


Abstract

Robot swarms are envisioned in applications such as surveillance, agriculture, search-

and-rescue operations, and construction. The decentralized nature of swarm intelligence

has three key advantages over traditional multi-robot control algorithms: it is scalable,

it is fault tolerant, and it is not susceptible to a single point of failure. These advantages

are critical to the task of persistent surveillance - where a number of target locations

need to be visited as frequently as possible.

Unfortunately, in the real world, the autonomous robots that can be used for persis-

tent surveillance have a limited battery life (or fuel capacity). Thus, they need to

abandon their surveillance duties to visit a battery swapping station (or refueling de-

pot) a.k.a. depots. This down time reduces the frequency of visitation. This problem

can be eliminated if the depots themselves were autonomous vehicles that could meet

the (surveillance) robots at some point along their path from one target to another.

Thus, the robots would spend less time on the ’charging’ (or refueling) task.

In this thesis we present decentralized control algorithms, and their results, for three

stages of the persistent surveillance problem. First, we consider the case where the

robots have no energy constraints, and use a decentralized approach to allow the robots

choose the best target that they should visit next. While the selection process is decen-

tralized, the robots can communicate with all the other robots in the swarm, and let

them know which is their chosen target. We then consider the energy constraints of the

robots, and slightly modify the algorithm, so that the robots visit a depot before they

run out of energy. Lastly, we consider the case where the depots themselves can move,

and communicate with the robots to pick a location and time to meet, to be able to swap

the empty battery of a robot, with a fresh one. The goal of persistent surveillance is to

visit target locations as frequently as possible, and thus, the performance measurement

parameter is chosen to be the median frequency of visitation for all target locations.

We evaluate the performance of the three algorithms in an extensive set of simulated

experiments.
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Chapter 1

Introduction

In the past few years there has been an increase in the number of commercial applications

that employ Multi-Robot Systems. For some specific robotic tasks, such as exploring

an unknown planet, pushing objects or cleaning up toxic waste, it has been suggested

that rather than sending one very complex robot to perform the task it would be more

effective to send a number of smaller, simpler robots (Dudek et al., 1996). A Multi-Robot

Systems is composed of multiple interacting intelligent agents within an environment,

working in a cooperative manner to achieve a common goal.

The advantage of Multi-Robot Systems is that they are more robust and that damaged

robots are much more economical to replace compared to the case where a single complex

robot is damaged. When these systems use a centralized controller to ensure coordina-

tion between all the intelligent agents in the system they have a single point of failure

(the central controller). Moreover, computing the optimal behavior for each robot is

often NP-hard so these systems cannot operate efficiently in an online manner. In most

cases, as the scale of operations and the number of robots in the system increases, the

computation time required increases to such an extent that a suboptimal solution has

to be used.

Swarm robotics systems [1] are a subset of Multi-Robot Systems that take inspira-

tion from biological examples, especially from social insects like ants and bees. These

animals show complex collective behaviours even though they use very little direct com-

munication. Only locally available information is exploited and indirect communication

is obtained by modifications of the environment using stigmergy [2]. Thus, swarm in-

telligence, which is decentralized-distributed, circumvents the aforementioned problems

faced by traditional Multi-Robot Systems.
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Figure 1.1: Honey bees are one of the most common sources of inspiration for swarm
intelligence

Figure 1.2: Relation between Multi Robot and Robot Swarms

While discussing Multi-Robot Systems, it is important to understand the difference

between centralized, decentralized and distributed algorithms. The terms ‘centralized’

and ‘decentralized’ describe the decision making process of the algorithm. A centralized

algorithm is one where a single robot makes the decisions regarding the behavior of

every robot in the system. A decentralized algorithm is one where every robot makes

decisions about its own behavior. On the other hand, the term ‘distributed’ describes

whether or not the agents communicate with each other before a decision is made. Thus,

it is possible to have a ‘centralized-distributed’ system or a ‘decentralized-distributed’

system. However, if every robot is being given instructions by a single robot, it is unlikely

that the robots would have to communicate with each other. On the other hand, in a

decentralized system, like swarm robot systems, the robots need to communicate with

other robots to effectively complete the task.
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1.1 Persistent Surveillance

The problem being addressed in this thesis is that of Persistent Surveillance. This prob-

lem states that there are numerous points of interest (a.k.a. ‘targets’) in the environment

that need to be visited as frequently as possible for surveillance. Some applications of

persistent surveillance are air quality sampling [3], border security [4], visual inspections

of power plants and pipelines [5], traffic surveillance [6] or disaster management [7]. The

security applications of persistent surveillance are highlighted by an article [8] published

in 2016 which states that a company named ‘Persistent Surveillance Systems’ was hired

by the Baltimore Police Department for more than 9 months to persistently survey 64

square kilometers of the city of Baltimore to ensure the safety of the citizens.

In the past decade there has been a significant amount of research on quadcopters.

They are ideal to perform the persistent surveillance task. However, quadcopters have

a limited battery life, and would thus need to recharge or replace their batteries peri-

odically while executing the task. Most of the literature on persistent surveillance does

not account for this fact. To the best of our knowledge, there has been no decentral-

ized solution proposed to the persistent surveillance problem that considers the energy

constraints of the surveillance robots.

1.2 Contributions

In this thesis we present algorithmic solutions to 3 stages of the persistent surveillance

problem. In the first stage, we consider the case where the robots do not have energy

constraints, and must decide which target to visit next in a decentralized manner. In the

second stage, we present the first decentralized solution for the persistent surveillance

problem while considering the energy constraints of the robots. Since the position of

the targets in known beforehand, we use integer linear programming to find the optimal

location of the automated battery charging/battery replacing stations (a.k.a. ‘depots’).

