Evaluating Multiple Caching Strategies for Semantic
Network Applications

A Major Qualifying Project Report submitted to the faculty of
Worcester Polytechnic Institute
In partial fulfillment of the requirements for the degree of Bachelor of Science

by:

John French (Computer Science),

Steven Malis (Computer Science)

March 27, 2015

Submitted to:
Professor Sonia Chernova, WPI Advisor

Contents
1 Introduction

2 Background

2.1 ConceptNet
2.2 Caching
2.3 Semantic Similarity Engine and Topological Topic Modeler
3 Methodology
3.1 Test Data Set
3.2 Performance Metrics
3.3 Caching Strategies
3.4 Testing Procedure oo
3.5 Cache Implementation Details
4 Results
4.1 Runtime
4.2 Memory

4.3 Number of Requests Made
4.4 Cache Hit Ratio
4.5 Request Times

4.6

Analysis

Conclusion

Bibliography

Word Frequency in Test Data Set

English Word Frequency

17

18

20

23

List of Figures

CO 1O Ul W N

A simple example of ConceptNet data 3
Average topic runtime for each caching strategy 9
Average analogy runtime for each caching strategy 10
Memory usage over time for each caching strategy 10
Maximum memory usage for each caching strategy 11
The average number of requests made while using each caching strategy 12
The average cache hit rate while using each caching strategy 13
The average cache hit rate adjusted for data size while using each

caching strategy Lo o 15
The average time taken to complete each request to ConceptNet while

using each caching strategy oL 16

II

Abstract

Semantic networks are often used as a method of relating multiple pieces
of data to each other. ConceptNet is a semantic network that contains in-
formation about words and how they relate to other words. ConceptNet and
other semantic networks are often hosted remotely and accessed as a service,
and data retrieval times can be large. This project examines multiple data
caching strategies and their impact on the performance of two existing appli-
cations that make use of ConceptNet data. We found that the largest factor
in whether or not caching improves the performance of semantic network ap-
plications is the access pattern of the particular application.

1 Introduction

Modern day semantic networks created as representations of knowledge date back
to the 1960’s [20] and are commonly used in artificial intelligence applications. Ex-
amples of widely used semantic networks include the Semantic Network Processing
System 3 (SNePS3), a logic based knowledge representation and reasoning system
developed and maintained by the State University of New York at Buffalo [18], Ba-
belNet, a multilingual semantic network created by linked WordNet (an English lex-
ical database) [14] to the encyclopedic knowledge base contained in Wikipedia [15],
and ConceptNet [12], a component of the Open Mind Common Sense (OMCS) ar-
tificial intelligence project being developed by the Massachusetts Institute of Tech-
nology Media Lab [21].

SNePS has been used to create the “Cognitive Agent of the SNePS System -
an Intelligent Entity” (CASSIE) projects, an attempt to create a natural language
problem solving computational cognitive agent [19]. BabelNet itself can be viewed
as a product of artificial intelligence, given that its method of creation was the
automatic mapping of two databases, utilizing machine translation techniques [16].
BabelNet has been used to create a natural language semantic search engine that
attempts to search for documents based on a user’s intent, rather than the exact
sequence of words entered [10].

ConceptNet is a semantic network database of information about the re-
lationships between words in natural language. Two existing applications utilize
ConceptNet’s data: the Semantic Similarity Engine (SSE), and the Topological
Topic Modeler (TTM). The large sizes of semantic network data sets, which are
often hosted remotely and accessed as a service, can result in data retrieval delays.
We therefore developed multiple caching and pre-fetching strategies to improve the
performance of SSE and TTM when accessing ConceptNet data. We developed our
caching strategies based on the layout of ConceptNet, existing research in caching,
and observation of typical SSE and TTM data access patterns. We also created
a test data set for SSE and TTM in order to evaluate our caching strategies. We
utilized a number of metrics to evaluate each caching strategy in combination with
our test data set in order to determine how best to improve the performance of these

programs, as well as others which use data from ConceptNet. Our results showed
that caching can increase performance of semantic network applications, but the
degree of the increase is highly dependent on the access patterns of the particular
application.

2 Background

2.1 ConceptNet

ConceptNet is a semantic knowledge representation graph created with the goal of
depicting the semantic relationships within languages in order to assist facilitation
of semantic processing in software programs [12]. ConceptNet represents semantic
knowledge by:

e identifying concepts - words and short phrases - each of which is represented
by a “node” [12]; and

e identifying dozens of different types of relationships between concepts by de-
picting “relations” connecting two nodes [12, 8].

Relations create bidirectional links between nodes, representing the seman-
tic relationships between concepts [12]. Each relation also contains information
about the source of the data [7]. ConceptNet’s data is generated from multiple
crowd-sourced resources (such as Wiktionary and Open Mind Common Sense), on-
line games (such as Verbosity and Nadya), and expert-created resources (such as
WordNet and JMDict) [12, 5].

A simple example of ConceptNet’s data is a “UsedFor” relationship between
the “car” and “drive” concepts. These data points together represent the relation-
ship “A car can be used for driving.” The data also include the source from which
this relationship was generated [7].

There are multiple ways for developers to interact with ConceptNet’s data
in their applications. One method is to make requests to a public web service
maintained by the developers of ConceptNet [4]. If the latency of making requests
to a web service is undesirable, or if the application is intended to be run without
an internet connection, then the data can be downloaded ahead of time in multiple
commonly used formats [6].

