
Accelerating Software Development Through Integrated
Domain-Driven Program Synthesis

by

Nathanael Mercaldo

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

August 2023

APPROVED:

Professor George Heineman, Major Thesis Advisor

Professor Rose Bohrer, Reader

Professor Craig Shue, Head of Department

Contents

1 Introduction 7
1.1 Problem Statement . 7
1.2 Motivation . 13
1.3 Background . 15
1.4 Proposed Solution . 16
1.5 Method of Evaluation . 17

2 Approach 18
2.1 Technology . 18

2.1.1 Background . 19
2.1.2 Architecture . 20
2.1.3 Domain Models in CoGen . 23
2.1.4 Synthesis Specifications in CoGen . 23

2.2 Methodology . 27
2.2.1 Background . 27
2.2.2 Definition . 28
2.2.3 Inspiration . 32

2.3 Design Patterns . 32
2.3.1 Policy Pattern . 33
2.3.2 Type Projection Pattern . 33

3 Related Work 34
3.1 Synthesis Paradigms . 34

3.1.1 Deductive Synthesis . 34
3.1.2 Type-Driven Program Synthesis . 35
3.1.3 Inductive Synthesis . 35
3.1.4 Counterexample-guided Inductive Synthesis 35
3.1.5 Program Sketching . 35
3.1.6 Natural Language Driven Synthesis . 36
3.1.7 Diagram Driven Synthesis . 36

3.2 Synthesis Systems . 36
3.2.1 GUI Boilerplate Synthesis . 36
3.2.2 Control Systems Synthesis . 36
3.2.3 Compiler Code Synthesis . 37
3.2.4 API Code Synthesis . 37
3.2.5 Multi-Domain Synthesis . 37

3.3 Comparison to CoGen . 37

1

4 Case Study - GUI Domain 39
4.1 Overview . 39
4.2 Domain Description . 39
4.3 Target Description . 39
4.4 Application of Methodology . 40

4.4.1 Distillation - 1 - JavaFX . 40
4.4.2 Modeling - 1 - JavaFX . 40
4.4.3 Synthesis - 1 - JavaFX . 40
4.4.4 Distillation - 2 - JavaFX . 41
4.4.5 Modeling - 2 - JavaFX . 41
4.4.6 Synthesis - 2 - JavaFX . 41
4.4.7 Distillation - 1 - QT . 41
4.4.8 Modeling - 1 - QT . 42
4.4.9 Synthesis - 1 - QT . 42
4.4.10 Distillation - 1- libGDX . 42
4.4.11 Modeling - 1 - libGDX . 42
4.4.12 Distillation - 1 - LibGDX . 42

4.5 Results . 43
4.5.1 Artifacts . 43
4.5.2 Domain Model . 43
4.5.3 JavaFX . 45
4.5.4 QT . 48
4.5.5 LibGDX . 49

4.6 Evaluation and Reflection . 51

5 Case Study - Robotics Domain 52
5.1 Overview . 52
5.2 Target Description . 52
5.3 Domain Description . 52
5.4 Application of Methodology . 52

5.4.1 Distillation - 1 . 52
5.4.2 Modeling - 1 . 53
5.4.3 Synthesis - 1 . 53
5.4.4 Distillation - 2 . 53
5.4.5 Modeling - 2 . 53
5.4.6 Synthesis - 2 . 54
5.4.7 Distillation - 3 . 54
5.4.8 Modeling - 3 . 54
5.4.9 Synthesis - 3 . 54
5.4.10 Modeling - 4 . 54
5.4.11 Synthesis - 4 . 55

5.5 Results . 55
5.5.1 Artifacts . 55
5.5.2 Domain Model . 55
5.5.3 ROS Node . 57
5.5.4 ROS Node Listeners . 59
5.5.5 User logic fragments . 60
5.5.6 ROS Messages . 61
5.5.7 ROS Loop Class . 62

5.6 Evaluation and Reflection . 62

2

6 Case Study - 3D Rendering Domain 63
6.1 Overview . 63
6.2 Target Description . 63
6.3 Domain Description . 63
6.4 Application of Methodology . 64

6.4.1 Distillation - 1 . 64
6.4.2 Modeling - 1 . 64
6.4.3 Synthesis - 1 . 65
6.4.4 Modeling - 1.1 . 65
6.4.5 Distillation - 2 . 65
6.4.6 Modeling - 2 . 66
6.4.7 Synthesis - 2 . 66
6.4.8 Distillation - 3 . 66
6.4.9 Modeling - 3 . 66
6.4.10 Synthesis - 3 . 66

6.5 Results . 66
6.5.1 Artifacts . 66
6.5.2 Domain Model . 66
6.5.3 Vulkan App . 67

6.6 Evaluation and Reflection . 68

7 Evaluation 69
7.1 Quantitative Analysis . 69
7.2 Qualitative Analysis . 70

8 Conclusion and Future Work 72
8.1 Domain Model Composition . 72
8.2 Domain Model and Synthesis Specification Reuse 72
8.3 Generating Game Engine Components . 72
8.4 IDE Tooling . 73

3

List of Figures

1.1 Sample Boilerplate code . 9
1.2 Desired GPS Location Method . 10
1.3 Swing Boilerplate Code . 11
1.4 C++ Boilerplate Code . 12
1.5 Illustration of boilerplate overlap and variability 13
1.6 Span of synthesis approaches . 16

2.1 System context diagram illustrating CoGen inputs and outputs 20
2.2 Simplified system structure diagram illustrating the layered architecture of CoGen 21
2.3 Illustration of generator tree organization . 22
2.4 EpCoGen Fibonacci Implementation . 24
2.5 Synthesis tree for Fibonacci example . 26
2.6 More sophisticated synthesis tree . 27
2.7 High-level illustration of the CDMS execution flow (execution begins in the “Coding”

state) . 29

3.1 Span of synthesis approaches . 34

4.1 UML diagram of GUI domain model . 44
4.2 Synthesis tree for JavaFX target - 1 . 45
4.3 Synthesis tree for JavaFX target - 2 . 46
4.4 Synthesis tree for JavaFX target - 3 . 47
4.5 Synthesis tree for QT target . 48
4.6 Synthesis tree for LibGDX - 1 . 49
4.7 Synthesis tree for LibGDX - 2 . 50
4.8 Synthesis tree for LibGDX - 3 . 51

5.1 UML diagram of robotics domain model . 55
5.2 ROS Node synthesis tree - 1 . 57
5.3 ROS Node synthesis tree - 2 . 58
5.4 ROS Node Listener synthesis tree . 59
5.5 User logic fragments synthesis tree . 60
5.6 ROS Message synthesis tree . 61
5.7 ROS Loop synthesis tree . 62

6.1 Rendering domain UML diagram . 67
6.2 Vulkan synthesis tree . 68

4

Abstract

Program synthesis technology promises to accelerate the development of software systems by au-
tomating supporting concerns not directly related to the problem or domain under consideration.
In this thesis, we present a novel methodological approach to multi-domain program synthesis
and demonstrate the capability of our approach to accelerate the software development process by
mitigating the need to write and maintain boilerplate code. Simultaneously, we demonstrate how
our approach promotes increased system modularity and extensibility all while leading to simpler
system implementations.

5

Acknowledgements

I would like to express my deepest thanks to the following individuals for making this thesis not
only a possibility but a truly enriching adventure.

• Thanks to Dr. George Heineman, for making this thesis possible and providing at every step,
thoughtful guidance and deep insight into the problem at hand.

• Thanks to Dr. Jan Bessai, for the many hours of intercontinental collaborative coding and
his brilliant solutions to many a code generation dilemma.

• Thanks to Dr. Rose Bohrer, for providing insightful and valuable feedback on the final drafts
of this thesis.

• Thanks to Dr. Elvis Foster, for laying the foundations of my software engineering knowledge
and making grad school a possibility.

• Thanks to my family, for the ludicrously low rent, and unending support and encouragement.

• Thanks to Jennifer, for keeping me grounded, and expressing many a reminder to eat and
sleep amidst pressing deadlines.

• Thanks to Antony and Kenny, for tolerating my frequent over-sharing of thesis-related topics.

6

Chapter 1

Introduction

For the last 50 years, Program Synthesis – the process of automatically generating useful source
code from a high-level specification – has remained a highly active and promising field of study in
Computer Science. Some researchers have declared that robust and efficient program synthesis is
“the holy grail” of Computer Science. [8]. Indeed, program synthesis has the potential to revolu-
tionize the manner and efficiency with which software is developed and maintained. One channel
through which such a feat may be achieved is the acceleration of certain software engineering tasks
which tend to exhibit a large degree of development overhead while only indirectly contributing to
the immediate problem solution.

In this thesis, we investigate how to apply program synthesis to the generation of Boilerplate
code, “Sections of code that are repeated in multiple places with little to no variation” [4]. The
primary contribution of this thesis is the formulation and execution of three case studies demon-
strating the generation of a notable amount of boilerplate code in three real-world scenarios.
Synthesis is achieved using an existing synthesis framework developed by George Heineman and
Jan Bessai called CoGen. In addition, we present a novel methodology designed to aid in the effec-
tive integration and application of CoGen within existing development processes and workflows.
We evaluate our results through a reflective written analysis of the development efforts involved
in each of our proposed case studies.

1.1 Problem Statement

As mentioned previously, boilerplate has been described as “Sections of code that are repeated in
multiple places with little to no variation” [4]. For the purposes of this thesis, we will extend this
definition to include code not directly relevant to the functional requirements of a software system
but instead, non-functional requirements or constraints placed on the system by its environment.
We claim that boilerplate code introduces additional overhead into the software development pro-
cess in three key ways. Firstly the presence of boilerplate code introduces what Fred Brooks calls
“accidental complexity” into a codebase, complexity not related to the problem at hand but in-
stead one or more auxiliary concerns. This additional system complexity increases the difficulty
of reasoning over a given codebase [6]. Secondly, boilerplate code tends to obscure the underlying
business logic codified by a given system thus increasing the difficulty of system adaption to new
functional requirements. Thirdly, boilerplate code can induce a greater degree of coupling with ex-
ternal dependencies such as libraries, services or platforms, thus locking a system into a particular
context that may or may not support future system requirements. In concert, the stated effects
incur friction in the software development process thus leading to longer development times.

In order to ground the argument made above we now illustrate three common sources of boil-
erplate in everyday code and explain how each example contributes to increased development

7

overhead. The first type of original point occurs in the following scenario. Imagine system A lever-
ages another system B, however, system B was designed to solve a number of additional problems
beyond those of interest to system A. In this case, additional boilerplate must be written to tailor
system B to the needs of system A. Even worse, system A may even be forced to integrate directly
with the unnecessary functionality of system B. Generally, the more problems a supporting system
solves, the more boilerplate is required to properly configure the supporting system for a particular
use case.

The code in Figure 1.1 intends to access GPS information on an Android device as shown in
Figure 1.2. The engineer is forced to fully engage with the Android access control subsystem even
though they do not intend on publishing their application.

8

public class MainActivity extends AppCompatActivity {

private static final int LOCATION_REQUEST_CODE = 1000;

private FusedLocationProviderClient fusedLocationClient;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

fusedLocationClient = LocationServices.getFusedLocationProviderClient(this);

// Check for permissions

if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

// Request permissions

ActivityCompat.requestPermissions(this, new

String[]{Manifest.permission.ACCESS_FINE_LOCATION,

Manifest.permission.ACCESS_COARSE_LOCATION}, LOCATION_REQUEST_CODE);

} else {

getLastLocation();

}

}

@Override

public void onRequestPermissionsResult(int requestCode, @NonNull String[]

permissions, @NonNull int[] grantResults) {

switch (requestCode) {

case LOCATION_REQUEST_CODE: {

if (grantResults.length > 0 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

getLastLocation();

} else {

Toast.makeText(this, "Location permission denied",

Toast.LENGTH_SHORT).show();

}

break;

}

}

}

}

Figure 1.1: Sample Boilerplate code

9

public class MainActivity extends AppCompatActivity {

private void getLastLocation() {

if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_GRANTED &&

ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

return;

}

fusedLocationClient.getLastLocation()

.addOnSuccessListener(this, new OnSuccessListener<Location>() {

@Override

public void onSuccess(Location location) {

if (location != null) {

Toast.makeText(MainActivity.this, "Lat: " + location.getLatitude() + ", Lon:

" + location.getLongitude(), Toast.LENGTH_LONG).show();

}

}

});

}

}

Figure 1.2: Desired GPS Location Method

The purpose of this example is not to undermine the importance of security enforcement, it is
instead to demonstrate how additional functionality (access control) offered by a supporting system
(i.e., the Android Runtime system) increased the complexity of primary system implementation
(i.e., the app).

Another key type of boilerplate is code required to integrate with a particular framework or
software library. Figure 1.3 contains a concrete example of such boilerplate in the context of the
Swing GUI framework.

10

public class SimpleApp {

private JFrame frame;

private JPanel panel;

private JButton button;

private JTextField textField;

private JLabel label;

public SimpleApp() {

frame = new JFrame("Simple Swing App");

frame.setSize(300, 200);

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

panel = new JPanel();

frame.add(panel);

placeComponents(panel);

frame.setVisible(true);

}

private void placeComponents(JPanel panel) {

panel.setLayout(null);

label = new JLabel("Enter text:");

label.setBounds(10, 20, 80, 25);

panel.add(label);

textField = new JTextField(20);

textField.setBounds(100, 20, 160, 25);

panel.add(textField);

button = new JButton("Click me!");

button.setBounds(10, 80, 120, 25);

panel.add(button);

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

label.setText(textField.getText());

}

});

}

}

Figure 1.3: Swing Boilerplate Code

Here the engineer must be cognizant of multiple arbitrary aspects of the Swing GUI framework
not related to the goal of simply drawing a text input, label and button on the screen.

