

displacement determination 

Figure 13 indicates the displacements calculated by PIV on the cell phase image. The 

vectors show the direction of traction force, into the cell. Most of the vectors are concentrated 

in the cell lamellipodia, and the cell nucleus is not involved in traction force.  
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Figure 10. Comparison between PIV and Track. A) Red vectors PIV and blue vectors Track displacements. (B) Difference in 
pixel between PIV and Track along x- and y- axis 
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Figure 11. Aggregated beads and their intensity profile along x- and y- direction 
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Figure 12. Isolated beads with their intensity profile along x and y direction 

 
 

 
 

Figure 13. Displacement fields and cell boundary on the cell phase image 
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2.10. Finite Element analysis in ANSYS 

 

Once the substrate displacement fields are calculated, the next step is to find the stress 

that cells apply to the substrate. A 3-D finite element analysis (FEM) in ANSYS APDL 

(Parametric Design Language) was used to calculate the finite traction stresses due to the 

small movements of the beads on the substrate. Traction stresses were calculated using the 

displacement vectors, the gel image dimensions, fixed boundary condition at the bottom, the 

substrate Young’s modulus and Poisson ratio as the inputs.  

2.10.1. The 3-D model for substrate 

Substrate was modeled as a rectangular volume or a brick with eight-nodes (Element 

type: Solid 185) in ANSYS. The length and width of this volume are equal to the image 

dimensions, and, the height is equivalent to the gel thickness.  Thickness of the substrate was 

calculated by having the volume of acrylamide solution as well as the glass area. The cover 

slip glass dimension is 25 × 25 mm
2
 and the solution volume added on it was 64 µl. 

Therefore, the height calculated to be about 100 microns. Hydrogel material properties are 

also required as the input for the model description. PA gel is a linear, isotropic and elastic 

hydrogel with Poisson ratio of 0.4. Young’s modulus of the substrate is tunable by changing 

the concentration of Acrylamide and Bis-acrylamide in the gel solution as mentioned earlier. 

Gels were made with different stiffness ranging from 3.5 kPa to 20 kPa.  The volume is then 

meshed using a finite element size. This size must be whether the same as the window size 

selected for PIV function or one of its factors. If the mesh size is bigger than the window size, 

a single mesh unit would include an area with several displacement vectors and this lowers 

the accuracy of analysis; nonetheless, a very small mesh size causes longer time ANSYS 
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analysis. The mesh size we selected was 16 pixels (2.6 micrometer) considering a 64 pixels 

(10.6 micrometer) PIV window size.  

2.10.2. Determining nodal traction stresses 

The first step in FEM analysis was to build a model with the gel characteristics 

described earlier. To perform the FEM analysis and calculate the traction force, one can 

always use ANSYS GUI (graphic user interface); this is not convenient for our analysis due to 

having a large number of nodes. Therefore, we made scripts which included command lines to 

make the model and apply the load on it. A fixed boundary condition was applied to the 

bottom of substrate. Additionally, nodes outside the cell boundary were assigned zero external 

forces. While on the nodes inside the cell boundary the nodal displacements derived from 

MATLAB analysis were applied.  The problem was then solved in ANSYS using a structural 

analysis. The results of this solution were imported from the text files that ANSYS provides 

from the results.  These files include the location of nodes on the gel top and their resultant 

stress values. 

Since the elastic substrate is in equilibrium condition, the following equation is applied, 

 [K]{u} = {F}               (2.3) 

Where [K] is the global stiffness matrix, {u} the nodal displacement vector, and {F} is the 

nodal force vector. The equilibrium condition can further be written in terms of sub-matrices 

and sub-vectors as 

 {
[   ]      [   ]

[   ]
    [   ]

} {
    

    
} = {

    

    
}             (2.4) 
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Where s subscript denotes the degrees-of-freedom (DOFs) where displacements are known; 

and c subscript denotes the rest of DOFs where the forces are known. For nodes outside the 

cell boundary, their nodal forces are zero. Using this information the above equation becomes  

  {
[   ]      [   ]

[   ]
    [   ]

} {
    

    
} = {

   

    
}           (2.5) 

Equation (2.3) is the key equation that is used to find the traction forces exerted by the cells 

having the nodal displacements as well as the gel stiffness.  

2.11. Post-processing 

Text files that include the nodal shear stress were exported from ANSYS. Having the 

nodal shear stress and each element area, the nodal traction force as well as the total traction 

force was calculated. Figure 14 shows how the model looks like in ANSYS, indicating the 

meshed rectangular volume and the displacements applied on the top. Figure 14 A is the top 

view and 2.7 B is the isometric view. The cell is placed on the top of the model on the x-y 

plane. Therefore, the elements of shear stress required to calculate the nodal shear values are 

    and    . The stress at each node is then calculated by:  

     √      
       

 
     ,                                 (2.6) 

 Where I, is the node index (number) and da, is the element area. 

