
Construction of a 3D Object Recognition and

Manipulation Database from Grasp Demonstrations

by

David Kent - davidkent@wpi.edu

A Thesis

Submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial ful�llment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

April 2014

Approved

Professor Sonia Chernova, Thesis Advisor

Professor Dmitry Berenson, Thesis Committee Member

Professor Michael Gennert, Thesis Committee Member

Abstract

Object recognition and manipulation are critical for enabling robots to operate within a

household environment. There are many grasp planners that can estimate grasps based on

object shape, but these approaches often perform poorly because they miss key information

about non-visual object characteristics, such as weight distribution, fragility of materials,

and usability characteristics. Object model databases can account for this information, but

existing methods for constructing 3D object recognition databases are time and resource in-

tensive, often requiring specialized equipment, and are therefore di�cult to apply to robots

in the �eld. We present an easy-to-use system for constructing object models for 3D object

recognition and manipulation made possible by advances in web robotics. The database

consists of point clouds generated using a novel iterative point cloud registration algorithm,

which includes the encoding of manipulation data and usability characteristics. The sys-

tem requires no additional equipment other than the robot itself, and non-expert users can

demonstrate grasps through an intuitive web interface with virtually no training required.

We validate the system with data collected from both a crowdsourcing user study and a

set of grasps demonstrated by an expert user. We show that the crowdsourced grasps can

produce successful autonomous grasps, and furthermore the demonstration approach out-

performs purely vision-based grasp planning approaches for a wide variety of object classes.

i

Acknowledgements

I would like to thank Professor Odest Chadwicke Jenkins of Brown University for allowing

the use of the PR2 robot throughout the user study and validation experiments. Further-

more, I would like to thank fellow graduate students Russell Toris for the development of

the Robot Management System, and Morteza Behrooz for his help in conducting the user

study. This work was supported by the NSF award number 1149876, CAREER: Towards

Robots that Learn from Everyday People, PI Sonia Chernova, and ONR Grant N00014-

08-1-0910 PECASE: Tracking Human Movement Using Models of Physical Dynamics and

Neurobiomechanics with Probabilistic Inference, PI Odest Chadwicke Jenkins.

ii

Contents

1 Introduction 1

2 Related Work 3

2.1 Crowdsourcing . 3

2.2 Object Recognition Databases . 5

2.3 Grasp Planning . 6

3 The Robot Management System 8

4 Data Collection 10

4.1 Experimental Setup . 11

4.2 Feedback and Participant Motivation . 14

5 Object Model Construction 17

5.1 Classi�cation of Successful Merges . 17

5.2 Graph-Based Object Model Generation . 19

5.3 Object Recognition . 23

6 Grasp Learning 24

6.1 Grasp Model . 24

6.2 Outlier Filtering . 26

6.3 Grasp Training . 27

7 Results 29

7.1 User Study Evaluation . 29

7.2 Object Recognition Evaluation . 31

7.2.1 User Study Object Set . 31

7.2.2 Supplemental Object Set . 33

7.3 Autonomous Grasping Evaluation . 34

7.3.1 Evaluation of Crowdsourced Data . 34

iii

7.3.2 Advantages of Demonstrated Grasps 38

8 Conclusion 39

iv

List of Figures

1 A Pipeline Showing a User Connecting to a Robot Environment via the RMS 9

2 Physical setup of the user study . 11

3 An example of the web interface used in the remote user study 12

4 User study instructions . 13

5 Point cloud and object model examples . 14

6 A visual example of the model construction graph 22

7 Object model with associated grasp poses 24

8 A visualization of the grasp learning pipeline for three object models 25

9 Number of successful pickups and rate of successful placement per participant 30

10 The ten household objects used in the user study. 32

11 Examples of object models constructed from the user study data 32

12 The confusion matrix for the user study data 32

13 The 34 objects used to form the supplemental dataset. 33

14 Grasping success rate per user study object 35

15 High-probability grasps to total grasps for user study and demonstrated data 37

16 Geometric grasp planner and expert demonstrated example grasp comparison 38

17 A comparison of grasp rates for the supplemental object set. 39

List of Tables

1 Feedback for the Full Feedback study condition 15

2 Number of successful grasps demonstrated by user study participants. 35

v

1 Introduction

The abilities to recognize and manipulate a wide variety of objects are critical for robots

operating autonomously in household environments. These environments often contain a

large variety of objects with which a robot may need to interact. As such, a robot must

automatically determine useful properties of encountered objects, or make use of a database

of known objects. Automatic grasp detection can lead to di�culties in determining usability

characteristics for arbitrary objects, e.g. a bottle of water should not be grasped in such

a way that the opening is obstructed, preventing pouring. A database of known objects

enables this type of information to be encoded into the object models.

A major disadvantage of object recognition databases is that they require a signi�cant

amount of work to construct. Large object recognition databases do exist, but researchers

are then limited to only the objects included in the database, which in turn limits the envi-

ronments in which a robot can operate. Adding new objects to a database requires obtaining

a detailed model of each new object. The current state of the art is to use a turntable with

sensors mounted around it in a speci�c setup [19, 18]. This is a time consuming approach,

and it cannot be used for learning in a real-world environment, where such a detailed setup

is impractical. Learning object models based on real-world observations encountered during

operation in the target environment is a more challenging problem since the object angles and

relationships between multiple views are unknown. Additionally, the challenges of collecting

su�cient training data and object labels must also be overcome.

It is di�cult to determine usability information for a set of objects using an autonomous

process without any prior knowledge of the object, as environments can have a large number

of objects that must all be grasped with di�erent criteria in mind. Some usability information

can be generalized, such as the pouring metric mentioned above, but this metric only applies

to certain sets of objects. Complicating the grasping issue further, certain di�cult-to-observe

physical characteristics of objects, such as weight distribution, fragility of materials, or other

material properties, need to be accounted for when performing a successful grasp. Grasp

demonstration by human users provides a natural way to convey hard-to-observe information

1

to robots, although it can be repetitive and time consuming.

The developing �eld of web robotics provides new solutions for the collection of both train-

ing data for object recognition and demonstrated grasps. Crowdsourcing helps with these

repetitive tasks by reducing the time and e�ort required from each individual user, while

still providing large amounts of data. One successful method of taking advantage of the

Internet for object recognition is in using large annotated datasets from online image search

engines, such as Flickr or Google [6, 33]. We present a di�erent method of incorporating

crowdsourcing into an object recognition and grasping system, in which participants connect

remotely to a robot and label objects while demonstrating grasps through teleoperation.

This allows for robot-speci�c data beyond object labels, such as successful grasp examples,

to be collected via the web. With participants demonstrating both object recognition and

manipulation techniques, the data can automatically re�ect usability characteristics. We

present a method of incorporating data collected from crowdsourcing into an object recog-

nition and grasping database, resulting in an automated grasping technique that inherently

accounts for usability constraints.

This thesis makes three contributions. First, we present a web-based system for the

collection of point cloud data and demonstrated grasps for a desired set of objects. We

designed this system speci�cally to allow inexperienced participants to remotely demonstrate

grasps and collect object data while controlling a sophisticated robotic manipulation platform

through a web browser. Furthermore, the system makes it easy to add new objects, and

requires no further equipment than the robot itself. We present a data collection user study

in which we explore three study conditions to determine how to most e�ectively engage

participants and improve their success rate, thereby providing us with greater amounts of

usable data in a shorter period of time.

The second contribution is a system for constructing a functional object recognition

system using only point cloud data gathered through crowdsourcing. The system constructs

3D object models given a set of point cloud representations of objects collected from various

object views, by determining disparate sets of overlapping point clouds and merging each

2

set of point clouds with common features. We demonstrate that when combined with object

labels provided by either a researcher or through crowdsourcing, these 3D object models can

be used for object recognition. We present results of using this object recognition system with

the object database constructed from a crowdsourcing user study. We also include further

analysis using supplemental data collected from a larger and more varied set of objects.

