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Abstract

With the fast pace of global urbanization and the wide use of smart devices

and GPS sets, there are massive human-generated spatial-temporal data in

the urban environment, e.g., the trajectory data of the human-operated vehi-

cles in the ride-hailing service or traditional taxi service. Human-generated

spatial-temporal data can represent human behavior intrinsically, which en-

able us to understand human behavior in a data-driven fashion. Understand-

ing human behavior can benefit people in many aspects. For example, under-

standing the decision-making process of taxi drivers can help them improve

their operation efficiency, making sense of the behavior of the urban com-

muters can help urban planners better design the urban transportation system.

In this dissertation, we propose and develop several novel machine learn-

ing techniques to help people make sense of the massive human-generated

spatial-temporal data from urban environment.

The ultimate goal of this dissertation is to help bridge the gap between real-

world applications and laboratory researches. In particular, we try to deliver

appropriate machine learning and statistical analysis solution frameworks for

making sense of human-generated spatial-temporal data from urban envi-

ronment in the following four aspects.

1. Human Learning Curve Dissection. Understanding human learning curve

can reward people in different ways, e.g., help the new learners improve their

performance faster. The temporal dynamics of human behavior can reflect the



learning curve of human beings, which makes it possible for us to understand

human learning curve from their behavior data. In this topic, we propose

data-driven approaches to understand what and how human agents learn over

time.

2. Human Behavior Explanation. Recent research demonstrates successes

in learning human decision-making strategies from their behavior data using

deep neural networks (DNNs). Such DNN-based models are “black box”

models in nature, making it hard to explain what knowledge the models have

learned from human. To solve this problem, in this topic of the dissertation,

we propose an explainable imitation learning framework.

3. Human Mobility Signature Identification. Identifying human agents from

their behaviors is a significant task, which is helpful in many real-world ap-

plications, e.g., identifying drivers in ride-hailing service. In this topic, we

propose the human mobility signature identification solution to identify hu-

man agents from their mobility data.

4. Smart Cloud Commuting System. The significant achievements on devel-

oping autonomous vehicles stimulate us to envision the future transportation

system with shared autonomous vehicles. In this topic, we employ the real-

world demand and service data in current taxi system to study the feasibility

of the future smart cloud commuting system.
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1

Overview

1.1 Introduction

According to a report[1] published by the United Nations in 2018, 55% of the world’s

population are urban in 2018. It is said that the proportion is expected to increase to 68%

by 2050[1]. Also, the smart devices and GPS sets are widely used in the urban area,

for example, smart phones, smart watches and the traditional GPS sets. Stimulated by

the large urban population and the wide use of the devices, there exist massive human-

generated spatial-temporal data in the urban environment. For example, the trajectory

data of the vehicles in ride-sharing services, food delivery services, taxi services, etc.

Given the large amount of human-generated spatial-temporal data, a question people ask

is what we can extract from it? In this dissertation, we try to answer this question from

the following 4 different perspectives.

1) Human Learning Curve Dissection. Many real world human behaviors can be

modeled and characterized as sequential decision making processes, such as taxi driver’s

choices of working regions and times. Each driver possesses unique preferences on the

sequential choices over time and improves their working efficiency. Understanding the
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dynamics of such preferences helps accelerate the learning process of taxi drivers. Prior

works on taxi operation management mostly focus on finding optimal driving strategies

or routes, lacking in-depth analysis on what the drivers learned during the process and

how they affect the performance of the driver. In this topic, we make the first attempt

to establish Dynamic Human Preference Analytics (DHPA) [2, 3]. We inversely learn

the taxi drivers’ preferences from data and characterize the dynamics of such preferences

over time. We extract two types of features, i.e., profile features and habit features, to

model the decision space of drivers. Then through inverse reinforcement learning we

learn the preferences of drivers with respect to these features. The results illustrate that

self-improving drivers tend to keep adjusting their preferences to habit features to increase

their earning efficiency, while keeping the preferences to profile features invariant. On the

other hand, experienced drivers have stable preferences over time.

Going beyond figuring out what human agents learn over time, we also study how hu-

man beings learn. Learning to make optimal decisions is a common yet complicated task.

While computer agents can learn to make decisions by running reinforcement learning

(RL), it remains unclear how human beings learn. In another work in this topic, we per-

form the first data-driven case study on taxi drivers to validate whether humans mimic RL

to learn[4]. We categorize drivers into three groups based on their performance trends and

analyze the correlations between human drivers and agents trained using RL. We discover

that drivers that become more efficient at earning over time exhibit similar learning pat-

terns to those of agents, whereas drivers that become less efficient tend to do the opposite.

Our study (1) provides evidence that some human drivers do adapt RL when learning, (2)

enhances the deep understanding of taxi drivers’ learning strategies, (3) offers a guideline

for taxi drivers to improve their earnings, and (4) develops a generic analytical framework

to study and validate human learning strategies.

2) Human Behavior Explanation. To make daily decisions, human agents devise
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their own “strategies” governing their mobility dynamics (e.g., taxi drivers have pre-

ferred working regions and times, and urban commuters have preferred routes and tran-

sit modes). Recent research such as generative adversarial imitation learning (GAIL)

demonstrates successes in learning human decision-making strategies from their behav-

ior data using deep neural networks (DNNs), which can accurately mimic how humans

behave in various scenarios, e.g., playing video games, etc. However, such DNN-based

models are “black box” models in nature, making it hard to explain what knowledge the

models have learned from human, and how the models make such decisions, which was

not addressed in the literature of imitation learning. In this topic of the dissertation, we

address this research gap by proposing xGAIL, the first explainable generative adversar-

ial imitation learning framework [5]. The proposed xGAIL framework consists of two

novel components, including Spatial Activation Maximization (SpatialAM) and Spatial

Randomized Input Sampling Explanation (SpatialRISE), to extract both global and lo-

cal knowledge from a well-trained GAIL model that explains how a human agent makes

decisions. Especially, we take taxi drivers’ passenger-seeking strategy as an example to

validate the effectiveness of the proposed xGAIL framework. Our analysis on a large-

scale real-world taxi trajectory data shows promising results from two aspects: i) global

explainable knowledge of what nearby traffic condition impels a taxi driver to choose a

particular direction to find the next passenger, and ii) local explainable knowledge of what

key (sometimes hidden) factors a taxi driver considers when making a particular decision.