        ∑   
 
                             ∑   

 
            (2.7) 
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(A) 

 

(B) 

 
 

 
Figure 14. Gel rectangular volume model in ANSYS with the cell (A) Top view, (B) Isometric view 
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Having the nodal stress values, a stress map or stress distribution is plotted in Figure 15 with 

the cell boundary. The color bar next to the figure shows the stress intensity. Larger stress 

values are observed at the cell lamellipodia, corresponding with the greater vectors on these 

sites, and smaller s tresses are around the cell nucleus as well as on outside the cell boundary. 

 
 

Figure 15.  Stress distribution with the cell boundary 
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2.12. Validity of ANSYS model  

The ANSYS model was validated through the following analyses. These analyses 

were performed based on the Elasticity principles for a hydrogel. Shear stress and shear strain 

behaviour were evaluated in the elastic rectangular model designed in ANSYS. The results 

were compared to the theoretical predictions to determine the validity of the model.  

Shear stress, denoted by τ is the stress component parallel to the cross section. Normal 

stress, on the other hand arises from the prependicular component to the cross section. 

Contractile cells apply tensile stress on the substrate and generate shear stress. Stress is 

defined as the force divided by the area it is applied on ( 𝜏  
 

 
 ). Relation between the shear 

stress and strain is given by 

τ   γG                                                                                                                              (2.8) 

Where   𝛾  
  

 
 ,𝐺  

 

 (   )
 , E is the Young’s modulus and  υ is the Poisson’s ratio.  l is 

the strain and l is the gel height.  

                     

 

 
            

 

  

Figure 16. Shear stress and shear stain 
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In Eq. 2.8, γ represents the strain and τ the stress. For a linear elastic substrate γ is a 

constant value and is expressed as the ratio of total deformation to the initial height of the 

elastic body in which the forces are being applied. Therefore, when going down into the gel or 

along the cross sections below the surface on which the loads are applied (decreasing l in 

Figure 17), total deformation has to be decreased in a linear manner correspondingly to keep 

strain a constant value. Additionally, the total shear stress that is transmitted to the bottom 

layers remains the same. Using this concept to test the validity of FEM method and the 

meshed model uniform nodal loads were applied on the top and then the problem was solved 

to acquire the total deformation as well as the total stress on the underlying cross sections. 

The results of this analysis are predicted in Figure 18 which shows the total deformation on 

five cross sectional layers of the gel from the top, where the load is applied. The total stress 

on the same layer was also calculated. Total shear stress is the same on these layers which 

matches with the theory. The linear decrease of the deformation in Eq. 2.9 and the constant 

total shear stress show that our FEM analysis works well since it matches with the theories.  

 

 

l 

Figure 17. Total displacement on five cross sections of the gel when nodal 
uniform displacements (2 microns) were applied on the top 
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2.13. Traction stress dependency on gel thickness 

As mentioned earlier, gel thickness used in the 3-D model approximated the actual 

gel thickness (~100 µm) used in the experiment. Cells cultured on the gel with higher stiffness 

were seen to be larger compared to those on the soft gel. The dimension of cropped images 

changed from ~300×300 pixel
2
 for cells with a smaller area on the gel to ~600×600 pixel

2 
for 

cells with larger area. So a different gel thickness could change the result. To verify this, gel 

length and width were kept constant and the height was changed from a hundred pixels (16 

µm) to 800 pixels (133 µm). Total stress was then calculated for different thicknesses. The 

results, presented in Figure 18 imply that by increasing the gel thickness or the gel height in 

the model, total stress on the gel surface decreases; nonetheless, the effect plateaus at ~ 400 

pixels. Thus, in order to save the time in the FEM analysis and since the total stress remains 

constant for thickness above 400 pixels, we assign gel height equal to 60 microns for cells 

with relevantly smaller size and, a hundred µm for those with bigger spreading area.  

