
Design and Development of a

Traditional Animation Tool in

Qt Quick Designer

A Major Qualifying Project Report

submitted to the faculty of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by:

Adilet Issayev

Patrick Lebold

Maurizio Vitale

Date: March 3, 2017 Approved:

Professor Mark Claypool, Advisor

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree

requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For

more information about the projects program at WPI, see http: // www. wpi. edu/ Academics/ Projects .

http://www.wpi.edu/Academics/Projects

Abstract

Qt Creator is an IDE used for developing Qt GUI applications. While Qt Creator provides
a graphical context for developing interfaces, the only way to create animations using the Qt
framework is to code them. We developed an animation editing tool built inside of Qt Creator that
eliminates the current requirement for designers to code animations. Additionally, by analyzing
industry standard animation tools and developing a structured way to organize animations using
existing Qt framework libraries, we defined a new schema for representing animations in Qt’s
front-end language, QML. Overall, our tool facilitated the process of developing animations in Qt
Creator by providing an easy to use graphical interface, and is set to be included in future versions
of the Qt software development kit.

1

Contents

1 Introduction 6

2 Background 7
2.1 The Qt Company . 7
2.2 Qt Framework . 7

2.2.1 Advantages of Qt . 8
2.2.2 Signals and Slots . 8
2.2.3 QtWidgets . 9
2.2.4 Models and Views . 9

2.3 QML . 10
2.3.1 Advantages of QML . 10
2.3.2 Items and Attributes . 10
2.3.3 Interacting with Components . 11
2.3.4 Signals and Connections . 12
2.3.5 Loaders . 12
2.3.6 Animations . 13

2.4 Qt Quick Designer . 13
2.4.1 Introduction . 13
2.4.2 Document Manager and Model Node Structure 14
2.4.3 View Manager . 15
2.4.4 Components . 15

2.5 Related Works . 17
2.5.1 Hype . 17
2.5.2 Google Web Designer . 18
2.5.3 Qt 3D Studio . 19
2.5.4 Adobe After Effects . 19

3 Methodology and Implementation 21
3.1 Requirements . 21
3.2 Design . 22

3.2.1 Wireframes . 22
3.2.2 Interaction Design . 24

3.3 Interfacing with Qt Quick Designer . 28
3.3.1 Creating a Component . 28
3.3.2 Registering the Component . 29
3.3.3 Linking the Document Model to Components 30
3.3.4 Loading QML in a Component . 30

3.4 Developing a Timeline Model . 31
3.4.1 Model Requirements . 31
3.4.2 Defining a Timeline Schema in QML . 31
3.4.3 Defining the Model Structure . 32
3.4.4 Separating the Model from the View . 33
3.4.5 Linking the Model to QML . 34

3.5 Developing the Timeline Navigator . 34

2

3.5.1 Navigator Requirements . 34
3.5.2 Adding and Selecting Timelines . 35
3.5.3 Adding and Viewing Timeline Items . 35
3.5.4 Adding and Viewing Timeline Item Properties 36

3.6 Developing the Keyframe Area . 36
3.6.1 Keyframe Area Requirements . 36
3.6.2 Implementing the Ruler . 37
3.6.3 Keeping Track of Time . 37
3.6.4 Keyframe Rows . 38
3.6.5 Adding Keyframes . 39
3.6.6 Keyframe Interactions . 39

4 Results 41

5 Future Steps 43
5.1 Form Editor Animation Playback . 43
5.2 Keyframe Editing in Property Editor . 44
5.3 Additional Animation Functionality . 44

6 Conclusion 46

A Qt for Native Client 49
A.1 Introduction . 49
A.2 Background . 49

A.2.1 Native Client . 49
A.2.2 Pepper Plugin API . 49
A.2.3 Project Files and Qmake . 50
A.2.4 Qt Platform Abstraction . 50

A.3 Methodology . 51
A.3.1 Outdated Qt for NaCl . 51
A.3.2 Preparing the Compilation Environment 51
A.3.3 Compiling QtBase and Qmake for NaCl 51
A.3.4 Building Qt for NaCl Modules . 52
A.3.5 Building Sample Application for Qt for NaCl 52

A.4 Results . 52
A.5 Future Steps . 53

3

List of Figures

2.1 Signals and Slots . 8
2.2 A red rectangle item defined in QML . 10
2.3 A blue rectangle defined by the red rectangle’s properties. 11
2.4 A button control item causes itself to change position on click 11
2.5 Two items interact with each other through the use of signals and slots. 12
2.6 QML Loader . 13
2.7 Animation Item in QML . 14
2.8 The Navigator Component . 15
2.9 The Property Editor Component . 16
2.10 The Form Editor Component . 16
2.11 Hype Interface . 17
2.12 Hype, separation of keyframes by item property . 17
2.13 Hype property list . 18
2.14 Google Designer’s toolbar . 18
2.15 Google Designer’s animation interpolation . 19
2.16 Qt 3D Studio . 19
2.17 Adobe After Effects interface . 20
2.18 Adobe After Effects keyframe properties . 20

3.1 The Main Layout of the Timeline Tool . 22
3.2 The components of the Keyframe Area . 22
3.3 The navigator area wireframe . 23
3.4 The titlebar wireframe . 24
3.5 A keyframe being added to the keyframe area . 24
3.6 Moving keyframe by grabbing whole keyframe . 25
3.7 Moving keyframe by dragging keyframe handles . 25
3.8 Coupling keyframes . 25
3.9 Dialog for modifying keyframe values . 26
3.10 Ruler mouse click and current time change . 26
3.11 The Playback Buttons . 27
3.12 Clock control’s interaction . 27
3.13 Process of changing timeline in navigator . 27
3.14 Add timeline dialog . 28
3.15 Add property to an item in Navigator . 28
3.16 The widgetInfo function . 29
3.17 Additions to the attachViewsExceptRewriterAndComponetView function 29
3.18 Our Timeline Component’s placement in the Qt Quick Designer Hierarchy 30
3.19 Function which reloads QML . 31
3.20 This schema represents a basic timeline that animates two items. 32
3.21 The final component architecture . 33
3.22 QML code defining the timeline list and add timeline features 35
3.23 The QML source of the step-back button. 38
3.24 QML Source code that defines the editing component of the title bar’s clock. . . . 38
3.25 The add keyframe slot . 39

4

4.1 The final look of the Timeline Tool . 41

5

Chapter 1

Introduction

As the rate of new technologies appearing increases, companies of all sizes find themselves strug-

gling to keep supporting their products on all of the newly available platforms. End users are no

longer using applications solely on their computers, but also on phones, tablets, and embedded

devices like car interfaces and home-security panels. Even within the same category of device such

as phones, companies are often forced to create different versions of their app that conform with

each type of phones interior structures. These hardware and software requirements create the need

for multiple applications to be made, even if they all look the same to the end user. The Qt

Company offers a solution to this problem by providing a platform that supports the development

of cross-platform applications. End users can use The Qt Company’s development platform, Qt

Creator, to develop their applications.

The scope of our project lays within Qt Quick Designer, a plugin for Qt Creator that allows

users to graphically design their applications by dragging and dropping widgets onto a form. When

these widgets are placed, code is generated in the background that represents the corresponding

widgets. Frequently, users will want to create interactive applications by adding animations in-

volving these widgets. This however can not be done graphically; in order to create animations for

Qt applications, users need to program them. Graphic designers typically have no knowledge of

how to code, thus making creating animations a daunting task. The result of this project was the

addition of a tool in Qt Quick Designer that allows users to design animations without having to

write a single line of code.

This paper acts as a roadmap detailing the technologies used in this project, the requirements

of this project, our design and implementation methodology for htis project, and the results and

possibilities of future work regarding this project. Specifically, chapter two provides a background

on The Qt Company, its framework Qt, Qt’s front-end language QML, Qt Creator, an IDE used

to create Qt applications, and other leading animation tools. Chapter three provides details on

project requirements and a close look at our design and implementation methodology for each

component of our tool. Chapters four and five discuss the results and opportunities for future

work respectively.

6

Chapter 2

Background

In order to begin discussing the creation of an animation editing tool for Qt applications, it is

important to understand a variety of background topics. The following section provides context

for the The Qt Company, the Qt framework, the markup language used for creating interfaces, the

development environment used for creating Qt applications, and other leading animation tools.

2.1 The Qt Company

The Qt Company, based in Espoo, Finland, is primarily responsible for the development and

distribution of the Qt framework and manages an open governance model for the licensing and

contributions of the framework. The Qt Company originally started as the company Trolltech, after

the founders Haavard Nord and Eirik Chambe-Eng were tasked to write a database application for

ultrasound imaging [1]. This application, written in C++, required a GUI toolkit which could run

on Unix, Macintosh and Windows. This laid down the foundation for the Qt framework.

Haavard and Eirik started working on Qt in 1991, and their product gradually improved and

expanded, featuring a framework design that worked around signals and slots [2]. With Qt soft-

ware, they founded Trolltech company in 1994. Nokia Corporation acquired Trolltech in 2008 and

renamed the company to Qt Software at Nokia. Nokia later sold the commercial licensing of Qt to

Digia, resulting in the creation of “The Qt Company”, a wholly owned subsidiary whose purpose

is for Qt development and market expansion. Just recently in 2016, The Qt Company separated

from Digia.

The Qt Company’s licensed product is used in more than 70 industries worldwide for creating,

building, and deploying millions of connected embedded devices and applications, and is used by

8 of the top 10 Fortune 500 companies [3].

2.2 Qt Framework

Qt is a comprehensive, open-source framework written in C++ used to design applications

capable of running on any platform [3]. The framework divides itself into several modules that

support 3D graphics, bluetooth connections, data visualizations, networking, and intermediary

languages such as the Qt Markup Language (QML).

7

2.2.1 Advantages of Qt

The primary advantage of using Qt is its support for cross platform development [4]. Because

of this support, developers do not need to concern themselves with platform specific details and

data types, and can instead focus on higher level implementations of their application. Qt provides

abstraction by resolving intermediate classes, such as QString, to their appropriate system-level

representations.

