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Abstract 

As the global population increases, it becomes increasingly important that we find ways 

to improve our agricultural sustainability. In order to provide the necessary improvements to 

keep up with agricultural demand, we must advance our understanding of how plants grow and 

thrive. In this work, I designed methods to assist in the process of ascertaining this knowledge 

from the model plant, the moss Physcomitrella patens. I developed a new growth plate which 

allows the moss plants to be kept alive, and imaged under the light microscope, for an extended 

period of time. The use of this plate will help improve our understanding, through time-series 

microscopy of live plants, of the relationship between cell growth and plant morphology. I also 

evaluated the effectiveness of a growth assay that is used to characterize differences in growth 

patterns. This was done by exploring the parameter space of a moss growth computer simulation. 

This allowed me to determine how changes in cell structure affect the plant morphology metrics 

of the assay. Additionally, a K-nearest neighbors model was developed to help predict, using 

morphological metrics, changes in cell structure of possible mutant plants. The improved assay 

and model will be used to investigate how genetic changes that affect cell growth alter plant 

morphology. 
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1 Introduction 

1.1 Importance of Understanding Plant Growth 

In 2013, the Food and Agriculture Organization of the United Nations produced a study 

estimating that, to sustain the rising human population, the world will need agricultural products 

to be grown in greater quantities and in a more efficient manner. They stated that, by 2050, 60% 

more agricultural products would need to be grown compared to 2005-2007 amounts (FAO, 

2013). Further, in addition to more farms, the world will need to improve plant growth 

efficiency. Therefore, to accomplish this, we must better understand how plants grow so we can 

determine how to best increase growth amount and growth speed. By studying model plants, we 

learn about the different systems in plants and then look to apply this knowledge to agricultural 

plants (Flavell, 2009). 

1.2 Model Organism Physcomitrella patens 

One particular plant used to study plants and plant growth is the model organism 

Physcomitrella patens (“P. patens”) because plants similar to mosses are some of the earliest 

land plant life (Schaefer and Zrÿd, 2001; Knight and Perroud, 2010). An image of P. patens 

mature gametophores can be seen in Figure 1.  

In the wild, P. patens plants begin as spores yet, in the laboratory they can be cultured 

from single cells called protoplasts, which means that the growth conditions are artificial to an 

extent. The plants start as single cells, which are spherical(either spores or protoplasts). When 

protoplasts are regenerated, they are cultured in mannitol, which stabilizes their osmotic 

pressure. Under these conditions, the protoplasts form strings of 1-5 “bulbs”, which are close to 
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spherical cells. Once the bulbs are placed on growing media, branches then grow from these 

bulbs, the branches curve and other branches then grow from the original branches (see Figure 

2). These simple plants make moss an excellent species for studying plant growth and 

development since many plant growth genes are highly conserved in more complex plants 

(Prigge and Bezanilla, 2010). Furthermore, P. patens plants are used often in studies because 

they are easy to culture in vitro. P. patens is also highly efficient at gene targeting as this moss 

allows easy identification of mutant phenotypes since the plant is haploid, and its genome 

sequence is known (Knight and Perroud, 2010). This moss has already been highly studied in 

several areas in plant biology including its polarized growth and genetic analysis (Schaefer and 

Zrÿd, 2001; Vidali and Bezanilla, 2012).  

Areas that have been less studied are quantifying moss growth, including 3D growth, and 

structural changes in mutations, which are further developed in animal model systems (Deal et 

Figure 1: Image of Physcomitrella patens 
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al., 2016). By increasing our knowledge of these areas, we will be able to better measure plant 

changes and create tools utilizing a quantitative approach that will allow predictions of plant 

structures. Creating a prediction tool will enable faster screening of the structure of mutant plant 

lines to provide quick analysis of how mutations affect growth.  

1.3 Plant Morphology Analysis 

Quantifying the morphology of a plant improves our capacity to analyze the growth of 

concerted plant cells for comparative studies. In the Vidali Laboratory at WPI, a methodology 

was developed to quantify the morphology of images of P. patens plants (Bibeau et al., 2014). 

An ImageJ macro, which was developed in the laboratory, analyzes the morphology of the plants 

using area, convex hull area, perimeter, and convex hull perimeter. These values quantify the 

plant using the metrics: area, eccentricity, solidity, circularity. Eccentricity is a measure of how 

elliptical the entire moss plant is. Solidity is a measure of area vs. convex hull and gives an idea 

Figure 2: Images showing P. patens branching 
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of the density of a plant. Circularity is a measure of area of the moss vs. the area of the circle that 

has the same perimeter as the moss. A visualization of circularity, eccentricity, and solidity is 

shown in Figure 3. 

 Hundreds of plants were analyzed with this 4-metric macro and statistical methods were 

used to test differences in morphology between temperature sensitive plant mutants (Ding et al., 

2014). The methodology was used on each plant at the same time step, thus analyzing solely 

morphology, not growth over time.  