2.2 Caching

Previous research in the area of caching has been largely in the context of low-
level memory architecture. Because this research often focuses specifically on these
scenarios, much of it is not directly applicable to caching data from a web service like
ConceptNet. For example, Afek, Brown, and Merritt [1] describes a “lazy caching”

/r/UsedFor _

/c/en/car > /c/en/drive

dataset: /d/globalmind

weight: 1.0

surfaceText: [[a car]] can
be used for [[driving]].

sources:
&(Q’s/ activity/globalmind/ asser[)

/s/contributor/globalmind/us/ max)

Figure 1: A simple example of ConceptNet data [7]

algorithm in the context of memory caches in multiprocessing systems, focusing
largely on the cache coherency implications of the algorithm. Because ConceptNet’s
data is read-only in our application, cache coherency is not a concern. Megiddo and
Modha [13] describe a novel caching algorithm in more general terms, yet still make
the assumption that the cache holds sequential “pages” of fixed size, which is true in
memory caches but not necessarily in higher-level contexts such as our ConceptNet
applications. We were unable to find previous research into evaluation of caching
algorithms for application-level data retrieved over a network.

Caching data from a semantic network like ConceptNet is considerably dif-
ferent from memory page caching. Memory caching takes place on a much smaller
timescale and at a much lower level. Memory caches are implemented in hardware
and reduce access times on the order of 100ns to approximately 1ns [11]. Latency
for a network request, as from ConceptNet, is much higher, on the order of 100 ms,
and a cache for this sort of data is implemented at the application level. Though
broad concepts such as cache replacement algorithms may apply to both varieties of
caching, most research in the area of caching focuses very specifically on the unique
challenges of memory caches.

2.3 Semantic Similarity Engine and Topological Topic Mod-
eler

Our work focuses on optimizing ConceptNet access for a pair of existing programs
which use ConceptNet.

The first of these programs is the Semantic Similarity Engine (SSE), de-
scribed in Boteanu and Chernova [3]. The SSE is used to solve analogy problems
similar to those found on some standardized tests, in the form “a is to b as ¢ is to
d”, where “a” and “b” are given and “c” and “d” must be selected from several
possible pairs. The SSE solves these analogy problems by first extracting a path

connecting “a” to “b” in the ConceptNet network and then comparing this path to
the paths for each of the possible pairs of “c” and “d”. It then selects the pair with
the most similar path [3].

The other program is the Topological Topic Modeler (TTM), described in
Boteanu and Chernova [2]. The TTM takes a list of words, referred to as a task,
and separates them into groups of words related to common topics. It does this by
first selecting a single word to use as a base for a new topic and then scores the
similarity of each remaining word to the topic generated so far. This similarity score
is generated by comparing the word to each word already in the topic by finding the
distance between the two words in ConceptNet. The word is then sorted into the
topic for which its score is the highest. If no score is above a threshold, the word
becomes the first in a new topic [2].

In the current implementations of these programs, each time either program
needs information about a node from ConceptNet it fetches the node, regardless
of whether or not it has already fetched that same node. They do not perform
any local caching of ConceptNet information. Since both programs frequently need
to use information about words more than once, they must make many redundant
requests to ConceptNet. Because nodes are retrieved by exploring the sub-graph
around the nodes for the given words, it is likely that some common words will be
accessed more frequently because they are more connected within ConceptNet (i.e.
they have a higher connectedness).

3 Methodology

3.1 Test Data Set

In order to determine an optimal caching method, a two pronged approach was
taken. Each of our caching strategies was evaluated by using both SSE and TTM
in conjunction with each strategy and recording several performance metrics.

For TTM, a test set of 20 tasks was created. We created the test data set by
exploiting the fact that a requirement of TTM is that the words given to it as a task
be related to each other in ConceptNet. Accordingly, we created a script to generate
tasks by first starting with a random word from an English dictionary, requesting
the data on that word from ConceptNet, and using that data to pick between 4 and
7 related words. The script processed the same set of relations upon which TTM
operates and ignores the same ones that TTM ignores. It also filtered the words
retrieved to ensure that they would be acceptable for TTM operation. The script
was run until 20 tasks were generated. As an example, one of the tasks generated
was the words “custodian”, “greenskeeper”, “curator”, “keep”, “concierge”.

In addition, we included the existing analogy data set from Boteanu and
Chernova [3] (which is based on the SAT data set created by Turney et al. [22]) and
additional analogy problems from a public domain website. We took a subset of

both data sets to create our test data set. Specifically, we took 40 of the analogies
sampled from those aimed at grades 1, 6, and 11, as well as 20 of the SAT analogies.
As an example, one of the grade 1 analogies we used was “Good is to Bad as Happy

,,,,,, 7, with the options of “sad”, “great”, and “smile” to fill in the blank. SSE

then processed all of the analogies we selected with each caching strategy.

3.2

Performance Metrics

We utilized several performance metrics to analyze the efficiency of each caching
strategy:

3.3

Run time. The main goal of this project is to shorten the amount of time
in which the programs produce results. By measuring the time taken for the
test set to complete, we can determine the gains in efficiency of each caching
strategy.

Memory usage. Caching ConceptNet data will require increased memory
usage. Memory limitations will require measuring the memory requirements
of each caching strategy in order to achieve a proper balance of increasing
computation speed without requiring excessive memory usage.

Number of requests sent to ConceptNet. Each request sent to Concept-
Net requires the overhead of establishing an HT'TP connection, constructing
a request, waiting for a reply, and parsing the reply. Each step in this process
utilizes computation time. By reducing the number of requests that need to
be sent, the programs can produce results in a shorter period of time.

