
Project Number: AG-WS07

Bank of America: Using Technology to Mine and
Analyze Data from TRACE

A Major Qualifying Project

submitted to the faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

_________________________________ _________________________________

Brent Gilmore Andrei Paduroiu

Date: December 14, 2006

Approved by:

Professor Arthur Gerstenfeld, Co-Advisor

Professor Michael J. Ciaraldi, Co-Advisor

Abstract

 Sponsored by Bank of America, this project mined raw data regarding corporate bond

trades; these statistics help traders better understand the bond market and receive more trading

ideas, faster. An application was designed to create reports composed of this data that serve as

analytical tools for the traders. Upon its completion, the project was adopted by several traders

and should result in significant financial savings for the company.

i

Executive Summary

The credit and equities traders at Banc of America Securities require many applications

to filter and interpret information relevant to the securities they are interested in trading.

Specifically, the bond traders are concerned with the activity in the corporate bond market and

are looking for statistics that can provide them with relevant knowledge, which can then be used

to interpret market activity. The National Association of Securities Dealers implemented an

automated system, the Trade Reporting and Compliance Engine (TRACE), which records bond

transaction details for all corporate bond trades and then disseminates it to the subscribers of its

Bond Trade Dissemination Service. As it is reported to traders, this data is in a very raw form

and is not especially useful in the analysis of the market. Therefore, the need for an application

that can present this information in a human-readable form arose. Our project aimed to satisfy

this need through condensing and organizing trade data into easy-to-read reports.

To best develop an application to suit these needs, we needed to gain a better

understanding of the data set and the technology with which we would be working. We read

articles pertaining to investing in bonds and TRACE, and we also met with knowledgeable Bank

of America employees that helped us design our application.

Consequently, we created TraceMon: a small, but very useful application which, based

on user preferences, searches and interprets information from TRACE and presents it in an easy-

to-read form. It is able to generate three types of reports that pertain to trading activity for

particular credits: Daily Trade Summary, Liquidity Report and Trade Outliers. TraceMon’s

users can personalize each of these reports through a friendly graphical user interface, as well as

schedule reports to run periodically or on-command.

ii

TraceMon is able to synthesize vast amounts of information into short and clear reports.

It provides the user with statistics that would otherwise be too time-consuming and unrealistic to

determine. The Daily Trade Summary provides the user with a basic trading overview of the

previous day’s trading activity. It is valuable to traders since, by using it, they can quickly assess

the prior day’s trading activity and pricing action for select issuers. The Liquidity Report allows

traders to get a quick perspective on the average monthly trading volume for select issuer’s

bonds in each of the last twelve months. Lastly, the Trade Outliers report acts as a comparison

tool, where the user can plainly see how recent trading activity compares to historic values. This

serves as an effective way to monitor the market and quickly notice trading volume outliers.

The creation of TraceMon provided bond traders at Bank of America with a very useful

tool. Previously, the data reported by our application was either tediously searched for or simply

not used. By processing a vast amount of information and condensing it into straightforward

reports, this program quickly provides statistics to the user that would otherwise be unrealistic to

determine. With the advent of TraceMon, this valuable data is now easily accessible and can

provide the user a great deal of insight into the corporate bond market. Because of this insight,

traders are able to make better investment decisions and therefore increase overall profitability of

the credit trading department.

TraceMon comes with a thorough documentation, containing both a detailed user manual

and a software development guide. Together with the comprehensive code comments and

scalable architecture, these documents make TraceMon an application that is very easy to

understand from both development and user points of view. Extending the existing functionality

will not imply re-architecting or significantly modifying the code; instead, with the help of the

iii

documentation we created it should only take a short amount of time for a developer to be able to

fully support and modify TraceMon.

Despite the value it presently adds to bond trading operations at Bank of America, future

measures could be taken to further enhance the effectiveness of TraceMon. The three reports

currently generated by it are only the beginning of what could be a much larger TRACE

analytics package. Also, this larger collection of reports could be classified by frequency so that

reports whose data changes daily would be generated more often than those whose output

changes less regularly. Since some reports can be fairly large and thus harder to read, changes

can be made in future versions to enhance the way the user accesses the desired information.

Additionally, if TraceMon is adopted by multiple users, further support could be added in order

to reduce report redundancy.

iv

Acknowledgements:

We would like to thank Scott Burton, Martin Gonzalez, Alex Gregory and Kurt Vile at

Bank of America for their assistance, support and guidance. We would also like to thank Jian

Huang, Davran Muzafarov, Brad Menoche, Jing Shih, Tom J. Spak, Ellen Tsai, Charles

Waddington, Jason Wang and Igor Zitser. Additionally, we would like to recognize the

Professors Michael J Ciaraldi and Arthur Gerstenfeld from Worcester Polytechnic Institute for

their involvement and counsel regarding our project.

v

Table of Contents

Abstract .. i

Executive Summary .. ii

Table of Contents... vi

Table of Figures ... viii

Table of Tables .. ix

1. Introduction... 1

2. Background... 3
2.1 Bank of America Overview .. 3

2.1.1 Banc of America Securities LLC.. 3
2.2 Corporate Bonds ... 4

2.2.1 Static Bond Characteristics ... 4
2.2.2 Dynamic Bond Characteristics ... 5
2.2.3 Ratings .. 6

2.3 Financial Regulatory Agencies ... 9
2.3.1 Securities and Exchange Commission .. 10
2.3.2 National Association of Securities Dealers... 10
2.3.3 Trade Reporting and Compliance Engine... 10

3. Methodology... 14
3.1 Research.. 14

3.1.1 Literature Study .. 14
3.1.2 Meetings.. 15

3.2 Analysis... 15
3.2.1 Requirements .. 15
3.2.2 Data Mining .. 16

3.3 Architecture and Design ... 16
3.4 Development ... 17
3.5 Testing... 18
3.6 Release .. 18

4. Results... 20
4.1 Information Gathering .. 20

4.1.1 Stakeholder Meetings.. 20
4.1.2 Informational Meetings... 20

4.2 Requirements .. 21
4.3 Data Mining .. 24
4.4 High Level Architecture ... 25
4.5 Development ... 29

4.5.1 Sketching the flow of events... 29
4.5.2 Actual Development ... 31

4.6 Testing... 36
4.6.1 Quality Assurance... 36
4.6.2 User Acceptance Testing .. 37

vi

4.7 Final Product – TraceMon .. 38
4.7.1 Configuration Mode.. 38
4.7.2 Execution Mode .. 42
4.7.3 Advanced Options... 46
4.7.4 Identifying and fixing problems.. 48
4.7.5 Documentation.. 50

5. Conclusions and Recommendations ... 52
5.1 Improve Estimated Value Accuracy ... 52
5.2 Diversify Reports and Organize Them ... 53
5.3 Expand Report Format.. 54
5.4 Other Suggestions ... 55

Appendix A: Meeting Minutes ... 57
Initial Project Meeting .. 57
NASD Call .. 58
ALICE Database Conference Call... 59
TraceMon Demonstration ... 60
TraceMon Release for User Acceptance Testing.. 61
The Future of TraceMon ... 62

Appendix B: Diagrams ... 63

Bibliography ... 69

vii

Table of Figures

Figure 4.1: Configuration Mode Screenshot 1 ... 39
Figure 4.2: Configuration Mode Screenshot 2 ... 40
Figure 4.3: Configuration Mode Screenshot 3 ... 41
Figure 4.4: Daily Trade Summary Sample Output ... 43
Figure 4.5: Liquidity Report Sample Output.. 44
Figure 4.6: Trade Outliers Sample Output ... 45
Figure 4.7: EventLogger Screenshot 1 ... 49
Figure 4.8: EventLogger Screenshot 2 ... 49
Figure B.1: Package Diagram... 63
Figure B.2: Class Diagram.. 64
Figure B.3: Sequence Diagram for Execution Mode.. 65
Figure B.4: Sequence Diagram for Configuration Mode.. 66
Figure B.5: Use Case Diagram for Configuration Mode.. 67
Figure B.6: Flow of Execution Diagram... 68

viii

Table of Tables

Table 2.1: S&P Ratings .. 7
Table 2.2: Moody’s Ratings ... 8
Table 2.3: Fitch Ratings.. 9

ix

1. Introduction

An important aspect of any financial investment is information. This information can

pertain to the specific investment, the type of investment, and the market for that particular

investment. Investing in corporate bonds is no exception, although market transparency has only

developed in the past five years. Previously, information about corporate bond trades in the

secondary, or over-the-counter (OTC), market was not disseminated, making it difficult for

investors to gauge market conditions. With the development of the Trade Reporting and

Compliance Engine (TRACE) by the National Association of Securities Dealers (NASD) in

2001, trade information has become widely available. However, the mere existence of this data is

not necessarily enough to fully benefit investors.

At Bank of America, credit and equities traders are looking for any information that will

help them be more successful. With multiple sources of many types of data available to them, it

is sometimes difficult to sift through all of the statistics to find those which are most useful to

these traders. The Credit Technology division of Bank of America develops applications to help

traders filter and analyze this information. This project involves the development of one such

program that organizes TRACE data and presents it in a useful form to bond traders.

The main focus of this project was to generate reports that would present TRACE data to

bond traders in its most useful form. The application that was developed as a result of this

project collects data from multiple sources and presents it in useful reports that are generated on

a nightly basis. Through their use of this program, bond traders are able to better analyze trading

activity from the previous day and use that information to make investment decisions.

In order to develop this application, a series of steps were undertaken. We first did

research to better understand the TRACE data set and the implications of our project. Next, we

1

carefully examined several Bank of America databases to determine which data was most

accurate and where to obtain it from. We then created the application and revised it repeatedly

based on user feedback. Through this process, we were able to give the bond traders at Bank of

America a useful tool for studying the corporate bond market. While this is only the initial tool

developed at Bank of America for analyzing TRACE data, it could end up being part of a larger

TRACE analytics package in the future, which contains multiple tools that process raw data and

present it in a useful form.

2

2. Background

This section contains a brief history of the Bank of America Corporation, and because

our project heavily involved several different aspects of credit and equities trading, they are also

detailed in the following sections. Furthermore, a history of the NASD is included, as it is the

regulatory agency for the corporate bond market.

2.1 Bank of America Overview

Bank of America is the resultant firm of multiple mergers and acquisitions of large banks.

The two principal organizations involved in the largest merger were NationsBank and the

California-based Bank of America, forming the current Bank of America in 1998. NationsBank

dates back to 1874 when it was known as the Commercial National Bank of Charlotte (CNBC).

Through a large number of mergers and acquisitions, CNBC evolved into North Carolina

National Bank, and then NationsBank. The California-based Bank of America began as Bank of

Italy in 1904 in San Francisco established by A.P. Giannini. This bank grew rapidly for most of

the 20th century and financed many companies in the agriculture, wine and motion picture

industries, including many Walt Disney projects. Currently, Bank of America has refocused its

growth strategy from one of acquisition to one looking for an organic growth through deeper

customer relationships [Bank of America].

2.1.1 Banc of America Securities LLC

A subsidiary of Bank of America, the securities division represents the investment

banking part of the bank’s overall operations. Banc of America Securities (BAS) offers services

including trading, brokerage, debt and securities underwriting and research, as well as advice on

large financial transactions. BAS works mostly with corporations, institutional investors, and

government entities [Yahoo Finance]. The Credit Technology division (CT) develops and

3

maintains applications for credit traders as part of the Global Credit and Equities Technology

division of BAS. We worked closely with CT during our project.