The �nal contribution is a system for incorporating grasping data into the object recog-

nition database, while still meeting the original goals of the recognition database, i.e. that

it should be easy to add new objects, and no extra equipment other than the robot and the

objects themselves would be required. Both this ease of use and lack of setup allows the pro-

cess to be crowdsourced, which is appealing to researchers who want to quickly expand the

capabilities of their system. We also compare the e�ectiveness of the crowdsourced grasps

to expert demonstrated grasps, and we show the advantages that this grasping system has

over a grasp planner based solely on the geometry of the object.

2 Related Work

This section begins with an overview of crowdsourcing for user studies involving robots,

followed by a discussion of existing methods for constructing object recognition databases,

and concludes with a survey of approaches for grasp planning.

2.1 Crowdsourcing

Crowdsourcing, or obtaining information from large amounts of people through the Internet,

is a technique with growing relevance for robotics. In particular, it has the potential to

change the way researchers conduct user studies. These user studies require a remote lab

setting, in which users can control a robot through the web. One such example of a remote

lab is the PR2 remote lab, which provided a framework for allowing trained and expert users

to interact with a shared PR2 over the Internet [8, 23]. This remote lab did was not designed

with untrained users in mind, and as such it was not suited to large-scale crowdsourced user

3

studies. Addressing this problem led to the development of the Robot Management System

(RMS) [32], which provides tools for researchers to create, manage, and deploy user study

interfaces that allow naive users to directly control robots through a web browser. RMS

allows anyone with an Internet connection to remotely participate in a user study from the

comfort of their own home. Along with its ability to reach large groups of people, RMS

includes automatic user scheduling, which allows user study sessions to be run with little to

no break in between. These properties make RMS an excellent system for implementing a

crowdsourcing experiment.

Sorokin et al. conducted previous work using crowdsourcing for novel object grasping

[29]. In this work, the researchers divided object modeling into subproblems of object label-

ing, human-provided object segmentation, and �nal model veri�cation. Workers on Amazon

Mechanical Turk (AMT), a microtask crowdsourcing marketplace, completed these simpler

tasks. Sorokin demonstrated successful object recognition and grasping using the results

obtained from AMT workers. Microtask crowdsourcing marketplaces do have some limita-

tions, however. The system does not allow for direct control of a robot, and researchers must

design tasks to be simple and quick to ensure for high quality data. With new web robotics

systems such as RMS [32], we can perform more complicated tasks, including the grasp pose

demonstrations used in this thesis.

Crowdsourcing has been successfully applied to other aspects of robotics, as well. Tellex

et al. used crowdsourcing to learn natural language commands for controlling robot naviga-

tion and manipulation [31]. Crick et al. showed that crowdsourcing could be used to test

interfaces for teaching a robot to navigate a maze, showing that remote users perform bet-

ter when limited only to information that the robot has [9]. Other studies have shown that

crowdsourcing can be used to learn human-robot interaction behaviors, and that gami�cation

of the data collection process helped to motivate users to provide useful data [7, 4].

Quality of data is an important concern in crowdsourcing. The relative anonymity of

remote participants as compared to traditional user study participants decreases motivation

to provide high quality data. Harris explores incentivization models for improving the quality

4

of crowdsourced data by providing numerical rewards based on the success of participants.

Furthermore, the study has shown that providing a perceived negative numerical reward on

participant failure can further improve the quality of data [15]. We built on these ideas by

designing a scoring system involving both positive and negative rewards to motivate remote

participants to provide accurate data in a timely manner.

2.2 Object Recognition Databases

One method for crowdsourcing object recognition involves the use of online image search

databases. Chatzilari et al. demonstrate that a database consisting of annotated images

downloaded from Flickr is su�cient to recognize objects [6]. A downside to this approach

is that it is limited to the set of keywords used during download. Generalizing this type

of approach to work for any potential object, Torralba et al. constructed a dataset by

downloading 760 Gigabytes of annotated images using every non-abstract noun in the English

language over the course of 8 months [33]. Because of the limitations that arise from keyword

selection, we avoided the use of online databases for the object recognition system presented

in this thesis. Furthermore, there are no large databases comparable to online image searches

that also contain object manipulation data (e.g. grasp points).

There are many alternative methods to creating object recognition databases that do

not use the Internet. Lai et al. provide an example of a common approach to building

3D models [19]. Using a constantly rotating turntable and a set of cameras mounted at

multiple angles from the table horizon, accurate 3D object models can be constructed for

use in object recognition. Kasper et al. also used a turntable to construct 3D object models

for the KIT object models database, although they required a larger and more expensive

array of sensors [18]. A disadvantage of these approaches is that they require an accurate

setup of sensors and turntables to produce an accurate model, and each new object must be

scanned individually using such a process. As with using online databases, these techniques

also do not allow for the collection of grasp information.

While the turntable method allows 3D data to be easily reconstructed into a complete

5

object model, there are also methods to combine unordered point cloud data. Automatic

registration of overlapping point clouds can be accomplished through feature matching [25,

28], correlation of extended Gaussian images [20], and geometric optimization [21].

Computer vision researchers have demonstrated many approaches that construct 3D ob-

ject models from ordered [2, 11] and unordered [5] sets of 2D images as well. These ap-

proaches are e�ective for generating 3D models, but similar problems arise as with the

turntable method, as they do not allow for the collection of grasping information about the

objects.

2.3 Grasp Planning

Many methods already exist for vision-based grasp planners that use data from depth images.

Many of these approaches forgo object recognition and rely solely on geometric analysis of

partial views of novel objects to compute e�ective grasp points [30, 17, 27]. Vision-based

grasp planners can be e�ective for grasping many objects, but they do not account for any

object information beyond an object's visible shape.

In this work we use Willow Garage's PR2 robot. This platform has two common o�-the-

shelf grasp planners. One uses point cloud data without an object recognition component

[16], which is susceptible to the same problems as the previously discussed partial shape grasp

planners. The other grasp planner incorporates Willow Garage's household objects database

[12], which matches detected objects to complete 3D models, and includes a set of example

grasps calculated for each model using the GraspIt! simulator. The database was designed

to work with a limited set of commonly available objects. It relies on detailed 3D modeling

and is constrained to objects that are either rotationally symmetric, or have no indentations

or concavities. As a result, the approach is di�cult to use in new environments because of

the di�culty in adding new object models. Additionally, the grasps in the household objects

database were calculated solely based on object shape; they do not account for other object

properties such as weight, material, and moving parts. Our method aims to solve the same

problem as the PR2's grasp planners, i.e. to determine a successful grasp pose given an

6

incomplete point cloud of an object, but we seek to improve the quality of the grasps from

a usability standpoint, remove the restrictions on object shape, and simplify the process of

adding new objects.

Work has also been done on autonomous grasp evaluation based on usability characteris-

tics. Baier and Zhang [3] present four grasp usability criteria, and include analytical methods

for evaluating them. The four criteria are pour-in, pour-out, handover, and movement. The

pour criteria are speci�c to objects that require unobstructed openings for pouring, but the

second two criteria generalize well to all objects, in that they measure the ease of which an

object can be re-grasped, as well as a grasp's resistance to movement. These criteria represent

some usability characteristics of objects, but there are many unrepresented characteristics

that are speci�c to other objects. Additionally, there is also the issue of determining which

usability characteristics should apply to which objects. Both of these issues make it di�cult

to explicitly de�ne usability characteristics for arbitrary object sets.

These usability characteristics are, however, naturally known by humans, and Xue et

al. present a system for leveraging human knowledge, as well as other non-vision based

object characteristics, into a multi-modal grasp planning system [34]. The system requires

data collection of an object's shape, texture, and weight, and also allows input from human

instructors who demonstrate areas that either must be touched during grasping, or must

be avoided as obstacles. The drawback of this approach is that it requires a complicated

setup, including a digitizer, turntable, movable stereo camera setup, and a tactile glove. This

approach is also unsuitable for crowdsourcing, as it requires a trained demonstrator to give

semantic information about each object.