One final example of boilerplate is code encountered when interfacing with an external system
via a specific communication protocol. Figure 1.4 is an example related to communicating with an
SQL server in C++. A significant amount of boilerplate code is required to initialize connectivity
with the database server as well as manage connections and connection failure modes.

11

#include <iostream>

#include <mysql_connection.h>

#include <driver.h>

#include <exception.h>

#include <resultset.h>

#include <statement.h>

int main() {

sql::Driver* driver;

sql::Connection* con;

sql::Statement* stmt;

sql::ResultSet* res;

// Non-boilerplate BEGIN **********

const std::string host = "tcp://127.0.0.1:3306";

const std::string user = "your_username";

const std::string password = "your_password";

const std::string database = "your_database_name";

// Non-boilerplate END **********

try {

driver = get_driver_instance();

con = driver->connect(host, user, password);

con->setSchema(database);

stmt = con->createStatement();

// Non-boilerplate BEGIN **********

res = stmt->executeQuery("SELECT ’Hello, world!’ AS _message");

while (res->next()) {

std::cout << "\t... MySQL replies: ";

std::cout << res->getString("_message") << std::endl;

}

// Non-boilerplate END **********

delete res;

delete stmt;

delete con;

} catch (sql::SQLException& e) {

std::cerr << "# ERR: SQLException in " << __FILE__;

std::cerr << "(" << __FUNCTION__ << ") on line " << __LINE__ << std::endl;

std::cerr << "# ERR: " << e.what();

std::cerr << " (MySQL error code: " << e.getErrorCode() << ", SQLState: " <<

e.getSQLState() << ")" << std::endl;

}

return EXIT_SUCCESS;

}

Figure 1.4: C++ Boilerplate Code

As you can see, boilerplate can quickly arise in a number of varied but common software
development situations. Additionally, it is not uncommon for a software system to involve many
such situations at once thus you can see how many projects may collect a non-insignificant volume

12

of boilerplate code over time.
We now discuss two key insights related to boilerplate code that we believe provide direct

insight into a problem solution. Firstly, one may arrive at the observation that “One person’s
boilerplate is another person’s business logic”. If one wishes to eliminate a certain fragment of
boilerplate without modifying the problem statement to no longer require said boilerplate, one
must either integrate the problems solved by the boilerplate-requiring system into the immediate
problem statement or they must swap out the supporting system for another supporting system. In
the first case, the problem statement will likely need to be reduced in scope and complexity due to
a reduction in supporting functionality. In the second case, the new supporting system will likely
introduce its own boilerplate. We (humorously) refer to this property as “the law of conservation
of boilerplate”. In essence, the functionality of a system must be realized by some party. Such an
observation suggests that the problem of boilerplate overhead reduction is best handled through
progressive and systematic augmentation / automation of boilerplate-related concerns.

The next key insight is the realization that boilerplate of a particular type should, by defi-
nition, remain relatively uniform across occurrences within a single codebase or across multiple
codebases. For example, the initialization code for a particular framework will likely be similar
across all codebases leveraging the framework with slight variation related to configuration and/or
degree of usage. Naturally, boilerplate code will exhibit some degree of variation depending on the
usage context however in general we believe said variations will be predictable and less dramatic
than problem-specific code. Both stated insights suggest the applicability of program synthesis to
automating some degree of boilerplate development and maintenance. Figure 1.5 illustrates the
stated property of boilerplate.

Figure 1.5: Illustration of boilerplate overlap and variability

1.2 Motivation

With a characterization of the boilerplate problem in hand we now consider a number of factors
motivating our usage of program synthesis as a solution to the boilerplate problem.

First and foremost, iteratively applied program synthesis would allow for the gradual automa-

13

tion of boilerplate-related concerns one code fragment at a time. We identified such a capability
as important earlier when we showed that one cannot simply eliminate boilerplate code without
sacrificing functionality or transferring ownership of supporting system concerns. Secondly, the
bounded variability of boilerplate code lends itself to generation via a model-driven approach.
Here a model could be designed to encapsulate potential degrees of variation in boilerplate code.
This model could then be configured differently depending on the problem thus allowing generated
boilerplate code to adapt to a particular application or usage context.

In addition to the motivating factors above, we also present a number of additional factors we
believe provide strong motivation for our chosen approach.

Automatic Generation of Common Patterns Boilerplate code need not refer only to
high level concerns such as framework initialization etc, but also extremely granular patterns of
code which are used frequently. For example, using a lightweight specification of object types, one
could easily generate (and automatically maintain) factory classes associated with certain families
of classes. Perhaps even more usefully, one could use code generation to assist in the maintenance
of systems leveraging the Visitor pattern. When using the Visitor pattern, if a new Visitable
type is introduced, all Visitors must be updated to reflect the handling of the new Visitable type.
Updating concrete visitors could be easily automated using code generation.

Software Product Lines A software system must constantly evolve to facilitate newly dis-
covered requirements. One issue with this process of extensional evolution however is that over-
time, as scope increases, the complexity of a singular codebase can begin to increase rapidly as
compromises are made to support a growing number of coexisting requirements within the same
codebase. In order to slow down this combinatorial explosion of complexity, we argue that using
code generation, one could synthesize entirely separate codebases which address certain subsets
of requirements. One benefit of this approach is that often requirements are driven by particular
user usecases/client contexts. This parallel synthesis has the effect that each individual codebase
may be much simpler due to reduction in the number of interactions between requirements.

Inlining of Important Information Code generation allows the insertion of important
data values at ANY location in the code including specifically at the location where the data is
most relevant/important. For this reason, we are able to directly hardcode important information
at relevant locations in code without needing to worry about the traditional drawbacks of value
hardcoding. Said drawbacks are avoided as the information is still properly consolidated in the
domain model.

Decoupling of Implementation Architecture from Domain Model Architecture Pro-
gram synthesis enables the complete decoupling of domain-level concerns (the what) from implementation-
level concerns (the how). Such a decoupling also allows the generation of multiple implementations
each with its own architecture. For example, one architecture could favor performance while an-
other readability or even education.

Another benefit of such decoupling is that code may be flatter in structure without becoming
overly complex. This is because codification of critical system abstractions and concepts are
offloaded to the domain model thus freeing up the generated code for tuning and specialization
with respect to implementation-specific concerns. If the user wishes to understand the design they
need only view the domain model. If the user wishes to understand the implementation they can
look at the generated code while using the domain model as a mental model.

Language and Runtime Independence Using program synthesis, the engineer is capable
of generating code for any target language or runtime from the same code specification. This

14

language/runtime independence is immensely useful, especially with regard to integrating newer
systems with older systems.

Eliminating Dependencies on Deprecated Code Program synthesis solves the problem
of code deprecation for free by allowing the extension of the domain without affecting code gener-
ated with respect to older domains (see expression-problem). One can simply synthesize n versions
of a given software system (each separate from the other)

Practically this means that deprecated code need not interfere with new code i.e new code can
evolve without concern for depreciated code as the older system can evolve in parallel as its own
”product line”.

Security Through Variation By generating entire systems programmatically we are able to
inject perturbations during code generation with the property that program functionality remains
invariant while program structure does not. Such an approach could greatly aid in software security
as hackers would need to potentially reverse engineer a large number of system variations in order
to realize exploits that work generally. [Credit for this idea goes to Prof George Heineman]

Performance Program synthesis has the potential to eliminate the performance cost of ab-
straction through decoupling of domain and implementation architecture. Since implementation
code is a projection of the domain model (see Domain Driven Design) then the specific imple-
mentation details of a software system may vary independently of the domain. In other words,
implementation code can be optimized with respect to the underlying platform while higher level
conceptualizations/abstractions remain safely codified in the domain model, and thus remain safe
from the complexity of one or more particular implementations.

Synthesis as Documentation By examining what aspects of the domain model produce
which source code the engineer may more easily determine the purpose/role of a given source file
via direct examination of actual source code.

We hope the reader now has a better understanding of the problem we are attempting to solve
and motivation for our chosen solution path involving program synthesis. In summary, Boilerplate
code is common and its presence increases development overhead, but unfortunately boilerplate
remains a necessary evil and thus cannot be eliminated all at once. From this position, we posit
automation of boilerplate concerns via program synthesis as a promising solution to the stated
problem.

1.3 Background

Now that we have defined the problem at hand, let us discuss the existing body of work surrounding
program synthesis and how our chosen technology fits into the big picture.

At a high level, the goal of program synthesis is to algorithmically generate useful source code
as a function of a human-readable specification and/or model. Over the years many different
approaches have been explored to realize this core idea, each approach with its own tradeoffs and
capabilities. Approaches such as deductive synthesis and syntax-guided synthesis require that the
user construct a highly detailed and logically rigorous model. This model is then used to infer
what code should be generated as a consequence of model constraints. More relaxed approaches
to program synthesis such as inductive synthesis or program sketching allow the user to partially
specify or outline the general structure of the code they would like to generate and then allow the
synthesis engine to fill in certain sections of missing code automatically. Note that such approaches
may still leverage models, however, these models are less comprehensive and focus on supporting
the code generation process rather than driving it entirely.

15

Figure 1.6 illustrates the span of synthesis approaches with respect to both the degree of
explicit code specification as compared to degree of inference and also the computational intensity
of various approaches.

Figure 1.6: Span of synthesis approaches

Let us now discuss the computational difficulty aspect of each approach. Deductive approaches
tend to be computationally difficult due to the vast space of possible programs which must be
explored during model evaluation. This computational difficulty limits the size of problems that
can be generated using such approaches generally pushing such approaches to more domain-specific
applications. Conversely, inductive approaches are often far less computationally intense and thus
lend themselves better to generating larger volumes of code. The synthesis technology chosen
for this thesis (CoGen) falls towards the program sketching side of the axis. Under CoGen the
structure of generated code is mostly specified in a language agnostic manner. A model is then
referenced by the code specifications to determine how to generate certain restricted parts of the
desired code artifact. Such an approach avoids the tractability issues caused by more inferred
approaches thus allowing our solution to more easily generate a large degree of varied code.

Another key consideration when evaluating program synthesis technologies is the degree to
which desired output is outlined explicitly in a specification vs inferred from an abstract model. In
a purely model based or inferred approach models are constructed using highly structured modeling
formalisms such as a formal logic. Such formalisms are powerful and allow one to make a number of
useful claims about generated code but can be difficult to adapt to newly encountered requirements
due to their inherent rigorousness. On the other hand, inductive and program sketching approaches
involve less rigid specifications and thus tend to facilitate easier adaption. CoGen chooses to use
a less rigid approach similar to program sketching, in fact CoGen does not make use of any form
of specialized modeling or specification formalisms. Under CoGen code specifications and models
are formulated in a traditional programming language namely Scala. Specifications may freely
reference models to inform code generation decisions, however, model usage is not mandatory.
This design decision allows CoGen to easily scale well to the intricate and varied demands of
boilerplate code structure.

In summary, we believe CoGen achieves a good balance between sufficiently high-level specifi-
cation of the generation process while still allowing a sufficient degree of control over the structure
of generated code. These two properties are extremely desirable given the wide array of forms
boilerplate code may take.

1.4 Proposed Solution

We leverage in this thesis an existing code generation technology called CoGen [2] which is specif-
ically designed to allow for the maximum degree of flexibility in code generation. Even the best

16

hammer is useless if used as a shovel, hence we also introduce a novel Coding, Distillation, Mod-
eling, Synthesis (CDMS) methodology designed to aid in the application of program synthesis to
the synthesis of boilerplate in complex and varied codebases. Our methodology is also designed
to facilitate coexistence of program synthesis with existing development methodologies. We hope
that in concert the selected synthesis technology and proposed methodology will reduce, or in some
cases eliminate entirely, the overhead of boilerplate code development and maintenance thus vastly
accelerating software development efforts.

In summary, our approach must fulfill the following key requirements.

Technology Requirements

• Must support generating code in multiple domains, languages and programming paradigms

• Must avoid reliance on restrictive modeling formalisms.

• Must support specification of both model and code structure.

Methodology Requirements

• Must easily integrate synthesis with existing engineering processes

• Must reduce learning curve of effective approach usage

• Must be interoperable with existing software engineering methodologies

1.5 Method of Evaluation

To evaluate the effectiveness of CoGen technology and our Coding, Distillation, Modeling, Syn-
thesis (CDMS) methodology, we apply both to three real-world case studies. The first case study
exemplifies the automated synthesis of boilerplate GUI code to support the use of three application
development frameworks namely, JavaFX, QT and LibGDX. The second case study demonstrates
the comprehensive synthesis of supporting boilerplate code in a robotics framework known as
ROS. Here we show how with little effort, the engineer can automatically synthesize boilerplate
code required to deploy existing logic in a feature-rich ROS environment. The third case study
demonstrates the synthesis of low-level Vulkan rendering code in a non-invasive manner wherein
the engineer specifies exactly where in their existing code they would like synthesized code to be
placed. This approach demonstrates how the engineer may otherwise maintain full control over
codebase design while still benefiting from targeted boilerplate generation.