Cache hit/miss ratio. When a word is requested and is not already in
the cache, significant processing time is spent to fetch that word’s data. By
measuring how often a word gets requested and is already in the cache, we
can determine which caches are more efficient for the request patterns of our
applications.

Time spent waiting for a response. It is possible that ConceptNet can re-
ply faster for some words and take more time to reply for others. By recording
the time each request to ConceptNet takes, we can see if this is the case, and
whether a particular caching strategy results in a more beneficial or harmful
access pattern.

Caching Strategies

We implemented and evaluated several caching strategies:

No caching. The test set was run and performance was analyzed with no
caching to act as a baseline for each metric. The expectation is that this

strategy should use the least amount of memory, but take the longest to run.
It will serve as one extreme when compared to other strategies. This cache
will be referred to as the “Nothing Cache”.

Cache everything. This strategy caches all words requested from Concept-
Net and stores them in memory until the entire test data set has been pro-
cessed. This strategy serves as the opposite extreme compared to the “Nothing
Cache”; it should use the most memory but take the least amount of time to
run. This cache will be referred to as the “Everything Cache”.

Cache everything per task. This strategy caches every word requested
from ConceptNet, but then empties the cache in between every task and anal-
ogy. This strategy could save significant memory without largely impacting
computation time if tasks have very little overlap in the data they request.
This cache will be referred to as the “Everything Per Task cache”.

Cache only a hard-coded list of highly connected words ahead of
time. It is possible that there exists a set of words in ConceptNet that are
very highly connected and would thus be requested significantly more often
than other words. By first running a calibration run of the test data set and
logging the number of times each word is requested, we could identify if such
words exist and what they are. This strategy would then request these words
on startup and cache them in memory for the lifetime of the run, and never add
anything else to the cache. This cache will be referred to as the “Frequency
Cache”.

Cache a hard-coded list of frequent English words ahead of time.
This strategy is similar to the “Frequency Cache”, except that the list of
words to pre-cache is based on word frequency in the English language rather
than word frequency in our test data set. The cache would contain only this
hard-coded list of words; they would be cached before computation begins and
the cache would never change afterwords. This cache will be referred to as the

“English Cache”.

Heuristic caching. This strategy involves developing a heuristic based on
the number of relations a word contains, in order to determine whether or not
that word should be cached. Words with a large number of relations would
stay in the cache, and words with very few relations will either stay in the
cache for a very short time or not be cached at all. If the number of times
a word’s data is accessed is related to the number of relations on that word,
then this strategy should be very memory efficient. This cache will be referred
to as the “Heuristic Cache”.

Fixed size caches. This strategy is similar to the “Everything Cache”, but
also involves setting a fixed size limit on how many words can be in the cache

at once. It also involves three different methods of determining which word
to remove when the cache is full and a new word needs to be added. The
first method is treating the cache as a FIFO (First In, First Out) queue; the
oldest remaining word would be removed from the cache to make room for new
words. The second is using an LRU (Least Recently Used) based strategy, so
that the word that has been unread for the longest amount of time would be
removed. The third and final strategy involves completely random removal
of words in the cache to make room for new words. In order to determine
the maximum size of these caches we observed the memory usage and number
of cache entries while running other strategies and chose a size intended to
balance cache usage patterns with memory limitations. These caches will be
referred to as the “Fixed Size Caches”

3.4 Testing Procedure

Each caching strategy was implemented and tested on the full test data set 5 times.
In order to reduce the chance that a particular task ordering might benefit certain
caching strategies, the order in which the tasks were run was randomized for each
run. In order to reduce the number of variables during our testing all of the testing
was run on the same computer, connected to WPI’s wired network. All requests
were directed at another machine on WPI’s wired network, hosting a local cache
of ConceptNet. The test computer on which we ran all of our testing was four-
banger, one of WPI’s high performance computing servers. It contains 4 hex-core
2.6 GHz processors for a total of 24 processing cores, and 128 gigabytes of RAM.
The abundance of computing resources available on fourbanger allowed us to run
multiple strategies in parallel to save time, without having to worry about resource
exhaustion. As each run was performed, all of our metrics were recorded. After all
test runs were completed, the values of the metrics were compared to determine the
optimal caching method.

3.5 Cache Implementation Details

Some of our caches required no special configuration, such as the “Nothing Cache”
and the “Everything Cache”. However, others required special configurations before
they could be used. The specifics of these configurations are detailed below:

e Fixed Size Caches. In order to determine the size for the fixed size caches,
we performed a test run with the “Everything Cache” and observed its word
request pattern. Each task used approximately 600 unique words on average,
and in general each word was used for a short amount of time. We there-
fore determined that 300 words would strike a good balance between caching
a sufficient number of words for good performance without requiring excess
memory usage.

e Frequency Cache. Based upon the fixed size cache test runs, we applied the
same 300 word size limit to the hard-coded highly connected words strategy.
We used the same sample run data to determine the 300 most frequently
requested words, which are listed in Appendix A. Implementation of this
strategy consists of caching those 300 words before running any tasks and
caching nothing else.

e English Cache. We again adopted the 300 word cache size limit for this
cache. We obtained a list of the most frequently used English words [9] and
utilized the top 300. As with the prior strategy, these 300 words are cached
prior to running tasks and nothing else is cached. The words we used are listed
in Appendix B.

e Heuristic Cache. The goal of the heuristic caching strategy is to cache words
that seem likely to be used again in the future. Our hypothesis is that the
connectedness of a word in ConceptNet will correlate with the number of times
that word is requested by SSE and TTM. In order to accomplish its goal, the
cache calculated a running mean and standard deviation of the number of
relations connected to each word in the cache. Once 50 new words have been
cached, the strategy removes words from the cache that have a connectedness
that is less than one standard deviation below the mean, which is equivalent
to being in the lowest 15.8% of connectedness. If the number of times a
word is accessed correlates to its connectedness, and if the connectedness of
words follows a normal distribution bell curve (which it should according to
the Central Limit Theorem [17]), then this heuristic caching method should
provide an optimal method of removing less commonly used words from the
cache while preserving words more likely to be needed in the future.