2.2 Corporate Bonds

Corporate bonds are issued by both public and private corporations to raise money to

fund projects and company expansion. This is done when an investor lends money to the issuer

in exchange for a bond promising to return the funds on a specified maturity date plus interest

payments. Most bonds are assigned ratings by agencies based upon the probability of the issuer

defaulting on payments. From these ratings, the bonds are then segregated into two categories:

investment grade bonds and high yield bonds. Investment grade bonds consist of those within

the four highest rating categories, and the remaining bonds are classified as high yield. After

their initial issuance, corporate bonds are traded mainly in the secondary, or Over-the-Counter

(OTC) market. This market is made up of many locations across the United States and around

the world, and the bonds are usually traded electronically or over the phone.

2.2.1 Static Bond Characteristics

Corporate bonds are differentiated through a few key statistics and identifiers. The most

basic of these is the ticker, which corresponds to the issuer of the bond. The symbol of the bond

is more descriptive as it contains two parts: the first part is the ticker and the second part is a

unique two-letter identifier for each bond separated by a period. Therefore, a standard symbol

will look like ‘ABC.DE’ where ‘ABC’ is the ticker symbol for the issue and ‘DE’ corresponds to

the particular bond. Another identifier that is unique to each bond is the Committee of Uniform

Securities Identification Procedures (CUSIP) number. This is a nine character number where the

first six identify the issuer and the last three identify the issue, similar to the symbol. A standard

CUSIP number may look like ‘123456AB1’.

4

Aside from these classifications, each bond has certain characteristics that are determined

at issuance and will not change during the life of the bond. One such attribute is the maturity

date, which is the date when the principal, or face value, of the bond must be repaid. The coupon

rate is another important classification, as it tells the percentage rate of interest, which is usually

paid out semi-annually. This number can change if the bond is a floating rate security, as bonds

of this type have coupon rates that are periodically adjusted according to a predetermined

formula. Other possible bonds characteristics include a call or put feature. A callable bond is

one that may be redeemed prior to its maturity by the issuer. A bond with a put option enables

the investor to demand repayment of principal prior to the bond’s maturity.

2.2.2 Dynamic Bond Characteristics

There are also several features of corporate bonds that are constantly changing. It is these

types of dynamic attributes that make corporate bonds appealing or unappealing for investment.

The two main features of a corporate bond are price and yield. What is called the yield is most

often the yield to maturity (YTM), as it is essentially the entire return the investor will receive

for holding the bond to maturation. The price is largely determined by the bond’s coupon rate

and its relation to prevailing current rates. A bond sells at a premium if it is priced higher than

its par value or at a discount if it is priced lower than its par value. The former situation arises

when the bond’s coupon rate is higher than prevailing interest rates, and the latter situation

occurs when the opposite is true. The price is then used to calculate the yield, creating an

important relationship between these two attributes.

Yield spreads are another element of corporate bonds; they give investors an indication of

the relative risk of their investment. For this project, we were dealing predominantly with

spreads comparing corporate bonds to a U.S. Treasury security with a similar maturity date. This

5

Treasury spread number is calculated by subtracting the yield for the Treasury security from the

yield of the bond. The result is usually displayed in basis points (bps), where one basis point is

equal to 0.01%. For example, if the 2-Year Treasury bond yields 5.0% annually, and some bond

that matures in 2 years yields 5.25%, the spread is 0.25% or 25 basis points. This number is very

dynamic however, because the Treasury securities’ yields are constantly changing based on

corresponding yield curves. Therefore, to calculate a Treasury spread for a certain trade, the

Treasury yield at the time of trade execution must be used.

2.2.3 Ratings

As mentioned previously, bonds are assigned ratings based on their creditworthiness.

There are two principal ratings companies: Moody’s Investors Service and Standard & Poor’s

(S&P). Fitch Ratings is a third ratings agency but it is not nearly as influential as its

counterparts. All ratings have similar properties and most bonds tend to receive comparable

ratings from all three agencies. The following section contains a brief description of each firm’s

ratings.

6

Standard & Poor’s

Standard & Poor’s rating system values companies from AAA for the best quality to D

for those in default, plus other ratings for companies in certain situations. S&P also has an

intermediate rating system composed of the standard ratings with a ‘+’ or ‘-’ to further describe

the company’s current situation. These intermediate ratings are only used for ratings between

AA and B.

Rating Description
AAA Prime bonds. Maximum safety for investors.
AA High grade bonds. A high quality investment.
A Upper medium grade bonds.

In
ve

st
m

en
t

G
ra

de

BBB Lower medium grade bonds.

BB More prone to changes in the economy. Considered
slightly speculative.

B Highly speculative bonds. Financial situation varies
noticeably with economy.

CCC Substantial risk. Issuer usually in poor standing.
CC Extremely speculative and vulnerable bonds.
C Highly vulnerable bonds. Issuer may be in default.
CI Issuer is past due on interest
R Under regulatory supervision due to its financial situation

SD Selectively defaulted on some obligations
D Issuer has defaulted on obligations and S&P believes that

it will generally default on most or all obligations

H
ig

h
Yi

el
d

NR Not rated
Table 2.1: S&P Ratings

Source: www.bondsonline.com

7

Moody’s

The Moody’s ratings follow a similar structure as the S&P ratings, but the symbols differ

slightly. The ratings assigned by Moody’s range from Aaa to C, with Aaa denoting the highest

quality issuers and bonds. For bonds rated between Aa and Caa, there are intermediate modifiers

(1, 2 and 3, with 1 being the best) to give more information regarding the creditworthiness of the

issuer.

Rating Description
Aaa Highest quality with minimal credit risk
Aa High quality. Subject to very low credit risk
A Upper-medium grade. Subject to low credit risk.

In
ve

st
m

en
t

G
ra

de

Baa Medium grade: may possess certain speculative
characteristics. Moderate credit risk.

Ba Possess speculative elements. Subject to substantial credit risk
B Considered speculative. Subject to high credit risk.

Caa Considered of poor standing. Subject to very high credit risk
Ca Highly speculative. Likely in or near default with some

prospect of recovery of principal or interest
C Lowest rated class of bonds. Typically in default with little

prospect for recovery of principal or interest.
WR Withdrawn Rating
NR Not rated

H
ig

h
Yi

el
d

P Provisional
Table 2.2: Moody’s Ratings
Source: www.wikipedia.com

8

Fitch Ratings

The Fitch rating system is very similar to Standard & Poor’s. These ratings also use plus

and minus symbols to denote intermediate ratings for each category between AA and CCC.

Rating Description
AAA The best quality companies. Considered reliable and stable.
AA Quality companies. Slightly higher risk than AAA bonds
A Economic Situation can affect finance

In
ve

st
m

en
t

G
ra

de

BBB Medium class companies, which are satisfactory at the
moment

BB More prone to changes in the economy
B Financial situation varies noticeably

CCC Currently Vulnerable and dependent on favorable economic
conditions to meet its commitments

CC Highly vulnerable. Very speculative bonds.
C Highly vulnerable. Perhaps in bankruptcy or in arrears but

still continuing to pay out on obligations
D Issuer has defaulted on obligations and Fitch believes that it

will generally default on most or all obligations

H
ig

h
Yi

el
d

NR Not publicly rated
Table 2.3: Fitch Ratings

Source: www.wikipedia.com

2.3 Financial Regulatory Agencies

Regulatory agencies play a critical role in the continued livelihood of all of the world’s

financial markets. The United States Treasury lists five of the largest of these agencies on its

website, the most relevant of which being the Securities and Exchange Commission (SEC). The

primary purpose of regulatory agencies is to ensure ethical behavior in all financial transactions

through establishing and enforcing trading rules. The SEC endeavors to oversee all activity in

the financial markets of the United States. Through this, financial markets in the United States

are regulated to ensure the safest and most effective environment for investors.

9

2.3.1 Securities and Exchange Commission

A product of the stock market crash of 1929, the SEC was established in 1934 to “to

enforce the newly-passed securities laws, to promote stability in the markets and, most

importantly, to protect investors” [SEC 2006]. The laws established in the Securities Exchange

Act of 1934 were designed to restore investor confidence in the market through disclosure of

important information and honesty of those involved in securities transactions. The SEC works

closely with the United States Treasury, self-regulatory agencies, state securities regulators and

other private organizations such as the National Association of Securities Dealers (NASD).

2.3.2 National Association of Securities Dealers

Since its inception in 1939, the NASD has been providing investors with confidence and

the markets with integrity. Through regulatory systems, this organization has monitored and

policed the securities industry as to provide the most benefit to investors. Their motto, “Investor

Protection. Market Integrity” is upheld through “examination, rule writing, professional training,

licensing and registration, dispute resolution, and investor education” [Shulman].

2.3.3 Trade Reporting and Compliance Engine

 As recently as 2001, there was almost no transparency in the corporate debt market and

trade decisions were rather intuitive, depending much on the trader’s own perception of the

market. However, within the past five years the NASD has helped shape a significant change.

Through the development of the Trade Reporting and Compliance Engine (TRACE), data

regarding approximately 22,000 transactions involving $18 billion par value daily is reported and

disseminated every day according to NASD. There are many types of market data reported to

TRACE, most of which is immediately disclosed to investors. This data provides investors

information about market activity, overall pricing and execution quality, and enhances the

10

integrity and transparency of the market. Because of the type of data it disseminates, TRACE

also has the potential to be a powerful tool in analyzing the corporate debt market.

 The concept of TRACE arose in 1998 when the Securities and Exchange Commission

(SEC) was placing an emphasis on price transparency and requested NASD to take three steps in

order to improve the corporate debt market. SEC wanted a system that would report all

corporate bond transactions to NASD and then distribute the prices of those transactions

immediately. Also, a compliance surveillance program was requested along with a database for

these transactions in order to supervise the market. From these specifications NASD developed

TRACE and implemented a new set of trading rules on July 1, 2002. While only about 500

bonds were included in the program at first, more have been added to TRACE over time. This

has resulted in an increasing transparency in the corporate debt market.

 All NASD members are required to report their trade transactions to TRACE. Any

corporate bond traded on the secondary market is a considered a TRACE-eligible security,

excluding those that are publicly disclosed on other national securities exchanges. One other

exception of note is corporate debt transactions where the buyer and the seller have agreed to

trade at a price substantially unrelated to the current market for the TRACE-eligible security.

This seems somewhat illogical, as these oddly priced bonds are exactly the type of data that

TRACE should record and disseminate.

 Upon its launch in 2002, TRACE publicly disseminated all transaction data in investment

grade bonds greater than $1 billion in original issuance and 50 representative high yield bonds.

This represented only 31% of all transactions and 38% of investment grade trades [Shulman]. In

April 2003, TRACE expanded its range of publicly disseminated data. This expansion included

investment grade bonds that were rated A or better by a nationally recognized statistical rating

11

organization and at least $100 million in original issuance, as well as data on 120 representative

BBB rated bonds and 50 high-yield bonds. At this point, it covered 43% of all transactions and

61% of investment grade trades. Beginning 2004, all transactions reported to TRACE were

publicly disseminated. In this case, 99% of all corporate bonds were available immediately and

the remaining 1% was delayed1. As of January 2006, 100 percent of public corporate bond

transactions data is being disseminated in real time through the Bond Trade Dissemination

Service (BTDS). This service broadcasts last sale price and other relevant trade data to

authorized vendors.

 TRACE reports exact trade volumes for all investment grade trades of $5 million or less

and all high yield trades of $1 million or less. For trades of these types larger than their

respective limits, values of ‘$5MM+’ and ‘$1MM+’ are displayed in TRACE. These are

referred to as capped trades. This is done so that a particular trader’s intentions are not obvious

to other investors.

