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Abstract 

This project furthers the design and testing of the WPI kite-powered water-pump system. The 

purpose is to provide developing nations with an inexpensive airborne wind energy system 

capable of efficiently and consistently pumping water. After initial field testing in fall 2013, 

several design modifications were made. These included developing improved kite stall 

techniques, a mobile trailer system, and designing and building an automated water-pumping 

volume measurement system. The trailer allows for field testing of a wider range of locations. 

Modifications were successfully field tested in spring 2014. An existing MATLAB simulation 

was also modified to model random wind variations. 
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1.0 Background 
A wind-powered water pump has the potential to drastically improve the quality of life in developing 

nations by making a vital resource more easily attained. This project addresses the need for a simple, 

reliable, and consistent solution to the water needs of emerging lands. 

One of the most basic and reliable methods of pumping water is the manual hand-pump.  A hand-pump 

is simple and effective; however, it requires a lot of time and effort. Hand pumps will only produce 

water for as long as a person is willing to operate them, which is not an effective means of producing 

large quantities.  Other methods of more efficient operation must be considered in order to run the 

water pump autonomously and for long periods of time. One such alternative and more efficient 

method is airborne wind energy systems. 

The primary method of utilizing airborne wind energy discussed in this project is kites or rigid gliders.  

With their simple operation and maintenance, kites are a cost-effective and energy-effective method of 

harnessing wind for the purpose of operating a water pump. Compared to conventional windmills, kites 

are able to reach stronger winds at higher altitudes and have less of an environmental disturbance while 

remaining relatively inexpensive. Wind farms are often inefficient in land utilization, as well, while kites 

do not require large towers and foundations. This project aims to improve upon the research and kite-

system created by past project teams by increasing the efficiency. 

1.1 Airborne Wind Energy 
Airborne Wind Energy (AWE) is a type of renewable energy using wind and kites or rigid gliders to 

generate power. AWE systems, first proposed and studied by Loyd in 1980, have been designed for 

human resources such as transportation of sea or land vehicles, water pumping, and electricity 

generation (Loyd, 1980). Generally, the use of AWE is widely accessible in areas of medium and high 

altitude where wind can be most easily captured. AWE systems have a relatively low production cost 

and have the potential to produce significant power. Most current AWE systems with significant power 

output need to be tethered to the ground in order to generate energy (Diehl, 2013). 

1.1.1 Airborne Wind Energy 
Airborne wind energy research uses two distinct methods of power generation: FlyGen and GroundGen. 

In FlyGen, power from drag forces is generated in airborne turbines by the high airspeed relative to the 

tethered wing. In GroundGen power from lift is utilized by pulling a load on the ground using tether 

tension (Diehl, 2013). This project’s kite system generates power using lift. An advantage to using lift is 

the simplicity of implementation; the mechanical system that generates energy does not need to be 

light enough to fly with the kite. Tension in the tether of a flying kite will always have a vertical force 

component, which is ideal for lifting the lever-arm of a pump on the ground (Diehl, 2013). 

Tether tension becomes useful by performing work on the ground, in this case by operating the lever-

arm of a water pump. Lever-arm displacement is accomplished by the looping motion of the kite flying 

in a crosswind, varying the tether tension strength and direction. For this project’s system, the desired 

variation in tension is caused by the repeated stalling of the kite at a specific angle of attack gained from 

the control of the leading and trailing edge tethers. With the goal of improving water pump efficiency at 
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various wind speeds, field experimentation is designed to investigate the relationship of tether tension, 

angle of attack, and their control method. 

Figure 1, below, demonstrates the majority of the concepts discussed above using a simple spooling line 

concept. A mechanism on the ground is attached to a kite in the air using a tether. The rising kite 

generates power followed by a retracting stroke to repeat the process. Though this project uses a 

rocking arm rather than a spool, the same principle generates power to lift and lower the water pump 

piston. 

 

Figure 1 - Simple spooling line concept (1-Kite, 2, Tether, 3- Spool, 4-Gearbox and motor, 5-Generator, 6-Kite steering 
mechanism, 7-Crosswind kite motion) (Olinger, 2010). 

 

1.1.2 WPI Kite Powered Water Pump System 

The system to be tested and re-designed by this project team was constructed by previous WPI MQP 

teams and is shown in Figure 1. The system consists of a grounded A-frame (2) supporting a 134 inches 

rocking arm (1) at a pivot point (B) 89 inches from the end (point A) where the kite tether is attached. 

This rocking arm is attached by a mechanical linkage (b) to the displacement water pump at point C. The 

rocking arm is lifted by the tension in the main kite tether at point A, and is caused to drop by 

decreasing this lift using various control methods that are described further in the Methodology section. 

Each control method involves an additional tether to which tension is applied at the time of maximum 

rocking arm inclination. The rocking motion of the arm is transferred to the displacement pump by the 

mechanical linkage. A one-way valve (10) on the piston of the water pump opens on the down-stroke, 

allowing the system to return to its initial configuration (Bartosik et al., 2012; Butler et al., 2013). 
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Figure 2 - Diagram of this project's water-pump system (Olinger et al. 2013) 

 

In addition to previous field testing, WPI researchers have evaluated the feasibility of the kite power 

system using mathematical models. This project’s experimentation aims to examine the performance 

parameters of the kite power system, and to modify the design to more closely approximate the ideal 

numerical predictions simulated in previous work on our projects system (Olinger et al, 2013). The 

current model (Olinger et al., 2013) optimized dimensions of the tethers and determined that with a 

constant wind speed of 6 meters per second, 8000 liters of water pumped per day is predicted. 

1.1.3 Advantages and Disadvantages 

This project’s research concentrates on the kite-powered water pump system that uses a cycle of 

increasing lift and stalling of the kite to move a rocking arm that is linked to the water pump’s handle. 