Other object model databases exist that include grasping information, such as the partial-

view-based data-driven grasping system presented in [13]. This system adds the object

recognition component to the partial-view depth image grasp planners, and retrieves grasp

points from an online database. The system is more concerned with the recognition side of

the problem, though, and does not address where the grasp data comes from or how it can

be used. Another object model and grasping database addresses the problem of de�ning

7

grasps by using a set of grasps exhaustively calculated o�ine based on CAD models [22];

this requires any object to be modeled in detail before it can be used. Similarly, Goldfeder

et al. present a large-scale database constructed with grasps calculated using the GraspIt!

simulator [14]. The simulator was used to replace human grasp demonstrations to reduce

time constraints in constructing a database of thousands of objects. As a result, the database

includes many baseline form closure grasps for each object.

An alternative to calculating grasp points is to learn them through trial and error. Detry

et al. present an autonomous experimentation system where a robot learns grasp points

by repeatedly attempting to grasp an object at various points and adjusting probabilistic

grasping models based on the results [10]. We use a similar idea for evaluating grasp models,

except we use crowdsourced human-demonstrated grasps to decrease the amount of time of

the trial-and-error learning system, while also leveraging human knowledge of object usability

characteristics.

3 The Robot Management System

The Robot Management System (RMS) is an open-source framework that allows researchers

to quickly and easily install, con�gure, and deploy a secure and stable remote lab system1.

The RMS allows naive users to create accounts, gain access to robots, and participate in

research studies.

The framework is designed in a robot and interface independent manner. At its core, the

RMS is a custom content management system written in PHP backed by a MySQL database.

Its main goal is to keep track of di�erent ROS enabled robotic environments, interfaces, users,

and research studies with little need of additional programming by researchers. Furthermore,

the system is fully integrated and takes advantage of the tools and libraries developed as

part of the Robot Web Tools e�ort [1]. By doing so, such a system enables researchers to

focus on the goals of their research without needing to spend countless hours testing and

1Documentation and source code are available at http://www.ros.org/wiki/rms. Tutorials are available

at http://www.ros.org/wiki/rms/Tutorials.

8

Figure 1: A Pipeline Showing a User Connecting to a Robot Environment via the RMS

implementing a custom web solution. The RMS was developed with the following goals in

mind:

• Robot and interface independent design

• Support for easy creation and management of new widgets and interfaces

• Secure user authentication and authorization

• Creation, management, logging, and analysis of multi-condition user studies

• Website content management

The complete pipeline for RMS is shown in Figure 1. We will brie�y explain parts of

the pipeline relevant to this thesis below, including robot, environment, interface, and user

study management. For more details on the complete system, see [32].

Managing Robots and Their Environments: The RMS focuses much of its e�orts

on managing robots and robot environments. We de�ne a robot environment as a single

robot and its associated surroundings. The RMS uses the genericness of ROS message and

service types to allow the control and sensor displays of an abstract set of robots. Within

our research group alone, the RMS has been easily connected to complex, research-grade

robots such as the PR2 from Willow Garage and the youBot from KUKA, to simple robots

such as the Rovio from WowWee. The job of the RMS is to keep track of how to connect

to each robotic environment and its associated control and sensor feeds. Researchers can

9

quickly con�gure each environment by adding information such as camera feeds, arm and

base control services, or point cloud topics. In this work, we use a PR2 robot with a head

mounted Kinect sensor. The RMS allows us to stream camera feeds from the PR2 and point

cloud data from the Kinect to remote user study participants, while also allowing remote

users to control the robot's end e�ectors through ROS messages.

Interface Management: An important feature of the RMS is the ability to manage

di�erent interface layouts. This allows the ability to conduct studies such as A/B interface

testing or creating interfaces based on varying levels of user expertise. In this work, we

use the RMS to de�ne three versions of a PR2 teleoperation interface with varying levels of

feedback.

User Study Management: Researchers can create user studies that can then have one

or more associated conditions. Each condition is also associated with an interface. For our

user study, further described in Section 4, we de�ned three study conditions corresponding

to varying levels of feedback, and then associated each condition with an interface that

displayed the appropriate level of feedback. With conditions de�ned, researchers are then

able to schedule individual experiments (trials). Such a trial consists of mapping a user to

a given condition (and thus interface), environment, and start/end time. The RMS then

keeps track of this information and will allow each particular user to gain access to the

appropriate robotic environment using a given interface at the correct times. The users will

only be allowed to use the interface once their time slot begins, and will be automatically

disconnected once their time has ended.

4 Data Collection

Leveraging the Robot Management System, we conducted a crowdsourced user study to

gather object recognition and grasping data for the database. In this section, we describe

our data collection process, user interface and three study conditions.

10

4.1 Experimental Setup

Figure 2: Physical setup of the user study

For the data collection study we recruited 42 participants through advertising on the

campus of Worcester Polytechnic Institute and in the surrounding area. The study setup

consisted of a PR2 robot placed in a �xed position. The robot faced a table containing ten

household objects arranged in random positions and orientations, as shown in Figure 2. The

table itself consisted of six sections marked with boundary lines.

The study was conducted using RMS, which enabled participants to remotely connect

to a PR2 interface from their home computers using only a web browser. The web interface

consisted of two main components, shown in Figure 3. In the view component, participants

could switch between video feeds from the cameras in each of the PR2's arms, as well as the

RGB video stream from a head-mounted Microsoft Kinect sensor. Participants could also

control the direction the head was pointing to adjust the video feed view by using the arrow

keys. In the control component, participants used interactive markers on a simulated robot

model to change the position and orientation of the physical robot's end e�ectors. This

window also showed the segmented point clouds of each object detected on the table.

11

Figure 3: An example of the web interface used in the remote user study. The interface element

(A), shown in red, displayed the participant's current score. This element was active for the Score

Only and Full Feedback conditions. The interface element (B), shown in green, displayed comments

based on the participant's performance. This element was active for the Full Feedback condition

only.

12

Figure 4: The user study instructions shown in the interface. For the No Feedback condition, any

mention of points and scores were removed.

Participants connected to the robot for sessions consisting of twenty minutes. Upon

initial connection, the interface displayed the set of instructions shown in Figure 4. These

instructions explained both the interface controls and the participant's goal, in as compact a

space as possible. At any time during the user study, participants could show the instructions

again by clicking on the Show/Hide Instructions button. All participants were instructed to

pick up as many objects as possible within the allotted time. After grasping an object, the

interface asked participants to label the object. The interface then highlighted a randomly

selected section of the table surface where participants were to place the object. In this

manner, the user study was automatically resetting, in that each new participant began the

study with a di�erent arrangement of objects, determined by how the previous user placed

each object. Participants were classi�ed into one of three study conditions, as described in

Section 4.2.

Upon successfully picking up an object, the system stored:

• the segmented point cloud of the grasped object using the head-mounted Kinect,

• the position and orientation of the PR2's gripper,

• force data from the sensor array on each gripper �nger, and

• the object label provided by the participant.

13

The system stored this data in a database for later use in constructing 3D object models.

The randomized object placement allowed for the collection of data for multiple common

orientations of each object, without the need for a researcher to change the object orientations

between each user session. Figure 5 shows an example of point cloud data gathered in the

user study, as well as an object model constructed from that data.

Figure 5: Left: An example of point cloud data gathered upon a successful object pickup. Right:

An object model constructed from the database generated by the user study.

4.2 Feedback and Participant Motivation

Because this was our �rst user study using RMS to collect data entirely from remote users,

we collected further data to determine how best to motivate participants to provide high

quality data. We equally divided participants among three conditions:

• No Feedback - Participants were simply instructed to pick up as many objects as

possible within the allotted time.

• Score Only - Participants were shown a score that rewarded them for accomplishing

the goals of the study. Participants were given 100 points for successfully grasping an

object, 50 points for successfully placing an object within the correct table section,

and -10 points for each failed pickup attempt. The scores were stored in an online

leaderboard so that participants could compete with eachother.

