

WORCESTER POLYTECHNIC INSTITUTE

p5.Polar - Programming For Geometric Patterns

by

Liz Shihching Peng

A thesis submitted in partial fulllment for the
degree of Master of Science

in
Interactive Media and Game Development

May 2020

APPROVED:

Professor Charles Davis Roberts, Major Thesis Advisor

Professor Brian J. Moriarty

Professor Lane T. Harrison

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 1

Abstract

Traditional teaching methods are often passive and do not interactively engage students,
and this is even more challenging when teaching programming to beginners. In recent years,
tech companies such as Google, and academic institutions like MIT, have introduced online
learning environments to schools for teaching programming. Most of these learning
environments are web-based, interactive, and provide visual feedback. Our project follows
these trends and builds on p5.js, a JavaScript library that provides software sketching
features and rapid visual feedback to reduce the barrier for learning programming
languages. We designed and implemented a new library for drawing geometric patterns
using polar coordinate systems, p5.Polar. We then developed a game that incrementally
teaches our library to players, and evaluated it with an online user study.

Introduction
Conventional programming language courses focus on theoretical concepts before students
see anything visual. This learning process usually frustrates the beginner and is
uninteresting to students (Bhatti, Dewani, Maqbool & Memon, 2019). Their initial curiosity
might be lost because they could not see the path from what they have to learn to what they
want to create (McCarthy, Reas & Fry, 2016). Compared to teaching programming
languages such as C++, the programming languages that provide visual feedback, reduced
unnecessary syntax and were closer to human language (Lye & Koh, 2014). Processing is
an example of a programming language created to teach the fundamentals of programming
within a visual context. The Processing creators were inspired by Design By Numbers
(DBN), a programming environment and language (McCarthy, Reas & Fry, 2016); Design By
Numbers was also created to teach the ideas of computational thinking within a visual
context (Maeda, 1999). Dots, lines, and fields can be combined with the idea of variables
and conditional statements to generate procedural drawings . The goal of Processing is to
make programming easier for art and design students as well as make programming
interactive graphics easier for technical students (McCarthy, Reas & Fry, 2016). The core
language and additional libraries of Processing were originally built with Java but it also has
a twin sister, p5.js, a web version of Processing.

p5.js starts with the same goal of Processing and works on the web by using JavaScript, to
make programming reachable for artists, designers, educators, and beginners (Ibid., 5.). The
syntax between JavaScript and p5.js are identical, but p5.js adds abstractions for graphics
and interactivity. p5.js also provides an online web editor environment that enables users to
practice programming and create drawings.

p5.js offers a set of drawing functionalities which use the Cartesian coordinate system to
position points, lines, and shapes on the screen’s canvas. When drawing with p5.js, a user
often starts by writing a single line of code using its built-in functions; the corresponding

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 2

shape will then appear on the screen. By adding a few more lines of code, the user can
create a complex pattern or animation.

As part of our research, we created a JavaScript library, p5.Polar, which draws using a polar
coordinate system. The library enables users to draw shapes by defining an angle, a radius,
and a distance (see Figure 1).

Figure 1. Drawing with p5.Polar library by defining an angle, a radius, and a distance

Instead of setting pairs of Cartesian coordinate values, the library converts polar coordinates
to Cartesian coordinates, and reduces the barrier of trigonometry required when drawing
with native p5.js functions for drawing patterns that radiate outward from a center point.
Drawing such patterns with the p5.Polar library almost always requires fewer lines of code
compared to the p5.js built-in functions. Besides this new library, our research also includes
the design and development of a tutorial / pattern matching game to incrementally teach our
library, inspired by several online interactive learning experiences, as discussed in the next
section of this document. The study contains a web application implementation to provide
visual feedback for library users to practice the drawing functionality and make creative
patterns. The web application gamifies the coding editor and offers a series of programming
challenges for users to recreate geometric patterns while understanding the concept of
drawing with polar coordinates. Our goals for our research are to enable users to experiment
with pattern creation, and to create patterns at a higher level of abstraction. The
accompanying pattern redrawing games teaches players to use the library as well as
encourages them to use the library for their future creative work.

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 3

Figure 2. Draw abstract patterns with p5.Polar library

Background
For most high school students, traditional mathematical teaching methods are not intuitive
and are mysterious (Feurzeig & Papert, 2011). Back in the 1960s, the programming
language LOGO was first introduced as a potential framework for teaching mathematics
(Ibid., 498.). LOGO is a text-based programming language and is well known for its novel
use of turtle graphics. Students type commands to move a robotic turtle and create vector
graphics such as lines or shapes. The creators of LOGO believe that teaching programming
language can reduce formal academic barriers and enable students to understand key
concepts in mathematics and improve their logical thinking (Ibid., 487.).