 Fractal dimension was introduced as a new metric in addition to the four previously 

mentioned metrics in a recent WPI Major Qualifying Project (Lemoi and Tüzel, 2012). Fractal 

dimension is a measure of how space-filling an object is, but its calculation is not trivial for non-

regular shapes. To calculate fractal dimension for an arbitrary image, box counting method is 

used (Lemoi and Tüzel, 2012). The concept of this method is to count the number of boxes(N) 

Figure 3: Visualization of circularity, eccentricity, and solidity (Lemoi and Tüzel, 2012) 
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that the image fills depending on the size of the boxes (s) and the fractal dimension is the ratio of 

how those numbers scale. This method is illustrated in Figure 4. 

1.4 3-D and 4-D Imaging of Plants 

To analyze plant structure the plants must first be imaged. Two dimensional images can 

easily be captured with many different microscopy methods and current morphology assays use 

these type of images (Bibeau et al., 2014; Deal et al., 2016).  Three dimensional images can be 

reconstructed using slices of the sample at set intervals with a technique called tomography to 

also capture depth information (Schmid et al., 2010). The three dimensional reconstructions can 

help resolve overlaps from the projection of the specimen features on themselves that occur in 

two dimensional images (Truernit et al., 2008). Light Microscopy and Fluorescence Microscopy 

s 

Figure 4: Box counting method for determining fractal dimension. Fractal dimension is the slope of the graph of log(N) vs log(1/s), where N is 

the number of boxes and s is the side length of the boxes. 
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are the most common acquisition types used with tomography (Eckardt, 2008; Domozych, 

2012). Light Microscopy, where images are generated by light that is transmitted through the 

sample, is often used because it is inexpensive and readily available; but the images acquired 

have a large amount of background noise making three dimensional reconstructions harder. With 

Fluorescence Microscopy, fluorescent probes can be used to highlight sites of interest in the 

sample and there is much less background noise compared to light microscopy (ThermoFisher, 

2009). In addition for three dimensional reconstructions, techniques such as deconvolution, 

confocal microscopy, and the ApoTome, can be used to remove some of the out of focus light to 

sharpen the quality of the 3-D images (McNally et al., 1999).  

Four dimensional images are created by taking three dimensional images at set time 

intervals. Some issues arise when time is factored in: the sample must be kept alive and in 

controlled conditions over the time period, the light from imaging can cause harm from 

photodamage, and the fluorescent dyes can affect the specimen (Murphy and Davidson, 2012). 

Due to these challenges, four dimensional images of plants growing have not been explored in 

depth. 

1.5 Simulated Plant Growth 

Modeling plant life is a relatively new field for using artificial intelligence to generate 

plants and plant behaviors. To virtually grow the plants, recursive algorithms are utilized. The 

most common technique is L-system, which involves string rewriting (Steinberg and Sikora, 

1999). L-system starts with an initial node represented by a string a letters and is recursively 

rewritten based on a list of rules. These systems can model many plant types relatively well, 

including their root structure (Stefan and Claude, 2007). 
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A concern of using L-system is that the lists of rules can get increasingly more 

complicated, making the model hard to implement. Another implementation of the L-sytem 

method, which is not as constricted as simple L-system, is using a procedural algorithm, where 

conditions, such as variables contained in different parts of the plant, are checked to determine in 

the next corresponding step, to grow the plants. This is different from simple L-system since 

simple L-system is generally deterministic whereas in procedural algorithms decisions are often 

selected from ranges or probabilities. Procedural systems also often have variables which are not 

directly represented in the plant structure.  Experimental data can be put into this algorithm to try 

to replicate plants that look like those in the experiments (Lemoi and Tüzel, 2012). 

The Tüzel group at WPI Physics Department developed a P. patens growth simulator, 

which is based on experimental data to simulate populations of moss plants using procedural 

generation (Vandal et al., unpublished). The simulator uses inputs including cell length, cell 

width, curving angle, and branching angle to grow the plants, which have been tuned to what is 

observed in the lab. The program first generates a set of bulbs then adds branches to the bulbs. 

These branches are lengthened and then new branches are added on to original branches. In 

Figure 5, you can see that the simulated plants (bottom) look similar to experimental plants (top). 

Based on the metrics (area, solidity, circularity, and eccentricity), explained in Section 1.3, 

Vandal et al. have shown that the model very closely matches the experimental data.  
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1.6 Purpose of Project 

The first goal of this project is to develop an easy-to-use growth assay for analyzing the 

growth of plant cells over time. To do this, I will develop a methodology for obtaining four-

dimensional images. When fully implemented, this assay should be able to compare differences 

in growth between plant species and mutants, taking into account: total volume, average cell 

volume, cell number, cell shape, change in volume over time, change in cell number over time, 

and plant shape. To ensure the ability to measure growth over time, it is important that this assay 

is not invasive to the plant and does not affect the plant growth/viability. 