4 Results

4.1 Runtime

The average task runtime for each caching strategy is shown in Figure 2 (for TTM
tasks) and Figure 3 (for SSE tasks). Overall speedups were much better for the SSE
than for the TTM.

For the TTM, the “English” and “Frequency” caches showed very little im-
provement over the baseline (the “Nothing Cache”). The “English” cache spent
nearly as much time waiting for requests as the “Nothing” cache, indicating that a
word being common in English does not necessarily mean it will be heavily requested
by the TTM. The “Frequency” cache also showed relatively little improvement on
request time, though it was somewhat better than “English”.

The “Everything” and “Heuristic” caches both resulted in a large speedup,
which is as expected because they cache large amounts of data and never remove

Il Processing
Il Waiting for Requests

2000

1500

1000

Average Task Runtime (s)

500

English

Everything
EverythingPerTask
FixedSizeFIFO
FixedSizeLRU
FixedSizeRandom
Frequency
Heuristic

Nothing

Figure 2: Average topic runtime for each caching strategy

items from the cache. The fixed-size caches each provided a speedup of 1.13-1.14x.
The “Everything Per Task Cache”, surprisingly, showed a speedup of 1.26x, slightly
better than the “Everything Cache”. This is almost certainly due to experimental
error, but indicates that this cache performs approximately as well as the “Every-
thing Cache”, despite using significantly less memory.

For the SSE, most caches showed negligible speedup at best, with the three
fixed-size caches and the “Everything Per Task Cache” actually resulting in small
slowdowns. The “Everything” cache produced a speedup of 1.04x. Though a rela-
tively small speedup, this was the best of any cache for the SSE, as expected. The
“English” and “Frequency” caches both produced a speedup of 1.01x. Although
the overall times for the SSE were improved very little by caching, the amount of
time spent waiting for requests decreased significantly. Adding caching increased
the time spent processing data, due to cache lookups and replacement algorithms.

4.2 Memory

We logged the memory usage of each cache, sampling once per second, as seen in
Figure 4. Unfortunately due to limitations in the way we measured memory usage,
we were unable to separate the data for the SSE and TTM runs. The graph shows
the data from a single run which includes both SSE and TTM tasks.

As expected, the memory usage of the “Everything Cache” increased through-
out the run. The rate of increase slowed as the run went on, as nodes were added

Memory (MB)

10*

=
o
)

600

Il Processing

I Waiting for Requests

Average Task Runtime (s)

English
Everything

Figure 3: Average

EverythingPerTask

FixedSizeFIFO
FixedSizeLRU
FixedSizeRandom

Frequency

Heuristic

Nothing

analogy runtime for each caching strategy

English
Everything
EverythingPerTask
FixedSizeFIFO
FixedSizeLRU
FixedSizeRandom
Frequency
Heuristic

Nothing

0

10000 20000

Figure 4: Memory usage over time for each caching strategy

30000

40000 50000

Time (s)

10

60000

70000

to the cache. The “Heuristic Cache” also grew as the run went on, but used some-
what less memory than the “Everything Cache” overall. This makes sense, as these
two caches differ from the others in that they have no size limit, never clear, and
continue caching new data as it is retrieved.

The “Everything Per Task Cache” shows fluctuations in memory usage as
each task runs and then completes, as expected. Its size grows gradually over the
course of the first few tasks and then stabilizes, never dropping back down to the
baseline memory overhead of the “Nothing Cache”. This is most likely due to
imperfect garbage collection.

The three “Fixed Size Caches” all use a similar and relatively constant
amount of memory, along with the “English Cache” and the “Frequency Cache”.
The latter cache’s growth in memory usage between 2000 s and 3000 s is unexpected,
but likely due to unexpected memory consumption fluctuations elsewhere in the pro-
gram.

The “Nothing Cache”, as expected, uses the least memory of any of the
caches, and has very consistent memory usage.

10*

Memory (MB)

Figure 5: Maximum memory usage for each caching strategy

Figure 5 compares the maximum memory usage of each cache. The “Every-
thing Cache” used the most memory, at around 7 GB. The “Heuristic Cache” used
about half as much. The “English” and “Frequency” caches and the three “Fixed
Size” caches used roughly the same amount of memory, around 500 MB. The “Noth-
ing Cache” used around 250 MB, indicating that this is the base amount of memory
used by the program without any caching.

11

Average Number of Requests

80

60

40

20 .
0

English Cache Everything Everything Per Fixed Size Fixed Size LRU Fixed Size Frequency Heuristic Nothing
Cache Task Cache FIFO Cache Cache Random Cache Cache Cache
Cache

Thousands

Figure 6: The average number of requests made while using each caching strategy

4.3 Number of Requests Made

We recorded every single request made to ConceptNet by SSE and TTM during their
processing of our test data set, as seen in Figure 6. Unsurprisingly, the “Nothing
Cache” made the most requests, coming in at just under 180 thousand requests on
average, and the “Everything Cache” made the fewest, at just over 20 thousand on
average. The “English Cache” didn’t fare much better than the “Nothing Cache”,
which indicates that word frequency in the English language doesn’t correlate to
the pattern of ConceptNet requests typically made by SSE and TTM.