Qt originally supported two versions, one for X11 and one for Win32 window systems, which

resulted in a platform-dependant codebase. This made Qt as a framework hard to port to new

systems, giving start to a new project called the Qt Platform Abstraction [5]. The results of this

project made Qt flexible enough to be ported and tailored to any specific platform without the

need to modify the entire codebase.

2.2.2 Signals and Slots

Because Qt is designed to be object oriented, it is critical that there is a system in place that

notifies objects that other objects have been changed. A typical solution to notifying one object

of a change in another object is the use of callback functions. That being said, callback functions

have one primary disadvantage; callback functions are strongly coupled to the processing function.

As seen in Figure 2.1, in order to link a callback function to a separate object, that object must

be aware of the existence of the callback function’s object. This forces developers to provide public

or protected access to member functions that may otherwise be hidden.

Figure 2.1: Signals and Slots
[6]

The Qt framework circumvents this design flaw by utilizing a signal and slot system [6]. By

defining a function labeled in a header file as either a signal or a slot, a developer can provide

access for that function to be linked to another slot or signal. As demonstrated in Figure 2.1,

this connection is established by calling the globally available connect function and providing the

8

appropriate objects, signal function, and slot function. This abstraction allows a signal function

call to be paired to a slot function without the need for either object to have knowledge of the

other’s existence.

In order for this system to be effective, there are a few restrictions in place. First, the signal

function must remain as a function prototype and can not be implemented. The sole purpose of a

signal is to trigger the connected slots, and therefore no additional implementation of that function

is permitted. In accordance with that, the return type of all signal functions must be defined as

void, since there is no way for a signal to return any other value.

Any signal matched with a slot must contain the same number of parameters, with each pa-

rameter in the signal being the same type as each corresponding parameter in the connected slot.

Unlike signals, slots can be implemented and called as normal C++ functions, and therefore do

not have to have a matching void return type.

2.2.3 QtWidgets

Qt’s windowing system, QtWidgets, provides dialogs, common layouts, and UI elements while

still managing to keep a cross-platform compatibility layer [7]. Qt windows and forms can be added

programmatically in C++ or an XML schema (in .ui format). This XML schema is used to define

widgets, widget properties, and bindings to C++ variables and functions [8]. By utilizing Qt’s

cross-platform compatibility, widgets using the Qt framework can naturally capture any platform’s

native look and feel. Many properties of widgets such as font, color, border style, and size can be

modified to further define the look and feel of an application. The Qt Company provides a tool

called Qt Designer which allows graphic designers to create Qt windows and forms and modify

properties graphically instead of programmatically.

2.2.4 Models and Views

The Qt framework uses a simplified Model-View-Controller design pattern; by combining the

controller and view components, the Qt framework utilizes a Model-View pattern [9]. This com-

bination results in a simpler framework which still separates the way data is stored from the way

it is presented. Additionally, a Model-View pattern allows for higher modularity, as interaction

layers do not have to be written in order to synchronize data between model and view layers.

The Qt framework introduces the concept of delegates, objects responsible for editing a model’s

data and dictating how this data is rendered [10]. A delegate object acts as a replacement for

classic controller objects and relegates most controller duties from the view to itself. Delegates

are modular by nature, being able to load data from different models and be instantiated into

any view. One use case of a delegate is a spin box, an object with arrows that can increment or

decrement any property in a model [11]. For each spin box included in an application, a single

implementation of a delegate can be used to link each spin box to a distinct property.

The preferred method of communication between models, views, and delegates are signals and

slots. Signals emitted from models inform delegates that data has changed. Signals from views

provide delegates with interaction data including which items are involved in the interaction.

9

Signals from delegates inform models that their data will be modified and views that they need to

be refreshed.

2.3 QML

Like most applications, applications written with the Qt frame have both backend and frontend

components. Qt application backends are written in C++, while the frontends are written in Qt’s

internally developed markup language, QML.

2.3.1 Advantages of QML

QML is a markup language which is used to define the structure and styling of Qt applications

[12]. QML is a hybrid of Javascript and JSON syntax that allows users to define and deploy

complex interfaces, interactions, and animations with relative ease. QML provides bindings for

C++ structures which opens the door to dynamic interfaces. By using QML, users can create

networked applications, 3D showcases, games, and more.

2.3.2 Items and Attributes

By using QML’s JSON-like syntax, users can add items such as shapes, buttons, lists of items,

and more to their application’s model [13]. Each type of item has a unique set of properties that

can be assigned to them [14]. Items inherit a common set of properties from the QML Item class

as well, giving it access to common properties such as position and dimensions. Users can define

their own complex items by embedding basic items and defining custom properties and functions.

Figure 2.2 features a rectangle item in an application defined using QML. In this example, the

window frame is 100px wide by 100px tall. The rectangle is given an id of red rect, a position

of (50,50), and a dimension of 50x50. This places the rectangle’s left point at the center of the

application and causes the rectangle to occupy the entire bottom-right quadrant of the app. The

color of the rectangle is written in hexadecimal, however QML also supports color constants written

as strings including red, blue, etc.

Figure 2.2: A red rectangle item defined in QML

10

By using basic Javascript syntax, the value of any property can be a variable. These variable

properties can be relative to other item properties, variables passed in through C++ code, and en-

vironment variables. Figure 2.3 defines blue rect, a blue rectangle which occupies the bottom-right

corner of red rect. This item uses red rect’s properties to define it’s own position and dimension.

Figure 2.3: A blue rectangle defined by the red rectangle’s properties.

2.3.3 Interacting with Components

QML provides a series of items called controls that allow users to interact with their applications.

Control items such as buttons, menus, and sliders can be added to applications in the same way

as other basic items and posses their own properties and inherited properties [15]. Unlike basic

items, controls provide slots for users to add Javascript which gets executed when the control is

interacted with.

Figure 2.4 presents a button control item with text “press”. When the button is clicked, the

onClicked slot is triggered and the inner Javascript is executed. In this case,when the button is

clicked, the button’s x position alternates between 0px and 50px.

Figure 2.4: A button control item causes itself to change position on click

While the above Figure utilizes the button item, QML also provides a more generic mouse area

item that allows users to interact with mouse events without being bound to a button item’s look

and feel. These mouse areas can be embedded into any item, occupy their own region, and support

more mouse interactions than a button.

11

2.3.4 Signals and Connections

Like the Qt API, QML supports a system of signals and slots which allows users to connect

different components of their model together. In 2.4 the user defined a slot which captured

onClicked, a signal defined by the button item [16]. Users can also define their own signals inside

items which can then be captured elsewhere in their QML [17].

Figure 2.5 features two items that interact with each other on a button press. The item with

the id myItem defines a signal named sendMessage. When the button inside of myItem is clicked,

sendMessage is called. The connections item featured in Figure 2.5 specifies myItem as its target.

This allows the user to capture any signals defined inside of myItem, such as sendMessage. The

sendMessage signal defines the parameter msg, which provides access to that variable inside of the

onSendMessage slot. In this example, textitem’s text field is changed to the value of msg.

Figure 2.5: Two items interact with each other through the use of signals and slots.

2.3.5 Loaders

Applications typically contain multiple components that interact with one another. QML pro-

vides a loader item which allows QML models to contain other user-defined models as sub-elements

[18]. Control items from separate models can be linked to parent models by embedding a connection

item inside of a loader item.

Figure 2.6 portrays a basic example of a loader item being utilized. The file MainApplication.qml

includes a loader item that loads in the contents of MyItem.qml. In this case, the content of

MyItem.qml is the red rectangle seen in Figure 1. Users can modify the properties of items loaded

in by a loader item by accessing the loader’s item property. For example, a user wishing to set

red rect’s x value to 0 inside of the MainApplication.qml file would write: “myItemLoader.item.x

12

= 0;”. MyItemLoader is the id of the loader, item is the property that refers to the actual red rect

item, and x is the property being modified.

Figure 2.6: QML Loader

2.3.6 Animations

Animations are created in applications by modifying properties of items over a given time interval

[19]. These property animations can be applied to basic properties of type int, double, color, point,

etc. Animations on properties can be defined sequentially and in parallel [20, 21]. Figure 2.7

features an animation defined to have green rect move around the viewport clockwise in 1 second.

To perform this animation, green rect’s x property must move to the right, pause, move back to

the left, and then pause again. This qualifies as a sequential animation because there are multiple

steps involving this single property that must occur in order in order for the animation to look

correct. While this x-property animation is running, a sequential animation for green rect’s y

property must also be run with a similar pattern. Since these two separate animations must be

run simultaneously, they are bundled under a parallel animation object

2.4 Qt Quick Designer

While Qt applications can be developed using any text editor, the Qt framework provides enough

functionality to warrant a development environment of its own.

2.4.1 Introduction

Qt Creator, an interactive development environment (IDE) developed by The Qt Company, is

the primary tool used to develop Qt applications [22]. Like many common IDEs, Qt Creator

provides tools for project management, coding applications, building and running applications,

and testing applications. In addition to these features, Qt Creator contains a plugin infrastructure

that allows developers to add additional functionality to the IDE. One such plugin is Qt Quick

Designer.

13

Figure 2.7: Animation Item in QML

Qt Quick Designer facilitates the application UI development process by providing a graphical

context for users to design applications [23]. When items are added, modified, or removed in Qt

Quick Designer, the corresponding changes are reflected in the QML file that is currently loaded.

By providing this graphical context for designing applications, The Qt Company has successfully

separated the responsibilities of programmers and graphic designers by removing the need for

graphic designers to write QML code.

2.4.2 Document Manager and Model Node Structure

The document manager is in charge of generating an editable Qt model from a QML file. In

order to link the standard Qt model defined in the QML file to a version usable by Qt Quick

Designer, the document manager employs the use of an abstract syntax model tree. This allows

users to modify the models without directly modifying the QML file. Once the generated model

has been detached by the document manager, a tool called a rewriter propagates these changes

back to the QML document.

The intermediary objects defined to represents items in a model are called model nodes. Each

model node has knowledge of the properties and child nodes of the item it represents. When a

model node is removed from the model, all of its children are also removed entirely from the model.