 Every time a transaction is executed, the reporting members have to submit a trade report

containing information about the trade. This report must include the CUSIP number or NASD

symbol, the number of bonds traded, the price of the entire transaction, whether the transaction is

a buy or a sell, the date and time of the trade execution, and other descriptive information2.

 Before the existence of such publicly available data, decisions on the bond market were

rather opportunistic and were based more on the traders’ intuition than on factual knowledge.

With the introduction of TRACE, all the essential information regarding bond trades was

available, thus giving traders and investors all the knowledge they needed in order to make a

1 This 1% included certain transactions in lower rated securities executed during a short period after issuance and infrequently
traded non-investment grade securities
2 Other information reported to TRACE: the contra-party identifier, the capacity (Principal or Agent), stated commission, the
lower of yield to call or yield to maturity, and, if applicable, the reporting side executing broker as “give-up” and contra-side
introducing broker.

12

decision. Therefore, TRACE is a very good source of information for anyone who wants to know

what the state of the corporate bond market is and also wants to use this knowledge to make an

intelligent investing decision.

13

3. Methodology

For this project, we used multiple methods to better understand how to most accurately

and efficiently produce a useful application for corporate bond traders. We used mostly TRACE

data in our project, so we began by researching TRACE and the data it collects and disseminates.

We then gained a broad understanding of the implications of the TRACE data through meetings

with the project stakeholder, Martin Gonzalez (Principal Trader). With a good concept of the

general purpose of the project, we met with two staff members (Jason Wang and Igor Zitser)

who were familiar with previously developed applications and databases that could be of use to

us. After gaining access to these databases, we explored them in great detail to discover which

data was useful and which was not.

3.1 Research

 We used two approaches to obtaining information: literary research and interviewing. By

studying articles on NASD’s website, we were able to comprehend the purpose, structure and

functionality of the TRACE system. Also, by meeting with knowledgeable Bank of America

employees, we gained a better understanding of the uses of TRACE data and technological

resources available to us.

3.1.1 Literature Study

 To successfully build a useful application, we needed to have a very firm grasp on the

principles of the corporate bond market as well as the specific data collected and disseminated by

TRACE. We read multiple documents issued by the NASD regarding corporate bonds, enabling

us to begin our research on TRACE. As a secondary part of our research, we studied how the

TRACE data was being reported to individuals within BAS. We examined a proprietary

application of Bank of America, called RealTic, which captures data from the Bond Trade

14

Dissemination Service (BTDS) and reports it in a table that can be sorted by any of the thirty

columns.

3.1.2 Meetings

 After researching, we began to meet with several parties that would impact our project in

varying ways. First, we met with Martin Gonzalez (Principal Trader), who is the primary

stakeholder, and our support team to determine what was expected of this project. Next, we had

meetings with several BAS employees, including Alex Gregory (VP) and Ellen Tsai (Associate

VP), who could act as resources for the technology with which we would be dealing. After this

step, we had all the necessary information to begin doing our analysis and draft requirements for

the project.

3.2 Analysis

 At first, we received a basic set of requirements from the primary stakeholder, who also

mentioned that there would be future additions to them. These initial requirements set the

foundation on which we could create a project plan that was adaptable to further changes.

3.2.1 Requirements

 Initially, Martin asked for an output in the form of a table with certain data on each bond

traded during the previous day (the Daily Trade Summary). He provided us with a mockup of

what the report would best look like to him, in the form of a spreadsheet document. From this,

we learned what particular aspects of the TRACE data would be most relevant to him and

consequently to our project. We also had several discussions with him on clarifying the format

and contents of the report. Through these meetings we were able to change the original layout of

the report, with several fields added and some aesthetic changes made. Discussing such changes

15

before the actual creation of the software was beneficial to our development process in the sense

that we were able to avoid making many costly modifications (such as redesign and recoding).

 After the initial set of requirements was implemented, Martin came back to us with

another set of specifications relating to two additional reports. We pursued the same process as

for the first report; we discussed the requirements with the stakeholder and came up with final

mockups, and only after that did we begin developing them.

3.2.2 Data Mining

 The next, and most time-consuming, phase of our project required us to explore multiple

databases in search of applicable data and ways it could be applied to our application. This

represented the data mining process. We began by looking at a RealTic database and searched

through multiple tables for pertinent data. Because RealTic only contains trade history

information, we needed another source for static bond data. After further discussions with our

support team (Kurt Vile, Principal), we learned of another source of information, named ALICE,

that provided the static data for which we were looking. We then began to mine data from

ALICE. We worked on accessing it through a human-readable web interface and then looked for

ways to retrieve this data. Through these two sources, we were able to find all the information

we needed to produce the reports.

3.3 Architecture and Design

Based on the requirements and on the results of the data mining process, there were two

approaches to the design of this system. One would be a client-server architecture with a “core”

application running on a fast and reliable 24-hour server and a client application that would be

used by the trader whenever he/she wants to change the running parameters of the system. The

advantages of this approach are that the application would be available day and night, and it

16

would not affect the trader’s machine with respect to performance. The main disadvantage is that

it would be more difficult to design, test and especially maintain the entire system after its

release because there would be two applications involved.

The other approach, that of a single-tier architecture, would imply having only one

application that would run on the trader’s machine at a time he/she would specify. This

application would have different subsystems that accomplish different tasks, as well as the means

for the user to access a Graphical User Interface (GUI) in order to configure it. Different than

the client-server approach, this one has the advantage of being in one piece, and is thus easier to

implement and maintain. The drawback, however, is that support would need to be added in

order for it to successfully run on the client’s computer. That would include, but not be limited

to, the Java Virtual Machine and other libraries required for the different tasks it accomplishes.

After discussing the options with the stakeholders and our support team, we decided to

proceed with the single-tier architecture and deploy any additional software to the client’s

machine, if required. In this case, we would not only make our application more secure (since the

data the trader inputs into it is confidential, and any outside disclosure of it would be considered

illegal), but also easier to use and access. Given the above constraints, we decided to structure

our application into eight different packages, each performing a different function.

3.4 Development

The actual development (or coding) part of the project could not be started until we had a

good idea of how the program should run based on user preferences and how it was supposed to

respond to external factors. We knew from the requirements that this program should have two

main flows of events: one that allows the user to configure his/her preferences (named

“Configuration Mode”) and another one that generates the actual reports and sends them to the

17

designated recipients (“Execution Mode”). Therefore, we drafted a sequence diagram for each

flow in part [Figures B.3 and B.4] and then created a state diagram that would fully describe the

behavior of our application [Figure B.5]. We then discussed this flow of events with our

stakeholder Martin, as well as with our support team, and agreed that it was viable and would

produce the desired results.

3.5 Testing

 Every software application has to undergo a comprehensive series of tests before it can be

released. These include unit tests, functional tests and user acceptance tests. The unit tests refer

to the internal functioning of the software and should be performed by the developer to ensure

that all the pieces of software work individually. Functional testing ensures that the program

behaves as it is supposed to, and that it meets all the requirements. Such testing is usually

performed by a quality assurance engineer, but in our case, we both participated in making sure

our application met the requirements. Finally, we released the application to the primary user and

received valuable feedback from his experience with it. This allowed for further bug-fixing and

improvements (as the stakeholder’s opinion is the most important one).

3.6 Release

 After our application passed all tests and we received approval from the stakeholders,

TraceMon was ready for its final release. This step involved packaging the software into a single

JAR (Java Executable Archive) file which could be deployed on any machine that had Java JRE

1.5 installed. As it is designed, it can be run either on a local machine or on a remote server.

 Other steps needed at this moment were to create a user manual (to familiarize new users

to the program), developer information (to educate other software developers on how to modify

18

our program after our departure), and a short troubleshooting guide (to get users moving in case

something unexpected happens).

19

4. Results

The main objective of this project was to create an application to analyze TRACE data.

Through literary research and meetings, we compiled a list of requirements. Based on those

requirements, we began looking for sources of data and efficient ways of extracting it. At the

same time, we began the conceptualization and development of our application. After discussing

our findings with the project stakeholders and implementing suggestions from their feedback, we

managed to create a useful program that saves traders a significant amount of time and presents

important information in an organized and easy-to-read format.

4.1 Information Gathering

4.1.1 Stakeholder Meetings

We first met with our direct supervisor, Kurt Vile, and the debt trader for whom we were

developing the application, Martin Gonzalez. At this meeting, Martin explained what makes

TRACE data appealing to him and how he intends to use it. We then discussed our options for

the basic structure of the application. Our second meeting with Martin also included another of

our sponsor liaisons, Alex Gregory. It was at this meeting that we gained further knowledge of

the output type Martin was looking for as well as the feasible options for meeting his

requirements. From these meetings we were able to learn the basic objectives and requirements

for the application we were to develop.

4.1.2 Informational Meetings

Throughout the course of the project, we met with five BAS employees who were able to

provide us with important information regarding the applications and databases with which we

were working. Through meeting with Jason Wang and Igor Zitser, we learned about the basic

capabilities of the RealTic program, and following our own exploration of it we were able to

20

document its capabilities. To obtain bond information not contained in TRACE, we accessed

another database system called ALICE. We contacted Charles Waddington in the Chicago office

to discuss the use of ALICE and how to best access its resources. Additionally, we spoke with

Jian Huang to determine the best method for sending our application’s output to Martin. Once

we had determined that emailing the results would be best, we met with Davran Muzafarov to

learn how to be able to send emails from our program using existing Bank of America systems.

4.2 Requirements

Both at the beginning and as the project progressed, we received many requirements of

the program set forth mainly by Martin. The first report, the Daily Trade Summary, was

requested to give traders a daily overview of activity for specific bond tickers. By summarizing

the daily data, this report allows the user to see traded volumes and other analytical measures

(such as prices, spreads and investment ratings). The initial report mockup required the following

information to be shown:

• Ticker symbol
• Coupon rate
• Maturity date
• CUSIP
• Outstanding notional (in millions)
• Traded notional for the previous day (in millions)
• Number of trades greater than $1 million par value
• Number of trades greater than $5 million par value
• High, low and average spread to U.S. Treasury benchmark
• Description of U.S. Treasury benchmark
• Bond Ratings, gathered from Moody’s, S&P and Fitch

After presenting a sample report based on these initial requirements, Martin requested the

following statistics to be included:

• Optionality (callable, non-callable and put-option bonds)
• High price
• Low price
• Average price

21

Additional requirements included a label of ‘floating’ in the coupon field and the removal

of spreads for floating rate bonds, better descriptions of the U.S. Treasury benchmark (such as

coupon and maturity), the floating rate bonds, and to list the bonds in order of maturity starting

with those maturing soonest. Furthermore, we were asked to use an estimator for investment

grade bonds traded over $5 million and one for high yield bonds traded over $1 million. This

was done to provide a more accurate traded notional value, as trades over those values are

capped in the TRACE data.

On top of these data requirements, we received format and user interface (UI)

specifications as well. Martin requested to be able to receive this information through email,

mostly so it could be read while he is away from the office. Also, a spreadsheet output (in

Comma-Separated Values, or CSV, format) was requested as it is a preferable form in which to

have data. This last concept never materialized because the email format turned out to be very

helpful and easy to import into a spreadsheet program, such as Microsoft Excel, without too

much action required from the user to format the table columns.

The first report was the longest and most difficult to design and implement since we had

to do research and develop a great part of our application (as described in the following

sections). After the first report was done, the other two were relatively simple to design and

implement, and we only had to deal with performance and other, minor, issues.

