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Abstract

We have developed the Gomba Testing Framework, a new platform for the

comparative evaluation of search algorithms in large adversarial game trees.

Gomba is simple, fast, extensible, objective, and can scale to larger trees than

previous frameworks have been able to test against. We have implemented and

tested a variety of Monte-Carlo based search algorithms using the framework

and have analyzed their performance in relation to known metrics in computer

Go. Finally, we have taken several solutions to the in�nitely-many-armed

bandit problem and adapted them to tree search. We have tested these variants

in both Gomba and computer Go, and have shown that they can be e�ective

in both cases.
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1 Background

1.1 Introduction

Intelligent search forms the basis of much of modern arti�cial intelligence research.

Most AI problems can be reduced to searching for an ideal solution from a known

set of potential solutions to a problem. Speech recognition is a search for the phrase

which best represents a particular sequence of sounds. Proof generators are e�ec-

tively search engines for sets of logical premises. Game playing, too, may be reduced

to a search problem where the goal is to �nd a sequence of moves which will result

in a winning game state.

Our project's broad goal is the improvement of computer search performance in

adversarial game trees. In particular, we consider performance in trees which are

too large for the application of traditional exhaustive search methods, as is the case

in most �interesting� games such as chess and Go. We �rst present the Gomba (Go-

based Monte-Carlo Bandit Analysis) Testing Framework, a new testing platform

which we have developed to measure the performance of search algorithms for two-

player adversarial game trees. This framework has been designed with extremely

large trees in mind, and is capable of evaluating new search strategies simply, quickly,

objectively, and scalably. This combination has previously only been feasible with

relatively small game trees, which makes our framework a signi�cant new contribu-

tion not just for our own testing but for future researchers to use in the evaluation

of their own strategies.

With this new framework in hand, we showcase a variety of experimental results

obtained by testing several Monte-Carlo based search strategies which have proved to

be e�ective in computer Go playing against the Gomba framework. We compare the

results in our framework to those claimed in previous research and to those seen in

current practical computer Go engines. After completing these control experiments,

we proceed to implementing several new variant search strategies in our framework.
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We then take the most promising of these new variants and implement them in an

existing successful computer Go engine, Fuego, to compare their performance in our

arti�cial game tree engine with performance in a real-world application.

1.2 Adversarial Search

In arti�cial intelligence, some of the oldest problems revolve around adversarial

search. In a regular search process, an agent is simply attempting to search through a

(non-hostile) environment for a solution to a problem, but adversarial search extends

this concept to include aspects of the environment seeking to hamper the agent's

progress. Thus, the agent's goal becomes not just to �nd a solution, but to �nd a

solution where it wins against its adversary or adversaries.

To use such techniques in a game, the entire set of states and actions of that game

may be represented as a tree structure where each node corresponds to a game state

and each edge corresponds to an action from that game state. The overall root of

the tree is the current state of the game, thus providing a convenient representation

of all states and actions that can occur within this game. Additionally, states may

have a notion of value attached to them such that one can determine the winning

player's and losing player's scores. Once the game is encoded in this fashion, the

goal of the search algorithm is clear: it must �nd the move which will place itself

in a position such that it will maximize its value and, ideally, win. Doing this for

every move is known as playing optimally.

The current fastest strategy for optimal play, known as minimax [14], is based

on a fairly simple recursive process of minimizing the opponent's reward while

max imizing the current player's reward at any given time. This is done by choosing

the node with the lowest minimax value when the opponent plays and the node with

the highest minimax value when the current player plays. From there, the optimal

move is determined for not just the current time step, but for all subsequent time

steps, e�ectively solving the game. However, all is not as well as it might seem: the
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minimax strategy requires O(bd) time to complete for a game with branching factor

b and depth d due to visiting all nodes in the tree. For many games, this approach

is simply infeasible.

1.2.1 Performance Improvements

It is not typically feasible to use a true minimax policy in practice because of the

exponential time constraint involved in obtaining a usable result. There are several

known optimizations to the basic minimax algorithm which can improve drastically

on the amount of time required, but there is no known method which can generate

perfect results in less than exponential time. For example, Alpha-Beta Pruning

[14] is a common approach in the early stages of move computation in chess AI -

it is a minimax policy which keeps track of the best and worst subnodes currently

found underneath nodes earlier in the tree. Because a node is suboptimal if all

of its child nodes are suboptimal, this data can be used to determine that certain

nodes are suboptimal before fully expanding their children. This resulting in a

time complexity of O(b
d
2 ) instead of normal Minimax's O(bd). This is a signi�cant

improvement, but not so signi�cant as to make a fully optimal search of this nature

feasible for a game with a branching factor as large as Go's. Other strategies must

be considered.

One such strategy is the use of heuristics. Many board states in a game can

be said to have a certain value. In Chess, for example, a board where the player's

queen is facing capture is much less desirable (and thus has a lower value) than one

where the player is set to capture the opponent's queen. From properties of speci�c

games, one can thus assign a value to a board state or class of board states, and use

these to infer which moves are �better�. This can bring many games into a realm

where computers may feasibly play them well, but at a price: heuristics can often

introduce biases into games, and are not guaranteed to be accurate. Building on

the previous Chess example, sacri�cing pieces that may have high value could lead

3



to victory for the player�something which may not be immediately apparent from

the value a heuristic may give. This means the use of heuristics can also introduce

suboptimal play as well. However, given the time complexity of �nding an optimal

move, suboptimal play is often the only option.

The branching factor of many games can often be so high that visiting every

possible move from a given state is prohibitively expensive. The game Go is a

notable example of this: with an average branching factor of roughly 200, evaluating

all possible moves will involve rather signi�cant overhead for relatively little reward.

In many games, though, the optimal move from a state often belongs to a class of

near-optimal but suboptimal moves. Because of this property, it is possible to �nd

moves that are in the general �neighborhood� of the optimal move, even if the optimal

move is not found. A recently successful area of research in computer Go playing

is Monte-Carlo search algorithms, which use repeated random sampling to seek out

moves of acceptable quality rather than relying on testing every possibility to �nd a

move of the absolute highest quality. When combined with heuristics, Monte-Carlo

search algorithms may be able to �nd good moves with impressive speed [19]. It

is important to note, though, that not all policies will guarantee �nding the best

move. For this reason the means of selecting the next move to be evaluated is a very

important factor in the success of a Monte-Carlo search algorithm.

1.3 Go

Both quite ancient and quite popular, Go has attracted the fascination of mathe-

maticians and game enthusiasts alike for centuries [13]. The game itself is played

on a square board�usually 9x9 or 19x19 cells�which starts o� in a blank state and

is �lled in through turn-based placement of black and white stones from the �rst

(black) and second (white) players. By placing stones on the board, players form

groups of stones which are connected horizontally or vertically in order to form walls

and secure territory on the board. Skillful placement of stones can also lead to the
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capture of enemy pieces: by surrounding an opponent's group of stones such that it

has no way to expand, all stones in that group are captured and removed from play.

Players may either place a stone on the board when their turn has arrived or

pass, at which point a responding pass from the other player will end the game. A

player may place a stone anywhere on the board, provided it does not violate two

conditions. The �rst of these is called suicide, de�ned as any move which would cause

the immediate capture of that stone or the group to which it would be attached.

The second is called ko or superko [13], and is a much more subtle issue. The ko

rule states that no player may make a move which would leave the board in the

same state that it was in one ply ago, where a ply is a set of one move per player.

Superko is an extension to the ko rule which simply states that the board should

never enter the same state twice in a single game.

1.3.1 Current Techniques

As may be inferred by the easily satis�able conditions for placing stones on the

board, as well as the size of the board, Go game trees are typically very large. The

branching factor of 19x19 Go game trees is roughly 200, which is far from feasible for

any exhaustive search. In addition to the large branching factor, Go lacks an opening

book in the same way that Chess does�the game is simply too �exible to determine

rigorously what the best opening moves are. Interestingly enough, the properties of

the game which make it so di�cult for computer players are quite easy for human

players. Humans can more e�ectively eliminate whole swaths of moves and discern

good moves from bad ones without much conscious processing. Computers, on the

other hand, are in the unfortunate position of needing to evaluate (to some degree)

each move before learning its value.

The problems computers have had with Go spurred a reevaluation of how com-

puters should play the game. Early on, many researchers looked to Chess playing

programs for inspiration, but today most of the emphasis is on Monte-Carlo meth-
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ods, pattern-matching, and heuristics for determining moves [3]. These strategies

are based on the previously described notion of �nding a move that is acceptably

good instead of relentlessly searching for the optimal move, which brings computer

Go into the realm of feasibility once more. Current programs make use of many or

all of these techniques, such as MoGo [19], which incorporates prior knowledge and

handcrafted heuristics into its decision-making process. The best known programs,

though, attempt to exploit the large branching factor of Go by assuming there will

be several moves near the optimal move which are acceptably good choices. This

assumption opens up searching for a good move to a class of solutions to what are

known as multi-armed bandit problems.

1.4 Multi-Armed Bandit Problems

In 2006, computer Go playing was revolutionized by the application of Monte-Carlo

based search methods based on solutions to the Multi-Armed Bandit problem [15].

A multi-armed bandit problem is de�ned as a series of K machines X1, ..., XK with

random pay sequences Xi,1, ...Xi,t for some i ∈ {1, ..., K} and time steps {1, ..., t}

[15]. Of these K machines, we will call any machine at index m optimal if it satis�es

m = argmaxi∈{1,...,K}{E[
t∑

j=1

Xi,j]}. That is, m is considered optimal if the expected

value of its total reward up until time t is the maximum of all machines' expected

total payo�s. Searching for an optimal machine, though, may require trying many

suboptimal machines �rst, which will lead in turn to suboptimal rewards. Thus,

there is a sense of regret implicit in these problems which comes from suboptimal

play. Regret is de�ned as the expected loss from not playing the optimal machine m

at all time steps 1, ..., t. In other words, Rn = E[
∑t

j=1Xm,j] − E[
∑K

i=1

∑Ti(t)
j=1 Xi,j].

Ti(t) is de�ned here as the number of times machine i has been played after t plays.

The goal of the multi-armed bandit problem is to minimize the regret after t plays

of the set of machines.

In order to minimize regret, it is prudent to quickly �nd the machine Xm, or
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�nd machines that are close to it in the process. Finding Xm de�nitively requires

extensive exploration through many machines, but minimizingRn requires exploiting

Xm early and often. This balance between searching for the best machine and

exploiting it frequently is known as the exploration-exploitation trade o� [11]. A

machine selection policy π is said to resolve this trade o� if it can successfully keep

the regret rate at O(R∗n) where R
∗
n is the best possible regret rate [15].

1.4.1 Searching in MABs: UCB1 and UCT

UCB1 [17] (Upper Common Bound) is based on a fairly intuitive assumption: for a

set of K machines with mean rewards µi,n = E[
n∑
j=1

Xi,j] and optimal mean µ∗, there

should be some machines {Xi : µi,n ≥ µ∗−δ} for an acceptable threshold δ. Rewards

are bounded in this case in [0, 1] as well. If the optimal machine cannot be found

in time, UCB1 should �nd other (suboptimal) machines whose reward distributions

are close enough to optimal.

At n plays, UCB1 selects the machine Xm which satis�es the following:

m = argmaxi∈{1,...,K}{µi,n + ci,n}, where (1)

ci,n = C

√
ln(n)

Ti(n)
. (2)

In this case, ci,n is a bias sequence which decreases as a function of the number

of times the machine Xi is chosen, and C is some exploration constant (usually set

to C ≈
√
2). With this balance between the bias sequence and mean reward values,

UCB1 is able to resolve the exploration-exploitation trade o� with a relatively small

amount of time, with guaranteed convergence to the optimal machine given enough

time [15].

In order to extend UCB1 to game trees, Levente Kocsis and Csaba Szepesvári

devised UCT (UCB1 for Trees) in 2006 [15]. This algorithm treats each internal

7



node of the tree as a separate UCB1 problem where bias terms ci,n are multiplied

by the depth of each node relative to the starting depth of the search. Their actual

planning algorithm searches recursively through the tree until either a terminal

state or a certain depth is reached, at which point some evaluation method is used

instead of playing the game further. Like UCB1, UCT is guaranteed to converge to

the optimal move given enough time, and additionally has the property of quickly

discovering a move that is acceptably close to optimal.