Since model nodes are abstraction tools, end users such as graphic designers are not aware of their

existence as an abstraction layer; that being said, model nodes play a large role in how our timeline

tool interacts with loaded models.

14

2.4.3 View Manager

The view manager is in charge of rendering Qt Quick Designer’s scene along with handling the

environmental context of it. The view manager does this by keeping track of the model loaded

by the document manager and calling signals to its components to keep each component up to

date with consistent experience throughout the scene. In addition to tracking the model, the view

manager also monitors the file path of the current model loaded; if the file path changes, the view

manager prompts the document manager to load a new model.

The view manager employs a series of components in order to build Qt Quick Designer’s interface.

While these components are defined with their own style and interfaces, the view manager still

plays a large role in the functionality of its components. Specifically, the view manager registers

component’s basic information such as title and preferred layout position, sets theming parameters,

and handles loading and unloading components. By supplying these functionalities, components

can be added and formatted to the view manager without having to write any code inside of the

view manager.

2.4.4 Components

While the view manager contains many components that provide functionality to Qt Quick

Designer, only a few are important in the context of this project. Three components that are

strongly linked to this project are the navigator, property editor, and form editor.

Navigator The navigator component, as seen in Figure 2.8, is a core component of the Qt Quick

Designer interface that allows users to view items that are present in the loaded QML file. When

items are added, removed, or reparented, these changes are reflected accordingly in the navigator.

In addition to displaying the items, the relationships between items is clearly portrayed; Child

items appear directly below their parent item with a slight indent. When an item is selected in

the navigator, the full set of the item’s properties is available to view and modify in the property

editor component.

Figure 2.8: The Navigator Component

Property Editor The property editor component, seen in Figure 2.9 provides an interface

for designers to set property values for the items included in their model. The property editor

supports item-property inheritance and will display all available properties that can be set for an

item. When an property is modified in the property editor, this change is automatically reflected

in form editor component.

15

Figure 2.9: The Property Editor Component

Form Editor In order to graphically modify any items present in an application, users must

directly interact with the form editor component. The form editor, seen in Figure 2.10 is the

component in Qt Quick Designer that is responsible for displaying the items in a graphical context.

By interacting with items in the form editor, graphic designers can change the positions and

dimensions of items without having to code or manually enter the item’s property values in the

property editor. When items are added or removed in the form editor, the items are added to and

removed from the navigator component accordingly. The same functionality applies when items

are added to and removed from the navigator.

Figure 2.10: The Form Editor Component

16

2.5 Related Works

We looked at existing animation timeline technologies to provide us with a detailed scope of

implementable features. We focused on tools that supported HTML5 animations since their scope

is similar to QML animations. Four animation tools we used as models for our timeline are Hype,

Google Web Designer, Qt 3D Studio, and Adobe After Effects.

2.5.1 Hype

The primary tool this project is inspired by is Hype by Tumult. Hype is an HTML5 animation

tool with a large feature set and a timeline driven interface. As shown in Figure 2.11 Its primary

interface is divided into three primary windows: a title bar window with animation control buttons,

a clock, and a zoom feature, a navigator window with items and their properties, and an animation

timeline window which displays keyframes.

Figure 2.11: Hype Interface

One key feature of Hype is its separation of keyframes by property, Figure 2.12. The navigator

window displays all items being animated alongside the specific properties of those items that are

changed. The timeline window displays a group keyframe representing the overall changes between

keyframes, while simultaneously displaying individual keyframes adjacent to the properties that

are listed in the navigator window.

Figure 2.12: Hype, separation of keyframes by item property

17

Since items can, in some cases, possess over one hundred animatable properties, clutter in the

navigator is a feature that needs to be handled delicately. Hype provides a clean solution to this

problem by introducing a separate window including all item properties that can then be added to

the animation. See Figure 2.13

Figure 2.13: Hype property list

2.5.2 Google Web Designer

Google Web Designer is an HTML5 and CSS3 animation editor that presents interesting methods

of abstracting and presenting animations. As flash animations started to become obsolete, it was

necessary for other tools to adopt use cases that Adobe’s flash editor originally provided. Google

Web Designer provides many components that are similar in nature to Qt Quick Designer’s existing

layout, thus making it a compelling source of insiration for this project.

One particular feature in Google Web Designer is the timeline’s zoom bar which is seen in Figure

2.14. By being placed in the timeline’s main toolbar as opposed to the property editor toolbar in

Hype, the zoom functionality possesses a more natural feel.

Figure 2.14: Google Designer’s toolbar

One key difference between Hype and Google Web Designer is how each application handles

animation interpolation. While Hype uses one single interpolation type per timeline, Google Web

Design ties interpolation to its keyframes allowing for finer modularity. This aligns well with QML

Animations, which also support interpolation types in a per animation basis as opposed to an

overall timeline basis, as seen in Figure 2.15.

18

Figure 2.15: Google Designer’s animation interpolation

2.5.3 Qt 3D Studio

During the development of this project, The Qt Company received a code donation from NVidia

called NVidia Drive Design, which later was redesigned and rebranded to Qt 3D Studio [24]. In

order to keep this project’s look and feel consistent with the Qt 3D Studio team’s ambitions, the

overall design and scope of this project is consistent with Qt 3D Studio, which is shown in Figure

2.16.

Figure 2.16: Qt 3D Studio

Qt 3D Studio’s primary purpose is to animate 3D scenes, and remains separate from Qt Quick

Designer, so while this tool and the 2D timeline tool are two distinct tools, making sure user

experiences for both tools was a major priority. One feature implemented by this project that was

inspired by Qt 3D Studio is the presentation of properties as a collapsable submenu.

2.5.4 Adobe After Effects

Adobe After Effects, by Adobe Systems, is considered the industry standard of video animation

software. While this tool is a video animation application as opposed to a dedicated HTML or

markup-based language tool, many components of Adobe After Effects are relevant to this project.

Figure 2.17

One example of an inspiration stemmed from Adobe After Effects is the way keyframe properties

are handled, see Figure 2.18. In addition to offering a dedicated panel for the manipulation of

specific properties, it also offers a simple design to allow for quick fine tuning of a property at

a specific time. An additional convenience feature provided by this property view is the ability

19

to jump to the next keyframe in the property’s timeline, which adds more precision to keyframe

manipulation.

Figure 2.17: Adobe After Effects interface

Figure 2.18: Adobe After Effects keyframe properties

20

Chapter 3

Methodology and Implementation

The primary objective of this project is to devise a tool for creating animations graphically in

Qt Quick Designer. In order to do this, we opted to model our tool in the form of a timeline. In

the scope of this project, a timeline is defined as a set of animations applied to a series of objects

over a discrete period of time.

3.1 Requirements

During the conception of this project, we established several baseline requirements for our time-

line tool. The first requirement states that the timeline tool must provide an organized way to

animate items. While it is important that the tool provides basic functionality for creating anima-

tions, it is critical that the method which users create animations is both simple and concise.

A second requirement for this project is that the tool must provide functionality for modifying

multiple timelines. In many cases designers will want to create separate animations involving

elements of the same model depending on what actions are made. The ability to create multiple

timelines for a single model is a core component of any animation tool, and thus must be included

in the scope of this project.

In addition to the above requirements, our tool must support functionality for creating anima-

tions on a per-item, per-property basis. Some animation tools define animations as changes in

state of the entire model. This is suboptimal as in many cases, only certain items in the model will

be animated. By including functionality for creating animations with a more modular approach,

our tool will be able to load animations faster and provide more explicit details on what items and

properties are being animated.

Finally, while considering the above three requirements, our tool must also be supported by

existing QML objects. As a rule, users should be able to create their own animations by writing

QML code and still be able to load these animations into our tool to edit them graphically. While

the graphical interface of our tool does not necessarily have to conform to the exact model in which

animations are built in QML, it is important that any animation created using our tool can be

exported to QML by using objects document in the official QML API.

21

3.2 Design

A critical component of our tool is the user interface. In order for designers to create animations

using our tool, they have to be able to easily comprehend the tool’s user interaction (UI). The

following section details our methodology for designing this UI.

3.2.1 Wireframes

The first step in designing the UI for the timeline tool was separating our requirements and

determining what the best options to convey the timeline would be. Using the related works as

inspiration, we determined that the timeline tool needed to include a detailed list of items, a

breakdown of their keyframes, and a titlebar for playback and fine tuning. Figure 3.1 shows the

proposed layout of the overall Timeline Tool. The keyframe area is the core feature of our tool, so

it is the largest element of the scene, followed by the navigator area and the titlebar.

Figure 3.1: The Main Layout of the Timeline Tool

3.2.1.1 Keyframe Area Wireframing

We opted to graphically present animations in the form of traditional keyframes. Because of the

amount of space that keyframes occupy on a timeline, the keyframe area is the largest asset of the

timeline tool.

Figure 3.2: The components of the Keyframe Area

In order to divide keyframes by the item’s they are animating, we developed two structures:

group keyframes and property keyframes. We decided that the group keyframe would be a large

rectangle and placed above the property keyframes, while the property keyframes would be diamond

shaped and placed below. Additionally, our UI needs to provide spatial context for the users so

22

that the position in time of the keyframes is easily distinguishable. To accommodate this need, we

added a ruler, tickmarks, and a time indicator to the area.

3.2.1.2 Navigator Wireframing

The navigator component of our tool is responsible for providing all functionality that does

not involve manipulating keyframes. Accordingly, every item related feature is included in the

navigator area.

Figure 3.3: The navigator area wireframe

The first task in designing the navigator was determining how to portray multiple timelines, as

the particular items that are animated vary per timeline. We decided that a collapsable drop down

menu that contains the list of loaded timelines was the simplest choice. A big advantage of choosing

this implimentation is that now the navigator only has to display one timeline’s information at a

time.

The second task in designing the navigator was determining how to handle the addition of new

timelines and items into the scene. We settled on a button with a plus icon that when clicked

would open a menu that presents options for adding a new timeline or item, as seen in Figure 3.3.

This implementation provides the benefit of being easily expandable should additional features be

added that involve the addition of elements to the scene.