In recent years, several new programming languages have been introduced to traditional
classroom to K-12 students such as Lye & Koh (2014) listed, Scratch (Burke, 2012; Lee,
2010), Toontalk (as cited in Kahn, Sendova, Sacristán & Noss, 2011), Stagecast Creator
(Denner, Werner & Ortiz, 2012) and Alice (Graczyn ́ ska, 2010). Many of these are inspired
by the concepts of the LOGO programming language and provide visual feedback that is
easy to understand (Ibid., 53.). Scratch is one of the most popular programming languages
that is used in K-12 classes (Ibid., 52.). It is a block-based visual programming language.
Students can create interactive stories, games, and animations through dragging nodes that
represent programming functions to complete the logical code blocks. p5.js is a text-based
programming language but offers rapid visual feedback. It serves as a software sketchbook
and is accessible for beginners and non-technical students. Students who use it learn
programming through creating interactive graphics (McCarthy, Reas & Fry, 2016). Traditional
programming languages such as Java, are closer to the computer’s way of thinking (Smith,
Cypher, & Tesler, 2000), while programming languages that provide visual feedback are
likely to be suitable for teaching computational thinking (Lye & Koh, 2014). The creators of
p5.js also found that students can find motivation and encouragement by providing
immediate visual feedback (McCarthy, Reas & Fry, 2016). Our research draws inspiration
from several interactive experiences that teach coding through games and provide

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 4

immediate visual feedback, including the Flexbox Froggy (see Figure 3), CSS Grid Garden
(see Figure 4), Khan Academy (see Figure 5), Turtle Academy (see Figure 6), and the p5.js
Web Editor (see Figure 7).

Figure 3. Interactive experience - Flexbox Froggy

Figure 4. Interactive experience - CSS Grid Garden

https://flexboxfroggy.com/
https://cssgridgarden.com/
https://www.khanacademy.org/computing/computer-programming
https://turtleacademy.com/
https://editor.p5js.org/
https://editor.p5js.org/

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 5

Figure 5. Interactive experience - Khan Academy

Figure 6. Interactive experience - Turtle Academy

Figure 7. Interactive experience - p5.js Web Editor

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 6

Methodology
In this section we begin by illustrating typical drawing functions found in p5.js, and the
difficulties associated with creating procedural, radial patterns using cartesian coordinates.
We then describe the abstractions our library contains for drawing with polar coordinates,
and describe the iterative design / development process used to create our gamified tutorial
for the library.

Drawing geometric patterns with p5.js (without using p5.Polar)
p5’s built-in functions use the Cartesian coordinate system to position points, lines and
shapes on the canvas. For example, giving x-coordinate and y-coordinate values, we can
plot a point at 2D dimension space with p5.js built-in point() function:

function draw() {

 point(15, 20);

}

The feature of p5.js serves as a blank canvas that allows a user to sketch by layering lines of
code to create drawings. Add one line of code to plot a point, add a few more lines to form a
shape, and change the color of each shape by adding more lines of code. Take the
ellipse() function as an example. When drawing ellipses starting from the middle of the
canvas, we need at least two p5.js built-in functions, translate() and ellipse() .
Specify the x and y parameters can translate the vector graphics to left or right, and up or
down.

Setting a pair of x and y parameters along with width and height values to ellipse()
function, draws an ellipse on the middle of the screen as shown in Figure 8:

function draw() {

 translate(width/2, height/2);

 ellipse(0, 0, 100, 100);

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 7

Figure 8. Draw an ellipse in the middle of canvas with p5.js built-in function

Add one more line of code to set the color of the shape. We can use the built-in fill()
function and give RGB values from the range 0 to 255 as shown in Figure 9:

function draw() {

 translate(width/2, height/2);

 fill(238, 175, 170);

 ellipse(0, 0, 100, 100);

}

Figure 9. Draw a colored ellipse with p5.js built-in function

Layering multiple lines of code allows us to draw much complicated patterns just like drawing
on a sketchbook. It is the greatest feature of p5.js. Draw a ring of ellipses by layering six
ellipse() functions as shown in Figure 10:

function draw() {

 translate(width/2, height/2);

 fill(238, 175, 170);

 ellipse(0, -100, 100, 100);

 ellipse(0, 100, 100, 100);

 ellipse(86, -50, 100, 100);

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 8

 ellipse(86, 50, 100, 100);

 ellipse(-86, 50, 100, 100);

 ellipse(-86, -50, 100, 100);