UCT can be advantageous for many reasons, particularly in Computer Go. Be-

cause of its rapid convergence to a small set of moves with high reward values, it

expands a relatively small portion of the tree. In games with large branching factors

this provides a crucial performance increase, as unnecessary exploration may lead to

lower quality moves and higher resource consumption. However, UCT is not without

its caveats. Its parent, UCB1, requires that any machine not yet played have a bias

term of ci,n = ∞, ensuring that such a machine will be selected next. This means

that in UCT all nodes must be explored at least once, which causes much slower

convergence with very high branching factors (such as 9x9 and 19x19 Go). Because

of this, some modi�cations to UCB1 have been proposed, which will be discussed

later.

1.5 Arti�cial Game Trees

Researchers in the �eld of computer Go have often used arti�cial game tree frame-

works to test new search methods before trying to apply them to Go itself [18, 15, 7].

Go is not a very useful initial metric for such testing for several reasons:

� The optimality of a move cannot be calculated in advance,

� Determining when a game has terminated is slow,

� Heuristic evaluations of non-terminal states are both slow and inaccurate.
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The latter two simply make evaluation slow, but the �rst makes useful comparisons

between algorithms nearly impossible. Because there is no precomputable metric of

how �good� any particular move is, the only real performance metric we can use to

determine algorithm accuracy is to test the series of algorithms in question in games

against one known good algorithm (or against each other).

This has several disadvantages. The �rst is speed. The best computer Go pro-

grams will generally take on the order of an hour to �nish a game even on very

powerful hardware. This makes gathering a set of test results of su�cient size for

statistical analysis extremely daunting. The second disadvantage is that the re-

sults themselves are not exactly valid measurements of how good an algorithm is at

playing Go in general, but rather how well it plays against the particular opponent

algorithm. Since the best computer Go programs are currently not competitive with

the best human players, this is a fairly serious �aw in testing methodology.

These disadvantages have in the past encouraged researchers to use arti�cial

game trees instead of game trees from the games they were actually researching.

This allows parameters such as branching factor and game depth to be changed

very easily, and it also can speed up heuristic calculations by orders of magnitude.

In particular, being able to modify tree parameters means that it can be made

feasible to run a completely optimal search, such as alpha-beta, to determine with

perfect accuracy the optimality of moves. This in turn allows for a much more

objective measurement of performance, since �Does algorithm A tend to choose

optimal moves?� is not dependent on any algorithm B.

A weakness of past arti�cial game tree generators, such as Kocsis's PGame [15],

is that in order to calculate such minimax optimality values an unrealistic portion

of the game tree (O(
√
bd) nodes) must be checked. For smaller trees this is not a

problem, but this means that trees of sizes approaching that of Go cannot use this

performance metric.
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In this report we present a new Arti�cial Game Tree framework, Gomba, which

solves this problem. Gomba is a framework based around a new game tree gener-

ation algorithm we have developed which is able to determine minimax optimality

values as it lazily generates nodes of the game tree, rather than needing to calculate

them after the tree has been decided. This eliminates the need to run a minimax-

equivalent search entirely, which allows for a very signi�cant speed increase in mod-

erately sized trees and makes it feasible to test algorithms against trees that were

previously too large to consider at all. We have used this framework to test a num-

ber of new variations of UCT, primarily based on methods used in in�nitely many

armed bandit problems.

10



2 Arti�cial Game Trees

We have already mentioned several of the advantages that arti�cial game trees can

provide over a �true� game such as Go or Chess. In particular, objectivity of compar-

ison can be controlled much more precisely and virtually every operation involved

in analyzing or mutating the tree can be made much faster than the equivalent

operations over �real� game trees.

2.1 Requirements

2.1.1 Lazy State Expansion

We need to be able to simulate trees near the size of a Go game tree, which means

it is completely infeasible to ever hope to expand the entire game tree. The tree

needs to be de�nable without an attached full expansion.

2.1.2 Deterministic State Expansion

For the sake of objective comparison between multiple algorithms, however, it is

necessary that the tree be persistently generated across subsequent usages. This

means that child states need to be determined deterministically and independently

of the order in which they are expanded.

2.1.3 Pseudorandom State Expansion

There should not be any clear statistical patterns among di�erent parts of generated

trees. The properties of individual game states need to be determined su�ciently

pseudorandomly that it is di�cult to predict them without actually expanding the

states in question. This is important because if it were possible to detect statistical

patterns during tree generation, it would be feasible for a well-designed search algo-

rithm to simply detect the relationship between generated tree nodes, rather than

needing to actually simulate full games. For the sake of comparative analysis, we
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need determinism, but for the sake of objective analysis we need the tree to seem

non-deterministic to the algorithms in question.

It should be noted that absolute perfection here is not strictly required. It is

vital that typical tree search algorithms not be able to abuse simple patterns. For

example, it would be unacceptable for the �rst child node to always be the one

to be forced by the forceWinner property of parent nodes. However, we do not

necessarily need complete statistical perfection, since we in general are willing to

accept the possibility that an algorithm could be constructed speci�cally to abuse

the structure of Gomba trees. Gomba is intended as a tool for researchers, not a

perfect representation of non-arti�cial game trees.

2.1.4 Predetermined State Optimality

In general, the ideal search algorithm for a two-player game tree is one which will

always choose an �optimal� action: one which would result in it winning, even

if the other player was to also play optimally. Testing whether algorithms will

play optimally is therefore a reasonably accurate and totally objective measure of

performance, which is excellent for the comparison of search algorithms. Previous

arti�cial game tree frameworks computed such optimality values by running some

form of complete minimax search over entire game trees. This is completely accurate,

but is also slow to the point of being completely infeasible for larger game trees, such

as those as large as Go game trees. One of our initial goals was therefore to be able

to create a tree with predetermined knowledge of which actions were optimal for

which player, rather than needing to calculate it based on the entire tree. This

allows us to use a particularly useful comparative measure without the burden of

requiring the tree to be small enough for a complete search.
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2.1.5 Fast Action Simulation

One of the advantages of Go is that it is relatively simple to determine the subsequent

board state given a particular action. Since this is a procedure which will need to be

repeated billions of times over the course of our trials, it is vital that this operation

be extremely fast.

2.1.6 Fast Termination Evaluation

One of the major weaknesses of Go as a testing platform is that it is di�cult to

determine when a game has ended and who has won. We wanted our framework

to be able to determine whether a node was terminal and if so, who had won the

game, very quickly.

2.1.7 Fast Heuristic Evaluation

Similarly, evaluating a state for a static reward value is exceedingly slow in Go.

We would like to be able to emulate the uncertainty involved in such an evaluation

without needing to spend large amounts of time considering a state.

2.1.8 Go-Like Action-Reward Distribution

Though our trees will necessarily not be exact replicas of Go game trees, our goal is

to test algorithms for eventual use in Go. We would thus like to preserve a reasonably

close facsimile of Go's action-reward distributions, that is, how likely moves are to

change the balance of the game towards either player's favor. In particular, this

notion should not be independent between the moves of a single game. The value of

particular move sequences in Go is frequently independent or only slightly dependent

on the order in which they are played, as the success of the RAVE algorithm has

shown [9]. We would like to preserve this feature in our arti�cial trees.
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Algorithm 1 Gomba Tree Generation

SimulateAction(state, action):

if state.children[action] is not defined:

state.children[action] := ExpandAction(state, action)

return state.children[action]

ExpandAction(state, action):

childState.depth := state.depth + 1

childState.player := OtherPlayer(state.player)

childState.prng.seed := GetNthRandom(state.childSeed, action)

childState.childSeed := childState.prng.nextSeed()

childState.difficulty := prng.varyDifficulty(state.difficulty)

if state.forcedWinner = ALL or state.forcedWinner = action:

childState.winner := state.winner

else:

if childState.prng.nextUniform01() < Sigmoid(childState.difficulty):

childState.winner := PLAYER_MAX

else:

childState.winner := PLAYER_MIN

if childState.winner != childState.player:

childState.forcedWinner = ALL

else:

childState.forcedWinner = childState.prng.nextAction()

return childState

2.2 Realization

Our �nal tree design was created as a balance of these requirements. We attempted

to keep the algorithm as simple as possible for the sake of keeping the time required

for node generation low. The �nal result can be seen in Algorithm 1.

2.3 Properties

The above state structure o�ers very fast initialization for an appropriately chosen

Pseudorandom Number Generator and encapsulates most of the necessary require-
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ments.

2.3.1 Lazy Deterministic Expansion

The tree is expanded only when actually necessary. Until the search algorithm in

question attempts to actually simulate an action, the resulting state is not generated.

However, when it is generated, the state is determined completely deterministically

from its parent's seed value and the index of the action leading to it. All of the

properties of a newly generated child are either directly and deterministically de-

pendent on the parent state or dependent on the results of a query to the child

state's pseudorandom number generator.

Concrete implementations of the Gomba algorithm have a few requirements

which, taken together, ensure that the relevant PRNG query is also determinis-

tically dependent on only the parent state. They are:

� GetNthRandom(startingSeed, n) is a deterministic function,

� The state of a PRNG immediately after its seed is a deterministic function of

the seed it is set to,

� The sequence of numbers which a PRNG will draw prng.next...() values from

(including nextSeed()) is a deterministic function of the current state of the

PRNG.

Together, these guarantee that the childSeed of the new child is the result of running

a deterministic function on the childSeed of the parent and the action indexing the

child in question. This means that despite the presence of pseudorandom number

generators (whose results are only deterministic in the context of their own internal

states), the childSeed property of each of a node's children is not dependent on the

order in which those children are expanded. The PRNG sequence's seed values�

the action index and the parent state�are not mutated after being initially set.

Because of this, and because all other properties of the PRNG are determined solely
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from deterministic functions of these values, generating the child state becomes a

deterministic function of the parent state and action index.

2.3.2 Predetermined Minimax Values

The precomputation of the winner and forcedWinner properties of the child state

let us maintain a notion of which player is minimax-optimal at any given state (the

winner) prior to actually computing all of that state's children. To prove that this

is the case, let us formally state the de�nition of a minimax value of a tree node:

� If a node's parent is minimizing, it is maximizing. If a node's parent is maxi-

mizing, it is minimizing.

� If a node is terminal, its minimax value is a measure of how good the state is

for each player. Higher is better for the maximizing player, lower is better for

the minimizing player. Any value is a valid minimax value in a terminal state.

� A non-terminal maximizing node's minimax value is the maximum of the min-

imax values of its children.

� A non-terminal minimizing node's minimax value is the minimum of the min-

imax values of its children.

We introduce a simple theorem based on these rules which will form the basis of our

minimax tree generation routine.

Theorem 1. Let a node m have n ≥ 1 children Cm = {cm,1, ..., cm,n} with respective

minimax values vcm,1 , ..., vcm,n. Let value vm satisfy the following constraints:

If m is a maximizing node,

∀c ∈ Cm, vc ≤ vm (3)
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If m is a minimizing node,

∀c ∈ Cm, vc ≥ vm (4)

In both cases,

∃c ∈ Cm, vc = vm (5)

Then, vm = xm, i.e. the true minimax value of m.

The proof is extremely straightforward and follows from the de�nitions of min-

imax value, min, and max. The theorem requires that node m have children, so it

falls into one of the �nal two categories of the above de�nition. Let its true minimax

value be xm. For convenience, let us also de�ne the set Vm = {vc|c ∈ Cm}.

Proof. In the �rst case (m is maximizing), by the de�nition of minimax value xm =

maxv∈Vm v. By de�nition of max, this means that xm ∈ Vm. We have assumed that

∀c ∈ Cm, vc ≤ vm, which gives us xm ≤ vm. We also know from ∃c ∈ Cm, vc = vm

that vm ∈ Vm. However, by de�nition of max, we know that ∀v ∈ Vm, v ≤ xm.

These give us vm ≤ xm. Since we already concluded that xm ≤ vm, xm = vm, that

is, vm is the minimax value of m.

The second case (m is minimizing) is similar. By de�nition of minimax value,

xm = minv∈Vm v. By de�nition of min, this means that xm ∈ Vm. We have assumed

that ∀c ∈ Cm. vc ≥ vm, which gives us xm ≥ vm. We also know from ∃c ∈ Cm. vc =

vm that vm ∈ Vm. However, by de�nition of min, we know that ∀v ∈ Vm. v ≥ xm.

These give us vm ≥ xm. Since we already concluded that xm ≥ vm, xm = vm, that

is, vm is the minimax value of m.