  
 

Figure 18. Total Stress change as a function of gel thickness 
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3. Results 

3.1. Comparison of traditional method with the current method 

In order to show the difference between the new approach of coating the beads on the 

gel top and the traditional methods of embedding the beads in the gel, a PA gel with 7.5 kPa 

Young’s modulus was made and mixed with the green fluorescent beads. Then the gel was 

coated with the red beads on the top using the new method described in Section 2.2. Thus, the 

green beads are in the gel and the red are on the top. Cells were cultured on the gel. Red and 

green fluorescent filters were used in CTF microscopy to acquire separate images of optical 

flows for green and red beads. Traction force due to the displacement of red beads was 

measured for three cells and the results were compared with the traction force generated from 

the green beads displacements. This comparison is indicated in table 3. Additionally, 

comparison of traditional method with the new method was performed through simulation via 

replacing the displacements of the first layer with the displacements of the nodes randomly 

picked from the second layer in the gel. CTF was calculated for the same cells. The 

simulation column in Table 3 belongs to this result. The values are the average of 10 runs. 

The last two columns show the ratio of traction force generated by the movement of green 

beads to the red beads well as the ratio of simulation to the red beads experiment. These 

values indicate that if the beads are embedded within the gel (traditional method), traction 

force would be about 10 to 20% less than the traction force generated by the beads embedded 

on the top (novel method). This means that there is about 20% difference between the 

previous methods and our method. The last column also confirms this conclusion. These 

results suggest that our method is more accurate compared to the other existing methods. Also 

this difference shows the importance of evaluating the effect of out of focus beads. In the 
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section 3.3 we will show that even by coating the beads on the top limiting the beads 

completely on the top layer is impossible. Some beads go into the gel and hence decrease the 

result’s accuracy. Therefore, the next step is to calculate the traction forces and then 

investigate the effect of out of focus beads.  

.  

 

Table 2. Comparison of traditional method by the novel method using experiments and simulation 
CTF from red and green bead (experiment) and from simulation by replacing the second layer displacements from inside 

the cell on the top layer for three cells on 7.5 kPa gel 

Cell 
CTF- Red [nN] 

New method 

CTF-Green [nN] 
Traditional method 

Simulation [nN] 
CTF-

(Green/Red)% 

CTF-

(Sim./Red)% 

1 18 16 13 89 70 

2 9 7 7 80 78 

3 44 36 35 83 79 

  

 

3.2. CTF analysis results 

Traction forces of individual contractile cells on the substrate were measured using 

the new approach. PA gels were coated with different ligands, fibronectin and collagen. 

Cells were seeded on the gels with Young’s modulus of 3.5, 7.5, and 20 kPa were left to 

adhere to the underlying matrix. For each gel condition (stiffness) between 10 and 15 

healthy cells were found and selected for imaging. Images were then analyzed and traction 

force that each cell generated on the substrate was calculated using FEM analysis in 

ANSYS. The average cell traction force was then calculated for the cells on the same gel 

stiffness, and on different ligand types (collagen, fibronectin). The average traction force as 
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a function of gel stiffness is indicated in Figure 20 and Table 3. Error bars representing the 

standard deviation. 

When adhered to the substrate, not only fibroblasts apply force on the underlying 

substrate, but also they spread and change their adherent area. Fibroblasts are in various 

shapes and sizes; some of them were seen to have fan-like shapes, some were spindle-like, 

and the others looked like triangles, often include a larger area compared to those of spindle-

like cells. Based on this observation, we assumed that fibroblast shape and area engage a 

relationship with CTF, as different cell shape and area were found to have different CTF 

values. In addition, studies on investigating the relation between cell shape and CTF were 

focused on determining which of these variables the significant predictor of the others is [38-

40]. Therefore, in addition to the traction forces, cells spreading areas were measured and the 

average cell areas as a function of gel stiffness are shown in Figure 20.B.  

Figure 20.A and B show that the average CTF and the average cell area increase as the 

substrate stiffness increases for cells grown on collagen as well as on fibronectin. This result 

suggests that cells on the soft gels apply smaller traction forces and spread smaller areas, 

whereas, on the stiffer substrate they spread more and apply greater forces. In addition, the 

difference between collagen and fibronectin values indicates that cell responds depend on 

ECM ligands type. It seems that cells on fibronectin exert greater forces compared to the cells 

grown on collagen ligand. Previous studies on cell responses to the mechanical stimuli also 

indicate that cells responses change on substrate with different stiffness. Studies on A7 and 

M2 melanoma cells indicate that cells change their stiffness in order to match with that of 

their substrate [41-43]. They also indicate that cells responses depend on the type of ECM 
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ligands. Our results show that CTF changes as a function of gel stiffness. These results agree 

with the previous studies on cellular responses and prove that our measurement method is 

valid. 