Finally, we had to determine a way to display the items and their related properties. We chose

to use a label to display each item and a collapsible menu to list each item’s properties. Having

the properties detailed in this way allowed us to add button for adding keyframes, fulfilling the

requirement of being able to add keyframes to the keyframe area.

3.2.1.3 Titlebar Wireframing

We determined that the titlebar, as a component of our tool, would provide functionality for

convenience and precision related features. As seen in Figure 3.4, the titlebar includes playback

icons that allow users to jump around the timeline. It also contains a clock, which can be edited to

jump to a specific time in the timeline. Finally, the title bar includes a a zoom slider. This slider

allows users to drag keyframes with more precision.

23

Figure 3.4: The titlebar wireframe

3.2.2 Interaction Design

In order to provide functionality for all timeline related features, many components of our design

needed to be interactive.

3.2.2.1 Manipulating Keyframes

Adding Keyframes Since keyframes are specific to individual properties, the button to add

new keyframes exists next to each property in the navigator’s property list. Since the functionality

of the button adds a keyframe to the keyframe area, each button is placed on the far right of the

navigator so that that they are adjacent to the keyframe area. Figure 3.5 displays the keyframe

area before and after the button is pressed.

Figure 3.5: A keyframe being added to the keyframe area

Moving Keyframes around When moving keyframes, we had to consider three possible use

cases: changing the start time, changing the duration, and changing both the start time and

duration. We addressed these use cases by allowing the start keyframe, end keyframe, and the

transition inbetween to be draggable.

We decided to associate changing just the start time with dragging the transition inbetween.

By dragging the transition, both keyframes as well as the transition will follow the mouse, thus

changing the start time. Figure 3.6 shows this interaction with detail.

By dragging the starting keyframe, the user can modify both the start time and duration of the

keyframe pair. Dragging the second keyframe changes only the duration. This functionality can

be seen in Figure 3.7.

24

Figure 3.6: Moving keyframe by grabbing whole keyframe

Figure 3.7: Moving keyframe by dragging keyframe handles

Coupling Keyframes One caveat of having draggable keyframes and the ability to have dura-

tions that reach zero seconds is that the user might make the keyframes overlap, resulting in the

keyframes being stuck together making splitting them up difficult. We designed our tool so that

when this situation arises, the keyframe handles are stacked vertically in the same space, which is

demonstrated in Figure 3.8. Clicking on the top handle splits the keyframe in two and displaces the

end handle to the right. Clicking and dragging the bottom handle moves the combined keyframe

without causing a split.

Figure 3.8: Coupling keyframes

25

Editing Keyframe Values While dragging keyframes provides functionality for changing the

start time and duration of keyframe pairs, it does not cover changing the actual values that these

keyframes modify. We propose showing a dialog window, as shown in Figure 3.9, that contains

Figure 3.9: Dialog for modifying keyframe values

text fields for a keyframe’s values when a user right clicks on said keyframe.

3.2.2.2 Traveling in Time

A core component of our keyframe area is representing the current time of the animation with

an indicator. Our design offers three methods of interacting with this indicator

Clicking on the Ruler The keyframe area ruler contains an indicator for the current time along

with tickmarks. Clicking on these tickmarks will set the current time to the tick that was clicked.

In addition, dragging the mouse over the ruler is also supported and will set the current time to

the the position of the mouse as the user drags. This interaction is highlighted in Figure 3.10.

Figure 3.10: Ruler mouse click and current time change

26

The Playback Buttons Most animation tools we looked at for inspiration included buttons to

allow users to increment the time without manually clicking on the ruler. We implemented buttons

for jumping to the beginning and end of a timeline, stepping forwards and backwards through tick

marks, and playing the animation. These buttons are shown in Figure 3.11.

Figure 3.11: The Playback Buttons

The Clock Control Finally, we present the most precise way to set the current time, a clock

control. The clock control shows the current time in seconds to the user, along with providing

a way to input a specific time in text. Clicking on the control toggles the editing mode. This

functionality is outlined in Figure 3.12.

Figure 3.12: Clock control’s interaction

3.2.2.3 Manipulating Timelines

Switching timelines Users can switch which timeline is currently loaded by selecting their time-

line of choice in the navigator’s dropdown menu. When a new timeline is selected, the navigator’s

item list and property lists should change to reflect the new timeline. This is seen in Figure 3.13.

Figure 3.13: Process of changing timeline in navigator

Adding timelines In order to add timelines, users can click on a button that opens a dialog

box. This dialog box provides a field for users to enter the name of their new timeline, as seen in

Figure 3.14.

3.2.2.4 Manipulating Items

Adding Items to the Timeline The same button that allows users to add new timlines also

provides functionality for adding items to the active timeline. The menu that opens when clicking

27

Figure 3.14: Add timeline dialog

on the button will provide a list of items not yet added to the timeline for users to choose from,

which is illustrated in Figure 3.3.

Adding Properties to Items The final interaction in regards to items is adding properties to

be animated to a timeline item in the navigator. This is implemented via a button next to each

properties name. After the pressing this button, a list of properties is presented for the user to

choose from. After selecting a property, that property will be added to the list of properties below

the specified item in the navigator. This feature is highlighted in Figure 3.15.

Figure 3.15: Add property to an item in Navigator

3.3 Interfacing with Qt Quick Designer

The initial step in implementing this project was finding a way to integrate our project into the

existing Qt Quick Designer’s codebase. Qt Quick Designer’s ViewManager class was created to

be modular and allows the addition of new components with the addition of only a few lines of

code. The following section covers the steps necessary to interface with the entirety of Qt Quick

Designer’s view and document managers.

3.3.1 Creating a Component

The minimum requirement for a Qt Quick Designer component is for it to have a view class which

directly interfaces with the view manager. This view class must also contain a child QWidget object

to be rendered. This view must inherit from the AbstractView class, a class that sets up default

28

slots for signals emitted from the view manager regarding the document and model’s state. We

accomplished this by modeling our component off of existing components such as the existing

navigator component.

In order to actually register our view with the view manager, we had to implement a widgetInfo()

function, a function that provides basic information on our component. As seen in Figure 3.16,

this function provides the view manager with the widget’s instance, the name of the component,

our component’s preferred location in the interface, and additional meta information for creating

toolbars which were not required for this project.

WidgetInfo TimelineView::widgetInfo()

{

return createWidgetInfo(

m_widget, // Widget instance

0, // Toolbar Data

QStringLiteral("Timeline"), // Unique ID

WidgetInfo::BottomPane, // Location Preference

0, // Placement Priority

tr("Timeline Editor")); // Component Name

}

Figure 3.16: The widgetInfo function

3.3.2 Registering the Component

While the widgetInfo() function abstracts our component’s information from the view, there is

no signal to call to attach a component to the view manager. Instead the components that Qt

Quick Designer is comprised of need to be manually added by modifying the view manager’s source

code. The view manager does not directly keep track of its attached components, rather it simply

registers views to the document model through a function named attachViewsExceptRewriterAnd-

ComponentView, as seen in Figure 3.17.

void ViewManager::attachViewsExceptRewriterAndComponetView()

{

...

currentModel()->attachView(&d->timelineView); // Our Newly Added Component

...

}

Figure 3.17: Additions to the attachViewsExceptRewriterAndComponetView function

Once our view is attached to Qt Quick Designer, the view manager has to factor in our widget’s

meta info to determine where our view is placed in Qt Quick Designer’s interface. The view manager

handles this task by passing our widget’s info to it’s own internal Qt Quick Designer widget. This

internal widget then parses through the widget info of every Qt Quick Designer component, and

places the components in their preferred locations. This hierarchy is portayed by Figure 3.18

29

Figure 3.18: Our Timeline Component’s placement in the Qt Quick Designer Hierarchy

One of our design requirements was that the Timeline Component should be placed directly below

the Form Editor Component, so we set our components location preference to be the bottom pane.

Qt Quick Designer’s internal widget did not have a way to recognize this preference, despite the

bottom pane being enumerated along with all of the other possible positions. In order to place our

widget at the bottom of Qt Quick Designer, we created a function inside of the internal widget

which modified the center area to include a bottom pane. This change allowed our newly created

component to finally appear in the scene.

3.3.3 Linking the Document Model to Components

After the components of Qt Quick Designer are registered to the view manager, the model defined

in the loaded QML file is broadcasted to all of the components via a ”modelAttached” signal. Since

our timeline tool is closely related to the model, we implemented a slot to pick up this signal. This

allowed us to connect all of the components of oru tool to the document model and provided us

with the tools necessary to implement a robust C++ backend.

3.3.4 Loading QML in a Component

While a standard QWidget is the baseline requirement for a view that can be rendered as a

component in Qt Quick Designer’s scene, we chose to implement a QQuickWidget to draw our

project’s interface. This QQuickWidget creates a QML context along with providing bindings

to variables from C++ to QML. We felt that QML was the correct choice in implementing the

interface as it allowed us to easily interact with our model.

In order to load QML files of our choice we created a function that links QML source files to our

tool’s resource folder, and then to our QQuickWidget. To aid in the development of this project,

we made this function a public slot and connected it to a keyboard input signal, thus allowing us

to reload our view’s QML sources without having to recompile the C++ binaries. An abbrieviated

version of this function can be seen in Figure 3.19.

30

void TimelineWidget::reloadQmlSource()

{

QString timelineQmlFilePath = "/QtQuick/timeline.qml"; //file path

setSource(QUrl::fromLocalFile(timelineQmlFilePath)); //set widget’s source

emit qmlReloaded(); //update the widget

}

Figure 3.19: Function which reloads QML

Finally, to provide the document model to our QML frontend, we first converted the root item of

the model to an AbstractModelItem, an object that can be interpreted by QML as an associative

array. After doing this, we linked the abstract model item to an enivornmental context variable

that can be accessed globally inside any QML source that we include in our widget.

3.4 Developing a Timeline Model

The primary goal of this project is the development of a tool that removes the burden of writing

QML code to design Qt animations. In order to accomplish this task, we developed an abstraction

layer that allowed us to easily connect backend QML to a frontend UI. This abstraction layer took

the form of a Qt Model defined in C++ that can be ported to QML for display.