17

Chapter 2

Approach

Our approach to solving the problem of boilerplate code generation is two-fold. The technical
aspect of our approach, namely code generation is realized using an existing program synthesis
framework called CoGen. The issue of CoGen usage is addressed through a novel methodology we
call CDMS. In essence, CDMS is designed to guide the developer in the application of CoGen to
varied real-world codebases with the aim of gradually synthesizing boilerplate code present therein.

Before we begin a detailed discussion of both methodology and synthesis technology, we must
define two key concepts that will play a significant role in both concerns. The concepts in question
are that of Domain Model and Synthesis Specification.

Domain Model We derive the concept of Domain Model from the Domain Driven Design
literature championed by Eric Evans [24]. Evans defines a domain as “A sphere of knowledge,
influence, or activity”. The subject area to which the user applies a program is the domain of the
software. Further Evans defines model as “A system of abstractions that describes selected aspects
of a domain and can be used to solve problems related to that domain” [25]. In the context of this
thesis, we specialize Evan’s definition slightly by adding the constraint that “selected aspects” refer
to select aspects of an existing codebase that pertain to “solving problems related to the domain”.
The discussion of the modeling phase of CDMS will go into further detail on how exactly to select
these problem domain-relevant aspects.

As it pertains to our problem of boilerplate synthesis, the purpose of a domain model is to
inform the process of boilerplate generation, thus allowing generated code to vary in accordance
with the requirements of a specific problem. In short, code generators use the domain model as a
reference when making key decisions regarding code structure or what code should be generated. By
mutating the domain model configuration, an engineer may thus ensure generated code aligns with
immediate problem requirements. Such control allows truly generalized and scalable boilerplate
generation to any number of problem-specific contexts.

Synthesis Specification With the concept of domain model in hand, it is now time to
define the concept of a synthesis specification. A synthesis specification is simply some form of
specification that describes how to generate executable code from a particular domain model. A
synthesis specification may be realized as a textual description, diagram, or in the form of code in
some programming language. In this thesis, we will leverage both diagrammatic and code-based
realizations.

2.1 Technology

We now turn our attention to a detailed description of CoGen, our chosen synthesis technology.

18

2.1.1 Background

CoGen is a specific part of a larger system developed by George Heineman and Jan Bessai called
EpCoGen. EpCoGen was originally developed to assist in research involving the expression prob-
lem. The expression problem, although out of scope for this thesis, touches upon the fascinating
problem of determining how to add new functionality to a codebase, (either through the addition
of datatypes or operations), without requiring the modification of existing code. For the purposes
of this thesis, we do not require the expression problem-related functionality (Ep) of EpCoGen
thus we make use of only its code generation capabilities (CoGen).

At its core, CoGen is a powerful and generalized synthesis engine capable of generating ar-
bitrarily complex code in multiple languages and programming paradigms. In this thesis, we
adapt CoGen to the problem of boilerplate generation using the CDMS methodology. In addition,
we made a number of small modifications to CoGen to enable the generation of additional code
structures such as try/catch statements and importing of existing code into the code generation
process.

CoGen is built around the following requirements.

• One should be capable of generating code in such as way as to allow the reuse of a given
generation process in multiple situations. For example, the generation of getters and setters
across multiple classes.

• All generated code must be bound to a particular context. This context shall be amended
and evolve during the generation process until the final desired context state is achieved.

• The process of code generation must occur in a transaction-based manner wherein a set of
transitions, each responsible for generating some fragment of code, are emitted and then later
evaluated by the generator.

A key motivation for choosing CoGen as the technological backbone of our approach was its lack
of assumptions regarding the underlying domains, implementation architectures, or languages a
user wishes to work within. Under CoGen domain models and synthesis specifications are realized
in the form of vanilla Scala and do not make use of any special formalisms such as domain-
specific languages or obscure language extensions. The result of this design choice is the complete
elimination of arbitrary restrictions on how the engineer may realize code synthesis to solve a
specific problem.

In the following section, we provide a detailed technical overview of CoGen including a descrip-
tion of its architecture and capabilities.

19

Figure 2.1: System context diagram illustrating CoGen inputs and outputs

2.1.2 Architecture

CoGen is built on a 3-Tier layered architecture. The first layer of the CoGen system is known as
the Implementation Provider layer. It is the responsibility of this layer to facilitate the creation
of user-defined code generation specifications and domain models. Layer 2 is called the Code
Generation layer. This layer contains abstract codifications of common programming paradigms
and capabilities. These capabilities are used by layer 1 synthesis specifications. Finally, layer 3
is called the Language layer and contains implementations of layer 2 capabilities/paradigms in a
particular target language such as Java or C++.

20

Figure 2.2: Simplified system structure diagram illustrating the layered architecture of CoGen

CoGen synthesis specifications are built around the concepts of a Generator and a Context.
Any synthesized line of code is produced by a Generator in some Context. Upon instantiation,
Generators are parameterized by a Context and some Abstract Syntax type representing the type
of artifact produced by the generator. This approach allows for the powerful assertion that any
generated code may be traced back to a specific generator executed in a specific context at any
level of granularity. Additionally, the design allows for the introduction of useful extension points

21

which enable generators with the same role to produce slightly different code depending on the
Context in which they are created.

In CoGen the type of code that can be generated is codified in the form of paradigms where each
paradigm contains a set of one or more capabilities. Examples of paradigms include Imperative,
Object Oriented, or Functional. Examples of specific paradigm capabilities include generation of
Classes, adding methods or fields to classes in the case of OO or declaring or assigning variables
in the case of Imperative. It is important to note that paradigms and associated capabilities
are not always mutually exclusive. This allows for more effective factoring and code reuse across
paradigms. One example of multi-paradigm use would be that of Object-oriented and Imperative
as naturally, Object Oriented programming is largely an extension of the imperative paradigm.
Now when specifying a paradigm capability, each capability must specify the context in which the
capability may be applied. For example, one may only add a method to a class if they are in a
class context.

CoGen synthesizes code in a two-pass manner. In the first pass, user-defined synthesis specifi-
cations contained in implementation providers instantiate any number of Generators. Generators
can be instantiated in a nested manner. For example, a given Generator may be instantiated to
generate a class declaration, but the code which instantiated the Generator may also instantiate
additional Generators to, for example generate class methods. Given such composition potential,
generators are represented internally by CoGen as an n-tree data structure. Usually, the root node
of a generator tree consists of a project context. A project context may have one or more Compilia-
tionUnit context children. Each CompilationUnit may have one or more Class or MethodContexts
and finally a Methodbody context may contain code statements.

Figure 2.3: Illustration of generator tree organization

After the generator tree has been built, a second generation pass traverses the tree and executes
generators in depth-first order. Upon generator execution, control flow transfers to the overridden

22

generation functionality in the language layer. The language layer code then constructs desired
AST structure and mutates the context assigned to the generator as necessary. (Usually said
updates involve appending newly generated AST structures to existing AST structures) Let us
consider an example. Let us say we wish to generate a class method. Firstly we assume AST
information for the body of the class method has previously been generated. We can make this
assumption as the method body generator is a child of the class method generator and thus must
have been executed previously in accordance with depth-first traversal. All that remains for the
class method generator then is to append the method body abstract syntax subtree to the class
AST stored in the generator’s associated class context.

After all generators have been executed, the final AST tree will reside in the context object
associated with the root generator in the generator tree. This AST tree can then be trivially
written to disk as source code using language-specific pretty printing functionality.

Now that we have discussed the basic architecture of CoGen, we will, in the following sections
focus on the usage of CoGen by providing a brief overview of how Domain models and synthesis
specifications may be constructed in the framework.

2.1.3 Domain Models in CoGen

In CoGen, the user constructs domain models using Scala code. We suggest building domain
models in an object-oriented fashion thus increasing the ease of conceptual modeling. A domain
model should contain a primary class (usually called Domain or DomainBase) which is responsible
for instantiating particular concepts and connecting domain model objects together as required.
Conceptually, this primary class represents a particular configuration of the domain and is the key
artifact passed to generators. In other words, generators reference the domain model foundation
object for runtime information about domain model configuration. Fundamentally, although we
provide the suggestions above, the only requirement on domain model design is that a domain
model be structured in such a way that it can be easily passed into the constructor of one or more
implementation providers. For examples of domain models see any of the three case studies.

2.1.4 Synthesis Specifications in CoGen

We now consider how to construct synthesis specifications that are consumable by CoGen. As
mentioned previously, CoGen takes as input a domain model and one or more implementation
providers and produces code in a desired target language. With regards to terminology, an imple-
mentation provider is simply a code-based realization of a synthesis specification that can be used
by CoGen to generate source code. For the remainder of this thesis, we will use the two terms
interchangeably. Implementation providers take the form of Scala code and are responsible for
instantiating generators. In order to understand how a user goes about creating synthesis speci-
fications we will explore a simple example. The code in 2.4 consists of a number of methods for
generating the various components required to produce a program that generates the nth-Fibonacci
number and prints it to the screen. The example also produces a unit test for testing the resultant
program however we will focus our attention primarily on the Fibonacci related code.

23

def make_fibonacci(): Generator[MethodBodyContext, Expression] = {

for {

/** Method will have single n:Int parameter and return Int. */

intType <- toTargetLanguageType(TypeRep.Int)

_ <- setParameters(Seq(("n", intType)))

_ <- setReturnType(intType)

/** Get arguments to function and constant values. */

one <- reify(TypeRep.Int, 1)

two <- reify(TypeRep.Int, 2)

args <- getArguments()

/** Logic for whether n <= 1. */

(name,tpe,n) = args.head

le1 <- ffi.le(n, one)

/** Form two subexpressions (n-1) and (n-2). */

n_1 <- ffi.sub(n, one)

n_2 <- ffi.sub(n, two)

/** Apply twice, to fib(n-1) and fib(n-2); add together. */

func <- findMethod(Seq(fibName))

fn_1 <- apply(func, Seq(n_1))

fn_2 <- apply(func, Seq(n_2))

addExpr <- ffi.add(fn_1, fn_2)

res <- ifThenElse(le1,

Command.lift(n), /** If (*@$n \leq 1$@*) */

Seq.empty, /** Empty "else if" */

Command.lift(addExpr)) /** Else fib(n-1)+fib(n-2) */

} yield res

}

def make_unit(): Generator[paradigm.CompilationUnitContext, Unit] = {

for {

_ <- addMethod("fib", make_fibonacci())

} yield ()

}

def make_project(): Generator[paradigm.ProjectContext, Unit] = {

for {

_ <- addCompilationUnit(make_unit(), fibName)

_ <- addCompilationUnit(addTestSuite("fibTest", make_test()), "fibTest")

} yield ()

}

Figure 2.4: EpCoGen Fibonacci Implementation

Firstly we will make some general points regarding the syntax and semantics of the example.
We will then perform an execution flow analysis of the example starting from the last method
make project and moving upwards. For more information on the specifics of the Scala programming
language see [36].

Our first point involves the usage of _ <- ... and <var> <- ... syntax and associated for-
comprehension. In CoGen, each method call within a for block returns an instance of a Generator

24

however in the case of <var> <- ..., the scala compiler will set <var> equal to the evaluated
return type the generator. The underlying generator instance is still stored in the comprehended
list but now the user may use an abstract syntax object as input to future instances generator. One
important fact about abstract syntax objects (<var> in our example) is that they in fact act as
handles to a concrete object which will be realized as an actual AST node during phase-2 of CoGen
execution. In this sense <var> acts as a promise that at some point in the future, the concrete
representation of the abstract syntax object will be realized by a generator implementation in the
form of an AST node.

Now let us examine the example from the perspective of execution flow. First and foremost the
make project method creates a ProjectContext and then calls addCompilationUnit. addCompila-
tionUnit tells CoGen to associate the results of executing the generators returned by make unit
and make test generators with the current project context. Next make unit tells CoGen to add a
new method to a compilation unit where the body of this method consists of code generated by
the generator instantiated by make fibonacci. Note how unlike in previous methods, this method
returns an Expression type. A non-Unit return type simply means that the results of running
a given generator can be used as input to later generators. Additionally, a value of unit means
that the generator just updates its parent context and does not return a particular artifact. We
now turn our attention to the final method make fibonacci. In this method, the statement of the
Fibonacci recurrence are generated.

Presenting synthesis specifications in the form of source code can be difficult due to their large
size and complexity. For this reason, we present a novel diagramming technique for the sole purpose
of better expressing complex synthesis specifications to the reader. This alternative representation
becomes incredibly important when we turn our attention to the case studies later in this thesis.
We call our diagram type a Synthesis Tree. Below is a synthesis tree corresponding to the Fibonacci
example.

25

Figure 2.5: Synthesis tree for Fibonacci example

The proposed diagram type involves four additional figure types that are not present in the
example above. Below is a synthesis tree from the Robotics case study which contains examples
of these concepts.

26

Figure 2.6: More sophisticated synthesis tree

Here the blue figures indicate aspects of generation that are directly dependent on the domain
model. A blue figure with a loop icon indicates that the synthesis subtree of the blue figure
is evaluated once for each object in a given domain model set. The blue figure with a branch
icon indicates that depending on some domain model dependent logical condition, different code is
synthesized. The blue figure with no icon indicates the direct usage of a domain model value by the
associated generator. Finally, the purple node indicates usage of a fragment of code provided “as
is” to the generator. The generator may modify the provided code (i.e extend or remove code from
the fragment) or inject the fragment into the set of final project artifacts without modification.