The second report Martin asked us to develop is a Liquidity Report. This report provides

the user with historical traded volumes and the corresponding percentage of the total amount

outstanding (or outstanding notional). From this information, a trader is able to easily see the

liquidity of each bond, and approximately how long it would take to invest a specific amount of

money in a particular bond.

22

Similarly to the first report, Martin wanted to have a set of tickers for which some

statistics could be calculated. In contrast to the first one, he wanted this report to run on request

rather than daily. The fields that this report needed to contain were:

• Ticker symbol
• Coupon Rate
• Maturity Date
• Outstanding Notional
• Aggregate amounts of traded activity for each of the past 12 months
• The Average Monthly Traded Notional (the average aggregate amount traded per

month)
• Calculations that would represent the percentage these numbers are from the

Outstanding Notional

The third report we were asked to implement was a Trade Outliers Report. This report

calculates the amount traded per bond for the last trading day, as well as the average amount

traded in the last five trading days, or in the last one, three, six or twelve months. This enables

the user to see if a bond is trading at volumes significantly higher or lower than historic averages.

The table header for this report would contain:

• Ticker
• Coupon Rate
• Maturity Date
• Recent Traded Volume (Last Day and Last 5 Days)
• Average Traded Volume (Last 1, 3, 6 and 12 Months)

For the first and third report, we were asked to filter out all the trades that had an amount

less than one million dollars and only include those above. The reasoning for this is that trades

with volumes below one million dollars are not significant when trading on the investment

banking level. These requirements gave us the foundation to begin searching for the needed data

and developing an application that would meet them.

23

4.3 Data Mining

After receiving the abovementioned requirements, we began searching for reliable

sources of information that our application could use in order to generate the requested reports.

We began by examining RealTic and its databases for bond trade history information. Of the data

requirements set forth by Martin, we were able to find the following:

• Coupon rate
• CUSIP
• Execution Date
• Maturity Date
• Number of trades greater than $1 million par value
• Number of trades greater than $5 million par value
• Price
• Ticker symbol
• Traded notional
• Yield

From this we were able to search by CUSIP in ALICE for the following static bond

information:

• Optionality
• Outstanding notional
• Ratings

o Fitch
o Moody’s
o S&P

• Whether the bond has a floating coupon rate or not

This left only the treasury spread fields to be calculated. We were able to find a table in

the RealTic database which provided real-time Treasury yields. By applying a simple metric3 to

determine which Treasury security to use, we could calculate fairly accurate Treasury spreads.

3

Time to Maturity Benchmark
0 to 2.5 Years 2 Year Treasury Note

2.5 to 3.75 Years 3 Year Treasury Note
3.75 to 6.5 Years 5 Year Treasury Bond
6.5 to 15 Years 10 Year Treasury Bond

Greater than 15 Years 30 Year Treasury Bond

24

We were also able to get the pricing data we needed from this RealTic database. However,

ALICE was the only database from which the call and put data could be attained. This left us

dependent on ALICE only for the amount outstanding, bond ratings and call/put features.

The aforementioned process applied to the Daily Trade Summary report, which needed

the most diverse sources of information. The Liquidity and Trade Outliers reports did not require

us to mine for any additional data, but we needed to search data archives (since they required

trade history up to a year), which posed new problems. These archives exist to improve RealTic

database performance. All trades older than three months are moved to the archive database,

which keeps information up to three years. Given the huge size of this data source, querying it

took longer, but the most challenging part was to combine the information from both the archive

and current databases in order to come up with a coherent report.

Consequently, we had two significant data sources for our project. The main one is the

RealTic database, which contains information about all the daily bond trades and is updated with

new information in real-time. The other one is the ALICE database and it contains static

information about bonds, which does not change with every trade. Instead, this database is

updated upon request, retrieving the new information from a reliable outside source, such as

Bloomberg.

At this point we had all the information we needed to begin the design phase of our

project.

4.4 High Level Architecture

After drafting and understanding the requirements for the project, as well as determining

the data sources our application would use, we were ready to conceptualize and design a high-

level architecture for our project. We decided to use Java JRE 1.5 as our development platform

25

with Eclipse 3.2 as a development environment. Java is highly compatible with the other systems

this application would interact with, and it is a language that facilitates the Object-Oriented

paradigm (essential for a successful implementation of a complex software system).

We determined that our application would be organized into eight packages, each

responsible with a different task, as described below. A high-level view of our system can be

seen in Figure B.1, and a more detailed view can be seen in Figure B.2.

The com.bankofamerica.alice package is the only link to the ALICE database. It uses a

Simple Object Access Protocol (SOAP) framework to connect to ALICE via web requests. This

package is composed of two sub-packages (asset and service.asset), and provides a high-level

access to the remote system, without having to deal with protocols, database schema changes or

other issues. This package was provided to us by the ALICE development team and requires

external libraries to be linked to the project that will allow our application to connect to the

remote system. However, we encountered some problems while importing bonds from

Bloomberg into ALICE [Meeting Minutes, Appendix A]. It appears that while we could use the

production server to retrieve existing bond information, we could not use it to import new bonds

from Bloomberg. We could, however, use one of the two Quality Assurance servers (QA and

QA2) to perform that action. In order to do this, we needed to add two new almost-identical sub-

packages that would provide a similar interface to the QA2 server, through which we could

safely import new bonds from Bloomberg. These two packages (alice.qa2.asset and

alice.qa2.service.asset) were also provided to us by the ALICE development team and even

though from a design point-of-view this introduced some redundancy in the architecture, this

action was necessary since the production and QA2 servers were not fully compatible and

required to have separate packages for each of them. These two packages (each having two sub-

26

packages) provide a façade to the ALICE servers and are independent from each other (so

accessing one will not affect the other one). In order to facilitate their use, an adapter was

developed by us that shielded the program from having to know which server to use or whether

to import bonds or not, as described later.

The main package, which is also the single entry point into our application, is the

com.bankofamerica.tracemon package. It contains the Main Class, which is responsible with

initializing the application, reading the command-line arguments and configuring it accordingly.

It is also where it is decided whether to display the configuration GUI or start processing reports.

The com.bankofamerica.tracemon.adapter package provides high-level adapters that

allow the application to communicate with outside sources of information. The RealTicDB class

provides an interface to send queries and retrieve data from the RealTic database without the

hassle of having to know connection strings, opening/closing connections, etc. The AliceAdapter

class provides a simplified interface to the com.bankofamerica.alice package that, in turn,

provides an interface to the remote ALICE system. This adapter also shields the rest of the

application from the burden of deciding which ALICE server to use, as well as dealing with

bonds that needed to be imported from Bloomberg, using a predefined algorithm4 that was

discussed with the ALICE development team. The TreasuryBondAdapter class is responsible for

retrieving pertinent Treasury security information from other Bank of America systems and

providing them to the application. Another adapter that was deemed necessary was the

WebRequest class, which allows the application to easily send a request over the internet using

HTTP (Hyper Text Transfer Protocol).

4 The algorithm for retrieving a bond from ALICE is:

1. Look for it in the Production ALICE server, and if found there, return it
2. If not found, look for it in the ALICE QA2 server, and if found there, return it
3. If not found in either locations, import the bond from Bloomberg into ALICE QA2 and return it.

27

The package com.bankofamerica.tracemon.asset contains entity classes, mainly

responsible for storing information and delivering it in a meaningful form. This package contains

the Bond class, which, given a bond unique identifier5, retrieves all the necessary information

about it that will be used to generate further reports. Also, the TreasuryBond class holds

information about Treasury Bonds as extracted by the TreasuryBondAdapter.

The com.bankofamerica.tracemon.config package is responsible for the application

configuration; from reading/writing it to an external file to providing a GUI to the user in order

to change it. It contains several classes, of which Config is responsible for reading and writing

the user preferences from/to an external file, Settings keeps hard-coded general parameters for

the application, and MailAccount and ReportInfo are used as entity classes in order to store

different information about the application configuration. The sub-package config.ui contains the

GUI through which the user can change his/her preferences on reports.

All the reporting-related logic goes into the com.bankofamerica.tracemon.reporting

package. This contains an abstract class, called Report, which provides a general structure on

how a particular report should behave. Thus, it provides abstract methods for retrieving and

generating data, as well as outputting the results both in HTML and Text-only format. All reports

in the program are derived from this class.

All the miscellaneous logic, that does not have a clear package designation, and which is

intended for a more general use, is part of the com.bankofamerica.tracemon.util package. This

package contains the following classes: HTML, Logger, Mailer, StopWatch and Tools. The

HTML class provides useful methods to generate HTML documents; the Logger class provides

methods to log the actions of the program for further study and debugging purposes; Mailer is

used to send emails to different Bank of America email addresses; StopWatch is a simple class

5 Also known as CUSIP (Committee of Uniform Securities Identification Procedures) identifier

28

that allows for timing between two different places in the code, and Tools has different methods

that perform miscellaneous tasks.

As the project grew larger and larger, identifying and fixing problems became more and

more tedious. This was also a direct result of the fact that all the information was retrieved in

parallel for multiple bonds at the same time (a technique known as Multi-Threading).

Consequently, a debugging strategy had to be developed in order to save us numerous hours of

unprofitable problem-fixing work. Therefore, we created a unique log file that keeps track of all

the actions a specific instance of the program performs. This log file can later be interpreted

through the use of a new subsystem that can be found in the com.bankofamerica.tracemon.-

eventlogger. This system provides a simple user interface that shows all the logs from all the

runs of the program, and for each of them, an intuitive grouping of the events for easy access.

Information such as errors, warnings, or simple events is recorded in this file with the relevant

time stamps, which can make debugging and performance tuning much easier.

4.5 Development

4.5.1 Sketching the flow of events

The Configuration Mode is the only flow in which the user can interact with the

application (except when he/she starts the program). Upon startup, the application loads the

user’s preferences (if any exist) and then shows the Configuration Window. If this is the first

time the user ran the program, then an empty profile is created for him/her, which then has to be

edited. From this window, the user is able to change the preferences for each report (including

tickers, report name, whether the report should be run) and is also able to import preferences

from other reports. Additionally, the Configuration Window allows the user to change general

information not pertinent to any type of report, and gives him/her the option of saving his/her

29

profile or exiting without saving. A use-case diagram of the user’s options can be seen in Figure

B.5. After the Configuration Window is closed, the application will save the configuration, if

necessary, and then exit. See Figure B.4 for a complete sequence of events.

The Execution Mode is an automated process. It was designed to run in the background

without any user input in order to facilitate batch runs (most likely at nights, when the computer

is not used). Similarly to the Configuration Mode, it loads the user profile (and any other relevant

information from the command-line arguments) and then other information that may be needed,

such as Treasury Bond Information and Holiday Schedule (so that it knows when the bond

market is closed). After that, it determines which reports to run (if the user overrode the

preferences in his/her profile using command-line arguments, then the given reports will be run;

otherwise the reports selected in the profile will be generated) and starts generating reports. Each

report is responsible for keeping track of its own list of bonds. It searches for the necessary

bonds in the RealTic database and then, for each of those bonds, retrieves the static bond

information (from ALICE) and the trade history (from RealTic) and calculates all the statistics

that are necessary to generate the report. As soon as all the data is in place, the final report is

generated and sent by email to the designated recipients in the user’s profile. The sequence

diagram for this flow can be seen in Figure B.3.

After the sequence diagrams for both flows were created, we unified them into a single

state machine diagram that describes all the states in which our application can be, as well as the

flow of events to and from a particular state [Figure B.6].