Figure 21 shows the relation between cell area and CTF for cells grown on fibronectin 

and on collagen gel with different stiffness. Each point corresponds to the CTF and the area of 

one cell. The result suggests that CTF and the cell area are directly proportional since the 

larger the cell area, the greater the traction force is. However, it is not certain which cell area 

or cell traction force is determinant from the other. 
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                A 

 
               B 

 
 

Figure 19. CTF and Cell area as a function of stiffness A) CTF [nN] B) Cell area [µm2] 
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Table 3. Average CTF and average area of the cells grown on fibronectin as well as on collagen on gel with stiffness 3.5, 
7.5 and 20 kPA 

Fibronectin – number of cells >10 

Young’s modulus [kPa] Average CTF [nN] STD Average Area[µm2] STD 

3.5 197 160 1727 943 

7.5 194 162 2002 615 

20 312 203 4380 1512 

Collagen - number of cells >10 

3.5 35 16 1009 327 

7.5 192 139 2094 874 

20 278 197 3698 987 
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              A 

   

     
Figure 20. Cell area as a function of CTF for A) Fibronectin and B) Collagen. 

 

B 
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3.3. Evaluating the effect of out-of-focus fluorescent beads 

As mentioned earlier, fluorescent markers are required to track the small drifts on the 

substrate generated from the cell traction force. Fluorescents beads with a diameter of 0.2 µm 

were used for this purpose. Due to their size, some of the beads will fall down and penetrate 

into the gel after they are coated on the top. When taking the images, the microscope 

objective is focused on the gel top. Therefore, the beads which remain on the top are in focus 

and those piercing in the gel are out of focus. The effect of out of focus beads is important, 

because they introduce uncertainty in CTF measurements as pointed out in Section 3.1. 

Therefore, experiments and analysis were performed to show the beads distribution in the gel 

as well as evaluating their effect on the CTF measurement results. First, a PA gel was made 

and coated with green beads with smaller diameter on the top using the novel method 

explained in Section 2.2. Other green beads with greater diameter (2 µm) were also prepared 

and dropped on the gel. Big beads are used to show the gel top since they are not small 

enough to go into the gel and will remain on the surface. Then a confocal Zeiss microscope 

was used to acquire images from the gel cross sections by focusing the objective on different 

planes along the gel height. The z-stack includes about 40 to 50 µm of the gel from the top 

and the distance between the cross sections is 50 nm. The images are then analyzed using a 3-

D particle tracking MATLAB toolbox. The packages “bpass3d” and “pkfnd3d” were used to 

spatially filter the images and remove the noise and to find the positions of beads on each 

layer. Figure 22 shows the number of out of focused beads as a function of distance from the 

gel top. The smaller peak corresponds to the density of big beads that are on the surface, 

whereas the larger peak indicates where the majority of small beads are laced. Most of the 

small beads are distributed on the top layer. Small population of beads is on floating in the 
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HEPES buffer solution above the gel. These beads represent the distance between 56 to 60 

µm in the graph.  The bead density decreases as going down in the gel (to the 0 on x-axis) and 

tends to zero for the lower layers.  This graph is the evidence for our assumption regarding the 

presence of a small percentage of the fluorescent markers inside the gel and that how this 

density decreases as a function of distance from the top. 

The advantage of coating the beads on the surface is that the percentage of out of focus 

beads to the overall bead number is small. Our method, therefore, can measure the traction 

force more accurately. On contrary, in traditional methods the bead solution is mixed with the 

gel and hence, the percentage of out of focus beads to the total beads number would be 

greater. 

Displacements of the nodes on the top layer were replaced with the displacements of the 

second layer acquired from ANSYS. The second layer displacements correspond to the beads 

movements in the gel which are at a distance equal to the mesh size from the top. CTF was 

then calculated and compared with the CTF at the top. The results are indicated in Figure 22.  
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Figure 21. Density of fluorescent beads (out of focus) as a function of distance from the top in the gel. Y-axis the number 
of beads in distance z from the gel top. Zero corresponds to 60 micron (~1000 pixels) below the gel surface. The smaller 

peak represents the large  beads on the top and the largest peak indicates where the majority of small beads are placed.   
 

To measure the effect of out-of-focus beads, the displacements on the top were 

replaced with the displacements on the second layer which represent the displacements of 

beads out-of-focus. Traction stresses were then calculated. The stress distribution in the 

Figure 23 shows the decrease in the tractional stress due to replacing the first layer 

displacements on the top with those of the second layer. This result as well as Figure 22 

indicates that the effect of out-of-focus beads decreases on the deeper layers in the gel. As 

such, the CTF decreases (28.7nN for the second layer and 64nN for the top layer). 
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 A 

 
 

 CTF= 46 nN 

 

  B 

 
 

  CTF= 29 nN 
Figure 22. Stress distribution and traction force, replacing the displacement fields of the second layer on the top. 

(A) The load applied on the top, (B) when the load is replaced by the displacements of the second layer. 