3.4.1 Model Requirements

In order to create a successful abstraction layer, our model had to comply with two main require-

ments. The first requirement is that any model we create must be easily understood and usable

in a graphical context by designers looking to design animations. The second requirement is that

any model we create must be easily portable to a QML schema.

3.4.2 Defining a Timeline Schema in QML

The first step to defining a schema for our timeline was breaking down what our timeline rep-

resents. In our case, a timeline is a series of series of items with properties that are animated

both sequentially and in parallel. A timeline can be triggered by multiple events, and multiple

timelines can exist that include different items or properties being animated. Additionally, a single

property belonging to one item can be animated multiple times in one timeline with pauses filling

gaps between animations.

To accomodate this definition of a timeline, we defined the following schema. At the lowest

level, a sequential animation is used to represent a single property of an item being animated. This

sequential animation includes PuaseAnimations and PropertyAnimations dictating the specific

changes of that property, in order, throughout the timeline. The sequential animations are then

grouped by their parent item under parallel animation objects, which will run each property’s

animation in parallel. Finally each of these item’s parallel animations are bundled under a root

parallel animation which represents the timeline as a whole.

Figure 3.20 presents QML source code formatted in our schema. In this example, a timeline

named timeline 1 animates two items in parallel: item 1 and item 2. First item 1’s y value is

31

changed from 0 to 10 over 1 second. At the same time, item 2’s x value is changed from 30 to 40.

After one secon, item 1’s x value is changed from 70 to 80 over one second.

// Timeline Tag

ParallelAnimation {

id: timeline_1

// Item 1 animations

ParallelAnimation {

// X property animation

SequentialAnimation {

PauseAnimation { duration: 1000 }

PropertyAnimation {

target: item_1; property: x;

duration: 1000; from: 70; to: 80

}

}

// y property animation

SequentialAnimation {

PropertyAnimation {

target: item_1; property: y;

duration: 1000; from: 0; to: 10

}

}

}

// Item 2 animations

ParallelAnimation {

// X property animation

SequentialAnimation {

PropertyAnimation {

target: item_2; property: x;

duration: 1000; from: 30; to: 40

}

}

}

}

Figure 3.20: This schema represents a basic timeline that animates two items.

3.4.3 Defining the Model Structure

Based on our research, keyframe objects are the unanimous method of choice for defining ani-

mations in timeline tools. A single keyframe represents the state of the properties of an item at a

specific time in an animation. While Qt animations are primarily defined by transitions and not

states, we determined that the use of keyframes as a basis for our model satisfies both our usability

and portability requirements.

Accordingly, the lowest level element of our model is defined as a property keyframe pair. This

item closely resembles the structure of a property animation object, but in the context of two

keyframes. Each property keyframe pair represents a single state change of a single property

belonging to a single item. Members of this object include the time of the first keyframe, the first

32

keyframe’s value, the duration of time until the second keyframe, the second keyframe’s value, and

the property that the property keyframe pair is associated with.

The second, mid-tier element of our model is the timeline item object. This object represents

an item in the loaded QML model that contains properties that are being animated in the time-

line. Members of this object include the id of the item being represented, the type of item being

represented, and a map linking property names to lists of property keyframe pairs. When new

keyframes are generated, they are added to the corresponding timeline item in our model.

The highest level element of our model is the timeline model object. This object acts as a

link between QML designs and C++ implementations, and contains functions that provide high

level interactions with the model as a whole. These functions range from adding new items to be

animated to updating the qml implementation of the model in the view. The primary member of

this object is a list of timeline items included in the current timeline animation.

3.4.4 Separating the Model from the View

To provide abstraction between the timeline model and the view, we developed a backend layer

dedicated to handling interactions between the two. This timeline backend is initialized in the

view, and interacts with the model through public functions called in the view and the widget.

The backend also provides slots that are linked to signals emitted from the view’s QML component.

The hierarchy of these components and their interactions is portrayed in Figure 3.21.

The timeline backend’s primary purpose is to reflect changes in the model to the view and

vice versa. In order to accomplish this task, the backend provides functionality for constructing

new models, modifying existing models, exporting models to the defined QML schema, handling

interactions in the view, and updating the view when the model is changed.

Figure 3.21: The final component architecture

33

3.4.5 Linking the Model to QML

A critical requirement of all Model-View systems is the synchronization of both the model and

the view at all times. In the context of this project, we had to ensure that all data related to

timelines was consistently passed from our C++ model to the QML in our view. In addition, any

changes of the timeline in our view had to be reflected in our C++ model. We accomplished this

task by using two features provided by the Qt framework: QProperties and context variables.

QProperties are members of QObjects that can be read and written inside QML source code.

By establishing property keyframe pairs, our timeline model object, and our timeline backend as

QObjects, it became possible to pass members of those objects to our QML view as QProperties

with both read and write access. Some model properties passed as QProperties are keyframe start

times, durations, start values, and end values.

In cases where information that was not explicitly a member of our model needed to be passed

to the view, we passed them as context variables. Context variables are a form of environment

variable belonging to a widget that can be globally accessed inside of QML source files. These

variables are added in C++ code by linking a string name in the widget’s context to any QObject.

Some objects passed to the view as context variables are a list of timelines that can be loaded from

the document model, a list of items that can be added to the active timeline, and the current time

selected inside of the timeline area.

3.5 Developing the Timeline Navigator

Even though a navigator component already exists in Qt Quick Designer, a separate navigator

tailored to our timeline is needed to provide functionality such as adding and selecting timelines,

adding items to timelines, and adding properties to timeline items. While developing the navigator,

we aimed to implement features based on our schema with the highest level feature, and the first

feature we implemented, being adding and selecting timelines.

3.5.1 Navigator Requirements

While designing the timeline navigator, we had to abide by three primary requirements. First,

the navigator must be feature complete. In the case of our tool, we define feature complete as the

inclusion of functions for adding timelines, adding timeline items, adding properties to be animated

for timeline items, and maintaining a list of items and properties that are available to be added to

a timeline.

The second requirement of our navigator was that its style be similar in nature to the existing

Qt Quick Designer navigator component. While the two components are separate in purpose, they

belong to the same overall program, Qt Quick Designer, and therefore the user experience for both

components must be roughly the same.

The final requirement that dictated the design of our navigator was a matter of ease of use. A

shallow learning curve is an important trait of any GUI-based tool, and the timeline navigator

component of our tool is no exception.

34

3.5.2 Adding and Selecting Timelines

The first feature we added to the navigator timeline tool was the ability to add and select

timelines to be loaded into the tool. We considered this feature to be the highest-level feature of

the navigator as the items and properties that are loaded are directly related to which timeline is

currently active in the tool.

This feature is implemented in the view via a combo box and a menu button, both of which are

adjacent to each other and located at the top of the navigatore, the code of which being outlined

in Figure 3.22. The combo box is filled with all timelines present in the QML source file loaded

in by the document manager. When a new source file is loaded or changes to an existing timeline

are exported to QML, the combo box updates to ensure that no new timelines are left out. When

an item in the combo box is selected, a signal is sent from the QML view to the C++ backend to

set the current timeline to the name of the item selected. The backend then prompts the entire

timeline tool to update to reflect the newly selected timeline.

RowLayout {

ComboBox {

id: timelines

model: timelineList

onActivated: {

navigator.setTimeline(timelines.textAt(index));

}

}

BarButton {

iconSource: "image://icons/plus"

onClicked: {

addMenu.popup();

}

}

}

Figure 3.22: QML code defining the timeline list and add timeline features

The menu button adjacent to the combo box provides an option for adding timelines. When this

option is selected, a dialog box opens that prompts the user to enter a name for the new timeline

being created. After entering a name, the user can either press a confirm button to proceed with

creating the new timeline or press a cancel button to back out of the creation process. After the

creation of a new timeline is confirmed in the dialog box, the same QML signal that is called by

the combo box is called with the name of the new timeline as a parameter. The C++ backend

then recognizes that the new selected timeline does not exist, generates a new timeline object with

the selected name, and updates the combo box to reflect the new list of timelines.

3.5.3 Adding and Viewing Timeline Items

The second feature we added to the navigator was functionality for registering timeline items to

the timeline model and viewing timeline items in the navigator. In order to fulfill our requirement of

maintaining a constant user experience between the use of the standard navigator component and

35

the timeline navigator component, we opted to display timeline items in a vertical list view directly

below the combo box containing the name of the active timeline. This list view is repopulated by

the C++ backend whenever a new timeline is loaded or a new item is added.

The menu button adjacent to the timeline combo box provides an option for adding items to

the active timeline. When this option is selected, a new menu opens with a list of items that are

in the document model that can be added to the timeline. In order to ensure that this menu only

includes items that are not already included in the timeline, the C++ backend generates a list and

passes it into the QML view as a context variable. When an item is selected in this new menu, a

signal is sent to the C++ backend to add that item to the timeline. When this signal is received,

the item is added to the timeline model, the context variable which tracks what items have not yet

been added is updated and resent to the QML view, and the navigator is updated to reflect the

new item in the timeline item list view.

3.5.4 Adding and Viewing Timeline Item Properties

The third feature we added to the navigator was functionality for registering animatable proper-

ties for timeline items to the timeline model and viewing these properties in the navigator. While

most functionlity regarding keyframes is relegated to the keyframe area, it is the navigator’s duty

to define and display which properties are currently available to have keyframes added to.

In order to condense the navigator, property views of timeline items are minimized. Each timeline

item in the navigator contains a button to expand the timeline item view to contain a vertical list

view of each property that is actively primed for animation. Pressing this button a second time

minimizes the timeline item view. This functionality exists solely in the navigator’s QML source

code.

In addition to the expansion button, the timeline item view also contains a button for adding

property views to the respective timeline item. Pressing this button opens a menu displaying a

list of all properties that are available to be animated and added to the timeline item view. In

the current implementation of this project, only x, y, width, and height properties are supported.

When a property is selected in the menu, a signal is sent to the C++ backend to add that property

to the corresponding timeline item. The backend proceeds to add a new entry to that timeline

item’s map for the property specified. Next, the backend updates the navigator to reflect the new

property that was added to the view.