2.2 Methodology

2.2.1 Background

To bring the benefits of CoGen to as many software engineering contexts as possible, we propose a
low-friction iterative methodology to guide the application of CoGen to boilerplate generation in
many varied contexts. This decision was motivated by two key observations. Firstly, during early
experimentation with CoGen we noted that if applied too aggressively, and at too large of an initial
scope, the complexity involved in successfully synthesizing large amounts of code simultaneously
would introduce compounding overhead (thus mitigating the overhead reductions provided by
boilerplate-related generation). Second, we noted a significant learning curve associated with
the usage of code generation in the general manner proposed. We decided then that in order

27

to become proficient at leveraging code generation, a large degree of practice was required and
thus encouraging a methodological approach would aid the user in becoming familiar with our
technology and its application in a guided and incremental manner.

We began the formulation of our methodology by first constructing an abstract description of
the overall process. This initial description was inspired by a number of experimental applications
of the CoGen synthesis technology and two existing engineering methodologies, Stepwise Refine-
ment and Refactoring. With abstract specification in hand, we began refining our methodology
by applying it, alongside our synthesis technology, to three real-world case studies. During the
execution of each case study, we enriched our methodology with a number of discovered principles.

2.2.2 Definition

We now provide a more formal description of our proposed methodology. CDMS or (Coding-
Distillation-Modeling-Synthesis) is an iterative bottom-up methodology designed to facilitate the
leveraging of program synthesis alongside any existing software engineering process.

To apply CDMS, one starts with an existing codebase, anything from a large legacy system
to early development prototype, and applies each stage of CDMS to the codebase in an iterative
manner. With each iteration, information pertinent to the problem domain is extracted from
the codebase, and areas of boilerplate code are identified as potential candidates for synthetic
generation. Next, identified boilerplate code is generated using the proposed synthesis technology
and substituted into the original codebase in place of the original handwritten code. Alternatively,
at this stage, handwritten code may be extracted into so-called fragments and interleaved with
generated code “as is”. After a sufficient number of CDMS iterations, the engineer converges on
two key artifacts, the domain model and synthesis specification.

We will now discuss three important properties of CDMS which together allow CDMS to
realize our goal of seamless boilerplate generation in varied contexts. Firstly CDMS allows for a
highly variable degree of synthesis. When the user first begins using CDMS, zero lines of code are
generated. After a few iterations, a small percentage of code may be generated. At this point, one
could continue applying the methodology and generate an even larger percentage of code (up to
and including 100%). Since the goal of CDMS is to assist in the generation of boilerplate code,
however, we expect that many projects will converge on non 100% synthesis due to the presence
of intricate business logic. The key takeaway is that our methodology places zero constraints on
the amount of code one is required to generate.

Another key property of CDMS is its lack of interference with existing development processes.
CDMS operates as an extension of the code-writing process alone and thus makes no assumptions
about higher-level design or task-planning processes. For example, in the context of the Waterfall
development methodology, CDMS could operate in parallel with the implementation phase with
zero impact on analysis or design. In the context of Agile methodologies, integration is even tighter
as insights from CDMS may feedback into design tasks, however, as before, CDMS will primarily
influence only the development of source code during each Sprint.

The final property we would like to mention relates to the interaction between CDMS and
an individual developer’s workflow. CDMS and CoGen take an augmentative approach to code
generation wherein synthesized code may be continuously regenerated at any point in time. This
allows developers to directly reference generated code in their manually written code at all times
thus ensuring generated code and handwritten code remain forever in sync. In addition, under
our approach, the structure of code generation is guided by the engineer thus allowing for the
generation of highly readable code. These two facts mean that at any point in time, the engineer
may stop using CoGen and simply leverage the most recent code generated without any dependency
on CoGen. This approach differs from many traditional synthesis technologies wherein code is
generated as a pre-process directly before compilation.

We now begin a detailed description of CDMS.

28

Figure 2.7: High-level illustration of the CDMS execution flow (execution begins in the “Coding”
state)

As seen above, our methodology consists of four stages namely Coding, Distillation, Modeling
and Synthesis. Stages are executed in the stated order however, Distillation may transition to
Coding or Synthesis and Synthesis may transition to Distillation or Modeling. We will now discuss
each methodology stage and describe how the stages interleave to facilitate convergence on a high-
quality domain model and synthesis specification.

Coding

During the coding stage, source code is written by hand. Hand-written source code may interact
with generated source code in this phase, otherwise, however, no additional code is generated.

29

From the coding phase the engineer may transition into the Distillation phase.

Distillation

While performing our case studies we found ourselves commonly making a number of specific types
of observations. These observations proved extremely useful in identifying aspects of the codebase
relevant to either the resultant domain model or synthesis specification.

Below is a list of encountered observation types. For each observation type, we provide a
reference to an instance of the observation in a particular case study.

• The role of specific classes and resources in the codebase. “Rendering Case Study: Distillation
- 1”

• The lifecycle of specific objects in the codebase. “Rendering Case Study: Distillation - 1”

• Methods specifically related to system lifecycle or the lifecycle of specific objects. Examples
include methods responsible for initialization or cleanup. “Rendering Case Study: Distilla-
tion - 3”

• Fragments of code that consist almost entirely of business logic. Examples include specific
algorithms, or business conditional logic. “Robotics Case Study: Distillation - 1”

• Variables, literal values or other parameters directly relevant to the business problem. Ex-
amples include names of business domain-related or GUI element names, filenames/resource
paths, hardware configuration information. “GUI Case Study: Distillation - 1 - JavaFX”

• Code which is used purely to interact with the system environment i.e a library or API.
“Rendering Case Study: Distillation - 3”

Given that observations tend to discard detail we decided to name the process of generating
the list of stated observations, Distillation. It is important to note that the ability to success-
fully perform distillation is fundamentally a skill that is developed through practice and repeated
encounters with specific patterns.

From the insights above we arrive at the following formal description of the Distillation phase.
During the distillation stage, the engineer analyzes existing source code and produces a set of

observations. Observations should codify elements of the codebase that are directly related to the
problem being solved in addition to high-level details involving the functionality and structure of
source code.

Another aspect of distillation is that one should attempt to focus attention on one particular
theme of the codebase at a time. This is based on the observation that further stages of CDMS
often involve more work than distillation and thus a conservative approach should be taken to
avoid oversaturation of work in later stages.

Examples of themes include:

• Models, Views or Controllers in the case of MVC GUI app

• Graphics API code, in the case of a rendering engine

• Robotic actuation or sensor handling

Once distillation is complete, the engineer may transition to either the modeling stage, synthesis
stage, or coding stage. Transitioning to Modeling occurs when the current domain model must
be updated to include additional domain-specific information or concepts. This transition is the
common case. Transitioning to Synthesis occurs when no new domain-specific information has
been discovered during distillation but new code has been identified for synthesis (See “Modeling
- 1 - QT” in the GUI case study for an example of this transition type). Finally, a transition back
to coding occurs when it is realized that modification to the existing code would make it more
amenable to distillation.

30

Modeling

During case study evaluation, we found that attempting to create a partial domain model from
sets of distillation observations proved to be a valuable and insightful process, thus we decided
to dedicate an entire methodology stage to this aspect of development. Critically we found that
building the domain model iteratively or “one small piece at a time” instead of attempting to
define all aspects of the domain upfront paid incredible dividends with regard to adaptability with
respect to unforeseen problems encountered during development. To encourage iterative model
development we decided to provide an additional path in our methodology from synthesis back to
modeling. We will discuss this new path in more detail in the synthesis section.

More formally, during the modeling stage, the engineer incorporates observations made either
in the distillation phase (normal case) or the synthesis stage, into the domain model. Additionally,
the engineer determines what code fragments should be synthesized entirely by CoGen and what
code fragments should be “inlined/imported” explicitly during the synthesis phase.

As mentioned previously, a domain model is a set of classes designed to codify the concepts
most relevant to the problem domain. During case study evaluation we identified a number of
useful heuristics designed to aid in determining what information and structure should be codified
by the domain model. Heuristics include:

• The domain model should describe WHAT the underlying system is (and does) not HOW it
does it.

• The domain model should contain information one would expect to see in a configuration file
namely information that parameterizes the functionality of the system but does not specify
the actions associated with said functionality.

In addition to the heuristics above, we found ourselves consistently applying the following
decision process during modeling.

• If a given observation is not directly relevant to the problem domain then continue to the
next observation and consider the current observation during the upcoming synthesis phase.

• If a given observation is related to an implementation-specific class (for example, SQL con-
nection) then continue to next observation. “GUI Case Study: Modeling - 1 - JavaFX”

• If alternatively the class is related to a domain-specific concern (for example represents an
Inventory Item) then add a new concept to the domain model which mirrors the original class
but excludes any implementation-specific data or behavior which may have been attached to
the class, leaving only domain-specific information.

• If a given observation is related to a domain-specific data value then determine what existing
concept in the domain model, the data value is most related to. If non exist, create a new
concept to encapsulate the data value otherwise add data value to the most related class.

• If a given observation is related to the lifecycle of some domain-specific object then add
a new concept to the domain which encapsulates the data required to influence aspects of
the lifecycle. We recommend using the policy pattern to encapsulate such lifecycle-specific
concerns. “Rendering Case Study: Modeling - 3”

Once modeling is complete, the engineer may transition to the synthesis stage to leverage gained
insights and domain model information.

31

Synthesis

Returning to our case studies, we found that after acquiring a number of observations and an
initial domain model, the next natural step was to begin developing synthesis specifications. We
identify the process of constructing synthesis specifications as Synthesis.

After many hours experimenting with synthesis we found that an effective strategy for building
synthesis specifications was to target generating existing handwritten code exactly as it occurred
in the existing codebase, with certain values from the domain model substituted during generation.
Once the original code had been generated in a 1-1 manner, only then would we begin integrating
more information from the domain model into the generation process thus allowing for further
extensibility and variation in code structure as a function of the domain model.

In summary: During the synthesis stage, the engineer uses the domain model and code struc-
ture insights derived from the previous distillation and modeling phases to build out a synthesis
specification.

From the synthesis stage, we identified two natural transitions namely one to the coding stage
and another back to the modeling stage. The transition to the coding stage allows one to continue
modifying code either by adding new functionality as required by incoming functional requirements
OR to leverage newly generated code directly. The second transition back to modeling occurs when
the domain model is missing critical information required to synthesize a particular code fragment.
For an example of this transition type see “Synthesis - 3” in the robotics case study.

2.2.3 Inspiration

Our methodology takes key inspiration from two fundamental ideas namely Stepwise Refinement
and Refactoring. Stepwise refinement is a software engineering methodology wherein one starts
with high-level set of specifications and iteratively and recursively refines/expands each specifica-
tion until all that remains are detailed instructions that may be explicitly executed by a computer.
At each refinement step, a number of design decisions are made. These design decisions may be
influenced by any number of factors, for example, constraints of the underlying hardware or in-
sights from the problem domain or newly discovered characteristics of the problem [3] The key
insights we extract from stepwise refinement are that of high-frequency iteration and the steady
increase in system detail at each iteration. Another key influence in the design of CDMS is a well
known software engineering method called Refactoring. In refactoring small “behavior preserving”
transformations are made to a software system iteratively such that the system may converge on
a higher quality implementation while remaining functional at all times. [14]

CDMS turns stepwise refinement upside down and operates in a purely bottom-up fashion.
One starts with an existing codebase and iteratively extracts from the codebase more general
details until eventually arriving at a high-level specification encapsulating the necessary details
of the original system but devoid of any particular details surrounding code structure. Taking
inspiration from refactoring, each iteration of distillation is as small as possible thus facilitating
smooth and methodical progression towards a robust representation.

2.3 Design Patterns

During the application of our approach, we encountered a number of interesting design problems.
In this section, we describe each problem and discuss our devised solution. Note that we express
each solution in the form of a design pattern as we believe each solution may be successfully applied
in many different contexts.

32

2.3.1 Policy Pattern

In some cases, the structure of extremely specific code spread across an entire codebase may
need to change as a function of some domain-level concern. This issue of cross-cutting concerns
was encountered in the Robotics case study where initialization and teardown methods required
different code depending on the communication policy of the node.

To solve this problem we suggest creating a new domain class to encapsulate the particular
concern (communication policy in the case of ROS) then reference this policy in the synthesis
specification during generation of multiple related code regions.

2.3.2 Type Projection Pattern

At times it is desirable to make accessible to generated code the contents of an entire domain model
object instance. Such a scenario arose in the JavaFX case study wherein TextElement information
encoded in the domain was required at runtime. A similar scenario also occurred when synthesizing
ROS messages in the robotics case study.

To solve this problem we recommend the synthesis of a class in the target implementation
which has a 1-1 mapping with the member variables of a specific domain class. The contents of
the domain class may then be accessed at runtime by generated code (assuming correct object
instantiation).

33

Chapter 3

Related Work

Using program synthesis to generate boilerplate code is not a new idea. Many researchers and
practitioners alike have attempted to achieve exactly this goal. In the following discussion, we will
examine existing approaches to code generation, both with respect to boilerplate generation and
in general. We will then outline the limitations of current approaches and discuss why we believe
our proposed solution overcomes the stated limitations.

As seen in the introduction, we will compare synthesis approaches with respect to the degree of
code derived through deduction by the synthesis engine as compared to code specified completely
or partially by the user. As before Figure 3.1 will guide our discussion.