There are three major reasons for the increasing interest in AWE for alternative energy. The first reason 

is that wind energy is one of the few alternative energy sources abundant enough to satisfy the power 

needs of humans. As long as a location has a sufficient level of wind, AWE systems may be installed and 

operated. Second AWE systems are able to reach higher altitudes than towered wind turbines, where 
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wind is stronger. AWE systems also have with simpler designs, and can be removed and reinstalled more 

quickly and inexpensively than towered-wind turbines. Lastly, AWE systems require less material 

investment per unit of usable power output than most other renewable energy sources, meaning that 

these systems produce energy at a lower cost. 

AWE systems also have disadvantages. Wind dependency may be considered one of the most significant 

disadvantages of the kite-powered systems. Changing wind directions and slow wind speeds may stall 

the airfoil, creating the possibility for a tethered wing to crash. Theoretical calculations using optimal 

operational wind speeds versus power output also show that two-thirds of the wind’s power is 

dissipated in forms of drag and only one-third produces reliable energy. Lastly, the intrinsic drag due to 

the tether line that affects the lift-drag ratio   enters the limit quadratically. Since kites with more lift 

produce more energy, a lower drag coefficient is desired. In the case of kite-powered systems, the 

tether drag becomes a dominant drag contribution.  

1.1.4 Optimization of AWE Systems 

Optimizing AWE systems mean overcoming the technical challenges. Technical challenges for AWE 

systems include:  

 Developing low-cost, automated methods of launching and landing 

 Developing efficient autonomous control of the kite under all wind and weather conditions 

 Designing wings or frames that are light and durable enough for the system 

 Finding or developing tethers with thinner diameter but capable of varying load, as well as 

capable of transmitting high voltage electrical power for on-board generation 

Optimization relies on calculations and estimations based on the most economical and efficient sizes of 

the airborne system.  Solving for the amount of wind power that can be generated on a given ground 

surface area is also important for optimization. According to MacKay(2009), conventional wind turbine 

farms produce 2 megawatts (MW) per square kilometer (km2), which is considered less efficient than 

with airborne wind energy systems (MacKay, 2009). As previously stated, airborne wind energy systems 

can reach higher altitudes with stronger and more consistent winds, and may also operate at more than 

one level in order to maximize the power output over a given ground surface area.  

 

1.2 Location Testing 
The current location for the kite powered water pump is Heifer Farm in Rutland, MA.  Heifer Farm’s 

mission is “To work with communities to end hunger and poverty and care for the Earth” (Chretien, 

2008).  The farm hosts events that reach out to the community to teach others about sustainable living, 

agriculture, and the needs of undeveloped nations.  The Heifer organization views the kite-powered 

water pump as an aspect of their mission and has granted the use of their land for testing purposes.   

In 2006, Heifer Farms worked with Mass Energy to explore the feasibility of erecting a wind turbine at 

Overlook Farm. Jeff Collins of Mass Audubon provided an environmental impact analysis, while 
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Lighthouse Electrical installed the MET tower to collect data and provided site visualizations and 

simulations.  Financial analysis was conducted by Michele Bilodeau, the Fiscal Director of Mass Energy.  

Mass Energy compiled data, provided a final report to determine feasibility, and concluded that at the 

time of the report a wind turbine was not economically feasible. This final report also provides monthly 

wind speed averages above ground level that are useful for simulations for the kite power project. 

 

Figure 3 - Heifer Average Monthly Wind Speed at 50m (m/s) from 9/17/2007 to 8/8/2008 (Chretien). 

1.3 Relation to Undeveloped Nations 
The kite-powered water pump has the potential to make a powerful impact in undeveloped nations 

where clean water is scarce, such as Africa.  An approximate wind speed of 10 miles per hour (4.4 

meters per second) is required to lift and maintain the kite’s flight.  The following map shows averaged 

wind speeds at 10 meters above ground level across Africa from 1976 through 1995.  
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Figure 4 - Annual mean wind speed in Southern Africa, 50m a.s.l. in 2005 (NASA SSE 2005). 

Regional wind speeds are important for the operation of the kite system.  As height above ground level 

increases, so does average wind speed.  An average wind speed within the range of the kite’s required 

launch speed makes it possible to launch the kite; therefore, kite-powered water pumps are likely able 

to be attached to existing water pumps throughout much of Southern Africa, as well as other 

undeveloped nations.  A possible country for use of the kite powered water pump is Namibia on the 

Southwestern coast of Africa.  WPI maintains a project center in Windhoek, Namibia. 

1.4 Previous MQP Results 
The progress of this project builds upon the accomplishments of previous WPI MQP students. Key 

details of projects from past years, including this year’s project, are listed below in Table 1. 

Table 1 - Previous MQP Results (Butler, 2013) 

Year IQP/MQP Title Students Main Accomplishments 

2007 
Wind Power 

From Kites MQP 

Michael R. Blouin Jr. 
Benjamin E. Isabella 

Joshua E. Rodde 

Designed and constructed the basic A - frame 
structure and rocking arm. 
Selected kite for use in power generation based on 
testing and mathematical analysis. 
Ran simulations based on steady state and dynamic 
theory of the tested kites. 

2008 
Kite Power for 

Heifer 
International’s 

Gabriel Baldwin 
Peter Bertoli 

Taylor LaLonde 

Developed educational exhibits on kite power for 
use at the Heifer International's Overlook Farm site. 
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Overlook Farm 
IQP 

Michael Sangermano 
Nick Urko 

2008 

Design of a One 
Kilowatt Scale 

Kite Power 
System MQP 

Ryan Buckley 
Chris Colschen 
Michael DeCuir 

Max Hurgin 
Erik Lovejo 

Nick Simone 

Completed and tested the demonstrator which was 
able to generate power as well as autonomously 
keep the kite aloft for a short period of time. 
Performed stress analysis in Cosmosworks and ran 
power generation simulations in MATLAB. 