  

 

 

S
tr

e
s
s
 [

P
a
]

50

100

150

200

 

 

S
tr

e
s
s
 [

P
a
]

10

20

30

40

50

60

70



59 | P a g e  
  

Conclusion and Future Works 

Various methods have been developed to measure the CTFs by applying traction force 

microscopy for a continuous hydrogel. Although these methods have advantages compared to 

other method of CTF measurements, they represents some limitations that results in the 

measurement uncertainty. In order to overcome these limitations, we developed a new 

approach in CTFM method. In our novel approach, fluorescent beads were coated to the top 

of a hydrogel, while in the previous methods beads were embedded in the gel. This 

improvement enhances the accuracy of CTF measurement results.  

Additionally, the other disadvantage of some of the existing methods was using an infinite 

half space approximation for the substrate with finite thickness which introduced errors. To 

overcome this problem, we applied a 3-D FEM analysis in ANSYS in order to take the finite 

thickness of the substrate into account. CTFs were then measured using the new method for 

cells grown on PA gel with different stiffness and coated with different types of ligand. The 

result of CTF measurement using the new technic was compared with CTF using the 

traditional techniques which indicated ~20% difference between these methods. This shows 

that traditional method is underestimating the CTF results (Table 3). As mentioned above, the 

effect of out of focus beads were then evaluated both experimentally and analytically (Figure 

21 and 22). These results indicated that out of focus beads effect is considerable, and hence, 

developing methods that can control and decrease this effect, would increase the accuracy of 

the CTF measurements, which is a part of our future work. 
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4. Appendices 

4.1. Appendix I- Pre-processing and post processing MATLAB codes 

4.1.1. Pre-processing 

%% Defining variables/constant 

foldn='folder name' 

 Dishn='Dish number' 

 posn='Cell position' 

 scal1=1e-6/6; scal2=1/6; 

 

% % Reading the images 

 a1=imread ([Dishn,'_wMedium_',posn,'_Fluor.TIF']); 

 a2=imread ([Dishn,'_wTrypsin_',posn,'_Fluor.TIF']); 

 a3=imread ([Dishn,'_wMedium_',posn,'_Phase.TIF']);  

  

%% Making RGB image from the gray scale images 

 cimg(:,:,3)=zeros(size(a2)); 

 cimg(:,:,1)=double(a2)/(max(double(a2(:)))); 

 cimg(:,:,2)=double(a1)/(max(double(a1(:)))); 

 imshow (cimg,[]); 
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%% Drift removing 

 for i=1:4 

 [xd(i) yd(i)]=im_shift(a1,a2); 

 Xd = mean (xd(i)); 

 yd = mean(yd(i)); 

 end 

imshow (a3,[]); 

rg2=round (getrect); 

rg2(3)=[round(rg2(3)/16)]*16; rg2(4)=[round(rg2(4)/16)]*16; 

 imgf_a1=imcrop (a1,rg2); 

 imshow (imgf_a1); 

 figname=[Dishn,posn,'_wMedium.tif']; 

 imwrite (imgf_a1,figname); 

  

  figure(2),imgf_a2=imcrop(a2,[rg2(1)+xd rg2(2)+yd rg2(3) rg2(4)]); 

  imshow (imgf_a2); 

  figname=[Dishn,posn,'_wtrypsin.tif']; 

  imwrite (imgf_a2,figname); 

 

  %% Image cropping 

 imgf_a3=imcrop (a3,rg2); 

  imshow (imgf_a3); 

  figname=[Dishn,posn,'_phase.tif']; 
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  imwrite(imgf_a3,figname); 

  close all; 

  cimg2 (:,:,3)=zeros(size(imgf_a2)); 

  tempr = double(imgf_a2)/(max(double(imgf_a2(:)))); 

  tempg = double(imgf_a1)/(max(double(imgf_a1(:)))); 

  cimg2 (:, :, 1) = tempr-tempg; 

  cimg2 (:, :, 2) = tempg-tempr; 

  figure,imshow(cimg2,[]); 

   

 %% Using PIV for for displacement calculations 

 [xi, yi, iu, iv, D] = mpiv(imgf_a2,imgf_a1,64,64,0.5,0.5,25,25,1,'mqd',2,0); 

  [iu_f,iv_f,iu_i, iv_i] = mpiv_filter(iu,iv, 2, 2.0, 3, 0); 

  [iu_s, iv_s] = mpiv_smooth(iu_i, iv_i, 1); 