The number of requests made while using the “Frequency Cache” is surpris-
ing; this strategy made almost a fifth fewer requests than the “Nothing Cache”,
indicating that the 300 words it pre-caches were used relatively often. This suggests
that it may be worthwhile to combine this strategy with another strategy designed to
address the other four fifths of requests required by word absences in the “Frequency
Cache”.

The three “Fixed Size Caches” all resulted in a very similar number of re-
quests, with the LRU strategy performing the fewest and the FIFO strategy per-
forming the most. Surprisingly, the random removal strategy outperformed the
FIFO strategy, possibly indicating that a FIFO replacement strategy is not a good
match for SSE and TTM’s typical request pattern.

The “Everything Per Task Cache” outperformed every cache except for the
“Everything Cache”. Despite fully emptying the cache before starting each of the
80 test tasks, it made only roughly 2.2 times more requests than the “Everything
Cache”. This indicates that while there is definitely some overlap between tasks,
there isn’t a very large amount.

The “Heuristic Cache” performed about on par with the “Fixed Size Caches”,

12

suggesting that there were a significant amount of smaller sized words requested
during task execution that were not stored in the cache.

4.4 Cache Hit Ratio

For each caching method we calculated a hit ratio as a raw percentage of the number
of times a requested word was found in the cache divided by the total number of
requests. This data is shown in Figure 7. We also adjusted the raw hit ratio for word
connectedness in order to analyze the nature of the words stored by each caching
method. To adjust for word connectedness we summed up the number of relations
attached to each word and used the sums to calculate a similar hit-to-miss ratio.
This data is shown in Figure 8.

4.4.1 Raw Cache Hit Rate

Cache Hit Ratio
100.00%
90.00%
80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00% I
0.00% -

English Cache Everything Everything Per Fixed Size Fixed Size LRU Fixed Size Frequency Heuristic Nothing
Cache Task Cache FIFO Cache Cache Random Cache Cache Cache
Cache

Figure 7: The average cache hit rate while using each caching strategy

Predictably, the “Everything Cache” produced the highest hit ratio at 87.54%.
The second most efficient method in terms of raw hit ratio was the “Everything Per
Task Cache”, which reduced the hit ratio to 72.14%. This 17.6% reduction in cached
word availability appears to demonstrate that there was not an overly large amount
of overlapping words between tasks.

Turning to the low end of this performance metric, the “English Cache”
method produced an abysmally low hit ratio of 5.85%, demonstrating that word
frequency in the English language does not correlate to the pattern of ConceptNet
word requests typically made by SSE or TTM. The third lowest hit ratio was turned
in by the “Frequency Cache”, suggesting that while some words may be requested

13

significantly more often, caching those words alone is not enough. The “Nothing
Cache” of course produced a 0% hit ratio.

The remaining four caching methods all produced hit ratios between 50 and
60 percent. Given the closeness of these results, we compared the standard devia-
tions of the hit ratio produced by each of the individual five runs for each caching
method to ensure that our margin of error was small enough to effectively compare
these methods:

Hit Ratios Per Run Standard
Deviation

Fixed Size 48.91% | 51.62% | 51.45% | 51.68% | 51.86% || 1.24%
FIFO Cache
Fixed Size 58.85% | 56.33% | 58.43% | 60.47% | 60.75% || 1.78%
LRU Cache
Fixed Size 58.78% | 56.72% | 54.59% | 53.66% | 53.55% || 2.25%
Random Cache
Heuristic 51.73% | 53.47% | 52.99% | 51.81% | 51.46% || 0.88%
Cache

The caching method that produced the largest variability between runs was
the “Fixed Size Random Cache”, likely due to the non-systematic replacement of
cache data inherent in its randomness. However, even this cache did not have a large
amount of variability between runs, suggesting that our margin of error is indeed
low enough to compare these methods. The mechanistic FIFO replacement of cache
data surprisingly produced the lowest hit ratio of the four, performing worse than
removing words randomly. This indicates that a FIFO replacement strategy is not a
good match for the pattern of requests typically made by SSE and TTM. The more
attuned LRU method produced the highest hit ratio of the four.

The relatively low 52% hit ratio for the “Heuristic Cache” indicates that the
words requested by these applications include a significant number of relatively lowly
connected words, which the “Heuristic Cache” does not store for long. However, as
seen in the following section, when adjusted for word connectedness the “Heuristic
Cache” performance saw a significant increase.

4.4.2 Adjusted Cache Hit Rate

For most caches, adjusting the hit ratio calculations for word connectedness had a
negligible effect, between a 2% to 5% increase. However, the “Frequency Cache” and
“Heuristic Cache” saw much larger increases, 13% and 27% respectively. This was
somewhat expected because these two caches are designed to cache highly connected
words. If SSE and T'TM spend more time processing more highly connected words,
this increase could cause a significant decrease in processing time.