2009 

Development of 
a Wind 

Monitoring 
System and Grain 

Grinder IQP 

Deepa Krishnaswamy 
Joseph Phaneuf 
Travis Perullo 

Designed a balloon mounted wind monitoring 
system using an anemometer. 
Implemented a small grain grinder to be attached to 
the power converter on the kite power system.  

2009 

Design of a Data 
Acquisition 

System for a Kite 
Power 

Demonstrator 
MQP 

Lauren Alex 
Eric DeStefano 

Luke Fekete 
Scott Gary 

Designed data collection system for physical 
attributes of the system as well as for power 
generation.  
Designed secondary power generation and 
oscillation control subcomponents.  
Further optimized rocking arm and A-frame as well 
as tested each system and subcomponent. 

2010 

Design of a 
Dynamometer 

For The WPI Kite 
Power System 

MQP 

C. Kuthan Toydemir 
Designed and built a dynamometer used to measure 
torque and power. 

2010 

Re-Design and 
Testing of the 

WPI Kite Power 
System MQP 

Adam Cartier 
Eric Murphy 

Travis Perullo 
Matthew Tomasko 

Kimberly White 

Modified system:  
Used a more stable and larger sled kite 
Upgraded gear shaft  
Built mechanism to change angle of attack of kite  
Measured tension of kite tether during testing  

2011 

Design of a 
Remote 

Controlled 
Tether System 

for the WPI Kite 
Power System 

MQP 

Michael Frewin 
Emanuel Jimenez 

Michael Roth 

Developed wireless system to remotely control 
trailing edge lines of kite to alter angle of attack and 
side-to-side motion  
Designed a control box with two motors, gear boxes, 
transmitters, and two spools to control the length of 
trailing tethers.  

2012 

Design of a Kite- 
Powered Water 

Pump and 
Airborne Wind 
Turbine MQP 

Kyle Bartosik 
Jennifer Gill 

Andrew Lybarger 
Daniel Nyren 
John Wilde 

Redesigned system to add a mechanical water pump 
and head simulation valve 

2013 

Re- Design of the 
WPI Kite-

Powered Water 
Pump and Wind 
Turbine Systems 

Valerie Butler 
Jeffrey Corado 

Kimberly Joback 
Bryan Karsky 

Matthew Melia 

Altered transfer arm 
Modified sliding weight mechanism 
Added adjustable weight to rocking arm 
Added a ground-tether 
Redesigned lightweight, airborne wind turbine 
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Robert Monteith 
Brandy Warner 

2014 

Optimization of 
the WPI Kite 

Powered Water 
Pump 

Aaron Durkee 
Chrisopher Ettis 

Jerry Kim 
David Levien 

Performed extensive field testing on the kite system 
Created a functioning VI in LabVIEW for data 
acquisition 
Created a simulation using MatLab to model random 
wind speeds 
Design a portable trailer system 

1.5 Project Goals 
The overall aim of this project was to improve the WPI kite-powered water pump. Specific project goals 

are: 

 Perform further field testing on the kite system to gather data including tether tension, arm 

angle, and water pumping rates 

 To create a functioning VI in LabVIEW to gather data from testing instrumentation  

 Propose mechanical modifications to further improve the function of the water pump and 

power generation system based on the measured data 

 To modify an existing simulation of the water pump to model wind gusts and random wind 

conditions using MATLAB 

 To improve kite stalling mechanisms on the system 

 To design a portable trailer system and automated pumping volume measurement system in 

order to transport the water pump and improve field testing 

These goals were chosen based on the progress and results of previous MQP projects. The experimental 

methods used to accomplish these goals are described in the following section. 
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2.0 Methodology 

2.1 Design Processes 
Multiple configurations of kite-pump system have been developed in this year’s project using the 

mechanical system established in previous projects. The various setups are all attempts to optimize the 

overall operation of the system to reliably pump water by varying the method of stalling the kite with 

different tether configurations (shown in Figures 4-6). 

In the first configuration (method 1) a bridle tether is attached between the kite leading edge and 

rocking arm while the stalling tether is attached between the trailing edge and the ground. 

 

Figure 5 – Method 1, Water-pump system in the new trailing-edge to ground configuration 

When the kite is lifted, the bridle tether pulls the lever-arm up. The rising kite then reaches a point 

where tension in the grounded stalling tether allows only the leading edge of the kite to rise to a stalling 

angle of attack, causing the kite to fall. The decreased lift and the weight of the arm then pull the kite 

back down, lowering the lever-arm to start a new pump cycle. 

In the second configuration (method 2) is the pulley system, consisting of a grounded pulley that 

connects the stalling tether to the rocking arm. 

Bridle tether 

Stalling tether 
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Figure 6 – Method 2, Water-pump system in the new pulley system configuration 

The pulley-system helps to stall the kite by allowing the lifting of the rocking arm to also pull down on 

the kite’s trailing edge. 

The new, third configuration (method 3) required modifications to an existing kite. An additional leading 

edge tether was stitched to the upper corners of the kite’s central stabilizing flow tube, while the trailing 

edge tether was removed completely. 

 

Figure 7 – Method 3, Water-pump system in the new leading-edge stall configuration 

Bridle tether 

Stalling tether 

Bridle tether 

Stalling tether 
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This setup closes the center tube of the kite when tension is placed on the stalling tether to prevent flow 

through the stabilizing tube when the center of leading edge is pulled, causing the kite to become 

unstable, lose altitude, lower its angle of attack, and drop the lever-arm. Once the tension in the stall 

line is released, the kite center tube is reopened regaining airfoil shape and stability to once again 

experience a lift force, thereby lifting the lever-arm. 

2.2 Instrumentation 
Instrumentation and software were used to measure forces, angles, and wind speed during field testing 

of the WPI kite-powered water-pump. This data could later be used to deduce the effectiveness of 

different configurations as well as any other changes in performance. The following hardware was all 

supplied for this project, with the goal being to refine and improve the data acquisition system. 