• Full Feedback - In addition to the score described above, the interface also provided

text feedback, shown in Table 1, o�ering praise for successful pickups, encouragement

14

Table 1: Feedback for the Full Feedback study condition

Activation Condition Text Feedback

Successful pickup Nice job!

or placement Way to go!

Great job!

Keep it up!

Nice work!

Nicely done!

Failed pickup Give it another try!

or placement Nice try!

Keep at it!

You can do this!

Never give up!

Idle for 20 seconds Let's get some objects!

Take your time to �gure it out...

Idle for 30 seconds If you are confused, try clicking on the

Show/Hide Instructions button below...

Object held o� of table You're holding an object o� of the

table edge

to keep trying after failed pickups, and suggestions to revisit the instructions if they

remained idle for a long period of time.

In the No Feedback condition, participants had only the instruction set to guide their

actions, and so the tasks they chose to complete were based entirely on their respective

interpretations of the instructions. Since we conducted the study remotely, participants

could not ask questions to clarify what they were supposed to do, and we could not correct

any misinterpretations of the instructions. This condition provided a point of comparison

for how participants would perform without any feedback to guide their interpretation of the

15

task.

The Score Only condition added a numerical feedback element to the study. We designed

the scoring system to reinforce the elements of the study that were most important to our

data collection. As such, participants were rewarded most for successful object grasps, which

were the primary data collected during the user study. To further stress the importance of

object grasping, we gave negative feedback only for missed object grasps. Correct object

placement was a secondary goal, as it aided in the self-resetting nature of the study, hence the

lower point reward. Overall, the scoring also added an element of competition, motivating

participants to pick up as many objects as they could to compete with other participants.

While the score added a feedback element based directly on a participant's actions, we also

wanted to determine whether semantic feedback would improve a participant's performance.

The Full Feedback condition added feedback in the form of pre-authored phrases displayed

in response to speci�c actions. As with the score, we designed these phrases to provide

positive reinforcement for successfully completing important actions in the user study, but

unlike the score, the text feedback could also encourage participants to keep trying when

they failed important actions. The text feedback also helped to supplement the participants'

understanding of the environment by displaying a warning when the robot was holding an

object o� of the table edge, which could be di�cult to see given the limited camera views.

We designed the text feedback to �t in with the interface color scheme in a non-distracting

manner, while catching the eye of participants with a �ipping animation when their score was

increased or decreased. Similarly, we designed the feedback text to catch the participant's

attention using complimentary colors, while being small enough to not distract from the task

at hand. Examples of a score and displayed text in the interface can be seen in elements A

and B of Figure 3, respectively.

Importantly, the point cloud and grasp data collection process was the same across all

three study conditions. The purpose of this study was to examine which condition resulted

in the highest quantity and quality of data.

16

5 Object Model Construction

Given the set of individual segmented point clouds of each object collected using the above

data collection method, the next step was to create more complete object models from these

individual views. First, we used the Point Cloud Library (PCL) [26] to implement a pairwise

point cloud registration pipeline. This process allows the merging of any two point clouds

into a single point cloud according to correlated SIFT features.

Theoretically, we could construct a complete object model by iteratively performing this

pairwise point cloud registration process for all of an object's data. In practice, however,

pairing point clouds arbitrarily in this way is highly susceptible to error propagation. Aside

from minor errors propagating, a single incorrect merge early on in the process can result in

highly inaccurate models. It is therefore critical to distinguish successful merges from failed

merges, where we de�ne a successful merge as one in which all overlapping points common

to both point clouds are correctly aligned, so that a human being would verify it as a single

object.

We present a novel approach for building object models through iterative point cloud

registration. For each pair of point clouds, we �rst calculate a set of metrics that characterize

the potential merge with respect to di�erent properties. Using these metrics, and a training

set of hand labeled successful and failed pairwise point cloud registrations, we then train a

decision tree to predict successful merges. Finally, we leverage the decision tree to construct

a graph representation of candidate pairwise merges that are then iteratively performed to

generate the object model.

5.1 Classi�cation of Successful Merges

In considering a candidate merge, we de�ne one point cloud model as the base point cloud

B, and the other as the target point cloud T . R represents the point cloud that results from

registering T onto B, and we de�ne bn, tn, and rn as the individual points within B, T , and

R, respectively. We let distanceXY Z(i, j) and distanceRGB(i, j) represent the Euclidean

distance in XYZ space and RGB color space between points i and j, respectively; nn(p,X)

17

represents the nearest neighbor of point p in point cloud X. Finally, parameter δ represents

a prede�ned Euclidean distance threshold between two points in a point cloud.

Based on this representation, we use the following set of metrics to describe a candidate

point cloud resulting from a pairwise registration:

• Overlap (mo) - percentage of overlapping points after registration

mo =
|{i|bi − nn(bi, T) < δ, i ∈ B}|

|B|
(1)

• Distance Error (mdErr) - the mean of the distance error between merged point pairs

mdErr =
1

|B|
∑
i

distanceXY Z(bi, nn(bi, T)) (2)

• Color Error (mcErr) - the mean of the color di�erence between overlapping points

mcErr =
1

n

∑
n

distanceRGB(bn, nn(bn, T)),

n ∈ {i|bi − nn(bi, T) < δ, i ∈ B}
(3)

• Average Color Di�erence (mcAvg) - average color di�erence between point clouds

B and T

mcAvg = abs(avg(bi.r + bi.g + bi.b)− avg(ti.r + ti.g + ti.b)),

i ∈ B, j ∈ T
(4)

• Color Deviation Di�erence (mcDev) - di�erence in standard deviation of color be-

tween point clouds B and T

mcDev = abs(stdev(bi.r + bi.g + bi.b)− stdev(ti.r + ti.g + ti.b)),

i ∈ B, j ∈ T
(5)

• Size Di�erence (msize) - di�erence in the number of points between point clouds B

and T

msize = abs(|B| − |T |) (6)

18

• Spread Di�erence (mspread) - di�erence in the spread (i.e. the distance between the

two most distant points within a point cloud) of point clouds B and T

mspread = abs(max(distanceXY Z(bi, bj))−max(distanceXY Z(tk, tl))),

i, j ∈ B; k, l ∈ T ; i 6= j; k 6= l
(7)

We designed these metrics to represent di�erent characteristics of the data. mo andmdErr

measure di�erences in physical shape of the two point clouds. Furthermore, mo provides an

indication of how much new data is added to cloud B by registering it with cloud T . mcErr,

mcAvg, and mcDev measure di�erences in point cloud color; where mcAvg indicates the overall

similarity in color of the point clouds, mcDev indicates whether the two point clouds have

similar range of color, and mcErr measures di�erences of color between the points of clouds

B and T with relation to their spatial positions in cloud R. The remaining metrics represent

a comparison of the overall size of the point clouds, with msize relating their total number

of points and mspread relating their maximum physical lengths.

Next, we leveraged these metrics to train a decision tree to predict successful merges.

We constructed a training set by applying the seven metrics to 174 instances of pairwise

point cloud registrations selected from the user study data. This included both successful

and failed merges, and each instance was appropriately labeled. Using this dataset, we used

the C4.5 algorithm [24] to generate a decision tree to classify whether a pairwise registration

was successful or failed based on the registration metrics. The �nal decision tree correctly

classi�ed 81% of the training data, with a false positive rate of 10%. Minimizing the false

positive rate as much as possible was the most important factor in selecting the �nal decision

tree, as accepting a failed merge propagates error throughout the rest of the object model

construction process. The decision tree used mo as the most important classi�cation metric,

with mdErr, mcAvg, and mspread also used as important metrics.

5.2 Graph-Based Object Model Generation

To construct the object model, we developed an algorithm (Algorithm 1) that �rst generates

a graph structure representing all of the point clouds for each individual object in a graph,

19

and then selectively registers pairs of point clouds to generate one or more object models.