Figure 3.1: Span of synthesis approaches

3.1 Synthesis Paradigms

3.1.1 Deductive Synthesis

In our examination of synthesis paradigms we start with the most computationally intensive class
of approach, deductive synthesis. Deductive synthesis is a method of program synthesis wherein
source code is generated from a complete formal model of one or more aspects of a given domain
[9]. This approach is beneficial in that it allows one to make extremely strong statements about
the correctness of synthesized output, however this method struggles in pragmatic use cases due
to the difficulty of model creation i.e issues of model rigidity and intractability.

34

3.1.2 Type-Driven Program Synthesis

Type-Driven Program Synthesis, developed by Nadia Polikarpova and her lab attempts to improve
the scalability of deductive synthesis to larger real-world domains [13]. Type-Driven Program
Synthesis improves on deductive synthesis approaches by leveraging type theory to both prune the
search space of possible programs as a function of type compatibility and also allow for more flexible
specifications through the usage of so-called refinement types. More specifically, “questions” in
specifications are defined as types and the set of possible answers to each question must be within
a set of valid type interactions. Such a restriction of allowed interactions greatly decreases the size
of the program search space especially as compared to more unconstrained logical specifications
seen in purely deductive approaches. Finally, Type-Driven Synthesis has the benefit of providing a
greater degree of standardization of synthesis specifications, due to the fact that any strongly typed
language may theoretically be used as the specification method. A number of real-world solutions
have come from Type-Driven synthesis including synthesis of code to facilitate REST-based API
implementations [12]

3.1.3 Inductive Synthesis

The next form of synthesis demonstrates a strong departure from deductive synthesis both in terms
of computational intensity and amount of code specified vs generated. Inductive synthesis is a
synthesis process that takes as input a partial code specification and other supporting artifacts such
as expected program input-output examples. The generator then uses these artifacts to fill in facets
of the specification left unspecified thus producing a final program. Unlike deductive synthesis,
the resultant program may vary in correctness however the computational difficulty of generating
the program is much reduced as compared to purely deductive approaches. Given these design
decisions, inductive synthesis falls in the middle of our axis of comparison. Many implementations
of inductive synthesis have been attempted. One prominent example is the PROSE framework
developed by Microsoft Research. PROSE provides support for both inductive and deductive
modalities of synthesis however the inductive facet of PROSE has seen success in a number of
limited domains such as flash fill in Microsoft Excel [11]. One desirable aspect of PROSE is
its ability to produce useful results in multiple well-defined domains, unfortunately however, the
technology does not appear to scale well to the synthesis of larger complex software systems.

3.1.4 Counterexample-guided Inductive Synthesis

Counterexample-guided Inductive Synthesis (CEGIS) proposed by Solar-Lezama of MIT, enables
scaling of inductive synthesis to more complex problems through iterative validation and improve-
ment of synthesized candidate programs. The user first provides the CEGIS framework with partial
programs and specifications. Within these specifications exist both fully specified and partially
specified subsections where partially specified sections are called generators. The goal of CEGIS is
to find the appropriate values for each partially specified section according to provided constraints.
Next synthesis occurs in an iterative manner where the final program is de-ambiguated through
consideration of failure counter examples produced by a post synthesis validation phase [10]. A key
benefit of CEGIS is that it enables more rapid convergence to useful output programs while also
providing the user with a higher degree of requirements flexibility and expressivity as compared
to other deduction centric approaches. In a similar manner to PROSE however, CEGIS, in its
original implementation appears restricted to a few relatively small and extremely well defined
domains.

3.1.5 Program Sketching

One important contribution of CEGIS is the inspiration of a new paradigm of program synthesis
called program sketching. Program sketching is a synthesis process wherein the user provides

35

the synthesizer with a partially complete program with certain “questions left unanswered”. The
synthesizer is then responsible for finding the best “answer to the question” while respecting
certain correctness/compatibility guarantees. Program synthesis provides the greatest degree of
specification flexibility while being the least computationally intensive in general. These facts place
program sketching on the far right side of our axis of comparison.

3.1.6 Natural Language Driven Synthesis

More modern program synthesis paradigms include using machine learning systems such as LLMs
(Large Language Models) to generate code from natural language descriptions [23]. There exist
two major drawbacks to this approach. Firstly, there exists zero guarantee that the generation
code produced by a machine learning model is correct or even valid syntactically. Additionally, due
to the potential ambiguity of natural language-based descriptions, the code may be correct in the
sense of solving a specific problem in a valid way, however, the actual program may not solve the
same problem intended by the user. Another key issue with machine learning based approaches are
ethics surrounding proper crediting of work. LLMs are often trained on large dataset consisting
of code scraped from the internet. This implies that the generated output of an LLM is derived
from the existing work of others and since current machine learning systems cannot assign credit
to generated output, one could argue that such systems are plagiarizing existing work [35].

3.1.7 Diagram Driven Synthesis

Another common code synthesis approach is the generation of code from user specified diagrams
[21] [28] [29]. Unfortunately, diagrammatic code generation may not always scale well to large
projects due to the overhead of manipulating large diagrams on a 2D screen. Additionally, specific
diagramming paradigms tend to be extremely domain-specific (specific to control systems in the
case of Matlab) or restricted to a particular paradigm or way of thinking (UML in Rational Rose
or Enterprise Architect).

3.2 Synthesis Systems

Now that we have discussed a number of code generation paradigms and approaches we will
now focus our attention on a number of particular implementations of synthesis technology and
especially those designed to facilitate boilerplate generation.

3.2.1 GUI Boilerplate Synthesis

One area where much work has been done to automate boilerplate maintenance and generation
is that of GUI code generation. Systems such as the AndroidStudio Layout Editor [30] or JFor-
mDesigner [31] provide the user with a WYSIWYG interactive editor wherein they may visually
construct a GUI. Either system will then generate the code required to realize the user-specified
user interface. Such systems can indeed accelerate development, however, they often produce
code that is difficult to read and may even become desynchronized from the visual representation.
Additionally, generated code can be difficult to debug due to its opaque nature.

3.2.2 Control Systems Synthesis

One common application of program synthesis is the generation of safety-critical code generally
used to control mission-critical cyber-physical systems. One example of such a system is VeriPhy
developed by Rose Bohrer et el. Veriphy is a complete end-to-end framework for synthesizing
formally verifiable system controllers and monitors from one or more formal models formulated in
differential dynamic logic [34]. This allows VeriPhy to model Hybrid Systems, systems involving

36

both continuous and discrete dynamics. Finally, VeriPhy overcomes some of the tractability issues
of a purely deductive synthesis approach by validating the behavior of synthesized components at
runtime, a technique called runtime validation [33].

3.2.3 Compiler Code Synthesis

Another key area that has seen boilerplate automation work is that of Compiler construction.
When implementing a compiler for a particular programming language, many low-level aspects
of language parsing remain similar across different language types. Yacc is a famous system that
takes as input an abstract context-free grammar describing a target programming language. From
this specification, Yacc then generates the required code (in the C programming language) required
to implement the given grammar and thus foundational language parsing [32]. In general Yacc
produces satisfactory results for simple languages. Unfortunately, the specification of more complex
language can be verbose and difficult to understand. Additionally, code generated by Yacc may
be difficult to integrate with existing compiler infrastructure.

3.2.4 API Code Synthesis

Google Protocol Buffers are a relatively popular example of synthesis in the communications proto-
col domain. The Protobuff synthesizer takes as input IDL or interface definition files and outputs
source code consisting of data structures and corresponding serialization machinery. This gen-
erated code is responsible for acting as a bridge between the client runtime (which may be any
number of programming languages) and the low-level protocol buffer transmission infrastructure.
[16] Google protocol buffers provide a clear example of the benefits of code generation with respect
to the reduction of non-essential complexity, in this case the complexity of transmitting structured
data over an unstructured communications channel.

3.2.5 Multi-Domain Synthesis

There have been a few attempts at realizing code generation in a cross-domain manner. Two
key technologies in this regard are the aforementioned Rational Rose and Enterprise Architect
systems [28, 29] Unfortunately both of these systems restrict the user to a particular (opinionated)
modeling paradigm. Additionally, both systems appear to emphasize top-down modeling alone
and do not explicitly facilitate bottom-up modeling or more iterative methods of domain model
formulation.

3.3 Comparison to CoGen

Let us now compare our chosen synthesis technology CoGen, with existing approaches. After an
extensive review of the literature, we found a few key restrictions which we believe may limit the
applicability of existing technologies to multi-domain synthesis of boilerplate. The first issue we
identified was domain specificity. Many methods we examined were quite effective at synthesizing
domain-specific code, for example communications protocol support code, GUI boilerplate, API
wrappers, controls system code, however, these systems failed to provide sufficiently generic primi-
tives to synthesize code across multiple domains (a requirement for solving the boilerplate problem
in general). The second issue encountered was a lack of granular control over the structure of
generated code. In order to realize an approach that works well with existing software engineering
processes and supports synthesis in the context of highly complex systems we believe the engineer
must be given complete control over the structure of generated code while still gleaning the gener-
alization benefits of generating code as a function of an abstract model. The third and final issue
is a lack of generality surrounding model specification. Many synthesis systems forced the user to
specify their model using a domain-specific language or other restricted modeling formalism. For

37

our goals, we believe the user should be capable of codifying their model and specifications in a
regular programming language thus facilitating maximum modeling flexibility.

38

Chapter 4

Case Study - GUI Domain

4.1 Overview

Here we demonstrate the application of CoGen and our synthesis methodology to the generation
of GUI application code. Our goal is to synthesize the source code of a simple target application
in two different application development frameworks (JavaFX and QT) and a 2d game engine
(libGDX). The application we wish to synthesize consists of a single window containing a set of
text labels arranged in a grid structure against a white background.

We generate the code for each target framework simultaneously as a function of a singular
domain model. Our hope is to show how CoGen may reduce the workload associated with writing
framework-specific boilerplate code for a single app which must be supported in multiple frame-
works. Such a scenario arises commonly in software engineering when, for example, targeting
different hardware platforms such as mobile and desktop. In this case study we start with the tar-
get example application implemented by hand in each target framework. We then incrementally
synthesize aspects of the target codebases until all code is generated purely using CoGen.

Our goal for this case study is to act as a light introduction to synthesis using CoGen and
CDMS. In short we are aiming for breadth over depth.

4.2 Domain Description

We characterize the gui domain in this case study as follows. Firstly we define the concept of
a window. A window is a rectangular shape displayed on a screen. A window may contain 0-n
elements where an element is some region of the screen with a specific visual appearance and
functionality. Elements may be composed and thus are related to each other via a tree data
structure. Additionally, elements may be positioned according to some layout. In this case study
we consider a standard type of layout wherein elements are organized in a grid structure.

4.3 Target Description

We chose to generate code for JavaFX and QT and LibGDX as all three frameworks present a
different architecture. QT and JavaFX are most similar in that they both explicitly present the
concept of widgets, however both use different objects and methods to organize widgets. LibGDX
on the other hand presents an entirely different paradigm for rendering of GUI elements. LibGDX
is in fact a game engine and thus more granular code is required to render text on a screen. Our
overall goal with the chosen targets was to demonstrate the variation capacity of CoGen within
the same domain.

39

4.4 Application of Methodology

In accordance with the proposed synthesis methodology, we choose a bottom-up approach to the
construction of both synthesis specifications and domain model. What follows is a step-by-step
account of how we applied our methodology to the synthesis problem at hand.

4.4.1 Distillation - 1 - JavaFX

Upon initial examination of the JavaFX code example, the following observations were made.

• The main application class must inherit from a base JavaFX application class.

• The main application class must override three methods, one responsible for initialization,
another for scene creation and another for cleanup.

• The user may create text labels which are a form of widget.

• Widgets must be attached to so-called scene

• Scenes can be attached to a so-called primary stage.

• The primary stage is used to set the window title

• The window title is a hardcoded literal string value.

• The primary stage is used to initial painting the GUI

4.4.2 Modeling - 1 - JavaFX

From the observations made above, we concluded that our domain model should include the concept
of a Text Element and subsequently a more abstract Element from which Text element inherits.
Next we introduced a class called Window containing a window title and a list of active widget
elements. Finally, we created a base Domain class designed to contain a specific instantiation of
our domain. For our first domain configuration, we instantiated a single text element and set the
window title to ”Basic JavaFX Application”.

Overall, the guiding principle used in the introduction of these concepts was to codify both
a high-level organization of system components and also information not specific to the JavaFX
framework (in this case the primary stage or scene classes or the specifics of the JavaFX inheritance
structure).

4.4.3 Synthesis - 1 - JavaFX

We begin synthesis by creating a new implementation provider for JavaFX. In the implementation
provider, we first specify generators for the application class, and then generators for each key
method present in the original codebase. Next we synthesize the actual code for each method one
at a time. Note that for now we synthesize the code in the original target code baseline by line
exactly as it occurs in the target.

The following code was the core focus of synthesis at this stage.

• Application class with inherited JavaFX Application base class.

• Init method with debug print and call to the base class init method

• stop method with debug print and call to base stop method

40

• start method which 1. instantiates a single text element (using domain model text element
content as a constructor argument), 2. assigns the text element to a new scene object, 3.
assigns the scene object to the primary stage and 4. sets the window title by passing the
domain model scene title into the primary stage setTitle method as a string literal and finally
5. refreshes the page by calling update on the primary stage.

After synthesis of the basic example we now shift focus temporarily to our two additional
targets.

4.4.4 Distillation - 2 - JavaFX

In our second distillation pass we now turned our attention to layout. Focusing on the layout
component of the code we made the observation that JavaFX implements an explicit GridLayout
class which facilitates the assignment of widgets at a specific x,y location in the grid.