3.6 Developing the Keyframe Area

The keyframe area is a component of our tool that is strongly linked to the timeline navigator

component. The two primary features of this component are functionality for adjust the time

indicator and functionality for modifying and interacting with keyframes.

3.6.1 Keyframe Area Requirements

In addition to the user experience and ease of use requirements defined by the the timeline

navigator, the keyframe area has its own set of unique requirements.

36

One unique requirement of the keyframe area is the need for an accurate representation of the

keyframes in the active timeline model at all times. More specifically, any modifications to the

keyframes in the timeline model that are performed in the C++ backend or the QML source must

be automatically reflected in the keyframe area view.

In addition to the synchronization of the keyframe area to the model, it is also required that

the keyframe area is always synchronized with the timeline navigator. For example, when timeline

item properties are expanded and minimized, the corresponding rows in the keyframe area must

do the same.

3.6.2 Implementing the Ruler

The primary purpose of the ruler is to set a scale for the keyframe area and provide a visual

context for time. As seen in Figure 3.2, the ruler resides at the top of the keyframe area and

occupies the entire width of the component.

The Ruler was implemented as a QML Repeater item that draws lines at selected intervals that

represent tick marks. The height of each tick mark is determined by running the index of the tick

through a modular function; tick marks that represent a time divisible by one half of a second are

taller than other tick marks. The spacing between the tickmarks is directly linked to the value of

the zoom slider which resides inside of the titlebar. This value is propagted to the ruler through a

QML variable binding.

3.6.3 Keeping Track of Time

The timeline area provides three methods for interacting with the current time index. In order

to supply this functionality, the C++ backend hosts an integer time variable that is passed to the

QML source as a context variable. Each time interaction feature interacts with this variable in

some way to perform its functionality.

The first method of changing the time index is clicking on the ruler at the desired time. To

accomplish this, a MouseArea was overlayed on top of the ruler. When this MouseArea is pressed

and dragged, the time indicator’s x coordinate is changed to the current x value of the mouse.

When the mouse is released, a signal is sent to the C++ backend indicating that the time has

changed to the current position of the indicator. This change is then reflected in the context

variable that is passed to the QML source.

The second method of modifying the time index is by interacting with the buttons in the title

bar. Buttons are provided for jumping to the start and end of the timeline, stepping forward and

backward by one tick mark, and playing the timeline. After pressing the button to jump to the

beginning of the timeline, a signal is sent to the C++ backend to set the time to 0. Pressing the

button to jump to the end of the timeline sends a signal to set the time index to the time of the

last keyframe. Pressing the skip forward or backward buttons send a signal to the C++ backend to

change the time the current time’s closest tick mark plus or minus 100ms respectively. An example

of the step back button is seen in Figure 3.23. Functionality for the play button is not currently

supported for reasons outlined in the future works section.

37

BarButton {

iconSource: "image://timeline/step-backwards"

tooltip: "Step Back"

onClicked: {

if (currentTime > 0) {

titlebar.setCurrentTime((currentTime - currentTime%100) - 100);

}

}

}

Figure 3.23: The QML source of the step-back button.

The final method of interacting with time is provided by a clock object in the title bar. When

the clock is clicked, it is converted to a text field that allows the user to enter a time in milliseconds.

After the user presses enter, the text field is converted back to a clock and a signal is sent to the

C++ backend to set the time to the time specified by the user. Figure 3.24 illustrates how this

item was created. The design of this feature in the view is shown in Figure 3.12.

TextField {

id: editView

height: 20

text: time

visible: edit ? true: false

horizontalAlignment: TextInput.AlignHCenter

onEditingFinished: {

edit= false

editView.focus = false

clockControl.setCurrentTime(editView.text)

}

}

Figure 3.24: QML Source code that defines the editing component of the title bar’s clock.

3.6.4 Keyframe Rows

According to our model, keyframes are specific to individual properties inside individual items.

Additionally, any property can be modified by an unlimited amount of keyframes. In order to

represent these two aspects of our model, we chose to display all keyframes that belong to the same

property of the same item in a single row alongside the name of that property in the navigator.

Special rows are designated to fill the space next to the names of items in the navigator by including

rows for group keyframes.

Property keyframes rows are filled with a horizontal list of keyframes pairs. The graphical rep-

resentation of a keyframe pair includes two icons resembling the start keyframe and end keyframe.

The transition between each keyframe in a pair is represented by a rectangle with a width equaling

the duration of the keyframe pair.

Group keyframe rows contain a single group keyframe item that represents the combination of

all property keyframes a timeline item contains. This group keyframe item takes the form of a

38

rectangle, and has a width equal to the time between the first keyframe and last keyframe. Circles

are overlayed on top of the group keyframe item that represent the location in time of all property

keyframes possessed by the group keyframe’s corresonding timeline item.

3.6.5 Adding Keyframes

void TimelineQmlBackend::addKeyframe(QString itemId

, QString propertyName

, int time) {

...

TimelineItem *item = m_timelineModel->getItemById(itemId);

PropertyKeyframePair *keyframe =

new PropertyKeyframePair(propertyName

, time,0,startValue

, startValue

,0);

item->addKeyframe(keyframe); \\add the new keyframe to the item

...

}

Figure 3.25: The add keyframe slot

While keyframes live in the keyframe area, functionality for adding keyframes is a component

of the navigator. Each property item in the navigator contains a button that is used to add a

keyframe for that specific property. When this button is pressed, a signal is sent to the C++

backend to request the addition of a keyframe for the specific item/property pair as seen in Figure

3.25. Upon receiving this request, the backend creates a new property keyframe pair linked to

the current time index specified in the keyframe area. The backend then proceeds to add the new

keyframe to the model and update the keyframe area to reflect the new changes.

3.6.6 Keyframe Interactions

In addition to adding keyframes, the timeline tool also offers functionality for modifying aspects

of property keyframe pairs by making keyframes in the view interactable. Overrall, four properties

of keyframe pairs are modifiable: start time, duration, start value, and end value.

The start time and duration properties can be modified by dragging elements of the property

keyframe. If the starting keyframe icon is dragged, both the start time and the duration of the

keyframe pair will be modified. For example, if the original start time of a keyframe pair is two

seconds, the original duration is two seconds, and the starting keyframe of the pair is dragged to

the one second mark, the start time of the pair will be changed to one second and the duration

will become three seconds. The start time of the keyframe pair can be modified without affecting

duration by dragging the bar between the two keyframes. The duration can be changed without

affect the start time of the pair by dragging the final keyframe.

As an additional feature, the icon representing the keyframe pair changes when duration becomes

0 to allow for both keyframes to be displayed as opposed to both keyframes being in the same

position. This functionality was accomplished by overlaying a mouse area on top of the keyframe

39

pair and along the keyframe area. When a mouse event is triggered inside of the keyframe area,

QML code determines which item was selected, and changes the features of the pair in the QML

source accordingly. Once the mouse is released, the property changes are written to the C++

model.

The process of changing the start and end values of keyframe pairs is different. When a keyframe

pair is right clicked, a menu will open providing the user an option to modify that keyframe pair’s

properties. Upon selecting this option, a dialog box will open prompting the user to enter values

for the start time, duration, start value, and end value of the keyframe pair.

Finally, the keyframe area provides functionality for expanding and collapsing property keyframes.

When a group keyframe is clicked, the property keyframes that are a part of the item the group

keyframe represents either expand or collapse based on their current state. Additionally, a signal

is sent to the navigator informing the navigator of the item that has been expanded or collaped so

that the navigator can perform the same action.

40

Chapter 4

Results

Overall, our project was a success and was positively received by our direct advisors and general

staff at The Qt Company. Figure 4.1 shows the final look of our tool, running inside of Qt Creator.

Through the use of our tool, graphic designers can easily create and edit animations using QML

without having to write a single line of code.

Figure 4.1: The final look of the Timeline Tool

When we began working on this project, we established a series of requirements for our final

product; which we met. The first requirement for this project was that our timeline tool must

provide an organized way for animating Qt items. We satisfied this requirement in two different

ways. First, by developing a simple QML schema for timelines, users can easily browse through the

source code of animations our programs generate. Additionally, by designing our timeline tool’s

41

view with easy to grasp, modular components, the learning curve for working with our tool is very

shallow.

The second requirement for this project stated that our tool must provide functionality for

modifying multiple timelines. Our timeline schema paved the way to supporting multiple timelines

by defining a contained timeline inside of a root Parallel Animation. This requirement was fully

satisfied by our implementation of a tool in our navigator component to select multiple timelines

from the loaded QML source. When a new timeline is selected, the old timeline is saved and the

new timeline is loaded into the tool. Finally, when the QML is exported, the multiple timelines

get saved individually as described in our timeline schema.

The third requirement for this project highlighted the need for our tool to support the creation of

animations on a per-item, per-property basis. By defining a system of property specific keyframes

and requiring users to explicitly select which properties of which items they are choosing to animate

at any given time, we were able to ensure that timelines were always defined by item-specific and

property-specific animations.

The final requirement for this project stated that all animations created using our tool must

be able to be exported to QML using existing QML objects. We satisfied this requirement by

utilizing the existing parallel and sequential objects as critical components of our QML schema.

By designing our timeline’s C++ model to be structurally similar to our QML schema, our tool

was able to easily convert timelines between both formats.

42

Chapter 5

Future Steps

While the current implementation of our tool is functional and satisfied all of our requirements,

there are features that could be added to our tool to provide a more complete user experience. This

section outlines features that may be the next steps in advancing the Qt Quick Designer animation

editing tool.

5.1 Form Editor Animation Playback

In the current implementation of our tool, animations that are created are played by compiling

and running the application that the animation is a part of. While this does allow designers to view

their animations, it a takes a relatively long time and make modifying animations in a minor way

difficult. One of the desired features we wished to implement was for animations to be playable

inside Qt Quick Designer’s form editor component. As of right now, there are limitations in the Qt

framework’s current QML and form editor implementations that hinder the development of such

a feature.