The second purpose of this project is to test how well the automated morphological assay, 

mentioned in Section 1.3, is at differentiating changes in plant structure.  Using an existing moss 

growth simulator, developed by Vandal et al., I will explore how well different quantitative 

Figure 5: Comparison of experimental (top) and simulated (bottom) moss plants. 
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metrics describe different plants (Vandal et al., unpublished).  I will then try to predict the 

structure of experimental plants using just quantitative metrics that can be gathered automatically 

so that we can easily screen mutations.  
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2 Materials and Methods 

2.1 Culturing Physcomitrella patens 

In order to learn about the growth of P. patens, we need to be able to culture the moss 

quickly and effectively. The cells of the moss are totipotent, which means that the whole plant 

can grow from just a single cell. This means that we can explore P. patens growth from single 

cell onward. Therefore, we need to be able to collect these single cells. 

To culture single cells, we first break down the cell wall of 7-day old moss using driselase. 

We preform several washes of the cells, which are now called protoplasts, so that the driselase 

does not kill cells. The protoplasts then need to recover their cell walls so that they continue to 

grow. To achieve this, we then plate them on top of cellophane on PRMB plates for 4 days. The 

plants are then ready to image. For this project, I only looked at the wild type for P. patens, 

which is plant cell line 576 in our lab. 

2.2 Staining the Moss 

In the interest of creating solid three dimensional reconstructions of the plants, I needed to 

find a stain that would not affect the growth of the plants and would also highlight the shape of 

the plant. The first dye that I looked at is propidium iodide, which is often used in viewing the 

cell wall of plants, since it binds to structural pectin (Rounds et al., 2011). Propidium iodide, 

which generally fluoresces red, has the added benefit of staining dead cells bright yellow so you 

can easily distinguish them and it fluoresces under green light, which is not detected by the moss. 

However, after testing, I determined that the dye affected the moss and prevented it from 

growing (see Figure 6). I suspected that this was due to photodamage. To prove this point, I 
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diluted the dye and found that, when diluted down to a level where phenotype is not affected, the 

dye could not be seen. 

My second choice of dye was calcofluor white, which binds strongly to cellulose, which 

means we can use it to stain the cell walls of the moss. I found, if diluted to 1/200 of a 1mM 

stock or more, the dye has little effect on growth and viability of the moss. The only issue with 

using calcofluor is that it needs to be illuminated with ultraviolet light. Ultraviolet light can be 

detrimental to moss, killing it or causing mutations. I had to be careful that I did not use too high 

intensity light and used short exposures of 100ms so that I did not overexpose the moss. I ended 

up using a final concentration of 5 µM calcofluor in media to minimize negative effects of the 

dye while also being able to capture the color under a microscope. 

Figure 6: Reduced growth with prodidium iodide stain. Increasing amounts of dye from left to right. 
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2.3 Keeping the Plants Alive During Imaging 

Another big issue with trying to image plants over a longer period of time is providing 

conditions for the plant to continue to grow during imaging, while still being able to image it. 

My first attempt was to use a large glass slide that had a square bounded off with double sided 

foam tape. I then filled the square with medium, transferred the protoplasts on top, and then 

covered it with a large cover slip. Although I was able to easily image the slide, it would dry out 

quickly and the plants stopped growing. I obtained similar results when I used a small thin plate. 

My current setup involves making a plate that has thick medium around the outside and 

thin in the middle so that I can image through the center. This formation, shown in Figure 7, 

prevents the moss from drying out because the moisture in the outside ring replenishes the 

moisture in the inner area. I only image plants that are close to the outer ring to minimize 

moisture loss. 

To create this special plate, I first take a 90mm plate and put a 60mm plate inside of it with 

a weight to hold the inner plate down. Sixteen mL of ppNH4 media, with 5 µM calcofluor, is 

Figure 7: Long term imaging plate 
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then poured into the space in between the two plates. Once the media has set, I remove the inner 

plate leaving an empty cavity in the center. The cavity is then filled with four mL of ppNH4 

media, with 5 µM calcofluor, and, once set, the plate is ready for the moss. 

To plate our 4 day old protoplasts, which are on cellophane, I cut a piece of cellophane that 

is smaller than the inner plate area. I then flip the cellophane piece over onto the inner part of the 

plate so the protoplasts are directly contacting the media. After a minute, the cellophane is peeled 

off the media so that a majority of the protoplasts are left on the plate. The plants are then ready 

for extended period imaging. 

Another challenge with long term imaging is keeping the plants illuminated so that they 

continue to grow while under the microscope. Our experiments showed that the bright field lamp 

on the microscope was not sufficient enough for the plants to grow. The incubator that we use to 

culture our moss illuminates the plants with a little over 100 micro mol/cm2; so I need to achieve 

this on the microscope. To do this, I use an external lamp that illuminates the plate from the side 

with a little over 100 micro mol/cm2. Our set up can be seen in Figure 8. 

During imaging I use an autofocus algorithm to ensure that the plants are always in focus 

over the course of acquisition and try to only image plants near the outter ring to decrease the 

chance of the plants drying out. I also set up the exposure of the ultraviolet light, used to fluorese 
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the calcofluor, to be very low (100ms) and only on while the camera is taking a picture to 

prevent damage to the plants. 

