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Chapter 1

Introduction

Since the advent of blockchain technology in 2009 and the creation of the first
major cryptocurrency Bitcoin, the cryptocurrency market has become increas-
ingly prevalent. Presently, tens of thousands of cryptocurrencies exist with a
total market capitalization of over $1.1T. With cryptocurrency prices rising and
falling constantly, this market behaves somewhat like the stock market.

In the stock market, investing in a portfolio of diverse stocks can often
lower an investor’s overall risk; specifically, by investing in stocks with low cor-
relations to each other, investors can minimize their losses in the case of markets
crashing or companies going under. By investigating the correlations between
various cryptocurrencies, we will determine the nature of diversity within the
cryptocurrency market to understand how a cryptocurrency investment portfo-
lio can be diversified.

To analyze how the values of cryptocurrencies correlate with one an-
other, we will use various methods of dimension reduction such as principal
component analysis (PCA), robust principal component analysis (RPCA), and
autoencoders. These methods will not only provide representations of market
statistics with smaller datasets but also show how much of the variance in value
of each cryptocurrency is represented by the components which make up these
datasets.

This paper was motivated by a 2021 REU project done by four un-
dergraduate students at Worcester Polytechnic Institute, entitled Decorrelation
Detection in a Financial Time Series Data Set [9]. The project considered a
dataset of exchange traded funds provided by their sponsor, Wellington Man-
agement, and compared the robustness of dimension estimation methods, which
they used to visualize interdependencies between the assets. Their work outlined
the methodology used in this project.
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The rest of this paper is organized as follows: we begin in Chapter 2 by
providing background information on the cryptocurrency market, the analyzed
data, and the methods we use to analyze said data. Chapter 3 then explains
our process of estimating the target output dimension of these methods using
various dimension estimation methods on an expanding window scheme (EWS).
Chapter 4 displays and explains the results from these methods, and Chapter 5
subsequently analyzes these results and further researches the correspondence
between notable dates and anomalies in the market. Finally, in Chapter 6 we
draw conclusions from these analyses about the dimensionality of the cryptocur-
rency market and the nature of a diverse cryptocurrency investment portfolio.
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Chapter 2

Background

In this chapter, the necessary background is given to understand the methods
and results presented in this paper. A brief introduction to cryptocurrencies is
provided, followed by a description of the data set we used. The mathematical
theory behind the three methods we considered is then given. Some additional
background for readers not familiar with matrix decompositions, machine learn-
ing and neural networks is provided in the appendices.

2.1 Data

2.1.1 Cryptocurrencies

The Cryptocurrency market has experienced significant growth and volatility
in recent years. From August 18th, 2020, to January 24th, 2023, the cryp-
tocurrency market has seen both ups and downs. Bitcoin, the most popular
cryptocurrency with the highest market capitalization, has experienced a series
of price swings during this period. In particular, Bitcoin went through a bullish
run in late 2020 and early 2021, reaching an all-time high of $64,863.10 on
April 14th, 2021, before experiencing a significant price correction and falling
to around $18,000 [8].

One of the significant factors driving the cryptocurrency market is the
increasing adoption of blockchain technology. Blockchain technology is a decen-
tralized and distributed ledger that enables secure and transparent transactions
without the need for intermediaries [17]. The adoption of blockchain technology
has the potential to disrupt various industries, such as finance, healthcare, and
supply chain management.
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Another factor contributing to the growth of the cryptocurrency mar-
ket is the increasing interest from institutional investors such as Deutsche Bank,
Wells Fargo, Citigroup, and Bank of America, who have been attracted to the
cryptocurrency market due to its potential for high returns. Moreover, the in-
creasing number of cryptocurrency exchanges and investment vehicles has made
it easier for institutional investors to access the cryptocurrency market. How-
ever, the cryptocurrency market has also been subject to regulatory scrutiny
and security risks. Regulatory uncertainty and security risks have been cited
as significant barriers to the widespread adoption of cryptocurrencies [23]. As
such, researchers have been investigating the potential impact of regulations on
the cryptocurrency market.

Rank Cryptocurrency Ticker Year Established
1 Bitcoin BTC 2009
2 Ethereum ETH 2014
3 Binance Coin BNB 2017
4 Binance USD BUSD 2019
5 Ripple XRP 2012
6 Cardona ADA 2015
7 Dogecoin DOGE 2013
8 Polygon MATIC 2012
9 Solana SOL 2020
10 Polkadot DOT 2020
11 Tron TRX 2017
12 LiteCoin LTC 2011
13 ChainLink LINK 2017

Table 2.1: Analyzed cryptocurrencies

The coins listed in Figure 2.1 were selected based on the availability
of data from Binance, market capitalization, and the year in which they were
established. When choosing assets to represent the cryptocurrency market, we
look at the total market capitalization of assets; the list is the 13 highest mar-
ket cap cryptocurrencies which make up over 90% of the market capitalization.
Market capitalization measures the respective market values of the selected as-
sets by multiplying the price of one unit by the total units available. Utilizing
these 13 cryptocurrencies that make up most of the market capitalization re-
sults in well-represented market data. Using the closing prices Pt of each day
for all 13 assets, we calculate daily log returns, given by Rt = ln(Pt/Pt−1). Data
for this analysis are provided by a Binance API and are comprised of the daily
closing prices on 13 crytocrrencies from 08/18/2022 to 01/24/2023, a total of
890 trading days.
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2.1.2 Binance API

We access a Binance API in Python to extract the necessary historical data
managed by Binance, a leading cryptocurrency exchange. This historical in-
formation is completely public and open source for educational purposes. An
API, or application programming interface, acts as a communication layer that
allows different systems to communicate without understanding precisely what
the other does. The API takes access data and integrates them into the Python
library so they can be analyzed and processed within Juypter Notebook. Each
individual ticker will have its own CSV file which is written out in the API.
When using R and Python, these CSV files can be read into a data set by
ticker, pooling all data together to then be analyzed.

All of the Python Libraries used to access the Binance API are listed
in Appendix B, as well as the API base URL and necessary dependencies to
access the data and permissions.

The historical data are accessed for each ticker of the 13 cryptocurren-
cies selected. Each datum contains the ticker, the desired time series, and the
amount of time, which for our case was daily. The data are then constructed
into a dataset with price, volume, and time included. These data are then writ-
ten into a CSV file, which can then be read into datasets in other systems as
needed.

2.1.3 Exploratory Data Analysis

Rank Ticker Mean Median St. Dev. Kurtosis Skewness
1 BTC 7.18E-04 0.000407 0.036914 2.78071 -0.244131
2 ETH 1.46E-03 0.00317 0.050008 3.912489 -0.424909
3 BNB 2.89E-03 0.001922 0.056564 14.903465 0.621005
4 BUSD 7.87E-07 0 0.000421 31.669809 1.799455
5 XRP 3.28E-04 0.001196 0.065936 12.901975 0.152958
6 ADA 1.07E-03 0.000614 0.058164 3.071133 0.241235
7 DOGE 3.58E-03 -0.000453 0.094965 95.211645 6.045469
8 MATIC 2.18E-03 0.001244 0.078254 6.26063 0.97253
9 SOL 4.02E-03 -0.000022 0.078418 5.891495 -0.30449
10 DOT 7.73E-04 0.000238 0.065877 7.688474 0.222919
11 TRX 8.38E-04 0.00207 0.052318 7.961459 -0.108769
12 LTC 3.22E-04 0.001714 0.05468 7.393962 -0.84033
13 LINK -9.99E-04 0.003372 0.064057 4.658368 -0.552381

Table 2.2: Summary statistics for the 13 cryptocurrecies
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Exploratory data analysis is an important part of statistical analysis;
exploring the data and observing big changes in fundamental statistics can mo-
tivate us to find and solve new problems. We first want to examine how each
asset in particular changes over time. We observe our data as a whole in Table
2.2. The first column lists the ranks and the second column lists the tickers
for the 13 assets. The last five columns show important summary statistics
including mean, median, standard deviation, skewness, and kurtosis. The asset
return mean of the greatest magnitude is SOL with 4.02 × 10−3, with the rest
being closer to 0, indicating the asset returns are very weakly serially correlated
or near white noise. Further, a one-sample t-test indicates that all the mean
returns are insignificantly different from zero.

Standard deviation is a statistical measure of the amount of variability
or dispersion in a set of data. It tells us how spread out the data is from the
mean or average value. In the context of cryptocurrencies, standard deviation
is often used to measure the volatility of prices. A larger standard deviation
indicates a higher degree of volatility or risk in price movements, while a smaller
standard deviation indicates the opposite. DOGE we can see has the highest
standard deviation with .094 and the lowest was BUSD with .000421.

Kurtosis quantifies how much of the total probability lies in the tails of
a distribution. A standard normal distribution has a kurtosis value of 3. A kur-
tosis value greater than 3, or excess kurtosis, indicates that the distribution has
heavier tails than those of a normal distribution, implying that the distribution
has a higher probability of extreme events or outliers; this is because the tails
of the distribution contain more of the total probability. Such a distribution is
called leptokurtic. On the other hand, a kurtosis value less than 3 indicates that
the distribution has lighter tails than those of a normal distribution, implying
that the distribution has a lower probability of extreme events or outliers. Of
the 13 cryptocurrencies analyzed, all except BTC are leptokurtic.

In statistics, skewness measures the degree of asymmetry in a proba-
bility distribution. A normal distribution is symmetric, meaning that the left
and right tails are identical in shape and size, and has a skewness of 0. In the
context of cryptocurrencies, skewness can provide insight into the distribution
of price returns over time. Of the 13 cryptocurrencies analyzed, 6 of their re-
turns—BTC, ETH, SOL, TRX, LTC, and LINK—are negatively skewed, and
all the other cryptocurrencies are positively skewed. Positive skewness indicates
that the distribution has a long right tail, meaning that extreme positive returns
occur more frequently than extreme negative returns. This suggests a greater
potential for positive returns in the future. Conversely, a negative skewness in-
dicates that the distribution has a long left tail, meaning that extreme negative
returns occur more frequently than extremely positive returns. This suggests a
greater risk of large losses in the future. Studies have shown that many cryp-
tocurrencies have highly skewed return distributions, with a tendency towards
large positive returns but also significant risks of large losses [16].
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Figure 2.1: Summary statistics for Bitcoin across the EWS

The plots of summary statistics for all assets are available in Appendix
C and Figure 2.1. In general, these plots show the means of returns are about
zero, and many of them experience a sudden change on the three dates indicated
by vertical red dotted lines. All of the assets’ returns show sudden increases in
standard deviation at the three points in time. Finally, almost every returns
series have high volatility in the skewness and high volatility in excess kurtosis
which occurs suddenly before or after each date. These sudden changes over
time require that we use robust techniques for dimension estimation and data
reconstruction that are resistant to outliers.