4.4.5 Modeling - 2 - JavaFX

We decided that the concept of a layout as a whole was not specific to JavaFX and would be
relevant to any GUI framework. For this reason, we decided to introduce two new classes to our
domain model namely Layout and GridLayout, where GridLayout consists of a 2-d nxm array of
widget elements. Finally in preparation for the next synthesis iteration we modified our domain
instance to include an instance of our new GridLayout specifically a 3x3 grid of text elements.

4.4.6 Synthesis - 2 - JavaFX

In our next synthesis task we added a nested for-loop to the onstart method. Within the inner
loop we instantiate a JavaFX text element and assign it to the corresponding JavaFX grid layout
object. At this point we encountered an interesting problem. How, in the inner for loop, can we
access the domain model-specific text element information at runtime such that we can instantiate
a JavaFX text element with the proper content? We discussed various solutions to the problem,
some of which we will demonstrate during synthesis of the QT and LibGDX targets. For JavaFX we
settled on an approach we call type projection (see 2.3 for a more general description). The idea of
type projection is to, for a given type in the domain model, synthesis a 1-1 equivalent of the domain
model class in the target implementation and, at some point in the target code, populate sufficient
instances of the target class type with the corresponding domain model information. This way,
domain model information can be easily accessed during runtime via referencing the preinitialized
class instances. In the case of JavaFX we synthesized a dedicated TextElement class containing
a single string member variable. In the init function we created an array of TextElement classes
and for each domain text element populated the corresponding Text Element with the contents
of the domain model text element via assignment of a string literal. Finally with all text element
information available at runtime, we modified the inner for loop such that Text element content
was read from the array of Text element instances.

This concludes the JavaFX target.

4.4.7 Distillation - 1 - QT

We now turn our attention to the QT codebase. On our first consideration of the target codebase,
we made the following observations.

• Overall codebase is very similar to JavaFX and leverages similar objects including, explicit
GridLayout object. Additionally a widget composition architecture is used.

• method overrides are slightly different compared to JavaFX. No init or onstart just onclose
method. Constructor used for initialization.

41

4.4.8 Modeling - 1 - QT

Given similarities to JavaFX, no additional modeling tasks were required to facilitate the QT
target. This is a good sign as it implies our domain model is general enough to support multiple
backend frameworks simultaneously (our original goal).

4.4.9 Synthesis - 1 - QT

The first difference between JavaFX and QT synthesis we implemented was to delegate initializa-
tion code to the main application class constructor. The second change involved handling of grid
layout generation. Unlike the type projection approach taken in JavaFX, we decided to synthesize
a string manipulation expression to produce the desired label context. The reason for doing this
was to demonstrate how in some cases, domain information may be derived at runtime.

This concludes the QT target.

4.4.10 Distillation - 1- libGDX

The LibGDX target was fundamentally different from previous targets due to its game engine
architecture. This major deviation from previous architectures called for a detailed distillation
pass. Our distillation observations were as follows.

• LibGDX requires two primary classes, one to handle platform-specific runtime initialization
and another class to implement the specific ”game” / application logic.

• The platform initialization class must initialize a specific backend (in this case LWJGL) to
facilitate access to lower-level window management and graphics rendering functionality.

• The platform initialization class sets various window parameters such as title, framerate and
vsync mode.

• The application class class must inherit from a LibGDX application class.

• The application class overrides three lifecycle methods namely create, render and dispose

• Three key objects are used to facilitate rendering of text. The objects are a sprite batch
object, font object and camera object.

• No explicit grid layout object or text element widgets are implemented by LibGDX. Instead,
text is rendered to the screen using a specific font. Fonts are drawn at specific x,y coordinates
using the sprite batch.

4.4.11 Modeling - 1 - libGDX

Even though the LibGDX implementation is quite different then JavaFX and QT, this did not
necessitate mutation of the domain model.

4.4.12 Distillation - 1 - LibGDX

In a similar form to JavaFX and QT we first synthesized the application game class with its
required parent class and lifecycle methods. We then synthesized the platform-specific class using
the domain model window title. Returning to the game class, we then synthesized member variables
for the font, camera and sprite batch classes. Next in the create method we synthesized code to
instantiate the font, camera and sprite batch classes.

Next we turned our attention to the render method. First and foremost we synthesized code
to clear the frame and configure the camera. Now it was time to determine how to render our text

42

elements on a grid layout. We decided to take a completely different approach then done with
JavaFX and QT. Instead of using loop structures we decided to remove all iteration i.e flatten the
code and generate the required code for each text element. We decided to generate flattened code
as it demonstrates both the variability possible between different implementation providers with
respect to code structure, but also how one can arbitrarily decide when to completely flatten code
structure. This is a powerful capability as flattened code can often offer benefits both in terms
of performance and readability. Naturally, the converse is also true namely that too much code
structure denormalization can lead to quite unreadable code. We suggest there exists a balance
between the two extremes that yields superior results.

We generated the flattened code as follows. For each text element in the domain we synthesized
code to 1. calculate the correct x,y position of the font then draw the font with a particular literal
string provided by the domain text element.

This concludes the LibGDX target.

4.5 Results

4.5.1 Artifacts

Resulting artifacts of this case study may be found in the following locations.

• Domain Model Location: Link

• Synthesis Specification Location:Link

• Target Codebase Locations:

– JavaFx: Link

– QT: Link

– LibGDX: Link

4.5.2 Domain Model

Through application of our methodology, we converged on the following domain model. Although
limited to Text elements and Grid layout, the model could be expanded to additional element
types, layouts and perhaps even data binding related functionality.

43

https://github.com/ParaLock/CoGen/tree/CoCo/helloworld/src/main/scala/org/combinators/gui/domain_model
https://github.com/ParaLock/CoGen/tree/CoCo/helloworld/src/main/scala/org/combinators/gui/providers
https://github.com/ParaLock/WPI-Masters-Thesis-Workspace/tree/main/Target_JavaFX
https://github.com/ParaLock/WPI-Masters-Thesis-Workspace/tree/main/Target_Qt
https://github.com/ParaLock/WPI-Masters-Thesis-Workspace/tree/main/Target_LibGDX

Figure 4.1: UML diagram of GUI domain model

In addition to the given domain model, we converged on the following per target synthesis
specifications.

44

4.5.3 JavaFX

Figure 4.2: Synthesis tree for JavaFX target - 1

45

Figure 4.3: Synthesis tree for JavaFX target - 2

46

Figure 4.4: Synthesis tree for JavaFX target - 3

47

4.5.4 QT

Figure 4.5: Synthesis tree for QT target

48

4.5.5 LibGDX

Figure 4.6: Synthesis tree for LibGDX - 1

49

Figure 4.7: Synthesis tree for LibGDX - 2

50

Figure 4.8: Synthesis tree for LibGDX - 3

4.6 Evaluation and Reflection

At the beginning of this case study we set out to synthesize the source code of a simple GUI
application in three different GUI application frameworks simultaneously using a single support-
ing domain model. In each synthesized codebase we demonstrated the synthesis of a different
implementation architecture, JavaFX using our novel type projection pattern, QT using runtime
derivation of text element values, and LibGDX using flattened code structure.

We were able to synthesize 100% of application source code in all three frameworks and we feel
the resulting domain model and synthesis specifications could easily be extended to further facets
of the GUI domain and by extension target framework functionality. Overall we are quite happy
with the results of this case study and feel it is an encouraging first look into the effectiveness of
CoGen and CDMS.

51

Chapter 5

Case Study - Robotics Domain

5.1 Overview

In this case study we synthesize boilerplate code required to use the ROS robotics development
framework. In the GUI domain we focused on breadth, synthesizing code to support a number
of different targets in the same domain. The goal of this case study is to evaluate the depth
of synthesis that is possible using CoGen and CDMS. We will show how CoGen can be used to
synthesize code realizing nearly 100% of the feature set presented by the ROS framework. percent
of boilerplate code usually found in a typical ROS project. Additionally, we demonstrate how the
engineer may inject code fragments of their own design into a synthesized codebase thus allowing
easy integration of existing non-synthesized business logic.

5.2 Target Description

Our synthesis target for this case study is a Java port of the ROS framework aptly named ROSJava.
ROSJava was originally designed to facilitate usage of ROS under Android, however, the port also
supports desktop operating systems. We based our initial codebase on the cited example. [18]

5.3 Domain Description

We chose in this case study to model a specific subset of core ROS functionality including ROS node
lifecycle, basic node initialization and teardown, ROS message generation and handling and boil-
erplate related to the ROS node communication fabric (eg: Client/Server, Publisher/Subscriber).

5.4 Application of Methodology

5.4.1 Distillation - 1

For the first pass of distillation, we made the following observations:

• In the example code there exist a number of ROS node instances. Each instance takes on
the role of either client, server, publisher or subscriber.

• Each ROS node has a string-based identifier.

• Each ROS node executes some form of business logic in a loop callback. Logic includes
printing debug messages and in the case of one server node, adding two numbers.

52

5.4.2 Modeling - 1

From the distillation above we determined that at its core, our domain model should be centered
around the ROS node. This idea aligns with the distributed systems architecture of ROS namely
that a system should be broken up into nodes that ostensibly operate autonomously and interact
via message passing.

To reflect the key observations made during distillation we added to our domain model a ROS
class containing both an identifier string and the name of an optional code fragment to be executed
during the periodic node callback.

5.4.3 Synthesis - 1

Our first synthesis specification generated a ROS java class for each ROS node instantiated in the
domain model instance. To this class, the synthesis spec added a single string member variable
to hold the node id, and also implemented the onstart method. Finally, the onstart method was
populated with code to register a periodic loop callback (if a code fragment was specified in the
domain model). The loop callback was realized as a functor and thus the synthesis specification
was extended to synthesize an additional functor housing the user-provided code fragment.

5.4.4 Distillation - 2

In our next distillation pass, we focused on the concept of node roles and overall ros node com-
munication. We framed our distillation around the fact that, as observed previously, each ROS
node can contain additional code to facilitate communication with other nodes as either a Client,
Server, Publisher or Subscriber. (Note: under ROS a single node can actually take on multiple
roles simultaneously but for the sake of simplicity we will only consider one role per node instance)

Below were our observations in this context.

• Subscriber and Publisher nodes contain the name of a specific topic they publish messages
to or consume messages from.

• Server and client nodes keep track of the name of the service they are providing or consuming.

• Client nodes implement a handler for responses returned by an invoked server

• Server nodes implement a handler for requests sent by clients

• Client and Subscriber nodes each have a supporting Listener class with methods to facilitate
responding to either server responses in the case of client or publication of new messages in
the case of subscriber.

5.4.5 Modeling - 2

From the observations above we saw that the role of a node significantly affected its structure
and behavior while still leaving functional overlap between node types. Additionally, each role
required slightly different role specific information (topic name vs service name). These conclusions
led us to model node roles explicitly in the domain model and then pass a role into a domain
model node instance during creation. the overall result of this decision was that we could add
different variations of code to a ROS node during synthesis without interfering with more generic
node components. Additionally as outlined in Distillation - 2, some roles require the creation of
supporting listener classes.

Concretely we added to our domain model a role object for each role type. In each of these
role objects we included parameters for role-specific information. To all role types (except server)
we also added parameters for the specification of code fragments the user would like to run at

53

important points in the communication lifecycle. Such points include, upon receiving a response
from a server, upon sending a request to a server, upon consuming a message published on a topic.

5.4.6 Synthesis - 2

Synthesis of the newly introduced communication functionality was time-consuming but straight-
forward. Firstly, for each node with role of Subscriber or Client we synthesized a supporting
Listener class and appropriate handler methods. We then extended the onstart method of each
ROS node class to register the listener class with the ROS runtime. We also extended onstart to
create a ROS Client/Server/Publisher/Subscriber endpoint for our node and we stored the result-
ing handle as a field in our ROS node class. Finally, we loaded each domain model specified code
fragment into the project as a class file. We then added calls to an expected static run method in
each fragment to appropriate locations throughout the ROS code.

5.4.7 Distillation - 3

In our final distillation pass, we focused our attention on ROS Messages. Up until that point the
codebase had relied upon predefined ROSJava messages. Upon examining the definitions of these
predefined messages in the ROSJava codebase we made the following observations.

• Each message may contain any number of primitive member variables.

• Each message contains a string indicating the location of the package in the project package
structure. (This is used to dynamically load the message at runtime)

• Each message contains a specially formatted string encoding the datatypes contained within
the message.

• For each field in the message has a corresponding getter and setter.

5.4.8 Modeling - 3

In order to realize dynamic synthesis of messages we decided that from a domain model perspective,
the user should be capable of specifying their messages as normal scala classes consisting of just
the fields they want and requiring no additional specification of metadata.

5.4.9 Synthesis - 3

To synthesis ROS messages, we looped over every ros message type and then iterated over ever
field in the message type (using reflection) and generated the corresponding java class including
java equivalents of all fields, setters, getters and finally both type and location metadata strings.
Additionally, in the case of Server messages, we also generated an additional message class required
by ROS. This message class simply contains a concatenation of the Request and Response types
used by the client and server respectively.

Now it was at this point that we encountered an interesting issue. Many ROS API calls are
parameterized by the type of used during communication to or from an underlying node. In order
to populate these types we decided the best course of action was to extend the domain model to
support association of message types with roles.

5.4.10 Modeling - 4

Returning to the modeling phase we amended our domain model by adding to each role type,
one or more parameters indicating the type of message communicated by the underlying ros node
instance.