  [xm, ym] =meshgrid([min(xi):xi(2)-xi(1):max(xi)],[min(yi):mean(diff(yi)):max(yi)]); 

  figure(4), imshow(cimg2,[]); 

  hold on, quiver(xm',ym',iu_s,iv_s,'b'); 

  figname=[Dishn,posn,'.tif']; 

  imwrite (cimg2,figname); 

  xs1=xm'*scal1;   

  ys1=ym'*scal1;   

  dx2=iu_s*scal1;  

  dy2=iv_s*scal1;  
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  %% Drawing the cell edge 

  Figure (5), imshow(imgf_a3,[]) 

  [bw,xc,yc]=roipoly; 

  reg = bwlabel(bw); 

  [s,l]=bwboundaries(bw); 

  g=regionprops(l,'PixelList'); 

  hold on,plot(s{1}(:,2),s{1}(:,1),'r.') 

  hold off 

  imshow (cimg2,[]); 

  hold on, quiver (xm', ym', iu_s, iv_s,'b'); 

  plot(s{1}(:,2),s{1}(:,1),'r') 

  hold off 

  Cell_area=bwarea(bw)*(scal2^2); 

    

 

 % Saving displacements and position list files for ANSYS 

  fid= fopen([Dishn,posn,'_cell_crop4.txt'],'w'); 

  fprintf(fid,'%10.4e \t %10.4e\n',[s{1}(:,2)*scal1 s{1}(:,1)*scal1]'); 

  fclose(fid); 

  save([Dishn,posn,'_disp.mat'],'xs1','ys1','dx2','dy2','rg2','Cell_area'); 
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4.1.2. Post-processing 

%% Defining variables/constant 

Dishn='Dish number' 

posn='Cell position' 

load([Dishn,posn,'_disp.mat']); 

scal1=1e-6/4; scal2=1/4; 

length = rg2(:,3)*scal1;  

width = rg2(:,4)*scal1; 

height = 400*scal1; 

meshsize = 16*scal1; 

  

%% Making ANSYS script for model definition 

Filn = [Dishn,posn,c '.txt']; 

fid = fopen(filn,'w'); 

line1 = ['/TITLE,newgel\n','/PREP7\n']; 

fprintf (fid,line1); 

line2 = ['ET, 1, SOLID185\n']; 

fprintf (fid,line2); 

line3=['KEYOPT,1,2,0\n','KEYOPT,1,3,0\n','KEYOPT,1,6,0\n']; 

fprintf (fid,line3); 

line4 = ['MPTEMP, \n','MPTEMP,1,0 

\n','MPDATA,EX,1,,7500\n','MPDATA,PRXY,1,,0.4\n','!*  \n']; 

fprintf (fid,line4); 
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line5=['BLC4,0,0,',num2str(length),',',num2str(width),',',num2str(height),'\n']; 

fprintf (fid,line5); 

line6=['AESIZE,ALL,',num2str(meshsize),'\n','MSHKEY,0\n','MSHAPE,1,3d 

\n','CM,_Y,VOLU \n','VSEL, , , 

,\n','CM,_Y1,VOLU\n','CHKMSH,''VOLU''\n','CMSEL,S,_Y\n']; 

fprintf (fid,line6); 

line7 = ['MSHAPE, 0, 3d \n','MSHKEY,1\n','VMESH,_Y1\n','MSHKEY,0\n']; 

fprintf (fid,line7); 

fclose (fid); 

pause; 

 

% % Determining positions and their corresponding displacements  

m=readnode ('NLIST.lis',2,2,20,7); 

nlist = m.nodes; 

xn = nlist(:,2); yn=nlist(:,3);  

dxn = interp2(xs1',ys1',dx2',xn,yn); 

dyn =I nterp2(xs1',ys1',dy2',xn,yn); 

  

%% Loading cell boundary  

celllist=dlmread([Dishn,posn,'_cell_',c,'.txt']); 

xcell=(celllist(:,1)); 

ycell=(celllist(:,2)); 

Incell=inpolygon (xn, yn,xcell, ycell); 
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index_cell=find (Incell==1); 

xpos=xn(index_cell); ypos=yn(index_cell); 

xdisp=dxn(index_cell);ydisp=dyn(index_cell); 

  

%% Making tables of load for ANSYS  

B = [[1: size (index_cell, 1)]' (nlist (index_cell, 1)) xpos ypos xdisp ydisp]; 

B(2:size(xpos,1)+1,:)=B(1:size(xpos,1),:); 

B (1,:)=[0:5]; 

format shortG; 

dlmwrite ('table1.txt',B,'\t'); 

  

index_outcell= find (Incell==0); 

xout = xn(index_outcell); yout=yn(index_outcell); 

dxout = dxn(index_outcell); dyout=dyn(index_outcell); 