In the third stage we present two algorithms that consider moving depots instead of the

static depots presented in the previous stage. We end by comparing the results of the

algorithms from the second and third stage. Since the swarm of robots performing this

task now contains the ‘surveillance’ robots and the ‘depots’, the swarm is heterogeneous.

To the best of our knowledge, the control algorithm developed in this thesis is the first

work that considers a decentralized strategy for persistent coverage while accounting for

the energy constraints of the robots. By extension, it is also the first work in using a

decentralized control strategy considering mobile depots.
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1.3 Thesis Structure

The organization of this thesis is as follows: Chapter 2 introduces the different ap-

proaches taken to solve the Persistent Surveillance problem. Chapter 3 describes the

formulation and the solution to the 3 stages of the problem described in Section 1.2.

Chapter 4 elaborates on the experimental setup, performance metric, and results of the

algorithms. Chapter 5 describes our conclusions, and our recommended directions for

future work.



Chapter 2

Literature Review

The existing algorithms in literature for persistent surveillance using Multi-Robot sys-

tems present many variations in terms of strategy, cooperation scheme, performance

evaluation, communication paradigm etc. The structure of this chapter is as follows:

we start by presenting approaches to the persistent surveillance problem that do not

consider energy constraints of the robots. We then discuss the different autonomous

battery charging and replacing mechanisms that have been developed. This is followed

by a description of algorithms that determine the ideal depot locations. Finally, we dis-

cuss approaches to the persistent surveillance problem that consider energy constraints

of the robots.

2.1 Persistent Surveillance With No Energy Constraints

A centralized controller using Voronoi partitions to split the region to be surveyed into

subsections is presented in [9]. The centroids of these subsections are determined to be

the optimal positions that the robots should take up to maximize a collective reward

function. The robots occupy their respective positions and remain static till the end

of the experiment. In [10] the authors consider N agents, each with bounded sensing

capabilities; and present a dynamic control algorithm that guarantees that every point in

the region is visited atleast once. The robots communicate with each other to divide the

area among themselves. Each robot then visits every point on the perimeter of the area

that it is assigned. While these solutions can be used for inspiration to solve the problem

of persistent surveillance, they are solutions to the coverage surveillance problem. In

this problem, the exact points of interest are not provided, but an entire area needs to be

surveyed. The coverage surveillance problem is a super-set of the persistent surveillance

problem.

5
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A solution to the persistent surveillance problem is presented in [11] where the authors

describe an algorithm that finds routes for every robot in the system, such that each

robot has a fixed set of targets to be visited in a cyclic manner. The authors model the

problem as a Travelling Salesman Problem (TSP) [12] for a single robot, and find the

optimal path for that robot. This path is then partitioned to find paths for each robot in

the system. The algorithm guarantees a lower bound of performance, which is relative

to the optimal frequency of visits for a single agent system. Since visiting a target can

be considered to be a ‘task’, the persistent surveillance problem can be modelled as

a Multi-Robot Task Allocation (MRTA) Problem [13]. Some centralized strategies to

solve the MRTA problem are presented in [14], [15] and [16] where the general approach

is that the robots bid on the task, and communicate their situational awareness to a

central server which decides which robot should perform which task.

Pioneering work in using decentralized algorithms for persistent surveillance was pre-

sented in [17] where the authors proposed several architectures for multi-robot surveil-

lance as well as 3 evaluation criteria. This work was evaluated and expanded in [18]

where the authors compared 5 persistent surveillance algorithms. Among the 4 online

algorithms presented in this paper, the Cyclic algorithm for Generic Graphs (CGG)

shows the best performance. In this algorithm the persistent surveillance problem is

modelled as a graph where the locations to be surveyed (a.k.a. ‘targets’) are the ver-

tices of the graph. Each robot looks for Hamiltonian cycles in the graph to visit all

the vertices. The robots use a fast heuristic algorithm proposed in [19] to calculate

the sub-optimal Hamiltonian paths. A shortcoming of these algorithms is that, in all

of the decentralized algorithms the robots do not communicate their intended target

with the other robots in the system. The same authors overcome this shortcoming in

[20]. Another interesting decentralized approach is presented in [21] which is a biologi-

cally inspired approach. In this approach, the intelligent agent continuously releases a

pheromone which decays with time. As the the strength of the pheromone at a particular

area reduces, the swarm agents are more attracted towards it.

Other approaches that have been proposed over the years include Markov Decision

Processes(MDP) [22], reinforcement learning [23], where the robots’ strategies are au-

tomatically adapted to the topology of the environment, and optimal control [24]. A

comprehensive survey of persistent surveillance algorithms that do not consider fuel con-

straints is presented in [25]. The next stage of the persistent surveillance problem is to

consider the energy constraints of the robots.
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2.2 Mechanisms for Automated Battery Recharging and

Replacement

Some of the biggest problems in swarm robotics are energy related. With the increased

interest towards research involving quadrotors, and considering their limited flight time,

the last decade has seen significant progress in the development of automatic battery

charging and battery replacing platforms. By automating the battery swapping or charg-

ing process, the overall mission time can be greatly increased.