14

Cache Hit Ratio
Adjusted for Data Size
100.00%
90.00%
80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00% .
0.00%

English Cache Everything Everything Per Fixed Size Fixed Size LRU Fixed Size Frequency Heuristic Nothing
Cache Task Cache FIFO Cache Cache Random Cache Cache Cache
Cache

Figure 8: The average cache hit rate adjusted for data size while using each caching
strategy

4.5 Request Times

For each caching strategy we calculated the average time required to obtain each
un-cached word from ConceptNet, as shown in Figure 9. Six of the caching meth-
ods produced average access times between .06 and .063 seconds. The “Frequency
Cache” produced a similar average access time of .054 seconds. The two outliers are
the “Everything Cache” and the “Heuristic Cache”, with access times of .035 and
.032 seconds respectively. This is an almost 50% decrease compared to the other
types of caches. These results can be explained if ConceptNet takes less time to
retrieve word data for words with a lower connectedness. This seems logical, as
words with more data attached should take longer to load from storage and to send
over the network. The results for the “Everything Cache” would then be caused
by SSE and TTM requesting a larger amount of lower connectedness words, which
would lower the average word retrieval time. The same logic can be applied to the
“Heuristic Cache”, as it would only request highly connected words once, but may
request words with a lower connectedness multiple times, thus lowering the average
request time. This would also serve to explain the smaller decrease in average re-
quest time with the “Frequency Cache”, as it would never need to request the 300
words it already contains, and these words are all sufficiently highly connected and
used frequently enough to affect the average. However it seems the size limit of
300 prevented the “Frequency Cache” from exhibiting a larger decrease in average
request time.

15

Average Request Time

0.07

0.06
0.
0.
0.
0.
001
0

English Cache Everything Everything Per Fixed Size Fixed Size LRU Fixed Size Frequency Heuristic Nothing
Cache Task Cache FIFO Cache Cache Random Cache Cache Cache
Cache

Seconds
o o o
w S wv

=]
]

=]

Figure 9: The average time taken to complete each request to ConceptNet while
using each caching strategy

4.6 Analysis

The caching strategies which never remove items from the cache (“Everything” and
“Heuristic” caches) provided good speedups, but use a large amount of memory (and
the memory footprint will continue to grow as long as the application runs). The
caching strategies with limited cache size did effectively limit memory consumption,
but reduced time spent waiting for requests only slightly, and provided negligible
speedups due to additional overhead from deciding what to cache. The “Everything
Per Task Cache” provided a good balance, significantly reducing request time with
little additional overhead while using only marginally more memory than the fixed
size caches and keeping relatively constant memory usage throughout a run.

The degree to which caching affects performance varied significantly between
the TTM and the SSE applications. This is because the TTM’s access patterns
for conceptnet data involve expanding the same node many times in a given task,
because it pulls the subgraphs of a number of words, some of which will have sig-
nificant overlap, to group the words into topics. The SSE, on the other hand, has
only two sets of two nodes as input for each problem, so the algorithm it uses will
not request the same node from ConceptNet multiple times nearly as frequently as
the TTM.

As aresult, the data access pattern of the target application is likely the most
important factor in selecting an appropriate caching mechanism. Based on our data,
for semantic network applications which use algorithms which are likely to request
the same word multiple times, we recommend using a cache which caches all semantic
network requests indiscriminately and keeps that data cached within the scope of
the task which requested it, similar to our “Everything Per Task Cache”. For

16

applications which do not employ algorithms which do not make redundant requests
by their nature, there seems to be little value in caching nodes based on external
metrics such as word frequency in prose or connectedness heuristics. Though they
may reduce the number of requests made, our data shows that the overhead of the
cache itself may negate any speedup.

5 Conclusion

In this project we investigated the use of caching algorithms to speed access to
remotely-stored semantic network data. We compared the performance character-
istics of a number of different caching strategies and found some to be much more
effective and efficient than others. We found that algorithms which never remove
data from the cache result in high speedups but use significant amounts of mem-
ory, while algorithms which impose a size limit on the cache incur overhead which
limits the overall speedup provided. A cache strategy which periodically clears the
cache offers a trade off, providing reasonably high speedups with less memory usage
than fixed-size caches. We found that the performance improvement provided by
caching varies depending on the application and its access patterns. One of the two
applications we used showed significant speedups with caching, while the other did
not. Future research might attempt to quantify the relationship between semantic
network access patterns and cache speedup.

17

Bibliography

Yehuda Afek, Geoffrey Brown, and Michael Merritt. “Lazy Caching”. In: ACM
Trans. Program. Lang. Syst. 15.1 (Jan. 1993), pp. 182-205. 1SSN: 0164-0925.
DOI: 10.1145/151646 . 151651. URL: http://doi.acm.org/10. 1145/
151646.151651.

Adrian Boteanu and Sonia Chernova. “Modeling Discussion Topics in Inter-
actions with a Tablet Reading Primer”. In: Proceedings of the 2013 Interna-
tional Conference on Intelligent User Interfaces. IUI "13. Santa Monica, Cali-
fornia, USA: ACM, 2013, pp. 75-84. 1SBN: 978-1-4503-1965-2. DOI: 10.1145/
2449396.2449409. URL: http://doi.acm.org/10.1145/2449396.2449409.

Adrian Boteanu and Sonia Chernova. “Solving and Explaining Analogy Ques-
tions Using Semantic Networks”. In: (2014).

ConceptNet. API. Nov. 6, 2014. URL: https://github.com/commonsense/
conceptnet5/wiki/API.

ConceptNet. ConceptNet 5. Nov. 6, 2014. URL: https://github.com/commonsense/
conceptnet5/wiki/.

ConceptNet. Downloading. Oct. 10, 2014. URL: https://github.com/commonsense/
conceptnet5/wiki/Downloading.

ConceptNet. Graph structure. Nov. 6, 2014. URL: https://github. com/
commonsense/conceptnet5/wiki/Graph-structure.

ConceptNet. Relations. Mar. 19, 2014. URL: https://github.com/commonsense/
conceptnet5/wiki/Relations.