We can now prove that our tree states' winner properties satisfy the de�nition

of minimax value at every node in the tree by showing inductively that they satisfy

the properties listed in Theorem 1. Our system is modeled on a binary system in

which the only available knowledge from the terminal state of a tree is which player
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won the game. Thus, the only possible options for the winner property of a state,

which we treat as our minimax value, are PLAYER_MAX and PLAYER_MIN. We

de�ne PLAYER_MAX to be greater than PLAYER_MIN - their exact values are

unimportant (we use 1 and 0 in our implementation, but only their ordering a�ects

the proof).

Proof. We use strong induction over trees of particular depth. For the basis step,

we state that any tree with a depth of 1 trivially satis�es the requirement because

it can contain only one node, and that node will be terminal. By de�nition, either

state of the winner property is a valid minimax value in a terminal node.

For the inductive step, assume that every tree the Gomba algorithm can generate

which has a depth of at most d has a valid minimax value as the winner property of

every node. Any tree of depth d+ 1 consists of a single root node which contains a

number of children, each of which are trees generated by the Gomba algorithm with

a depth at most d. Thus, the inductive hypothesis allows us to assume that every

node in any tree of maximal depth d + 1 except the root node has a winner value

which satis�es the de�nition of a minimax value. We will now show that the root

node of such a tree also has this property. We will spell out the cases in which it is

PLAYER_MAX's turn to play at the root node - the cases for PLAYER_MIN are

similar and are omitted for the sake of space.

Consider �rst the case where both the root state's chosen winner and chosen

player are PLAYER_MAX. The algorithm then speci�es that the root state's forced-

Winner property be set to specify a single random child. This means that when that

particular child is generated, its winner property will be guaranteed to be the same as

the root state's, that is, PLAYER_MAX. This satis�es the existential requirement

of Theorem 1. The universal requirement is trivially satis�ed since the only possible

values for any node's winner property are PLAYER_MIN and PLAYER_MAX,

both of which are less than or equal to PLAYER_MAX.

Next, consider the case where the root state's chosen winner is PLAYER_MIN
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and its chosen player is PLAYER_MAX. The algorithm then speci�es that the root

state's forcedWinner property be set to specify ALL children. This means that

every child the algorithm can generate from this root will be forced to have a winner

property of PLAYER_MIN, the root state's winner. Since there is at least one child,

this satis�es the existential requirement of Theorem 1. Since no child can have a

winner value other than PLAYER_MIN, no child can have a value greater than

the root value (PLAYER_MIN), which is equivalent to the universal requirement

of Theorem 1.

Thus, both the root node and all of its child nodes have winner states which are

valid minimax values. This completes the inductive step. By strong mathematical

induction, this implies that for any tree of arbitrary �nite depth generated by the

Gomba algorithm above, every node's winner property will be a valid minimax

value.

2.3.3 Speed

The Gomba generation algorithm is relatively simple, which allows it to be quite

fast. The actual ExpandNode function consists of only a few if statements, a few

assignments, and a single arithmetic operation. The bulk of the work is in its

subroutines, each of which can also be made to execute quickly:

� OtherPlayer() is a single trivial if statement

� Sigmoid() is a simple function which can be computed very quickly on modern

processor architectures where exp() is a single instruction operation

� prng.nextAction(), prng.nextUniform01(), and prng.nextSeed() are all depen-

dent on the particular implementing pseudorandom number generator, but for

a su�ciently simple one (our implementation uses a Linear Congruential Gen-

erator for the sake of speed) can require very few operations for these uniform

sampling routines.
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� prng.varyDi�culty() would typically not be a uniform routine, but can still

be very fast. In our implementation this is a polynomial of degree six which

approximates a normal distribution.

� GetNthRandom() is again a function of how fast the chosen PRNG is. We

chose a Linear Congruential Generator in part because the nth random number

to be generated from a particular seed in an LCG can be computed in constant

time, so long as a single simple lookup table of at least length n has been

precomputed for the LCG class.

� There is a �nal �hidden� cost for allocating memory for the new childState.

However, tree generation of this sort lends itself well to memory pooling, which

means that this cost can largely be eliminated simply by reserving memory in

large blocks instead of on a per-state basis.

We expand on the speci�c implementation in the Gomba framework in the next

section.

2.4 Weaknesses

2.4.1 Weak Randomness

The generated trees look relatively random to the human eye, but do have a few

statistical properties which brings the actual randomness of the tree into question.

The primary problem is that in order to deterministically generate children regard-

less of order of generation, we seed the pseudorandom number generator according

to an operation based on the seed value from the parent. In theory, this can cause

several problems:

� Computing a single path down the tree results in a process where the pseudo-

random number generator repeatedly and consistently seeds itself with its own

generated value. This is very atypical operation for most PRNGs, which is
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problematic because while most PRNGs are designed to have useful, random

statistical properties when run in sequence, these properties do not necessarily

hold when the PRNG is reseeded during this sequence.

� Seeding a random number generator of most useful complexities is very slow.

Except for extremely simple PRNGs such as Linear Congruential Generators

and Linear Feedback Shift Registers, both of which are largely outdated and

outclassed by more modern generators, seeding a PRNG takes a considerable

amount of time.

� Since the number of possible seeds is much more tightly limited than the cycle

length of a modern PRNG, the number of potential children is signi�cantly

limited.

To alleviate the �rst two issues, we have implemented the pseudorandom number

generator used by the Gomba tree generation system as a Linear Congruential Gen-

erator. This means that it can be seeded with its own generated values in the course

of normal operation. It also makes pseudorandom number generation extremely fast

[16]. It is important to note that this form of generator has been rendered largely

irrelevant for most modern uses which require strict statistical randomness. For the

purposes of our framework, we judged the bene�ts of its structure and speed to

be more valuable than the statistical properties allowed by more advanced gener-

ators. Experiments on trees generated by the Gomba framework have shown that

the tree nodes are su�ciently well distributed for our purposes - for example, our

tests have shown that in repeated trials over generated trees of size 214 no nodes

with overlapping seed values are generated.

2.4.2 Random Action-Reward Distribution

The current Gomba system has no means of ensuring a reasonably consistent value

for actions across parent states. In practice, this means that the generated game
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trees lack a property which is relatively important to Go; notably, the UCT-RAVE

algorithm which we know is a signi�cant improvement over standard UCT in Go

provides no measurable improvement in a Gomba game tree. The consistency of

the distribution of di�culty and winning values is very strongly correlated to the

game one is playing, so making Gomba's game trees use a distribution system closer

to that of Go would be a signi�cant improvement to the accuracy of the system in

evaluating algorithms for performance in Go.

2.5 Conclusions

For su�ciently complicated game trees, the Gomba tree generation algorithm is

orders of magnitude faster than both Go itself and previous arti�cial game tree

frameworks. Although it is not a perfect approximation of Go itself, its speed of

evaluation makes it a useful tool for the evaluation of algorithms which are applicable

to games with large state trees.
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3 Gomba

A primary contribution of our project is the Gomba search framework, which is

based on the previously explained tree generation algorithm. The Gomba framework

has been designed primarily with speed and simplicity in mind. Our goal was to

create a framework which we and future researchers can use to quickly implement

and benchmark a variety of search algorithms on arti�cial game trees. The core

Gomba tree generation algorithm and the simple but extensible framework for search

algorithm implementations allows for speed of both implementation and evaluation

of new algorithms, particularly those based on UCT-style searches.

3.1 Framework Requirements

When we set out to create this new framework, we had a speci�c set of requirements

in mind that would make testing new algorithms e�cient in both programmer and

execution time. Though other frameworks exist which incorporate several or even

most of these requirements, the Gomba framework is the �rst to attempt to combine

all of them to the best of our current knowledge.

3.1.1 Modularity

One of the primary goals of the framework was to be able to quickly implement

any new search algorithm that one might wish to test. To achieve this property, we

strived to ensure that the Gomba framework struck an acceptable balance between

being general enough to allow for any search methodology and containing enough

base material that no implementation would take too much e�ort to write. The

framework itself provides abstractions to allow for storing data in game tree nodes,

gathering statistics about the iterative runtime performance of algorithms, the sep-

aration of internal model improvement and evaluation based on that model, and a

variety of basic Monte-Carlo and Minimax base algorithms which can be expanded
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upon. The actual implementation of these properties is largely hidden from the

algorithms - though they can typically access whatever attributes of these routines

that they need, should they need them, in most cases the simple interfaces that the

framework provides are enough. Because the framework itself takes care of nearly all

work that is not algorithm-speci�c, it is extremely fast to implement new algorithms

to test against, particularly when they are relatively minor modi�cations of existing

ones as in the case of most variants of UCT.

3.1.2 Simplicity

The primary motivation for making Gomba from scratch rather than building the

tree generation algorithm into an existing testing framework was that existing testing

frameworks are almost universally too complex for our needs. Our goal was to be

able to allow future researchers to move from an idea for a new search algorithm

variant to a working implementation with a minimum of e�ort. We have striven to

ensure that the framework is su�ciently simple, readable, and well-documented that

a future contributor can determine how to test a new algorithm without needing to

understand every detail of the framework as a whole, and that should some detail

need to be changed, the framework is simple enough and su�ciently easily modi�able

that this would not be a problem.

3.1.3 Rapid Node Generation and Access

Nodes must be generated quickly and e�ectively to make sure tests can be run in a

reasonable amount of time in Gomba. Lazy tree generation means that when a new

node is visited it will need to be generated and possibly expanded � a trade-o� in or-

der to circumvent the issues surrounding eager tree generation. As was stated before,

game trees approaching the size of Go are infeasible to generate eagerly and store in

memory. Because of this problem it is necessary to use lazy algorithms to generate

only as many nodes as are needed, so that searching on large trees becomes feasible.
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However, if nodes are simply generated and then erased, unnecessary amounts of

time will be spent re-computing nodes as they are needed. For this reason nodes

must be cached upon generation so that exactly as many nodes as are needed exist

in memory.

3.1.4 Scalability to Go-Sized Trees

As discussed previously, one of the most important requirements we placed on

Gomba is that it should be able to perform well on trees that approximate the

size and behavior of Go game trees. Not only must generating the tree be e�cient,

but memory must be managed in a way that as trees get larger the performance

overhead does not increase to unsustainable levels. Much of Gomba is made to scale

well to very large trees�a helpful result of generating trees lazily and caching nodes

in memory upon generation.

3.1.5 Simple Parametrization

Though our research is primarily focused on Go-like trees, it is important that the

framework as a whole be su�ciently general to emulate search algorithms usable

against any binary game tree. Parameters such as game branching factor, length,

di�culty, and heuristic e�ectiveness must be easily modi�able at runtime and should

be able to take on a wide range of potential values without adversely a�ecting the

speed or statistical properties of the framework.

3.1.6 Reliable, Deterministic Results

No testing framework would be worthwhile without reproducible results that are

actually useful to any users of the test data. In the case of Gomba, we expect

that the most common use case will be the comparison of several similar search

algorithms. Because of this, a signi�cant emphasis has been placed on making sure

that with the same testing conditions, algorithms will perform deterministically
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(though pseudorandomly) across test runs on the Gomba framework. We provide

a means of manually setting all relevant random seeds for reproducibility, and we

ensure that there is a simple means of running a variety of algorithms on the same

set of trees. This helps ensure that the algorithms can be compared against one

another fairly.

3.2 Implementation

The overall design of the platform was based on relatively standard object-oriented

principles and is relatively uninteresting. There were, however, several interesting

areas in which special care was needed to maintain runtime e�ciency.

3.2.1 Node Structure

The previous section has already enumerated the required properties of the tree

itself in some detail. However, a few implementation details remain to be speci�ed

which do not drastically a�ect the properties of the tree but do a�ect speed and

memory usage. In particular, the list of child pointers maintained by each node in

the tree is the largest section memory-wise and we gave considerable thought to how

best to implement it.

We settled on a simple array of child pointers. Though this is a relatively poor

option from the standpoint of memory usage, since for the vast majority of nodes

only one child (or at most few children) will be expanded, our testing revealed

that our computations were bounded much more signi�cantly by time than memory

constraints. We found that any space bene�t gained by using a more intelligent

pointer allocation scheme was outweighed by the cost in time, since the simulation

of actions in the tree was such a frequently requested operation in virtually every

search algorithm we tested.