The algorithm initializes a graph with a node representing each point cloud (line 3). It next

iteratively considers all pairs of nodes, and constructs edges between them for which the

decision tree predicts a successful pairwise merging of the two point clouds represented by

the nodes (lines 4-8). The resulting graph structure represents the similarities between the

various views of the object.

The object model is constructed by collapsing the graph by merging nodes until no edges

remain. The algorithm selects a random edge of the graph and performs pairwise registration

on the point clouds connected by the selected edge (lines 10-11). The algorithm then removes

the nodes for the two point clouds, and replaces them with a single node representing the new

merged point cloud (lines 12-14). Again using the decision tree, the algorithm constructs

edges from the new node to the remainder of the nodes in the graph (lines 15-19). The

process then repeats until there are no graph edges left.

Figure 6 provides a visual example of the object model construction algorithm for a set

of 8 point clouds {A, B, C, D, E, F, G, H}, all collected from the same object (step 1). In

step 2, each pairwise combination of the point clouds is checked for successful registrations,

resulting in the graph shown in step 3. The algorithm then randomly selects point clouds B

and C to be merged, resulting in a new graph shown in step 4 with a new set of unchecked

point cloud pairs. In step 5, the unchecked pairs are tested for successful registration. For

the next step, the algorithm randomly selects point clouds E and G for merging. This process

of testing and merging continues until no successful merges remain, and step 15 shows the

�nal set of models {ABCFH, DEG}.

The result is that the process can represent each object by multiple object models com-

posed of merged point clouds from di�erent views. For objects that look signi�cantly di�erent

depending on the viewing angle (e.g. the front and back cover of a book), this removes the

risk of poorly merging point clouds taken from signi�cantly di�erent angles and propagating

that error through future iterative registration. This method also provides �exibility for

adding new data; if any new data is obtained, it can be merged into the existing data by

20

Algorithm 1 Object model construction by graph

Require: List<PointCloud> P

1: List<PointCloud> nodes;

2: List<Edge> edges;

3: nodes.addAll(P);

4: for all ni, nj in nodes do

5: if isSuccessfulRegistration(ni, nj) then

6: edges.add(Edge(ni, nj));

7: end if

8: end for

9: while edges is non-empty do

10: Edge e = edges.pop();

11: PointCloud p = pairwiseRegister(e.node1, e.node2);

12: nodes.remove(e.node1, e.node2);

13: edges.removeEdgesContaining(e.node1);

14: edges.removeEdgesContaining(e.node2);

15: for all ni in nodes do

16: if isSuccessfulRegistration(p, ni) then

17: edges.add(Edge(p, ni));

18: end if

19: end for

20: end while

21

Figure 6: A visual example of the model construction graph. Graph nodes represent point clouds,

dashed edges represent unchecked pairwise registrations, and solid edges represent predicted suc-

cessful pairwise registrations.

22

initializing graph nodes for both the previously merged object models and the new data.

The entire model construction algorithm takes a set of point clouds as input, and produces

a set of object models for each object to be used in object recognition. The algorithm can be

run either per object, where a separate graph is constructed for the point clouds associated

with each individual object, or for the entire dataset, where a single graph is constructed

using all of the point clouds as nodes. The latter approach has a signi�cantly higher runtime,

but as this is essentially a training algorithm, it does not have to run in real-time.

5.3 Object Recognition

In order to test the usefulness of the models created by the process described above, we

implemented an object recognition system based on processes similar to those used in the

model construction. Speci�cally, using the same pairwise point cloud registration pipeline

implemented for the model construction, the object recognition algorithm attempts to regis-

ter a point cloud from an unknown object to each object model in the recognition database.

By calculating the metrics listed above, the algorithm assigns a measure of error to each

attempted pairwise registration. The recognition algorithm then classi�es the query object

as the database object that resulted in the lowest error.

We de�ne the registration error, serr, as a linear combination of the normalized distance

error and the normalized color error.

serr = α ∗ norm(mdErr) + (1− α) ∗ norm(mcErr) (8)

The parameter α can be set within the range [0, 1] to adjust the relative weighting of the

distance error and color error. Setting α closer to 0 causes the algorithm to prioritize

di�erences in color rather than shape; likewise setting α closer to 1 causes the algorithm to

prioritize di�erences in shape rather than color. For all experiments presented in this thesis,

we set α to 0.5, since we consider di�erences in shape and color to be equally important in

our object sets.

23

Figure 7: One object model with all of the associated grasp poses demonstrated from the user study.

6 Grasp Learning

Now that we have the ability to model and recognize objects in 3D, we turn to the problem

of learning grasp poses. In this section, we �rst describe how grasps are mapped to the

3D model, and then present an outlier �ltering algorithm that removes obviously erroneous

grasps. We then present an online training algorithm that learns probabilistic success rates

for the remaining grasps, to both determine the order in which grasps should be attempted

and remove any erroneous grasps missed during the outlier �ltering phase. The result is a

database of object models with associated grasp poses ordered by success rate. Figure 8

provides examples of visualized output from each major step of the process.

6.1 Grasp Model

As described in Section 4, each point cloud sample recorded by our system also contains

the associated grasp point. By creating a merged object model using the above process, we

create a 3D object model with multiple associated grasps. We accomplish this by extending

the registration algorithm described in Section 5 to combine the individual grasps into a list

of grasps associated with the object model. Each pairwise registration within the algorithm

produces a transformation matrix. Applying this transformation matrix to the demonstrated

24

Figure 8: A visualization of the grasp learning pipeline for three object models. The �gure shows

only a subsample of the collected grasps to better facilitate visualization. Left: All grasp examples

from data collection. Middle: Remaining grasps after outlier �ltering. Right: Final set of grasps

after online training, sorted into high-probability (green) and low-probability (red) grasps. All of

these examples were generated from the user study data.

25

grasp pose at each pairwise registration step results in each object model also containing an

associated set of grasps in its local reference frame. Figure 7 shows one of the object models

generated from the user study, and further examples are shown in the left column of Figure 8.

6.2 Outlier Filtering

With the object models constructed, the next step of the grasp learning system focuses

on evaluating the usefulness of the demonstrated grasps. This is a crucial step because

demonstrated grasps can result in low quality grasp poses, due to poor object segmentation

or grasps that accidentally nudge an object before lifting it up. This is particularly true

when crowdsourcing grasps demonstrated by non-expert users, where quality of data cannot

be guaranteed.

The grasp training algorithm, described further in the next section, also detects and

removes unsuccessful grasps from an object model. This is an online algorithm that requires

the robot to determine each grasp's quality through trial and error, and as such it becomes

time consuming with large numbers of grasps. The goal of the outlier �ltering phase is to

eliminate as many grasps as possible with an o�ine algorithm, before the object models are

passed through to the online grasp training phase.

With only a point cloud representation of an arbitrary object, it is di�cult to determine

the e�ectiveness of a grasp based solely on its location relative to the point cloud. To prevent

the removal of potentially successful grasps, the only grasps that can be removed with high

certainty are those that lie on the outside of the point clouds. Speci�cally, the algorithm �ts

a bounding box around the point cloud, and removes any grasps that are located outside

of the bounding box at a distance greater than half the length of the robot's open gripper.

These grasps will most likely miss the object entirely; this can be seen in Figure 8, where

one outlying grasp is removed for both the bowl and the phone.

26

6.3 Grasp Training

The �nal phase of the grasp learning system learns probabilistic success rates for each grasp,

which are then used to determine a grasp order for each object. An epsilon-greedy algorithm,

Algorithm 2, learns these probabilities by testing each grasp repeatedly with the robot. The

algorithm begins with a list of grasps to be tested, an empty list for storing su�ciently

explored grasps, and by initializing the exploration variable, ε (lines 1-2). The algorithm

continues to select and test grasps until every grasp associated with a model has been at-

tempted a minimum of N times (lines 3 and 13). During each loop iteration, the algorithm

selects grasps by either randomly exploring the set of untested grasps, or by selecting an al-

ready explored grasp with the highest chance of success (lines 4-9). The robot then performs

the selected grasp, evaluates its success, and updates the success rate and number of grasp

attempts accordingly (lines 10-12).