C = [(1: size (index_outcell, 1))' (nlist(index_outcell,1)) xout yout dxout dyout]; 

C(2:size(xout,1)+1,:)=C(1:size(xout,1),:); 

C (1,:)=[0:5]; 

format shortG; 

dlmwrite('table2.txt',C,'\t');  

  

% % Making ANSYS script to apply the load on top 

filn='ansys.txt'; 

fid=fopen(filn,'w'); 
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line1=['*dim,Txy,table,',num2str(size(index_cell,1)),',5,1\n']; 

fprintf (fid,line1); 

line2 = ['*tread,Txy,''table1.txt''\n']; 

fprintf (fid,line2); 

line3=['*do,i,1,',num2str(size(index_cell,1)),',1\n']; 

fprintf (fid,line3); 

line4 = ['d,Txy(i,1),ux,Txy(i,4)\n']; 

fprintf (fid,line4); 

line5 = ['d,Txy(i,1),uy,Txy(i,5)\n']; 

fprintf (fid,line5); 

line6 = ['*enddo\n']; 

fprintf (fid,line6); 

line8=['*dim,loadf,table,',num2str(size(index_outcell,1)),',5,1\n']; 

fprintf (fid,line8); 

line9 = ['*tread,loadf,''table2.txt''\n']; 

fprintf (fid,line9); 

line10=['*do,j,1,',num2str(size(index_outcell,1)),',1\n']; 

fprintf (fid,line10); 

line11=['f,loadf(j,1),fx,0\n','f,loadf(j,1),fy,0\n','f,loadf(j,1),fz,0\n','*enddo\n','da,2,ux,0\

n','da,2,uy,0\n','da,2,uz,0'] 

fprintf (fid,line11); 

fclose (fid); 

pause; 
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%% Reading ANSYS output by “readnode” function 

ress1=readnode('PRNSOL_’,’Dishn’,’posn’,’.lis',2,9,37,7); 

list_1=ress1.nodes; 

% % Stress calculation 

syz_1=list_1 (:, 6);sxz_1=list_1(:,7); 

S1=sqrt ((syz_1 (:)).^2+(sxz_1(:)).^2); 

S1_cell=S1 (nlist (index_cell,1)); 

 

%% Force Calculation 

Meshsize = 16*scal1; 

Area=meshsize*meshsize; 

Force=Area*S1; totForce=sum (Force); 

Cell_force=Area*(S1_cell); totForce_cell=sum (Cell_force); 

 

 % % Saving force data 

save([Dishn,posn,'data.mat'],'xn','yn','S1','S1_cell','Force','totForce','Cell_force','totFor

ce_cell') 

%% Plotting tractional stress 

mx = max(xn)/scal1; 

my = max(yn)/scal1; 

[xssm,yssm]=meshgrid ([0:1: mx], [0:1:my]); 

Zmsh = griddata (xn/scal1,yn/scal1,S1,xssm,yssm); 

figure, imshow(zmsh,[]);colormap(jet);colorbar; 
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hold on, plot(xcell/scal1,ycell/scal1,'r','LineWidth',2); 

cbar = colorbar; 

set (get(cbar,'ylabel'),'String','Stress [Pa]'); 

%% 
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4.2. Appendix II- ANSYS scripts 

4.2.1. Model definition  

%% Project Name 

/TITLE, Substrate 

%% Pre-processing    

/PREP7       

%% Defining the model with the images dimension      

ET, 1, SOLID185     

KEYOPT, 1, 2, 0 

KEYOPT, 1, 3, 0 

KEYOPT, 1, 6, 0 

MPTEMP, 

MPTEMP, 1, 0  

MPDATA, EX, 1, 3500 

MPDATA, PRXY, 1, 0.4   

BLC 4, 0, 0, 9.0667e-5, 7.2e-5, 6.6667e-5 

% % Defining the mesh and 3-d meshing the model  

AESIZE, ALL, 2.67e-6       

MSHKEY, 0 
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MSHAPE, 1, 3d  

CM, Y, VOLU  

VSEL,  

CM, _Y1, VOLU 

CHKMSH,'VOLU' 

CMSEL, S, _Y 

MSHAPE, 0, 3d  

MSHKEY, 1 

VMESH, _Y1 

MSHKEY, 0 

 

4.2.2. Applying load on the gel 

          %% Making tables including the nodes and displacements and apply force on them 
 

*dim, Txy, table, 101, 5, 1 

*tread, Txy, 'table1.txt' 

*do,i, 1, 101, 1 

 d,Txy(i,1),ux,Txy(i,4) 

 d,Txy(i,1),uy,Txy(i,5) 