This was also one of the considerations that led us to store search-speci�c data in

the game tree itself, rather than requiring that search algorithms maintain their own
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trees of data. Though doing so would have allowed us to prune the game tree more

aggressively, it would have required not only a massive amount of extra e�ort in

the generation of the search algorithms themselves to maintain a new tree structure

but a massive amount of repeated memory, since in both trees most space would be

taken up by the child reference mechanism.

3.2.2 Memory Management

When generating nodes at the rates which we desire of Gomba�on the order of 107

to 108 nodes per second�it is important to manage memory in a way that minimizes

allocation and deallocation overhead. Frequent system calls requesting and freeing

space for nodes can lead to signi�cant time that is ultimately wasted on memory

management. For this reason, Gomba uses object pooling�allocation and storage of

objects in large �pools� of memory�to store node data, requesting space for several

thousand nodes at a time. Gomba's system of caching tree nodes for the lifetime of a

search algorithm run means that nodes only need to be deallocated in large batches

at the end of algorithms' runs, which can be done in the same e�cient blocks of

thousands of nodes at a time.

This strategy is not without weaknesses, however. Particularly, for algorithms

which frequently generate nodes which will only be visited once, it is possible for a

Gomba tree cache to take up enough memory to bring the system to a crawl or, worse,

crash the simulation entirely. Gomba does not currently have any means of pruning

its own game trees - though the operation would be safe from the standpoint of

maintaining the tree structure, since children are always generated deterministically

from parents, the framework cannot be sure whether the data a search algorithm

may have stored in the tree for its own use is limited or unimportant enough to

discard. A pruning operation would also require more careful allocation of nodes,

since e�ciency would dictate requiring that entire blocks in the memory pool were

freed at a time and currently pools are �lled on a �rst-come-�rst-serve basis with
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no concern for the structure of the tree itself.

3.2.3 Random Number Generation

Early on in the development of Gomba we found that the overwhelming majority

of computation time was being taken up in the pseudorandom number generation

engine. Speci�cally, the tree generation routine's need to seed a generator at every

node expansion was taking an inordinate amount of time. There were two primary

options available to us to solve this problem: we could either remove the seeding

operations, or we could make seeding fast. Both have disadvantages.

In the �rst case, we would lose the property that the tree is deterministic re-

gardless of node expansion order. This would mean that di�erent search algorithms

running against a tree based on the same initial parameters would not actually run

on exactly the same game tree. We considered allowing this, but in the end we

decided that it was unacceptable to not be able to run di�erent search algorithms

on the same tree; it would introduce an unacceptable amount of disparity into com-

parative analysis of the algorithms. Even though the results would in theory be

comparable after a large number of trials, we felt that it would be better to avoid

the issue entirely.

In the second case, which we eventually chose, the disadvantage is that pseudo-

random number generators with internal state simple enough to be easily regenerated

from a small seed tend to also be simple enough that they do not have some of the

nice statistical properties that more modern and complex generators do. We use

a Linear Congruential Generator to create trees in our framework, and there were

several cases where testing revealed generation problems in which easily deducible

parts of the tree were either copies of each other or in simple arithmetic sequence

from each other. Though our tests have shown that we have eliminated obvious in-

congruities caused by this issue, the fact remains that Gomba's trees are generated

with a relatively weak number generation scheme. Further research into the e�ects
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of this decision and other solutions which could alleviate any of these potential issues

is a strong potential for future work.

3.2.4 Monte-Carlo Simulation

In testing several Monte-Carlo based search variants, we found that the overwhelm-

ing majority of execution time was spent evaluating nodes as part of random Monte-

Carlo searches which would never need to be evaluated a second time. We were able

to achieve an evaluation speed improvement of a factor approximately proportional

to maximum tree depth by creating and using a method of rapidly simulating a

one-o� Monte-Carlo trial without needing to actually evaluate, create, or cache the

intermediary nodes of such a simulation path.

The implementation of this system is made relatively straightforward by our tree

structure. The basic process is to simply take the di�culty property of the node

which will serve as the starting point of the simulation, and use that di�culty value

to determine a winner value in a similar manner as is used for the randomly-decided

children of that node. The basic idea that explains why this is acceptably accurate

is based around the distribution of this di�culty value. Because the di�culty of a

node's children is a normal distribution centered at that node's di�culty, its children

will have on average the same di�culty. By induction over the same argument,

so will all of its descendants. This means that, if the Monte-Carlo search would

have ended at a child with a randomly determined winner value, the probability

of that child winning for a particular player is the same as the probability of our

simulation process deciding on a win for that player. The probability of a child

being decided non-randomly in favor of a particular player follows approximately

the same distribution as well.

We will now formalize why these properties hold in an idealized environment;

though we recognize that the properties we are about to assume are not strictly

true in practical tests, they are generally �close enough� that the results from the
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idealized theorem hold empirically. In particular, we recognize that the constraints

the theorem imposes on branching factor and terminal node depth are realistically

impossible and that descendant di�culty is not equal to but merely centrally dis-

tributed about root node di�culty. That said, the idealized theorem closely mirrors

our actual test results, and we o�er it here as a justi�cation to our use of the formula

it prescribes in Gomba's fast simulation policy.

Theorem 2. Let there be some tree rooted at node r generated by the earlier ref-

erence Gomba tree generation algorithm. Assume that the di�culty property of r

and the di�culty properties of all of its descendants are all d. Let x = Sigmoid (d)

be the probability that a randomly generated winner property for any such descen-

dant be winning for PLAYER_MAX, as per the algorithm. Let b be the number

of children any non-terminal node has. Then, assuming that terminal nodes have

equal probability of being found at depths which are even or odd, the probability of a

random Monte-Carlo simulation starting from node r ending in a terminal node in

which PLAYER_MAX is the winner approaches

x

2

(
x (b− 1) + (b+ 1)

x2 (b− 1)− x (b− 1) + b

)
(6)

as the minimum depth of terminal nodes approaches ∞.

Proof. Let the value pn be de�ned as the probability that a randomly chosen node

from all nodes at depth n in the tree rooted at r have a winner property de�ning

PLAYER_MAX as the winner. By convention we will say that the root node has

depth 1. Also by convention and without loss of generality we will assume that it is

PLAYER_MIN's turn at the root node r (and every other node at an odd depth).

The root node is the only node at depth 1 and is not forced to take a value by

its parent, and we have explicitly de�ned x as the probability that PLAYER_MAX

will win for a randomly-chosen (that is, non-forced) node. Thus, by de�nition of x,

we have p1 = x.
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We now de�ne a recurrence relation for pn for the cases where n > 1. Let us

consider a random node N at depth n > 1 which has parent node P at depth n− 1.

There are two potential cases here, depending on the parity of n.

If n is even, then it it was PLAYER_MIN's turn to play at node P . This

means that if PLAYER_MAX were to be P 's winner value, all of P 's children

would be forced to a winner value (of PLAYER_MAX). This means that the con-

ditional probability of PLAYER_MAX winning for node N where P 's winner value

is PLAYER_MAX is simply 1, since N would be forced to make PLAYER_MAX

winning.

If PLAYER_MIN were to be P 's winner value only one of P 's children would

be forced to a winner value (of PLAYER_MIN). This means that the conditional

probability of PLAYER_MAX winning for node N where P 's winner value is known

to be PLAYER_MIN is

P (N.winner = PLAY ER_MAX |P.winner = PLAY ER_MIN) = 0

(
1

b

)
+x

(
b− 1

b

)
(7)

That is, there is a 1
b
probability thatN will be the child forced to use PLAYER_MIN

as a winner and a b−1
b

probability that N 's winner will be chosen randomly (thus,

with probability x).

The probability that PLAYER_MAX would win for node P is by de�nition

pn−1. Thus, the probability that PLAYER_MAX would win for any of P 's children

(node N included) is

pn = pn−1 + x

(
b− 1

b

)
(1− pn−1) (8)

In the second case, where n is odd, it was PLAYER_MAX's turn to play at

node P . This means that if PLAYER_MIN were to be P 's winner value, all of

P 's children would be forced to a winner value (of PLAYER_MIN) and that the
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conditional probability of PLAYER_MAX winning for node N in this case is simply

0. If PLAYER_MAX were to be P 's winner value only one of P 's children would

be forced (to PLAYER_MAX), which gives the conditional probability

P (N.winner = PLAY ER_MAX |P.winner = PLAY ER_MAX) = 1

(
1

b

)
+x

(
b− 1

b

)
(9)

Thus, the �nal probability that PLAYER_MAX will win for any of P 's children

(node N included) in the case where n is odd is

pn = pn−1

(
1

b
+ x

(
b− 1

b

))
(10)

This gives us the �nal recurrence relation

pn =


pn−1 + x

(
b−1
b

)
(1− pn−1) n is even

pn−1
(
1
b
+ x

(
b−1
b

))
n is odd

(11)

For simplicity, we de�ne a = x
(
b−1
b

)
and rearrange the above to form

pn =


a+ pn−1 (1− a) n is even

pn−1
(
1
b
+ a
)

n is odd

(12)

From this, we can derive a more useful two-step recurrence relation. First con-

sider the case where n is even. Then we have

pn = a+ pn−1 (1− a)

pn−1 = pn−2

(
1

b
+ a

)
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pn = a+ pn−2 (1− a)
(
1

b
+ a

)
(13)

When n is odd, we similarly can derive

pn = pn−1

(
1

b
+ a

)

pn−1 = a+ pn−2 (1− a)

pn =

(
1

b
+ a

)
(a+ pn−2 (1− a))

pn =
(a
b
+ a2

)
+ pn−2 (1− a)

(
1

b
+ a

)
(14)

Giving a �nal relation of

pn =


a+ pn−2 (1− a)

(
1
b
+ a
)

n is even(
a
b
+ a2

)
+ pn−2 (1− a)

(
1
b
+ a
)

n is odd

(15)

Both of these form geometric sequences (they conveniently have the same mul-

tiplicative factor). This factor, (1− a)
(
1
b
+ a
)
, has zeroes at x = −1

b−1 and x = b
b−1

and its maximum is
(
b+1
2b

)2
at x = 1

2
. b's range is [2,∞), which means this maxi-

mum value's range is (1
4
, 9
16
]. Thus, for any potential value of b, the widest possible

range of values for the factor in the domain [ −1
b−1 ,

b
b−1 ] is [0,

9
16
). Recall that x is a

probability, which means its domain [0, 1] is a subset of [ −1
b−1 ,

b
b−1 ]. Thus, the factor's

potential range is a subset of [0, 9
16
), which means it is also a subset of (−1, 1), which

means that these geometric sequences will both converge.

In the �rst case, the convergence value is
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pn = a+ pn (1− a)
(
1

b
+ a

)
=

a

1− (1− a)
(
1
b
+ a
)

=
a

1−
(
1
b
+
(
1− 1

b

)
a− a2

)
=

a

a2 −
(
b−1
b

)
a+

(
b−1
b

)
=

(
b−1
b

)
x(

b−1
b

)2
x2 −

(
b−1
b

)2
x+

(
b−1
b

)
=

x

ax− a+ 1

In the second case, the value is:

pn =
(a
b
+ a2

)
+ pn (1− a)

(
1

b
+ a

)
=

a
b
+ a2

1− (1− a)
(
1
b
+ a
)

=
a
b
+ a2

1−
(
1
b
+
(
1− 1

b

)
a− a2

)
=

a
(
1
b
+ a
)

a2 −
(
b−1
b

)
a+

(
b−1
b

)
=

(
b−1
b

) (
1
b
+ a
)
x(

b−1
b

)2
x2 −

(
b−1
b

)2
x+

(
b−1
b

)
=

x
(
1
b
+ a
)

ax− a+ 1

Our initial assumptions that terminal nodes only occur as depth approaches ∞

and that they are equally likely to occur in even or odd nodes together imply that

the �nal probability that PLAYER_MAX will win at a terminal node is the average

of these convergence values:
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pt =
1

2

(
x

ax− a+ 1

)
+

1

2

(
x
(
1
b
+ a
)

ax− a+ 1

)

=
x
(
a+ b+1

b

)
2 (ax− a+ 1)

=
x

2

( (
x
(
b−1
b

)
+
(
b+1
b

))(
x2
(
b−1
b

)
− x

(
b−1
b

)
+ 1
))

=
x

2

(
x (b− 1) + (b+ 1)

x2 (b− 1)− x (b− 1) + b

)

3.3 Conclusions

As implemented, Gomba provides a fast, robust, and highly extensible means of both

lazily generating game trees and designing search algorithms for testing against these

arti�cial trees. The tree generation framework is su�ciently well-optimized that in

our pro�ling tests against actual algorithms, less than 20% of computation time is

spent in tree access and generation (as opposed to in the execution of the search

algorithms themselves). The speed of execution is thus bounded primarily by the

search algorithms themselves, and not by any measurement over the game tree as

is the case in the game of Go. This is an extremely signi�cant speed improve-

ment over testing algorithms against Go itself and an extremely signi�cant memory

improvement over previous similar arti�cial game tree frameworks.