3) Human Mobility Signature Identification. Given the historical movement trajec-

tories of a set of individual human agents (e.g., pedestrians, taxi drivers) and a set of new

trajectories claimed to be generated by a specific agent, the Human Mobility Signature

Identification (HuMID) task aims at validating if the incoming trajectories were indeed

generated by the claimed agent. This problem is important in many real-world applica-

tions such as driver verification in ride-sharing services, risk analysis for auto insurance
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companies, and criminal identification. Prior work on identifying human mobility be-

haviors requires additional data from other sources besides the trajectories, e.g., sensor

readings in the vehicle for driving behavior identification. However, these data might not

be universally available and is costly to obtain. To deal with this challenge, in this topic of

the dissertation, we make the first attempt to match identities of human agents only from

the observed location trajectory data by proposing a novel and efficient framework named

Spatio-temporal Siamese Networks (ST-SiameseNet) [6]. For each human agent, we ex-

tract a set of profile and online features from his/her trajectories. We train ST-SiameseNet

to predict the mobility signature similarity between each pair of agents, where each agent

is represented by his/her trajectories and the extracted features. Experimental results on

a real-world taxi trajectory dataset show that our proposed ST-SiamesNet significantly

outperforms the state-of-the-art techniques.

4) Smart Cloud Commuting System. Emergence of autonomous vehicles (AVs)

offers the potential to fundamentally transform the way how urban transport systems be

designed and deployed, and alter the way we view private car ownership. In this topic,

we advocate a forward-looking, ambitious and disruptive smart cloud commuting system

(SCCS) for future smart cities based on shared AVs. Employing giant pools of AVs of

varying sizes, SCCS seeks to supplant and integrate various modes of transport – most of

personal vehicles, low ridership public buses, and taxis used in today’s private and public

transport systems – in a unified, on-demand fashion, and provides passengers with a fast,

convenient, and low cost transport service for their daily commuting needs. To explore

feasibility and efficiency gains of the proposed SCCS, we model SCCS as a queueing sys-

tem with passengers’ trip demands (as jobs) being served by the AVs (as servers). Using

a 1-year real taxi trip dataset from Shenzhen China, we quantify (i) how design choices,

such as the numbers of depots and AVs, affect the passenger waiting time and vehicle uti-

lization; and (ii) how much efficiency gains (i.e., reducing the number of service vehicles,
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and improving the vehicle utilization) can be obtained by SCCS comparing to the cur-

rent taxi system. Our results demonstrate that the proposed SCCS framework can serve

the trip demands with 22% fewer vehicles and 37% more vehicle utilization, which shed

lights on the design feasibility of future smart transportation systems.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce our

work about Human Learning Curve Dissection, containing the projects of studying what

human agents learn [2, 3], and how they learn [4] over time, via data-driven approaches.

And in Chapter 3, our proposed explainable framework for Human Behavior Explana-

tionis presented [5]. Following in Chapter 4, a Spatial-temporal Siamese network is

designed for Human Mobility Signature Identification[6]. In Chapter 5, we envision the

Smart Cloud Commuting System for future urban transportation with shared autonomous

vehicles, and study the feasibility with the real-world taxi demands data [7, 8, 9]. A

conclusion of this dissertation is drawn in Chapter 6.

For consistency and to allow the reader to easily jump from one topic to another,

we present the detailed research for each topic in a largely self-contained set of sections

following this particular pattern:

• Overview: Includes the introduction, motivation and problem definition of the

project;

• Related work: Reviews the state-of-the-art related works, and clarifies the innova-

tion of our proposed framework.

• Methodology: Introduces the details of the proposed method, including the mathe-

matical foundation, machine learning model, and specific design for each particular
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problem.

• Evaluation: Presents the experimental evaluation of the proposed method, contain-

ing the comparison with the state-of-the-art approaches, and the ground-truth (if

available).

6



2

Human Learning Curve Dissection

2.1 Dynamic Human Preference Analytics Framework

2.1.1 Overview

2.1.1.1 Introduction

Taxi service is a vital part of the transportation systems in large cities. Improving taxi

operation efficiency is a crucial urban management problem, as it helps improve the trans-

portation efficiency of the city and at the same time improves the income of taxi drivers.

In the same city, taxi operation efficiency might differ significantly. Fig. 2.1 shows the

earning efficiency (total amount earned normalized by total working time) of different

taxi drivers in Shenzhen, China. The top drivers earn 3 to 4 times more money than the

bottom drivers.

A major cause of such difference is the difference in working experiences. Fig. 2.2

shows the growth of earning efficiency of new drivers over years1. From March 2014 to

December 2016, the new drivers became more experienced and had much higher earning

1The dataset we have contains the records in March and November of 2014 and July to December of
2016.
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Figure 2.1: The distribu-
tion of earning efficiency in
July 2016

Figure 2.2: The mean
earning efficiency of new
drivers over months

Figure 2.3: The mean earn-
ing efficiency of all drivers
over months

efficiency. During the same time as shown in Fig. 2.3, there is no obvious change to the

local economy or market, since the average earning efficiency of all the drivers are pretty

stable. This shows that drivers are trying to improve their own strategies of looking for

passengers based on their increasing knowledge of the city.