2.2.1 Inclinometer 

Rieker N4 Liquid Capacitive Electronic Analog Output Inclinometer Sensor 

 

Range -70° to 70° 

Resolution 0.01° 

Power Supply 5 VDC 

 

The inclinometer is mounted on the rocking arm and used record the angle of the lever-arm. Angles are 

measured from the horizontal and over a chosen time interval. Data collected shows the periodic 

motion of the lever-arm, and therefore also water-pump lever, allowing for the quantitative observation 

of oscillations and the angle at key points in the pump cycle, such as the lifting stage and stall point. 

2.2.2 Load Cell 

Transducer Techniques THB-1K-S 

 

 

 

 

The load cell is compressed by its housing bracket due to the tension between the kite-tether and lever-

arm. Data collected by the load cell shows the force that the kite is exerting on the lever-arm at various 

points throughout the pump cycle. Key points of the pump cycle such as the lifting stage and especially 

the stall point are important to gain an understanding of the effectiveness of each kite system 

configuration. 

 

 

Capacity Range 1000 lbs 

Rated Output 2 mV/V nominal 

Excitation Voltage 10  VDC 

Figure 8 - Rieker N4 Liquid Capacitive Electronic Analog Output Inclinometer Sensor and Specifications 

 

Figure 9 - Transducer Techniques THB-1K-S and Specifications 
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2.2.3 Amplifier 

Transducer Techniques TMO-1 

 
Gain Range 75 to 1000 

Output Voltage Range 0 to 8 VDC 

Excitation Voltage 8 VDC 

Power Supply 12 VDC 
Figure 10 – Amplifier and Specifications 

The amplifier is used to provide excitation voltage to the load cell, and to amplify the load cells output 

signal to levels that can be read by the DAQ. 

2.2.4 DAQ 

National Instruments USB-6000 

 
Figure 11 – National Instruments DAQ and Specifications 

 

The National Instruments Data Acquisition (DAQ) reads the voltages from the inclinometer and the load 

cell, and then sends that information into the LabVIEW VI via USB. The DAQ also provides the 5V power 

supply for the inclinometer sent from the LabVIEW via USB. 
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2.2.5 LabVIEW 

The virtual instrument (VI) constructed in LabVIEW is used to calibrate the inclinometer and load cell to 

output measurements in appropriate units, display the measurements on charts, and to record the 

measurements in a Microsoft Excel file. The VI is controlled on a front panel that feeds parameters to 

the block diagram. Controls include switches for automatic inclinometer calibration, for writing to an 

Excel sheet, and for selecting the file path of that Excel sheet. The data displayed by the VI includes the 

instantaneous angle read by the inclinometer, force on the load cell, and the graphs of these values 

versus time. 

2.2.6 Wind Sensor 

The Oregon Scientific WMR200A is a home weather station capable of recording and displaying the 

temperature around the display unit, the weather station temperature, barometric pressure, rainfall, 

humidity, wind speed, and wind direction.  This project used the unit primarily to determine wind speed 

and direction, as this data could be used in the force equations for the kite system. 

 

Figure 12 - Oregon Scientific Weather Station in the Lab 

A trial version of Virtual Weather Station by Ambient Weather was used to read the values recorded by 

the WMR200A.  This program provided a near real-time display of incoming data, which is the reason it 

was chosen over the WMR200A’s one minute recording intervals.  The program was set to save the 

speed and direction of the wind and of gusts over a one minute time interval to a Microsoft Excel file.  

The images providing more frequent updates were able to be saved manually, as the program did not 

provide an efficient method of doing so. 
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2.2.7 Well Depth Simulator 

Water wells vary in depth, meaning that they also vary in the force necessary to pump out their water. 

The pressure, or well-depth, simulator was used to mimic the cases of deeper wells by increasing the 

force needed to pump the water. 

 

Figure 13 - The pressure pump (right) and its location on the water-pump system (left) 

The pressure simulator works by changing the area of the orifice that the water is being pumped 

through, thereby changing the water pressure. As the rod protruding from the end of the pipe is turned 

counterclockwise, it screws out of the pipe and pulls on a spring (pictured below). As the spring is 

extended it pulls on a rod that reduces the orifice out of which the water flows; so, the more that the 

spring is extended the higher the water pressure will be, resulting in the simulation of a deeper well. 

 

Figure 14 - The spring and rod within the pressure simulator pipe 
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2.3 Field Testing 
The primary goal of this project is to gather data through field testing the water-pump system and its 

different configurations. Field testing encompasses the use of all instrumentation, kites, and the 

previously built structure. 

2.3.1 Instrumentation 

In order to gather data while field testing each piece of instrumentation must be attached to the water-

pump system. The following are steps to set up instrumentation: 

1. Secure the DAQ and amplifier under the leg of the system using Velcro 

2. Attach the load cell to the eye-hook at the end of the lever-arm so that it is between the kite-

tether and the lever-arm 

3. Secure the inclinometer at its zero position to the mount on the side of the lever-arm 

4. Plug the DAQ in to the laptop 

5. Open the corresponding the LabVIEW program 

In addition to these steps, the wind sensor must be turned on and have the year, date, and time set 

correctly. Once all of the instrumentation is set up and running, the system is ready to gather data. 

2.3.2 Kite 

Before there is any data to be gathered, the kite must be unpacked and attached to the water-pump 

system and instrumentation. The kite is set up using the following steps: 

1. Unwind the tethers, starting from the water-pump system and moving outwards 

2. Unpack the kite, including untying and untangling all lines, and lay it on the ground (if the wind 

is strong, put a weighted item on top of the kite to prevent it from blowing away) 

3. Tie the tethers to the corresponding kite lines using the Lark’s Head knot (corresponding tethers 

and lines depends on the chosen configuration) 

 

Figure 15 - The Lark's Head knot used to tie the tethers to kite lines and to the water-pump system 
(http://www.kiteboardingevolution.com/larks-head-knot.html) 

 

http://www.kiteboardingevolution.com/larks-head-knot.html


25 
 

Once the above steps are completed, all of the tethers and instrumentation are secure and the kite may 

be launched. 