The heatmap shown in Figure 2.2 visualizes the correlations across the
13 asset returns. ETH and BTC were the most correlated with a correlation
coefficient of .81. In addition ETH and LTC also share a value of .81 making
the pairs the most correlated of the set. BUSD is the least correlated to the
other 12 cryptocurrencies, having a negative correlation coefficient with all of
them. This lack of correlation can be explained by its unique behavior as a
stablecoin—a coin designed to retain a certain monetary value. DOGE is the
least uncorrelated to the rest of the cryptocurrencies and is also the most volatile
asset.
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Figure 2.2: Heatmap of correlations between the 13 asset returns

2.2 Expanding Window Scheme

An expanding window is an iterative method for comparing data metrics as more
data is introduced. We start with an arbitrary fixed starting point, i = 64, then
incorporate more data at each iteration. For our data, we start with initial data
matrix A(0) which has 64 data points corresponding to daily log-returns from
August 19, 2020 to October 20, 2020 for our 13 assets. Each asset vector is of
the form Ai,j ∈ Ri×1 where 1 ≤ j ≤ 13. Then, at each iteration for k ≤ 826, we
update A(k) such that A(k) = (Ai+k,1, . . . , Ai+k,13) and perform analysis on the
new data matrix until we have our original data set.

We opted to use an expanding window scheme (EWS) as opposed to
a rolling window scheme (RWS), which is similar in concept except the starting
point is not fixed and changes with the upper bound. This choice was made so
that we can visualize the performance of these methods on all of the data rather
than a fixed amount of data. Furthermore, the dimension reduction methods
require large data sets, which means a large window is needed for a RWS, and
given the relatively small size of our data set, we felt an EWS would produce
more interpretable results.

12



2.3 Principal Component Analysis

Principal component analysis (PCA) is a dimension reduction method with ap-
plications to genetics, facial recognition, finance, and more [24]. When given a
data set, PCA forms a new basis of orthogonal vectors that successively max-
imize variance. PCA is used to analyze large data sets with many dimensions
or variables by preserving as much statistical information as possible, while also
increasing interpretabilty [12]. Mathematically, this means finding a new set of
variables, or principal components, that are linear combinations of the original
data set, which maximize variance and are uncorrelated to each other.

Figure 2.3: A multivariate Gaussian distribution with two orthogonal vectors
corresponding to the directions of the greatest variance in the data.

In order to find these principal components, suppose we have a random
vector X ∈ Rn. The first principal component (PC) is the unit vector u1 ∈ Rm

which maximizes the variance of u⊤
1 X. The next PC vector u2 maximizes the

variance of u⊤
2 X while being orthogonal to u1. For k ≤ n, the k-th PC vector

is the vector that maximizes u⊤
k X while being orthogonal to the previous k− 1

PC vectors.

The variance of u⊤
k X can be shown to be var(u⊤

k X) = u⊤
k Σ̂uk, where

Σ̂ is the covariance matrix of X. Then the vector which maximizes the variance
also maximizes the convex quadratic, u⊤

k Σ̂uk. This is equivalent to maximizing
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the following Lagrangian function:

L(u, λ, γ1, ..., γk−1) = u⊤
k Σ̂uk − λ(u⊤

k uk − 1)−
k−1∑
i=1

2γiu
⊤
i u.

Differentiating with respect to uk and equating L(∗) to 0, we get

0 =
∂

∂uk
L(u, λ, γ1, ..., γk−1) = 2Σ̂uk − 2λuk ⇒ Σ̂uk = λuk.

Thus, it is clear that λuk is the k-th eigenpair of Σ̂. From this result, we
see that PCA is analogous to the eigendecomposition of the covariance matrix.
Then given a data matrix, A ∈ Rm×n we can use the sample covariance matrix
to estimate the covariance matrix in order to perform sample PCA. It is common
to center the columns of the data matrix when performing PCA, in which case
the sample covariance matrix is equal to,

S =
Ã⊤Ã

(n− 1)
= V ΛV ⊤,

where Ã is the centered data matrix, V = [v1, ..., vn] is a matrix whose columns
are the eigenvectors of the covariance matrix, and Λ is a diagonal matrix of
eigenvalues. Then it can be shown that vk satisfies,

vk = argmax
u∈Rm,||u||=1,

u⊤uj=0,j=1...k−1

u⊤Su,

where vk is the k-th sample PC direction and u⊤Su is the sample variance of
u⊤xi for i = 1, ..., n. These results are important in linking PCA to Singu-
lar Value Decomposition (SVD), a process which is detailed in Appendix A.2.
Decomposing Ã using SVD, we get Ã = UΣV ⊤ where,

• U is a m × m matrix of left singular values. This matrix contains the
orthogonal unit vectors in the direction maximal variance.

• Σ is a m×n diagonal matrix of singular values. Each singular value is the
amount of variance explained by each direction vector in U .

• V is a n×n matrix of right singular values. This matrix is the correlation
between each variable and the orthogonal unit vectors. This is sometimes
called the rotations matrix because it ”rotates” the data onto the axes of
the new basis.
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Note that this Σ is different from the covariance matrix Σ̂. Truncating the
matrices U , Σ, and V produces a low-rank approximation of A. Inputting the
SVD into the sample covariance matrix equation reveals the relation between
the two decompositions:

S =
(UΣV ⊤)⊤(UΣV ⊤)

(n− 1)

=
V ΣU⊤UΣV ⊤

(n− 1)

= V
Σ2

(n− 1)
V ⊤.

Thus, we have that (σ2
k/(n− 1)) = λk, where σk is the k-th singular value and

λk is the k-th eigenvalue. Most computer programs, like R, will use SVD to
perform PCA because of its interpretability and numerical stability. While the
eigendecomposition of S and SVD of Ã will produce the same results when using
exact arithmetic, on a computer with rounding error, extremely small singular
values will correspond to even smaller eigenvalues, so it is important to consider
potential round-off error. The Lauchli Matrix shown in Figure 2.4 is a well
known example of this phenomenon.


1 1 . . . 1
ε 0 . . . 0
0 ε . . . 0
...

. . .
. . .

...
0 . . . 0 ε


Figure 2.4: A generalized Lauchli matrix where ε is an arbitrarily small value.

Let L be a 4 × 3 Lauchli matrix and ε = 1 × 10−8. The SVD of L using R
returns singular values σ = (

√
3, 1 × 10−8, 1 × 10−8); however, computing the

eigenvalues of L⊤L returns λ = (3, 0, 0).

2.4 Robust Principal Component Analysis

Another dimension reduction method is robust principal component analysis
(RPCA), a modification of traditional PCA that is more robust to outliers
and corrupted data points. These corrupt data points and gross errors are
becoming more common in modern data, hence the motivation behind RPCA
[5]. RPCA provides a low rank approximation to the original data such that
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Am×n = Lm×n +Sm×n, where L is a low-rank matrix and S is a sparse matrix.
Once we have separated our data matrix in this fashion, we simply use L to
approximate the original matrix. Calculating these matrices can be done by
solving the optimization problem,

min
L,S

||L||∗ + λ||S||1,

subject to A = L + S. Here, ||L||∗ :=
∑

i σi where σi are the singular values
of L; this norm || · ||∗ is also known as the nuclear norm. ||S||1 :=

∑
i,j |Si,j |

and is also known as the ℓ1-norm or element-wise norm of S and λ is a tuning
parameter which is elaborated upon in Section 2.3.1. Since the rank of a matrix
is equal to the number of singular values, minimizing the nuclear norm ensures a
low-rank matrix. Similarly, minimizing the element-wise norm ensures a sparse
matrix.

This problem can be solved by convex optimization using an aug-
mented Lagrangian method (ALM) called prinipal component pursuit. This
method is guaranteed to work even with a high-rank L or large errors in S and
is at a cost not much higher than traditional PCA [5]. The Lagrangian function
is given by,

L(L, S, Y ) = ||L||∗ + λ||S||1 + ⟨Y,A− L− S⟩+
(µ
2

)
||A− L− S||2F ,

where Y is the matrix Lagrange multiplier, ⟨∗, ∗⟩ denotes the inner product,
µ = (max(m,n)/(4||A||1)), and || ∗ ||F is the Frobenius norm. Let Sτ (x) =
max(|x| − τ, 0) denote the shrinkage operator; it can be shown that,

argmin
L

L(L, S, Y ) = Sλµ(A− L+ µ−1Y ).

Similarly, let Dτ (x) = UΣτV
⊤ denote the singular value threshold operator;

which retains the singular values greater than the threshold τ . It can be shown
that,

argmin
L

L(L, S, Y ) = Dµ(A− S − µ−1Y ).

This function can be solved by the alternating directions method where we first
minimize L(L, S, Y ) with respect to L, as seen above, then minimize L(L, S, Y )
with respect to S while fixing L, and then updating Y based on the minimizers
above until a certain threshold is met [5].

2.4.1 RPCA Tuning Parameter

The tuning parameter, λ, controls the number of non-zero entries in the matrix
S. It can be thought of as a penalty term against corrupted data points [9].
We can improve the performance of RPCA by adjusting λ. For example, if S is
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known to be very sparse, increasing λ can recover a higher-rank matrix L [5].
However, as a rule of thumb, λ is typically set to 1/

√
max(n,m); this is the

case in programming languages like R. For our purposes, we decided to use this
value as it is recommended in the literature and felt our results were sufficient
without adjusting the parameter.

2.5 Autoencoders

Autoencoders are another unsupervised learning method that leverages the ar-
chitecture of neural networks. In particular, autoencoders offer the ability to
utilize the network structure in a fashion that is conducive to a greater degree
of freedom when reconstructing data, since nonlinear inter-layer mappings allow
for nonlinear learning. Autoencoders force a bottleneck within the network that
compresses the original data inputs, which in turn is useful when learning the
structure of the original data. If the data were indeed independent, compress-
ing the data through said bottleneck and reconstructing it in a meaningful way
would be quite difficult. Without this data compression, the model could easily
memorize the input data which would lead to a model that overfits the data
rather than providing a relevant reconstruction.

Note that PCA is a special type of autoencoder in which the network
bottleneck is trivial, namely the structure of the network is linear in nature,
meaning that there are no nonlinear activation functions present. As is the case
with PCA, autoencoders must balance reconstruction error with overfitting.

A general autoencoder may be visualized through inter-layer and inter-
node connections in Figure 2.5.

2.5.1 Artificial Neural Networks

In order to understand the underlying architecture of artificial neural networks,
terminology similar to that in neuroscience is employed. In particular, artificial
neural networks consist of neurons, similar to the human brain. This network
is organized of layers of neurons, or processing units, which are interconnected.
By definition, a deep neural network has at least two hidden layers, which are
layers of neurons that are not the input layer nor the output layer. The input
layer of the network consists of sensory neurons, which perform no processing
of information but simply pass information in memory to a subsequent layer.

Between neurons are directed connections, meaning that information
flows in one direction, and each connection has an associated weight within
the network. A weight is simply a parameter, but training a neural network

17
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Figure 2.5: Fully connected autoencoder with a 13/12/13 node structure.

is predicated on choosing an optimal set of weights in order to achieve optimal
results from the model. Neurons implement a two-stage process in order to map
an input to an output:

1. Calculate a weighted sum of input parameters/values

2. This value is passed through another function that maps the weighted sum
score to an output

The final output of a neuron is known as its activation value. The second
function in this two-stage processing action is known as the activation function
of the neuron.

A given neuron may receive n different inputs as a vector [x1, . . . , xn]
along n different input connections in the network along with their associated
weights as another n dimensional vector given by [w1, . . . , wn]. The weighted
sum is logically:

z =

n∑
i=1

wixi.

A multitude of different activation functions have been tested, re-
searched, and used in neural network research. Early research employed thresh-
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old functions, followed by logistic and hyperbolic tangent functions. More mod-
ern functions that have allowed for better training of these networks include the
rectifier (also known as hinge, or positive linear) activation function. Activa-
tion functions apply a nonlinear mapping from the weighted sum to the output,
which is why they are extremely powerful tools.