54

5.4.11 Synthesis - 4

Using the newly available domain model information we were now able to parameterize ROS API
calls (such as message, request, response instantiation calls) with the correct message type.

5.5 Results

5.5.1 Artifacts

Resulting artifacts of this case study may be found in the following locations.

• Domain Model Location: Link

• Synthesis Specification Location: Link

• Target Codebase: Link

5.5.2 Domain Model

Figure 5.1: UML diagram of robotics domain model

55

https://github.com/ParaLock/CoGen/tree/CoCo/helloworld/src/main/scala/org/combinators/robotics/domain_model/ros
https://github.com/ParaLock/CoGen/tree/CoCo/helloworld/src/main/scala/org/combinators/robotics/providers/ros
https://github.com/ParaLock/WPI-Masters-Thesis-Workspace/tree/main/Target_ROS

56

5.5.3 ROS Node

Figure 5.2: ROS Node synthesis tree - 1

57

Figure 5.3: ROS Node synthesis tree - 2

58

5.5.4 ROS Node Listeners

Figure 5.4: ROS Node Listener synthesis tree

59

5.5.5 User logic fragments

Figure 5.5: User logic fragments synthesis tree

60

5.5.6 ROS Messages

Figure 5.6: ROS Message synthesis tree

61

5.5.7 ROS Loop Class

Figure 5.7: ROS Loop synthesis tree

5.6 Evaluation and Reflection

At the beginning of this case study we set out to synthesize as much ROS boilerplate code as
possible. Our goal was to allow the user to supply their business logic have the generator produce
most of the boilerplate required for node lifecycle management. In the end however we were
able to completely synthesize ROS boilerplate related to node creation and communication with
the constraint that each ROS node may only take on one communication role. We believe this
constraint may be easily relaxed with a relatively small amount of additional development time.
We are quite happy with the result and believe it demonstrates the depth with which one can
apply CoGen and CDMS within a single domain.

62

Chapter 6

Case Study - 3D Rendering
Domain

6.1 Overview

In this case study we consider the synthesis of boilerplate code in the domain of 3d rendering,
specifically code required to make use of the Vulkan Rendering API. The high-level goal of this
case study is to demonstrate the synthesis of code which may be injected into an existing large
codebase. The primary benefit of this approach is that it gives the engineer familiar control over
design and code structure while still allowing them to request the synthesis of boilerplate code in
extremely targeted circumstances.

One key challenge encountered and addressed by this case study is the issue of defining a clear
interface between synthesized and existing code. If the user requests to generate some code via
CoGen, how do they then know how to interface with the generated code? In this case study we
solve this problem by synthesizing methods that return opaque handles to resources and operate
on predefined synthesized support objects.

Finally in this case study we focus purely on modeling of the target domain in order to demon-
strate the usage of CDMS in purely an analytical mode.

6.2 Target Description

In this case study we start with a Java port of the classic Vulkan C++ tutorial “vulkantutorialjava”.
We chose Vulkan as the API is known for its high degree of boilerplate code. For example, in order
to render a triangle on the screen around 1000 lines of boilerplate code are required. The positive
tradeoff of this complexity is that Vulkan facilitates incredibly low-level and performant access to
hardware resources.

6.3 Domain Description

In the 3d graphics rendering domain, a key concern is to accelerate the rendering of images on a
screen by specifying computation in the form of highly concurrent programs called shaders. These
shader programs are then run on some form of specialized accelerator hardware (usually a GPU).
Hardware and software manufacturers have built many different APIs for running shaders on their
respective hardware. Early APIs such as Directx 9 and OpenGL presented an abstract and highly
synchronous interface to GPU hardware. This approach required that less code be written by the
engineer but was limited in that it did not expose low-level hardware features and execution flow

63

control. More modern APIs such as Directx 12 and Vulkan provide extremely granular access to
hardware functionality but at the cost of an increased degree of boilerplate code.

6.4 Application of Methodology

6.4.1 Distillation - 1

Upon initial examination of the target codebase we observed a number of resource types used in
rendering.

• PhysicalDevice

• GraphicsQueue

• PresentQueue

• VertexBuffer

• IndexBuffer

• UniformBuffer

• RenderPass

• DescriptorPool

• DescriptorSet

• GraphicsPipeline

• CommandPool

• CommandBuffers

• Barrier

• Fence

• Graphics

• Shader

• Swapchain

For each of the objects above, the codebase contained a method to create or, in the case of
uniform buffer, update the associated objects.

6.4.2 Modeling - 1

By applying existing knowledge of the 3d rendering domain, we were able to decide on a subset
of observed objects to be codified explicitly in our domain model. Firstly we included Shader and
GraphicsPipeline as explicit objects in our domain model. We made this decision as these two
primitives encapsulate the primary concern of our domain namely ”what we want the GPU to do”.
A gpu pipeline generally contains so called fix function stages such as Rasterization. To encapsulate
configuration details of the rasterization stage we introduced a new class called RasterizationPolicy
which is to be passed into the GraphicsPipeline object on instantiation.

Next, we turned our attention to resources that may be directly accessed by a shader. Such
resources include any form of buffer or Image/Texture. For maxmimum flexibility we decided to

64

divide buffers up into two types, namely AdhocBuffer and BulkBuffer. Our objective was to have
AdhocBuffer take on the role of Uniform Buffer in the original example and BulkBuffer the role
of vertex and index buffer. This bifurcation of Bulk and Adhoc is useful as sending large sets
of data (Bulk data) such as mesh vertices to the GPU usually involves different considerations
and constraints when compared to the transfer of nonbulk data (Adhoc data). Additionally, when
rendering, mesh data is often not updated frequently unlike adhoc data such as object transfor-
mations which are generally updated frequently (i.e every frame). This difference in role was also
quite visible in the target codebase where entirely different code existed for the management of
vertex/index buffers compared to uniform buffers.

The next object considered was Texture. We decided to represent Texture in our domain model
with a class called Image. The purpose of the image class was to abstract away implementation
details of a typical image data structure. For example, in our example code an image could be a
framebuffer, render target, or texture. Our image object on the other just codifies the essence of
these objects namely information related to a height, width, and format.

With our foundational set of objects in place, it was time to think about how to use them in
our domain model. The high-level approach chosen was to allow direct instantiation of Shaders,
GPUPipelines and associated Buffer/Image resources but with the assertion that Adhoc/Bulk
buffer and Image instances represent types of objects that could be created at runtime and instances
of GPUPipeline and Shader represent actual specific instance of a rendering resource i.e map 1-1
with their runtime equivalents.

6.4.3 Synthesis - 1

As seen in distillation 1, our example codebase involves the creation, updating and destruction of
many different resource types. For this reason our first distillation task was the generation of a
Catalog class for storing object instances and providing the user with handles to these objects as
desired. A benefit of encapsulating object instances in a catalog is that it minimizes interference
with existing code.

In order to further reduce interference we decided to build our synthesized code an an Opaque
Handle based architecture similar to the Win32 API. Here we return opaque handles to created
objects from various factory functions. This handle may then be passed into further synthesized
helper functions to perform operations involving an object instance. Again the primary motivation
behind this design decision was reduction of interactions with existing code.

With our synthesis architecture in place, we decided it would be best to directly synthesize
factory methods for either specific Buffer and Image archetypes or 1-1 instances of Pipelines and
Shaders.

6.4.4 Modeling - 1.1

During completion of Synthesis - 1 we noted that the user should be given some degree of control
over how objects were created and associated object lifetimes. To accomplish this goal we added
a new class to our model called CreationPolicy. Upon instantiation in the domain model, object
types must be provided a CreationPolicy. This policy would then influence the code generation to
create the target object instance.

6.4.5 Distillation - 2

With resource creation underway, we began a second past of code analysis this time with an eye
towards to resource usage. In order to achieve the goal of ”running code on the GPU” we need to
be capable of binding both Shaders and shader resources to the GPU and also updating certain
resources at runtime (for example updating the contents of a buffer). In our target codebase
resources are created up front before rendering and later bound to the GPU upon rendering each

65

frame. This observation leads us to the idea of synthesizing a binding method and when applicable,
update method for each resource type.

6.4.6 Modeling - 2

No further additions to our domain model were required at this step.

6.4.7 Synthesis - 2

In order to facilitate maximum flexibility, we built our binding and updating methods around a
command list architecture. The idea with said architectures is that we construct a list of commands
to be send to the GPU and then submit this list of commands using a special method call at a later
point in time. First and foremost we introduced two new methods one to create a new instance of
a command list and another to submit a command list. Next we introduced methods to enqueue
resource binding, draw and update commands to a given command list.

6.4.8 Distillation - 3

To finalize our synthesis we turned our attention to higher-level rendering code namely initialization
code, cleanup code and per-frame boilerplate. In our target codebase, cleanup and init tasks were
handled by two respective methods. We decided to keep this design and simply synthesize both
methods directly. We also observed code that was run before and after every frame. This code
primarily involved synchronization and acquisition of the next image to render from the swapchain.

6.4.9 Modeling - 3

The per-frame code mentioned above involved interesting parameters such as number of frames
allowed to be in flight at once. Additionally, it is possible that the user would like to run certain
rendering processes in parallel (such as compute and graphics shaders). For this reason we extended
our domain model with two new classes designed to encapsulate the aforementioned details. The
classes in question are named ConcurrencyPolicy and SynchronizationPolicy.

6.4.10 Synthesis - 3

In the final synthesis pass we introduced four new methods, beginFrame, endFrame, initRendering
and destroyRendering. beginFrame and endFrame implement boilerplate related to per-frame syn-
chronization and other miscellaneous tasks. InitRendering and destroyRendering handle common
Vulkan initialization and cleanup tasks.

6.5 Results

6.5.1 Artifacts

• Domain Model Location: Link

6.5.2 Domain Model

Below is a UML diagram of the domain model we converged upon.

66

https://github.com/ParaLock/CoGen/tree/CoCo/helloworld/src/main/scala/org/combinators/rendering/domain_model

Figure 6.1: Rendering domain UML diagram

6.5.3 Vulkan App

Below is a sketch of a possible synthesis approach to achieving the goals of this case study.

67

Figure 6.2: Vulkan synthesis tree

6.6 Evaluation and Reflection

At the start of this case study we set out to validate whether CDMS could be applied to a highly
complex domain such as 3d rendering in Vulkan and in a manner that posing minimal interference
with an existing system implementation. We believe we were able to achieve this goal. With
further time investment, we believe it would be straightforward to implement a CoGen synthesis
specification for the given domain model and synthesis tree. Additionally, we believe the approach
could be modified to reflect a higher degree of object orientation without negatively affecting code
interference.

68

Chapter 7

Evaluation

In order to gather evidence of the effectiveness of CoGen and CDMS we applied both technology and
methodology to three varied case studies. During case study execution, results were documented
in the form of a written development journal. In addition, metrics involving Lines of Code written
were also gathered.

7.1 Quantitative Analysis

In order to analyze the results of our case studies quantitatively, we leverage a metric called LOC
or lines of code. This metric is defined as the number of lines source code (not including comments
and blank lines) which constitute a given set of source code files. Note that we will only consider
the results from case studies 1 and 2 as case study 3 did not involve the implementation of synthesis
specifications in CoGen.

Now it is important to note that the metric of LOC has many limitations and is not entirely
useful in a general sense. In the case of this analysis, however, we simply present LOC as a way
of grounding our work and acting as a basis for further discussion not as a metric to prove any
particular claim about our results. With regard to this general discussion, we will use relative
proportions of five different LOC statistics which we hope will provide some insight into the large
body of coding related work backing this thesis.

Below is a table summarizing the five LOC metrics per case study.

Table 7.1: LOC Per Category

Case Study Original
Codebase

Generated Handwritten Synthesis
Specifica-
tion

Domain
Model

GUI - JavaFX 47 68 0 577 30
GUI - QT 34 38 0 394 30
GUI - LibGDX 71 72 0 491 30
Robotics - ROS 375 295 49 1965 49

Below is a description of each data category.

• Original Codebase: LOC of the original case study codebase (before application of CDMS)

• Generated: LOC generated by CoGen.

• Handwritten: LOC of business logic written by hand.

69

• Synthesis Specification: LOC of the CoGen implementation providers which implement the
case study synthesis specification.

• Domain Model: LOC of the final domain model consumed by the implementation provider.

The data above contains a number of interesting patterns. Firstly one may note that in the case
of JavaFX, QT and LibGDX, the amount of code generated is greater than the original codebase
size. In the case of JavaFX this is due to the synthesis of an extra class to encapsulate Text
element information, and then additional code to instantiate instances of this class. In the case of
QT the difference is due to the flattening of code structure. Finally, the difference in LibGDX is
simply the result of minor code formatting differences. In the case of ROS we see that the amount
of generated code is actually less than the original codebase size. This is again due to differences
in code formatting.

We will now consider a number of more interesting observations. The first such observation is
related to the drastically larger size of the synthesis specification as compared to generated output.
The first cause of such a size difference lies in, ironically, boilerplate code required to interact with
the CoGen framework. This boilerplate code accounts for around 171 LOC and does not vary with
the amount of code generated or the domain. Boilerplate aside, the remaining bulk of synthesis
specification code comes down to the generality of the synthesis process. With little modification,
each synthesis specification could be changed to generate code in entirely different programming
paradigms (such as functional, imperative etc) or programming language. This generality requires
a slightly more verbose specification of code structure which we believe is a sufficient tradeoff.
Another key driver of synthesis specification size is extensibility and support for multiple code
structure permutations depending on the domain model. This is the primary driver of the large
size of the ROS synthesis specification. In the generated example, three ROS nodes are generated.
The current synthesis specification however is not limited to the generated of three nodes. The
domain model may specify any number of nodes to generate. This example shows that as the
domain model is leveraged to a greater and greater degree, eventually it is likely that the amount
of code generated will surpass synthesis specification size.