}

Figure 10. Use brute force method to draw a ring of ellipses with p5.js built-in function

p5.js enables what its authors describe as “sketching with code”, layering lines of code one
after another to gradually develop sketches. (McCarthy, Reas & Fry, 2016). When drawing
with the p5s built-in functions, programmers can either guess to set pairs of x-coordinate
and y-coordinate parameters or set them with mathematical calculations. If a user feels
manually positioning pairs of x and y values is too verbose, there is another way to draw
patterns that requires better understanding of trigonometry, as shown in Figure 11:

function draw() {

 for(let i=0; i<6; i++) {

 resetMatrix();

 translate(width/2, height/2);

 let angle = (TWO_PI/6)*i;

 translate(sin(angle)*100, cos(angle)*100);

 ellipse(0, 0, 100, 100);

 }

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 9

Figure 11. Use for loop method to draw a ring of ellipses with p5.js built-in function

With trigonometry and the translate() function users can create a for loop that draws the
same pattern on the screen as calling ellipse() six times with different coordinates.

The ease of sketching with p5.js is also a downside. Imagine drawing a complex abstract
pattern with the built-in functions, where users would have to type tens or hundreds of
individual calls to the ellipse() function, and give each of them different pairs of
x-coordinate and y-coordinate values. While using a loop is terser, it requires familiarity with
underlying trigonometry calculations in order to draw complicated abstract patterns. Both
methods might frustrate beginners doing creative work.

A polar coordinate system for p5.js
In order to minimize the barriers of mathematics requirement, and reduce the verbosity of
numerical Cartesian coordinate settings for creating patterns with p5.js built-in functions, we
built a new JavaScript library, p5.Polar, which implements drawing using a polar coordinate
system. (https://github.com/liz-peng/p5.Polar). The library converts polar coordinates to
Cartesian coordinates for use with the built-in functions of p5.js, and abstracts the
mathematics required for drawing abstract patterns. The source code of p5.Polar library
basically starts with resetting the current matrix with the identity matrix. Then programmers
select a center point for the polar coordinate system. The library abstract mathematics
required by converting degree measurements to their corresponding values in radians, and
then draws shapes that are placed using trigonometry calculations. It often requires fewer
lines of code to draw radial patterns with the p5.Polar library as compared to the built-in
functions of p5.js.

The p5.Polar library offers two sets of drawing functions, one set for drawing single shapes
and another set for drawing rings of shapes.. There are nine types of shapes in p5.Polar:
line, ellipse, triangle, square, pentagon, hexagon, heptagon, octagon, and polygon.

● polarLine(angle, radius, [distance])

● polarTriangle(angle, radius, [distance])

● polarSquare(angle, radius, [distance])

● polarPentagon(angle, radius, [distance])

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 10

● polarHexagon(angle, radius, [distance])

● polarHeptagon(angle, radius, [distance])

● polarOctagon(angle, radius, [distance])

● polarEllipse(angle, widthRadius, heightRadius, [distance])

● polarPolygon(number, angle, radius, [distance])

The line, triangle, square, pentagon, hexagon, heptagon, and octagon drawing functions
require at least two parameters: angle and radius.. Distance is an optional parameter for
every function.

Drawing a triangle with polarTriangle() function as shown in Figure 12:

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangle(0, 100, 0);

}

Figure 12. Draw a triangle with p5.Polar library

Moving the shape from center point by defining the distance as shown in Figure 13:

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangle(0, 100, 50);

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 11

Figure 13. Move a triangle with p5.Polar library

Rotating the shape by defining the angle as shown in Figure 14:

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangle(30, 100, 50);

}

Figure 14. Rotate a triangle with p5.Polar library

The basic usage of p5.Polar library is defining the angle, radius and distance of a shape by
following the order. Distance is an optional parameter, therefore, polarTriangle(0,

100) is functionally the same as polarTriangle(0, 100, 0) .

The polarEllipse() function requires four parameters: angle, width, height, and
distance, in order to draw an oval shape as shown in Figure 15:

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipse(0, 50, 100, 0);

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 12

Figure 15. Draw an ellipse with p5.Polar library

The polarPolygon() enables drawing shapes with an arbitrary number of edges by
specifying the number of edges, an angle, a radius, and an optional distance to the function.

Drawing a twelve-sided shape with the polarPolygon() function as shown in Figure 16:

function draw() {

 polar.setCenter(width/2, height/2);

 polarPolygon(12, 0, 100);

}

Figure 16. Draw a twelve edges shape with p5.Polar library

The p5.Polar library enables users to draw geometric patterns with polar coordinates, but the
library still retains the features of p5.js, helping users sketch with code by layering lines of
code to create drawings.