The first work done to demonstrate the autonomous charging of an Unmanned Aerial

Vehicle (UAV) on a mobile charging station was presented in [26]. In this paper the au-

thors attached copper contacts to the quadrotor’s base. The charging station is designed

such that when the quadrotor lands on it, the inverted pyramid-like internal structure

causes the quadrotor to slide down in a manner that the copper contacts come in contact

with the charging port. This charging station was then mounted on an RC car, which

made it the first mobile UAV charging station. More recently, in [27] the authors have

developed a charging station for a Micro Aerial Vehicle (MAV), and modified the MAV

to include magnets below the 4 rotors of the quadrotor. When the quadrotor lands on

the charging station, the charging ports on the quadrotor come in contact with electrical

contacts on the charging station and charge the quadrotor’s battery. The magnets on

the quadrotor ensure robust and reliable contact with the charging pad. Other examples

of autonomous charging include [28], where the charging pad is solar powered which is

mounted on the quadrotor itself. Autonomous recharging capabilities are not just being

developed for quadrotors. The iRobot Roomba [29] is a well known commercial robotic

vacuum cleaner. When the product first launched, the Roomba would run out of bat-

tery while vacuuming, and would have to be manually carried to an power outlet and

plugged in to charge. In more recent versions of the product, the Roomba detects when

it is going to run out of power, finds its charging dock (using an infrared sensor and an

infrared beacon which is mounted on top of the dock). This ability to autonomously

charge itself has given the Roomba the capability to vacuum large areas that it would

not have been able to do when the product was first launched.

In [30] the authors have developed a mechanism to perform a cold swap of the battery

of a RC helicopter. The mechanism can not only swap batteries, but can charge them

as well. Thus, the helicopter can theoretically run indefinitely without requiring human

intervention. Another interesting approach to the battery swapping problem on an RC

helicopter is presented in [31] where arms on the landing pad position the RC helicopter

before its battery is removed, and a new one is inserted. The problem with cold swapping

is that the electronics on board need to be shut down when the battery is removed, and
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need to be restarted when the new battery is inserted. A mechanism to enable hot

swapping of a quadrotor battery is introduced in [32]. When the quadrotor lands on the

swapping mechanism, it is clamped onto a pad and provided with shore power before the

battery is removed, and this enable the hot swapping. The mechanism takes an average

of 11.8 seconds to perform the hot swap, with a deviation of 3.0 seconds.

A study and provide an analytic answer to the question of whether a battery charging

or replacement platform is preferable is presented in [33]. The authors also developed

and compared various recharge station designs and proposed a conceptual replacement

platform.

2.3 Ideal Depot Location

Now that we know that the battery can be autonomously recharged or replaced, the next

question that arises is, ‘what is the ideal location of the depots?’ This is a variant of the

Facility Location Problem [34] which is concerned with the optimal placement of facilities

to minimize transportation costs. This problem is expanded upon in Section 3.3. It is

also aligned with the Charging Station Placement (CSPL) problem as described in [35].

A novel approach to ideal depot placement is described in [36]. Here the depots start

at a random location and move towards robots when they are running low on energy.

Every time a robot couples with the depot, the robot evaluates the quality of the dock’s

position. This evaluation is used to improve the position of the depot iteratively. This is

because, in non-stationary tasks such as surveillance, the location of the docking station

has a significant impact on the task performance of the team, since the optimal docking

location may vary over the mission.

2.4 Persistent Surveillance Considering Energy Constraints

If the robots run out of energy, they will get stranded and won’t be able to move. Thus,

the robots need to account for their energy level, and the distance to the nearest depot

before choosing a target to visit.

2.4.1 Considering Static Depots

In [37] and [38], the authors propose a solution whereby they can use a team of MAVs to

perform persistent surveillance while ensuring that the MAVs return to their base station

(or charging station) when their battery level falls below a certain threshold. They start



CHAPTER 2. LITERATURE REVIEW 9

by exploring the possibility of modelling the problem as a Travelling Salesman Problem

(TSP), and spacing agents evenly along the solution. However, this approach does not

provide the flexibility that is needed to guarantee the frequency of visitation. They

then consider modelling the problem as a Dynamic Vehicle Routing Problem (DVRP)

[39]. This allows the algorithm to add targets in a dynamic manner. But this doesn’t

guarantee the frequency of visitation either, and thus, the authors decided to model

it as a Vehicle Routing Problem with Time Windows (VRPTW). The Time Windows

extension to the VRP is used to be able to guarantee the frequency of visitation at all

targets and also scale the algorithm (in terms of number of robots). This is done by

solving the problem optimally within a set time horizon and then executing this path for

a small amount of time, shifting the horizon, and resolving. This amounts to a receding

horizon framework. The problem is formulated as a Mixed Integer Linear Programming

(MILP) [40] problem and solved using combinatorial optimization. When the energy

level falls below a threshold, the MAV return to the base station for recharging. However,

for this approach to guarantee that the MAV would have enough energy to return to

the base station from the furthest target, the threshold would be quite high, and the

system would not be very efficient.

Another solution to the problem of Persistent Coverage with Fuel Constrained Robots

is described in [41]. This paper considers the position of the depots, and the energy

capacity of the robots while finding tours for the robots. The authors refer to the

problem as Multi Robot Persistent Coverage Problem (MRPCP). The goal of the paper

is to ’find a collection of tours (one for each robot), such that every target is visited

by the robots and the minimum frequency with which a target is visited is maximized’.

The problem is initially solved using combinatorial optimization without considering

fuel constraints. For edges whose cost exceeds the the fuel capacity, a new path is found

that connects the 2 vertices but passes through a depot. The new path represents the

true cost between the 2 vertices. This updated cost is used to find a Hamiltonian path

using Christofides algorithm [42]. This path is then split so that where each robot is

assigned a segment. Every segment is then modified to add a detour to a depot wherever

necessary. Each robot must now follow this segment in a cyclic manner which results

in each target being visited frequently. This approach is inspired by [43] and [44]. The

difference is that [43] considers a single robot with Dubin’s car motion model, whereas

[41] considers multiple robots. [44] is an extension of [43] that considers multi-robot

deployments and uses incremental local searches to improve on initial feasible solutions

for each robot. The initial solutions are generated by assigning targets to robots and

then computing the path using heuristics described in [43]. On the other hand, [41]

distributes targets while generating the initial solution.
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2.4.2 Considering Moving Depots

Instead of having the robots go out of their way to visit the depots, there has been some

work published recently which explores the possibility of having the depots move towards

the robot when the robot is running out of energy. In [45] and [46] the authors consider

the case where the paths of the aerial vehicles being used for surveillance is known.