2.4 Generating a Database of Simulated Plants 

In order to analyze the quality of our quantitative metrics for differentiating mutations in 

plant growth, I first needed a large set of plants with different types of mutations. The most 

logical solution was to generate simulated plants for which we know all of the parameters. To do 

this, I used the moss growth simulator developed by the WPI Physics department, as seen in 

Figure 5 and noted in Section 1.5. Although the default parameters for the simulator are 

experimentally obtained data, I can change these parameters to create mutants. The four main 

parameters, relating to plant morphology, that I explored are cell length, cell width, curving 

angle, and branching angle. 

Figure 8: Microscope setup with external lamp for long term imaging. 
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I created a database of 2,401 simulated plant populations of 100 plants by using all 

combinations of 7 values for cell length (20, 40, 60, 80, 100, 120, and 140 percent of 

experimental), 7 values for cell width (40, 60, 80, 100, 120, 140, and 160 percent of 

experimental), 7 values for curving angle (1, 15, 30, 45, 60, 75, and 90 degrees), and 7 values for 

branching angle (0, 15, 30, 45, 60, 75, and 90 degrees). The datasets were created using a batch 

file (see Appendix 1) that would run the growth simulator, which is written in Java, with the 

different combinations of parameters. 

The simulator also has parameters for length, curving angle, and branching angle standard 

deviations. I kept the curving angle and branching angle standard deviations the same as for 

experimental, but I changed the length standard deviation to be a set percentage of around 31% 

of the length parameter, determined from the experimental data. This was done in order to keep 

the variation of the length of the plant cells within a plant realistic. 

For the purpose of the research I only look at 3 day old simulated plants, since the growth 

simulator has been shown to match the experimental plants, based on the morphological assay, 

for 3 day old plants. 
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3 Results 

3.1 Extended Time-Series Imaging 

Using the methodology outlined in Sections 2.1-2.3, I was successfully able to capture 

time series images of moss growth. In addition, by using a microscope equipped with an 

automated stage and focus, I was able to image multiple plants at a time and take z-stacks, which 

could be used to create three dimensional reconstructions of the plants.  

Figure 9 shows images from a representative time-series; these images were collected 

during a 48 hour acquisition span, with images being taken every thirty minutes. The plants 

growing under the microscope seemed to grow faster than plants left in the incubator, although 

establishing if this is a consistent observation will require additional experiments and 

measurements, to be able to accurately compare the size of plants on the microscope and plants 

from the incubator. A possible explanation for this observation is that the plants under the 

microscope have increased light exposure, in particular because they do not experience the 

light/dark cycle of the plants in the incubator.  

Importantly, it does not appear that the moss plants suffer from any negative effects from 

our imaging methodology. This is important because the plants are under constant exposure to 

calcofluor and exposed at regular intervals to near UV radiation used for imaging. As seen in 

Figure 9, the calcofluor is a good marker for the internal area of the plants, since it clearly 

highlights the cell walls. It is even possible to visualize the cell wall forming during polarized 

growth and during cell division. Unfortunately, it appears that the dye becomes less bright over 

time, which can make the plants harder to distinguish from the background at later time points. 
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This fading is most likely caused by photo bleaching of the calcofluor and its slow exchange 

rate, since all of the media surrounding the plant contains the dye. 

This methodology that I developed is important because it allows individual plant samples 

to be studied for an extended period of time while they grow. This is a significant improvement 

Figure 9: Selected frames from 48 hour time series of moss growth. 
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because previously, in the laboratory only populations of plants could be studied, by taking out 

the cultures from the incubator, imaging them, then putting them back in the incubator.  

3.2 Three Dimensional Reconstructions 

Using optical sectioning (z-stacks) it is possible to collect volume and depth information 

that is not available with regular two dimensional imaging. As part of this project, I was able to 

use the Apotome function of the epifluorescence microscope, combined with three dimensional 

rendering software to create three dimensional reconstructions of moss protonemata. A sample of 

one of these reconstructions is seen in Figure 10. This new information includes plant growth 

Figure 10: Three dimensional reconstruction of moss plant using calcofluor and z-stacks. The images were collected using a Zeiss 

ApoTome microscope attachment, which allows for only in-focused light to be captured. The reconstruction was then made using the Zeiss 

built-in three dimensional rendering software. 
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behavior towards or away from the light source and how the plant interacts with itself during 

growth. Three dimensional reconstructions are important because they collect information that 

may be lost in overlapping that can occur in two dimensional projections. Unfortunately, I did 

not have enough time to optimize imaging conditions to obtain reliable three dimensional images 

over time. In addition, the Apotome function was not present in the microscope with the 

automatic stage, although deconvolution algorithms may be useful to remove out of focus light 

as an alternative to the Apotome. 

3.3 Morphology Assay Analysis 

Using the large database created with the conditions outlined in Section 2.4, I tested the 

effectiveness of the morphological assay described in Section 1.3. My initial goal was to evaluate 

the metrics from the growth assay; hence, I applied these metrics on the simulated plants to 

determine if they are good at differentiating moss populations with different growth parameters. 