The first limitation is that the current implementation of QML implementation does not keep

track of time. While it is possible to pause and stop animations using signals, it is not possible to

specify a specific time of an animation and show the current state of the animation at that point.

This feature can be implemented via the development of a function that takes in the start value of

an animation, the end value of an animation, and the desired intermediary time and outputs the

value at that time by using the animation’s interpolation function.

Another limitation is that the form editor was not built around playback, but rather for being

able to change an item’s properties. Manipulating one of these properties programmatically to

feign motion would result in direct changes to the document model, which is undesireable. One

workaround to this behavior is to modify a model node’s property using the setCustomProperty

function, which would override a specific property without writing them to QML code. The Qt

Designer team advised us to not concentrate in this workaround as it has not been extensively

tested.

43

5.2 Keyframe Editing in Property Editor

The current method of editing the values of keyframes in our tool is opening a dialog box by right

clicking on a keyframe. Inside the dialog box, a user can modify attributes of the keyframe pair.

While this approach is functional, it is not slick and it is not easily scalable to handle additional

keyframe attributes.

To address these issues, we recommend that functionality for editing keyframe attributes be

linked to the existing property editor component that lives inside of Qt Quick Designer. The

property editor, as it stands, provides a simple interface for modifying the properties of items in

a model. Additionally, the property editor groups properties into sections which can be expanded

and collapsed, thus reducing clutter and making the component easily scalable for any amount of

properties that belong to an item.

The existing implementation of the property editor only supports editing properties that belong

to items that exist in a document model; this excludes our timeline model and by extension, our

keyframe objects. One solution that would allow keyframe properties to be edited in the property

editor would be to convert keyframe objects into pseudo document model nodes. By creating

skeleton model nodes with keyframe property tags, keyframes could be edited in the property

editor component. A less optimal solution would be to modify the property editor so that it can

support properties of objects not included in a document model.

5.3 Additional Animation Functionality

As of right now, our tool only supports a limited set of features in regards to creating and

modifying animations. One such feature is animation easing. In many cases, graphic designers

wish to augment the movement of items to create smoother transitions during the beginning and

end of animations. The front end of our tool currently provides a section for each keyframe pair

that displays the animation’s easing type, however the backend of our tool automatically assigns

a linear easing to every animation created. We recommend that support for different easing types

be added to our tool.

Currently, while the backend of our tool supports all animation types, the frontend of our

tool only supports the creation of animations for x, y, width, and height properties of items.

We recommend the addition of a feature to the frontend of our tool that allows users to create

animations of any type. In order for this to be accomplished, a list of all animatable properties for

a given item type needs to be propegated from the backend of our tool to the frontend.

Finally, Qt Quick 5.2 introduced a new type of animation item named Animator. As opposed

to a property animation which simply interpolates values in a given amount of time using the

CPU, the Animator is executed as a part of Qt’s scene graph and is hardware accelerated, making

animators faster than their animation counterpart. Unlike property animations, animators have

different imlementations per property. For example, instead of using a Property Animation on x,

one could use an XAnimator instead.

44

We propose the addition of a simple switch case in our C++ backend which can detect if a

specific property which has an Animator counterpart is being animated, and exporting the item as

such Animator. Our import function already supports Animators, so not much work has to occur

in that regard.

45

Chapter 6

Conclusion

Before this project began, designing animations using the Qt framework required writing code.

The end result of this project was the development of a tool that allows graphic designers to create

Qt framework animations inside of The Qt Company’s IDE, Qt Creator, without having to write

a single line of code. The tool is inspired by other leading animation editors which use a keyframe-

based system for defining animations. While QML, the frontend language for Qt applications, does

not support keyframes, our tool generates valid QML code, while also exposing QML animations

in a keyframe-based system.

46

Bibliography

[1] Summerfield M Blanchette J. C++ GUI Programming with Qt 4. Prentice Hall, 2006.

[2] Meet qt - leading cross platform application and ui framework. presentation.

[3] Qt overview. Available at www.qt.io. web. accessed 02/28/2017.

[4] https://www.qt.io/qt-for-application-development/. web. accessed 02/28/2017.

[5] https://wiki.qt.io/Qt_Platform_Abstraction. web. accessed 02/28/2017.

[6] http://doc.qt.io/qt-4.8/signalsandslots.html. web. accessed 02/28/2017.

[7] http://doc.qt.io/qt-5/qtwidgets-index.html. web. accessed 02/28/2017.

[8] http://doc.qt.io/qt-5/designer-using-a-ui-file.html. web. accessed 02/28/2017.

[9] http://doc.qt.io/qt-5/model-view-programming.html. web. accessed 02/28/2017.

[10] https://doc.qt.io/archives/4.6/model-view-delegate.html. web. accessed

02/28/2017.

[11] http://doc.qt.io/qt-5/qtwidgets-itemviews-spinboxdelegate-example.html. web.

accessed 02/28/2017.

[12] http://doc.qt.io/qt-5/qtqml-index.html. web. accessed 02/28/2017.

[13] http://doc.qt.io/qt-5/qml-qtqml-component.html. web. accessed 02/28/2017.

[14] http://doc.qt.io/qt-5/qtqml-typesystem-basictypes.html. web. accessed 02/28/2017.

[15] http://doc.qt.io/qt-5/qtquickcontrols-index.html. web. accessed 02/28/2017.

[16] http://doc.qt.io/qt-5/qtqml-syntax-signals.html. web. accessed 02/28/2017.

[17] http://doc.qt.io/qt-5/qtqml-syntax-objectattributes.html#signal-attributes.

web. accessed 02/28/2017.

[18] http://doc.qt.io/qt-5/qml-qtquick-loader.html. web. accessed 02/28/2017.

[19] http://doc.qt.io/qt-5/qml-qtquick-propertyanimation.html. web. accessed

02/28/2017.

[20] http://doc.qt.io/qt-5/qml-qtquick-parallelanimation.html. web. accessed

02/28/2017.

47

www.qt.io
https://www.qt.io/qt-for-application-development/
https://wiki.qt.io/Qt_Platform_Abstraction
http://doc.qt.io/qt-4.8/signalsandslots.html
http://doc.qt.io/qt-5/qtwidgets-index.html
http://doc.qt.io/qt-5/designer-using-a-ui-file.html
http://doc.qt.io/qt-5/model-view-programming.html
https://doc.qt.io/archives/4.6/model-view-delegate.html
http://doc.qt.io/qt-5/qtwidgets-itemviews-spinboxdelegate-example.html
http://doc.qt.io/qt-5/qtqml-index.html
http://doc.qt.io/qt-5/qml-qtqml-component.html
http://doc.qt.io/qt-5/qtqml-typesystem-basictypes.html
http://doc.qt.io/qt-5/qtquickcontrols-index.html
http://doc.qt.io/qt-5/qtqml-syntax-signals.html
http://doc.qt.io/qt-5/qtqml-syntax-objectattributes.html#signal-attributes
http://doc.qt.io/qt-5/qml-qtquick-loader.html
http://doc.qt.io/qt-5/qml-qtquick-propertyanimation.html
http://doc.qt.io/qt-5/qml-qtquick-parallelanimation.html

[21] http://doc.qt.io/qt-5/qml-qtquick-sequentialanimation.html. web. accessed

02/28/2017.

[22] http://doc.qt.io/qtcreator/. web. accessed 02/28/2017.

[23] http://doc.qt.io/qtcreator/creator-using-qt-quick-designer.html. web. accessed

02/28/2017.

[24] http://www.qt.io/qt-news/qt-company-adopts-nvidia-drive-design-studio/. web.

accessed 02/28/2017.

48

http://doc.qt.io/qt-5/qml-qtquick-sequentialanimation.html
http://doc.qt.io/qtcreator/
http://doc.qt.io/qtcreator/creator-using-qt-quick-designer.html
http://www.qt.io/qt-news/qt-company-adopts-nvidia-drive-design-studio/

Appendix A

Qt for Native Client

A.1 Introduction

The following section details a project which we worked on during the beginning of our time at

The Qt Company that is separate from the Qt Quick Designer timeline tool.

A primary feature of Qt is its cross-platform compatibility. New coding environments and

platforms now become readily available; Accordingly, The Qt Company is interested in expanding

their platform to ensure that it runs on any and all devices. One such platform is Google’s Native

Client .

This project follows a previous attempt to port Qt to Native Client, provides context on how to

run applications on Native Client using outdated versions of Qt, and outlines further steps needed

in order to port a current implementation of Qt to browser-based platforms.

A.2 Background

A.2.1 Native Client

Native Client (NaCl) is a sandboxed environment inside Google Chrome that brings the per-

formance and low level control of native code to a web browser without sacrificing security and

portability . Code written for NaCl is first compiled as intermediary low level virtual machine

(LLVM) bytecode and is considered a Portable Native Client (PNaCl) executable (.pexe). This

platform-specific bytecode is then passed to Google Chrome which in turn converts the LLVM byte-

code into a NaCl executable (.nexe). In-browser compilation can be avoided if developers instead

compile their code for a specific platform and run the resulting executables through NaCl security

checks, thus creating their own NaCl executables. NaCl executables are bound to webpages via

HTML embed tags.

A.2.2 Pepper Plugin API

Due to the nature of NaCl’s sandboxed environment, it is impossible to make system calls inside

of a NaCl module. The Pepper Plugin API (PPAPI) exists for this purpose, allowing NaCl to

49

access platform-abstract system calls without sacrificing existing security and portability . The

PPAPI permits NaCl applications to perform file I/O, network functionality, mouse and keyboard

integration alongside 2D and 3D graphic calls with hardware acceleration, allowing for richer and

visually appealing applications .

A.2.3 Project Files and Qmake

The Qt Company uses a variety of company-made utilities and file formats to assist in compiling

their codebase and their end users’ applications. These tools are components of Qt libraries and

can be used to compile and make otherwise non-qt related software.

Qt applications include a specialized project file format (.pro) which contains all of the informa-

tion required to build the given application . The file format features a declarative language used

to define most standard variables such as the included header files and source files. Control flow

structures can also be added to help define more complex projects. Project files can be configured

to create release or debug versions of the same project, amongst other things, however this specifi-

cation can also be made during compile time with in-line arguments. Libraries and other included

files are also specified here.