By manipulating the angles, radii, and distances used in our polar coordinate system, we can
quickly create simple patterns, as shown in Figure 17:

function draw() {

 polar.setCenter(width/2, height/2);

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 13

 noFill();

 polarEllipse(0, 10, 5, 120);

 polarEllipse(-60, 5, 10, -120);

 polarEllipse(60, 5, 10, -120);

 polarEllipse(0, 10, 5, -120);

 polarEllipse(-120, 5, 10, -120);

 polarEllipse(120, 5, 10, -120);

 polarEllipse(0, 50, 50, 0);

 polarTriangle(0, 100, 0);

 polarTriangle(180, 100, 0);

}

Figure 17. Draw a geometric pattern with p5.Polar library

Combining this with the built-in functions (such as fill()) of p5.js enables us to create l.
colorful patterns, such as shown in Figure 18:

function draw() {

 polar.setCenter(width/2, height/2);

 noStroke();

 fill(175, 170, 238);

 polarEllipse(0, 10, 5, 120);

 polarEllipse(-60, 5, 10, -120);

 polarEllipse(60, 5, 10, -120);

 fill(238, 175, 170);

 polarEllipse(0, 10, 5, -120);

 polarEllipse(-120, 5, 10, -120);

 polarEllipse(120, 5, 10, -120);

 polarEllipse(0, 50, 50, 0);

 fill(175, 170, 238, 120);

 polarTriangle(0, 100, 0);

 fill(238, 175, 170, 120);

 polarTriangle(180, 100, 0);

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 14

Figure 18. Draw a geometric pattern and fill the color with p5.js built-in function

Layering lines of code to see how shapes changing on the screen is a more visualize way of
learning programming. The p5.Polar library also provides drawing functions for advanced
users to create multiple copies of a shape, laid out in a ring, with only one line of code.
There are nine such drawing functions: lines, ellipses, triangles, squares, pentagons,
hexagons, heptagons, octagons, and polygons.

● polarLines(number, radius, distance, [callback])

● polarTriangles(number, radius, distance, [callback])

● polarSquares(number, radius, distance, [callback])

● polarPentagons(number, radius, distance, [callback])

● polarHexagons(number, radius, distance, [callback])

● polarHeptagons(number, radius, distance, [callback])

● polarOctogons(number, radius, distance, [callback])

● polarEllipses(number, widthRadius, heightRadius, distance,

[callback])

● polarPolygons(number, number of edges, radius, distance,

[callback])

The naming is exactly the same as the functions that draw a single shape but with a ‘s’
appended to the function name. These functions require at least three parameters: number
of shapes, radius, and distance. For example, the code below would draw six triangles
using the polarTriangles() function by specifying the number of shapes, radius, and
distance from the center point as the parameters (see Figure 19):

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangles(6, 50, 100);

}

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 15

Figure 19. Draw six triangles with p5.Polar library

p5.Polar library automatically performs the necessary calculations for users to create
symmetric geometric patterns. Giving an odd number to the multiple drawing function will
also yield symmetric pattern (see Figure 20):

function draw() {

 polar.setCenter(width/2, height/2);

 polarPentagons(7, 50, 100);

}

Figure 20. Draw seven pentagons with p5.Polar library

The flexibility of p5.Polar library allows users to layer calls to functions that draw single
shapes, rings of shapes, and calls to the built-in functions provided by p5.js (see Figure 21):

function draw() {

 polar.setCenter(width/2, height/2);

 strokeWeight(0.3);

 polarLines(6, 150, 100);

 noStroke();

 fill(175, 170, 238);

 polarHexagon(30, 50, 0);

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 16

 fill(252, 248, 200);

 polarEllipses(8, 10, 10, 100);

 fill(238, 175, 170);

 polarEllipses(12, 40, 40, 200);

 fill(252, 248, 200, 120);

 polarEllipses(5, 80, 80, 160);

}

Figure 21. Draw a geometric pattern and fill the color with p5.js built-in function

As one additional more advanced feature, the p5.Polar library supports customization by
passing an optional callback function as the last parameter to functions that draw multiple
shapes.. The callback function allows users to manipulate the value of each parameter and
create asymmetric patterns.

Use the callback function by simply giving the optional parameter to any one of the multiple
drawing functions:

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangles(6, 50, 100, function(...args) {
 return args;

 });

}

...args means the rest parameter syntax in JavaScript which indicates an indefinite
number of arguments stored as an array. In our library, the value of each member of args

will be:

● args[0] // the current shape iteration, from 1 to n

● args[1] // angle

● args[2] // radius

● args[3] // distance

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 17

For example, if we have a function polarTriangles(6, 50, 100,

function(...args)) , our callback function will be passed six sets of arguments:

[1, 60, 50, 100]
[2, 60, 50, 100]
[3, 60, 50, 100]
[4, 60, 50, 100]
[5, 60, 50, 100]
[6, 60, 50, 100]

The iteration advances from 1 to 6, the angle which is based on the polar coordinate system
has been divided by 360 degrees which is 60 (360/6 = 60), the radius of every triangle is 50,
and the distance from the center point which is always 100. Since args[0] is not a
constant value, it allows users to make creative patterns with some mathematical
calculations.