 *enddo 
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*dim, loadf, table, 879, 5, 1 

*tread, loadf,'table2.txt' 

*do,j, 1, 879, 1 

%% Assigning a zero external force 

f,loadf(j,1),fx,0 

f,loadf(j,1),fy,0 

f,loadf(j,1),fz,0 

*enddo 

%% Fixed gel boundaries 

da, 2,ux,0 

da, 2,uy,0 

da, 2,uz,0 

 

 

 

 

 

  



73 | P a g e  
  

4.3. Appendix III-Tables: CTFs and cell areas  

 

Table 4. CTF and cell area for cells grown on 3.5, 7.5 and 20 kPa gel coated with fibronectin 
 

Young’s 

modulus 
3.5 kPa 7.5 kPa 20 kPa 

Fibronectin CTF [nN] 

 
 

Area 

[µm
2
] 

CTF[nN] Area [µm
2
] CTF[nN] Area [µm

2
] 

1 

 

3.98E+0

2 
 

2468.25 1.21E+02 1625.1075 84.825 
 

3656.491875 
 

2 

 
8.66E+01 1314 1.76E+01 1419.813 744.75 3194.579 

3 

 
4.88E+02 1966.5 5.63E+01 2104.313 465.75 4734.704 

4 

 
1.78E+02 1300.5 2.52E+02 3167.375 506.25 7126.593 

5 

 
1.29E+02 1140.75 3.47E+02 2020.748 411.75 4546.683 

6 

 
2.36E+02 1851.75 5.11E+02 2763.945 436.5 6218.876 

7 

 
2.88E+02 1422 3.83E+02 2240.505 113.625 3249.97425 

8 

 
1.13E+02 1296 4.05E+02 2279.745 423 5894.67375 

9 

 
9.63E+01 1485 2.11E+02 1634.558 57.15 4100.625 

10 

 
1.83E+01 1210.5 1.40E+02 1444.433 195.3 1575.45 

11 

 
4.19E+02 2288.25 8.66E+01 2619.855 252 5134.64175 

12 

 
4.19E+01 945 6.17E+01 1822.5 157.95 2870.4375 

13 

 
1.94E+01 805.5 1.73E+01 700.2 206.1 4640.085 

14 

 
7.61E+01 1723.5 1.04E+02 2282.063   

15 

 
2.41E+02 4684.5 3.15E+01 1275.75   

16 

 
1.47E+02 1647 1.25E+02 2062.26   

17 

 
5.99E+01 1226.25 4.23E+02 2577.87   

18 

 
5.02E+02 2274.75     

Average 

 
1.97E+02 1725 1.94E+02 2002.414147 311.919 4380.29351 

STDEV 

 
160.29 874.55 161.5678 615.435157 202.996 1512.122676 
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Table 5. CTF and cell area for cells grown on 3.5, 7.5 and 20 kPa gel coated with collagen 
 

Young’s modulus 3.5 kPa 7.5 kPa 20 kPa 

Collagen CTF [nN] 

 
 

Area [µm
2
] CTF[nN] Area [µm

2
] CTF[nN] Area [µm

2
] 

1 

 

  29 

 

2468 188 
 

3756 
 

154 
 

4394 

 
 

2 

 
51 1314 137 

1216 
 

277 
3628 

 

3 

 
29 1966 63 

977 
 

 

338 
4374 

 

4 

 

20 
 

1300 105 
1905 

 
39 

2802 

 

5 

 

72 
 

1141 504 3120 338 
4990 

 

6 

 

31 
 

1852 52 1243 297 
2890 

 

7 

 

27 
 

1422 
130 

 

2950 
 

43 1920 

8 

 

32 
 

1296 58 1713 304 3559 

9 

 
28 1485 291 2342 765 

5110 

 

10 

 
  344 2066 174 

3957 

 

11 

 
  107 2118 326 

3050 

 

12 

 
  349 2786   

13 

 
  165 1021   

Average 

 

35 
 

1009 
 

192 
2094 

 

278 
 

3697 
 

STDEV 

 

16 
 

327.0 
 

138 
 

874.0 
196 

 

986 
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4.4. Appendix IV- Sample of analyzed cell images 

 

Sample analyzed cell images with their traction stress distributions. Figure 23: triangular shape cells, 

Figure 24: spindle shape cells and figure 25: cells with random or small triangular shape on a softer 

gel. 

 

 
 

 

 
 

 
   
 

 

 
 

 
 

Figure 23. Phase image and tractional stress:Triangular shape cells 
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Figure 24. Phase image and tractional stress: Spindle shape cells 
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Figure 25. Phase image and tractional stress: Random or small triangular shape cells 
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