However, each driver might learn different knowledge during the learning process,

which in turn developed different preferences, when making decisions. For instance,

some drivers tend to look for passengers around regions near their homes, and some

others might prefer to take passengers from city hubs, e.g., train stations, airport. These

preferences might be unique to individual drivers and ultimately lead to differences in

earning efficiency. Fig. 2.2 shows that the ”smart” drivers (in blue) improve their earning

efficiency faster than “average” drivers and reach a higher level of earning efficiency

eventually. Finding what adaptation strategies these “smart” drivers carry could help us

understand the learning process of successful drivers and therefore help new drivers to

become more successful.

The passenger-seeking behavior of taxi drivers can be modeled as a Markov Decision

Process (MDP). Prior work on taxi operation management focused on recommending

the optimal policy or routes to maximize the chance of finding passengers or making

profit [10, 11, 12, 13]. However, these works only studied how to find the “best” strategies

based on data, rather than fundamentally understanding how the drivers learned these
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strategies over time.

In this work, we make the first attempt to establish Dynamic Human Preference An-

alytics (DHPA). We inversely learn the taxi drivers’ decision-making preferences, which

lead to their choices while looking for passengers. We also study how these preferences

evolve over time and how they help improve the earning efficiency. The results shed

lights on “how” the successful drivers became successful, and suggests “smarter” action-

able strategies to improve taxi drivers’ performances. Our main contributions are as

follows:

(1) We are the first to employ Inverse Reinforcement Learning to infer the taxi drivers’

preferences based on a Markov Decision Process model.

(2) We extract various kinds of interpretable features to represent the potential factors that

affect the decisions of taxi drivers.

(3) We infer and analyze the preference dynamics of 3 groups of taxi drivers, i.e, the self-

improving drivers, the stabilized drivers and the exploring drivers.

(4) We analyze the preference trend of different groups of taxi drivers.

(5) We conduct experiments with taxi trajectories from more than 17k drivers over dif-

ferent time spans. The results verify that each driver has unique preferences to various

profile and habit features. The preferences to profile features tend to be stable over time,

and the preferences on habit features change over time, which leads to higher earning

efficiency.

2.1.1.2 Motivation

It is a common perception that new drivers gradually learn how to make smart choices as

time goes and can improve their working efficiency over time. We verify this perception

through data analysis. In Fig. 2.2, the average earning efficiency of new drivers who

9
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Figure 2.4: The mean earning efficiency of experienced drivers over months in 2016

joined in March 2014 increased by up to 100% in 2 years, while in Fig. 2.4, the same

measure of experienced drivers in 2016 did not change much. This can be explained by

the fact that experienced drivers have learned enough knowledge to make nearly-optimal

decisions.

We further noticed that drivers have very different learning curves, which affects ul-

timately how much earning improvements they can achieve. As previously mentioned,

in Fig. 2.2, the two colors represent two sub-groups of new drivers who joined in March

2014. One group (in blue) are those who became “top” drivers after 2 years with higher

earning efficiency, and the other (gray) are the rest of the drivers. Apparently the former

had learned more useful knowledge that contributed to their earning improvement.

Little is known about what specific knowledge the drivers learned, and which pieces

are contributing the most to the earning improvement. Answering these questions would

potentially guide and train new drivers to become a quick learner.

We consider such “knowledge” as a series of preferences of a driver when making each

decision, such as “how frequent to visit the train station”, “how far away from home to

go when seeking passengers”. Specifically, we extract features from the data to represent

such decisions a taxi driver might face while working. To achieve the aforementioned

goal, in this study we aim to answer two questions: (1) how to recover the preferences of

taxi drivers when making these choices, and (2) how these preferences change over time

for different groups of drivers.

10
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Figure 2.5: Shenzhen road map Figure 2.6: Map gridding

Problem Definition. In a time interval T0 i.e., 1 month, given a taxi driver’s trajec-

tory data T̃, and k environmental features [f0, f1, ..., fk], that influence drivers’ decision-

making process over time, we aim to learn the driver’s preference θ = [θ0, θ1, ..., θk],

i.e., weights to features when the driver makes decisions. Secondly, for a long time hori-

zon, with multiple time intervals [T0, T1, ..., Tm], we analyze the evolution pattern of the

driver’s preferences over time.

2.1.1.3 Data Description

Our analytical framework takes two urban data sources as input, including (1) taxi trajec-

tory data and (2) road map data. For consistency, both datasets are collected in Shenzhen,

China in 2014 and 2016.

The taxi trajectory data contain GPS records collected from taxis in Shenzhen,

China during March and November in 2014, and July to December in 2016. There were

in total 17, 877 taxis equipped with GPS sets, where each GPS set generates a GPS point

every 40 seconds on average. Overall, a total of 51,485,760 GPS records are collected on

each day, and each record contains five key data fields, including taxi ID, time stamp, pas-

senger indicator, latitude and longitude. The passenger indicator field is a binary value,

indicating if a passenger is aboard or not.

The Road map data of Shenzhen covers the area defined between 22.44◦ to 22.87◦ in

latitude and 113.75◦ to 114.63◦ in longitude. The data is from OpenStreetMap [14] and
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has 21,000 roads of six levels. Fig.2.5 shows the road map in Shenzhen.

2.1.2 Related Work

Taxi operating strategies (e.g., dispatching, passenger seeking), and driver behavior anal-

ysis have been extensively studied in recent years due to the emergence of the ride-sharing

business model and urban intelligence. However, to the best of our knowledge, we make

the first attempt to employ inverse reinforcement learning to analyze the preference dy-

namics of taxi drivers. Related works to our study are summarized below.