They present an algorithm to find the optimal trajectory of the ground vehicles (which

are the moving depots), such that these vehicles rendezvous with the aerial vehicles

to recharge their batteries. This is done using a discrete acyclic graph (DAG) based

approach. Finding the optimal trajectory is a variant of the TSP and is an NP-hard

problem. Thus, MILP is used to find the optimal trajectory.

Similarly, in [47], the authors consider the case where an energy aware multi UAV system

is to be used for mapping a region. It is assumed that this region has some roads that

are accessible by UGVs (which are the moving depots). They present an algorithm to

find the best rendezvous points for the UGVs and UAVs (to recharge the UAVs), while

considering the energy constraints of the UAVs. The path of the UAVs is then calculated

while accounting for these rendezvous points.

The limitation of these approaches is that they are offline, and they optimize the path of

either the depots or the surveillance robots, while keeping the path of the other constant.

This reduces the flexibility of the system.



Chapter 3

Methodology

3.1 Problem Formulation

The persistent surveillance problem can be represented as an fully connected undirected

graph G(V,E) where V represents the set of vertices (which are the targets that need

to be persistently visited or surveyed), i.e. vi ∈ V . E represents the set of edges

that connect all the vertices, i.e. ei,j ∈ E. Since it is assumed that there are no

constraints on the motion of the depots, the cost c of traversing an edge is the euclidean

distance between the vertices being connected by that edge. Thus, G corresponds to the

topological map for the surveillance operation and it is assumed to be known a priori.

This can be seen below in Figure 3.1. The image on the left is a Google Earth view of

the Worcester Polytechnic Institute campus. The red circles indicate the targets that

need to be surveyed. The representation of this problem as a graph is shown in the

image on the right. The edges between vertices are shown in blue

Figure 3.1: The Persistent Surveillance Problem

11
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As mentioned in Chapter 1, in this thesis we present decentralized control algorithms for

3 stages of the persistent surveillance problem. They are described in Sections 3.2,3.3

and 3.4.

3.2 Persistent Surveillance Without Energy Constraints

In the first case, we build on a solution provided in [20] to solve the persistent surveillance

problem in a decentralized manner without considering energy constraints on the robots.

While the authors of [20] describe a probabilistic approach for the robot to decide which

target to visit next, we have used a deterministic algorithm to do the same.

In this algorithm, the robots are incentivised to visit a target by assigning a ‘reward’

value at each of the targets. The reward at a target is equal to 5 times the time since

the target was last visited. For the robot to decide which target to visit next, the robot

evaluates the gain at each target. The gain of a target for a robot is the ratio of the

reward at that target to the distance that the robot would have to travel to get to that

target. Thus, the gain of a robot r at target t is given by:

Gainr,t =
treward

dist(r, t)

Algorithm 1 Individual robot - No energy constraints

closed list = [ ]

while true do
list of gains = [ ]

for target in targets do
list of gains.append(target.reward/dist(robot,target))

end

target = find best admissible target(list of gains)

robot.move(target)

closed list.remove(target)

end

The algorithm followed by each robot is shown in Algorithm 1. The robot starts by eval-

uating its gain at every target. Once this is done, it picks the target with the maximum

gain value. It is possible that numerous robots in the system pick the same target, and

move there. This would drastically reduce the performance of the algorithm. To ensure

that this does not happen, the robots maintains a list of targets that are being visited
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at that point in time. This is known as the ‘closed list’. Any target that is not in the

closed list is considered to be an ‘admissible target’. Thus, when a robot picks a target

to visit, it checks if the target is admissible before it starts moving there. If the target is

admissible the robot adds the target to the closed list and moves there. Alternatively, if

the target is not admissible, the robot sets the gain value for that target to 0. This cycle

is repeated till the robot finds the best admissible target. The algorithm to find the best

admissible target is shown in Algorithm 2, where the value returned is the index of the

best admissible target.

Algorithm 2 Find best admissible target

potential target = index(max[list of gains])

if potential target not in closed list then
closed list.append(potential target)

return potential target

else
list of gains[potential target] = 0

return find next target(list of gains)

end

When a robot reaches the target it had chosen, it deletes the target from the closed

list, and looks for the next, ‘best admissible target’. The flowchart for this algorithm is

shown in Figure 3.2.
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Figure 3.2: Decentralized Control for Persistent Surveillance with No Energy Con-
straints

The behaviour of the robots can be observed in Figure 3.3 below. The robot is repre-

sented by the white circle and the targets that must be visited are the white squares.

The value of the reward at each target is shown near the top-right corner of each target.

When the algorithm starts, all the targets have the same reward value. Since the robot

is the closest to the upper left target, the gain at that target would be the highest. Thus,

the robot moves towards the upper left target. Once it visits this target, the reward

here falls to 0, and the robot moves to the target with the best gain.

Figure 3.3: Robot Behaviour - No Energy Constraints



CHAPTER 3. METHODOLOGY 15

3.3 Persistent Surveillance Considering Energy Constraints

- With Static Depots

Robots have a limited battery life, and thus, they need to visit depots to replace their

batteries. As mentioned in Section 2.2, mechanisms that demonstrate automatic battery

swapping capabilities have been developed over that past few years. These mechanisms

can be used at the depots.