The testing framework still leaves room for improvement, though. Although it

is bounded primarily by search speed, we still feel that the framework could provide

better tools for helping search algorithms manage their resource usage. At present

Gomba's tree generation algorithm is able to produce on the order of 107 nodes

per second on a typical modern desktop machine; this is acceptable in comparison

to true computer Go playing, but approximately an order of magnitude below our

initial hopes for the framework.
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There are also a question of whether the random number generation algorithms

we use bring the statistical validity of the generated trees into question. Our analysis

of the generated trees does not show any obvious signs of correlation between nearby

nodes, and our analysis of smaller generated trees do not seem to show obvious

statistical correlation for any related sets of nodes. We do not want to suggest that

our searches have been exhaustive or that there are no problems with the generation

method, since we recognize in particular the weaknesses associated with our choice of

pseudorandom number generator. We do not, however, believe that these potential

statistical pitfalls invalidate the results the framework generates, particularly in

the face of the empirical evidence of experiments based on algorithms with known

performance metrics in Go.
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4 Experiments

The value of the Gomba framework is that it allows for the e�cient testing and com-

parison of a variety of game tree search algorithms. In this section we �rst present the

results of searching Gomba-generated game trees with a number of search algorithms

whose performance has already been tested in Go and on other arti�cial trees by

previous researchers. Once satis�ed that the Gomba trees allow these control algo-

rithms to perform as expected, we tested several variants on these algorithms which

have not been so thoroughly tested as a measure of how e�ciently new methods

could be benchmarked with our framework.

Our experiments are primarily concerned with two metrics. The �rst is the

algorithms' performance in maximizing optimal win rate, that is, how quickly it can

consistently choose moves which are minimax-optimal. This is a useful metric in

smaller trees, but in practice, no algorithm can really hope to consistently choose

completely optimal moves in larger trees. The second metric is the average di�culty

of the moves that the algorithm chooses. This number coincides with the di�culty

property of Gomba tree nodes and represents a measure of how likely each player is

to win when a randomly chosen path is chosen starting from the node in question.

We would like this number to be low, sometimes even at the cost of a worse optimal

win rate, since it is often the case in adversarial search that making it harder for your

opponent to �nd optimal moves is as valuable as �nding optimal moves yourself.

4.1 Previously Tested Algorithms

These are algorithms which have already been extensively tested, either in com-

puter Go or in other games. We �rst present a short description of each, noting

in particular any properties which made them interesting to our tests. We then

provide a comparative analysis of their performance on trees of varying parameters

and compare this analysis to the results we expected based on previously researched
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performance metrics.

4.1.1 Random Search

As in many other experiments regarding search, random search is used in this case

to provide a lower bound of performance for all other algorithms being tested. Its

policy is simple: at any time, pick a random node and use it. Random search is

not designed to be e�ective, but rather to set an acceptability threshold for each

algorithm. After all, if an algorithm should have worse performance and require

more resources than simply choosing random nodes, using it would simply be a

waste.

4.1.2 Minimax Search

The minimax algorithm consists of simply traversing a tree, alternately determining

a node's value to be either the minimum or maximum of the values of its children.

Minimax search is both sound and complete: its results are guaranteed to be optimal,

and it is guaranteed to be able to generate an optimal result. However, the time

required to run an exhaustive minimax search is on the order of O
(
bd
)
, which renders

it useless for most commonly sized tree searches. A variety of optimizations exist

which can improve this bound (for example, Alpha-Beta pruning [14] and Negascout

[18]), but in general only down to the order of O
(
b
d
2

)
. This is still prohibitively

large for most practical applications.

However, despite exhaustive search's inadequacy in practical trees, it remains

useful as a testing metric. The Gomba framework contains a simple minimax imple-

mentation which we have used in testing to ensure that tree nodes' winner properties

accurately re�ect minimax values.
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4.1.3 Random Monte-Carlo Search

At its core, the Rollout-Based Monte-Carlo family of search strategies consist of

searches which work by repeatedly sampling directed random move sequences to

build knowledge of which moves are likely to perform well. Any such algorithm whose

selection policy guarantees that all moves will always have some positive chance

of being chosen (that is, any which never entirely stops exploring) will eventually

converge to an optimal solution, since the decision policy is equivalent to minimax

once every possible path has been sampled. However, most game trees for practical

applications are far too large for such an exhaustive search to be feasible. Instead,

most Monte-Carlo methods currently in use are designed to �nd a move which is

�good enough�, rather than strictly searching for one which is optimal.

Random Monte-Carlo search is an extremely simple variant of Rollout-Based

Monte-Carlo search which simply speci�es an arm selection policy during the search

of �choose a completely random arm at all times during simulated playout�. The arm

that is chosen to be played is the arm with the highest average reward. As explained

above, this policy does eventually converge to a correct answer, but it will typically

do so much more slowly than is useful. It is included in our tests primarily as a

baseline test against which more clever Monte-Carlo algorithms can be compared.

4.1.4 UCT

UCT (Upper Con�dence bound for Trees) is a rollout-based Monte-Carlo search

method based on the UCB1 [2] multi-armed bandit strategy [15]. It is a very stan-

dard variant in that the only di�erence between it and random Monte-Carlo search

is the arm selection policy during episodic playout. The selection policy works by

treating each episodic sampling decision as a separate multi-armed bandit problem

and applying the UCB1 algorithm to each of them.

UCB1 is a simple method of balancing exploration of new arms and exploita-

tion of previously successful arms which guarantees a worst-case logarithmic regret

39



growth rate under the assumptions that that the rewards for each arm are indepen-

dent and bounded. Speci�cally, at each iteration it chooses which arm to play next

according to the formula,

argmaxj{xj + C

√
log(N)

nj
}, (16)

where xj is the empirical average reward of arm j, N is the total number of plays

so far, nj is the number of plays of arm j so far, and C is some exploration constant

(in most practical Go engines, C ≈ 0.7).

In computer Go, UCT is well-tested and extremely e�ective as a baseline strategy.

It is the foundation of most current competitive Go-playing programs, including

MoGo [19], Fuego [7], and CrazyStone [6]. Our experimental results on UCT in the

Gomba framework (Figure 1) closely mirror the results from earlier arti�cial tree

frameworks [15] for smaller trees. In larger trees, we found that UCT was unable

to converge to optimal moves within a reasonable amount of time but that it was

e�ective at minimizing the di�culty of chosen moves (Figure 2), especially at larger

branching factors. This is consistent with performance in computer Go, which lends

strength to the feasibility of using arti�cial game trees to estimate the performance

of search algorithms in computer Go.

40



Figure 1: UCT Performance in Small Gomba Trees

Figure 2: UCT Performance in Large Gomba Trees
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4.1.5 UCT-Tuned and UCT-V

UCT-Tuned and UCT-V (UCT with Variance) are slight modi�cations of UCT

which incorporate the notion of variance. They both attempt to favor exploitation

over exploration more heavily when the observed variance of an arm is low, and ex-

ploration over exploitation when the observed variance is high. The implementation

is exactly the same as in UCT, but with slightly modi�ed arm selection formulas

(UCB-Tuned [2] and UCB-V [22], respectively).

UCB-Tuned �rst computes an upper con�dence bound for the variance of arm

j:

V ′j (s) = (
1

s

s∑
τ=1

X2
j,τ )−X

2

j,s +

√
2 ln t

s
(17)

It then applies that variance bound to the overall upper con�dence bound cal-

culation:

argmaxj{xj + C

√
lnN

nj
min{1

4
, V ′j (nj)}} (18)

The 1
4
factor exists to ensure a minimum level of exploration even in cases of

very low apparent variance.

The UCB-V formula works similarly, but uses a measure of actual empirical vari-

ance Vk(s) rather than the upper bound for variance above (V ′k(s)) in the valuation

formula,

argmaxj{xj +

√
2Vj(nj)εN

nj
+

3εN
nj
} (19)

Here εt represents some non-decreasing sequence in t, such as ln t. Both methods

empirically give similar results, and both are fairly widely used. Though performance

bounds signi�cantly better than standard UCT have not been proved, they both

empirically tend to outperform standard UCT in most computer Go simulations.
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Gomba simulations of these variants tended to be slightly less e�ective than

we had anticipated based on previous works (see Figure 3). We believe that this

may be caused by a combination of two structural properties of Gomba trees. The

�rst is that the true reward value of a Gomba tree state is a binary value. This

e�ectively means that the winner properties of a node's children take on a Bernoulli

distribution, which in e�ect also means that the variance is completely decided by

the di�culty of the parent node in question. Since the vast majority of nodes will

have di�culties approximately the same as the root node's, this means that the

variances of the children of most nodes in a tree will be very close to one another,

which would reduces the bene�cial impact of variance-detecting UCT variants.

The second potential pitfall is that the di�culty values of various nodes' children

are all determined by the same normal distribution � that is, the variance in the

distribution of di�culty values (which a Monte-Carlo search can potentially work

to minimize in addition to win rate) is constant. This again reduces the bene�cial

e�ects of variance-conscious searches.
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Figure 3: Variance-Based UCT Performance in Small Gomba Trees

Figure 4: Variance-Based UCT Performance in Large Gomba Trees
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4.1.6 UCT-FPU

UCT-FPU (UCT with First Play Urgency) [12] is a minor modi�cation to the UCT

algorithm which simply causes any unvisited node to be treated as having a �xed

�nite upper bound, rather than being treated as having an in�nite upper bound as in

standard UCT. This upper bound, expressed as a constant, can be used to shift the

balance between exploration and exploitation in the tree. In particular, by setting

the FPU constant lower at deeper levels of the search tree, the UCT algorithm can

begin trying to exploit known acceptable paths without any exploration whatsoever

of many other paths. Near the root of the search tree this would run the risk of

missing potentially valuable nodes, but as the search tree becomes deeper it becomes

not only less valuable but computationally infeasible to consider every node at a

particular level before moving on. This method or something similar to it is thus

particularly essential to UCT implementations in computer Go because of the sheer

size of the search tree; UCT's tendency to heavily favor exploration over exploitation

early on works well near the root of a game tree, but it becomes too slow to be useful

as the algorithm progresses deeper into the tree.

Each of the UCT-based search strategies included with the Gomba framework

supports First Play Urgency, and it is one of the more interesting parameters to

tweak. Experimental results, particularly at high branching factors, (Figures 5 and

6) leave little doubt that including the parameter can be an e�ective decision for

speeding win rate convergence, but the exact choice of value is slightly more di�cult.

Extremely low values tend to result in faster convergence to a minimax-optimal

solution, but at the cost of poorer choices of node di�culty. Our results with a

variety of tree sizes (Figures 7 � 12) seem to imply that the best balance of di�culty

and optimality convergence values and rates occur in the range of (0.9, 1.1) or so,

which is consistent with what is known to work well in computer Go (typically about

1.1 [12]).
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Figure 5: UCT-FPU Performance in Small Gomba Trees

Figure 6: UCT-FPU Performance in Large Gomba Trees
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Figure 7: FPU Performance (b=2, d=20)

Figure 8: FPU Performance (b=6, d=6)
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Figure 9: FPU Performance (b=8, d=8)

Figure 10: FPU Performance (b=30, d=6)
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Figure 11: FPU Performance (b=50, d=50)

Figure 12: FPU Performance (b=200, d=50)
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4.1.7 Heuristic UCT

Heuristic UCT is a modi�cation of UCT which incorporates prior knowledge about

the speci�c problem domain as an initializer to the UCT algorithm [19]. That is,

whenever a new node is expanded by the UCT algorithm, its value is initialized

according to the heuristic function rather than starting Monte-Carlo search with no

knowledge. The heuristics incorporate both a notion of the value of a node and a

notion of con�dence in that value, which can be used to represent approximately

how many Monte-Carlo searches the heuristics are �worth� as an estimator of a

particular state. It should be noted that as with any method involving signi�cant

domain-speci�c knowledge, tests involving this method in arti�cial game trees may

not provide accurate information about how e�ective the method could be in another

domain, such as Go. Despite this warning, it is also worth noting that this method

has been implemented with signi�cant success in the Go-playing program MoGo

[19].