Urban Computing, transportation and geo-informatics are general research areas which

integrate urban sensing, data management and data analytic together as a unified process

to explore, analyze and solve crucial problems related to people’s everyday life [13, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. In particular, a number of work study taxi

operation management, such as dispatching [27, 28] and passenger seeking [10, 11, 29],

aiming at finding an optimal actionable solution to improve the performance/revenue of

individual taxi drivers or the entire fleet.

[12] solved the passenger seeking problem by giving direction recommendations to

drivers. However, all of these works focus on finding “what” are the best driving strategies

(as an optimization problem), rather than finding “why” and “how” good drivers make

these decisions. By contrast, our work focuses on analyzing the evolving preferences of

good drivers, that helped them to make better and more profitable decisions.

Inverse Reinforcement Learning(IRL) aims to recover the reward function under which

the expert’s policy is optimal from the observed trajectories of an expert. There are var-

ious of IRL methods, for example, [30] found that there are a class of reward functions

that can lead to the same optimal policy, and it proposed a strategy to select a reward

function. However, this method is not proper to analyze human behaviors because it uses

the deterministic policy in the Markov Decision Process while human decisions tend to
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Figure 2.7: DHPA Framework

be non-deterministic. And [31] proposed a IRL method by maximizing the entropy of the

distribution on state-actions under the learned policy. Although this method can employ

stochastic policy, the computation efficiency is not friendly to large scale state space, and

it requires the information of the model. In this work, we employ Relative Entropy IRL

[32] which is model-free and employs softmax policy. Our work, compared to the above

related work, is the first to apply IRL to study the evolving driving preferences of taxi

drivers.

2.1.3 Methodology

Fig. 3.2 outlines our Dynamics Human Preference Analytics (DHPA) framework, which

takes two sources of urban data as inputs and contains three key analytical stages: (1) data

preprocessing, (2) inverse preference learning and (3) preference dynamic analysis.

2.1.3.1 Data Preprocessing

Map and Time Quantization. We use a standard quantization trick to reduce the size of

the location space. Specifically, we divide the study area into equally-sized grid cells with

a given side-length s in latitude and longitude. Our method has two advantages: (i) we
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have the flexibility to adjust the side-length to achieve different granularities, and (ii) it is

easy to implement and highly scalable in practice [15, 33]. Fig. 2.6 shows the actual grid

in Shenzhen, China with a side-length l = 0.01◦ in latitude and longitude. Eliminating

cells in the ocean, those unreachable from the city, and other irrelevant cells gives a total

of 1158 valid cells.

We divide each day into five-minute intervals for a total of 288 intervals per day. A

spatio-temporal region r is a pair of a grid cell s and a time interval t . The trajectories of

drivers then can be mapped to sequences of spatio-temporal regions.

Feature Extraction. Taxi drivers make hundreds of decisions throughout their work

shifts (e.g., where to find the next passenger, and when to start and finish working in a

day). When making a decision, they instinctively evaluate multiple factors (i.e., features)

related to their current states and the environment (i.e., the current spatio-temporal re-

gion). For example, after dropping off a passenger, a driver may choose to go back to an

area that she is more familiar with, or a nearby transport station, e.g., airport, train station.

Here, we extract key features the drivers use to make their decisions.

Note in our framework, each feature is defined as a numeric characteristic of a specific

spatio-temporal region, which may or may not change from driver to driver. For example,

let fr represent the average number of taxi pickups in history in location s during time

slot t. Apparently the value of feature fr is the same for every driver. However, another

feature gr at r could be the distance from s to the home of the driver. The value of

this feature varies from driver to driver, depending on their home locations. However, it

does not change over time. The features we extract can be roughly categorized by profile

features and habit features, as detailed below.

Profile Features. Each driver has unique personal (or profile) characteristics, such as

home location, daily working schedule (time duration), and preferred geographic area.

For each spatio-temporal region, we build the profile features. Here, we extract 4 profile
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Figure 2.8: P1:
Number of visits

Figure 2.9: H1:
Number of pickups

Figure 2.10: H2:
Mean trip distance

Figure 2.11: H3:
Mean trip time

features:

P1: Visitation Frequency. This group of features represents the numbers of daily visits

to different regions of a driver as extracted from the historical data. Fig. 2.8 shows the

distribution of visitation frequency to different regions of an arbitrarily chosen driver.

Here, visitation frequencies vary significantly across regions.

P2: Distance to Home. Each taxi driver has a home location, which can be extracted from

their GPS records. This feature characterizes the distance (in miles on the road network)

from the current location to the driver’s home location. Different drivers may have differ-

ent preferences in working close to their homes or not.

P3 & P4: Time from Start & Time to Finish. Taxi drivers typically work according to con-

sistent starting and finishing times. We construct two features to characterize the differ-

ences of the current time from the regular starting and finishing time.

Habit Features. These represent the habits of the drivers, which are typically governed

by experience (e.g., remaining near the train station instead of traveling around to find

passengers). We extract 6 habit features. H1: Number of pickups. This feature charac-

terizes the demands in a cell during a time interval, and is extracted and estimated using

the historical trajectories from all drivers. The distribution on the numbers of pickups is

shown in Fig. 2.9.

H2 & H3: Average Trip Distance & Time. These features represent the average distance

and the travel time of passenger trips starting from a particular spatio-temporal region.
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Different spatio-temporal regions can have different expected trip distances and travel

time. For example, the passengers picked up near the airport probably have longer trip

distances than the passengers picked up near the train station since the airport is farther

away from the downtown area than the train station. A driver’s preferences to these fea-

tures characterize to what extent the driver prefers long versus short distance trips and

how well the driver learns the knowledge on the lengths of trips over the spatio-temporal

regions.