2.4 Water-pump System Trailer Modifications 
 In order for the water-pump system to be more easily tested, it was modified so that it may 

operate on a trailer and be transported to various locations. The steps for modification are listed below: 

 Raised the A-frame off of the ground in order for a water reservoir to be kept underneath. 

 

Figure 16 - Raised A-frame structure 

 Extended the piping of the water-pump so that it may be lifted and able to pump water from the 

reservoir located beneath the system. 

 

Figure 17 - Extended and raised water-pump piping 
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 Removed the wooden support beam, and raised it so as not to obstruct the lever-arm of the 

water-pump from having a full range of motion.  

 

Figure 18 - Wooden support beam to be raised 

Alterations were accomplished using simple tools supplied in the laboratory, as well as small number of 

screws and a wooden support beam that were purchased. After the purchase of the trailer, a water-

reservoir was placed under the system to simulate a well. These adjustments made it possible to test 

the entire system in a wider variety of locations, allowing for a wider range of data sampling. 

2.4.1 Water-dumping Mechanism 

In order for the system to be efficient once placed on the trailer, there needed to be a constant supply 

of water. A water reservoir was placed on top of the trailer, under the A-frame, but for the volume of 

water being pumped to be measured the water could not simply be pumped directly back into the 

reservoir. The solution to this problem was the “tipping” bucket, which could be consistently filled with 

the same volume of water, and then emptied back into the reservoir beneath the system. The tipping 

bucket mechanism is pictured below: 
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Figure 19 – Inside of the tipping bucket mechanism 

Two holes were drilled at one-third the height of the bucket from the bottom, and then a 3/8 inch rod 

was inserted through both holes. One hole was also drilled in the center of the bottom of the bucket, 

which was filled with a 3/8 inch screw. This allowed the bucket to hang underneath the outlet of the 

pump, and to tip along the axis of the rod. 

 

Figure 20 - The weight underneath the tipping bucket 

A weight was added to the bottom of the bucket to shift its center of mass downward, which allowed it 

to return upright after tilting to return the water into the reservoir. The weight used was in the form of 

an iron plate and hexagon knob, which attached to the screw placed in the bottom surface of the 

bucket. 
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Figure 21 - Completed tipping bucket mechanism 

The points at which the horizontal rod rotates through wooden posts have extra space, allowing for 

easier rotation with less friction. The small screw protruding from the front of the bucket acts as a 

weight, causing the bucket to tip in that direction by being slightly heavier than the opposing. All 

modifications were made waterproof by using specialized glue. The tipping bucket mechanism allowed 

for a measurable method of returning water to the above-ground reservoir while field testing with the 

trailer system. 

     

Figure 22 - Automatic-counter mechanism 

An automatic counter was added for the most accurate, autonomous measurability possible. The images 

above depict how the bucket is attached to the counter, and then how the tipping of the bucket causes 

tension on the rope and pulls down on the lever-arm of the counter. Having the exact number of times 

the bucket as emptied water allowed the volume of pumped water to be more easily calculated. 

Approximately 6 liters of water are measured for each bucket dump. 
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2. 5 MATLAB Simulation 
In addition to observation of the pump system’s performance during field testing and analysis of 

experimental data obtained, variation in performance parameters were evaluated based on a simulation 

of the system in MATLAB. This MATLAB simulation is a modification of code used in Olinger et al. (2013). 

The modification consisted of replacing the assumption of constant wind speed with a model based on 

power spectral analysis of horizontal wind speed to study the effects of wind speed variation on system 

performance. The power spectral density model used was from Van der Hoven (1956). This allowed 

comparison of performance parameters such as tether force and cumulative volume of water pumped 

for randomly varying wind speed compared to constant wind speeds. 

This modified simulation allows not only for comparison with the previous simulation results but also 

comparison of experimental results with the goal of the periodic variation more accurately 

approximating the real wind conditions. Possible design modifications for the pump could then be 

considered in regards to trends observed in the simulations, such as the time varying kite tether force. 

Further experimentation after simulation was limited by weather in this project and suggestions are 

detailed in section 5.2. 

The existing MATLAB code simulates the forces and motion of the kite, tether, rocking arm, and pump 

over a user specified time interval by solving the four coupled differential equations of motion for the 

kite-tether-rocking arm system, using MATLAB®ODE23 solver on each time step in the interval (Olinger 

et al., 2013). Each time step also uses the four values from the solver, namely kite velocity, kite tether 

angle, rocking arm tip velocity, and rocking arm angle, to determine other useful quantities as a function 

of time such as tether force and pump displacement. Our study determines how these quantities are 

effected by allowing one user defined variable, namely wind speed, to vary with time. This varies the lift 

and drag forces on the kite and tether used in the differential equations. 

2.6 Project Website 
For this project to reach its maximum potential, the work needed to be publicized. A website describing 

and depicting past work and accomplishments had been created by an earlier MQP, but it had fallen out 

of date and was shut down. By reviving the webpage and bringing it up to date, the project concepts and 

ideas could be shared with the public. 

To edit the webpage, which was in the form of a wiki-page, a specific markup language had to be 

learned. Once able to edit, the website was reorganized to begin at a welcome page with links to all 

other sections of the website. Section pages included current progress, images, and project 

components, with room to add more as the project progresses. 
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Figure 23- Screenshot of the Welcome Screen on the Project Website 
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3.0 Results 

3.1 Field Testing 
The three stalling designs were tested in the Fall of 2013 in order to determine their effectiveness in 

powering the kite powered system.  The main goal for the tests was to determine which method would 

stall and raise the rocking arm the most effectively, with data gathered to reinforce qualitative data 

gathered through observation.  Ease of setup, range of effective wind speeds, performance during wind 

gusts, and durability were all taken into consideration while testing.  The instrumentation was used to 

gather tension forces in one tether per test while simultaneously recording the rocking arm angle. 