Since the locations of the targets are known, the optimal location of the depots can be

calculated. This is known as the Facility Location Problem [34]. If the world has n

targets and m depots, and distij is the distance between a target i and a depot j, the

problem can be formulated as:

minimize

m∑
i=1

n∑
j=1

distijxij

subject to
n∑

j=1

xij = 1, i = 1, . . . ,m.

xij <= yj , i = 1, . . . ,m. j = 1, . . . , n.

where yj = 1 if location j is selected as position of depot yj = 0 otherwise

xj = 1 if location j is closest to target i xj = 0 otherwise

Consider the case where 10 targets are distributed as shown in the left image of Figure

3.4. If 3 depots had to be placed, the optimal location of the depots would be as shown

by the red circles in the right image.

Figure 3.4: Ideal location of Depots
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The algorithm followed by each robot is shown in Algorithm 3. It is essential to ensure

that a robot does not become stranded. Thus, before it starts moving towards a target

it checks to ensure that it has enough energy to first move to that target, and then move

to the depot closest to that target. If it does, this is called a ‘feasible target’.

Algorithm 3 Individual robot - Static Depots

while true do
closed list = [ ]

list of gains = [ ]

robot.moving = False

for target in targets do
list of gains.append(target.reward/dist(robot,target))

end

while robot.moving = False do
target = find best admissible target(list of gains)

if robot.energy level >= dist(robot,target) + dist(target,nearest depot) then
robot.moving = True

robot.move(target)

else
list of gains[target] = 0

end

end

end

Similar to the algorithm described in Section 3.2, the robot starts by finding the list

of gains for all targets. It then finds the best admissible target and confirms that it is

feasible before it starts moving towards that target. If the target is not feasible, the

gain value of that target (for that robot) is set to 0. When the robot’s energy level is

so low that none of the targets are ‘feasible’, the gain of all the targets would be 0. In

this case, the robot looks for the closest depot and heads there to replace it’s battery.

Once the battery is replaced, the robot evaluates the gain of all the targets and finds

the best admissible and feasible target to move to. The flowchart for this algorithm is

shown below in Figure 3.5.
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Figure 3.5: Flowchart for our decentralized control algorithm for persistent surveil-
lance with energy constraints and static depots

The behaviour of the robots can be observed in Figure 3.6. The robot is the green circle.

Targets are white squares that turn green after they are visited by the robot. The hollow

squares are the depots. The images are arranged in a clockwise manner starting from

the top-left image. The images are arranged in a clockwise manner starting from the

top-left image. In the second image, after the robot vists the target in the lower left

corner, it is clear that the reward would be highest at the unvisited (white) target.

However, since the robot does not have enough energy to visit that target and then

reach the closest depot, it decides to visit a target with a lower reward instead. In the

third image (bottom-right) the robot energy level is so low that none of the targets are

feasible, and thus, it heads to the closest depot. After its batteries are replaced, it heads

towards the unvisited target.
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Figure 3.6: Robot Behaviour - Energy Constraints - Static Depots

3.4 Persistent Surveillance Considering Energy Constraints

- With Moving Depots

Each robot spends a significant amount of time visiting depots to replace its batteries.

In order to reduce this down time, we explore the possibility of having the depot be a

mobile robot that can rendezvous with the robot at a point on the robot’s path. We

have developed two algorithms that would ensure that depots move towards robots to

replace their batteries when the robots ask for help i.e. when their batteries need to be

replaced. The difference between the two algorithms is the set of circumstances under

which a robot would ask the depots for help.

3.4.1 Moving Depots with Reactive Help Requests

The help requests are known as ‘reactive’ help requests because a robot sends out such

a request when it does not have fuel to reach it next desired target. Thus, in a way, it

reacts to having low energy by sending out a ‘reactive help request’. The reason for the

term ‘reactive’ will become more evident in Section 3.4.2. In the current section, the
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terms ‘reactive help request’, and ‘help request’ mean the same thing. The algorithm

followed by each robot is shown in Algorithm 4.

Algorithm 4 Individual robot - Moving Depots - Reactive Requests

while true do
closed list = [ ]

list of gains = [ ]

robot.moving = False

for target in targets do
list of gains.append(target.reward/dist(robot,target))

end

while robot.moving = False do
target = find best admissible target(list of gains)

if robot.energy level >= dist(robot,target) then
robot.moving = True

robot.move(target)

else
publish reactive help request

if depot reply with Rendezvous Point (RP) within time limit then
robot.moving = True

robot.move(RP)

robot.move(target)

else
list of gains[target] = 0

end

end

end

end

In this algorithm the robot finds its best admissible target and checks if it has enough

energy to get there. If not, it publishes a request for help and starts a timer. This help

request consists of the robot’s information, the target’s information, and the gain that

the robot calculated when it decided to visit this target.

Help Request = [Robot, Target,GainRobot,Target]

The robot then waits for a depot to reply and confirm that it can meet the robot. If it

does not receive a conformation before the timer runs out, the gain value of that target

is set to 0, and the robot looks for its best admissible target.
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On the depot side of things, all depots are constantly on the lookout for help requests.

If there is a help request, the depot considers the robot’s position and fuel level; as well

as the target’s position to find the most suitable rendezvous point. The depot then

responds to the help request and informs it about the rendezvous point. To ensure

that many depots don’t respond to the same help request, the depots maintain a list

of help requests that are being responded to, at that point in time. This is known as

the reactive closed list. If the help request is not the reactive closed list, it is called

an admissible reactive request. If there a number of help requests, the depot finds its

’depot gain’ for all help requests and chooses to respond to the one with the highest

depot gain. The depot gain for a depot d responding to a help request h can be defined

as the ratio of the gain of the help request to the distance between the depot and the

rendezvous point. Thus,

depot gaind,h =
hgain

dist(d, rendezvous point)

The flowchart describing the algorithms for the robot and depot algorithm is shown in

Figure 3.7. The robot’s algorithm is in red, and the depot’s algorithm is in blue.