The value of ε determines the exploration strategy by which new or previously attempted

grasps are selected. Higher values of ε result in more frequent exploration; conversely, lower

values of ε result in more frequent execution of the previously explored grasps. The algorithm

begins with a high value of epsilon, which decays exponentially (line 17) as the training

continues. As such, the algorithm �rst spends most of its time attempting unexplored

grasps, and as time goes on, it spends more time re�ning the success rates for the learned

grasps. Over time, ε decays to zero, and further exploration of untested grasps will no longer

occur. For larger grasp sets, such as a large crowdsourced dataset of grasp demonstrations,

the algorithm can be adjusted to terminate after it �nds a su�cient number of successful

grasps, by changing the loop condition in line 3.

Upon completion of the training, the algorithm discards any grasps with a success rate of

zero from the model. For example, Figure 8 shows one grasp removed from both the bone and

the phone after the training algorithm determined that the grasps had no chance of success.

The example also shows high-probability (graspProbability > 0.5) grasps in green. These

grasps will be attempted �rst, and the low-probability grasps (0 < graspProbability ≤ 0.5),

shown in red, will only be attempted if all of the high-probability grasps are unreachable

27

Algorithm 2 Epsilon-greedy grasp training

Require: List<Grasps> grasps

1: List<Grasps> exploredGrasps;

2: ε = 1;

3: while grasps.size() > 0 do

4: r = rand(0, 1);

5: if r < ε then

6: Grasp g = pickRandom(grasps);

7: else

8: Grasp g = maxGraspProbability(exploredGrasps);

9: end if

10: Boolean success = testGrasp(g);

11: updateGraspProbability(g, success);

12: g.numAttempts ++;

13: if g.numAttempts ≥ N then

14: exploredGrasps.push(g);

15: grasps.remove(g);

16: end if

17: ε = 0.975 ∗ ε;

18: end while

28

from the current robot position.

The results presented below used training with N set to 3. Increasing N can increase the

accuracy of the success rates, at the trade-o� of increasing training time. To make up for

this short training time, we continue to update the grasp model online after the dedicated

training process is complete. This lifelong learning could lead to slow adaptability once the

number of grasp attempts gets high, which could be improved by keeping grasp success data

over a sliding window of previous attempts. For this thesis, we did not perform any long-

term testing with the grasping database, and all results were gathered using this continual

learning. We leave improvements for long-term use to future work.

7 Results

In this section, we present results of the user study and of the object recognition and grasp

learning system. We �rst present the results regarding the e�ectiveness of the di�erent

feedback levels from each user study condition, to determine which method best facilitates

data crowdsourced data collection. We then evaluate the usefulness of an object databases

created using the system described in Sections 5 and 6 for both object recognition and object

manipulation, based on both user study data and researcher demonstrated data.

7.1 User Study Evaluation

To determine whether the di�erent feedback conditions improved participant performance,

we analyzed the number of successful pickups, failed pickups, successful placements, and

failed placements from participants in each condition. The most relevant measures for the

user study were the total number of pickups, as this determines how much data each exper-

iment contributed to the object recognition database, and the rate of successful placements,

as this indicates how willing participants were to follow given instructions. Figure 9 shows

plots of the number of pickups and rate of correct placement.

The pickup data has a trend suggesting that feedback can improve participant perfor-

29

mance in a crowdsourcing situation. Not only do the two feedback conditions show par-

ticipants outperforming the No Feedback condition, but participants in the Full Feedback

condition had a greater number of successful pickups than participants in the Score Only

condition. A similar trend appears in the rate of correct placement, although the di�erences

between the Full Feedback and Score Only conditions are less apparent.

While there appear to be clear trends showing that interfaces with more feedback improve

both the performance of participants and their willingness to follow instructions, we require

more data to reach statistical signi�cance. We leave the veri�cation of these trends through

the collection of more data to future work.

Figure 9: The number of successful pickups per participant (left) and the rate at which participants

correctly placed objects within the boundaries of the randomized table section (right), organized

by condition. The horizontal axis denotes the condition: (1) Full Feedback, (2) Score Only, and (3)

No Feedback

30

7.2 Object Recognition Evaluation

In the following section, we present an evaluation of the object recognition database using the

object recognition system described in Section 5.3. We evaluate the recognition success rate

for both the set of objects used in the crowdsourcing user study, as well as a supplemental

object set containing a greater number of varied objects.

7.2.1 User Study Object Set

The data collected from the crowdsourcing user study provided a set of point clouds for

each object; Figure 10 shows the object set used in the study. The amount of point clouds

collected varied in the range of 3 to 27 point clouds per object, as participants could pick up

any of the objects as many times as they chose.

As mentioned in Section 5, the object model construction algorithm could have generated

models without �rst organizing the data by object. This works in theory, since the learned

decision tree can determine whether two point clouds belong to di�erent objects as they will

result in a failed merge. In practice, however, the potential for an incorrect registration be-

tween two di�erent but similar looking objects creates a dangerous risk of error propagation,

thus we deem the approach not robust enough for practical use. Further re�nement to the

decision tree could reduce this risk, but that is beyond the scope of this thesis.

To better demonstrate the generalizability of the object construction and recognition

system, we evaluated the data using repeated random sub-sampling validation. For each

iteration of testing, the point clouds for each object were randomly split into a training set

(used for model construction) and a test set (used for object recognition). We performed

�ve iterations of testing. Overall, the recognition system correctly classi�ed objects at a

rate of 88.7% +/- 5.1%. Figure 12 shows the confusion matrix for the set of objects, where

entries along the main diagonal represent correct classi�cations and any other cell represents

a misclassi�cation. Figure 11 provides examples of object models generated by the object

model construction algorithm.

31

Figure 10: The ten household objects used in the user study.

Figure 11: Examples of object models constructed from the user study data. Left to right: bowl,

hacky sack ball, dinosaur book, dragon toy, plastic dog bone, phone (front view), phone (back view)

Figure 12: The confusion matrix for the user study data. The vertical axis consists of the actual

object labels, and the horizontal axis represents the labels determined by the object recognition

system.

32

Figure 13: The 34 objects used to form the supplemental dataset.

7.2.2 Supplemental Object Set

In addition to the data collected from the user study, we collected supplemental data on a

larger set of thirty-four objects, shown in Figure 13. This data did not include any grasping

information, as it was collected to further test the object recognition system over a larger

set of objects. We designed this data collection procedure to mimic the data collected in

the user study. We placed each object in randomized poses and locations on the table, and

stored 20 segmented point clouds captured from an Asus Xtion Pro depth sensor mounted

above a table at a similar height and angle as the PR2's head-mounted Kinect. We analyzed

the performance of the algorithm on this larger dataset to determine whether our system

generalized well to a larger and more varied object set. Again after organizing the point

clouds by object type, we tested the object construction pipeline and object recognition

system on this dataset.

Before gathering results, however, we removed a few objects from the dataset when it

33

became apparent that they could not be properly registered. This case occurred with small,

re�ective objects, e.g. a metal tape measure, or a glossy paperback novel. The issue with

re�ective objects is that depending on the lighting and their position and orientation on

the table, the point clouds at each view were too signi�cantly di�erent to allow for accurate

registration. We determined that �ve objects had to be removed from the set, leaving a total

of 29 objects with which to complete the evaluation.

We tested this dataset using holdout validation, in which the dataset was split evenly into

a training and testing set. The object model construction algorithm used the training set

as an input to construct object models, and the object recognition system used the testing

set to determine the recognition accuracy. Following this test, we switched the training and

testing set so that all of the data could be used for both object construction and object

recognition testing. Overall, the recognition system correctly classi�ed objects at a rate of

83.93%, showing a comparable result to the recognition rate of the 10 object dataset from

the user study.