If the metrics are adequate at differentiating plant populations resulting from changes in 

parameters, then, when plotted by metrics, we should see plants from a population of parameters 

clustered together and away from other populations.  Figure 11 shows this kind of plot of area vs. 

solidity for different changes in the parameter for cell length (Code to generate this is seen in 

Appendix 3).  To demonstrate how well separated the clusters are, I superimposed the 95% 

confidence regions for each population on Figure 11 (seen in Appendix 2). The figure in 

Appendix 2 shows that the 95% confidence regions highly overlap which means the populations 

are not statistically separated and therefore we cannot detect differences of any less than a large 

percentage for cell length. 
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To be useful, metrics should show a significant trend for changes in a parameter; hence, I 

wanted to explore the existence of these trends in the available metrics. To help visualize the 

existence of these trends, I plotted box graphs for the metrics for different values of the 

parameters. One of the box graphs for cell length parameter is shown in Figure 12. As a first 

approximation, I use these plots to determine which metrics are not useful (do not show a trend 

with changes in the parameter) and to more accurately see how big a difference we can detect for 

the metrics. These box graphs also give us a better idea of the amount of variation there is within 

a population. From the box plot in Figure 12, we learn that eccentricity does not show a trend, 

fractal dimension has a weak trend, and that the other three metrics (area, solidity, and 

circularity) have stonger trends. 

Figure 11: Populations with varied cell length plotted against evaluation metrics. The large diamonds show the means of the plant 

populations. 
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 The next way that I tested the metrics was to look at how they varied with changes in 

two parameters at time. To do this, I generated two dimensional heat maps of the metrics’ mean 

values for populations that vary based on two different parameters. These maps for cell length 

and width can be seen in Figure 13. The goal was to be able to visualize different trends for each 

metric in the set when changing two parameters at a time. For example, in Figure 13, we see that 

Figure 12: Box chart to visualize trends in metrics against on parameter. 
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eccentricity does not show any trend for day 3 plants with varying cell length and width, which 

suggests that this metric may not be useful. I also noticed that solidity, circularity, and fractal 

dimension all show the same general trend for this scenario, which probably means we are 

collecting redundant information. 

As a first approximation to statistically test if the metrics can differentiate populations of 

two parameter variation, I generated T-test heat maps. In these maps, I compare the metric values 

for each population against the wild type to see if they are statistically different, with at least 

95% confidence. One of these sets of t-test heat maps can be see in Figure 14. In this figure, I 

color the wild type population with green and highlight the populations that are not statistically 

different from the wild type in yellow. A  good metric would have no yellow because that means 

that the wild type is statistically different from all the other tested populations. So looking at 

Figure 14, we see that eccentricity is not useful in differentiating cell length and width variations 

of day 3 moss.  We also learn from this figure that, even if the heatmap shows a trend, that does 

not mean that we can differentiate every population when varying two parameters at time. For 

example, if both length and width increase or both decrease, fractal dimension may remain the 

same, as supported by the diagonal yellow trend. 



 

23 

 

 

Figure 13: Two parameter heat Maps for cell length and width. 
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Figure 14: Two parameter T-test heat maps. Green represents the wild type and yellow means that the population is not statistically different from the 

wild type based on the metric. 
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Once I determined that some of our metrics did not provide information in differentiating 

populations with certain parameter variations, I wanted to determine which metrics provide 

information, and for which sets of parameters, in an automated way. In order to do this, I 

correlated every parameter vs. parameter heatmap for each metric with itself rotated by 180 

degrees, as demonstrated in Figure 15. If there is a clear gradient in the heatmap, then the 

correlation operation should result in a value near negative one, since we are merely correlating 

with the gradient in the reverse direction. However, if the metric does not show a trend, such as 

the eccentricity heatmap shown in Figure 13, then, when we perform the rotational correlation, 

we will get a value near zero. I call this value for any given heatmap correlated with itself rotated 

by 180 degrees its rotational correlation (RC) value. The rotational correlation values for every 

Image with trend 

Image without trend 

Rotated 180 Degrees 

Rotated 180 Degrees 

Correlated 

with 

Negative 

Correlation 

Value near -1 

Correlation 

Value near 

Zero 

Correlated 

with 

Figure 15: Example showing how Rotational Correlation is used to determine usefulness of a metric. 
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heatmap can be seen in Appendix 4. This test confirmed to us that mathematically eccentricity is 

not useful at all in differentiating any of the parameters. 

After I found out which metrics are useful for which pairs of parameters, I wanted to find 

out which metric pairs are not redundant (show different trends). In order to do this, I calculated 

the average direction of increase for the heat maps by finding the average gradient. Then, for 

every metric pair, I calculated the angle between the average directional lines of the heat maps. If 

the angle is near zero, then the metrics show the same trend and are redundant. However, if the 

angle is near 90 degrees, then the metrics show different trends and together provide more 

information. A demonstration of how this works is shown in Figure 16. This calculation allowed 

θ 

Angle 

near 90˚ 

Heat map 2 

Heat map 1 Heat map 2 

θ 

Angle 

near 0˚ 

Heat map 1 

Normalized 

Gradient 

Vector 

Non Redundant Heat maps: 

Redundant Heat maps: 

Figure 16: Example showing how the redundancy of heat maps can be assessed using angle between normalized 

direction vectors. 
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me to remove all of the metrics pairs that did not provide addition information. Supported by 

Figure 13, we see in Appendix 4 that for length and width, solidity, circularity, and fractal 

dimension are all redundant (small angle) to eachother. Finally, I highlighted all the metric pairs 

that showed useful and non-redundant trends in green in Appendix 4 and listed the useful and 

non-redundant metrics pairs with respect to specific parameter pairs in Figure 17. These selected 

metrics pairs could be useful in differentiating moss populations. 

