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@ Background:
Active Electronically Scanned Arrays

Beam Squi{\t Example

AESA Strongback

—J/ U

« AESA'’s utilize phase shifters for beam steering as opposed to time
delay circuits

— More appealing: size, complexity, cost
— Side effect: beam squint

* The antenna system is divided into a series of sub-arrays

— Each sub-array driven with a unique RF waveform generator allows for
time delay beam steering
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Phase Stability & Calibration Concern

AESA AESA AESA AESA AESA AESA
Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6
A A A A A A
Waveform Waveform Waveform Waveform Waveform Waveform
Generator Generator Generator Generator Generator Generator
1 2 3 4 5 6

 Realize the effective time
offset between channels

* Achieve a known phase at the
iInput to the sub-arrays
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Calibration Module

Detail

Transmitted
Signals to

“Test” Channel Upconverter
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Concern: How consistent and accurate is the calibration system?
Goal: Characterize the calibration system under operational conditions
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@ How calibration works

Detecting amplitude and phase

“Test” Channel
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Source: Jerry Benitz
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@ Test System: High Level Diagram

PicoScope
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@ FPGA Design Overview for Both FPGAs

scope
trigger
sync
lIC

MATLAB Microblaze Se'ectl DAC

Single

DDR3 DMA FIFO FIR Sample

Control

« Synchronized transmission between multiple waveform generators

« Time delay for subsample resolution and continuous phase control

« Single sample control given DAC sampling frequency of 2.8 Gsps
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@ RF Design: Upconversion

Purpose: Convert from intermediate
frequency to Ku band RF output

DAC
Output Lowpass . Image .
400- > Fiter [ 2] M*e' [ RejectFilter [ | AmPlifier >
1 16.6 —
Local 17.0GHz
Oscillator

« Solution because actual upconversion hardware was not ready
 Range: 400-800 MHz to 16.6-17.0 GHz
* Test Frequency: 700 MHz --> 16.7 GHz
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% Final Product
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%

FIR Filtering

« Control phase, delay and gain
— allows for subsample delay control (1/3, 1/12, etc.)
— Also supports continuous phase control

Amplitude (V)

FIR Filtering for Subsample Delay at 200MHz
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@ Interferometer: Broadside Null

Interferometer: 1 antenna 180° out of phase --> destructive interference
Simulated expected antenna pattern in MATLAB
In lab, interferometer antenna pattern worked for producing nulls

Multi-path effects from test environment visible in measurements
— However, broadside null is consistent

Baseline Power Measurement (Predicted)
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RS Test Setup

* Transmit
waveform data

 Utilize antennas
and receiver as

feedback loop
 Analyze data in
Matlab
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Test Protocol: Step 1

Step 1: Established a baseline null position and phase difference

— Tuned test channel
— Examined consistency

Baseline Interference Pattern

Baseline Phase Detector Output

Power (dBm)

B Baseline Power Measurement
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Test Protocol: Step 2

Step 2: Used phase shifter to intentionally put the system out of

calibration

— Measured resulting null position and phase difference

Uncalibrated Interference Pattern

Uncalibrated Phase Detector Output

Power (dBm)
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@ Test Protocol: Step 3

Step 3: Used new phase difference measurement to change the
phase of the test channel input signal

— Measured resulting null position and phase difference

Interference Pattern After Restored Phase Detector Output
Re-Calibration After Re-Calibration
. Resulting Power Measurement 100+ Phase Detector Output (1000 Measurements)
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Figure of Merit: How close was the recalibrated null to the original baseline null?
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@ Measurement Repeatability

Phase Detector Output (1000 Measurements)
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Over 1000 measurements for a set of 5 full system resets, the phase
detector output was determined to be reliable within ~1°.
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Accuracy of Calibration Module

Phase Offset (Degrees)
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Digitally steering back to a baseline position using the calibration module
output to revise waveforms achieves accuracy within 0.15° at OBA.
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@ Conclusion

 Main concern: accuracy and
consistency of calibration module

* Developed test system simulating
transmission side of ARTB with
calibration module as DUT

« Utilized power receiver and horn
antennas as feedback loop

« Ran statistical analysis of
calibration and received power
data

The ARTB calibration module can consistently and
accurately provide calibration data to revise waveforms
within 0.15° of the baseline beam angle.
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@ Future Work

* Run in near-field chamber
 Test at full 1 GHz bandwidth

« Examine effects of temperature changes on calibration
consistency and accuracy
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@ Additional Information:
Beam Squint

Broadside

« Using phase shifters for beam
steering induces beam squint
over wide bandwidths

Beam
Direction

RadiatorsT

Phase

Shifters ¢ ¢ ¢ o b

 \Wave must travel an additional
dsin(0) for each successive
antenna element

« Phase shift is frequency
dependent, but time delay is
not

dsin(0
Ap = C( )

2rtdsin(0)
A

—> A = 2mfAt =
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Additional Detail:

@[ Horizontal Linear Scan

Horizontal Linear Scan

'0'7.5 m 0om 0.75m
_— 1 136 mm
2m

/

/7

Transmission Antennas

N

» Use of a horizontal linear scan
results in additional path length
as the scan angle moves away
from broadside

 Additional phase shift not
relevant for power measurement

* From Friis Equation, additional
power loss is 0.1dB at the scan
edges

Friis Equation:

Pr = Pt + Gt + Gr + 20log <4-1TAT>
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Additional Information:
Full 1GHz Bandwidth

Example calibration measurement: Phase vs Frequency
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Frequency (MHz)

« Slope indicates delay
— Example: Test signal is exactly 1 DAC sample ahead

 Midband phase may require correction
— Example: Phase is lagging 40° vs 1 DAC sample advance

1200
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@ Additional Information:
Synchronization

« Master board triggers slave board for synchronization
— Deterministic: able to use filtering to align phase of waveforms
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% Additional Information:
* Full Upconverter

M1: 17.400000000GHzZ -76.93dBm

#Atten: 008

16.2 GHz Spur

Genter: 17 Grz Start: 14 800000000GHz Stop: 19.900000000GHz Span: 5.000000000GHz 1 6 . 8 G H z R F F re q u e n cy
R VBW: 3.000000MHz Sweep: 210.174ms
e —
M1 Time: 2016-08-23 13:06:30

-84.00dBm -34.00d8m

M1: 17.400000000GHz -75.53dBm
Ref: -58.00dBm #Atten: 0dB

Upconversion from
600 MHz to 16.8
GHz

Center Frequency:
17.4 GHz

Span: 5 GHz

Center: 17.400000000GHz Start: 14.900000000GHz Stop: 19.900000000GHz Span: 5.000000000GHz
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B
-108.00dBm -58.00dBm

M1 Time: 2016-08-23 13:02:35
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