The majority of Monte-Carlo based search types we have tested on Gomba are

capable of taking a parameter for simulation e�ectiveness. When set to a nonzero

value, this parameter acts to bias the random playouts used at the fringes of the

generated search tree slightly towards the true minimax value. This biased play-

out policy is meant to emulate the behavior of the heuristic-based playout policies

favored by most competitive computer Go programs. The results of applying the pol-

icy are presented for completeness but are relatively uninteresting. Tests on smaller

trees (Figure 13) showed relatively little change for reasonable heuristic e�ective-

nesses, which we attribute to UCT itself having an e�ectiveness which dominates

the relatively low values we considered reasonable in these tests. In larger trees

(Figure 14), where the algorithms are much slower to converge to winning choices,

adding the e�ectiveness measure showed a signi�cant improvement in win rate.

50



Figure 13: Simulation Policy E�ectiveness in Small Gomba Trees

Figure 14: Simulation Policy E�ectiveness in Large Gomba Trees
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4.1.8 UCT-RAVE

UCT-RAVE (UCT with Rapid Action Value Estimation) is an extension of UCT

which provides a means of generalizing the value of taking an action across multiple

states, rather than only considering the results of actions on a strictly per-state

basis [10]. Speci�cally, the estimated value of an action at a particular state s is

allowed to take into consideration the estimated value of that action at all substates

of s. This method has proved to be extremely e�ective in Go, where the value of

moves can often be at least partially independent of the order in which they are

played. Since RAVE values tend to have much lower variance than standard UCT

valuation would, it tends to be more useful at the beginning of the evaluation of

a node when information is limited. However, RAVE values also tend to converge

to a less accurate result than standard UCT given enough time, so the typical

implementation of UCT-RAVE evaluates nodes in a manner which tends to value

RAVE estimates initially fairly highly (Gelly and Silver [9] suggest approximately

1000 times the weight of a normal simulation) but constantly, so that once a large

number of Monte Carlo simulations have been performed they will outweigh the

initial estimates.

We have not tested an implementation of UCT-RAVE in Gomba because Gomba

game trees as they are currently implemented do not exhibit the action transposition

property that the algorithm relies upon. That is, unlike in Go, the performance

of the same action choice at di�erent depths in a search path are independent of

each other in Gomba game trees. UCT-RAVE's strong performance in Go suggests

that this is a major weakness of the framework, and modifying the tree generation

algorithm to include this property is a suggested avenue of future research.

4.2 Tree Properties

We have shown how the previous experiments' results vary with a variety of repre-

sentative tree branching factors and depths, but these are not the only factors which
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can in�uence algorithm performance. In the interest of completeness, we have also

analyzed the results of varying the other major parameter in tree generation, the

di�culty bias of the generated trees.

4.2.1 Di�culty Bias

The previously mentioned results have all been based on unbiased games, that

is, where the root state has a di�culty value of 0 (meaning that randomly cho-

sen children are equally likely to be minimax optimal for PLAYER_MIN and

PLAYER_MAX). This value does vary between di�erent states in a game tree,

but it is di�cult to tell exactly how it a�ects search strategies since Gomba does

not currently generate output statistics based on anything but the root node of

a tree search. To compensate for this, we simply ran several experiments with a

variety of di�culties assigned to the root nodes of Gomba trees.

The results (Figures 15, 17, 16) are essentially as expected, with the exception

of the curious tendency of the FPU-based searches (in these graphs, UCT-Tuned

uses an FPU cuto�) to converge to winning values very quickly at high di�culties.

Our hypothesis is that this is because a relatively low FPU value is, in a high

di�culty scenario, a fairly accurate guess of the average state's value. The premise

of FPU-based search, that the �rst decent-looking node is likely to be good enough,

is especially valid in a high di�culty Gomba tree. This is very a direct result of the

forced minimax tree consistency that Gomba tree generation enforces. Even at high

di�culties, the root node of the generated trees are being coerced into having at least

one winning child. In a game tree of average di�culty and su�cient branching factor,

Gomba trees look reasonably randomly generated despite this consistency forcing.

However, when the di�culty gets high enough that it becomes unlikely for random

moves to win, this forced consistency makes a noticeable change in the structure of

the tree. Those nodes which are forced to change values to the non-favored player

(that is, the only ones likely to be optimal) will also be among the only nodes which
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will force their own children to win for the non-favored player. The proportion of

terminal nodes which will be winning because of this propagated forcing grows with

higher di�culty, which e�ectively means that in high-di�culty states (particularly

those with low depth), the forced nodes' improved minimax values correlate much

more strongly to their improved random playout win rates than would be the case in

less biased situations. Thus, the nodes which FPU-based search would likely choose

not to ignore are very likely to be optimal in high-di�culty searches, which would

explains the somewhat bizarre-looking disparity.
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Figure 15: E�ects of Di�culty Bias in Gomba Trees (b=2, d=20)

Figure 16: E�ects of Di�culty Bias in Gomba Trees (b=8, d=8)
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Figure 17: E�ects of Di�culty Bias in Gomba Trees (b=30, d=6)
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4.3 Untested Algorithms

These are algorithms which have not been extensively (or in some cases at all) tested

in computer Go. We consider them here primarily as candidates for later integration

with true Go libraries, such as Fuego. We primarily consider algorithms based on

solutions to the in�nitely-many armed bandit problem, much like UCT was taken

from a solution to the standard many-armed bandit problem.

4.3.1 k-Failure

k-Failure is a simple arm selection method for in�nitely-many armed bandit prob-

lems. It is based on the assumption that the problem can be expressed as a Bernoulli

distribution with a success probability parameter p, representing a uniform distribu-

tion over the interval [0, µ∗] for an ideal mean reward µ∗. The strategy is as follows:

choose an arm, and play it until the kth failure occurs, and then move on to the

next arm [22]. We have adapted this selection strategy to game trees of �nite branch

factor by using it as the selection policy in a normal rollout-based Monte-Carlo algo-

rithm, and returning to the �rst arm again after the failure criteria has been satis�ed

for the �nal child of a particular state. The results in small trees, while not quite

as good as modern UCT-based methods, do perform better than base UCT initially

when compared against minimax optimality (Figure 18). Unfortunately, they su�er

from hitting a ceiling on minimax optimality rate which is not 1, and they tend

to universally perform more poorly than UCT-based methods at minimizing chosen

di�culty, particularly in larger trees (Figure 19).
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Figure 18: K-Failure Performance in Small Gomba Trees

Figure 19: K-Failure Performance in Large Gomba Trees
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4.3.2 k-Failure Variants

There are several other simple strategies based on the same assumptions and general

structure as k-Failure. We will describe several of them here in the interest of

completeness, but we have not tested them signi�cantly due to a combination of the

poor performance of k-Failure and their tendency to eventually stop switching arms,

which violates the continuous exploration principle often required for convergence

to minimax-optimal choices in game trees.

The m-run strategy makes the same assumptions regarding distribution and

mean as the k-failure strategy. However, it di�ers in how it chooses moves. In this

policy, an arm is played until m consecutive successes occur (a new arm is chosen

on failure) or m arms are played. In the latter of the two cases, the arm with the

highest average reward of the set of arms played is selected forever [22]. A variation

of m-run, the non-recalling m-run strategy, does not stop exploring until it sees m

successes, at which point the current arm will be selected for all subsequent runs [21].

The m-learning strategy is related to m-run's other stopping condition: It entails

using the 1-failure strategy not until it sees m consecutive successes but simply until

m rounds have gone by, after which point the arm with the highest success rate so

far is selected and played forevermore [21].

4.3.3 UCT-V(∞)

UCT-V(∞) is one of several new algorithms we are proposing as alternatives to

UCT-FPU to be able to manage the massive search tree in Go without necessarily

searching every node. It is a modi�cation of UCT which incorporates the UCB-V(∞)

strategy for the in�nitely many-armed bandit problem [22], which states that for

multi-armed bandit problems with in�nite arms, it is su�cient to simply choose some

arbitrary number of random arms K and choose between them based on the UCB-V

policy. In particular, since there are in�nitely many �arms� (which means many of

them will be reasonably close to optimal), it is feasible to choose an exploration
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sequence εt for use with the UCB-V formula which is considerably smaller than

usual and still maintain reasonable bounds on the expected regret. Wang et al.

recommend a function on the order of log log t rather than the typical log t [22].

In UCT, each individual node is essentially treated as its own bandit problem.

No individual node will generally approach having e�ectively in�nite children, but

a tree with a su�ciently large branching factor will very quickly approach such a

state as a whole as the search deepens. The upper bound on expected regret can

be minimized by selecting an appropriate K based on the total number of expected

plays n and a domain-speci�c parameter β, which measures how close to optimal

an average arm is [22]. Since the expected plays n for any particular state is based

on the performance of the state, it cannot be easily estimated ahead of time. For

this reason, we use a version of this algorithm which is able to compensate for this

problem.

UCT-AIR (Arm Increasing Rule) is a modi�cation to UCT-V(∞) based on UCB-

AIR [22]. The primary di�erence is that UCB-AIR does not �x a static K at the

beginning of a bandit problem (i.e., node expansion) but allows for K to increase as

the search progresses. Speci�cally, at time n, UCB-AIR tries a new arm if

Kn−1 <


n
β
2 if β < 1 and µ∗ < 1

n
β
β+1 otherwise: µ∗ = 1 or β ≥ 1

(20)

Otherwise, the same UCB-V policy as in UCB-V(∞) is applied to the already

drawn arms.

We were able to adapt this algorithm to UCT with little modi�cation. It already

incorporates the idea that more frequently visited nodes will be more likely to expand

children, which is exactly the property we had hoped to emulate by using algorithms

for in�nitely-many armed bandit problems.

The results from this algorithm are somewhat encouraging. In smaller trees with

higher branching factor (Figure 20), we can see an improvement over UCT-FPU
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for well-chosen β factors (0.7 worked well in Gomba trees). Although the results

in larger trees are comparatively disappointing, providing a decrease in di�culty

performance, the improved win rate in the tree of branching factor 30 led us to test

this algorithm in a true Go framework.
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Figure 20: UCT-AIR Performance in Small Gomba Trees

Figure 21: UCT-AIR Performance in Large Gomba Trees
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4.3.4 Meta-EvE

In some games, the environment is likely to change very suddenly and drastically,

rendering as invalid some previous assumptions about the game state. A meta-

analysis of the game state can help in choosing between exploration and exploitation

in such a volatile situation. This is what Meta-EvE attempts to do [12].

This algorithm assumes that the best current decision i∗and its mean reward µ∗

are known. Meta-Eve keeps track of the rewards x1, ..., xT received from time steps

1 to T , as well as mT , the cumulative di�erence in reward values from the mean at

time T . Additionally, Meta-EvE keeps track of the maximum mi value, called MT .

From these values, one can use Page-Hinkley statistics [12] to determine whether or

not a change in the environment has occurred at a given time. This is done by, in

essence, signaling a change point whenever the inequality(mt > MT + λ) is true at

t = T . In Meta-EvE, λ is the false alarm detection parameter. Higher values will

ensure fewer false detections of change, as is evident from the inequality. However,

it also runs the risk of missing genuine change points. Lower values will have the

opposite e�ect [12].

When such a change point has been detected, the algorithm handles it using

discounts. Assume the following: a given decision i at time t has been visited

ni,t times with average reward µ̂i,t. If there is a change point at time T and a

previous change point at time TC , ni,t for all i and all t = TC , ..., T will be multiplied

by some discount factor γ in the interval [0, 1]. This method, termed γ-restart,

provides a means to decrease the impact of the previous environment on the current

environment. For all i and t,µ̂i,t is not changed.

4.3.5 Probabilistic Minimax Monte-Carlo

The value update function for all of the previous Monte-Carlo variants has con-

sistently been a rolling average of empirical results from child nodes and random

playouts. We considered a modi�cation of this method which uses a measure of the
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Algorithm 2 Probabilistic Minimax Update

Update(state):

if state.isTerminal:

if state.winner = PLAYER_MAX:

state.minimaxProbability := 1

else:

state.minimaxProbability := 0

return

default := DefaultProbability(state.numChildren)

p := default ^ state.numUnvisitedChildren

for each child in state.visitedChildren:

if state.isMinimizing:

p := p * (1 - child.minimaxProbability)

else:

p := p * child.minimaxProbability

if state.isMinimizing:

state.minimaxProbability := 1 - p

else:

state.minimaxProbability := p

probability of a move being minimax-optimal for a particular player rather than the

typical empirical measure of average move outcome. The modi�ed update function

is shown as Algorithm 2.