Take a ring of regular ellipses as an example as shown in Figure 22:

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipses(6, 50, 50, 100, function(...args) {

 return args;

 });

}

Figure 22. Draw a ring of ellipses with p5.Polar library

Resetting the width and height of radius by giving new values to the second and third
arguments as shown in Figure 23:

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipses(6, 50, 50, 100, function(...args) {

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 18

 args[2] = 80;

 args[3] = 80;

 return args;

 });

}

Figure 23. Draw a ring of ellipses with p5.Polar library

Setting the width and height of each individual shape by referencing the first argument as
shown in Figure 24:

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipses(6, 50, 50, 100, function(...args) {

 args[2] = args[0]*6;

 args[3] = args[0]*6;

 return args;

 });

}

Figure 24. Draw a ring of ellipses with p5.Polar library

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 19

As a final example, below we create a gradient of color by using the first argument to change
RGB values, as shown in Figure 25:

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipses(6, 50, 50, 100, function(...args) {

 fill(args[0]*60, args[0]*60, args[0]*60);

 args[2] = args[0]*6;

 args[3] = args[0]*6;

 return args;

 });

}

Figure 25. Draw a ring of ellipses with p5.Polar library

We use args[0] multiplied by different numbers to set each shapes’ stroke and fill color,
and also use it to re-calculate the radius and distance of each ellipse. Each value of the
args array can be used with both p5.Polar functions and p5.js built-in functions.

A gaming application for learning p5.Polar library
Traditional programming courses typically focus on teaching algorithms, methods and
theories first before students see anything visual (McCarthy, Reas & Fry, 2016). It is a
difficult way for beginners to learn a programming language. Teaching programming by
offering instant visual feedback often gives encouragement and motivation for students
(ibid.). Inspired by several online interactive learning experiences include Flexbox Froggy,
CSS Grid Garden, Khan Academy, Turtle Academy, and the p5.js Web Editor. The study
comes along with a gaming application for creative coding, with a focus on re-creating
pattern examples through each game level while learning to draw geometric patterns with
polar coordinate concept (https://liz-peng.github.io/p5.Polar/). The application is designed
with the goal of giving immediate visual feedback while programming and gamifying the
learning process for p5.Polar library users.

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 20

The initial prototype of the game—as shown in Figure 26— gives example images that tell
players how to draw patterns by gradually increasing their complexity.

Figure 26. p5.Polar learning application prototype

The idea of the game shares the same goal with p5.js and Processing that makes coding
accessible for non-technical students. Start drawing with a circle, and gradually draw the
whole pattern while learning to code at the same time. The game separates into three parts,
one part for coding, one for showing the error message after compiling, and one for
displaying the example images.

To introduce different types of shapes with their corresponding drawing functions, we
changed the game focus on one shape per level, and added a feature where the pattern
changes color when it is drawn correctly. The second prototype focus on teaching single
drawing and multiple drawing functions with different types of shape in one level (see Figure
27):

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 21

Figure 27. p5.Polar learning application prototype

In order to simplify the learning process, the game separates teaching functions that draw
individual versus multiple shapes into separate levels. Our third prototype begins by teaching
how to draw individual triangles, as shown in Figure 28.

Figure 28. p5.Polar learning application prototype

This third prototype was inspired by Flexbox Froggy, the CSS learning game. In this
prototype, the code editor and instructions are separated. It also adds thorough method
explanations for the library so users can reference each p5.Polar function. This interface and
the overall user experience of the game is evaluated in the next section of this document.

We use string matching and regular expressions to check the correctness of user-coded
patterns. Unfortunately, this limits the available coding styles that can be used to solve the
pattern puzzles; in future work we will move to using pixel comparisons between the target

https://flexboxfroggy.com/

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 22

pattern and the user-coded pattern, so that players will be free to use any coding
methodologies.