30

4.5.2 Actual Development

We used an iterative approach to designing and implementing our system. Based on the

architecture outlined above and the described sequence diagrams, we broke the development

phase into several stages, where during each step we added more functionality to the system.

After each step was complete, we tested the newly added functionality using unit tests and

functional tests, if necessary, and also tested the existing functionality. For more details

regarding testing, see Section 4.6.

• Initial Layout of the System. The first step in the development stage was to create the

packages and class stubs, according to the general architecture of the system. These classes

would then be populated with member variables and functions that would accomplish the

tasks for which they were designed. After this step, our system was in the form of an

executable framework; that is, it could run, but it would not carry out any processing.

• Adapters. The second step in our design involved implementing the data adapters that would

provide a high-level interface to the various data systems at Bank of America. The first one

was the RealTicDB Adapter, which encapsulated methods and information to connect to the

RealTic database. This class used the Sybase 6.0 Database Driver that connected to the

external source of data. The second adapter which was implemented was for the ALICE data

source. This class used the underlying ALICE subsystem, which was provided to us by the

ALICE Development Team, and allowed the application to easily access it, using only one

function call. The introduction of this adapter proved to be of utmost importance, since it

saved us a lot of tedious work (only had to change one class instead of several) when we had

to resolve the production issue we came across during our development process [Meeting

Minutes, Appendix A]. Also, the need for a Web information retrieval led to the development

31

of the WebRequest class, which facilitates sending and retrieving information from remote

websites by means of HTTP requests.

• Data Retrieval. The third step involved data retrieval. All the data that our application needs

is retrieved through the aforementioned adapters. As per our design, the only class that needs

to retrieve external data is the Bond class. Upon instantiation, it automatically retrieves all the

relevant information for the bond it represents, including the static bond information from

ALICE (through the appropriate adapter), and, on a need basis, the rest of the information

(i.e., if the high price for a day was needed, then it would request and calculate all the

necessary price information, but not other data – which will be retrieved when needed). Since

a request for retrieval from ALICE takes a long time on the average (around 3 seconds), this

would significantly impact the overall performance of the system. Thus, when each bond

object is created, a separate thread is also instantiated that retrieves the desired information

from the ALICE data source. For synchronization with the main thread, a method in the bond

class has been made available that would return true only after all the data is retrieved, which

allows the main thread to know when this Bond object is done retrieving data. After several

performance tests, we decided to also perform major calculations as part of our threads

(depending on where a Bond object would be used, it would automatically calculate either

Recent Average Trades, Monthly Traded Amounts or the Spreads and Prices upon

instantiation). If more data was required, it would be retrieved on a need basis, as described

above. This multi-threaded approach resulted in an 84% decrease in the overall running time

for our application6.

6 We measured this for three runs (one containing 10 bonds, one with 40 bonds and one with 200 bonds) and determined that, for
a smaller set of bonds, it does not yield a very substantial change (only 40% less), but for a larger set it can significantly improve
running time (we obtained an 84% decrease for the 200 bond set)

32

• Data Processing. The next logical step in our design included the processing of the retrieved

data. As stated above, besides being responsible with obtaining appropriate data, the Bond

class is the single point in the application where it is being processed, This is also the place

where all the spreads and statistics are calculated and where all the logic is being performed.

As explained above, upon instantiation, a Bond object automatically retrieves all the static

information about it from ALICE, as well as relevant information regarding the report where

it would be used. It contains logic that computes all the necessary statistics mentioned in the

user requirements. Due to the high amount of data that needs to be processed, complex SQL7

queries had to be developed in order to filter out irrelevant data and perform most

calculations on the remote database server. This also resulted in better performance for our

system; in general, the closer computations are made to the data source, the better the

performance of the system is.

• Report Generation. After the data retrieval and processing systems were in place, the next

step was to present it in a human-readable form, which was the responsibility of the reporting

system. The Reporting package is responsible for keeping all the reports. As stated in the

architecture section of this chapter, there is an abstract class that provides the skeleton of any

report (the Report Class). In general, a report object (instance of the Report Class) should

have a section that deals with data retrieval, another one to process it and another one to

generate an actual report. In our case, since we need roughly the same data between reports,

we moved all the data processing part inside the Bond class, thus eliminating the need for a

similar step while generating a report. In conclusion, our report would only contain a step

that retrieves the data and another one to report it. Each report is supposed to provide both an

7 Structured Query Language. Standard programming language used to extract and modify information in database servers

33

HTML and a text-only representation of itself, although only the HTML representation is

currently used.

• Emailing system. The last thing that had to be implemented before we met the user

requirements was a way to have all the generated reports be sent by email to the desired

recipients. In this case, we met with a developer of another application that had already

implemented such a system, and used their solution (after adapting it to our needs). The

resulting solution was implemented into the Mailer class, which allowed our application to

easily send email using only one function call.

• Configuration Management. Finally, after we made sure that all of the above worked, it

was time to give the user an easy way to set up his/her preferences, including the type of

information he wanted reports on, the actual reports that would run as well as the email

addresses of all the recipients of those reports.

At that point, we had developed our first report generating mechanism. The following

two reports did not require re-architecting or other major changes in the system, since they

needed roughly the same type of information as the first report. The only things we needed to do

in order to make another report were to create a separate class that would represent it, as well as

add the necessary logic to calculate the fields in it. The class that represents the new report was

derived from the Report Class (thus inheriting the basic functionality and overriding abstract

methods) and the logic to compute new statistics was added to the Bond class. No further data

mining or research had to be done. The object-oriented design of our system allowed for easy

modification to the current configuration, thus adding new functionality would not require

existing features to change.

34

The development steps we took after the first report was finished were:

• Develop Second Report (Liquidity). This report shows trading activity for the past twelve

months, grouped by month. Its development involved creating a complex SQL query that is

sent to the database system in order for it to make the required computations and deliver the

data to us in a form that does not require too much processing. The delegation of such

computations to the database server was essential, since we could be retrieving data

simultaneously for hundreds or thousands of bonds, thus the local machine’s CPU can easily

become overwhelmed with computations – which can result in a poorer performance. After

the results are retrieved from the database server, a simple routine is performed to interpret

them and then present them to the user, therefore significantly reducing the computing power

needed on the local machine.

• Develop Third Report (Trade Outliers). This report shows averaged trading activity for the

past one or five days, as well as for the past one, three, six and twelve months. The

development of this report was very similar to the Liquidity one, having a complex SQL

query that delegates the data processing to the database server and then only interprets it

using a simple, low-cost routine. Also, since this report needs to know the holidays (in which

no trading activity occurred) so that it will accurately report the average amount traded for

the past five days, a special feature had to be implemented that would determine whether a

given day is a holiday. An external XML file (accessed by the program on every run) was

created that keeps all holidays, except Saturdays and Sundays, until 12/31/2007. After that

date, someone in the bank will have to update that file each year with new holidays in order

for the program to continue generating reports accurately.

35

4.6 Testing

The next phase of our project required significant tests to ensure there were no bugs in

TraceMon and that it was reporting and calculating information accurately. To do this, we first

checked the data being calculated by hand. We then submitted the application to its primary

end-user, Martin, for his acceptance and approval. Through this, we were able to refine our

application into its most functional and accurate form.

4.6.1 Quality Assurance

This section of testing was done predominantly by us. We thoroughly examined the data

being reported by TraceMon to ensure it was correct. We used spreadsheet programs, such as

Microsoft Excel to calculate data ‘by hand’ and validate our program output against it. Although

most of the data was accurate, we were able to fix many not-so-obvious bugs that caused the

program to display the wrong output.

After we decided that the numbers were accurate, we ran several performance tests, in

which we measured the memory usage, CPU utilization and the overall time it took to run it. To

do this, we selected the most traded bonds of some of the largest bond issuers (using official

statistics which were publicly available) and input their identifiers into our program. We

discovered that, even though the multi-threading approach significantly reduced the running

time, it introduced other problems, such as over-threading (having too many threads running in

parallel which results in too much time spent by the Java Virtual Machine to switch between

them), out-of-memory issues or request denials from remote servers (we identified the cause to

be too many simultaneous requests, which would overwhelm the remote server, thus causing it to

refuse any other connections until it has less demand for bonds).

36

We concluded that the common cause of the above problems is the fact that we initially

had too many simultaneous requests for information. We decided to spread them out (at the cost

of overall running time), and introduced a lag between each ticker (group of bonds with the same

issuers), as well as a lag between each bond in a ticker. This fix significantly reduced the number

of denied requests, as well as all of the out-of-memory errors, and reduced the CPU utilization to

an acceptable level (this level varies with the machine configurations – can be lower on better

machines, or higher on less powerful computers). As for the remaining problem – that of having

denied requests – we decided that the best solution was to retry the connection up to four times,

with a lag of 30 seconds up to 2 minutes (in 30 second increments). Further testing proved that

this approach fixed the problem.

Additional tests were run for performance and we were able to tweak the application to

such an extent that, on the average, it uses 40% of the CPU, with 90MB of memory and it takes

2.2 seconds to load a bond. One test that employed around 2200 bonds took 70 minutes to

complete (however it could take several more hours if it has to import a lot of information from

Bloomberg into ALICE).

4.6.2 User Acceptance Testing

After the unit and functional testing was complete, we were ready to launch a preliminary

version to the main user. We could therefore get valuable feedback from him, as well as

suggestions for improvement and possible undetected problems. We went to Martin’s desk and

showed him how to configure and launch the application. We experienced some minor

difficulties as outlined in the Meeting Minutes in Appendix A, but managed to overcome them in

a fairly short amount of time and were able to prevent them from happening again. During the

following week, we were in close contact with Martin and further adjusted our program based on

37

his experience with it. Having completed the user acceptance testing stage, we were ready for the

final release of our application.

4.7 Final Product – TraceMon

After the development and testing phases were complete, we presented our application to

the stakeholders (Martin Gonzalez and Kurt Vile) and got their approval for release. We

packaged all the compiled classes into a single JAR (Java Executable Archive) file and created

the necessary shell scripts in order to start the program (one for the configuration mode, one for

the execution mode and one for the event logger). After that, we moved it to a public folder on a

shared drive (so that it can be accessed by anyone who needs it) and ran the last series of tests in

order to make sure that that moving it to the server did not introduce unexpected problems.

4.7.1 Configuration Mode

The configuration mode can be accessed by running the shell script “config.bat”. This

will open up a window that allows the user to view and edit his/her profile with respect to our

application, TraceMon.

In the “TraceMon Configuration” window, the user is shown four tabs, three of them

referring to each report this program supports and the fourth one relating to general information,

which is not pertinent to any report in particular. All report tabs are structurally identical in order

to make configuration easier. Therefore, for each report, the user can perform the following

operations [Figure 4.1]:

• Change the name of the report as it will be identified in the email

• Add/remove/modify the tickers for which he/she wants the report to run

• Copy tickers from one report to another

• Enable/disable a report from being generated on the next scheduled run

38

Figure 4.1: Configuration Mode Screenshot 1

TraceMon will prevent the user from entering erroneous information (such as numbers in

the ticker text fields or an invalid email address), as well as highlighting duplicate tickers [Figure

4.2].

These settings will take effect the next time the program is run in execution mode. The

option of enabling/disabling reports was born from the concept that not all reports need to run on

a day-to-day basis, and sometimes the user may want to generate a specific report on-command

(without also running the others). For a more detailed explanation of on-command generation of

reports, see section 4.7.3.