We tested this update method with a very simple search strategy which simply

blindly followed whichever path it currently thought was most likely to lead to

success. We found that this search strategy was extremely e�ective at converging

to a minimax optimal state; in smaller trees, it generally performed at least as

well as UCT-FPU (Figure 22), which is exciting because its actual search policy

is so trivial. However, its performance in minimizing di�culty leaves much to be

desired; in smaller trees it performs much more poorly than algorithms with a more

typical update policy, and in larger trees it does not do signi�cantly better than a

purely random search (Figure 23). It is possible that further research could reveal a
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combination of this technique and a more intelligent search policy which could prove

more e�ective than either method alone, and it is only because of time constraints

that we have not explored this avenue of research ourselves.
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Figure 22: Probabilistic Minimax Monte-Carlo E�ectiveness in Small Gomba Trees

Figure 23: Probabilistic Minimax Monte-Carlo E�ectiveness in Large Gomba Trees
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4.4 Conclusions

Our experiments with previously tested algorithms largely coincided with the per-

formance we expected based on previous works in other arti�cial frameworks and in

Go itself. The results suggest that Gomba trees can be an e�ective tool for the rapid

prototyping and testing of search algorithms, and although the tool is certainly not

equivalent to testing performance in Go itself, its results can be an e�ective predictor

of search algorithm performance in computer Go. In particular, the performance of

the newly attempted variants based on arm pool limiting in in�nite-armed bandit

problems was promising enough to warrant further testing in a true Go framework.
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5 Fuego

Despite the e�ectiveness of Gomba in testing search algorithms, one thing is certain:

Gomba game trees are not Go game trees. While this is intentional and advanta-

geous, it does mean that the algorithms we have selected for further testing in Go

must be re-implemented within another framework speci�cally designed to play Go.

For this reason it was necessary to �nd a separate framework for testing. In this sec-

tion we elaborate upon Fuego [7], an open-source collection of libraries for Computer

Go, and its use in testing our selected algorithms in actual Go games.

Fuego is a robust software framework for playing Go which uses UCT as its chief

move selection policy, along with optional extensions to the base UCT algorithm.

This makes the framework ideal for our testing purposes, as modi�cations to UCT

are made easier with the algorithm itself already present and implemented. Addi-

tionally, Fuego is able to interface easily with other computer players via GTP (Go

Text Protocol), which will be expanded further in the following section.

By implementing the selected algorithms in Go as opposed to other, arti�cial

game trees, we are able to evaluate their performance in situations where many of

the factors Gomba sought to alleviate are brought back into view. Slower evaluation

time for moves and time limits (as opposed to iteration limits) are factors which a

game tree framework optimized for speed can avoid fairly readily. In Go, however,

this is not the case.

Changing between board states requires checking to make sure moves are legal�

a process which can involve examining signi�cant portions of the board at each

iteration. Additionally, move-values are not often as clear-cut as one might like,

making the problem of �nding the �best� move an even harder one. These are

issues that must be accounted for, though, and any robust algorithm is expected to

handle them well. As such, testing on Go itself provides a means to not just test

the performance of search algorithms on a speci�c game, but to also determine how

robust these algorithms are.
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For testing purposes we chose to implement UCT-V and UCT-V(∞) with a �xed

K arm selection policy. In addition to these algorithms, which are new to Fuego,

we chose to test the current UCT implementation with di�erent �rst-player urgency

values for unvisited nodes.

5.1 The Existing Codebase

Of Fuego's codebase, there are two main components that required modi�cation to

support extensions to UCT: the actual Go player itself and the GTP engine. The

version of Fuego modi�ed was Fuego 0.4.1.

5.1.1 UCT Player

Like many of the best current Computer Go players, Fuego's player component uses

UCT as the core of its search for the best move [7]. As implemented, there are

several common extensions and enhancements available to users when using Fuego's

UCT player, but by default Fuego does not enable any particular UCT variants.

These may be con�gured through GTP commands, providing a convenient way

to specify Fuego's behavior at runtime, which is in turn useful for testing purposes.

Two features were notably missing from Fuego, though: UCT-V and the ability

to use algorithms designed for in�nite-armed bandit problems. For this reason we

successfully extended Fuego to incorporate variance (and, by extension, UCT-V)

and �xed K arm selection for UCT-V(∞).

This player's search functionality is found in the smartgame component of Fuego.

In particular, UCT is implemented and modi�ed in the SgUctSearch class, along with

several other helper classes which were not modi�ed.

5.1.2 GTP Engine

The Go Text Protocol [1], or GTP, is a text-based means of communication be-

tween Computer Go programs. Several Computer Go comply with GTP to varying
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degrees, which makes them much more amenable to automated plays against one

another. Fuego implements GTP within an engine class, GtpEngine, through which

developers can register commands and callbacks for those commands. This provides

a clean interface for adding, removing, and changing GTP commands and their cor-

responding behavior in the Fuego backend. Such convenience was quite helpful when

implementing UCT-V and in�nite-armed bandit algorithms. The implementation

itself, though, is not particularly notable and thus will not be discussed here.

5.2 Implementation Details

For UCT-V(∞) with a �xed K arm policy, it was necessary to modify Fuego such

that it would choose only K moves from the set of legal available moves. Adding the

capability to randomly select a set of K arms requierd some changes to the method

of move generation Fuego uses. Generation occurs in two steps. In the �rst step,

Fuego produces all possible board states which could come from the set of possible

moves from a given board state. Obviously, many of these could be illegal moves.

For this reason, the second step takes the set of all possible subsequent board states

and �lters it so that only states derived from legal moves remain. The challenge, of

course, was to take this set of board states derived from legal moves and somehow

�lter it so that only K random states remained from that set.

This is currently implemented by, for a set of states with initial size n, removing

a random state from the set for n −K iterations. This behavior�removing n −K

random states from a set of n states�is equivalent to choosing K states from the

beginning. In the case where n ≤ K, no removals occur.

UCT-V, fortunately, was a rather trivial modi�cation to the GetBound() method

in smartgame's SgUctSearch class. The typical behavior for GetBound() relies upon

statistical data gathered by the node over time, which already included mean reward

information and simply needed the addition of variance. GetBound() was extended

to use the UCT-V upper bound as speci�ed by Wang et al. [22] when UCTV was
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enabled. For a given node n with s visits to its parent node (a measure of how much

time has elapsed where n could be selected), t visits to n, and a reward variance of

σ2, the bias term is implemented as:

C

√
3σ2log(log s)

t+ 1
(21)

C is an exploration constant as de�ned by Fuego. By default, this is 0.7, but

this may be changed through GTP.

Finally, AIR was implemented in Fuego by generating all possible moves upon

the �rst addition of an arm, then caching the moves in order to avoid the need

for fairly expensive computation. A single random move is then picked once it is

necessary to do so according to the AIR formula, from which a new child node is

generated.

5.3 Experiments

In order to test the performance of modi�cations we made to Fuego's player program,

it was necessary to �nd a player suitable for the task. Due to the relatively low

sample size one could gather from playing against human players, we chose to use

a computer player instead. In this section, we describe the means by which we

ran tests to evaluate the performance of modi�cations to Fuego against another

computer player, GNU Go.

5.3.1 GNU Go

Released in 1999 by the Free Software Foundation in an e�ort to produce an open-

source Computer Go player, GNUGo [8] remains one of the strongest non-commercial

Go playing programs to date. Unlike Fuego, it does not use Monte Carlo algorithms

by default when choosing a move. Rather, GNU Go combines many di�erent move

generators and evaluates all of these moves after they are generated. Individual

71



generators are specialized to search for moves based on certain features, such as

patterns on the board or opening moves based on knowledge from databases.

Once all moves are generated, each move is coupled with what are known in

GNU Go as �reasons��features of the move that make it notable�which can then be

analyzed to see what is the best possible move of the set of potential best moves.

Following analysis, moves are given values and the move with the highest value is

chosen as the one which will be played [8]. While this behavior is very di�erent from

Fuego's Monte Carlo techniques, it has still shown itself to be a strong contender

in Computer Go competitions. We chose GNU Go because of its strength and

compliance with GTP, which makes testing against it much easier than it would be

with other Computer Go platforms. The version used was GNU Go 3.8.

5.3.2 Testing Parameters

Testing against the same instance of GNU Go for all variations of UCT in Fuego

would not be very useful, for obvious reasons. As a result, testing was implemented

with the goal of using parameters that would be able to test both the absolute

robustness of our algorithms and their speed in �nding useful moves. Ultimately,

due to similarities between UCT-V and UCT-V(∞) when testing (both use the same

formula to calculate bias), the primary parameters that were varied for UCT-V(∞)

were time and number of arms. For other algorithms, time and exploration constants

were used. The parameters we used for testing Fuego are available in Appendix C:

Fuego Experiment Parameters.

5.3.3 Results

All of the win rates against GNU Go with the speci�ed test parameters (see Ap-

pendix C) are in this section. Win rates are also accompanied by a 95% con�dence

interval.

72



UCT, UCT-V Results

(5,0.7) (20,0.7) (40,0.7)

UCT 9.4% (±0.9) 3.9% (±0.6) 59.4% (±1.6)

UCT-V 6.5% (±0.8) 3.8% (±0.6) 55.3% (±1.6)

(5,0.1) (20,0.1) (40,0.1)

UCT 3.9% (±0.6) 2.7% (±0.5) 70% (±1.4)

UCT-V 5.4% (±0.7) 3% (±0.5) 67.6% (±1.5)

UCT-V(∞) Results

(K,Max. Time Per Move) (20,5) (20,20) (20,40)

UCT-V(∞) 0.8% (±0.3) 0.5% (±0.2) 3% (±0.5)

(K,Max. Time Per Move) (30,5) (30,20) (30,40)

UCT-V(∞) 2.3% (±0.5) 2.1% (±0.5) 17.1% (±1.2)

(K,Max. Time Per Move) (40,5) (40,20) (40,40)

UCT-V(∞) 2.9% (±0.5) 2.7% (±0.5) 33.9% (±1.5)

(K,Max. Time Per Move) (50,5) (50,20) (50,40)

UCT-V(∞) 4.7% (±0.7) 3.3% (±0.6) 51.8% (±1.6)

UCT-V(∞) with AIR Results

AIR Parameter β 0.4 0.7 1.0

UCT-V(∞) AIR 47.9% (±1.6) 50.3% (±1.6) 49.9% (±1.6)

5.4 Conclusions

While UCT-V in Fuego does appear to o�er some bene�ts over plain UCT after

signi�cant amounts of time (above 40 seconds), it does not appear to o�er any par-

ticular advantage in shorter amounts of time. This is primarily due to the variance

bound in UCT-V: at earlier stages of the algorithm's run UCT-V is much more
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focused on exploration than UCT. While this means that it will be able to explore

nodes which still give erratic data after many visits (and thus have a high reward

variance), the result is that early on it does not perform any better than UCT. In

fact, in some cases it may even perform worse than UCT when time limits are low

due to increased exploration leading to less optimal moves being chosen.

The results of UCT-V(∞) show that it performs poorly in Go for small values

of K relative to the number of possible moves. The algorithm's results are highly

dependent on the number of child nodes generated by each parent. In 9x9 Go, low K

values lead to extremely poor performance, and with good reason � selecting the best

of only a few random moves at each turn does not bode well for Fuego when using

UCT-V(∞). As K increases, when higher amounts of time per turn are allowed

performance increases substantially. This is due to UCT-V(∞) being unable to �nd

a suitable move out of its possible choices in such a short time frame, in addition to

small K values precluding Fuego from including good moves in its search early on

in the game when the game tree's branching factor is generally higher. Using AIR

instead of a �xed K provides fairly good performance, which looks promising for

future work.
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6 Conclusions

6.1 The Gomba Search Framework

The �rst major contribution of our project is the Gomba framework itself. Our

experiments have proved Gomba to be fast and e�ective at gauging algorithm per-

formance, and the underlying code is simple enough and abstract enough that im-

plementing and testing new search algorithms is a relatively simple a�air. Gomba is

the �rst open, simple framework to allow for the testing of massive game trees, and

we hope and expect that it will prove to be a useful tool for future research into the

performance of new search variants.