Figure 3.7: Flowchart for our decentralized control algorithm for persistent surveil-
lance with energy constraints and moving depots responding to Reactive requests

The behaviour of the robots can be observed in Figure 3.8. The robot is represented by

the yellow circle. Targets are white squares that become yellow after they are visited by

the robot. The hollow squares are the depots. The red arrow indicated the direction of

motion of the robot, and the blue arrow indicates the direction of motion of the depot.

The images are arranged in a clockwise manner starting from the top-left image. In the

second image the robot realizes that it does not have enough fuel to reach the target,
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and it sends out a help request. The depot responds to the help request and starts

moving towards the Rendezvous Point (RP). The robot and depot meet at this RP and

the robot’s batteries are replaced.

Figure 3.8: Robot and Depot behaviour considering Reactive Help Requests

3.4.2 Preemptive Help Requests

It is clear that the system would be more efficient if the depot starts moving towards the

robot, or even replaces the robot’s dying battery preemptively before the energy level

falls to a point where the robot does not have enough energy to reach its next desired

target. Thus, we introduced a new type of help request called ’preemptive requests’.

The algorithm followed by each robot is shown in Algorithm 5.
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Algorithm 5 Individual robot - Moving Depots - Preemptive Requests

while true do
closed list = [ ]

list of gains = [ ]

robot.moving = False

for target in targets do
list of gains.append(target.reward/dist(robot,target))

end

while robot.moving = False do
target = find best admissible target(list of gains)

if robot.energy level >= dist(robot,target) then

if robot.energy level >= dist(robot,target) + fuel threshold then
robot.moving = True

robot.move(target)

else
publish preemptive help request

robot.moving = True

robot.move(target)

end

else
publish reactive help request

if depot reply with Rendezvous Point (RP) within time limit then
robot.moving = True

robot.move(RP)

robot.move(target)

else
list of gains[target] = 0

end

end

robot.moving = True

robot.move(target)

end

end

When the robot starts moving from one target to another, it calculates what its energy

level is going to be once it gets there. If this value is below a predefined threshold

(which is a function of the robot’s energy level at full charge), the robot sends out a

preemptive request.One of the major differences between the 2 types of help requests is

that, when the robot sends out a preemptive request, it does not have to wait to receive

conformation that a depot is coming to its aid. It just sends out the request and moves
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towards its target. A depot might meet up with the robot while it is on its way to the

target. If this happens, the depot deletes the preemptive help request. On the other

hand, if this does not happen, the robot deletes the preemptive request when it reaches

the target. If the robot does not have enough energy to reach its next desired target, it

then continues in the same manner as described in the Section 3.4.1.

On the depot side of things, the depots are now constantly on the lookout for both,

reactive, and preemptive requests. The priority is given to reactive requests i.e. the

depots look for preemptive requests only if there are no reactive requests. If there are

reactive requests, the depots ignore the preemptive requests and continue in the same

manner as described in the Section 3.4.1. If there are no reactive requests, and the depot

responds to the preemptive request. It evaluates weather or not it can meet up with

the the robot without disturbing the robot’s trajectory (i.e. without having the robot

wait). If so, the depot intercepts the robot and replaces the robot’s battery with a new

one. The robot does not need to be told about the rendezvous point since does not

have to make any changes to its trajectory. If the depot cannot meet up with the the

robot without disturbing the robot’s trajectory, it just moves towards the target that the

robot is heading towards. This way the depot is closer to the robot once it sends out a

reactive request. If there are numerous preemptive requests the depot finds its own gain

ratio before choosing which robot to help. The depot gain ratio is calculated by taking a

ratio of the gain that the robot calculated, to the distance that the depot would have to

travel to help out the robot. As described in the previous section, once a depot decides

to help a robot, the associated help request is not visible to other depots anymore. This

ensures that 2 depots don’t respond to the same help request. If a depot is responding

to a preemptive request, but the robot that sent out the preemptive request reaches

the target, the depot is stopped, and the request is deleted. The flowchart describing

the algorithms for the robot and depot algorithm is shown in Figure 3.9. The robot’s

algorithm is in red, and the depot’s algorithm is in blue.
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Figure 3.9: Flowchart for our decentralized control algorithm for persistent surveil-
lance with energy constraints and moving depots responding to Preemptive and Reac-

tive Help requests

The behaviour of the robots can be observed in Figure 3.10. The robot is the yellow

circle. Targets are white squares that become yellow after they are visited by the robot.

The hollow squares are the depots. The images are arranged in a clockwise manner

starting from the top-left image. In the second image the robot realizes that although

it has enough energy to reach its next target, by the time it gets there, the energy level

would be below the threshold. Thus, the robot sends out a preemptive help request. The

depot turns red since it is responding to a preemptive help request. The depot evaluates

the RP and realizes that the robot would have to wait for it. Thus, it heads towards

the robot’s target. When the robot reaches its target it deletes the preemptive request

and then realizes that it does not have enough energy to reach its next target. It sends

out a reactive help request. The depot, now responding to a reactive help request (since

the preemptive request was deleted), finds the Rendezvous Point (RP), communicates

it to the robot and starts moving there. The robot and depot meet at this RP and the

robot’s batteries are replaced.
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Figure 3.10: Robot and Depot behaviour considering Preemptive and Reactive Help
Requests



Chapter 4

Results

4.1 Performance Evaluation Metric

In order to evaluate the effectiveness of different persistent surveillance algorithms, it

is important to establish an evaluation metric. The ‘idleness’ of a target is the average

time between successive visits at that target. Thus, if a target t has been visited at

times t1, t2, t3 and t4, the idleness of t is given by it where:

it =
(t2 − t1) + (t3 − t2) + (t4 − t3)

3

’Graph idleness’ is the average value of the idleness of all targets, and this is selected as

the performance metric. Thus, the graph idleness for a system for 4 targets that have

an idleness of i1, i2, i3 and i4, the graph idleness g is given by:

g =
i1 + i2 + i3 + i4

4

Intuitively, the lower the value of the graph idleness, the better is the performance of

the algorithm.