The distribution of these features across spatio-temporal regions are showed in Fig. 2.10

and Fig. 2.11, respectively.

H4: Traffic Condition. This feature captures the average traffic condition based on the

time spent by a driver in each spatio-temporal region. A long travel time implies traffic

congestion. The preference of drivers over this feature represents how much drivers would

like avoid the traffic.

H5 & H6: Distance to Train Station & Airport. These features reflect the distances from

the current cell to Shenzhen train station and airport, respectively.

Driver Selection. Different drivers have different earning efficiencies as shown in

Fig. 2.1. Below, we describe the criteria we use to select drivers.

We estimate the earning efficiency of each driver in different time periods from their

historical data. The estimated earnings E of a driver in the whole sampling span (e.g., per

month) is calculated from the distance do that the taxi is occupied with passenger. The

factors we take into consideration include the taxi fare in Shenzhen in 2014 and 2016 and

the expense for the gas. And the taxi fare is 11 CNY for the first 2 km, and the charges

for each additional kilometer is 2.4 CNY. The estimated expense for gas is 0.5 CNY per
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kilometer. The calculation of E is as following.

E =

 11− 0.5 ∗ do if do < 2

11 + (do − 2) ∗ 2.4− 0.5 ∗ do else.
(2.1)

Note that our model is easy to extend to other definitions of ”earnings”. Given the data we

have, and without losing much accuracy of calculated earnings in terms of representing

the driver’s profits, we employ Equation 2.1 to estimate the earning of each driver.

The earning efficiency re is defined as the average per hour income (i.e., in eq.2.17).

re =
E

tw
, (2.2)

where E is the income in the whole sampling time span, span (e.g., per month), and tw

represents the driver’s working time.

Driver selection criterion: We select drivers with the highest earnings, because the pref-

erence learning algorithms require the input data to be generated by the converged policy

(see more details in Sec 2.1.3.2). We note that drivers with high earning efficiencies are

likely the most experienced (i.e., they use converged policies to make decisions).

2.1.3.2 Inverse Preference Learning

This section explains our inverse learning algorithm for extracting drivers’ decision-

making process. We use a Markov Decision Process (MDP) to model drivers’ sequential

decision-making and relative entropy inverse reinforcement learning (REIRL) to learn

their decision-making preferences.

Markov Decision Process.

A Markov Decision Process(MDP) [34] is defined by a 5-tuple 〈S,A, T, γ, µ0, R〉 so

that
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• S is a finite set of states and A is a finite set of actions,

• T is the probabilistic transition function with T (s′|s, a) as the probability of arriving

at state s′ by executing action a at state s,

• γ ∈ (0, 1] is the discount factor1,

• µ0 : S → [0, 1] is the initial distribution, and

• R : S × A→ is the reward function.

A randomized, memoryless policy is a function that specifies a probability distribution

on the action to be executed in each state, defined as π : S × A→ [0, 1].

We use τ = [(s0, a0), (s1, a1), . . . , (sL, aL)] to denote a trajectory generated by MDP.

Here L is the length of trajectory. We model the decision-making process of taxi drivers

with MDP as follow:

• State: a spatio-temporal region, specified by a geographical cell and a time slot.

• Action: traveling from the current cell to one of the eight neighboring cells, or

staying in the same cell.

• Reward: the inner product of the preference function (as a vector) θ and the feature

vector f on each state-action pair.

Note that in the MDP settings, the reward of each state-action pair is the inner product

of the preference function and the feature vector. The preferences are the weights of each

feature. The driver aims to maximize the accumulated reward when making decisions. To

interpret each of the preferences recovered, we can consider two factors, i.e., the sign and

the magnitude of the preference (weights of each feature). A positive preference means

1Without loss of generality, we assume γ = 1 in this work, and it is straightforward to generalize our
results to γ 6= 1.
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Figure 2.12: MDP of taxi driver’s decision making process

that the driver prefers to go to the regions where the corresponding feature value is higher

than other locations, and larger magnitude can imply that the driver pays more attention

to the corresponding feature, and vise versa for negative sign and smaller magnitude.

And in this work, we design two categories of features, i.e., the profile features and the

habit features. The intuition is that the preferences to some features can be time-invariant

because these features are closely related to the drivers’ profiles, e.g., home location,

working schedule, etc., which usually do not change. And the preferences to some other

features can be time-variant because these features are related to the habits of drivers, e.g.,

number of pickups, distance to train stations, etc.. The preferences to the habit features

are considered as the habits of the drivers. The drivers can learn to change their habits,

i.e., preferences to habit features, to improve their earning efficiencies.

Fig. 2.12 shows an example of trajectory in the MDP: a driver starts in state s0 with

the taxi idle, and takes the action a0 to travel to the neighboring cell S1. After two steps,

the driver reaches state S2, where she meets a passenger. The destination of the new trip

is cell S3. The trip with the passenger is a transition in the MDP from S2 to S3.

Inverse Preference Learning. Given the observed trajectory set T̃ of a driver and the

features extracted on each state-action pair (s, a), the inverse preference learning stage

aims to recover a reward function (i.e., preference vector θ) under which the observed tra-

jectories have the highest likelihood to be generated [30]. Various inverse reinforcement
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learning approaches, e.g., Apprenticeship learning [35], Maximum Entropy IRL [31],

Bayesian IRL [36] and Relative Entropy IRL [32], have been proposed in the literature.

Our problem possesses two salient characteristics: (i) the state space is large. We have

1158 cells and 288 time intervals. Therefore, the total number of states is 1158 × 288 ≈

330k, and (ii) the transition probability is hard to measure because in part of the large

state space issue.