39

Figure 4.2: Configuration Mode Screenshot 2

Also, the Configuration Window allows the user to set more general settings [Figure 4.3],

which do not relate to a particular report. Such information includes the Estimated Capped

Amount for trades whose exact amount is not disseminated by the NASD (Average Investment

Grade Amount and Average High Yield Amount) and email addresses of the recipients of the

reports.

All the information that is entered is saved to the user’s own profile, thus allowing

multiple users to use our application at the same time as well as protecting the confidential

information of each user. All the user profiles are located in the profiles directory from where the

application is run, and each profile is stored in its own file bearing the user’s login name.

40

Figure 4.3: Configuration Mode Screenshot 3

41

4.7.2 Execution Mode

The user can carry out the execution mode through the “run.bat” shell script. This will

open a command prompt window and automatically begin retrieving the necessary data and

performing calculations to generate the reports selected in configuration mode. When all the

chosen reports have been completed and sent through email, the command prompt window

automatically closes and the program concludes. The “run.bat” script can be executed either

manually or on a predetermined schedule. In most cases, this function will be scheduled to run

overnight. This way, upon logging on in the morning the reports are waiting in the user’s inbox.

Daily Trade Summary

The first report, Daily Trade Summary, provides the user an overall synopsis of trading

activity for the previous day. Figure 4.4 shows a sample output for the ticker KFT (Kraft Foods

Inc.) generated on November 28, 2006 and containing data from November 27, 2006. The report

can be broken into three sections: descriptive bond information, trade data and analytical

instruments. The descriptive section is comprised of the first six columns which contain static

information that is commonly used to identify bonds (such as Ticker, Coupon, Maturity and

Cusip) and other statistics that provide the user with more details about the bond (Opt and

Outstanding Notional). The purpose of this first section is to provide the user with a brief

description of the characteristics of each bond.

42

The next section of the report provides the bulk of the actual trade data. It contains the

Traded Notional and Number of Trades columns. The user is able to plainly see the total volume

of trading activity, as well as the size of the trades. This gives the user a good deal of insight

into which bonds have been traded heavily or lightly in the preceding day. The remaining

columns provide basic analytical information to the user. The report lists the high and low

spreads-to-Treasury and prices for each bond during the prior day. This is important because

investment grade bonds are valued based on spread-to-Treasury. For high yield bonds, the price

statistic serves this purpose. The treasury spread is based on a certain benchmark, which is

described in the UST Benchmark column. Lastly, the ratings tell the user whether the bond is

investment grade or high yield, and what level of risk it is viewed as having. This is extremely

beneficial to the user by allowing trading activity and pricing action to be easily monitored.

Figure 4.4: Daily Trade Summary Sample Output

Report for ticker KFT on 11/27/2006:
Number

of
Trades

Ratings
Ticker Coupon Maturity Opt1 Cusip

Outstanding
Notional

(mm)

Traded
Notional

(mm)
>1M >5M

High
Price

High
Spread

Low
Price

Low
Spread

Avg.
Price

Avg.
Spread

UST2
Benchmark

Moody S&P Fitch

KFT 5.250 06/01/2007 NC 50075NAG9 1000.0 1.0 1 0 99.900 73 99.900 73 99.900 73 UST 4.875
10/08 A3 BBB+ A-

KFT 4.000 10/01/2008 NC 50075NAK0 700.0 2.2 2 0 98.000 48 97.913 43 97.957 45 UST 4.875
10/08 A3 BBB+ A-

KFT 4.125 11/12/2009 NC 50075NAM6 750.0 6.0 2 1 97.377 50 97.358 50 97.368 50 UST 4.625
11/09 A3 BBB+ A-

KFT 5.625 11/01/2011 NC 50075NAB0 2000.0 21.4 5 1 102.001 68 101.650 62 101.827 65 UST 4.625
10/11 A3 BBB+ A-

KFT 6.250 06/01/2012 NC 50075NAH7 1500.0 2.0 2 0 104.430 74 104.398 73 104.414 73 UST 4.625
10/11 A3 BBB+ A-

Legend
1 Optionality. P stands for Puttable Bond, C for Callable Bond, P/C for both, NC for none.
2 U.S. Treasury Benchmarks. "UST 4.5 02/36" represents a Treasury Bond with coupon rate of 4.5 and maturity date of Feb. 2036.

Report generated on: 11/28/2006 10:19

43

Report for ticker KFT as of 11/28/2006:
Bond Description

Ticker
Coupon Maturity

Outstanding
Notional

Avg
Monthly
Traded

Notional

Nov
2006

Oct
2006

Sep
2006

Aug
2006 Jul 2006 Jun

2006
May
2006

Apr
2006

Mar
2006

Feb
2006

Jan
2006

Dec
2005

KFT 5.250 06/01/2007 1000.0 121.4
12.14%

29.1
2.91%

85.8
8.58%

103.1
10.31%

160.5
16.04%

101.6
10.16%

137.1
13.71%

77.4
7.74%

201.6
20.16%

213.6
21.36%

107.0
10.70%

44.7
4.47%

194.9
19.49%

KFT 4.000 10/01/2008 700.0 55.6
7.94%

11.6
1.66%

27.3
3.90%

77.2
11.03%

97.2
13.89%

54.3
7.75%

48.5
6.93%

41.8
5.97%

6.1
0.87%

27.5
3.93%

102.8
14.69%

163.2
23.32%

9.3
1.33%

KFT 4.125 11/12/2009 750.0 77.0
10.27%

71.7
9.57%

21.8
2.91%

32.1
4.28%

145.2
19.36%

212.6
28.35%

86.1
11.47%

30.9
4.12%

29.8
3.97%

41.3
5.50%

101.2
13.50%

86.5
11.54%

64.9
8.65%

KFT 7.000 06/15/2011 200.0 1.1
0.56%

1.4
0.68%

0.9
0.47%

1.1
0.53%

0.9
0.43%

1.0
0.48%

3.1
1.54%

1.2
0.62%

0.7
0.36%

0.8
0.41%

0.4
0.21%

0.9
0.47%

1.1
0.56%

KFT 5.625 11/01/2011 2000.0 179.8
8.99%

217.8
10.89%

307.0
15.35%

113.6
5.68%

181.9
9.10%

78.7
3.94%

273.7
13.68%

166.5
8.32%

169.1
8.46%

198.8
9.94%

207.5
10.38%

224.3
11.21%

18.0
0.90%

KFT 6.250 06/01/2012 1500.0 207.9
13.86%

335.8
22.39%

144.4
9.63%

163.9
10.93%

364.0
24.27%

213.3
14.22%

124.8
8.32%

337.0
22.47%

244.4
16.29%

67.3
4.49%

181.6
12.11%

164.8
10.99%

153.8
10.25%

KFT 5.250 10/01/2013 800.0 67.9
8.48%

120.3
15.04%

52.6
6.57%

45.8
5.73%

18.6
2.33%

39.2
4.90%

110.6
13.82%

62.6
7.82%

72.2
9.03%

71.9
8.98%

91.9
11.49%

59.6
7.46%

69.1
8.63%

KFT 6.500 11/01/2031 750.0 61.5
8.20%

73.6
9.82%

40.6
5.41%

90.9
12.12%

67.7
9.03%

90.3
12.04%

70.0
9.33%

61.8
8.24%

24.4
3.26%

74.4
9.91%

57.1
7.61%

58.4
7.78%

28.4
3.79%

Report generated on: 11/28/2006 10:20

Liquidity Report

The next report available is the Liquidity Report. It is designed to provide the user with a

basic concept of the overall liquidity of each bond. This is shown through historical trade

volumes and also as a percentage of the total amount outstanding, with both being reported on a

monthly basis. A sample output of this report can be seen in Figure 4.5. Similar to the Daily

Trade Summary, the first three columns contain descriptive data and the remaining columns

contain analytical data. The columns contain data for each month within the past year, as well as

average monthly values for each bond. From these numbers, the user is able to estimate how

long it will take to invest a certain amount of money in a given bond. The user can also get a

general idea of the seasonality of a certain bond by examining the percentage of outstanding

notional traded in each month. To a trader, this report can serve as a tool for benchmarking

Figure 4.5: Liquidity Report Sample Output

44

regular trading activity for a bond. It provides the user with context from which a potential

trading strategy may be developed. This is extremely useful information for a trader attempting

to establish a position on a bond.

Trade Outliers

The Trade Outliers report provides the user with more information about traded volumes

as can be seen in Figure 4.6. As in the first two reports, standard descriptive bond data is

displayed in the first three columns under the heading Bond Information. The next two columns

show the traded volume for the current day and an average of the past five trading days.

Holidays when the market is closed and weekends are not taken into account in the five day

average. The remaining columns include historical averages for comparison. This report gives

the user the benefit of being able to easily see if a bond is being traded at volumes vastly above

or below usual averages.

Figure 4.6: Trade Outliers Sample Output

Report for ticker KFT as of 11/28/2006:
Bond Information Recent Traded Volume Average Traded Volume

Ticker Coupon Maturity Outstanding
Notional

Last
Trading

Day

Last 5
Trading

Days
1 Month 3 Months 6 Months 1 Year

KFT 5.250 06/01/2007 1000.0 1.0 0.2 2.3 2.6 4.0 4.6

KFT 4.000 10/01/2008 700.0 2.2 1.1 0.4 1.4 2.0 2.1

KFT 4.125 11/12/2009 750.0 6.0 1.4 3.1 1.5 4.0 3.2

KFT 5.625 11/01/2011 2000.0 21.4 4.5 14.1 9.1 8.4 7.6

KFT 6.250 06/01/2012 1500.0 2.0 3.4 16.7 9.8 9.9 9.2

KFT 5.250 10/01/2013 800.0 0.0 0.0 5.6 3.0 3.0 2.9

KFT 6.500 11/01/2031 750.0 0.0 0.0 3.1 3.0 3.1 2.6

Report generated on: 11/28/2006 10:20

45

4.7.3 Advanced Options

Generating Reports on-command

TraceMon can support both reports that need to be run on a scheduled timetable as well

as reports that can be run on-command, whenever the user wants. Through the Configuration

Window, the user can set the reports that will be run on a scheduled basis (by checking the “Run

Report?” checkbox on each report tab). However, the user will want to run certain reports on-

command, either because information in it does not change very often or because he/she needs to

know the results as soon as possible.

Our application supports this feature, which can be activated through a command-line

parameter. By supplying the parameters “/run <report_ids>” to the “run.bat” script file, the user

can force the reports identified by <report_ids> to be run. The IDs of the reports in

<report_ids> can be obtained (visually) from the Configuration Window (located in the top-

right corner of each report tab) and have to be separated by commas (and no spaces).

For example, the command:

run.bat /run 0,2

will execute only the Daily Trade Summary (0) and the Trade Outliers (2) reports, thus

disregarding the user preferences in the user’s profile (however this will not affect the profile, so

on the next scheduled run the program will run normally again). Other preferences, such as

Estimated Capped Amounts and email addresses will still be loaded from the profile and used to

generate the reports and sent their outputs.

Running Reports for Other Users

Another feature of TraceMon is running reports for other uses. While normally the

application can determine who is logged in on the machine where it is executed, this feature may

46

be useful when the application may need to run on a remote server with a certain user’s profile.

Reasons for this may include, but are not limited to, the unavailability of the user’s machine or

need for increased performance (as noted in the previous chapter, it could take a while before a

report is generated, depending on the number of bonds and number of available bonds in ALICE)

This feature can be activated through a command-line parameter. By supplying the

parameters “/usernbk <userid>” to the “run.bat” script file, the user can specify which user’s

profile to load. The only pre-requisite for this action is that the user specified by the given id

already has a profile (for privacy concerns, a profile can only be created or changed for the

currently logged in user, and not for another user).