7.3 Autonomous Grasping Evaluation

In the following section, we present an evaluation of the grasp learning system itself, compar-

isons of crowdsourced data to expert user demonstration, and a comparison of the demon-

strated grasp database to a more traditional vision-based grasp planner. We also provide

further examples of situations where the grasp learning system outperforms shape-based

planners.

7.3.1 Evaluation of Crowdsourced Data

The user study provided us with a varying number of grasp demonstrations per object,

shown in Table 2. Using the grasp learning pipeline presented above, we created a database

of object models with associated grasps from the user study data. To evaluate this process, we

performed an experiment in which the PR2 attempted to grasp the objects in randomized

positions using the learned database for grasp planning. For a point of comparison, the

34

Table 2: Number of successful grasps demonstrated by user study participants.

Object Basket Bone Book Bowl Cup Dragon Duck Phone Truck

Grasps 22 15 10 27 3 8 8 16 5

Figure 14: The grasping success rate, per object, for the database created from the crowdsourcing

user study's grasp demonstrations, the researcher's grasp demonstrations, and the PR2's standard

grasp planning algorithm.

researchers demonstrated grasps for the same object set, by using an o�ine equivalent of the

web-based user study teleoperation interface implemented in rviz, a 3D visualization tool

for the Robot Operating System (ROS). The researchers provided ten demonstration grasps

for each object. Also, in order to evaluate the approach as a whole, we performed the same

experiment using the PR2's standard grasp planning algorithm [16] instead of our database.

The results are shown in Figure 14.

In general, the PR2 grasped the objects with a success rate of at least 80% using grasps

learned from both the user study data and the researcher demonstrated data. Of note is the

35

black cup, which failed under all three grasping systems. This occurred because the Kinect

could not properly segment the object due to its re�ectiveness and the lighting conditions of

the experiment. Another outlier is the truck, which was rarely grasped successfully during

the user study, and the algorithm could not construct a complete object model from the

crowdsourced data. The �nal outlier of the user study data is the dog bone, which was

grasped much less successfully using the user study data. This was likely due to the fact

that the user study data produced a comparatively low number of high-probability grasps for

this object, as shown in Figure 15. We suspect that with more crowdsourced data, the bone

would be grasped as e�ectively with the user study data as with the researcher demonstrated

data.

Comparing the demonstrated grasps to the grasps generated from the PR2's planner, we

can see some interesting results. For many of the objects, the methods have little di�erence

in success rate, and no method clearly outperforms the others. In a few speci�c cases,

however, the learned grasps outperform the geometrically planned grasps. The �rst case is

the basket, which has many potential grasp areas due to its subdivided sections, as well as

the handle on top. The geometric planner had di�culty determining which grasp would be

most e�ective, and often selected grasps that were blocked by the handle or the inner edges

of the subdivided sections. The demonstrated grasps, however, often picked up the object

by the handle on top, since that is where a human would naturally grasp the object. This

grasp was more successful with the PR2, since the handle is in an open area not blocked by

other parts of the object. The second case is the duck, which was simply too small for the

PR2's planner to consistently analyze. The learned grasps worked well, though, since they

required no planning. The �nal case is the truck, where the geometric planner occasionally

failed due to grasping the moving wheels of the object, which caused the truck to slip from

the gripper. Thanks to human knowledge of the truck's moving wheels, the demonstrated

grasps did not have this problem.

Figure 15 shows the di�erence in quality between the crowdsourced user study grasps

and the researcher demonstrated grasps. The ratio of high-probability grasps to total grasps

36

Figure 15: A comparison of the ratio of high-probability (graspProbability > 0.5) grasps to total

grasps for the user study data and the researcher demonstrated data.

was signi�cantly higher for the researcher demonstrated data than for the user study data.

The graph shows that many more grasps were removed from the database by the grasp

learning system for the user study data. The non-expert users could demonstrate high-

quality grasps, but it often took more attempts than with the researchers' more consistent

high-quality grasp demonstrations. This is not really an issue, however, as crowdsourcing

is designed to collect large amounts of data, and we designed the grasp learning system to

sort through the inconsistent data that crowdsourcing tends to produce. Also of note is

that the researcher demonstrated grasps did not always have a success rate of 1.0. This

likely occurred due to sensor error, and reinforces the need for the grasp learning process,

regardless of whether the grasps were demonstrated by expert or non-expert users.

37

Figure 16: Example grasps calculated by a geometric grasp planner (top) and demonstrated by an

expert user (bottom).

7.3.2 Advantages of Demonstrated Grasps

Following the results of comparing the demonstrated grasps to the PR2's geometrically

calculated grasps, the researchers demonstrated additional grasps for a supplemental object

set. Each object in this set represents a special case of constraints for grasping, which the

geometric planner was unable to detect. Figure 16 shows each supplemental object with

both an example calculated grasp and an example demonstrated grasp. The �rst object,

the water bottle, is di�cult for the PR2 to grasp because most of the bottle's surface is

too slippery for the gripper to hold securely. There is a graspable region at the neck of the

bottle, but the geometric planner would often grasp below it on the smoother surface. Next

is the co�ee creamer, which presents a challenge to the PR2 since its diameter is about the

same distance as the width of the robot's open gripper, causing small miscalculations to

result in missed grasps. The grasp planner favors grasps from above, but the object has a

much more consistent grasp from the side. The hammer represents objects with extreme

weight distributions, which slip from the gripper when the object is not grasped near its

balance point. The monkey has a removable part, its hat, and again due to the geometric

planner's preference for grasps from above, the PR2's planner picks up only the hat instead

38

Figure 17: A comparison of grasp rates for the supplemental object set.

of the monkey. Finally, the vase represents objects containing fragile parts. The PR2's grasp

planner always attempts to grasp the �ower, which will both ruin the �ower and fail to pick

up the vase.

In each case, the learned grasps are superior to the geometrically calculated grasps for

overall grasping success rate. Figure 17 shows a comparison for each object. For the wa-

ter bottle and co�ee creamer, switching to a grasp from the side at an appropriate height

improved the grasp success rate to 100%; accounting for the balance point signi�cantly im-

proved the success rate for the hammer, which otherwise was grasped at random positions

along the handle; for the monkey and the vase, the demonstrated grasps resulted in successes

where the geometrically planned grasps could not succeed at all.

8 Conclusion

Our work seeks to overcome the drawbacks of existing techniques for generating 3D object

recognition data sets for mobile manipulation. We presented a novel approach for construct-

ing an object recognition database from crowdsourced information, contributing a framework

39

for collecting data through the web, preliminary results of a study on the e�ects of incentives

on online user behavior, a novel computational method for construction and recognition of

3D object models through iterative point cloud registration, and a system for learning the

e�ectiveness of demonstrated grasps.

We validated the object recognition approach with data collected from a remote user

study experiment, as well as with a larger supplemental dataset. The developed object

recognition system was successful, correctly classifying objects at a rate of 88.7% for the

experimental data and 83.93% for the larger supplemental dataset.

We showed that by using crowdsourcing, we can leverage human knowledge to create

databases for autonomous object manipulation. We have shown that, with a su�cient

amount of data collected and an appropriate system for determining which data is use-

ful, non-expert users can demonstrate grasps that a robot can use to successfully manipulate

household objects. Furthermore, this data can be collected using a minimal amount of

setup, requiring nothing more than the robot and the object set. Due to the varied quality

of crowdsourced data, this system requires more data collection than if expert users were

demonstrating the grasps. The advantages of crowdsourcing mitigate this extra data collec-

tion, though, as it still requires less time and e�ort per individual user than if a researcher

took the time to demonstrate all of the grasps on their own.

The presented techniques form a strong foundation for future research into mobile manip-

ulation in real world environments. The user study and object recognition and grasp learning

systems presented here are but one of many possible ways of using the new techniques that

web robotics has to o�er. The object recognition and grasping database built by this system

is a strong example of the power of applying crowdsourcing to robotics.