7.2 Qualitative Analysis

In order to evaluate our results in a qualitative manner, we perform a reflective written analysis.
Naturally, such an approach comes with major drawbacks including but not limited to a high
degree of subjectivity and potential difficulties related to reproducibility of results. In the case
of our results, however, we believe the process of executing each case study was documented
thoroughly enough as to provide a clear line of support for each of the claims made below.

In the first case study, we achieved complete synthesis of lifecycle and environment configuration
boilerplate required to utilize three GUI frameworks. In addition, we were able to synthesize
boilerplate in all cases to support layout of text elements in a grid pattern. We believe these
results show evidence of the ability of CoGen and CDMS to leverage a single domain model in the
generation of boilerplate code for multiple contexts.

In the second case study, we generated all boilerplate required to facilitate the creation of
ROS nodes, and communication between any number of ROS nodes via message passing in both
pub/sub and client/server capacities. In addition, we generated all code required to initialize the
ROS executor, instantiate desired ROS nodes and register them with the executor.

For the robotics and GUI case study, we succeeded in synthesizing well-formated, clear and
compilable code, with the exception of two minor instances where CoGen had not yet implemented
the ability to leverage two minor language features.

In the third case study, we focused purely on the modeling capabilities of CDMS.We believe that
our resulting domain model and (diagram only) synthesis specification clearly demonstrated the

70

scalability of CoGen and CDMS to even extremely granular and customizable Vulkan boilerplate
code.

We believe these case studies demonstrated a positive result with regard to the usefulness and
applicability of our approach.

Each case study demonstrated the high degree of capabilities offered by CoGen including the
generation of generics and other metaprogramming constructs, and the generation of complex
embedded data formats in the case of ROS messages. We also demonstrated the ability of our
approach to scale and remain usable across multiple varied domains. This concludes our evaluation.

71

Chapter 8

Conclusion and Future Work

In this thesis, we evaluated the effectiveness of generating boilerplate code in three real-world do-
mains using the CoGen synthesis framework and CDMS methodology. Although the construction
of synthesis specifications was time-consuming, we believe our results are a clear indicator that
the foundational theory underlying the approach is valid and could be applied effectively to many
more real-world domains. In the first case study, we achieved effective synthesis of boilerplate
code across three target implementations from a single domain model. In the second case study
we demonstrated synthesis of core boilerplate code required to deploy business logic in a ROS
environment. In the final case study, we demonstrated an additive approach to synthesis wherein
code was injected into an existing codebase in such a manner that the engineer could leverage
generated code with zero interference with pre-existing code. We believe these three scenarios
provide sufficient coverage of what is possible using CoGen and our synthesis methodology. We
now turn our attention to a number of topics we would like to explore in future work.

8.1 Domain Model Composition

In each case study we developed a single domain model, however, in many real-world situations,
combining domain models for the generation of a single project may be useful especially if the goal
is to reuse code generation across multiple projects. We would like to explore this line of reasoning
further as it would be highly useful in the context of open source and scaling our approach.

8.2 Domain Model and Synthesis Specification Reuse

Under the circumstances that our approach is adopted by a larger community, the ability to
efficiently reuse and share domain models and synthesis specifications amongst individuals and
organizations in a scalable way will become of utmost importance. Additional research and de-
velopment will be required to find the best way of facilitating such growth. Potential areas of
research could include, creating searchable public repositories of domain models and synthesis
specifications and additional IDE tooling to facilitate easy access and usage of public artifacts
within development workflows.

8.3 Generating Game Engine Components

Inspired by the 3D rendering domain, we would like to explore the synthesis of various game
engine components and subsystems including platform-specific renderer functionality, and entity/-
world representation mechanisms such as ECS. This feat would explore the usage of CoGen in a

72

more top-down/modeling-centric manner and also test CoGen’s practical ability to generate high-
performance code (a strict requirement of most game engines). Finally, the synthesis of specific
game engine concerns would better test the scalability of synthesis specifications to the generation
of larger codebases. We suspect that by synthesizing a codebase on the scale of a game engine, we
will discover new and powerful design patterns and methods of structuring synthesis specifications
that scale better to the greater size.

8.4 IDE Tooling

Our approach presents ample opportunity for IDE-supported enhancements to both CoGen and
CDMS workflow. Some ideas for future IDE tooling include:

• Inline identification of generated code vs non-generated. Allow for instant regeneration with
one click.

• Automatic creation of synthesis specifications corresponding to highlighted code.

• Automatic integration of generated code into existing project structures.

73

Bibliography

[1] Brooks, Frederick P. (1986). ”No Silver Bullet—Essence and Accident in Software Engineering”.
Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076.

[2] CoGen. [Online]. Available: https://github.com/combinators/expression-problem.

[3] Wirth, Niklaus. (1971). Program development by stepwise refinement. Commun. ACM, 14(4),
221–227. https://doi.org/10.1145/362575.362577.

[4] Lämmel, Ralf and Peyton Jones, Simon. (2003). Scrap Your Boilerplate: A Prac-
tical Design Pattern for Generic Programming. Proceedings of the 2003 ACM SIG-
PLAN International Workshop on Types in Languages Design and Implementation, 26-37.
https://doi.org/10.1145/604174.604179.

[5] Ghazarian, Arbi. (2015). A theory of software complexity. Proceedings of the Fourth SEMAT
Workshop on General Theory of Software Engineering (GTSE ’15). IEEE Press, pp. 29–32.

[6] McCabe, T. J. (1976). ”A Complexity Measure”. IEEE Transactions on Software Engineering,
SE-2(4), 308-320. https://doi.org/10.1109/TSE.1976.233837.

[7] Heineman, G. T., Bessai, J., Düdder, B. (2022). EpCoGen Journal. ms, WPI, Worcester, MA
USA; Technische Universität Dortmund, Germany; University of Copenhagen, Denmark. (IN
PROGRESS).

[8] Gulwani, Sumit; Polozov, Oleksandr; Singh, Rishabh. (2017). ”Program Syn-
thesis”. Foundations and Trends® in Programming Languages, 4(1-2), 1-119.
https://dx.doi.org/10.1561/2500000010.

[9] Rich, C.; Waters, R.C. (1993). Approaches to automatic programming. In M.C. Yovits (Ed.),
Advances in Computers (Vol. 37, pp. 1–57). https://doi.org/10.1016/S0065-2458(08)60402-7.

[10] Solar-Lezama, Armando. (2013). ”Program Sketching”. International Journal on Software
Tools for Technology Transfer, 15(5–6), 475–495.

[11] Prose framework. Microsoft Research. (2022, July 22). [Online]. Available:
https://www.microsoft.com/en-us/research/project/prose-framework/.

[12] Guo, Z.; Cao, D.; Tjong, D.; Yang, J.; Schlesinger, C.; Polikarpova, N. (2022). Type-Directed
Program Synthesis for RESTful APIs. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI).

[13] Polikarpova, Nadia; Kuraj, Ivan; Solar-Lezama, Armando. (2016). Program
synthesis from polymorphic refinement types. SIGPLAN Not., 51(6), 522–538.
https://doi.org/10.1145/2980983.2908093.

[14] (1999). Refactoring: improving the design of existing code. Addison-Wesley Longman Pub-
lishing Co., Inc., USA.

74

[15] Sutton, Richard S.; Barto, Andrew G. (2018). Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA.

[16] Google. (n.d.). API reference — protocol buffers. [Online]. Available:
https://developers.google.com/protocol-buffers/docs/reference/overview.

[17] MDAOG. [Online]. Available: https://mdaog.sourceforge.net/.

[18] SpyrosKou. (n.d.). Plain-ros-java-system-example. [Online]. Avail-
able: https://github.com/SpyrosKou/Plain-ROS-Java-System-
Example/tree/main/src/main/java/eu.spyros.koukas.ros.examples.

[19] Overvoorde, A. (n.d.). Introduction - Vulkan Tutorial. [Online]. Available: https://vulkan-
tutorial.com/.

[20] Naitsirc98. (n.d.). Vulkan-tutorial-java. [Online]. Available:
https://github.com/Naitsirc98/Vulkan-Tutorial-Java.

[21] Simulink Coder. MATLAB. [Online]. Available: https://www.mathworks.com/products/simulink-
coder.html.

[22] ChatGPT. [Online]. Available: https://chat.openai.com/?model=gpt-4.

[23] GitHub copilot. [Online]. Available: https://github.com/features/copilot.

[24] Evans, E.; Fowler, M. (2019). Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley.

[25] Evans, E. (2015). Domain-driven design reference: Definitions and patterns summaries. Abe-
Books.

[26] ParaLock. (n.d.). Fork of CoGen. [Online]. Available: https://github.com/ParaLock/CoGen.

[27] ParaLock. (n.d.). Case Study Repo. [Online]. Available: https://github.com/ParaLock/WPI-
Masters-Thesis-Workspace.

[28] IBM. (n.d.). Rational rose model. [Online]. Available:
https://www.ibm.com/docs/en/rational-soft-arch/9.5?topic=migration-rational-rose-model.

[29] Sparx Systems. (n.d.). Enterprise architect. [Online]. Available:
https://sparxsystems.com/products/ea/.

[30] Android Developers. (n.d.). Android Layout Editor. [Online]. Available:
https://developer.android.com/studio/write/layout-editor.

[31] FormDev Software. (n.d.). JFormDesigner - Java/Swing Gui Designer. [Online]. Available:
https://www.formdev.com/jformdesigner/.

[32] Yacc. [Online]. Available: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/yacc.html.

[33] Kim, Moonjoo; Viswanathan, Mahesh; Ben-Abdallah, Hanêne; Kannan, Sampath; Lee, Insup;
Sokolsky, Oleg. (1970). MaC: A Framework for Run-Time Correctness Assurance of Real-Time
Systems.

[34] Bohrer, Rose; Tan, Yong Kiam; Mitsch, Stefan; Myreen, Magnus O.; Platzer, André. (2018).
VeriPhy: verified controller executables from verified cyber-physical system models. SIGPLAN
Not., 53(4), 617–630. https://doi.org/10.1145/3296979.3192406.

75

[35] University of Oxford. (n.d.). Tackling the ethical dilemma of responsibility in large language
models. [Online]. Available: https://www.ox.ac.uk/news/2023-05-05-tackling-ethical-dilemma-
responsibility-large-language-models.

[36] Learn scala. Scala Documentation. (n.d.). https://docs.scala-lang.org/#

76

	Introduction
	Problem Statement
	Motivation
	Background
	Proposed Solution
	Method of Evaluation

	Approach
	Technology
	Background
	Architecture
	Domain Models in CoGen
	Synthesis Specifications in CoGen

	Methodology
	Background
	Definition
	Inspiration

	Design Patterns
	Policy Pattern
	Type Projection Pattern

	Related Work
	Synthesis Paradigms
	Deductive Synthesis
	Type-Driven Program Synthesis
	Inductive Synthesis
	Counterexample-guided Inductive Synthesis
	Program Sketching
	Natural Language Driven Synthesis
	Diagram Driven Synthesis

	Synthesis Systems
	GUI Boilerplate Synthesis
	Control Systems Synthesis
	Compiler Code Synthesis
	API Code Synthesis
	Multi-Domain Synthesis

	Comparison to CoGen

	Case Study - GUI Domain
	Overview
	Domain Description
	Target Description
	Application of Methodology
	Distillation - 1 - JavaFX
	Modeling - 1 - JavaFX
	Synthesis - 1 - JavaFX
	Distillation - 2 - JavaFX
	Modeling - 2 - JavaFX
	Synthesis - 2 - JavaFX
	Distillation - 1 - QT
	Modeling - 1 - QT
	Synthesis - 1 - QT
	Distillation - 1- libGDX
	Modeling - 1 - libGDX
	Distillation - 1 - LibGDX

	Results
	Artifacts
	Domain Model
	JavaFX
	QT
	LibGDX

	Evaluation and Reflection

	Case Study - Robotics Domain
	Overview
	Target Description
	Domain Description
	Application of Methodology
	Distillation - 1
	Modeling - 1
	Synthesis - 1
	Distillation - 2
	Modeling - 2
	Synthesis - 2
	Distillation - 3
	Modeling - 3
	Synthesis - 3
	Modeling - 4
	Synthesis - 4

	Results
	Artifacts
	Domain Model
	ROS Node
	ROS Node Listeners
	User logic fragments
	ROS Messages
	ROS Loop Class

	Evaluation and Reflection

	Case Study - 3D Rendering Domain
	Overview
	Target Description
	Domain Description
	Application of Methodology
	Distillation - 1
	Modeling - 1
	Synthesis - 1
	Modeling - 1.1
	Distillation - 2
	Modeling - 2
	Synthesis - 2
	Distillation - 3
	Modeling - 3
	Synthesis - 3

	Results
	Artifacts
	Domain Model
	Vulkan App

	Evaluation and Reflection

	Evaluation
	Quantitative Analysis
	Qualitative Analysis

	Conclusion and Future Work
	Domain Model Composition
	Domain Model and Synthesis Specification Reuse
	Generating Game Engine Components
	IDE Tooling