Therefore, we adopt a model-free IRL approach, namely, relative entropy IRL [32]

that does not require estimating transition probabilities and is more scalable than other

alternatives.

The optimization problem. Let T denote the set of all possible trajectories of the driver

decision-making MDP. For any τ ∈ T, denote P (τ) as the trajectory distribution induced

by the taxi driver’s ground-truth policy, and Q(τ) as the trajectory distribution induced by

a base policy. The Relative Entropy between P (τ) and Q(τ) (in eq.2.3) characterizes as

the distribution difference between P (τ) and Q(τ).

H(P‖Q) =
∑
τ∈T

P (τ) ln
P (τ)

Q(τ)
. (2.3)

The driver’s trajectory distribution is governed by the driver’s preference θ, thus is a

function of θ, i.e., P (τ |θ). The relative entropy IRL aims to find a reward function θ,

that minimizes the relative entropy in eq.2.3 and matches the trajectory distribution to the
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observed trajectory data. P1: Relative Entropy IRL Problem:

min
θ

: H(P (θ)‖Q) =
∑
τ∈T

P (τ |θ) ln
P (τ |θ)
Q(τ)

, (2.4)

s.t.: |
∑
τ∈T

P (τ |θ)f τi − f̂i| ≤ εi,∀i ∈ {1, ..., k}, (2.5)

∑
τ∈T

P (τ |θ) = 1, (2.6)

P (τ |θ) ≥ 0, ∀τ ∈ T, (2.7)

where i is the feature index, and f τi is the i’s feature count in trajectory τ , and f̂i =∑
τ∈T̃ f

τ
i /|T̃| is the feature expectation over all observed trajectories in T̃. εi is a confi-

dence interval parameter, which can be determined by the sample complexity (the number

of trajectories) via applying a Hoeffding’s bound. The constraint eq.2.5 ensures that the

recovered policy matches the observed data. The constraints eq.2.6–eq.2.7 guarantees the

P (τ |θ)’s are non-negative probabilities, thus sum up to one.

Solving P1. The function Q(τ) and P (τ |θ) can be decomposed as

Q(τ) = T (τ)U(τ) and P (τ |θ) = T (τ)V (τ |θ),

where T (τ) = µ0(s0)
∏K

t=1 T (st|st−1, at−1) is the joint probability of the state transitions

in τ , for τ = [(s0, a0), (s1, a1), · · · , (sK , aK)], with µ0(s0) as the initial state distribution.

U(τ) (resp. V (τ |θ)) is the joint probability of the actions conditioned on the states in τ

under driver’s policy πθ (resp. a base policy πq). As a result, eq.2.4 can be written as

follows.

H(P (θ)‖Q) =
∑
τ∈T

P (τ |θ) ln
V (τ |θ)
U(τ)

. (2.8)
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Moreover, when πq(a|s) at each state s is uniform distribution, e.g., πq(a|s) = 1/|As|,

with As as the set of actions at state s, the problem P1 is equivalent to maximizing the

causal entropy of P (τ |θ), i.e.,
∑

τ∈T P (τ |θ) lnV (τ |θ), while matching P (τ |θ) to the ob-

served data [37]. Following the similar process outlined in [32], P1 can be solved by a

gradient descent approach, with the step-wise updating gradient as follows.

∇g(θ) = f̂i −
∑

τ∈Tπ
U(τ)
π(τ)

exp(
∑k

j=1 θif
τ
j )∑

τ∈Tπ
U(τ)
π(τ)

exp(
∑k

j=1 θi)
− αiεi, (2.9)

where αi = 1 if θi ≤ 0 and αi = −1 otherwise. Tπ is a set of trajectories sampled

from T̃ by an executing a given policy π. U(τ) is the joint probability of taking actions

conditioned on the states in a observed trajectory τ , induced by uniform policy πq(a|s) =

1/|As|.

See Algorithm 1 for the IRL algorithm.

Input: Demonstrated trajectories T̃, feature matrix F , threshold vector ε, learning rate α,
and executing policy π.

Output: Preference vector θ.
1: Randomly initialize preference vector θ.
2: Sample a set of trajectories. Tπ using π.
3: Calculate feature expectation vector f̂ .
4: repeat
5: Calculate each feature count f τi .
6: Calculate gradient∇g(θ) using Eq 2.9.
7: Update θ ← θ + α∇g(θ).
8: until∇g(θ) < ε.

Algorithm 1: Relative Entropy IRL

2.1.3.3 Preference Dynamic Analysis.

Using Algorithm 1, we can inversely learn the preference θ for each driver, during each

time interval (e.g., a month) over time, and obtain a sequence of preference vectors

{θ1, · · · , θN}. For each driver, we can conduct hypothesis testing to examine if the change
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of the preference vectors over months is significant or not. We denote the preference vec-

tor learned for taxi driver p in period Ti as θpi , and that in period Tj as θpj . Then, we can

obtain two preference vector sample sets in i-th and j-th months as Si and Sj over a group

of n drivers as follow:

Si = {θ1
i , θ

2
i , ..., θ

n
i }, (2.10)

Sj = {θ1
j , θ

2
j , ..., θ

n
j }. (2.11)

With Si and Sj , we will examine if the entries in preference vectors changed signif-

icantly or not from the i-th to j-th month, using paired sample t-test [38]. For each

feature fm, the null hypothesis is that the difference between the m-th entry of each θpi

in Si and θpj in Sj equals 0, which means drivers’ preference to feature fm does not

change significantly from the i-th month to the j-th month. Otherwise, the alternative

hypothesis indicates a significant change. Taking the difference between Si and Sj as

∆Sij = {∆θ1
ij,∆θ

2
ij, ...,∆θ

n
ij} = {θ1

i − θ1
j , θ

2
i − θ2

j , ..., θ
n
i − θnj }.