Since the neural networks as a whole defines a map from inputs to
outputs and neurons define the building blocks of the network, then the neurons
build the mapping that the network itself defines. If all neurons within a network
implement a linear mapping, then logically the network that is composed of these
neurons must define a linear mapping. Many practical problems are nonlinear
in nature, and leveraging a linear structure for a nonlinear relationship would
yield a very inaccurate model. The attempt to force a nonlinear relationship
to be approximated by a linear model would underfit the data and oversimplify
the underlying structure. Theoretically, implementing any nonlinear activation
function would allow the network to learn nonlinear mappings from inputs to
outputs, but some functions have inherent properties that render them superior
to other methods in terms of training and inference potential.

Processing for the network in done on an individual neuron level, and
the behavior of the network as a whole is predicated on the interactions between
each neuron. Once the weights on the connections between neurons are set, the
network learns a decomposition of the original problem by having individual
neurons learn their own respective solutions and how to combine solutions with
other neurons. In practice, neurons may also be referred to as units, and these
units are classified based on which activation function they carry. Some layers
may have different activation functions relative to another layer, such as a layer
of rectified linear units (ReLUs) connected to a layer of logistic units. Activation
functions for neurons must be chosen for neurons before any processing is done.

The selection of activation functions is most often done by examining
which models are the most popular and powerful at the given time. As of now,
ReLUs are the most popular type of unit. Elements and properties of a network
which are manually set beforehand are known as hyperparameters. It is critical
to distinguish the hyperparameters from the parameters of the model, which
are automatically set through the machine learning algorithm. To set these
parameters for a neural network, weights are first initialized to random values.
Training is subsequently performed in order to adjust the weights in order to
achieve a more optimal performance by the model.

The firing of neurons can be easily visualized and analyzed via the
introduction of a decision boundary, which is a graph of which possible combi-
nation of input parameters yield a firing of the neuron versus which parameters
do not. All decision boundaries must pass through the origin, which is the ori-
gin of all weight vectors. Thus, changes in weights simply rotate the neuron’s
decision boundary rather than translating it. In order to subvert this possi-
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ble limitation of the network, the weighted sum calculations include an extra
parameter known as the bias term. This bias term allows for translations of
the decision boundary. The output of a neuron is determined by passing the
following z value into the chosen activation function for the neuron:

z =

( n∑
i=1

wixi

)
+ b.

Bias terms are typically calculated by having the neuron learn it similar to how
it learns the respective weights for its inputs. Thus, all input vectors for the
given neuron are always augmented with an additional input that is set to 1,
namely input 0, or x0 = 1.

2.5.2 General Architecture and Inter-Layer Computations

More explicitly in the case of the cryptocurrency data set obtained through the
Binance API, autoencoders attempt to reconstruct the daily log returns across
the 13 different assets. In particular, across the expanding window scheme, 826
data matrices are generated through the incremental concatenation of additional
samples of returns data. We use autoencoders in our case to reconstruct the

series of data matrices as X(k) = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
64+k)

⊤, where k = 1, . . . , 826

and each x
(k)
i is a column vector with 13 entries corresponding to the daily log

returns for each asset considered.

Thus, each x
(k)
i ∈ R13×1 is transformed into another vector in the

intermediate hidden layer as yi ∈ R12×1. This smaller dimension forces a com-
pressed data representation and yi corresponds to the bottleneck introduced in
the network. This hidden layer is then decoded through the decoder mapping,

yielding a data reconstruction given by x̂
(k)
i .

In our case, we have a simple under-complete autoencoder, meaning
that the number of nodes in the hidden layer is strictly less than the number
of nodes in the input and output layers, respectively. The encoder mapping is
given by the following:

y
(k)
i = φ1(W1x

(k)
i + b1).

This mapping is equipped with a linear or nonlinear activation function φ1. In
order to introduce nonlinear learning within the network, nonlinear functions
are considered here, such as sigmoid, softmax, and tanh. Such functions are
defined and graphed in Figure 2.6.

Algebraically, the weight matrix W1 is a real-valued 12 × 13 matrix
and b1 is a 12 × 1 vector. After the encoder mapping has been applied to the

data, a compressed data representation Y (k) = (y
(k)
1 , y

(k)
2 , . . . , y

(k)
12 )⊤ is obtained,

corresponding to a data matrix with a reduced number of columns compared
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Figure 2.6: Graphs and equations of activation functions listed above

to X(k). Subsequently, the columns vectors y
(k)
i outlined above are transformed

via a decoder mapping given by

x̂
(k)
i = φ2(W2y

(k)
i + b2),

where in this case, the weight matrix W2 is a 13 × 12 real valued matrix and
the bias vector b2 is 13× 1.

“Solving” the neural network is defined as determining the optimal
weights and bias matrices such that the loss function is minimized. The loss
function generally takes input values and compares their distance or proximity
to the reconstructed output values. Thus, minimizing the loss function ensures
that the output data representation is as close to the original input data as
possible. In particular, the loss function in our network was defined as

L(W, b,X(k)) =
1

2

64+k∑
i=1

∣∣∣∣∣∣∣∣x(k)
i − x̂

(k)
i

∣∣∣∣∣∣∣∣2.
In order to perform dimension estimation using the autoencoder architecture,
additional modifications must be made in practice. In particular, the modified
loss function forces sparsity of small values in the intermediate hidden layer,
where the data compression is performed, implicating that only important larger

21



values in y
(k)
i are retained. Leveraging the methodology outlined by Bahadur

and Paffenroth [11], the hidden layer vectors are normalized as follows

y
(k)
i =

y
(k)
i

||y(k)i ||2
,

which ensures that the node values within the bottleneck hidden layer are con-
sistent and able to be compared. Forcing the sparsity within the hidden layer
is achieved through the inclusion of the so-called “regularizer value,” or more
specifically an L1 regularizer λ. This is leveraged in the loss function by the
addition of a term that penalizes insignificant terms, yielding sparsity in the
layer. This new loss function is given by

L(W, b,X(k)) = L(W, b,X(k)) + λ

64+k∑
i=1

∣∣∣∣∣∣∣∣y(k)i

∣∣∣∣∣∣∣∣
1

.

In this case, W is the set of both weight matrices for the encoder and decoder
mappings, b is the set of both bias vectors for the mappings, and || ∗ ||1 is the L1

norm defined in Section 2.3. The minimization of this L function over the set of
possible weight and bias matrices subject to the “optimal” choice of λ provides

a set of reconstructed column vectors, x̂
(k)
i , relative to the set of input vectors.

In the subsequent analysis, two regularizer values of 1× 10−5 and 5× 10−5 are
considered.

2.5.3 Singular Value Proxies

In order to perform dimension estimation, singular value analogues, which will
be referred to here as singular value proxies as documented in Bahadur and
Paffenroth [11], are found in the hidden layer bottleneck. In particular, the

matrix as referenced above, Y (k) = (y
(k)
1 , . . . , y

(k)
64+k)

⊤, is used to compute SVPs.

As in singular value decomposition, the rows of this special Y (k) matrix are
sorted in descending order from left to right. This new matrix is denoted by M .
Then, averages along the columns of M are computed in order to determine the
singular values, namely

svpi =
1

64 + k

64+k∑
j=1

Mj,i, i = 1, . . . , 12.

Here, the classical notation is utilized for the j-th row and i-th column of M as
Mj,i. Thus, the set {svpd}1≤d≤12 are known as the SVPs for the 12 features.
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2.5.4 Hidden Layer Singular Value Decomposition

The existing framework outline above as documented in Stapleton’s report pro-
vides the structure for performing a dimension estimation method known as
hidden layer singular value decomposition [9]. In this way, taking the loss func-
tion J above along with a 13/12/13 node structure, the intermediate matrix
Y (k) is used by performing SVD on (Y (k))⊤. In this way, the singular values
are obtained and are able to be analyzed as in the PCA and RPCA methods.
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Chapter 3

Methodology

Our goal is to find a method which simultaneously lowers the dimension of our
data, preserves as much information as possible and is robust to market crashes
and other anomalies. To assess the performance of each model, we will consider
three factors: the estimated dimensions, loadings for PCA and RPCA and the
root mean squared error between the original and reconstructed data sets.

3.1 Dimension Estimation

We have shown that it is possible to decompose a data matrix using PCA,
RPCA, and Autoencoders into a new space of uncorrelated vectors. However,
not all of these variables need to be retained. Let T = AV be a transformation
that maps a data matrix A ∈ Rm×n to n variables that are uncorrelated over
the data set and V is the matrix of eigenvectors of A. Keeping only the first k
principal components results in the truncated transformation

Tk = AVk,

where Vk ∈ Rn×k is the truncated eigenvector matrix. This score matrix pre-
serves the most variance in the original data set while minimizing the squared
reconstruction error ||TV ⊤ − TkV

⊤
k ||22. In the case of SVD, this score matrix

can be written as

T = AV = UΣV ⊤V = UΣ,
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and a truncated score matrix Tk ∈ Rm×k can be obtained by considering only
the first k singular values:

Tk = Um×kΣk×k.

The truncation of a data matrix via SVD produces a matrix of rank
k that minimizes the Frobenius norm between the truncated matrix and the
original data matrix, which is a result of the Eckart-Young theorem. This is a
useful result in reducing the dimensionality of a high-dimensional matrix, since
it allows for the retention of the most possible variance from the data set.

For example, choosing to keep the first two principal components cre-
ates a plane in the direction that the high-dimensional data is spread out. Typ-
ically, these two components are not sufficient to explain most of the variance.
However, choosing too many principal components may result in overfitting to
the sample data set and defeats the purpose of dimension reduction.

This concept of selecting an appropriate number of principal compo-
nents is surprisingly subjective. It is typically up to the discretion of the re-
searchers conducting the analysis to determine what they feel is sufficient for
their purposes. However, they may risk underestimation (a loss of informa-
tion) or overestimation (retaining redundant information) by simply relying on
intuition. There exist several different rules for selecting which principal com-
ponents to keep, which try to minimise these risks. They are, in no particular
order, Kaiser Rule, Ratio Rule, Variance Explained Criteria, and Horn’s Parallel
Analysis.

3.1.1 Kaiser Rule

The first rule for dimension estimation we will explore is the Kaiser Rule (some-
times referred to as the Kaiser-Guttman Rule or K1-Criterion). The rule states
that all sample eigenvalues of the correlation matrix that are greater than the
mean of the eigenvalues should be retained. We have shown earlier that each
singular value of a data matrix is equivalent to the square root of the corre-
sponding eigenvalue of the correlation matrix. That is, the Kaiser Rule says to
choose each principal component for which

σ2
d ≥ 1

j

j∑
i=1

(σ2
i ),

where j = 13 in our case, since there are 13 assets. This rule is often criticised
for overretention. On average, the Kaiser Rule overestimated the number of
principal components by 66%. Guttman claimed that in PCA, since the to-
tal variance equals the number of variables, then in an infinite population, a
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“weak” upper bound to the number of true principal components is equal to the
components with eigenvalues greater than one [7].

When applying the Kaiser-Criterion to our data set, we will retain
the singular values greater than their mean. When analysing the differences
between the methods of Principal Component estimation, we expect this will
provide us with an upper bound on the dimension estimation.