Parameter Pair Useful and Non-Redundant Metric Pairs 

length_branch  area_solidity 

length_branch  area_fractal_dimension 

length_branch  area_circularity  

length_curve  area_circularity 

curve_branch  area_circularity 

length_curve  area_solidity                   

length_curve  area_fractal_dimension          

length_curve  solidity_fractal_dimension      

curve_branch  area_fractal_dimension          

length_width               area_circularity 

length_width  area_solidity                   

width_curve  area_fractal_dimension 

length_width  area_fractal_dimension 
Figure 17: Table listing statistically useful and non-redundant metric pairs with respect to specific parameter pairs 

The early work on scatter plots, box graphs, and heat maps led to the rotational correlation 

and the angle between heat maps analyses. These analyses showed that we have more 

information on some parameters and very little on others. Looking at the table in Figure 17, we 

see that we do not have many non-redundant metric pairs for any given pair of parameters. For 

example, for the parameters length and branch we have three non-redundant metric pairs. 

However, we learned that solidity, circularity, and fractal dimension are redundant metrics with 

respect to length and branch, and therefore we actually only have one useful set for these 
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parameters. So, we need to find new metrics since we do not have sufficient information on 

certain parameter combinations. 

3.4 Plant Structure Prediction 

My ultimate goal is to be able to predict the structure of a plant just using metrics that can 

be obtained automatically. I do not believe that this can be achieved using a global model, one 

that has a single set formula, because moss growth is not completely deterministic. So, I needed 

to use a local model, one where the ‘formula’ changes based on the inputs. The model I chose 

was a K-nearest neighbors (KNN) model.  K-nearest neighbors work by finding the k closest 

training set data points to the experimental data point. The classification of all the selected 

training set data points are averaged to give a prediction for the experimental point. My model 

postulates that the structure of an experimental plant will be similar to plants that have similar 

metric values. First, I trained the model (ExhaustiveSearcher in MATLAB) with means of the 

metrics of the 2,401 populations, discussed in Section 2.4, to get one data point per population. 

Then, when testing an experimental plant, I first calculated its metrics and found the k (a 

constant) closest data sets to that plant by its metrics (using knnsearch in MATLAB). I then 

averaged the structures of those data sets to get a prediction of the structure of the experimental 

plants (see code in Appendix 5). An example of this model with k=3 is shown in Figure 18. 
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In order to test how well the model works using our current metrics, I ran the model using 

all 100 plants of the wild type simulation population. If my model is accurate given the current 

set of metrics, I would expect that for each of the plants the output would be the wild type or at 

least that the mean of the output would be the wild type. When I used this testing procedure, I 

obtained an error of around 20% for each of the four parameters. I expected a large error rate 

because I have shown that the metric set is not currently very useful. More troubling is the fact 

that the error is essentially compounded four times, once for every parameter, making the 

prediction as a whole worse than 20%. Even after trying the model using different formulas for 

calculating the distances between neighbors, there was little improvement on the accuracy. 

Figure 18: Visualization of k-nearest neighbors for k=3 in the data cloud. 
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Although I did not end up testing it, the model may perform better if eccentricity is removed 

since, as I have shown in Section 3.3, that metric is useless. 
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4 Discussion 

This project had two distinctly different sub-problems, an extended time imaging 

problem and a computational morphological assay problem. The goal of the first sub-problem 

was to create a method for imaging the growth of moss in three dimensions over time. I was 

successfully able to achieve this goal. The goal of the second sub-problem was to evaluate the 

effectiveness of our morphological assay and to explore how it could be used to predict 

experimentally determined plant morphology. 

4.1 Time-Lapse Three-Dimensional Imaging of Moss Protonemata 

In the majority of previous publications, only two dimensional imaging methods of moss 

protonemata have been used (Doonan et al., 1988; Vidali and Bezanilla, 2012; Bibeau et al., 

2014; Ding et al., 2014). Having the ability to look at the third dimension allows questions to be 

answered that would not be easy to answer with two dimensional methods. For example, in two 

dimensional images, we cannot resolve the depth information in overlaps of plant branches. 

Furthermore, the capacity to image for an extended period of time provides temporal 

information, which is necessary to develop models that accurately represent growth. 

The capacity to continuously image protonemata, will allow us to learn more about moss 

growth, including information such as how protonemata grow towards or away from light and 

how protonemal filaments interact between themselves. For example, we can now determine if 

there is a threshold of light intensity when the plants stop growing towards the light and start 

growing away from it, which may help determine the amount of light intensity for optimal 

growth. This may be complicated by the blue light used to image the plant, but because imaging 
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only takes place every 15 or 30 minutes, the imaging light dosage can be minimized to avoid any 

effect on growth. Nevertheless, work still needs to be done on how to handle the fact that 

calcofluor dye fades over time; for example, increased camera sensitivity and reduced exposure 

times should improve the dye bleaching problem. 