6.2 In�nite-Armed-Bandit Based Search

We were able to use the Gomba framework to evaluate several new variant search

methods. In particular, two new variants based on solutions to the in�nite-armed

bandit problem, UCT-V(∞) and UCT-AIR, have proven to be e�ective against

both arti�cial Gomba trees and actual Go game trees. They represent a potentially

promising new direction of research for computer Go in future work.

6.3 Future Work

Although the Gomba framework is quite usable in its current state, there are areas

which could be improved by future work. Some speci�c areas of potential improve-

ment, in no particular order, are:

� Modi�cation of the tree generation algorithm to allow for the e�ective move

transposition, as exploited by UCT-RAVE

� Addition of iterative expansion of child pointer arrays, which would allow for

signi�cant memory savings in nodes with few expanded children
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� Research into statistical inconsistencies caused by the somewhat unusual usage

of Linear Congruential pseudorandom number Generators

Of course, using the framework to test other new types of search algorithms would

also be a valuable avenue of future research. In particular, we think that continued

research into the combination of improved value update policies and current search

policy in Monte-Carlo searches could lead to further performance improvements,

as could further re�nement of the in�nite-armed-bandit based solutions we have

presented.
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Appendix A: Gomba Experiment Parameters

In general, our experiments were run using many runs of many trials each on a

Condor cluster graciously provided by MTA-SZTAKI. The parameter listings that

follow are divided into related sets of these experiments, and are speci�ed as lists of

parameters. In the cases where a parameter is itself a list of values, the experiments

were run over every combination of the multi-valued parameters.

For details on exactly how the parameters de�ne the resulting experiments, see

Appendix B.

Set 1: Comparative Algorithm Performance

� 5000 trials

� 100000 iterations

� 0 base di�culty

� Algorithms:

� Random

� Random Monte-Carlo

� UCT

� UCT (1.0 FPU)

� UCT-Tuned (1.0 FPU)

� UCT-V (1.0 FPU)

� Probabilistic Minimax Monte-Carlo

� Tree sizes:

� branching 2, depth 20
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� branching 8, depth 8

� branching 30, depth 6

� branching 8, depth 50

� branching 50, depth 50

� branching 200, depth 50

Set 2: FPU Performance

� 2000 trials

� 100000 iterations

� 0 base di�culty

� Algorithms:

� UCT

� UCT-Tuned

� UCT-V

� FPU Values:

� 0.55

� 0.8

� 1.0

� 1.1

� 1.2

� 1.5

� 1.8

� 2.0
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� 2.5

� 3.0

� Tree sizes:

� branching 2, depth 20

� branching 6, depth 6

� branching 8, depth 8

� branching 30, depth 6

� branching 50, depth 50

� branching 200, depth 50

Set 3: Simulation E�ectiveness E�ect

� 2000 trials

� 100000 iterations

� 0 base di�culty

� Algorithms:

� Random Monte-Carlo

� UCT

� Simulation E�ectivenesses:

� 0.0

� 0.001

� 0.005

� 0.01
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� 0.02

� 0.03

� 0.05

� 0.1

� 0.2

� 0.5

� Tree sizes:

� branching 2, depth 20

� branching 8, depth 8

� branching 30, depth 6

� branching 8, depth 50

� branching 50, depth 50

� branching 200, depth 50

Set 4: Di�culty Bias E�ect

� 2000 trials

� 100000 iterations

� Algorithms:

� Random

� Random Monte-Carlo

� UCT

� UCT-FPU (1.0)

� UCT-V
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� UCT-Tuned

� Di�culty Bias

� -3

� -1

� 0

� 1

� 3

� Tree sizes:

� branching 2, depth 20

� branching 8, depth 8

� branching 30, depth 6

� branching 8, depth 50

� branching 50, depth 50

� branching 200, depth 50

Set 5: k-Failure Performance

� 2000 trials

� 100000 iterations

� 0 base di�culty

� Algorithms:

� Random

� UCT
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� UCT (1.0 FPU)

� k-Failure (∀k ∈ 1, 2, 3, 5, 10, 15, 20)

� Tree sizes:

� branching 2, depth 20

� branching 8, depth 8

� branching 30, depth 6

� branching 8, depth 50

� branching 50, depth 50

� branching 200, depth 50

Set 1: Comparative Algorithm Performance

� 2000 trials

� 100000 iterations

� 0 base di�culty

� Algorithms:

� Random

� UCT

� UCT (1.0 FPU)

� UCT-V

� UCT-V (1.0 FPU)

� UCT-AIR (k = 1, ∀β ∈ .1, 2., .3, .4, .5, .6, .7, .8, .9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5)

� Tree sizes:
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� branching 2, depth 20

� branching 8, depth 8

� branching 30, depth 6

� branching 8, depth 50

� branching 50, depth 50

� branching 200, depth 50
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Appendix B: Gomba Developer's Primer

The Gomba search framework is freely available for general use under the Apache 2.0

license, a current copy of which can be found at http://www.apache.org/licenses/LICENSE-

2.0. The source code for the project can be found at its Google Code page at

http://code.google.com/p/gomba-mqp/. The code itself is fairly well documented,

and the framework as a whole is relatively simple - we thus recommend that for

questions pertaining to speci�c components of the framework, you reference the

comments in the source itself. This appendix is meant to serve not as a complete

reference to every component, but as a general overview of how to use the framework

to test algorithms against parameters of your own choosing and how to extend the

framework to encompass new search strategies.

Using Gomba

The general syntax to simulate trials with the Gomba framework is as follows:

gomba-mqp <options> <algorithm_1>[<alg_param_1>[,<alg_param_2>]...]

<algorithm_2>...

Some common gomba options include:

-n: Number of trials (distinct trees) to test the algorithms against.

-i: Number of iterations to run each algorithm for.

-b: The branching factor to construct the tree with. Non-terminal nodes will

have this many children.

-d: The depth of the generated tree (the largest distance from any node to the

root).

-B: The di�culty bias. This may be any �oating point number. Zero means �no

bias�, lower means better for the minimizing (starting) player, and higher means

worse for the starting player.

Algorithm options are speci�c to each algorithm. The included algorithms which
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are based on RolloutMonteCarlo will generally have at least two parameters, the �rst

two being the simulation policy e�ectiveness and the reward propagation constant.

Those based on UCT will generally have at least a third, the �rst play urgency

constant.

Example

gomba-mqp -n100 -i100000 -b2 -d20 random uct0,1,1.1 uct0,1,10000

This would run 100 trials of 100000 iterations each on a tree of branching factor

2 and depth 20. The results would compare a purely random search and two UCT

searches, one with a �rst play urgency value of 1.1 and one with no �rst play urgency

(represented by the massive FPU value of 10000).

Parsing Results

Gomba outputs a series of comma-separated-value text �les named <algorithm>.dat

for each algorithm speci�ed as input. Each of these �les contains one line per

iteration. Each line contains the following values from its respective iteration:

1. The number of trials in which an optimal move was chosen

2. The sum of the di�culties at each chosen node

3. The total number of tree nodes expanded

4. The total number of elapsed clock cycles

Each of these values is simply the sum of the respective value from each trial. This

was chosen over using averages primarily to ease the merging of multiple output

�les � it allows for multiple runs of the program with the same parameters to be

combined simply by adding the values in the output �les component-wise, which is

very useful in splitting jobs across nodes in a computing cluster.
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The data �les can be parsed and analyzed by any program which can read CSV

text �les. We primarily used the R statistical programming language to generate

the statistics used in this report, and have included several example R scripts in

the scripts directory of the Gomba source tree. Like the framework itself, these are

released under the Apache 2.0 license and may be freely used under its terms and

conditions.

Adding Search Algorithms

The general strategy for the introduction of a new algorithm into the existing code-

base is as follows:

1. Create a new class which derives from the SearchAlgorithm class, located

in search/SearchAlgorithm.h. We recommend that variants of existing algo-

rithms derive from those existing algorithms where feasible. In particular, the

RolloutMonteCarlo class, on which most of the algorithms presented in this

report are based, provides a great deal of groundwork code which is shared

between all algorithms using a Rollout-based Monte-Carlo strategy. This in-

cludes, for example, most UCT variants. We highly recommend using the

existing variants (such as UCT) as examples, and we also highly recommend

checking the documentation within the RolloutMonteCarlo class for descrip-

tions of how to modify the parts of the algorithm your particular variant

changes. However, if you are implementing a truly novel new algorithm, it is

only necessary that it adhere to the function documentation speci�ed by the

SearchAlgorithm interface.

2. Register your class in the algorithms/AllAlgorithms.h header. You can do this

by calling any of the registration macros available from search/AlgorithmRegistration.h

in between the BEGIN_REGISTER_ALGS; and END_REGISTER_ALGS;

calls. Use the existing registrations as a template. The most common us-
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age pattern for a search algorithm with a constructor that takes K argu-

ments is REGISTER_ALG_K(string_name, ClassName), which will allow

the framework to map a command line algorithm speci�cation of the form

�string_name1,2,...,K� to a search algorithm constructed with the call �Class-

Name(1, 2, ..., K)�.

3. Recompile the Gomba framework with your new algorithm in place.

4. Run the resulting executable (by default, �gomba-mqp�) with the command

line algorithm speci�cation you de�ned by registering your algorithm. For

example, if your algorithm class MyAlgorithm has a constructor of two ar-

guments which you registered in step two with �REGISTER_ALG_2(myalg,

MyAlgorithm)�, you can start a simulation with the command �gomba-mqp

myalg0,1�. You can use whatever parameters you like for myalg (they are

treated as doubles), run it against any other algorithms in the framework

(others of your creation or any of the standard included ones), and modify any

of the standard framework parameters (-n, -b, -d, etc.) for the run. In short,

after registration, it is treated exactly like any one of the standard included

algorithms.
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Appendix C: Fuego Experiment Parameters

Modi�cations to Fuego were tested on the Condor cluster which MTA SZTAKI

kindly allowed us to use for the duration of this project. The parameters for the

experiments were chosen so that we would be able to measure the e�ects of time

(for all algorithms) as well as K and β values for arm selection (for UCT-V(∞))

on the performance of Fuego against GNU Go. An algorithm that is able to �nd

a good move on par with or faster than its rivals is highly useful for game playing,

and thus we sought to determine whether or not our modi�cations to Fuego truly

did lead to useful move selection in Go.
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Table 1: Fuego Experiment Parameters for UCT and UCT-V
(Max. Time Per Move, C) (5,0.7) (20,0.7) (40,0.7)

Trials 1000 1000 1000
Maximum Time Per Move (seconds) 5 20 40

GNU Go Di�culty 4 4 4
Fuego Exploration Constant C 0.7 0.7 0.7

(Max. Time Per Move, C) (5,0.1) (5,0.1) (5,0.1)
Trials 1000 1000 1000

Maximum Time Per Move (seconds) 5 20 40
GNU Go Di�culty 4 4 4

Fuego Exploration Constant C 0.1 0.1 0.1

Table 2: Fuego Experiment Parameters for UCT-V(∞) with �xed K arms and AIR
(K,Max. Time Per Move) (20,5) (20,20) (20,40)

Trials 1000 1000 1000
Maximum Time Per Move (seconds) 5 20 40

K (number of arms to select) 20 20 20
GNU Go Di�culty 4 4 4

Fuego Exploration Constant C 0.7 0.7 0.7

(K,Max. Time Per Move) (30,5) (30,20) (30,40)
Trials 1000 1000 1000

Maximum Time Per Move (seconds) 5 20 40
K (number of arms to select) 30 30 30

GNU Go Di�culty 4 4 4
Fuego Exploration Constant C 0.7 0.7 0.7

(K,Max. Time Per Move) (40,5) (40,20) (40,40)
Trials 1000 1000 1000

Maximum Time Per Move (seconds) 5 20 40
K (number of arms to select) 40 40 40

GNU Go Di�culty 4 4 4
Fuego Exploration Constant C 0.7 0.7 0.7

(K,Max. Time Per Move) (50,5) (50,20) (50,40)
Trials 1000 1000 1000

Maximum Time Per Move (seconds) 5 20 40
K (number of arms to select) 50 50 50

GNU Go Di�culty 4 4 4
Fuego Exploration Constant C 0.7 0.7 0.7

Trials 1000 1000 1000
Maximum Time Per Move (seconds) 40 40 40

GNU Go Di�culty 4 4 4
AIR Parameter β 0.4 0.7 1

Fuego Exploration Constant C 0.1 0.1 0.1
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