3.1.2 Variance Explained Criteria

The Variance Explained Criteria retains the first k principal components that
account for a certain percentage of the variance in the data. Recall that the
eigenvalues of a correlation matrix are equal to the amount of variance explained
by the corresponding principal component. Thus this rule can apply this rule
to SVD for some k such that

k∑
i=1

(
σ2
i∑13

j=1 σ
2
j

)
≥ P,

where P is a percentage threshold chosen with an emphasis on parsimony. The
typical choice for P is 90%; however, it can be as low as 50%. Clearly, P should
never be 100% as that would not reduce the dimension of the data matrix.
For our data, we will be using a value of P = 85%, which we determined dur-
ing preliminary PCA that it explained a sufficient amount of variance without
overretaining.

3.1.3 Ratio Rule

The Eigenvalue Ratio Test for the number of factors was a method introduced
recently in 2013 in the journal Econometrica by economists Seung Ahn and Alex
Horenstein [1]. The method was devised specifically for financial data, thus we
expect it should preform well for our purposes. The rule is calculated as follows:

ER(k) =
λk

λk+1
,

where ER is the eigenvalue ratio and k is index of the eigenvalue, with k = 1
being the largest eigenvalue. The number of factors to retain, are every k ≤ k̃,
where

k̃ = argmaxER(k).
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3.1.4 Horn’s Parallel Analysis

Horn’s Parallel Analysis (PA) is typically regarded as the gold-standard for
dimension estimation for PCA and factor analysis. PA compares the eigenval-
ues from the correlation matrix with eigenvalues generated from Monte-Carlo
simulated matrices with identical dimensions to the original data matrix.

According to Horn, it is commonly assumed that non-correlated data
will be perfectly non-collinear and expect eigenvalues equal to one in PCA. How-
ever, due to sampling error and least square bias, there exists multicollinearity
even in non-correlated data. Thus, in a finite sample of m variables and n
samples, the eigenvalues from PCA will be greater or less than one. Therefore,
when making a decision of component retention, Horn argued that researchers
should adjust the eigenvalues of the correlation matrix by subtracting the mean
sample-error of a large number of randomly generated n × m data sets and
retaining only components with adjusted eigenvalues greater than one. Notice
that this makes PA a “sample-based adaptation of the population-based Kaiser
rule.” [7]

While PA is lauded as the best method for dimension estimation, it
has historically been avoided by researchers. This is likely due to the com-
putational complexity of generating a large number of high-dimensional data
matrices. However, due to technological advances, PA is now widely accessible.
The programming language R includes a built-in function, paran, which we in-
tend to use for our analysis. The function starts by randomly generating 30 ∗ n
data sets based on the original data set, where n is the number of variables in
the sample data set and computes the eigenvalues for each of these sets. Then
values greater than one are retained in the adjustment,

λp − (λr
p − 1),

where λp is the p-th eigenvalue and λr
p is the corresponding mean eigenvalue of

the simulated random data sets.
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3.2 Loadings Analysis

Recall from Section 2.2, PCA decomposes the data matrix into three matrices,
U,Σ, V ⊤, where U is the scores matrix, Σ is a diagonal matrix of the square-
root of eigenvalues and V ⊤ is the loadings matrix. The loadings matrix can be
though of as ”how much” each variable contributed when calculating a principal
component. More formally, they are the correlations between the original vari-
ables and the calculated component. Squaring these loadings gives the amount
of each variable contributes to the component, which we can then analyze.

In R, we can simply get the loading matrix from the SVD data frame
which is outputted from the prcomp and rpca commands. When plotting the
loadings at each iteration of the expanding window scheme, we ideally want to
see a constant contribution from each asset over time.

3.3 RMSE of Reconstruction

We have shown that the dimension of our data matrix can be reduced via the
methods we have outlined, however we want to ensure that these methods pre-
serve a sufficient amount of information from the original data set. To measure
the information lost during the dimension reduction, we will consider the root
mean squared error (RMSE) between the original data matrix and its low-rank
approximation obtained via PCA, RPCA, and autoencoders. RMSE is a metric
used to measure the differences between the original values of a data set and
their corresponding estimated values. RMSE is defined as the square root of
the mean squared error, which is the average of the squared differences between
the original and estimated value.

In our case, let A be the original data matrix and Â be the recon-
structed data matrix. The RMSE between these two matrices is defined as,

√∑m
i=1

∑n
j=1(ai,j − âi,j)2

N
,

where ai,j corresponds to the entry in the i-th row and j-th column of A, and

âi,j is defined similarly for Â. Notice that the numerator of this expression is

equal to the Frobenius norm of the matrix defined by A− Â. Therefore, we can
rewrite this expression as,

||A− Â||F√
N

.
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For PCA, we will need to manually reconstruct the data set after per-
forming the method. We used the prcomp function in R, which returns a data
frame of relevant matrices. We will multiply the original data set by the ro-
tations matrix from this data frame, which is the matrix of variable loadings.
Doing this will project the data into the new lower-rank space generated from
PCA, which is functionally identical to reconstructing the truncated matrices in
SVD. Next, given how RPCA is calculated, we will use the Frobenius norm of
the sparse matrix as the reconstruction norm. Finally, for the autoencoder, the
difference between the output layer and original data matrix is considered. Ide-
ally, we want a method that produces the smallest error while also sufficiently
reducing the dimension of the original data set.
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Chapter 4

Results

The following figures are the results of implementing our methodology onto the
daily log returns of our 13 assets. To calculate log returns, we use the equation

Rt = ln

(
Pt

Pt−1

)
,

where Pt is the closing price of the asset on day t.

4.1 Principal Component Analysis

We begin by performing PCA on the entire data set in order to understand
how it works for a single iteration of the expanding window scheme (EWS). To
accomplish this, we use the R command prcomp and assigned it to the entire
data object. From the exploratory data analysis (EDA), we determined that the
mean for all the assets was approximately 0 and all the standard deviations were
of the same order, so we do not need augment the scale or center parameters
of the function. A more in-depth explanation of our code can be found in
Appendix B. We begin by determining the number of principal components to
retain, which starts with observing the scree plot of the data.

Pictured in Figure 4.1 is the scree plot obtained from performing PCA.
A scree plot shows the amount of variance explained by each principal com-
ponent (PC). Specifically, each eigenvalue was divided by the sum of all the
eigenvalues and they were plotting in descending order. From the plot, we can
see that about 60% of the data is explained by the first PC before dropping off
sharply to about 15% by the second PC and decaying to below 5% by the fourth
PC. When examining a scree plot, the “elbow” of the graph is where it begins
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to level off and eigenvalues to the left of this point are considered significant.
Thus there are around four significant components and we would expect this to
be reflected in the other dimension estimation criteria.

Figure 4.1: Scree Plot of PCA performed on the entire data set.

As we can see in Figure 4.2 the average number of PCs retained from
the dimension estimation methods is four, with the ratio rule retaining the
most with six PCs and Horn’s parallel analysis retaining the fewest with one
PC. These values support what we saw in the scree plot.
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Figure 4.2: Principal components retained using different methods.

Next, we create a bar chart of the loadings as seen in Figure 4.3 to
show the contributions of each asset to each PC. Notably, PC1 is approximately
equally correlated to each asset excluding BUSD. However, BUSD accounts for
almost the entirety of PC13. This is the last principal component, meaning it
has the smallest contribution to the variance explained in the data.

Figure 4.3: PCA loadings of the entire data set.

Now that we have a general understanding of the data set, we ap-
ply the EWS and create plots of the dimension estimation, loadings, and root
mean squared error (RMSE) over each iteration. We plot the first four loadings
because we identified that the first four principal components are the most sig-
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nificant. We can see in Figure 4.4 that each dimension estimation criterion is
relatively stable after iteration 200. Kaiser’s rule and Ratio rule only have one
jump in the estimated dimensions after iteration 200, which both happen close
to iteration 590.

Figure 4.4: Principal components retained over time.

Figure 4.5: First four PCA loadings over time.

We see a similar trend in Figure 4.5. Each loading is violatile at the
start of the expanding window scheme, however, there is stability in each of
the loadings after iteration 200. Notably, there is a large spike in the yellow
line, which is associated with Dogecoin, around iteration 100 in the first two
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loadings. This spike is also present at the same iteration in figure 4.4. In figure
4.6, we see that the RMSE of the PCA reconstruction increases until plateauing
at around iteration 175, then decays after iteration 200.

Figure 4.6: Root mean square error of PCA reconstrucution at each EWS iter-
ation.
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4.2 RPCA

Similarly to with PCA, we perform RPCA on the entire data set to understand
each iteration of the EWS. We used R’s rpca function and assigned it to the data
set. The rpca function returns two matrices—L, the low rank matrix approxi-
mation, and S, the corresponding sparse matrix—and two data frames—L.svd
and convergence. Any reference to loadings are obtained from the L.svd data
frame’s V t matrix and the singular values come from the L.svd data frame’s D
matrix. Plotting the variance explained from these singular values produces the
scree plot in Figure 4.7. The scree plot shows that almost 100% of the variance
is explained by the first PC, and the variance explained by PCs two through
six are extremely close to zero. Components after six were all equal to zero,
because the rank of L is 6.

Figure 4.7: Screen Plot of RPCA performed on the entire data set.

Looking at the dimension estimation criteria, we see that both Kaiser’s
rule and Variance Explained rule retained only one PC, which is verified by the
scree plot. The ratio rule retained the most components at 3, resulting in an
average of 1.5 components. This is significantly fewer than the 4 components
retained by PCA.
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Figure 4.8: Principal components retained using different methods.

Further supporting the previous two results, the loadings in Figure 4.9
show that the correlations between the assets and the principal components are
more evenly distributed than PCA. Aside from BUSD in PC6, there do not
appear to be any principal components with high correlations to a single asset
like there are in the PCA loadings.

Figure 4.9: RPCA loadings of the entire data set.

After performing RPCA over the EWS, we plot the dimension estima-
tion from the criteria in Figure 4.10. We can see that Kaiser’s rule and Variance
Explained rule are very consistent. Kaiser’s rule only has one jump at iteration
308 from two PCs to one. Meanwhile, variance explained does not change at all
and remains at one PC throughout the expanding window scheme.
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Figure 4.10: Principal components retained using different methods.

Shown in Figure 4.11 are the loadings over each iteration of the EWS.
We can see that the loadings of PC1 are fairly consistent after iteration 200.
The loadings of PC2 are also fairly consistent after iteration 200, but with
significantly more noise.

Figure 4.11: First four RPCA loadings over time.

37



The RMSE of RPCA is shown in Figure 4.12. It has a nearly identical
curve and value as the RMSE of PCA, where it sharply increases until iteration
175, then levels off until 200 before decaying. The RMSE of RPCA peaks at
0.12 and approaches 0.08 at the final iteration, while the max RMSE for PCA
is around 0.14 and approaches 0.09.

Figure 4.12: Root mean square error at each EWS iteration.
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4.3 Autoencoders

For our autoencoder, we configured the hyperparameters by examining and com-
paring model performance in the scree plot and principal component retention
graphs while also minimizing the average total loss over all trials. In partic-
ular, the initial autoencoder run attempted to tune the L1 regularizer value
with sigmoid and tanh activation functions for the hidden layer and output
layer, respectively. Recall that the expanding window scheme iterates through
k = 1, . . . , 826. However, as the autoencoder is computationally expensive to
run, a subset of these k values are identified using the anomalies found through
the PCA and RPCA methods. Explicitly, we identified that k = 98, k = 308,
and k = 568 corresponded with market crashes or anomalies1. In order to deter-
mine the robustness of the autoencoder surrounding these events, we looked at
a neighborhood of ±2 samples around these dates, and this corresponded to the
set Ω = {1, 96, 97, 98, 99, 100, 306, 307, 308, 309, 310, 566, 567, 568, 569, 570, 826}.