It is important that we now have the capability to study additional questions, such as if 

the moss plant branches actively try to avoid each other or if they will grow into each other. This 

may provide valuable information on mechanisms used by the plant to achieve better light 

absorption. Future work can also be done with regard to mutation characterization. For example, 

mutations that interfere with plant growth can be studied continuously in three dimensions. This 

will provide information about how such mutations may change plant structure during growth, 

which could include changes in cell length, cell width, curving angle, branching angle, cell 

division patterns, and self-avoidance.  

The methodology described in this work could be applied to other simple plants, and the 

knowledge derived may be valuable to understand more complex crop plants.  This knowledge 

should help us find conditions as well as cellular and molecular mechanisms that are favorable to 

plant growth. This new methodology provides researchers with another tool to enhance their 

work in plant growth, thus, in the long term, aiding the movement toward agricultural 

sustainability. 

4.2 Exploring the Parameter Space of a Computational Model of Protonemal Growth 

Prior to this work, we did not know how useful our morphological assay was at 

quantifying moss plants. As such, I needed to develop methods and techniques to properly 

evaluate effectiveness of the metrics. In order to do this, I started by looking at scatter plots, box 
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graphs and heat maps to look for trends in the following metrics: area, solidity, circularity, 

eccentricity, and fractal dimension. I quickly learned that I would need a better method to 

quantify the usefulness of the metrics. I then developed the rotational correlation analysis using 

the same metrics to determine which metrics showed trends and which metrics did not show 

trends. The result of this rotational correlation analysis showed that eccentricity was not 

predictive. I then developed the angle between heat maps analysis and found that some of the 

other metrics were redundant, as supported by Appendix 4. Overall, our various analyses showed 

that the morphological assay does not capture information sufficient enough to differentiate 

changes in plant structure. As such, a better set of metrics needs to be found. I think a possible 

source of additional metrics can be found based on graph theory to help quantify the structure of 

a moss plant. For these metrics to work, each pixel of the plant could be considered to be a node. 

Possible graph theory metrics could include graph interconnectivity and node degree (Lund et 

al., 2009). 

Although we know that with our current set of metrics we cannot accurately detect the 

level of differences when a single parameter is changed, we may be able to tell if two 

populations are different with 95% confidence using the T-test method that was described in 

Section 3.3. This would work best using the metric pairs which are highlighted in green in 

Appendix 4 because I have determined that these pairs show non-redundant trends. This method 

could then be used to experimentally screen if a mutant plant or a different moss strain is 

different morphologically, not how it is different, suggesting that deeper analysis needs to be 

performed.  
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In an attempt to predict experimental plant morphology, I developed a K-nearest 

neighbors model, as described in Section 3.4. My study showed that this model is not currently 

able to predict growth parameters based on our current metrics, since the metrics do not provide 

enough distinguishing information. Therefore, further work needs to be done to create a stronger 

predictive model. For a predictive model to be useful, a few improvements need to be made to 

bring the accuracy up to a reasonable level (see suggestions above on improving metrics). In 

general, having additional and better metrics can improve the performance of the prediction of 

the model. I anticipate that, once we have a good set of metrics, we can produce good estimates 

for the structure of experimental plants using this model. Also, we cannot be certain about the 

testing of the accuracy of the model. This is because it is possible that some of the simulated 

plants are mislabeled, as belonging to the wrong population, since the moss growth simulator 

allows some variation. Therefore, mislabeling of training data is likely to cause lower than 

expected accuracy for the model. 

To improve our KNN model, it would help to sharpen the data points used to train the 

model. The plants in each population have variation and, to reduce the effect of this variation on 

the data point generated from it, we could increase the number of plants in the population or 

decrease the amount of allowed variation in each plant. Another issue I discovered that can affect 

the predictive power of the KNN approach is that moss of the same population can have a 

different number of starting bulbs. The moss grows from these bulbs and plants with more 

starting bulbs grow more despite being from the same population. I think that it would help to 

separate the populations into different data points based on the number of starting bulbs. 
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It is relevant to mention that both the morphological assay and the KNN model do not 

require any human input, which means that we can use it to quickly screen thousands of different 

plants with different mutations to find mutant plants and also learn more about these mutations. I 

believe that using our three dimensional extended time microscopy method in conjunction with 

our KNN prediction model, with the mentioned improvements to the model and metrics, we will 

be able to conduct accurate and fast screening of experimental moss plant populations. We then 

may be able to find genetic variations that lead to favorable plant growth. 
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Appendix 

Appendix 1: Batch file to generate the simulated plant populations. 