Evaluation
Our evaluation takes two forms. First, we compare the abstractions of p5.Polar to alternative
methods of achieving the same results in p5.js, with concerns for expressiveness and
avoiding math that—while trivial for many—might be difficult to understand for some
beginning programmers. Second, we evaluate our tutorial game via user-testing
accompanied by an online survey.

p5.Polar library evaluation
The p5.Polar library keeps the sketching style of p5.js while abstracting the underlying
trigonometry that p5.js users need to draw complicated geometric patterns. This section
compares drawing with the p5.js framework’s Cartesian coordinate system to drawing with
the p5.Polar library’s polar coordinate system.

Drawing an ellipse with p5.js built-in function requires a pair of x-coordinate and y-coordinate
values, and a pair of width and height of the shape (see Figure 29):

function draw() {

 translate(width/2, height/2);

 ellipse(0, 0, 50, 50);

}

Figure 29. Draw an ellipse in the middle of canvas with Cartesian coordinate system

Drawing an ellipse with p5.Polar library requires the angle, width and height of radius, and
distance from the center point (see Figure 30). At this point, the code is fairly similar to what
is required in p5.js:

function draw() {

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 23

 polar.setCenter(width/2, height/2);

 polarEllipse(0, 50, 50, 0);

}

Figure 30. Draw an ellipse in the middle of canvas with polar coordinate system

The polar.setCenter() function provided by the p5.Polar library works the same as the
p5.js translate() function but uses a more intuitive naming Users can and should set the
center of the polar coordinate system before drawing any shapes.

Drawing a triangle with the p5.js built-in triangle() function requires three pairs of xy
coordinates to represent three connected points on the canvas (see Figure 31):

function draw() {

 translate(width/2, height/2);

 triangle(-43, 26, 0, -50, 43, 26);

}

Figure 31. Draw a triangle with Cartesian coordinate system

Drawing a triangle with p5.Polar library requires the angle, radius, and distance from the
center point (see Figure 32):

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 24

function draw() {

 polar.setCenter(width/2, height/2);

 polarTriangle(0, 50, 0);

}

Figure 32. Draw a triangle with polar coordinate system

In the example using Cartesian coordinates, even though we’re not using trigonometry to
draw a triangle with p5.js, the complexity of giving three pairs of x-coordinate and
y-coordinate values is time consuming for programmers to determine.. And while drawing a
triangle requires three pairs of Cartesian coordinates, polygons with more edges requires
users to come up with even more pairs of x and y coordinates, increasing the difficulty of the
task. Drawing with polar coordinates simplifies this process, although the current
implementation in p5.Polar only supports equilateral triangles.

Drawing a ring of ellipses with p5.js built-in ellipse() function requires six pairs of xy
coordinates, and six pairs specifying the width and height of each ellipse see Figure 33):

function draw() {

 translate(width/2, height/2);

 ellipse(0, -100, 100, 100);

 ellipse(0, 100, 100, 100);

 ellipse(86, -50, 100, 100);

 ellipse(86, 50, 100, 100);

 ellipse(-86, 50, 100, 100);

 ellipse(-86, -50, 100, 100);

}

Adding a for loop shortens the required code but requires knowledge of trigonometry to
correctly position the ellipses in a ring (see Figure 33):

function draw() {

 for(let i=0; i<6; i++) {

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 25

 resetMatrix();

 translate(width/2, height/2);

 let angle = (TWO_PI/6)*i;

 translate(sin(angle)*100, cos(angle)*100);

 ellipse(0, 0, 100, 100);

 }

}

Figure 33. Draw a ring of ellipses with Cartesian coordinate system

Drawing a ring of ellipses with p5.Polar library only requires the number of ellipses, the width
and height of the ellipses, and the distance of each ellipse from the center point, greatly
simplifying the resulting code (see Figure 34):

function draw() {

 polar.setCenter(width/2, height/2);

 polarEllipses(6, 50, 50, 100);

}

Figure 34. Draw a ring of ellipses with polar coordinate system

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 26

p5.Polar web application evaluation
The first formative playtesting of the tutorial game involved four friends that are traditional
programming language users (C++, Java) and had never heard of p5.js or Processing. This
playtesting focused on getting user interface and functionality feedback. During the
playtesting, we asked the testers to play 3 levels of the game, and verbally share what they
were thinking after finishing the third level. The feedback we got from the first playtesting
session included:

Changing the hint section’s color to improve the visibility.

Need detailed explanations for each function’s parameters.

Hope the game can provide an example of a polar coordinate drawing concept for a
person who couldn't associate drawing lines with radius.

Improve the visibility of lines and shapes after users compile the code.

Simplify the introduction page.

Provide a pure space for drawing without limitation by gaming mechanics.