In the case of a 13/12/13 node structure equipped with a sigmoid/tanh
set of activation functions for the respective layers along with a regularizer value
of λ = 5 ∗ 10−5, the average total loss from the autoencoder over all trials was
approximately 0.0368.

From the scree plot in Figure 4.13a and the graph of the average num-
ber of principal components retained of the selected iterations from the EWS
in Figure 4.13c, it is clear that the model is not tuned completely efficiently.
In particular, there are fluctuations in the principal component retention in the
neighborhood surrounding the market anomalies and poor performance at lower
k values as seen in the absence of the hockey stick shape in the scree plot.

Holding constant the activation functions and node structure, the reg-
ularizer value was changed to λ = 10−5 in order to assess whether model per-
formance improved. Using this new value, the average total loss over all trials
in this case was approximately 0.0119. Autoencoder performance as observed
in Figure 4.13b and Figure 4.13d does not suggest any better or worse perfor-
mance than the previous regularizer value. There is still substantial variation in
principal component retention surrounding the k values of interest and a failure
for the convergence of scree plots across k values.

Now considering a different pair of activation functions of softmax
and tanh for the given layers, the model performance was significantly better
compared to the sigmoid and tanh pairing. In particular, the average loss over
all trials using a regularizer value of 10−5 was 0.005 while the average loss
using a value of 5 ∗ 10−5 was 0.0182. More importantly, however, there is a
clear convergence of scree plots across the k values and also a robust principal

1Refer to Section 5.1 for notable dates that were identified and their associated market
event.
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(a) Scree Plot over k values with λ = 5 ∗ 10−5. (b) Scree Plot over k values with λ = 1 ∗ 10−5.

(c) Estimated dimensions over k values with λ = 5 ∗ 10−5. (d) Estimated dimensions over k values with λ = 1 ∗ 10−5.

Figure 4.13: Autoencoder results with a 13/12/13 node structure equipped with
sigmoid/tanh activation functions with different regularizer values.
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(a) Scree Plot over k values with λ = 5 ∗ 10−5. (b) Scree Plot over k values with λ = 1 ∗ 10−5.

(c) Estimated dimensions over k values with λ = 5 ∗ 10−5. (d) Estimated dimensions over k values with λ = 1 ∗ 10−5.

Figure 4.14: Autoencoder results with a 13/12/13 node structure equipped with
softmax/tanh activation functions with different regularizer values.
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component retention over time. Note that for each k value, the autoencoder
was iterated five times in order to average any variability in learning and weight
optimization. Thus, we see principal component retention of non-integer values
such as at k = 99 as seen in Figure 4.14d, with an average of 1.2 principal
components retained.

Despite having a higher average loss across trials, a regularizer value
of 5 ∗ 10−5 yielded more robust behavior over the EWS and had a tighter con-
vergence in scree plots. Model robustness and consistency was maximized here,
but overall reconstsruction error was lower with the alternative regularizer value.
However, it is notable that performance with this new set of activation functions
was clearly superior to the former choice. Thus, the autoencoder was optimized
using a 13/12/13 node structure, softmax/tanh activation functions, and reg-
ularizer value of λ = 10−5. Also note that these results employ the variance
explained criterion using an 85% threshold variance.

Also note that the simplistic single layer autoencoder (SLAE) employed
here may be generalized further to an n-layer deep autoencoder. This general
architecture was initially employed through a 13/12/11/12/13 node structure
in order to have a symmetric information structure for the encoder and decoder
mapping through the bottleneck. However, its efficacy was highly questionable
due to the incredible demand on a large number of price observations of the
asset set. In particular, since our 13 assets only had 890 observations, the deep
autoencoder architecture was foregone, since its performative improvements in
relation to the SLAE were not realized due to this lack of data. With each addi-
tional layer added, the demand on more data for effective learning is immense.
Despite this, however, our autoencoder with only one hidden layer performed
relatively well in comparison to the other dimension reduction methods.
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Chapter 5

Analysis

In this chapter, we analyze the results of our research and methods. We first
identify dates corresponding to iterations of the expanding window scheme
(EWS) where anomalies occurred and connect those anomalies to real-world
events. We then compare the methods used to estimate the dimensionality of
the data. Finally, we interpret our results in the context of the cryptocurrency
market and investment portfolio diversification.

5.1 Notable Dates Identified

When performing PCA and RPCA, we noticed several dates when there are
jumps in dimension estimations or loadings. Since we want a consistent number
of components retained and smooth loadings, we used these dates to check if the
autoencoder was more robust to these anomalies. Here, we determine if these
spikes correspond with notable events involving cryptocurrencies. If a certain
type of event is associated with these dates and causes a spike for a certain
method but not another, we can conclude that one method is more robust to
those types of events. We observe three significant spikes at iterations 97, 308,
and 567. These correspond to the following dates: January 27, 2021; August
25, 2021; and May 12, 2022.

5.1.1 January 27, 2021

There were two significant events that happened around this date. On January
27, 2021, Elon Musk—the founder of Tesla and known proponent of cryptocur-
rencies—tweeted “#bitcoin” with no explanation [20]. This was after a particu-
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larly poor month for cryptocurrencies that was exacerbated by a massive sell-off
that wiped out nearly $100B from the cryptocurrency market earlier that week.
Musk’s tweet caused a resurgence in Bitcoin’s market value, causing a single
day increase of 16% [20]. This jump is clearly visible in figure 2.1, where the
mean of BTC increases considerably.

Also on this day, users of a Reddit board joked about making Dogecoin
the next “GameStop Stock.” [14] Elon Musk tweeted a picture of a magazine
cover of “Dogue,” a parody of the magazine Vogue, and many people saw this
as him supporting the rally. This ultimately resulted in an 800% increase in
Dogecoin’s market value [14]. This can be seen in Figure 4.5, where Dogecoin
is represented by the yellow line. This is likely responsible for the change in
dimension of PCA near this iteration, meanwhile RPCA was robust to this
outlier and retained a consistent number of components.

5.1.2 August 25, 2021

There is no single event related to cryptocurrencies around this date. However,
there was a strong bull market in late July and August that led to some of
the highest market values in several months. Most asset prices have a local
maximum at the iteration corresponding to this date. Most notably, Solana’s
(SOL) value grew nearly 200% in August [18]. This increase is visible in the
third loading of PCA where a large jump in SOL (light grey line) can be seen.
A similar, but smaller, jump in SOL can also be seen around k = 200 in the
second loading of RPCA.

However, there were new regulations around this time in China that
forced some of the largest cryptocurrency miners to shut down [18]. The United
States also passed legislation that taxed cryptocurrencies [18]. After this legis-
lation passed, there was a significant decrease in cryptocurrency value, which is
visible in the price data in Appendix C. It is unclear which of these events may
have caused the jump in the dimension estimation of RPCA; however, since all
the assets were performing well at this time, there may have been an increase
in correlation between them that caused this spike.

5.1.3 May 12, 2022

On this day, there was a massive $200 billion sell-off from the entire cryptocur-
rency market [2]. This sell-off caused the market value of multiple coins to
plummet. For example, Bitcoin hit a 16-month low. It is believed that this
sell-off was tied to broader economic insecurity, especially the inflation of the
price of consumer goods and decline of the stock market [2]. RPCA is signifi-
cantly more robust to this market crash than PCA. There is little change in the
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dimension estimation or loadings at this date for RPCA; however, this event is
apparent in PCA dimension estimation.

5.2 Method Comparison

From section 5.1, we can see that PCA was the least robust method during
market anomalies, particularly large sell-offs or spikes in value. Throughout the
two largest market crashes, RPCA and the autoencoder both returned consistent
dimension estimations and RPCA’s loadings remained smooth. RPCA’s only
jump in dimension estimation was at k = 308 using Kaiser’s rule when the
assets may have been highly correlated, however this jump is not present in
the other criteria or methods. Thus, considering only the variance explained
criterion, RPCA and the autoencoder performed the same in terms of robustness
to market crashes.

Overall, PCA performed the worst across all the metrics we considered.
PCA had the highest reconstruction error and was the least robust to anomalies,
which is particularly visible in its loadings where there is a large spike associated
with Dogecoin’s anomalous behavior. Meanwhile, the autoencoder and RPCA
performed similarly in terms of dimension estimation however, the autoencoder
had a significantly lower reconstruction error. While the computing times were
not formally calculated in this project, it is worth noting that the autoencoder
took significantly longer to compute than RPCA. While RPCA only took min-
utes to calculate the entirety of the expanding window scheme, the autoencoder
would theoretically take several hours to days to do the same; hence why we
only considered a few select iterations.

Examining the different dimension estimation criteria used in the PCA
and RPCA outlined above, there is a clear difference in the variability in the
number of principle components retained on an inter-criteria scale. For PCA,
Kaiser’s rule provided minimal variations in its principal component retention,
but was subject to variability surrounding exogenous cryptocurrency market
shocks. However, since PCA is highly corrupted from outliers, the merits of the
dimension estimation criteria should be analyzed relative to the RPCA results.
Here, we see that Kaiser’s rule was not as robust to market anomalies as seen
in the drop in principal component retention around iteration k = 308 in the
EWS. The variance explained criteria was constant across the window, providing
consistent and robust estimations. Similar to PCA, however, the ratio rule was
highly volatile over time.

One hypothesis regarding the variability exhibited in the ratio rule
across PCA and RPCA is that its definition is such that it is highly subject
to variations when there exist large discrepancies between singular value mag-
nitudes. If singular value magnitudes drop significantly and are substantially
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smaller across different iterations of the EWS, then the ratio between singular
values could be maximized at significantly different indices for σ2

i for 1 ≤ i ≤ 12.
Given this pitfall with the ratio rule and the propensity for Kaiser’s rule to be
influenced by exogenous market shocks, we recommend the variance explained
criterion with a threshold determined based on exploratory data analysis. In
particular, this method exhibited the highest levels of stability. This is likely
because attempting to explain some percentage threshold variance in the con-
text of cryptocurrencies and other securities in general is the most well-defined
metric of those considered.

5.3 Cryptocurrency Market

The cryptocurrency market is very volatile, but according to our findings, most
of the variance can be explained with one or two components. Through the use of
our most robust methods—RPCA and autoencoders—we find that on average,
using the variance explained criteria, we retain 85% with just one principal
component (PC). In addition, the inclusion of the second PC explains over 99%
of the variance, indicating that there is a high degree of correlation among the
13 cryptocurrencies. Furthmore, looking at the first loading reveals that most
of the assets vary in the same direction; but it is worth noting that Solana
(SOL) appears to explain a large amount of the second principal component in
RPCA and the third in PCA. Similarly, the last loading vector in each method
is comprised almost entirely of BUSD. This means that both these two coins
vary differently from the majority of the assets.