40

References

[1] B. Alexander, K. Hsiao, C. Jenkins, B. Suay, and R. Toris. Robot Web Tools [ROS

Topics]. Robotics Automation Magazine, IEEE, 19(4):20 �23, December 2012.

[2] Teresa C.S. Azevedo, João Manuel R.S. Tavares, and Mário A.P. Vaz. 3D Object Recon-

struction from Uncalibrated Images Using an O�-the-Shelf Camera. In João Manuel R.S.

Tavares and R.M. Natal Jorge, editors, Advances in Computational Vision and Medi-

cal Image Processing, volume 13 of Computational Methods in Applied Sciences, pages

117�136. Springer Netherlands, 2009.

[3] T. Baier and Jianwei Zhang. Reusability-based Semantics for Grasp Evaluation in

Context of Service Robotics. In Robotics and Biomimetics, 2006. ROBIO '06. IEEE

International Conference on, pages 703�708, Dec.

[4] Cynthia Breazeal, Nick DePalma, Je� Orkin, Sonia Chernova, and Malte Jung. Crowd-

sourcing human-robot interaction: New methods and system evaluation in a public

environment. Journal of Human-Robot Interaction, 2(1):82�111, 2013.

[5] M. Brown and D.G. Lowe. Unsupervised 3D object recognition and reconstruction in

unordered datasets. In 3-D Digital Imaging and Modeling, 2005. 3DIM 2005. Fifth

International Conference on, pages 56�63, 2005.

[6] Elisavet Chatzilari, Spiros Nikolopoulos, Symeon Papadopoulos, Christos Zigkolis, and

Yiannis Kompatsiaris. Semi-supervised object recognition using Flickr images. In

Content-Based Multimedia Indexing (CBMI), 2011 9th International Workshop on,

pages 229�234, 2011.

[7] S. Chernova, N. DePalma, E. Morant, and C. Breazeal. Crowdsourcing human-robot

interaction: Application from virtual to physical worlds. In IEEE International Sym-

posium on Robot and Human Interactive Communication, Ro-Man '11, July 2011.

41

[8] C. Crick, G. Jay, S. Osentoski, and O.C. Jenkins. ROS and rosbridge: Roboticists out

of the loop. In th ACM/IEEE International Conference on Human-Robot Interaction

(HRI), pages 493 �494, March 2012.

[9] C. Crick, S. Osentoski, G. Jay, and O. Jenkins. Human and robot perception in large-

scale learning from demonstration. In ACM/IEEE International Conference on Human-

Robot Interaction (HRI 2011), 2011.

[10] R. Detry, D. Kraft, O. Kroemer, L. Bodenhagen, J. Peters, N. Krüger, and J. Piater.

Learning grasp a�ordance densities. Paladyn, 2(1):1�17, 2011.

[11] Carlos Hernández Esteban and Francis Schmitt. Silhouette and stereo fusion for 3D

object modeling. Computer Vision and Image Understanding, 96(3):367 � 392, 2004.

Special issue on model-based and image-based 3D scene representation for interactive

visualization.

[12] Willow Garage. The household_objects SQL Database, June 2010.

[13] C. Goldfeder, M. Ciocarlie, J. Peretzman, Hao Dang, and P.K. Allen. Data-driven

grasping with partial sensor data. In Intelligent Robots and Systems, 2009. IEEE/RSJ

International Conference on, pages 1278�1283, Oct 2009.

[14] Corey Goldfeder, Matei Ciocarlie, Hao Dang, and Peter K Allen. The Columbia grasp

database. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference

on, pages 1710�1716. IEEE, 2009.

[15] Christopher Harris. You're hired! An examination of crowdsourcing incentive models

in human resource tasks. In WSDM Workshop on Crowdsourcing for Search and Data

Mining (CSDM), pages 15�18, 2011.

[16] K. Hsiao, S. Chitta, M. Ciocarlie, and E.G. Jones. Contact-reactive grasping of ob-

jects with partial shape information. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pages 1228�1235, Oct 2010.

42

[17] Yun Jiang, S. Moseson, and A. Saxena. E�cient grasping from RGBD images: Learning

using a new rectangle representation. In Robotics and Automation (ICRA), 2011 IEEE

International Conference on, pages 3304�3311, May 2011.

[18] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The KIT object models

database: An object model database for object recognition, localization and manipula-

tion in service robotics. The International Journal of Robotics Research, 31(8):927�934,

2012.

[19] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical multi-

view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 1817�1824, 2011.

[20] A. Makadia, A. Patterson, and K. Daniilidis. Fully Automatic Registration of 3D Point

Clouds. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 1, pages 1297�1304, June 2006.

[21] Niloy J. Mitra, Natasha Gelfand, Helmut Pottmann, and Leonidas Guibas. Registration

of Point Cloud Data from a Geometric Optimization Perspective. In Proceedings of the

2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '04,

pages 22�31, New York, NY, USA, 2004. ACM.

[22] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann. Integrated Grasp Planning

and Visual Object Localization For a Humanoid Robot with Five-Fingered Hands. In

Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on, pages

5663�5668, Oct 2006.

[23] B. Pitzer, S. Osentoski, G. Jay, C. Crick, and O.C. Jenkins. PR2 remote lab: An

environment for remote development and experimentation. In 2012 IEEE International

Conference on Robotics and Automation (ICRA), pages 3200 �3205, may 2012.

[24] John Ross Quinlan. C4.5: Programs for Machine Learning, volume 1. Morgan Kauf-

mann, 1993.

43

[25] R.B. Rusu, N. Blodow, and M. Beetz. Fast Point Feature Histograms (FPFH) for

3D registration. In Robotics and Automation, 2009. ICRA '09. IEEE International

Conference on, pages 3212�3217, May 2009.

[26] R.B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In Robotics and

Automation (ICRA), 2011 IEEE International Conference on, pages 1�4, 2011.

[27] Ashutosh Saxena, Lawson LS Wong, and Andrew Y Ng. Learning Grasp Strategies with

Partial Shape Information. In AAAI, volume 8, pages 1491�1494, 2008.

[28] Anuj Sehgal, Daniel Cernea, and Milena Makaveeva. Real-Time Scale Invariant 3D

Range Point Cloud Registration. In Aurélio Campilho and Mohamed Kamel, editors,

Image Analysis and Recognition, volume 6111 of Lecture Notes in Computer Science,

pages 220�229. Springer Berlin Heidelberg, 2010.

[29] Alexander Sorokin, Dmitry Berenson, Siddhartha S Srinivasa, and Martial Hebert. Peo-

ple helping robots helping people: Crowdsourcing for grasping novel objects. In Intelli-

gent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages

2117�2122, 2010.

[30] Jörg Stückler, Ricarda Ste�ens, Dirk Holz, and Sven Behnke. E�cient 3D object per-

ception and grasp planning for mobile manipulation in domestic environments. Robotics

and Autonomous Systems, 61(10):1106 � 1115, 2013. Selected Papers from the 5th Eu-

ropean Conference on Mobile Robots (ECMR 2011).

[31] S. Tellex, T. Kollar, S. Dickerson, M.R. Walter, A.G. Banerjee, S. Teller, and N. Roy.

Understanding natural language commands for robotic navigation and mobile manip-

ulation. In Proceedings of the National Conference on Arti�cial Intelligence (AAAI),

August 2011.

[32] Russell Toris, David Kent, and Sonia Chernova. The robot management system:

A framework for conducting human-robot interaction studies through crowdsourcing.

Journal of Human-Robot Interaction, 2014.

44

[33] Antonio Torralba, Robert Fergus, and William T Freeman. 80 million tiny images: A

large data set for nonparametric object and scene recognition. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 30(11):1958�1970, 2008.

[34] Zhixing Xue, A. Kasper, J.M. Zoellner, and R. Dillmann. An automatic grasp plan-

ning system for service robots. In Advanced Robotics, 2009. ICAR 2009. International

Conference on, pages 1�6, June 2009.

45