Based on feedback from the first playtesting, we made a few tweaks to improve the color
visibility by changing the color scheme, retyping task information, and providing polar
coordinate drawing examples to clarify the task of each level and improve the way we teach
p5.Polar drawing functions; these changes can be seen in Figures 35 and 36. We also
added a playground for experimenting with pattern creation outside the context of the tutorial
game, as shown in Figures 37:

Figure 35. p5.Polar learning application prototype

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 27

Figure 36. p5.Polar learning application prototype

Figure 37. p5.Polar learning application - playground prototype

After improving the user interface and functionality of the game and obtaining IRB approval,
we conducted more formal playtesting. This was constrained by the necessity of doing online
playtesting due to COVID-19, and focused on a user experience study. Seven people
participated in the second round of playtesting including five college students (see Figure
38). The survey was conducted after playtesters finished playing three levels of the game,
including levels teaching how to use lines, triangles, and one challenge level where players
were asked to replicate a more complex pattern combining multiple shapes. All three levels
of the game only required players to use functions that draw individual shapes. To
summarize the playtester’s programming background, 5 of the testers code about 1–3 times
a week, while two testers code 1–3 times a month (see Figure 39); thus, all the participants
had coding experience. When examining p5.js coding experience, only one playtester uses
p5.js 1–3 times a month, the rest of them had never heard of p5.js (see Figure 40). When

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 28

examining Processing (the Java ancestor of p5.js) coding experience, one playtester uses
Processing 1–3 times a month, one uses Processing 1–3 times a year, while the remaining
five playtesters had never heard of Processing (see Figure 41).

Figure 38. p5.Polar web application survey

Figure 39. p5.Polar web application survey

Figure 40. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 29

Figure 41. p5.Polar web application survey

We wanted to assess if playtesters understood the concept of drawing with a polar
coordinate system after playing the game. We asked them to examine two images, one of
the images indicates the polar coordinate system and the other one is the Cartesian
coordinate system (see Figure 42). Then we asked the testers which one of the images
represents the polar coordinate system. All the 7 playtesters got the correct answer (see
Figure 43); this is by no means a definitive assessment but is a strong indication that players
had basic intuition about the concept of polar coordinates.

Figure 42. p5.Polar web application survey

Figure 43. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 30

After the general background questions, playtesters headed over to the second part, which
assessed the user interface and user experience. As shown in Figure 44, Six playtesters
played through all three levels, while one playtester encountered technical problems and
only played two levels (these problems will be discussed later in this section).

I played all the levels (line, triangle and challenge I)

I played all the levels (line, triangle and challenge I)

I played all the levels (line, triangle and challenge I)

I played all the levels (line, triangle and challenge I)

Line, Triangle, Challenge I

Line, Triangle

I played all the levels (line, triangle and challenge I)

Figure 44. p5.Polar web application survey

The survey separated each component and functionality in the game, and asked about the
experience of the introduction section first. For the “Task” section (see Figure 45), 4
playtesters felt the task section was clear, while 3 of them chose neutral (see Figure 46). In
the "Code, Compile, Run" section (see Figure 47), all the playtesters feltl the instruction was
clear (see Figure 48). For the “Hint” section (see Figure 49), 4 playtesters felt the
explanation was clear, while 3 of them chose neutral (see Figure 50). In the “example”
section (see Figure 51), all playtesters felt the information was clear (see Figure 52).

Figure 45. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 31

Figure 46. p5.Polar web application survey

Figure 47. p5.Polar web application survey

Figure 48. p5.Polar web application survey

Figure 49. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 32

Figure 50. p5.Polar web application survey

Figure 51. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 33

Figure 52. p5.Polar web application survey

In the rest of the second part of the survey, we asked about their overall experience using
the tutorial game and playground. First, we wanted to know if playtesters encountered any
difficulties in the game (see Figure 53). One playtester mentioned that he/she didn't know
how to draw the second line in the first level, one playtester mentioned about getting the
error when coding with for loops, and one playtester couldn’t find the place to type the code.
In the “Console” section (see Figure 54), two playtesters ran into error messages and the
resulting error messages helped them with debugging, while the other two playtesters also
ran into error messages but felt the error messages did not give enough information to help
them debug. The other three playtesters reported not seeing any error messages (see
Figure 55).

I didn’t know how to draw a second line at first; but I tried and erred and figured it out at
the end.

No

No

nope

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 34

I tried to do a for loop: for(let x = 0; x <=5; x++){polarLine(x*30, 120, 0)}, but it didn't
compile correctly. I checked and the for loop was written correctly

I couldn't find where can I type my code.

no

Figure 53. p5.Polar web application survey

Figure 54. p5.Polar web application survey

Figure 55. p5.Polar web application survey

For the “example images” experience (see Figure 56), all the playtesters felt the angle
indications helped them while drawing. Six playtesters felt the images generally helped them
with drawing and none of the playtesters stated that the angle or images were not helpful;
one playtester did not have an opinion on the matter (see Figure 57). In the “Try Again” and
“Pass” section (see Figure 58), all the playtesters agreed that the information is clearly
indicated if they passed a given level (see Figure 59).