However, since the first principal component in all the methods consid-
ered explains almost all the variance in the data, we can conclude that all of the
assets are highly correlated, and these cryptocurrencies do not lend themselves
to being part of a diverse portfolio. The 13 cryptocurrencies included in our
data represent a majority of the value in the cryptocurrency market; thus, the
risk provided by the volatility of the cryptocurrency market cannot be avoided
by making diverse investments.
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Chapter 6

Conclusions

We compared the robustness of principal component analysis (PCA), robust
principal component analysis (RPCA), and autoencoders in estimating the in-
trinsic dimension of the daily log returns of 13 cryptocurrency assets. Under-
standing the dimensionality of the data can provide insight into correlation
between assets, which is important when balancing concentration risk and di-
versification. Having a method that is robust to market anomalies is especially
useful when considering a highly volatile market like cryptocurrencies.

Regarding stability between methods, we found that PCA performed
the worst, as it was the least robust to market crashes and its dimension esti-
mation varied the most. The most robust method in this regard appears to be
the autoencoder, which consistently retained one component when analyzing the
market anomalies. The autoencoder also yielded the lowest reconstruction error.
RPCA performed almost identically to the autoencoder in terms of dimension
estimation, but vastly outperformed it in computational time and interpretabil-
ity. Therefore, based on these results we recommend RPCA as the best of the
three methods for dimension estimation.

When analyzing dimension estimation criteria, we found the ratio rule
criterion exhibited high levels of variation in estimated dimension—especially
at lower iterations—while the variance explained criterion was the most stable.
This is likely because attempting to explain some percentage threshold variance
in the context of cryptocurrencies and other securities in general is the most
well-defined metric of those considered. Therefore, we recommend that the
variance explained criterion should be weighted the most in the analysis of
method performance.

The variance in the our crytocurrency data set can be explained by
at most five dimensions. However, results from RPCA and autoencoders sug-
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gest that it may have lower dimensionality; both of these methods retained
an average of less than two dimensions. This is in line with previous litera-
ture that analyzed the connectedness of cryptocurrency and found that during
times of exogenous market shocks, the connectedness increased [27]. Further,
it was found that cryptocurrencies with high market capitalizations, like the
ones we analyzed, tend to propagate volatility in the market and smaller coins
followed [27]. This connection is likely why the intrinsic dimension of our data
set was very low.

In conclusion, the low dimensionality of the cryptocurrency data set
suggest that the assets have very similar variation, meaning that when building
a cryptocurrency portfolio, diversification is extremely difficult. Thus, when
selecting from the 13 assets explored here, the selection is essentially arbitrary.
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Appendix A

Preliminary Background

A.1 Eigendecomposition

Eigendecomposition is a matrix factorization, whereby a matrix is represented
by its eigenvectors and eigenvalues. A matrix can only be factored in this way if
it is diagonalizable. A square matrix is diagonalizable if and only if there exists
an invertible matrix P and diagonal matrix D such that P−1AP = D.

Definition (Eigenvectors and Eigenvalues): Assume A ∈ Rn×n, then there
exist m = rank(A) distinct, nonzero vectors xi known as eigenvectors, that sat-
isfy Axi = λixi, where λ is an eigenvalue corresponding to the i-th eigenvector.

To find the eigenvalues of A, we start by rewriting the equation Ax =
λx as Ax−λx = 0, which can be factored as (A−λI)x = 0. Thus, the eigenvec-
tors make up the nullspace of A−λI. If A−λI has a non-zero solution, A−λI
is not invertible and has determinant 0. This fact results in the characteristic
polynomial of A, p(λ) = det(A−λI) = 0. This polynomial will have m distinct
solutions with 1 ≤ m ≤ n, which are the eigenvalues of A. For each eigenvalue,
solving (A− λI)x = 0 yields the corresponding eigenvector x.

Now that the definitions of eigenvectors and eigenvalues are estab-
lished, the factorization of A can be derived from their properties:

Ax = λx,

AX = XΛ,

AXX−1 = XΛX−1,

where X ∈ Rn×n whose i-th column corresponds with eigenvector xi of A and Λ
is a diagonal matrix whose diagonal elements are eigenvalues such that Λi,i = λi.

52



If each eigenvector corresponds to a distinct eigenvalue, then X is a square ma-
trix and its columns are linearly independent, which means that X is invertible
and A can be decomposed as

A = XΛX−1.

A.2 Singular Value Decomposition

Singular value decomposition (SVD) is a matrix factorization that generalizes
eigendecomposition to any matrix. Let A ∈ R be an m × n matrix, then there
exists three matrices U , V , and Σ such that A = UΣV ⊤ where U and V are
both orthonormal matrices and Σ is a diagonal matrix of singular values. The
singular values of A are unique and the number of singular values is equal to
the rank(A) [24].

One choice to determine orthogonal vectors U and V for the SVD of A
is to consider the eigenvectors of the matrices AA⊤ and A⊤A. Since AA⊤ and
A⊤A are square, symmetric and positive semi-definite their eigendecompositions
exists. Let {ui} be the set of eigenvectors of AA⊤ and {vi} be the set of
eigenvectors of A⊤A.

AA⊤ andA⊤A will be symmetric—but not necessarily equal—matrices,
thus their eigenvectors will form two distinct orthogonal sets, which can then be
normalised. The u vectors are called the left singular vectors and the —V’s are
called the right singular vectors. The singular values, σ, are the square roots of
the equivalent eigenvalues of AA⊤ and A⊤A [24]. Then from our choices thus
far we have that,

AA⊤ui = σ2
i ui,

A⊤Avi = σ2
i vi,

Avi = σiui.

The vectors ui with 1 ≤ i ≤ r form an orthonormal basis for the column
space of A, while the remaining vectors ui with r < i ≤ m form an orthonormal
basis for the left nullspace of A. Similarly, the vectors vi with 1 ≤ i ≤ r form
an orthonormal basis for the row space of A, while the remaining vectors vi
with r < i ≤ n form an orthonormal basis for the right nullspace of A. Thus,
including all vectors u and v in U and V , they become square, orthonormal
matrices such that AV = ΣU . Since V is square and orthonormal, V −1 = V ⊤.
Thus, we have that A = UΣV ⊤.
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A.2.1 SVD vs Eigendecomposition

Singular Value Decomposition does not suffer from the shortcomings of eigende-
composition. For example, in eigendecomposition, eigenvectors are not always
orthogonal, there are not always enough eigenvectors to diagonalize, and A must
be square. Meanwhile SVD is applicable to any matrix. Furthermore, the sin-
gular values of a matrix are more stable than its eigenvalues. Consider the 3×3
matrix below: 0 1 0

0 0 1
0 0 0

 .

The eigenvalues of this matrix are λi = 0 for i ∈ {1, 2, 3}. The singular values
are σ1 = 1, σ2 = 1 and σ3 = 0. Now, if an extremely small change is made to a
single cell, the instability of eigenvalues can be seen: 0 1 0

0 0 1
1/100000 0 0

 .

The eigenvalues now become λ1 = 0.0215, λ2 = −0.01 + 0.018i, and λ3 =
−0.0107− 0.018i, which are significantly different from the original eigenvalues.
Meanwhile, the singular values have only changed by the same amount the
matrix was changed; they are σ1 = 1, σ2 = 1, and σ3 = 1× 10−6.

A.3 Introduction to Machine Learning and Deep
Learning

In Deep Learning, a common goal is to analyze and understand data and its
underlying structures and themes. In particular, functions which are extracted
from data sets in the Deep Learning contexts are neural networks. Put trivially,
a Neural Network encodes functions as programs on a computer. When working
with data in the hands-on context, two problems arise quite quickly:

1. Most datasets include noise, so having the model learn the dataset is not
the best option for modeling and inference purposes.

2. In some cases, there is a lack of information that allows for a single best
solution to be selected, but instead, a set of multiple solutions may fit the
data.

In machine learning, we can aid the machine in selecting the best solution func-
tion for the dataset by making assumptions about the preferred characteristics
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of the best function, known as the inductive bias. Different algorithms that
are leveraged in practice encode different inductive biases. When choosing a
machine learning algorithm with the incorrect bias, if the bias is too strong,
then the function may underfit the data and ignore important or true under-
lying patterns which are present. Alternatively, if the bias is too weak, then
the algorithm may find a solution that overfits the data nad firts the function
to the noise that is present within the training subset, rendering any inference
potential of this solution to be very weak and unpredictable. Neural networks
have a relatively weak inductive bias, and are consequently prone to overfitting
data. Thus, it is advantageous to implement these structures when working
with large datasets since they are trained to rely heavily on the data in which
they are supplied.

In machine learning, three critical pieces are required in order to suc-
cessfully and logically create a model:

1. Data

2. A set of functions that must be considered as solutions by the algorithm
in order to choose the best one

3. A measure of fitness in order to determine which function is the best fit
for the data

When beginning to look at a machine learning model, it first must be estab-
lished which features should be included within the data. If too few features
are present, then an informative and important feature may be missing from
the model, rendering it inaccurate. If, on the other hand, too many features are
selected, then unimportant or inconsequential features may be present within
the solution, thus hurting the algorithm as it becomes too prone to picking up
spurious patterns within the data. Next, selecting which function representation
for the data is appropriate is crucial when looking to create a machine learning
model, for example, employing neural networks as a flexible and powerful func-
tion representation for big data. When changing how data is represented, the
set of candidate function solutions, and the measure of fitness for the model, we
obtain three different types of machine learning: supervised, unsupervised, and
reinforcement learning.
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Appendix B

Code

B.1 R Code

#Code for Nonlinear Dimension Estimation for Cryptocurrency Data

#By: Ben Rajotte

# Variables and Libraries -----------------------------------------------------

#Load the Libraries and Variables need for the code to function

library(lubridate)

library(MASS)

library(paran)

library(moments)

library(corrplot)

library(rpca)

library(readxl)

CD <- read_xlsx("APIData_Updated_SET_LOGReturns.xlsx") #Load data set

CR <- as.data.frame(CD)[-1] #Isolate returns

col_num = ncol(CR)

row_num = nrow(CR)

win_size = 64 #Set window size

expanding = TRUE #This value toggles between Expanding and Rolling Window

# Data Summary ------------------------------------------------------------

#Provides a general summary of the entire data set
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data_summary <- apply(CR, 2, summary)

data_summary <- rbind(data_summary, apply(CR,2,sd), apply(CR,2,skewness), apply(CR,2,kurtosis))

rownames(data_summary)[7:9] <- c("Std. Dev.", "Skew", "Kurt")

for (i in 1:col_num){

asset_name = colnames(CR)[i]

asset_ts <- ts(CR[asset_name], start = decimal_date(as.Date("2020-08-18")), frequency = 365.25)

layout(matrix(c(1,1,2,3), nrow=2, byrow=TRUE))

plot(asset_ts, xlab = "Date", ylab = asset_name, main = paste(asset_name,"Returns"))

boxplot(CR[asset_name], horizontal = TRUE, main = asset_name, xlab = "Returns")

acf(CR[asset_name], lag.max = 40)

}

# Preliminary PCA ---------------------------------------------------------

#PCA

pca_CR <- prcomp(CR)

var_exp_CR <- pca_CR$sdev^2 / sum(pca_CR$sdev^2)

plot((1:length(var_exp_CR)), var_exp_CR, "l",main = "Scree Plot of Returns",

xlab = "Principal Components", ylab = "Variance Explained")