It is important to note that, since the robots and (moving) depots start at random loca-

tions, the system requires some time to ‘stabilize’, before it can be evaluated. The system

is considered to be stable when the graph idleness changes by less than 5% between suc-

cessive evaluations. Once the system is stable we wait for each target to be visited at

least 4 times before the algorithm is terminated. The time between stabilization and

termination is used for the performance evaluation.

26
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4.2 Experimental Setup

We have considered a number of scenarios while evaluating the performance of the

algorithms. The factors that can be varied are: number of targets, number of robots,

number of depots, and the density of targets in the world. Since the world is assumed

to be square shaped, the values of the number of targets and the density of targets

determine the size of the world. It is assumed that the energy level of the robot at

full charge is enough to let it travel a distance equal to the length of the diagonal of

the world. The location of the robots, targets, and depots is assumed to be uniformly

distributed at the start. We decided to have the number of robots and targets be a

multiple of the number of targets. We chose the options for the number of depots to be

4 and 8. Thus, the options for the number of robots was chosen to be 8, 16 and 32; and

the options for the number of robots was chosen to be 32 and 64. The density values

were chosen to be 0.1 and 0.02. A setup is a selection of number of depots, number of

robots, number of targets and density.

Setup = [number of depots, number of robots, number of targets, density]

It is intuitively understood that the graph idleness of the system reduces if the number

of robots and depots, and the density is increased, and the number of targets is the

decreased. The ‘best case setup’ that we have considered is:

Best Case Setup = [8, 16, 32, 0.1]

Similarly, the graph idleness of the system increases if the number of robots and depots,

and the density is decreased, and the number of targets is the increased. The ‘worst

case setup’ that we have considered is:

Worst Case Setup = [4, 8, 32, 0.02]

The best and worst case setups are used for algorithm analysis. We have also considered

two ‘moderate’ cases viz. [4,16,64,0.1] and [4,8,64,0.1].

The algorithms developed were tested in a simulator that was developed using the

OpenCV libraries [48] in Python. To be able to study any patterns that emerge, each

robot is given a unique color. Each target is white to start with, but when it is visited



CHAPTER 4. RESULTS 28

by a robot, its color changes to match the color of the robot that visited it most recently.

As described in Chapter 3, for the third stage of the problem, the depots respond to

preemptive requests and reactive requests. In that case, the depot’s color is red when it

is responding to preemptive requests and blue when it is responding to reactive requests.

4.3 Results

This section presents the results for different setups. The Y axis of the graphs represent

the ‘Graph Idleness’. On the X axis, ‘1’ represents the results for the static depot case.

‘2’ represents results for moving depots without preemptive requests and ‘3’ represents

results for moving depots with preemptive requests. Each of the algorithms, has been

tested with 10 random seeds.

For the analysis we start by considering the best case setup i.e. [8,16,32,0.1], and we look

at incrementally worse cases till we reach the worst case setup. The results for the best

case setup are shown in Figure 4.1. The graph idleness appears to be similar for all 3

cases. This is because the world size is so small, and the number of robots, and number

of depots is so large that the effect of the moving depots cannot be seen. The mean

appears to be lower for the static depot case because the outliers are not accounted for

in the calculation of the mean.

Figure 4.1: Results for [8,16,32,0.1]

We then look at the setups [4,16,64,0.1] and [4,8,64,0.1], for which the results are shown

in Figures 4.2 and 4.3 respectively. There are numerous outliers for the static depot case.

If these were taken into account while plotting the box plots, the mean for the static
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depot case would be higher. Unfortunately, the difference between the 3 algorithms is

not evident for these setups. We believe this may be due to the fact that 10 random

seeds is not enough to see the results emerge.

Figure 4.2: Results for [4,16,64,0.1]

Figure 4.3: Results for [4,8,64,0.1]

Lastly, we look at the worst case setup i.e. [4,8,32,0.02]. Unfortunately for this case,

the optimizer took too long to solve for optimal location of the depots. Considering

suboptimal locations would skew the results, and thus, for this setup we do not consider

the algorithm with the static depots. The results for this setup are shown below in Figure

4.4. On the X axis, ‘1’ represents the results for moving depots without preemptive
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requests and ‘2’ represents results for moving depots with preemptive requests. It is

very clear from the image that the algorithm with the preemptive requests has a smaller

value of graph idleness.

Figure 4.4: Results for [4,8,32,0.02]
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Conclusions And Future Work

5.1 Summary and Conclusion

This thesis presents decentralized solutions to 3 stages of the persistent surveillance

problem. The persistent surveillance problem states that there are numerous points of

interest (a.k.a. targets) in the environment that need to be visited as frequently as

possible (for surveillance).

In the first stage, we consider the case where the robots being used for surveillance

do not have energy constraints i.e. they have an unlimited battery life. The goal of

the algorithm is to help the robots decide which target to visit next. This is done by

incentivizing the robots to visit the targets by assigning a reward to each target which is

a function of the amount of time since the target was last visited. The robots evaluate

their gain at each target, which is a ratio of the reward at the target to the distance

that the robot would have to travel to reach the target. Before moving to the target

with the best gain, a robot makes sure that none of the other robots in the swarm are

heading to the same target.