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 35

Figure 56. p5.Polar web application survey

Figure 57. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 36

Figure 58. p5.Polar web application survey

Figure 59. p5.Polar web application survey

After the functionality questions, we wanted to assess playtesters enjoyment of the system.
Scaled from 1 to 5, four playtesters enjoyed the game with a rating of 4, while three players
really enjoyed the game and gave it a rating of 5 (see Figure 60). We also wanted to assess
if the game encourages playtesters to think about drawing in a new way. Five playtesters
agreed with that statement, while one playtester disagreed and the final playtester had been
using polar coordinates for many years; drawing with polar coordinate system was not new
for them (see Figure 61).

The second to last question asked what kind of project would playtesters would use the
p5.Polar library for in the future. Responses included creating a Mandala drawing, creating a
project related to kids, and kaleidoscope patterns (see Figure 62). The last question is asked

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 37

playtesters for unstructured thoughts and feedback. One playtester suggested creating more
levels, one playtester felt the drawing was boring, and one playtester pointed out a bug in
the game. Finally, one playtester encounters a layout bug (see Figure 63).

Figure 60. p5.Polar web application survey

Figure 61. p5.Polar web application survey

Figure 62. p5.Polar web application survey

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 38

Figure 63. p5.Polar web application survey

Overall, we were happy that playtesters enjoyed the application, and that it encouraged them
to think about procedural drawing in a new way. As one playtester suggested creating
projects for kids, an interesting future goal for p5.Pola would be to create a tutorial system
that both encouraged children to play with generating patterns and also taught them the
underlying trigonometry involved.

Conclusion
Web-based, interactive environments have become popular in recent years for teaching
programming and computational thinking. For those that teach graphics programming and
procedural drawing, the immediate visual feedback that they provide encourages and
motivates students to learn, and reduces the barrier for learning programming languages.
p5.js offers an online learning environment which encourages sketching with code, just like
layering with paints on paper. The study contributes to the p5.js community with a new
JavaScript library, p5.Polar, that provides a way of drawing patterns with a polar coordinate
system to reduce lines of code and abstract mathematics away from beginning
programmers. The project has been formally submitted to the Processing foundation in the
hope that it will become an official p5.js community library. Our study also presents a
gamified web-based learning environment that aims to provide an easily accessible space
for drawing creative patterns with polar coordinate systems, and uses game mechanics to
encourage players to make abstract patterns in an interactive yet interesting way.

Based on our evaluation results, we plan a number of future improvements to p5.Polar.
Eventually, the game will support for loops / while loops for advanced users, instead of
manually typing repetitive lines of code, and shall add indications to clarify the user interface
and ensure the code typing box is easy to find. To improve the error console, we shall add
customized error messages to help players debugging with the p5.Polar library; the error
message currently only outputs JavaScript syntax related errors. We shall create more levels
that might increase user enjoyment. Finally, we shall improve our software testing workflow,
so that pushing new versions of our game will avoid user confusion.

P5.POLAR - PROGRAMMING FOR GEOMETRIC PATTERNS 39

References
Feurzeig, W., Papert, S. A., & Lawler, B. (2011). Programming-languages as a conceptual
framework for teaching mathematics. Interactive Learning Environments, 19(5), 487–501.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

McCarthy, L., Reas, C., & Fry, B. (2016). Getting started with p5.js. San Francisco, CA:
Maker Media.

Reas, C., & Fry, B. (2006). Processing: programming for the media arts. Ai & Society, 20(4),
526–538.

Bhatti, S., Dewani, A., Maqbool, S., & Memon, M. A. (2019). A Web based Approach for
Teaching and Learning Programming Concepts at Middle School Level. International Journal
of Modern Education and Computer Science, 11(4), 46–53.

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary School Pupils’ Attitudes toward Learning
Programming through Visual Interactive Environments. World Journal of Education, 6(5).

Maeda, J. (1999). Design by numbers. Cambridge, MA: MIT Press.

Reas, C., & Fry, B. (n.d.). Processing.org. Retrieved from https://processing.org/

McCarthy, L. (n.d.). p5.js. Retrieved from https://p5js.org/

Flexbox Froggy. (n.d.). Retrieved from https://flexboxfroggy.com/

CSS Grid Garden. (n.d.). Retrieved from https://cssgridgarden.com/

Turtle Academy. (n.d.). Retrieved from https://turtleacademy.com/