The trailing edge to ground configuration was tested without instrumentation.  During testing, it was 

found that this method could raise and lower the rocking arm.  The effectiveness of this method, 

however, was poor.  The cycle was interrupted many times, creating a very low volume of water 

pumped.  The method was easy to setup, however it required adjustment of the trailing edge tether 

once the kite was in the air, which required the kite to be brought back to the ground to adjust.  The kite 

required wind speeds of about 10 miles per hour to fly, but once it was up there was no maintenance 

required as long as the average wind speed remained at this speed.  During testing, gusts had a positive 

impact in the lifting power of the kite.  From subsequent testing methods, however, gusts may be of 

concern as they caused the kite to crash into the ground several times.  The durability of this method 

was a concern, particularly in the trailing edge tether connection method used on the kite.  After 

moderate testing, the point where the loop created at the end of the trailing edge tether connected to 

the trailing edge line on the kite (which spanned between the two trailing edge corners) caused enough 

friction to weaken and eventually break the kite line.  While this was easily mended with a knot, it 

ceased operation until the line was fixed. 

The pulley configuration was tested with instrumentation during a very windy day.  The effectiveness of 

this method was found to be marginally better than the trailing edge to ground configuration.  Setup 

was the same as the trailing edge to ground method, only requiring one additional line to be connected.  

The wind ranges for operation were the same as the previous method.  Performance during wind gusts 

was poor; the wind would pull the kite in a lateral direction, causing the arm to reach an angle above 

parallel with the ground and remain within a very small variation of there for the duration of the gust.  

This may have been caused by poor trailing edge tether length adjustment, but it was not tested 

adequately to determine.  The durability problem discussed in the trialing edge to ground configuration 

occurred during testing of this method, but since both methods used the same trailing edge connection 

method, it applies to both.  During the gusty testing day, the kite crashed into the ground, causing one 

of the fiberglass spars in the kite to eject out of its slot in the kite.  This had to be mended and 

reinforced. 

During the pulley configuration test, leading edge tether tension, trailing edge tether tension, minute-

average wind speed, and wind gust speeds were measured. 
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Table 2- Pulley Configuration Test Data 

 Leading Edge 
Tension (lbs) 

Trailing Edge 
Tension (lbs) 

Minute 
Average Wind 
Speed (mph) 

Minute-Ranged 
Wind Gust Speed 
(mph) 

Minimum 0.00 0.00 2.00 3.00 

Maximum 150.86 18.33 18.00 22.00 

Average 62.14 7.24 8.02 9.93 

Standard Deviation 32.03 4.48 3.41 3.92 

 

From this data it can be noted that the leading edge tension is far greater than the trailing edge tension.  

There is also great variation in the tension data, which is correlated to the variation in the average wind 

speed and further expanded by the higher gust speeds. 

The leading edge stall configuration was tested for qualitative data without the opportunity to use 

instrumentation.  This method provided the most cyclical motion of the kite, and a vast improvement in 

operation over the previous methods.  The stall method created such a large impact in the lift of the kite 

that stall recovery became a concern.  During testing, some stalls became so severe that the kite folded 

in the air, causing the kite to fall to the ground without any chance of in-air recovery.  Additional 

modifications were required to be made to the kite for this method, causing additional initial setup time, 

but similar subsequent setup times as the previous methods.  In order to remain airborne, the kite 

required the same average wind speed as the previous methods, however in order to recover from a 

stall, higher wind speeds were desired.  Gust performance was similar to average wind speed 

performance, however more data is required.  The kite durability for this method appeared to be an 

improvement over previous methods, with the largest concern being in the modifications made to 

accommodate the stalling tether.  No severe crashes were observed similar to the one that caused the 

fiberglass rod ejection, however more testing is required. 
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3.2 MATLAB Simulation 
The power spectral density for horizontal wind speed that was used to model varying wind speed with in 

the simulation is depicted in Figure 24 below (Van der Hoven, 1956). Twenty points on the specific 

kinetic energy vs. frequency curve are used as samples at an interval of 50 cycles per hour to obtain a 

time series for horizontal velocity (as it is the square root of specific kinetic energy). A discrete inverse 

Fourier transform generates the time series for horizontal velocity in a MATLAB script separate from the 

simulation loop to save time on computation.   

There are two main peaks in specific kinetic energy at 0.001 cycles per hour and 60 cycles per hour. 

Points across the entire frequency domain are used in the generation of the times series for wind 

velocity for completeness, however on the short simulation interval only partials with high frequencies 

have periods small enough to be visible in the results. These frequencies are also of interest because 

they are close to the desired frequency of the lift-stall cycle and their peaks at distinct points within the 

simulation interval can be directly compared with other simulated parameters at those points in time. 

 

Figure 24 - Power Spectral Density of Horizontal Wind Speed (Van der Hoven, 1956) 

The primary figure of merit in the pump systems performance is the total volume of water pumped 

during the simulation interval. For the original simulation on a 20 second interval with a constant wind 

speed of 6 meters per second as reported in (Olinger et al., 2013), the total volume of water is 3.23 

liters. With the wind speed oscillating around this average speed of 6 meters per second with relative 

deviations from the mean proportional to the deviations at each frequency in the power spectral density 

model, the total volume of water pumped on a 20 second interval drops to 2.16 liters. This is 

approximately 66% total volume efficiency of the idealized model. Additionally, there is a small decrease 

in average tether tension from 458N to 445N. The results are shown in the figures below. 