The t-test statistics of the m-th entry is as follow.

tij(m) =
Z

s
=

∆θij(m)− µ
δ/
√
n

. (2.12)

where µ is the sample mean, n is the sample size and δ is the sample square error. The

t-distribution for the test can be determined given the degree of freedom n − 1. Given a

significance value 0 < α < 1, we can get a threshold of the t value tα in the t-distribution.

Then if tij(k) > tα, the null hypothesis should be rejected with significance α, otherwise,

we can accept the null hypothesis with significance α. Usually, we set α = 0.05, which

also means the confidence of the test is 1− α = 0.95.
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2.1.3.4 Preference Trend Analysis

In Section 2.1.3.3, we employ hypothesis test to examine if the change of the preference

over months for each driver is significant or not. In this section, we investigate what the

trends of the preferences are for different groups of drivers regarding the significantly

changed preferences. For significantly changed preference to feature fs, we can obtain

the preference of driver k in the i-th and j-th (i < j) month as θki (s) and θkj (s). Then the

set of preference to feature fs over a group of n drivers in the i-th month can be denoted

as:

Si(s) = {θ1
i (s), θ

2
i (s), ..., θ

n
i (s)}, (2.13)

Sj(s) = {θ1
j (s), θ

2
j (s), ..., θ

n
j (s)}. (2.14)

We want to investigate in detail how the preference change, i.e., some preferences trend

up over time, while some others trend down. Here, we define the positive trend rate rp

in Eq(2.15) to characterize the increasing trend of the each preference for each group of

drivers, and the negative trend rate rn to characterize the decreasing trend, which equals

to 1− rp.

rp =

∑n
k=1 I

s
ij(k)

n
, (2.15)

where n is the number of drivers in the group, and:

Isij(k) =

 1 if θki (s) < θkj (s)

0 if θki (s) > θkj (s).
(2.16)

2.1.4 Evaluation

In this section, we conduct experiments with real world taxi trajectory data to learn the

preferences of different groups of taxi drivers, and analyze the preference evolution pat-
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terns for each group.

2.1.4.1 Experiment Settings

When analyzing the temporal dynamics of the drivers’ decision-making preferences, the

null hypothesis is that the difference between the preferences in two time periods is not

significant. The alternative hypothesis is the temporal preference difference is significant.

We choose the t-test significance value α = 0.05.

Driver Group Selection. We aim to analyze how taxi drivers’ decision making prefer-

ences evolve over time. For each month, we select 3000 drivers with the highest earning

efficiency. The reason why we select these drivers is that they are likely more experienced

drivers, thus with near-optimal policies, which is required by the maximum entropy prin-

ciple [31] to ensure a precise preferences recovered by IRL from the demonstrations.

To evaluate the preference change across two months, i.e., the i-th and j-th months, we

find those drivers from those experience drivers, who also show up in both months for

our study. For example, in 07/2016 and 12/2016, there are 2151 experienced drivers in

common.

Then, we calculate the difference of earning efficiency of each driver in the two

months. Fig. 2.13 shows the gap distribution in 07/2016 and 12/2016. We will choose

three groups of drivers for preference dynamics analytics based on the drivers’ earning

efficiency gaps.

• Group #1 (Self-improving Drivers): 200 drivers whose earning efficiencies increase

the most.

• Group #2 (Stabilized Drivers): 200 drivers whose earning efficiency gaps are small,

i.e., close to 0.

• Group #3 (Exploring Drivers): 200 drivers whose earning efficiencies decrease the
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Figure 2.13: Earning efficiency gap distribution

most.

The self-improving drivers are more likely to have learned a lot during the time span from

July 2016 to December 2016. By analyzing their preference dynamics, we can get a sense

of how they learned overtime. The stabilized drivers are those whose earning efficiencies

did not change much from July 2016 to December 2016, and we want to validate if their

preferences were also stable during the time span to cross-validate how taxi drivers learn

knowledge overtime. The exploring drivers are those whose earning efficiencies decreases

the most from July to December, and we want to figure out why this happened to these

drivers by analyzing their learning curve via our DHPA framework. And as the first

attempt to analyze the learning curve of taxi drivers, in this work, we do not explore

deeper to individual taxi drivers. And in our future work, we will explore the learning

curve of individual taxi drivers.

Experiment Plan. We use 12 months trajectory data across three years of time span

for our study, i.e., 07/2014–12/2014, and 07/2016–12/2016. We evaluate the preference

dynamics across months pairs. First, we setup the month 07/2016 as the base month, and

compare the preferences of drivers in Group #1 and Group #2, with that of 5 subsequent

months (08/16, 09/16, 10/16, 11/16, and 12/16), respectively. To examine the dynamics

of potential habits’ preferences in a short period and a long period. We define the short

period including 07/16 to 08/16 and 07/16 to 09/16, and the long period including 07/16
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to 11/16 and 07/16 to 12/16. We apply family-wise t-tests with Bonferroni correction to

avoid an inflation of false positives.

2.1.4.2 Preference Dynamics Analysis

Now we present the results of the analysis of the preference dynamics of two driver groups

over time.