01 setlocal enableDelayedExpansion 

02  

03 FOR %%A IN (20 40 60 80 100 120 140) DO ( 

04   for /f %%b in ('cscript //nologo eval.vbs %%A 0.71835') do (set 

"len=%%b") rem Multiply Length percentage by experimental  

05   for /f %%b in ('cscript //nologo eval.vbs !len! 0.308') do (set 

"lenstd=%%b") rem Keep the length standard deviation as 31% of length 

06   FOR %%B IN (40 60 80 100 120 140 160) DO ( 

07       for /f %%b in ('cscript //nologo eval.vbs %%B 0.1006') do (set 

"wid=%%b") rem Multiply Length percentage by experimental  

08       FOR %%C IN (1 15 30 45 60 75 90) DO ( 

09           for /f %%b in ('cscript //nologo eval2.vbs %%C') do (set 

"cur=%%b") rem Multiply Curving percentage by experimental 

10           FOR %%D IN (0 15 30 45 60 75 90) DO ( 

11               for /f %%b in ('cscript //nologo eval.vbs %%D 1.0') do (set 

"bra=%%b") rem Multiply Branching percentage by experimental 

12               rem Run the simulation with the new parameters 

13               java -jar mossgrowth2.jar 1200 1200 4 100 !len! !lenstd! 

!wid! 0.0 !cur! !bra! 16.617 1.2 0 0 24.546 0.0 0.9 

length%%Awidth%%Bcurve%%Cbranch%%D 

14           ) 

15       ) 

16   ) 

17 ) 

18 pause 
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Appendix 2: Figure 11 with 95% confidence intervals for each population superimposed. 
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Appendix 3: Code for plotting two metrics against each other with one parameter and plotting with PCA. 

01 %Generate figure showing solidity vs area colored by length 
02 figure 
03 para='length' 
04 for j=20:10:121 
05     data=load(strcat(para,int2str(j))); 
06     col=[(j-20)/100,1-(j-20)/100,1]; 
07     scatter(data.results(4,:,1),(data.results(4,:,2)),10,col,'filled') 
08     hold on 
09 end 
10 xlabel('area'); 
11 ylabel('solidity'); 
12 legend(strread(num2str(20:10:121),'%s'),'Location','northeast') 
13 title(para) 
14 %Plot means of each population 
15 for j=20:10:121 
16     data=load(strcat(para,int2str(j))); 
17     col=[(j-20)/100,1-(j-20)/100,1]; 
18     

s=scatter(mean(data.results(4,:,1)),mean((data.results(4,:,2))),40,col,'d','filled'); 
19     s.MarkerEdgeColor = [0 0 0]; 
20     hold on 
21 end 
22  
23 %Generate figure showing first two principal components colored by length 
24 figure 
25 para='length' 
26 points=[]; 
27 %Get all data points from all populations 
28 for j=20:10:121 
29     data=load(strcat(para,int2str(j))); 
30     points=cat(2,points,data.results(4,:,:)); 
31 end 
32 points=squeeze(points); 
33 %Perform pca on all points 
34 [coeff,score,latent,tsquared,explained,mu] = pca(points); 
35 count=0; 
36 for j=20:10:121 
37     col=[(j-20)/100,1-(j-20)/100,1]; 
38     

scatter(score(count*50+1:count*50+50,1),score(count*50+1:count*50+50,2),10,col,'filled

') 
39     hold on 
40     count=count+1; 
41 end 
42 xlabel('1st PC'); 
43 ylabel('2nd PC'); 
44 legend(strread(num2str(20:10:121 + '%'),'%s'),'Location','southwest') 
45 title(para) 
46 %Plot means of each population 
47 count=0; 
48 for j=20:10:121 
49     col=[(j-20)/100,1-(j-20)/100,1]; 
50     

s=scatter(mean(score(count*50+1:count*50+50,1)),mean((score(count*50+1:count*50+50,2))

),40,col,'d','filled'); 
51     s.MarkerEdgeColor = [0 0 0]; 
52     hold on 
53     count=count+1; 
54 end  
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Appendix 4: Spreadsheet showing quantification of metric pairs. 
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Appendix 5: Code for KNN model. 

01 %Builds the KNN model 

02 k=20; %Number of neighbors to consider 

03 testpoint=200000; %Point to check accuracy with 

04 data=load(strcat('CondensedData\data.mat')); 

05 data=data.data; 

06 datatofind = data(testpoint,:) 

07 target=load(strcat('CondensedData\target.mat')); 

08 target=target.target; 

09 expectedtarget=target(testpoint,:) 

10 model = ExhaustiveSearcher(data,'Distance','cosine');%Build efficient 

search tree (distance heuristic can be changed) 

11 display('Model Built') 

12 ind = knnsearch(model,datatofind,'K',k);%Find indices of k nearest 

neighbors 

13 knn=target(ind(:),:);%Get values of the neighbors 

14 pred = mean(knn);%Prediction is the mean of the neighbors 

15 

display(strcat('length',int2str(pred(1)),'width',int2str(pred(2)),'curve',int

2str(pred(3)),'branch',int2str(pred(4)))) 

16 RMSE = sqrt(mean((expectedtarget-pred).^2))%Root Mean Squared Error 

17 diff =expectedtarget-pred %Difference 

18 perdiff = (abs(expectedtarget-pred)./expectedtarget)*100 %Percent 

Distance1 
 

 