#Dimension Estimation

dim_est_CR <- matrix(ncol = 5, nrow = 1)

dim_est_CR[1] <- length(which(pca_CR$sdev > mean(pca_CR$sdev))) #Kaiser Rule

dim_est_CR[2] <- 1+length(which(cumsum(var_exp_CR)<=.85)) #Variance Explained

dim_est_CR[3] <- which.max(pca_CR$sdev[2:col_num] / pca_CR$sdev[1:col_num-1]) #Ratio Rule

dim_est_CR[4] <- paran(CR)$Retained #Horn's Parallel Analysis

dim_est_CR[5] <- mean(dim_est_CR[1:4])

#Dimension Estimation Plot

colnames(dim_est_CR) <- c("Kaiser", "Var. Exp.", "Ratio", "Horn's", "Average")

barplot(dim_est_CR, col = "skyblue2", xlab = "Method", ylab = "PC's Retained",

main = "Number of PC's Retained")

#Loadings Plot

par(mar=c(5, 4, 4, 5), xpd=TRUE)

barplot(pca_CR$rotation^2, main = "PCA Loadings", col = c(1:13))

legend(x = "topright", inset = c(-0.1,0), legend = colnames(CR), col = c(1:13), pch = 15)

# Preliminary RPCA --------------------------------------------------------

#RPCA

rpca_CR <- rpca(as.matrix(CR))

var_exp_CR2 <- rpca_CR$L.svd$d^2 / sum(rpca_CR$L.svd$d^2)

plot((1:length(var_exp_CR2)), var_exp_CR2, "l",main = "Scree Plot of Returns",

xlab = "Principal Components", ylab = "Variance Explained")
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#Dimension Estimation

dim_est_CR2 <- matrix(ncol = 5, nrow = 1)

dim_est_CR2[1] <- length(which(rpca_CR$L.svd$d > mean(rpca_CR$L.svd$d))) #Kaiser Rule

dim_est_CR2[2] <- 1+length(which(cumsum(var_exp_CR2)<=.85)) #Variance Explained

dim_est_CR2[3] <- which.max(rpca_CR$L.svd$d[2:6] / rpca_CR$L.svd$d[1:6-1]) #Ratio Rule

dim_est_CR2[4] <- paran(x = rpca_CR$L)$Retained #Horn's Parallel Analysis

dim_est_CR2[5] <- mean(dim_est_CR2[1:4])

#Dimension Estimation Plot

colnames(dim_est_CR2) <- c("Kaiser", "Var. Exp.", "Ratio", "Horn's", "Average")

barplot(dim_est_CR2, col = "lightpink2", xlab = "Method", ylab = "PC's Retained",

main = "Number of PC's Retained")

#Loadings Plot

loadrpca <- t(rpca_CR$L.svd$vt)

colnames(loadrpca) <- sprintf("PC%d",seq(1:6))

par(mar=c(5, 4, 4, 5), xpd=TRUE)

barplot(loadrpca^2, main = "RPCA Loadings", col = c(1:13))

legend(x = "topright", inset = c(-0.1,0), legend = colnames(CR), col = c(1:13), pch = 15)

# WS Asset Analysis ------------------------------------------------------

#Creates Plots and Data Frames for analysis with EWS

for (i in 1:col_num){

SumStat <- matrix(nrow = (row_num - win_size),ncol = 4)

for (j in 1:(row_num - win_size)) {

if (expanding == TRUE){

j_0 = win_size

main_title = "EWS Summary"

} else {

j_0 = j

main_title = paste("RWS Summary with Window", win_size)

}

temp_set <- CR[j_0:(j + win_size), i]

SumStat[j,1]<-mean(temp_set)

SumStat[j,2]<-sd(temp_set)

SumStat[j,3]<-skewness(temp_set)

SumStat[j,4]<-kurtosis(temp_set)

}

dates <- seq(as.Date("2020-08-18"), by = "day", length.out = (row_num-win_size))

SumStat <- data.frame(dates, SumStat)
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colnames(SumStat) <- c("Dates", "Mean", "Std. Dev.", "Skew", "Kurt")

par(mfrow=c(2,2))

plot(SumStat$Dates, SumStat$Mean, 'l', xlab = "Dates", ylab = "Mean")

plot(SumStat$Dates, SumStat$`Std. Dev.`, 'l', xlab = "Dates", ylab = "Std. Dev")

plot(SumStat$Dates, SumStat$Skew, 'l', xlab = "Dates", ylab = "Skew")

plot(SumStat$Dates, SumStat$Kurt, 'l', xlab = "Dates", ylab = "Kurtosis")

mtext(paste(colnames(CR)[i],main_title), side = 3, line = -19, outer = TRUE)

}

rm("i", "j", "j_0", "main_title", "temp_set", "SumStat", "dates")

# WS PCA -----------------------------------------------------------------

pca_WS <- matrix(nrow = (row_num - win_size), ncol = 13*3)

loading_1 <- matrix(nrow = (row_num - win_size), ncol = 13)

loading_2 <- matrix(nrow = (row_num - win_size), ncol = 13)

loading_3 <- matrix(nrow = (row_num - win_size), ncol = 13)

loading_4 <- matrix(nrow = (row_num - win_size), ncol = 13)

error <- matrix(nrow = (row_num - win_size), ncol = 1)

for (i in 1:(row_num - win_size)){

if (expanding == TRUE){

i_0 = 1

} else {

i_0 = i

}

temp_pca <- prcomp(CR[i_0:(win_size + i),])

recon <- temp_pca$x[,1:4] %*% t(temp_pca$rotation[,1:4])

error[i,1] <- (1/sqrt(win_size + i))*norm(as.matrix(CR)[1:(64+i),] - recon, "f")

for(j in 1:col_num){

pca_WS[i,j] <- temp_pca$sdev[j]

pca_WS[i,(j + col_num)] <- (temp_pca$sdev[j])^2

}

pca_WS[i,14:26] <- pca_WS[i,14:26] / sum(pca_WS[i,14:26])

loading_1[i,] <- as.matrix(t(temp_pca$rotation[,1]))

loading_2[i,] <- as.matrix(t(temp_pca$rotation[,2]))

loading_3[i,] <- as.matrix(t(temp_pca$rotation[,3]))

loading_4[i,] <- as.matrix(t(temp_pca$rotation[,4]))

}

#Dimension Estimation

dim_est_pca <- matrix(nrow = nrow(pca_WS), ncol = 4)

for (i in 1:(nrow(pca_WS))){
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dim_est_pca[i,1] <- length(which(pca_WS[i,1:13] > mean(pca_WS[i,1:13])))#Kaiser Rule

dim_est_pca[i,2] <- 1+length(which(cumsum(pca_WS[i,14:26])<.8)) #Variance Explained

dim_est_pca[i,3] <- which.max(pca_WS[i,2:13] / pca_WS[i,1:12]) #Ratio Rule

dim_est_pca[i,4] <- mean(dim_est_pca[i,1:3]) #Average Dimension

}

#Loadings Plots

par(mfrow = c(2,2))

matplot(loading_1^2, ylab = "", type = "l", col = 1:13, main = "PCA Loading 1")

matplot(loading_2^2, ylab = "",type = "l", col = 1:13, main = "PCA Loading 2")

matplot(loading_3^2, ylab = "",type = "l", col = 1:13, main = "PCA Loading 3")

matplot(loading_4^2, ylab = "",type = "l", col = 1:13, main = "PCA Loading 4")

legend("topright", legend = colnames(CR), col=1:13, pch=1)

#Dimension Estimation Plots

par(mfrow = c(2,2))

plot.ts(dim_est_pca[,1], ylab = "PC's Retained", main = "Kaiser's Rule")

plot.ts(dim_est_pca[,2], ylab = "", main = "Variance Explained" )

plot.ts(dim_est_pca[,3], ylab = "PC's Retained", main = "Ratio Rule")

plot.ts(dim_est_pca[,4], ylab = "", main = "Average")

rm("i", "i_0", "j")

# WS RPCA ----------------------------------------------------------------

rpca_WS <- matrix(nrow = (row_num - win_size), ncol = 13*2)

loading_1 <- matrix(nrow = (row_num - win_size), ncol = 13)

loading_2 <- matrix(nrow = (row_num - win_size), ncol = 13)

errorrpca <- matrix(nrow = (row_num - win_size), ncol = 1)

for (i in 1:(row_num - win_size)){

if (expanding == TRUE){

i_0 = 1

} else {

i_0 = i

}

temp_rpca <- rpca(as.matrix(CR[i_0:(win_size + i),]))

for(j in 1:7){

rpca_WS[i,j] <- temp_rpca$L.svd$d[j]

rpca_WS[i,j+7] <- (temp_rpca$L.svd$d[j])^2

}

rpca_WS[i,8:14] <- rpca_WS[i,8:14] / sum(rpca_WS[i,8:14])

errorrpca[i,1] <- norm(temp_rpca$S, "F")

loading_1[i,] <- abs(temp_rpca$L.svd$vt[1,])

loading_2[i,] <- abs(temp_rpca$L.svd$vt[2,])
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}

#Dimension Estimation

dim_est_rpca <- matrix(nrow = nrow(rpca_WS), ncol = 4)

for (i in 1:(nrow(rpca_WS))){

dim_est_rpca[i,1] <- length(which(rpca_WS[i,1:7] > mean(rpca_WS[i,1:7]))) #Kaiser Rule

dim_est_rpca[i,2] <- 1+length(which(cumsum(rpca_WS[i,8:14])<=.85)) #Variance Explained

dim_est_rpca[i,3] <- which.max(rpca_WS[i,2:7] / rpca_WS[i,1:6]) #Ratio Rule

dim_est_rpca[i,4] <- mean(dim_est_rpca[i,1:3]) #Average Dimension

}

#Loadings Plots

par(mfrow = c(2,1))

matplot(loading_1, ylab = "", type = "l", col = 1:13, main = "RPCA Loading 1")

matplot(loading_2, ylab = "",type = "l", col = 1:13, main = "RPCA Loading 2")

#Dimension Estimation Plots

par(mfrow = c(2,2))

plot(dim_est_rpca[,1], type = "l", ylab = "PC's Retained", main = "Kaiser's Rule")

plot(dim_est_rpca[,2], type = "l",ylab = "", main = "Variance Explained" )

plot(dim_est_rpca[,3], type = "l",ylab = "PC's Retained", main = "Ratio Rule")

plot(dim_est_rpca[,4], type = "l",ylab = "", main = "Average")

rm("i", "i_0", "j")

B.2 Python Code

B.2.1 Autoencoder Code

import numpy as np

import pandas as pd

import os

import sys

import csv

import json

import xlrd

from datetime import datetime

from sklearn.preprocessing import scale

from tensorflow.keras.layers import Input, Dense, Lambda, Dropout

from tensorflow.keras.models import Model

from keras import regularizers
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from keras.callbacks import Callback

from keras import backend as K

import tensorflow as tf

from keras.regularizers import Regularizer

import scipy.sparse

from keras.models import load_model

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

from sklearn.model_selection import GridSearchCV

from keras.wrappers.scikit_learn import KerasClassifier

from tensorflow import keras

from scipy.linalg import svdvals

import openpyxl

tf.compat.v1.get_default_graph()

tf.compat.v1.disable_v2_behavior()

tf.compat.v1.disable_eager_execution()

#Load in the return data and format the date column

crypt_ret = pd.read_excel(r"C:\Users\gigak\Downloads\APIData_Updated_SET_LOGReturns.xlsx")

crypt_ret['time'] = pd.to_datetime(crypt_ret['time'], format ='%Y -%m -%d')