In order to compile applications, The Qt Company and end users use a tool called qmake. Qmake

helps simplify the build process by generating Makefiles based on the contents of the application’s

project file . The qmake command supports a wide array of options that can be used to specify

levels of debugging, the environments the app will run in, and more. Typically qmake is only

used for the creation of Makefiles, but it can also be used to generate project files when given the

appropriate runtime arguments.

A.2.4 Qt Platform Abstraction

A platform abstraction layer is a codebase that facilitates the development applications that run

on multiple platforms. The Qt Platform Abstraction (QPA) provides the infrastructure necessary

to develop Qt applications for any platform . Users who wish to run their applications on a unique

platform first have to create a plugin using the QPA which resolves Qt objects such as QString and

QList to the appropriate native structures . Qt provides a configuration tool where, when defining

what platform Qt is going to be built for, it will generate a custom qmake executable specific to

the specified platform .

In addition to writing the plugin described above, users must write a makespecs configuration file.

This file outlines which C/C++ compilers to use when compiling an application on the specified

platform. Additional make specs that can be defined are other necessary header files, libraries, and

environment variables. Complex configurations can be created by linking to other makespec files

which will also be evaluated.

50

A.3 Methodology

A.3.1 Outdated Qt for NaCl

In order to satisfy the primary goal of porting Qt version 5.8 to NaCl, we opted to begin by

replicating the steps previous developers had outlined for Qt versions 5.4 and 5.6. During this

process we were in contact with Morten Sørvig, the developer for The Qt Company who was in

charge of porting previous versions of Qt to NaCl. Previous attempts to establish Qt for NaCl

were not a part of Qt’s supported API, so all existing related repositories lived inside of Morten’s

personal git repository .

A.3.2 Preparing the Compilation Environment

The preferred method to compile Qt-NaCl is to perform a shadow build, a process that involves

compiling code from a build directory that is outside of the source directory. Qt is typically

compiled by running a configuration script which first compiles the QtBase module, the main

module behind Qt which contains core functionality and the QPA layer. This script then locates

all available modules in the source directory and proceeds to compile them using the qmake script

built in QtBase. Because Qt for NaCl is unsupported, most modules can not be compiled for Qt

and this automated compiling process can not be used. Instead, after compiling QtBase for NaCl,

it is necessary to hand-pick the other modules that can be compiled and build them separately.

We created a build directory with one folder dedicated to each NaCl supported module: QtBase,

QtDeclarative, and QtQuickControls. The QtDeclarative module provides a QML interpreter

which allows for easy interface programming. The QtQuickControls module provides user input

fields and controls for use with QtDeclarative.

The modified QtBase source was available on Morten’s git repository . In order to compile

QtDeclarative for Nacl, we pulled the QtDeclarative module source code from the Qt 5.4 and 5.6

releases and applied a NaCl compatibility patch to it . We followed the same process to obtain

the appropriate QtQuickControls source except no patches had to be applied. The final step of

preparing our environment was downloading the NaCl SDK from Google . After adding the root

directory of this SDK to our environment’s PATH variable, we were able to begin the process of

compiling our modules.

A.3.3 Compiling QtBase and Qmake for NaCl

Morten’s implementation of QtBase provides a tool named nacl-configure that when run, gener-

ates a makefile that compiles QtBase and creates a qmake executable. The tool supports compiling

for native 32-bit and 64-bit versions, and additionally provides an option to compile for PNaCl

instead of NaCl. It is important to note that while the tool supports PNaCl, inline assembly is

present in QtBase’s source, and inline assembly is not supported by PNaCl . While it is possible to

modify the QPA makespecs to permit inline assembly in PNaCl applications, the resulting binaries

can not be run in the NaCl sandbox inside of chrome as the inline assembly includes platform

specific system calls. Running the nacl-configure tool configured for 64-bit Linux and MacOS gave

us the tools required to compile the remaining modules for NaCl.

51

A.3.4 Building Qt for NaCl Modules

Before compiling QtDeclarative, it was necessary to apply a patch that provides safe calls to

otherwise unsafe functions. The patch also disables multithreading functionality as multithreading

is not yet supported by Qt for a NaCl context. After applying this patch, we used the previously

built qmake tool to generate a Makefile for QtDeclarative in our shadow build directory. Once that

Makefile was generated, simply running make was all that was required to compile QtDeclarative

for NaCl. QtQuickControls was compiled in the same way but without the need for a patch.

A.3.5 Building Sample Application for Qt for NaCl

After successfully building a stable NaCl development environment, we began building example

applications that were included in the Qt version 5.6 source code. As a user interface framework,

Qt applications try to take over the main thread to make it a rendering thread which is something

Native Client does not allow. Because of this, it is necessary to define the Qt application’s main

function as a specific Qt for NaCl function called Q GUI MAIN . Skipping this step yields a binary

that does not have a main function address, and therefore will not execute. Accordingly, Qt

applications that do not have a main function will also not execute in NaCl. We found that in

certain Linux configurations of Qt for NaCl, NaCl libraries were not being properly linked. As a

result, NaCl libraries had to be manually linked in the project file of some Qt applications.

To compile these applications, we first ran qmake on the application’s project file. This generated

an LLVM .pexe file if the PNaCl platform was specified and generated a NaCl executable if section2-

bit or 64-bit platform was specified. In order to finalize the resulting binaries, we used a tool inside

of QtBase named nacldeployqt . This tool finalized the executable, created a JavaScript loader

which starts the Qt environment inside the browser, and created and a skeleton HTML page which

embeds the executable to the browser. Nacldeployqt can be run with –run or –debug parameters.

A.4 Results

During our time working with Qt for NaCl, we retraced Morten Sørvig’s workflow and applied

quick patches in the compilation process which were reported to our supervisor. By applying these

patches, we successfully established a stable Qt for NaCl development environment in 64-bit ver-

sions of Linux and MacOS built on Qt version 5.6. Additionally, by using these development envi-

ronments, we compiled example applications showcasing functionality of both the QQuickControls

module and the QDeclarative module. One particular window rastering example also highlighted

mouse event and window event functionality. These environments and example applications were

positively received by The Qt Company employees.

We found that many otherwise normal Qt applications may not successfully compile in a NaCl

environment due to non-standard or conflicting C++ functions linked during the compilation

process. In order to determine the offending functions, it is necessary to use a debugger to isolate

the function during the browser’s .pexe to .nexe compiling stage. By modifying the source code to

use a separate implementation of the function or modifying the bytecode of that function in raw

form to jump back into the main loop of the application, these applications can successfully be

compiled for NaCl. In addition, some Qt applications simply lack an appropriate main function,

52

and therefore can not be executed in a NaCl environment. These shortcomings were reported to

The Qt Company with positive reception.

A.5 Future Steps

Running Qt applications in browsers is practical and clearly fits into The Qt Company’s aim

of keeping Qt a cross-platform API. As of October 2016, Google’s NaCl and PPAPI teams were

destaffed . Accordingly, we recommend that The Qt Company shifts their course and pursues

compiling Qt for WebAssembly instead of NaCl. WebAssembly is a robust in-browser client-side

scripting platform built on top of NaCl and ASM.js. Like NaCl, WebAssembly uses LLVM bytecode

as an intermediary format between source code and run-time executables and therefore would not

require sweeping changes to the existing NaCl QPA . We believe that this shift will be necessary

should The Qt Company decide to continue executing their native code in browsers.

Qt Lite is an existing branch of the Qt framework infrastructure that provides the features

of Qt in a more lightweight manner . Qt Lite binaries occupy considerably less space than the

typically large vanilla Qt binaries. These large binaries cause longer loading times and more data

usage when running in a browser environment. We recommend that Qt Lite be configured for web

environments so that the shortcomings of large binaries can be addressed.

Finally, Qt announced a platform for serving WebGL commands to the browser from a remote

server . The work is currently in a proof of concept stage in which mouse and keyboard interactiv-

ity along with rich graphics are supported. Currently, commands are serialized in binary form and

then interpreted by a custom front-end written by the end user. The Khronos group has written

specifications for a similar, yet standardized, GL command and buffer schema titled Graphics Li-

brary Transmission Format (GLTF). Both of these graphics implementations would greatly benefit

this project.

53

	Introduction
	Background
	The Qt Company
	Qt Framework
	Advantages of Qt
	Signals and Slots
	QtWidgets
	Models and Views

	QML
	Advantages of QML
	Items and Attributes
	Interacting with Components
	Signals and Connections
	Loaders
	Animations

	Qt Quick Designer
	Introduction
	Document Manager and Model Node Structure
	View Manager
	Components

	Related Works
	Hype
	Google Web Designer
	Qt 3D Studio
	Adobe After Effects

	Methodology and Implementation
	Requirements
	Design
	Wireframes
	Interaction Design

	Interfacing with Qt Quick Designer
	Creating a Component
	Registering the Component
	Linking the Document Model to Components
	Loading QML in a Component

	Developing a Timeline Model
	Model Requirements
	Defining a Timeline Schema in QML
	Defining the Model Structure
	Separating the Model from the View
	Linking the Model to QML

	Developing the Timeline Navigator
	Navigator Requirements
	Adding and Selecting Timelines
	Adding and Viewing Timeline Items
	Adding and Viewing Timeline Item Properties

	Developing the Keyframe Area
	Keyframe Area Requirements
	Implementing the Ruler
	Keeping Track of Time
	Keyframe Rows
	Adding Keyframes
	Keyframe Interactions

	Results
	Future Steps
	Form Editor Animation Playback
	Keyframe Editing in Property Editor
	Additional Animation Functionality

	Conclusion
	Qt for Native Client
	Introduction
	Background
	Native Client
	Pepper Plugin API
	Project Files and Qmake
	Qt Platform Abstraction

	 Methodology
	 Outdated Qt for NaCl
	 Preparing the Compilation Environment
	 Compiling QtBase and Qmake for NaCl
	 Building Qt for NaCl Modules
	 Building Sample Application for Qt for NaCl

	Results
	Future Steps