34 
 

 

Figure 25 - Simulation Performance Parameters on a 20 Second Interval 

 

The angular velocity of the rocking arm is the variable in the set of differential equations solved by the 

simulation that dictates pump piston displacement over time, which is proportional to the total volume 

of water pumped on the interval. The simulation with varying wind speed shows a decrease in average 

angular velocity of the rocking arm from 0.87 degrees per second to -1.22 degrees per second. Although 

the mean and extreme values of the tether force are similar in each case, there are longer time intervals 

of maximum tether force where the kite and rocking arm are ascending (power stroke). This is what 

causes a decrease in mechanical power of the rocking arm system shown by the decrease of angular 

velocity, while force (and thus torque) remains constant. The power decrease then manifests itself in the 

smaller volume of water (less work done by the pump). The above relations are shown in the figures 

below. 
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Figure 26 - Simulated Power Generation on a 20 Second Interval 
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4.0 Summary and Conclusions 
The following are the primary accomplishments of this project: 

 Performed further field testing on the kite system to gather data including tether tension, arm 

angle, and water pumping rates 

 Created a functioning VI in LabVIEW to gather data from testing instrumentation  

 Proposed and implemented mechanical modifications to further improve the function of the 

water pump and power generation system based on the measured data 

 Modified an existing simulation of the water pump to model wind gusts and random wind 

conditions using MATLAB 

 Designed and tested additional kite stalling mechanisms 

 Designed and implemented a portable trailer system and automated pumping volume 

measurement system in order to transport the water pump and improve field testing 

 

Each of the goals established in the beginning of this project were accomplished. Given that field testing 

is weather dependent, the newly designed stalling mechanisms and trailer system were not able to be 

extensively tested. Due to this lack of testing, sufficient amounts of testing data were not collected and 

analyzed to gauge efficiency, providing groundwork for future projects. 
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5.0 Recommendations and Future Work 
Following the progress of this project, there are areas in which work needs to be continued. This section 

details recommendations based on the experience of this WPI MQP project. 

5.1 Trailer Field Testing 
With the trailer system in place, field testing can take place in a number of new locations. Testing in a 

wider variety of locations can improve the frequency, and the quality, of gathered data. A more diverse 

sample size of testing sites will better represent the varying conditions under which the wind-powered 

water pump system will be expected to operate. This new data will lead to more representative data, 

and eventually to an optimal system. 

5.2 Leading Edge Stall Recovery System 
When using the leading edge stall method, some stalls can be too severe for the kite to recover from.  

This could be fixed by adding a rigid member to the kite spanning the width of the kite, causing the kite 

to expand to the full breadth when the stalling force is released. 

5.3 Kite Auto-Launch 
Developing an automatic launching method for the kite is crucial in achieving the most efficient 

operation of the water pump system. If this system is to be used in developing nations, it needs to 

operate such that a person will not need to re-launch the kite every time the wind diminishes. Possible 

structural changes include a flexible rod along the width of the kite to keep the leading edge raised off 

the ground with the flow cells open while the kite is landed, or a solid frame that includes two legs on 

the leading edge connected to a rod running to the trailing edge of the kite. One potential auto-launch 

design is shown below in Figure 26: 

 

Figure 27 - Auto-launch concept design 
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5.4 Website Updates 
Continuously updating the website will increase public awareness of this project and its research. If the 

information on the web page is kept up to date, it will portray the kite-powered water pump system as 

positive and progressive, which can be very beneficial. If this new, upcoming concept is positively 

received by the public then it will increase the likelihood of its use. 

5.5 Instrumentation Housing 
The instrumentation is currently in an exposed state, particularly the DAQ and the amplifier.  When 

moving or packing and unpacking the instrumentation, stresses are applied to the wires that are 

connected to the amplifier and the DAQ.  This causes wires to often be pulled from their slots and 

sometimes damaged.  There are also bits of wire that are exposed to the elements and may cause 

problems in testing.  A housing may be constructed which will better protect the wiring and 

instrumentation as well as possibly reducing setup and breakdown times. 
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Appendix A. Instrumentation Manual 

Load Cell 
The load cell has four different wires coming from the unit that are housed in a single grey shield casing.  

The wires are assigned as: 

 

Figure 28- Wiring Diagram for THB-1K-S Load Cell (Transducer Techniques) 

The red and black wires are the excitation, or power, wires.  The load cell requires 10 volts of DC 

current.  This is measured as a 10V increase compared to the black wire.  The green and white wires are 

the signal wires, which output a voltage when a compressive load is applied to the cell.  This voltage is 

read as a differential between the green and white wires, then amplified and scaled to the known load. 

Inclinometer 
The inclinometer has 3 wires: red, white, and blue.  The red wire is the +5V DC wire, the white is the 

signal output, and the blue is the ground wire.  These are connected to an extension wire used to bridge 

the gap between the DAQ and the rocking arm where the inclinometer is housed.  The red and white 

inclinometer wires are connected using clips to the red and white extension wires to retain consistency.  

The blue inclinometer wire is connected to the green extension wire. 
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Figure 29- Inclinometer Extension Wiring 

Battery 
The battery is rated at 12V and used to power the amplifier.  It is connected to the amplifier by 2 

connectors often used for 9V batteries.  The wires are connected to the top of the battery according to 

the visible polarity, however due to the nature of the connection, the wires leading into the amplifier 

are put in backwards, the black wire to the positive terminal and the red to the negative terminal. 

 

Figure 30- Battery Wired to Amplifier 

Amplifier 
The amplifier used has two terminal blocks on either side of the unit.  One block has 5 connection ports 

and is used to receive the signal to be amplified.  The other block has 4 connection ports which are used 

to power the amplifier and to transmit the amplified signal to the DAQ. 
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Figure 31- Amplifier Wiring Diagram 

 

Figure 32- Load Cell Wired into Amplifier 
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The input of the load cell wires is shown above.  The wires are plugged according to the comparison of 

figure 23 and figure 25.  It is important to note that the wiring diagram for the load cell lines up directly 

with the wiring diagram for the amplifier, with no differences in color or function in the wires.  The “5” 

slot is left empty as there is no shield wire. 