For example, the command:

run.bat /usrnbk nbkht5q

will load the user profile of nbkht5q and generate the reports on his behalf (thus sending the

results to whatever email addresses that user specified in his/her profile).

 Also, both of the above-mentioned features can be combined. As a conclusion, one or

more reports can be forcibly generated using the preferences of a specified user.

For example, the command:

run.bat /run 0,2 /usernbk nbkht5q

or

run.bat /usernbk nbkht5q /run 0,2

will execute only the Daily Trade Summary (0) and the Trade Outliers (2) reports using the

settings in user nbkht5q’s profile, but disregarding whatever reports that user enabled or

disabled.

47

4.7.4 Identifying and fixing problems

For debugging purposes, TraceMon records all actions that it is performing. Such actions

include errors, warning and regular events. An error happens when something unexpectedly goes

wrong and it may negatively affect the output of the program or the stability of the program

itself. A warning is recorded when something does not happen as planned, but this does not

affect the accuracy of the outputted data. An event represents a notification that some action has

happened or is about to happen; it is not as important as a warning or an error, but it can give

valuable information about what the program is doing.

TraceMon records all its actions, including information retrieval for all the bonds it

needs. Since multi-threading is used to extract this information in parallel, the log can become

very difficult to comprehend by simply looking at it (since messages from more than a thousand

bonds can be intermixed in it). Therefore, in order to ease our problem identification and fixing

process, we have developed another module of the application, named the EventLogger. As it

can be observed in Figures 4.7 and 4.8, this subsystem, when launched, shows all the logs from

the previous five days (logs older than that are automatically erased). When the user selects a

specific log, the program parses it and organizes the information in it based on the bond for

which it relates and groups the other information under another tab, namely “General” [Figure

4.7]. The General tab contains notifications not related to any particular bond, but to the

application as a whole (e.g., loading the configuration, the Treasury Information, processing

reports or sending emails).

48

Figure 4.7: EventLogger Screenshot 1

Figure 4.8 shows how the information is filtered out and grouped for each bond in part. It

shows all the relevant information for it, including where it was retrieved from and how long it

took to fully do that. This example pertains to a bond that was not found in any Bank of America

systems, thus it needed to be imported from Bloomberg. While this screenshot does not show it,

this would also be the place where errors and stack traces would be shown, as well as other

failures and warnings related to this bond in particular. This module has been of utmost

importance in our successful deployment of the application, as it allowed us not only to identify

and fix various problems, but also to fine-tune our program for performance.

Figure 4.8: EventLogger Screenshot 2

49

4.7.5 Documentation

The final and most important step that had to be done in order to have a full release was

to create appropriate documentation for users of the program and other developers that would

support it. This included a User Manual, Software Development Guide and Troubleshooting

Guide.

User Manual

The purpose of the User Manual is to make new users familiar to the application, as well

as instruct them on how to use it and take full advantage of its features. It contains a brief

description of the product, information on where to find it and how to start it, as well as detailed

instructions (with accompanying graphics) on how to configure it. After the user learns how to

set up his/her profile, the manual shows how to schedule reports or how to use more advanced

features, such as running reports on-command or running the program using another user’s

profile.

Software Development Guide

Besides the User Manual, we wrote a Software Development Guide, whose primary

audience is the developers who have to support our application after our departure from the site.

It contains a detailed outline of the architecture, as well as information regarding the program

behavior that would make understanding the application easier. Also, we included

comprehensive code comments and used the JavaDoc utility that was shipped with Java JRE 1.5

to generate a complete code guide for our application, which will enable the developers to easier

interpret our code.

50

Troubleshooting Guide

Finally, we decided to compile a list of known issues that were either beyond our control

or that would take too long for us to fix. While these problems do not generally affect the user

experience (they may appear in rare cases, in less than 5% of all runs), a guide to handling them

would definitely save users time in case such a problem occurs. It includes symptoms, a brief

description of the cause that may have led to that problem, as well as step-by-step instructions on

how to remedy it or direct users to the appropriate developer that will address the issue.

51

5. Conclusions and Recommendations

The creation of TraceMon provided bond traders at Bank of America with a very useful

tool. Previously, the data reported by our application was either tediously searched for or simply

not used. By processing a vast amount of information and condensing it into a straightforward

series of reports, this program quickly provides statistics to the user that would otherwise be

unrealistic to determine. With the advent of TraceMon, this valuable data is now easily

accessible and can provide the user a great deal of insight into the corporate bond market.

Because of this insight, traders are able to make better investment decisions and therefore

increase overall profitability of the credit and equities trading department.

While TraceMon represents a strong beginning, the analysis of TRACE data should be

significantly expanded on at Bank of America. Several additions beyond the scope of this

project should be made, including improving estimates, increasing the number of reports, and

different methods of accessing the report. The expansion of these TRACE analytic measures

will further increase the traders’ knowledge of the bond market, leading to more lucrative

investments.

5.1 Improve Estimated Value Accuracy

One of the few limitations of TraceMon is the inaccuracy of the estimated average values

for capped trades. Currently, the user is required to input estimators for trades that are reported

as greater than $1 million and $5 million with default values of $3.7 million and $12.5 million,

respectively. However, traded volume is one of the most important statistics reported by

TRACE, and in order to properly analyze the data reported by TraceMon the estimates for the

capped volumes must be as accurate as possible. Two measures must be taken to maximize

accuracy of these estimates: they must be calculated on a daily basis from the aggregate data

52

reported by NASD, and they must be adjusted based upon the size of the issuer. Accomplishing

this would require a significant time investment, as calculating the averages on a daily basis

requires considerable computations.

After speaking with Ola Persson at NASD [Meeting Minutes, Appendix A], we were able

to understand how to calculate the averages, but did not have the necessary resources. Ideally,

Bank of America would create an application to compute these figures. The program would

need to extract the total traded volume for both investment grade and high yield trades. The

program would then need to sum the volume all of uncapped investment grade trades (those with

volumes of $5 million or less) and subtract that number from the aggregate volume. This would

yield the total volume of all capped trades. By dividing this by the number of capped trades

from that day, a moderately accurate average could be attained. This same process would then

be repeated for high yield trades.

Despite the increased correctness of these estimates, they must still be adjusted for the

size of the issuer. Bonds with certain tickers are more likely to trade at ten times the estimated

value, while other tickers may trade at half of that number. Because of this, the user should be

able to input multipliers for tickers that will make the necessary adjustments.

If both of these measures are implemented in future versions of TraceMon, the reports it

generates will be much more accurate and informative. While the estimates currently used by

TraceMon are effective, further developments could enhance this aspect of the program

considerably.

5.2 Diversify Reports and Organize Them

During this project, we could only develop three reports that pertain to TRACE data

analysis. Those include Daily Trade Summary, Liquidity Report and Trade Outliers. While the

53

reports themselves were not difficult to design, finding all the sources of information,

researching technologies that we could use, as well as developing the backbone of our

application occupied most of the time that we spent on this project. The project stakeholder

mentioned to us that there are many more such reports he would find useful, and these three are

just the beginning. We believe that a future project on this topic could be to further extend our

application in order to generate more useful reports. Since the foundation and business logic

layers are already developed, the development of such reports should not take too long to

complete.

Also, our three reports can be currently categorized into daily (Daily Trade Summary and

Trade Outliers) and weekly reports (Liquidity Report). Given our current design, it is not

complicated to generate them daily (by scheduling the program to run every night and enable

some reports) or scheduling a particular report to run after a longer time (using the on-command

generation feature of our application). However, if other reports are added, the situation may

change. It is possible that several reports need to be run daily, some weekly and some at a longer

interval of time (e.g., monthly). Therefore, a further extension of our program would include a

customized internal scheduler, which will allow each report to be scheduled as the user wishes,

without having him/her use the Task Scheduler in Microsoft Windows.

5.3 Expand Report Format

Currently, the information in each report is compiled into a single email and then sent to

the user. While this may not be a problem in the general case, in some of our experiments (where

we tested the limits of our program), we realized that some emails can be quite big (5000 lines)

and thus very difficult to read. To facilitate navigation through the email, we included links at the

beginning of the report to where each new ticker starts (thus the user can “jump” to where he/she

54

wants). In any case, there are a number of other ways to make these emails more readable (but

implementing them would go beyond the purpose of our project).

A first idea would be to generate all these reports and post them to an internal web server.

This way, they can be easily accessed at a later time and, by removing the one-page constraint

(all tickers need to be on the same page, so that they would fit into an email), the user can click

on a hyperlink on the report webpage and be shown another page with the report results for that

particular ticker. Using this approach the user would avoid having to search through thousands of

possible lines of the email for a particular ticker. Also, a good report-organizing technique would

allow the user to see all reports generated for a ticker (i.e., Daily Trade Summary, Liquidity

Report and Trade Outliers). Right now, each such report is in a different email, and the user has

to open that and search for the ticker before finding the information that he/she needs.

On the same topic, another suggestion that would improve the readability of large reports

is the use of DHTML (Dynamic Hypertext Markup Language) combined with JavaScript (as

opposed to simple HTML, which is used at this moment). DHTML would be used to “hide” the

tables and only show the tickers (on the vertical), with a “+” button on their left. When the user

clicks on that button, the corresponding table would be shown and explored by the user. It could

later be hidden by clicking the same button that was used to show it.

5.4 Other Suggestions

The abovementioned suggestions for expansion refer mainly to aesthetics and user

experience. However, there are several things that a future project could concentrate on, such as

an improved data retrieval mechanism or a centralized user repository.

TraceMon has two main sources of data, the RealTic database and ALICE. While RealTic

is a reliable and fast data source, it does not contain all the information we need. ALICE has a

55

comprehensive set of static bond information, which is updated on request, and complements the

information we get from RealTic. However, the major drawback of ALICE is that it is sluggish,

and can be extremely slow when we need to have some bond information imported from

Bloomberg into it. This is the main reason our application can perform very poorly in some

instances, especially when the bonds it is dealing with are not found in it. Also, if it attempts to

import several bonds into ALICE at the same time (which may happen during the execution of

our program), it may be denied access until some resources are freed up. This caused several

inconveniences from the development point of view, and forced us to implement failsafe

mechanisms (such as having to deal with more than one ALICE server or retrying to retrieve

bond information if it failed due to a server problem – see Section 4.4) – thus adding complexity

to our application. A suggestion for improving performance in the future would be to look for

alternate data sources or find a better way to get the necessary information from the systems

already in place. However, our limited time here prevented us from doing further research into

this matter.

If TraceMon proves itself to be useful, it may be adopted by several traders that work at

Bank of America. While at the current moment it can successfully support multiple users using it

at the same time, several design modifications could be made to it in order to facilitate multi-user

access. Therefore, a centralized user repository can be created, as well as a pool of predetermined

scheduled runs for each report. Thus, every time a report is generated, tickers from all the users

can be compiled into a single list, which can be used to generate the report. After it is completed,

individual reports can be sent to each user based on the tickers he/she specified. This would

significantly improve system performance, as it will not have to generate duplicate reports for

the same ticker at the same time.