In the second stage, we present a decentralized solution to the persistent surveillance

problem while considering the energy constraints of the robots. To the best of our

knowledge, there is no work done in this field, and our solution is the first. Since the

robots have a limited battery life, they must frequently visit depots which are automated

battery replacement stations. Since the position of the targets and number of depots

is known beforehand, we use integer linear programming to find the optimal location

of the depots. Our algorithm then helps the robots decide which target to visit next,

and when it needs to visit a depot. To ensure that the robot does not become stranded,

before it starts moving towards a target, it checks to ensure that it has enough energy

to first move to that target, and then move to the depot closest to that target.

31
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In the third stage we present 2 algorithms that consider moving depots instead of the

static depots presented in the previous stage. The advantage of having moving depots

is that the robot does not spend time travelling to a depot, and eliminating the need to

take this detour improves the performance. We found few algorithms that use moving

depots and none of these algorithms are decentralized or online. Our work presents the

first decentralized algorithms that considers moving depots for replenishing/recharging

batteries of robots being used for surveillance. We have presented 2 algorithms, and the

difference between them is the set of circumstances under which a robot contacts the

depots for help. In the first approach a robot sends out a help request when it does

not have enough energy to reach its intended target. In the second approach the robot

sends out a help request before it finds itself in a position where it does not have enough

energy to reach its intended target.

In order to study the behaviors that emerge due to these algorithms, we developed a

simulator using the OpenCV libraries in Python.

The performance metric used to evaluate the algorithms is graph idleness, which is the

average of idleness at all targets. The idleness at a target is the average time between

visits at each target.

We have compared the performance of the algorithm presented in the second stage and

the two algorithms presented in the third stage. We ran a number of experiments that

prove that having moving depots result in a graph idleness that is less than or equal

to the graph idleness obtained for the same setup with optimally placed static depots.

The results also prove that, if the robots send out a preemptive help request; the graph

idleness is less than or equal to the case where they send out only reactive help request.

The results also prove that the difference in the results becomes more profound as the

setup becomes increasingly ‘worse’.

5.2 Future Work

This is a very exciting and unexplored area in the field of swarm robotics, and there

are a number of directions in which this project could be taken forward. To start with,

the algorithms presented in this paper should be implemented in the ARGoS simulator

[49]. The simulator we developed was useful to study the behavior of the swarm, but

since we have a thread for each robot and depot, the simulator does not perform well if

the number of robots exceeds 250. ARGoS has been designed specifically to deal with

swarms, and it will be able to handle a large number of robots. Once the algorithms are

implemented in ARGoS, they should be implemented on real robots.
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Another interesting approach could be to change the manner in which the robots choose

the target to visit next. In our algorithm, when a robot chooses a target to visit, the

target is added to the closed list. However, there could be a other robots that were

better placed to visit that target. Thus, the robots should be able to communicate with

each other, to find the best robot that should visit a target. Similarly, in the case of

moving depots, the depots should be able to communicate with each other to find the

best depot to responds to a help request.

An extension of this problem is to consider the case where the depots themselves have

energy constraints, and can carry a limited number of ‘replacement batteries’ for the

robots.

Another interesting avenue that we explored, but needs more work, is the ‘Diversity

Metric’

5.2.1 Diversity Metric

In most centralized approaches that solve the persistent surveillance problem, the op-

timal solution is calculated by modelling the problem as an extension of the Travelling

Salesman Problem (TSP) and solving it using MILP. The solution shows that it is op-

timal to assign a set of targets to a robot, and have the robots visit these targets in a

cyclic manner.

It can be assumed that the performance of our algorithm would be closer to optimal

if the system evolved in such a way that each robot goes exclusively to a few targets,

and every target is visited exclusively by a single robots. In other words we want the

algorithm to result in a self organizing behavior. However, to the best of our knowledge,

there exists no metric to measure the level of self organization.

Thus, we tried to introduce a measure of self organization for the persistent surveillance

problem. We started by evaluating the ratio of the number of different robots that have

visited a target to the total number of robots i.e. if the total number of robots is 10,

and the number of different robots that visited the target is 5, the robot diversity ratio

for that target is 0.5. For a target T :

Trobot diversity ratio =
number of robots that visited T

total number of robots
(5.1)

Thus, the best possible robot diversity ratio for a target in a 10 robot system is 0.1, but

the best possible robot diversity ratio for a target in a 5 robot system is 0.2. Thus, this
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metric is not ideal since the value of the best performance changes with the number of

robots in the system.

This problem can be solved by subtracting the best possible robot diversity ratio from

the robot diversity ratio for a target. We called the measure of ‘diversity at a target.

For a target T :

Tdiversity =
(number of robots that visited T )− 1

total number of robots
(5.2)

Thus, the best possible diversity for a system with any number of robots is always 0. The

‘diversitymeasure’ of the algorithm is the average of the diversities at all the targets.

Thus, for a system with N targets, the diversity measure is:

diversity measure =
1

N

N∑
i=1

Ti diversity (5.3)

Intuitively it can be expected that the graph idleness would reduce as the diversity

reduces. We experimented with 300 random seeds for the case where there are 16 robots

and 64 targets; and the robots have no energy constraints. We got the graph shown in

Figure 5.1.

Figure 5.1: Graph Idleness vs Diversity

Although the slope of the best fit line is not very steep, it does show a positive slope.

And this aligns with our prediction. However, we believe that this must be investigated

for different setups before a conclusion can be drawn. The diversity measure is not the
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performance parameter that is used to evaluate the algorithm, but it is a parameter that

reflects how much the algorithm can be improved. If the graph idleness of the algorithm

has to be reduced, one can try to reduce the diversity measure.
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