#The set index pandas function here modifies the existing data frame, and the first parameter

#of the function uses one or more existing columns or arrays (of the correct length)

crypt_ret.set_index(crypt_ret['time'], inplace = True)

crypt_ret.drop(columns = ['time'], inplace = True)

#This function definition scales the return data between -1 and 1 as well as separatese the data between

#training and testing

def get_ret_data(k,h, crypt_ret = crypt_ret):

X = crypt_ret.values

X = X.astype('float32')

X = X[0: (890 + h), :]

#X = scale(X)

X = X / np.max(np.abs(X))

#x_train = X[0: (712 + k), :]

#x_test = X[(713 + k):(890+k+h),:]

#x_train = X[0: 890, :]

#x_test = [[]]

x_train = X[0: (63 + k), :]

x_test = X[0: 890, :]

return x_train, x_test, crypt_ret

#This function specifies the loss function for our autoencoder model

def mse_l1_loss(encoded_layer, lambda_):

def loss(y_true, y_pred):

62



return K.mean(K.square(y_pred - y_true) + lambda_*K.sum(K.abs(encoded_layer)))

return loss

#This function builds the autoencoder architecture. The function is currently set up for a SLAE

#but can be generalized to include more layers.

def build_l1_ae_model(l1_reg, input_dim, encoding_dim, activation1, activation2, lr):

input_img = tf.keras.Input(shape=(input_dim))

z_layer_input = Lambda(lambda x:K.l2_normalize(x,axis=1))(input_img)

encoded = tf.keras.layers.Dense(encoding_dim, activation=activation1)(z_layer_input)

encoded_norm = Lambda(lambda x:K.l2_normalize(x,axis=1))(encoded)

#create encoder model

encoder = Model(input_img, encoded)

decoded = Dense(input_dim, activation=activation2)(encoded)

#create autoencoder model

autoencoder = Model(input_img, decoded)

opt = keras.optimizers.Adam(learning_rate = lr)

autoencoder.compile(optimizer=opt, loss = mse_l1_loss(encoded_norm, l1_reg))

return encoder, autoencoder

#This function builds the autoencoder architecture. The function is currently set up for a MLAE.

def build_mlae_model(l1_reg, input_dim, z1_dim, encoding_dim, z2_dim, activation_z1,

activation_mid, activation_z2, activation_dec, lr):

input_img = tf.keras.Input(shape=(input_dim))

z1_layer_input = Lambda(lambda x:K.l2_normalize(x,axis=1))(input_img)

z1_layer = tf.keras.layers.Dense(z1_dim, activation = activation_z1)(z1_layer_input)

z1_layer_norm = Lambda(lambda x:K.l2_normalize(x,axis=1))(z1_layer)

mid_layer_input = z1_layer_norm

encoded = tf.keras.layers.Dense(encoding_dim, activation=activation_mid)(mid_layer_input)

encoded_norm = Lambda(lambda x:K.l2_normalize(x,axis=1))(encoded)

#create encoder model

encoder = Model(input_img, encoded)

z2_layer_input = encoded_norm

z2_layer = tf.keras.layers.Dense(z2_dim, activation = activation_z2)(z2_layer_input)

z2_layer_norm = Lambda(lambda x:K.l2_normalize(x,axis=1))(z2_layer)

decoded = Dense(input_dim, activation=activation_dec)(z2_layer_norm)

#create autoencoder model

autoencoder = Model(input_img, decoded)

opt = keras.optimizers.Adam(learning_rate = lr)
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autoencoder.compile(optimizer=opt, loss = mse_l1_loss(encoded_norm, l1_reg))

return encoder, autoencoder

#This function sorts the rows of a data matrix independently from largest to smallest values

def sort_by_row(z):

z_sorted = None

for i in np.arange(z.shape[0]):

#sorted in reverse yields a data matrix in descending order

z_s = sorted(z[i,:], reverse=True)

if z_sorted is None:

z_sorted = z_s

else:

#This vstack command builds the sorted matrix up iteratively by first finding

#the next row to be appended and then appending it on the existing matrix.

#It begins with an empty data matrix.

z_sorted = np.vstack((z_sorted, z_s))

return z_sorted

#This function estimates the dimension of a data matrix by taking

#the singular values or SVPs and computing how many SVPs explain

#more than the specified threshold percentage variance

def algorithm_2(z, threshold):

tot = sum(z)

z_pct = [(i/tot) for i in sorted(z, reverse = True)]

z_gt_theta = [i for i in z_pct if i >= threshold]

return len(z_gt_theta)

#This function estimates the dimension of a matrix by taking the ordered singular values

#or SVPs and sequentially finding out how many values are needed to explain the

#threshold cumulative percent variance

def algorithm_3(SVPs, threshold):

tot = sum(np.square(SVPs))

dim = 0

for i in range(1, (len(SVPs) + 1)):

if sum(np.square(SVPs[0:i]))/tot >= threshold:

dim = i

return dim

#This code builds the autoencoder model based off one combination parameter choices

#and fits it to the data for one k value

activation_z1 = 'elu'

activation_z2 = 'elu'

activation_mid = 'elu'

activation_dec = 'sigmoid'
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activation1 = 'softmax'

activation2 = 'tanh'

lr = 0.001

l1_reg = 5e-5

z1_dim = 12

encoding_dim = 12

z2_dim = 12

epochs = 1000

batch_size = 256

k= [1, 96, 97, 98, 99, 100, 306, 307, 308, 309, 310, 566, 567, 568, 569, 570, 826]

KVDE_list = []

svps = []

N = 5

avg_loss_total = 0

for j in k:

z_mus = []

k_val_dim_ests = []

for q in range(0,N):

x_train, x_test, crypt_ret = get_ret_data(k=j, h = 0)

input_dim = x_train.shape[1]

encoder, autoencoder = build_l1_ae_model(l1_reg = l1_reg, input_dim = input_dim,

encoding_dim = encoding_dim, activation1 = activation1,

activation2 = activation2, lr = lr)

#encoder2, autoencoder2 = build_mlae_model(l1_reg = l1_reg, input_dim = input_dim,

#z1_dim = z1_dim, encoding_dim = encoding_dim, z2_dim = z2_dim, activation_z1 = activation_z1,

#activation_mid = activation_mid, activation_z2 = activation_z2, activation_dec = activation_dec,

#lr = lr)

history1 = autoencoder.fit(x_train, x_train, epochs = epochs, batch_size = batch_size, verbose = 0)

total_loss = 0

for i in history1.history['loss']:

total_loss += i

print(f"Average loss at step {j} is {(total_loss / len(history1.history['loss']))}")

avg_loss_total += (total_loss / len(history1.history['loss']))

#history2 = autoencoder2.fit(x_train, x_train, epochs = epochs, batch_size = batch_size, verbose = 0)

#This code computes the SVPs and predicts the estimated dimension using the

#algorithm_2() and algorithm_3() functions

z1 = encoder.predict(x_train)

z_row_sorted1 = sort_by_row(z1)

#SVPs

z_mu1 = np.mean(z_row_sorted1, axis = 0)

alg_2_dim1 = algorithm_2(z_mu1, 0.01)

alg_3_dim1 = algorithm_3(z_mu1, 0.85)

#z2 = encoder2.predict(x_train)

#z_row_sorted2 = sort_by_row(z2)

#SVPs

#z_mu2 = np.mean(z_row_sorted2, axis = 0)
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#alg_2_dim2 = algorithm_2(z_mu2, 0.01)

#alg_3_dim2 = algorithm_3(z_mu2, 0.85)

#print(alg_2_dim)

print(f"Estimated dimension at step k = {j} is: {alg_3_dim1}")

k_val_dim_ests.append(alg_3_dim1)

z_mus.append(z_mu1)

#print(z_mus)

#print('Estimated dimension for deep autoencoder:', alg_3_dim2)

#print(tf.version.VERSION)

#print(z_mu2)

#print(z2)

#print(z_row_sorted)

#with open('autoencoder_recon.csv', 'w', newline='') as file:

#writer = csv.writer(file)

#writer.writerows(z)

z_mu_avg = [sum(sub_list) / len(sub_list) for sub_list in zip(*z_mus)]

svps.append(z_mu_avg)

KVDE_list.append(k_val_dim_ests)

print(svps)

avg_loss_total = avg_loss_total / (N * len(k))

print("The average total loss over all trials is: ", avg_loss_total)

final_dimension_estimates = []

for x in KVDE_list:

final_dimension_estimates.append(sum(x) / len(x))

print(final_dimension_estimates)

z_scree = []

for j in svps:

individual_scree = []

for i in range(len(j)):

individual_scree.append(j[i] / sum(j))

z_scree.append(individual_scree)

plt.rcParams['figure.figsize'] = (8,8)

for i in range(len(z_scree)):

x_axis = [1,2,3,4,5,6,7,8,9,10,11,12]

y_axis = z_scree[i]

plt.plot(x_axis, y_axis, label = "k = {value}".format(value = k[i]))

plt.legend()

plt.xlabel('SVP Number')

plt.ylabel('Variance Explained')

plt.show()
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B.2.2 Binance API Code

# import libraries

from binance.spot import Spot as Client

import pandas as pd

import plotly.graph_objects as go

from IPython.display import display

# url to access Binance API

base_url = "https://api.binance.com"

# create Client to access API

spot_client = Client(base_url = base_url)

# requesting exchange info

# used to access list of assets and their permission

exchange_info = spot_client.exchange_info()

exchange_info

# access historical prices

btcusd_history = spot_client.klines("BTCUSDT", "1d", limit = 50000)

display(btcusd_history[:2])

# constructs dataset

columns = ['time', 'open', 'high', 'low', 'close', 'volume', 'close_time',

'quote_asset_volume', 'number_of_trades', 'taker_buy_base_asset_volume',

'taker_buy_quote_asset_volume', 'ignore']

# writes data into csv file

with open('test.csv', 'w') as f:

writer = csv.writer(f)

for i in range(len(btcusd_history)):

writer.writerow(btcusd_history[i])
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Appendix C

EDA Plots

C.1 Prices

Figure C.1: Price of BTC, ETH, BNB and BUSD plotted over time.
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Figure C.2: Price of XRP, ADA, DOGE and SOL plotted over time.

Figure C.3: Price of MATIC, DOT, TRX and LTX plotted over time.
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C.2 Returns

Figure C.4: Returns of BTC, ETH, BNB and BUSD plotted over time

Figure C.5: Returns of XRP, ADA, DOGE and SOL plotted over time.
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Figure C.6: Returns of MATIC, DOT, TRX and LTX plotted over time.

C.3 Expanding Window Scheme

Figure C.7: EWS summary statistics of ADA.
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Figure C.9: EWS summary statistics of BTC.

Figure C.8: EWS summary statistics of BNB.
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Figure C.10: EWS summary statistics of BUSD.

Figure C.11: EWS summary statistics of DOGE.
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Figure C.12: EWS summary statistics of DOT.

Figure C.13: EWS summary statistics of ETH.
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Figure C.14: EWS summary statistics of LINK.

Figure C.15: EWS summary statistics of LTC.
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Figure C.16: EWS summary statistics of MATIC.

Figure C.17: EWS summary statistics of SOL.
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Figure C.18: EWS summary statistics of TRX.

Figure C.19: EWS summary statistics of XRP.
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