Mark Davies. Word frequency data. June 2014. URL: http://www.wordfrequency.
info/free.asp?s=y.

Khadija Elbedweihy et al. “Using BabelNet in Bridging the Gap Between
Natural Language Queries and Linked Data Concepts.” In: NLP-DBPEDIA@
ISWC. 2013.

Brendan Gregg. Systems Performance: Enterprise and the Cloud. English.
Upper Saddle River, New Jersey: Prentice Hall, 2014. 1sBN: 9780133390094,
0133390098.

Hugo Liu and Push Singh. “ConceptNet-a practical commonsense reasoning
tool-kit”. In: BT technology journal 22.4 (2004), pp. 211-226.

Nimrod Megiddo and D.S. Modha. “Outperforming LRU with an adaptive
replacement cache algorithm”. In: Computer 37.4 (Apr. 2004), pp. 58-65. ISSN:
0018-9162. DOI1: 10.1109/MC.2004.1297303.

George A Miller. “WordNet: a lexical database for English”. In: Communica-
tions of the ACM 38.11 (1995), pp. 39-41.

18

[15]

Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: Building a very large
multilingual semantic network”. In: Proceedings of the 48th annual meeting of
the association for computational linguistics. Association for Computational
Linguistics. 2010, pp. 216-225.

Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: The automatic con-
struction, evaluation and application of a wide-coverage multilingual semantic
network”. In: Artificial Intelligence 193 (2012), pp. 217-250.

John Rice. Mathematical Statistics and Data Analysis. Second. Duxbury Press,
June 1994.

Stuart C Shapiro. An introduction to SNePS 3. Springer, 2000.

Stuart C Shapiro. “The CASSIE projects: An approach to natural language
competence”. In: EPIA 89. Springer, 1989, pp. 362-380.

Stuart C Shapiro. The SNePS semantic network processing system. State Uni-
versity of New York at Buffalo, Department of Computer Science, 1978.

Push Singh et al. “Open Mind Common Sense: Knowledge acquisition from
the general public”. In: On the Move to Meaningful Internet Systems 2002:
CooplS, DOA, and ODBASE. Springer, 2002, pp. 1223-1237.

Peter Turney et al. “Combining independent modules to solve multiple-choice
synonym and analogy problems”. In: (2003).

19

A Word Frequency in Test Data Set

Count | Word Count | Word Count | Word
7190 | album 913 | die 635 | paper
5554 | person 909 | idea 633 | understand
3627 | book 907 | dog 633 | actor
2896 | film 899 | burn 630 | snore
2512 | band 890 | school 620 | fly
2196 | single 885 | man 614 | bedroom
2138 | someone 867 | sing 612 | text
2128 | something 865 | music 606 | sound
2065 | think 846 | agree 604 | town
1935 | movie 842 | store 603 | bed
1823 | human 836 | fish 597 | home
1767 | organisation 822 | cook 596 | fire
1688 | sleep 796 | newspaper 594 | money
1661 | read 793 | child 591 | bad
1587 | learn 789 | room 587 | teach
1514 | play 786 | food 584 | earth
1403 | animal 785 | live 579 | disease
1395 | water 778 | city 578 | cover
1373 | build 766 | cogitate 577 | talk
1372 | fun 756 | contemplate 567 | theater
1305 | rest 750 | student 564 | drink
1273 | study 744 | often 562 | table
1184 | good 743 | software 562 | drive
1158 | house 742 | relaxation 559 | activity
1117 | change 739 | run 557 | see
1088 | eat 732 | plant 552 | lie
1080 | place 726 | love 542 | life
1076 | cat 714 | cabinet 542 | entertainment
1075 | light 710 | computer 541 | street
1057 | kill 708 | knowledge 541 | sentence
1031 | magazine 704 | colloquialism 532 | supermarket
1011 | information 692 | word 530 | clothe

999 | work 686 | brain 527 | disagree
990 | write 684 | kitchen 525 | stupid
976 | relax 672 | smoke 525 | closet
960 | agreement 665 | game 523 | car

951 | library 657 | university 522 | consider
945 | dream 651 | woman 521 | dance
928 | death 638 | communicate 519 | listen

20

Count | Word Count | Word Count | Word
519 | letter 436 | cogitation 389 | pay
519 | head 430 | floor 385 | chicken
518 | heat 429 | wood 384 | field
516 | heavy 428 | thick 384 | bone
512 | page 427 | hospital 383 | owner
510 | make 425 | farm 383 | moon
506 | pain 424 | usually 381 | faith
503 | class 424 | object 377 | god
496 | ocean 422 | testify 376 | illness
496 | hot 422 | mean 376 | clean
495 | sport 422 | deliberation 375 | duck
495 | company 422 | bore 374 | hero
494 | compete 421 | tell 374 | compact
493 | forest 421 | box 374 | belief
491 | country 419 | energy 374 | action
491 | act 419 | consideration 373 | mountain
490 | breathe 417 | opera 373 | loose
488 | entertain 416 | shelf 371 | door
484 | show 414 | janitor 370 | plural
482 | story 413 | grind 369 | mouse
469 | doctor 412 | art 369 | boat
469 | desk 411 | record 368 | education
469 | business 411 | plan 366 | perform
467 | speak 411 | paint 366 | lizard
465 | move 411 | hotel 366 | assent
465 | classroom 410 | organization 365 | countryside
462 | big 408 | dense 363 | ship
455 | sex 408 | artist 361 | map
454 | travel 406 | eukaryote 360 | hard
453 | law 405 | concentrate 359 | remember
453 | apartment 404 | language 359 | murder
452 | thickness 404 | give 358 | village
451 | pretend 401 | park 358 | sky
448 | bird 399 | gift 357 | restaurant
447 | horse 396 | baby 357 | name
445 | song 395 | know 357 | contemplation
443 | stone 394 | bar 354 | state
442 | tree 394 | apple 353 | reason
440 | sun 393 | settlement 353 | product
440 | shop 390 | end 353 | picture
436 | specie 389 | time 352 | deal