 

Figure 33- Power and Signal Output Wired from Amplifier 

The 4 port block uses the “1” and “2” ports for power.  The “1” port is the positive port as indicated in 

figure 23, however because of the reversal in the polarity due to the battery connection wires, the black 

“positive” wire is plugged into the “1” slot and the red “negative” wire is plugged into the “2” slot.  The 

“3” slot is used for a reference ground for the output signal.  The “4” slot is used for the amplified analog 

signal output. 

DAQ 
The DAQ is the device used to power the inclinometer and receive and interpret the signals output by 

the amplifier and inclinometer.  The instruments used only transmit analog signals, and thus the side of 

the amplifier labeled with slots “17” through “32” is used.  The other side of the amplifier uses digital 

input and output. 



44 
 

 

Figure 34- DAQ Wiring 

The DAQ is wired to receive the signals from the amplifier in “AI0” and the inclinometer in “AI1.”  The 

amplifier puts out an analog signal on the red wire from the “4” slot on the 4 terminal block.  This is 

wired to slot “31” on the DAQ, also labeled as “+AI0.”  The white wire used to measure the differential 

voltage wired from the “3” slot in the 4 terminal block on the amplifier is plugged into the ground (GND) 

in slot “32” on the DAQ.  Together these allow the DAQ to measure the signal output from the amplifier 

for the load cell.  The inclinometer is powered by the DAQ while also transmitting the signal to it, 

allowing the instrument to operate without the amplifier.  The white signal wire is plugged into the “28” 

“+AI1” slot.  The red excitation wire is plugged into the “19” “AO0” which is used for analog signal 

output and configured to output 5V DC.  The final green ground wire is plugged into “17” “GND” slot. 
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Wiring Overview Table 
 

Table 3 - Wiring Overview 

Device Wire Purpose Destination Notes 

Battery Black +12V DC Amplifier 4 terminal block slot 1 

Black wire after the 
polarities have been 
switched at the separable 
junction. 

  Red 
Excitation 
Ground Amplifier 4 terminal block slot 2 

Red wire after the 
polarities have been 
switched at the separable 
junction. 

Load Cell Red +10V DC Amplifier 5 terminal block slot 1   

  White - Signal Amplifier 5 terminal block slot 2   

  Green + Signal Amplifier 5 terminal block slot 3   

  Black 
Excitation 
Ground Amplifier 5 terminal block slot 4   

Inclinometer Red +5V DC DAQ AO1 slot 19   

  White Signal DAQ AI1 slot 28   

  Green Ground DAQ GND slot 17   

Amplifier 

White 4 
terminal 
block slot 3 

Reference 
Ground for 
Signal Output DAQ GND slot 32 Amplified Load Cell Signal 

  

Red 4 
terminal 
block slot 4 Signal Output DAQ AI0 slot 31 Amplified Load Cell Signal 

 

LabVIEW Virtual Instrument 
The LabVIEW VI is constructed to be able to operate a load cell, an inclinometer, a torque meter, and a 

tachometer.  In this project, only the load cell and inclinometer were used. 

The first step in setting up the VI is to go to the block diagram and locate the AI Voltage item.  From the 

“physical channels” input on this node, create an “indicator” and switch back to the front panel.  Using 

this new indicator, figure out which device the DAQ is and note the name (Dev0, Dev1, etc.) and 

channels (ai0, ai1, etc.) being used.  Return to the block diagram and delete the indicator that was just 

created and replace it with a constant input.  In this constant, type in the device and channels that are to 

be read by the DAQ.  An example is shown below: 
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Figure 35- Sample Device/Channel Input for LabVIEW VI 

In this example, two channels on one device are being used.  The VI is configured to have the ai0 

channel output to the load cell display, the ai1 channel output to the inclinometer display, the ai2 

channel output to the torque meter display, and the ai3 channel output to the tachometer display.  

These channels must be consistent with the DAQ wiring. 

On the front panel, there are input boxes on the left that are used to calibrate the load cell and 

inclinometer.  On the left of the front panel, there is a grouping of items that looks like figure 33. 

 

Figure 36- Inclinometer Calibration Tools 
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This is the visual input and output for a program that calibrates the inclinometer.  To operate the 

program, begin by clicking the “Inclinometer calibrate” button.  Then, hold the inclinometer so that the 

text on the front of the instrument is parallel with the ground.  Rotate the inclinometer to +90 degrees 

and then to -90 degrees several times until the output that is visible on the inclinometer graph on the 

front panel mirrors the movement of the instrument.  When the graph and rotation of the instrument 

are the same, copy the values from the “offset” and “scale factor” blocks at the bottom of this grouping 

into the “offset” and “scale factor” blocks near the top.  These top values become permanent.  With 

these permanent values in place, the “Inclinometer calibrate” button can be pressed again to terminate 

the calibration program. 

Calibration of the load cell is done manually using the calibration tools on the front panel located just 

below the inclinometer calibration group. 

 

Figure 37- Load Cell Calibration Tools 

The load cell is calibrated using a known load.  First, begin by entering the calibration weight (known 

load) in the units that are desired for the output on the graph.  Next, set the “Offset” to 0 and the “Scale 

Factor” to 1.  Run the VI and note the value that the load cell is outputting on the graph while there is no 

load on the load cell.  This value is the value that must be placed into the “Offset” value.  After putting 

this offset value in, the graph should output a value very near 0.  Place the known load on the load cell.  

A value will appear in the “Scale to:” output box, which must be copied into the “Scale Factor” box.  The 

load cell is now calibrated.  In order to check accuracy, another known load may be weighed and 

compared to the output on the graph. 