56

Appendix A: Meeting Minutes

Initial Project Meeting

Tuesday, October 24, 2006 9:30-10:00

Purpose: Introduce basic project parameters and requirements
Present: Brent Gilmore, Martin Gonzalez, Andrei Paduroiu, Kurt Vile

TRACE:
Data reporting and disseminating service developed by the NASD to enhance transparency in the
corporate debt market

Initially, only transactions involving the highest rated bonds were reported and disseminated

TRACE collects a large amount of bond pricing information, but disseminates only select
statistics

TRACE can help bond traders gain a better understanding of what the market is doing by:

• Determining ease of accumulation
• Flagging spikes in activity between quarterly reports
• Determining volume outliers

Daily, weekly and monthly bond volumes can help find high volume bonds with unnaturally
high liquidity

Outcomes:
Background report requested to gain a better understanding of TRACE data

57

NASD Call

Monday, November 6, 2006 15:45-16:15

Purpose: Inquire about NASD reports containing capped trade averages
Present: Brent Gilmore, Ola Persson

Discussion:
When asked if the NASD periodically reported average values for capped trades (those greater
than $1 million or $5 million), Ola told us that the NASD no longer produced those reports
because the averages were being easily calculated by many financial institutions. He also
informed us that the NASD publishes aggregate trade volumes on its website on a daily basis,
and that it is not difficult to calculate the desired averages from these figures.

58

ALICE Database Conference Call

Wednesday, November 08, 2006 15:00-15:30

Purpose: Discuss alternatives to using ALICE production database
Present: Brent Gilmore, Hoang C Nguyen, Andrei Paduroiu, Charles Waddington

Problem8:
Our application, TraceMon, was accessing the ALICE database to obtain static bond data such as
coupon, maturity and bond ratings on bonds listed in the RealTic database. However, when a
bond was listed in RealTic and not in ALICE, TraceMon would force ALICE to retrieve the static
data from Bloomberg. This was a problem because it was causing bonds to be imported into
ALICE without undergoing the proper processing.

Potential Solutions:
Charles and Hoang suggested two possible alternatives to pulling this data into ALICE: work in
either a Quality Assurance environment (QA or QA2) or the User Acceptance Testing (UAT)
environment. If TraceMon was to import any new bonds into either the QA or UAT
environments, it would not disrupt production as the current process was doing.

Outcomes:
As a collective we decided to work in the QA2 environment because it was not refreshing on a
nightly basis like the other environments were. The refreshing presented a problem to our
application because it would delete any bonds TraceMon pulled the previous night. However, in
the QA2 environment we were able to import bonds without disrupting other processes and
without them being deleted on a nightly basis.

8 A detailed explanation of the reason this problem occurred is described below:

Workflow Concerns
One of the features of Alice is associating securities with an issuer from ACID. This ensures that the associated issuer
information is valid and accepted by the bank. This usually means that before any security is allowed into Alice, the issuer and
guarantor name is checked against a collection of verified issuers from ACID. If the name is not recognized as the legal name or
an alias, the security is sent to a workflow process. There, a person will either associated the unknown name as an alias to an
existing issuer or create a new issuer in ACID.

However, this presents a problem for the retrieve operations since it is possible the application issuing the requests could be a
batch or service one. As a compromise, any security imported by the retrieve operations will not trigger a workflow process.
Instead, if the issuer is not known, the issuer data in the security will be “null”, but the issuer name will be available in
“sourceIssuerName” and “longCompName” fields on the Bond element. “sourceIssuerName” is equal to Bloomberg’s short
issuer name and “longCompName” is equal to Bloomberg’s full issuer name.

59

TraceMon Demonstration

Monday, November 20, 2006 16:00-17:00

Purpose: Provide primary project stakeholder with overview of TraceMon
Present: Brent Gilmore, Martin Gonzalez, Alex Gregory, Andrei Paduroiu

Presentation:
We briefly showed Martin how to use both the configuration and execution modes of TraceMon.
We demonstrated the program’s capabilities with respect to speed and accuracy. Martin was
able to see what TraceMon is capable of and he provided us with very positive feedback.

Concerns:
The Outstanding Notional value was being displayed as either zero or an incorrect value that did
not align with the information reported by Bloomberg. We discussed this issue with Martin and
after comparing the numbers in TraceMon (which are retrieved from ALICE) with those reported
through Bloomberg and those reported by the issuer, we found that in some cases none of the
three figures corresponded. Martin informed us that the numbers reported by the issuer are the
most accurate, but the Bloomberg numbers would be sufficient for TraceMon.

Potential Solutions:
We conferred with Alex and Martin about possible solutions to this inconsistency. Some of our
options included attempting to gain access to external services to which Bank of America is
subscribed (such as Mark-it Partners), or a higher level internal service.

Results:
Other than the Outstanding Notional value problem, the demonstration was a success. Martin
was very pleased with what we showed to him. We were able to solve the Outstanding Notional
problem by communicating with the ALICE design team. They were able to import all the
missing values from Bloomberg and update the remaining values to ensure data accuracy.

60

TraceMon Release for User Acceptance Testing

Wednesday, November 29, 2006 13:30-14:30

Purpose: Provide Martin access to TraceMon for testing and review
Present: Brent Gilmore, Martin Gonzalez, Andrei Paduroiu

Release:
We created a public folder on a shared drive to enable all future users to access TraceMon.

Issue #1:
We had difficulty with Java Runtime Environment (JRE) compatibility. TraceMon requires
version 1.5 to run. However, even after successfully installing JRE 1.5 on Martin’s computer,
we could not run TraceMon. We realized that Martin’s computer had JRE 1.5, but also JRE 1.3
and JRE 1.4. Further investigation showed that JRE 1.3 was the default one. This introduced a
problem that needed to be addressed: the users’ machines may have various configurations, and
while JRE 1.5 may be installed there, it may not be the default one

Solution #1:
On the spot, this problem was solved by modifying the batch files that started the application.
We forced the JRE 1.5 to be the one that executes our application by hard-coding the path to the
JRE bin directory. The initial problem was solved and we could get the application up and
running on Martin’s machine. But this introduced a new issue.

Issue #2:
By hard-coding the path to the JRE bin folder, we gave up the flexibility in being able to run on
multiple update versions of the JRE (Sun, the manufacturer of Java, releases several updates for
each JRE version, and each has its own installation folder). The JRE installed on Martin’s
machine was update 7 (installed in folder jre1.5.0_07) and ours was update 9 (in folder
jre1.5.0_09). Thus we needed come with a fix for this problem as soon as possible to
accommodate different updated versions of JRE 1.5.

Solution #2:
This problem did not require our presence at Martin’s desk, so we could solve it from our own
computers. We took advantage of the following property of any Microsoft Windows operating
system: when issuing a command from a script host, the operating system first searches the
current folder to find that program, and then searches the PATH variable. We have decided to
temporarily add some folder paths to the PATH variable representing all the JRE 1.5 update
versions. Thus, when the script is executed on any client machine (who needs to have at least one
JRE 1.5 installed), at least one of them will be picked up and successfully execute our program).

Outcomes:
With TraceMon scheduled to run on a daily basis, Martin was able to experience the application
as it will operate once completely launched. Through this, he will be able to provide us feedback
and we can make necessary adjustments and changes to TraceMon prior to full release.

61

The Future of TraceMon

Thursday, December 7, 2006 15:00-16:00

Purpose: Show other developers/managers how to support and extend TraceMon after our
departure
Present: Dave Bulthuis, Andrei Paduroiu

Summary:
This was an informational meeting in order for other developers to understand our applications
and give them an insight into how it works and how to change it. Andrei had a technical
discussion with Dave Bulthuis (Application Development Senior Manager), who oversees a team
of software developers in the Chicago office, in order to describe TraceMon. The discussion had
the following topics:

1. Description and Purpose of TraceMon
2. Sample runs (Configuration and output format)
3. Location of source code, compiled code, as well as documentation
4. Overview of architecture (packages, classes, etc)
5. Description of Flow of Events and explanation of sequence diagrams and use-cases
6. Explanation of some complicated pieces of code and why we chose one method over

another
7. Questions and Answers from Dave (in case he wanted any clarifications on this)

62

Appendix B: Diagrams
Figure B.01: Package Diagram

63

Figure B.2: Class Diagram

64

Figure B.3: Sequence Diagram for Execution Mode

65

Figure B.4: Sequence Diagram for Configuration Mode

66

Figure B.5: Use Case Diagram for Configuration Mode

67

Figure B.6: Flow of Execution Diagram

68

Bibliography

Bank of America. 2006. Our Heritage. Available from Bank of America Intranet,
http://flagscape.bankofamerica.com, accessed 7 November 2006.

Bessembinder, Hendrik, William Maxwell, Kumar Venkataraman. 2005. Market Transparency,

Liquidity Externalities, And Institutional Trading Costs in Corporate Bonds. Available
from Internet, http://www.ivey.uwo.ca/research/IRS_Papers/Bessembinder.pdf, accessed
6 November 2006.

Bond Market Association. 2006. Corporate Bonds. Available from Internet,

http://www.investinginbonds.com/learnmore.asp?catid=5&subcatid=18, accessed 6
November 2006.

Bond Market Association. 2006. Association Supports Releasing Historic TRACE Data;

Cautions Against Revealing Proprietary Information Which Could Harm Market
Participants. Available from Internet, http://www.bondmarkets.com/story.asp?id=2554,
accessed 25 October 2006.

BondsOnline. 2006. Bond Rating Definitions. Available from Internet,

http://www.bondsonline.com/Bond_Ratings_Definitions.php, accessed 7 November
2006.

NASD. 2006. NASD Bond Trade Dissemination Service (BTDS). Available from Internet,

http://www.nasd.com/web/groups/reg_systems/documents/regulatory_systems/nasdw_01
1216.pdf.

NASD. 2006. NASD's TRACE Completes Real-Time Public Dissemination of Public Corporate
Bond Transactions, Beginning Today. Available from Internet,
http://www.nasd.com/PressRoom/NewsReleases/2006NewsReleases/NASDW_015839.
accessed 25 October 2006.

NASD. 2006. Notice to Members - June 2006. Available from Internet,
http://www.nasd.com/web/groups/rules_regs/documents/notice_to_members/nasdw_016
989.pdf, accessed 26 October 2006.

SEC. 2006. The Investor’s Advocate: How the SEC Protects Investors, Maintains Market

Integrity, and Facilitates Capital Formation. Available from Internet,
http://www.sec.gov/about/whatwedo.shtml, accessed 6 November 2006.

Shulman, Doug. 2004. An Overview of the Regulation of the Bond Markets. On-line. Available

from Internet, http://www.senate.gov/~banking/_files/shulman.pdf, accessed 26 October
2006.

REUTERS. An introduction to bond markets. Singapore, John Wiley & Sons, 1999.

69

Tuckman, Bruce. Fixed income securities: tools for today’s market, 2nd Edition. New Jersey,
John Wiley & Sons, 2002.

Wikipedia. 2006. Fitch Ratings. Available from Internet,

http://en.wikipedia.org/wiki/Fitch_Ratings, accessed 6 November 2006.

Wikipedia. 2006. Standard & Poor’s. Available from Internet,

http://en.wikipedia.org/wiki/Standard_%26_Poor%27s, accessed 6 November 2006.

Yahoo Finance. 2006. Banc of America Securities LLC Company Profile. Available from

Internet, http://biz.yahoo.com/ic/47/47381.html, accessed 7 November 2006.

70

	1. Introduction
	2. Background
	3.1 Research
	3.1.1 Literature Study
	3.1.2 Meetings

	3.2 Analysis
	3.2.1 Requirements
	3.2.2 Data Mining

	3.3 Architecture and Design
	3.4 Development
	3.5 Testing
	3.6 Release
	5.1 Improve Estimated Value Accuracy
	5.2 Diversify Reports and Organize Them
	5.3 Expand Report Format
	5.4 Other Suggestions