21

Count | Word Count | Word Count | Word
352 | backpack 335 | jump 325 | rich
351 | air 334 | emotion 324 | writer
348 | undergraduate 333 | ring 324 | nightmare
347 | mind 333 | refrigerator 324 | imagine
344 | metal 332 | swallow 323 | meat
343 | insect 332 | grow 323 | bargain
343 | expensive 332 | fiddle 322 | carry
341 | memorize 332 | control 321 | keep
341 | fruit 331 | sea 321 | blowfish
340 | important 331 | religion 320 | firefighter
340 | deep 331 | believe 320 | break
340 | beach 331 | beautiful 319 | zoo
339 | inform 330 | egg 319 | loosen
338 | steal 330 | debate 319 | dirty
337 | memory 328 | gold 319 | cultivation
337 | dirt 327 | war 318 | mammal
337 | awake 327 | thinker 318 | chair
336 | rock 326 | sell 317 | property
336 | feel 326 | garage 317 | airport
335 | sweep 326 | accept 316 | orgasm

22

B English Word Frequency

Frequency | Word || Frequency | Word || Frequency | Word

1 | the 40 | if 79 | our

2 | be 41 | would 80 | two

3 | and 42 | her 81 | more

4 | of 43 | all 82 | these

5| a 44 | my 83 | want

6 | in 45 | make 84 | way

7| to 46 | about 85 | look

8 | have 47 | know 86 | first

91 to 48 | will 87 | also
10 | it 49 | as 88 | new
111 50 | up 89 | because
12 | that 51 | one 90 | day
13 | for 52 | time 91 | more
14 | you 53 | there 92 | use
15 | he 54 | year 93 | no
16 | with 55 | so 94 | man
17 | on 56 | think 95 | find
18 | do 57 | when 96 | here
19 | say 58 | which 97 | thing
20 | this 59 | them 98 | give
21 | they 60 | some 99 | many
22 | at 61 | me 100 | well
23 | but 62 | people 101 | only
24 | we 63 | take 102 | those
25 | his 64 | out 103 | tell
26 | from 65 | into 104 | one
27 | that 66 | just 105 | very
28 | not 67 | see 106 | her
29 | n't 68 | him 107 | even
30 | by 69 | your 108 | back
31 | she 70 | come 109 | any
32 | or 71 | could 110 | good
33 | as 72 | now 111 | woman
34 | what 73 | than 112 | through
35 | go 74 | like 113 | us
36 | their 75 | other 114 | life
37 | can 76 | how 115 | child
38 | who 77 | then 116 | there
39 | get 78 | its 117 | work

23

Frequency | Word Frequency | Word Frequency | Word
118 | down 159 | let 200 | play
119 | may 160 | great 201 | government
120 | after 161 | same 202 | run
121 | should 162 | big 203 | small
122 | call 163 | group 204 | number
123 | world 164 | begin 205 | oft
124 | over 165 | seem 206 | always
125 | school 166 | country 207 | move
126 | still 167 | help 208 | like
127 | try 168 | talk 209 | night
128 | in 169 | where 210 | live
129 | as 170 | turn 211 | Mr
130 | last 171 | problem 212 | point
131 | ask 172 | every 213 | believe
132 | need 173 | start 214 | hold
133 | too 174 | hand 215 | today
134 | feel 175 | might 216 | bring
135 | three 176 | American 217 | happen
136 | when 177 | show 218 | next
137 | state 178 | part 219 | without
138 | never 179 | about 220 | before
139 | become 180 | against 221 | large
140 | between 181 | place 222 | all
141 | high 182 | over 223 | million
142 | really 183 | such 224 | must
143 | something 184 | again 225 | home
144 | most 185 | few 226 | under
145 | another 186 | case 227 | water
146 | much 187 | most 228 | room
147 | family 188 | week 229 | write
148 | own 189 | company 230 | mother
149 | out 190 | where 231 | area
150 | leave 191 | system 232 | national
151 | put 192 | each 233 | money
152 | old 193 | right 234 | story
153 | while 194 | program 235 | young
154 | mean 195 | hear 236 | fact
155 | on 196 | so 237 | month
156 | keep 197 | question 238 | different
157 | student 198 | during 239 | lot
158 | why 199 | work 240 | right

24

Frequency | Word Frequency | Word Frequency | Word
241 | study 261 | since 281 | ever
242 | book 262 | long 282 | stand
243 | eye 263 | provide 283 | bad
244 | job 264 | service 284 | lose
245 | word 265 | around 285 | however
246 | though 266 | friend 286 | member
247 | business 267 | important 287 | pay
248 | issue 268 | father 288 | law
249 | side 269 | sit 289 | meet,
250 | kind 270 | away 290 | car
251 | four 271 | until 291 | city
252 | head 272 | power 292 | almost
253 | far 273 | hour 293 | include
254 | black 274 | game 294 | continue
255 | long 275 | often 295 | set
256 | both 276 | yet 296 | later
257 | little 277 | line 297 | community
258 | house 278 | political 298 | much
259 | yes 279 | end 299 | name
260 | after 280 | among 300 | five

25