Results for Group #1. The table in Fig. 2.14 shows the t-values obtained for com-

paring preferences (with respect to each feature) in 07/16 to that of 08/16, 09/16, 10/16,

11/16, and 12/16, respectively. For these self-improving drivers, The boxes of failed

tests are marked with red color, and the corresponding t values. Note that these tests are

conducted individually without comparisons among them because we want to examine

whether there exists a significant preference change for individual feature in a specific

month compared with July. First, with a time span of less than three months, the prefer-

ences do not show any significant change. However, when the time space is larger than

three months, preferences to some habit features changed significantly if viewed as in-

dividual tests, including H1: Number of pickups, H3: average trip time and H4: traffic

condition. This makes sense, since over time, the self-improving drivers tend to learn the

knowledge of where the demands, low traffic, long trip orders are. On other hand, the

preferences to all four profile features and other habit features stay unchanged over the

half a year.

According to the results of the individual tests above, we notice that the preferences to

three habit features (H1, H3, H5) might change significantly in a long period, i.e., after 3

months. To validate these preference dynamics in a long period, we conduct family-wise

hypothesis tests to examine if the preferences to these features change significantly after

a long period. We consider July to August and July to September as the short period, and

July to November and July to December as the long period. Since only the preferences
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Figure 2.14: Preference dynamics between
July and each of the following 5 months of
Group #1 drivers

Figure 2.15: Preference dynamics between
July and each of the following 5 months of
Group #2 drivers

to the three habit features potentially change significantly, we have 6 tests in total. After

Bonferroni correction, the results are presented in Fig. 2.16. We observe that, after a long

period, the preferences to H1: Number of pickups and H4: traffic condition change sig-

nificantly, while preference to H3: average trip time does not show a significant change.

And preferences to these three habit features do not change after a short period. Results

for Group #2. The table in Fig. 2.15 shows the t-values obtained for preference compar-

ison of drivers in Group #2. Clearly, the preferences to all profile and habit features stay

unchanged over the half a year, which means that these stabilized drivers have kept the

same strategy of finding passengers in the half a year. This is consistent with their un-

changed earning efficiencies over time. The reason why the stabilized drivers maintained

a stable preferences either because they were very experienced and already obtained the

optimal strategies given the profiles they had, which means they had reached the upper-

bound of earning efficiency for the drivers who have similar profiles, or they had found

a near optimal strategy and still have potential space for improvement, but they were not

Figure 2.16: Validation on the long-term preference dynamics
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Figure 2.17: Preference dynamics between
July and each of the following 5 months of
Group #3 drivers

Figure 2.18: Positive rates of each prefer-
ence in Group #3

motivated to find a better one, or some other potential reasons. As the first attempt to ana-

lyze the preference dynamics in this work, we do not dig that deep to figure out the exact

reasons why these drivers maintained a stabilized preferences, but we will investigate this

problem in the future work.

Results for Group #3. The table in Fig. 2.17 shows the t-values obtained for prefer-

ence comparison of drivers in Group #3. The preference of this group of drivers changed a

lot over months, most habit features changed, and the preferences to 1 or 2 profile features

changed in November and December. Group #3 drivers are the exploring drivers, whose

earning efficiencies drop over these months, and the results can tell that they try changing

their preferences significantly over time to explore new strategies, but the attempts do not

work for the growth of their earning efficiencies.

2.1.4.3 Preference Trend Analysis

In this section, we present the results of the preference trend analysis over three driver

groups.

Figure 2.19: Positive rate of each preference in Group #1 & #2

29



2.1 DYNAMIC HUMAN PREFERENCE ANALYTICS FRAMEWORK

Results for Group #1. The results of the preference trend analysis for Group #1

are shown in Fig. 2.19. The values in the table are rp’s for each preference between

July and December. The values in red indicate most drivers have a positive trend on

the preference, which is consistent with the result of the preference dynamics analysis,

since the most significantly changed preferences are the same, i.e., the preferences to H1:

Number of pickups, H3: average trip time and H4: traffic condition. For example, the

preference to feature H1 has an rn = 0.62, which is prominently larger than the rp = 0.38.

This indicates that most of the self-improving drivers tend to reduce their preference to

feature H1, i.e., the number of pickups. This is reasonable because the regions with

large number of pickups is usually crowded, e.g., downtown area. To complete a service

trip is time-consuming, which can damage the earning efficiency of taxi drivers. As for

the significantly changed preferences to features H3: average trip time and H4: traffic

condition, the rp’s are prominently larger than the rn’s respectively, which indicates the

number of self-improving drivers who increase their preferences on feature H3 and H4 is

prominently greater than those who decrease.

Results for Group #2. The results of the preference trend analysis for Group #2 are

shown in Fig. 2.19. We notice that the rp’s are close to 0.50 regarding the preference

to each of the feature, which is consistent with the results of the preference dynamics

analysis in Section 2.1.4.2.

Results for Group #3. The results of the preference trend analysis for Group #3 are

shown in Fig. 2.18. The values in the table are the rp’s calculated between July and each

of the following months. The values in red indicate most drivers have a positive trend

on the preference comparing with July, and the blue ones indicate most drivers have a

negative trend on the preference comparing with July. We find that the exploring drivers

change their preferences randomly. Taking the preference to feature H5: Distance to train

station as an example, significant positive trend is found in August and October, while in
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Figure 2.20: All
drivers

Figure 2.21:
Group 1: Self-
improving drivers

Figure 2.22:
Group 2: Stabilized
drivers

Figure 2.23:
Groups 3: Explor-
ing drivers

December, it switches to a negative trend. Similar patterns can be found in the preferences

to feature H1, H3, and P3.

2.1.4.4 Preference Distribution Analysis

To explore what different features that different groups of drivers pay attention to, we

analyze the distribution of the preferences in December for self-improving (Fig. 2.21),

stabilized (Fig. 2.22), and exploring (Fig. 2.23) groups as well as the entire taxi driver

population (Fig. 2.20). We find that in Fig. 2.20 the preference median of profile features

are all close to 0, and the preference median to H1: Number of pickups, H2: average trip

distance and H3: average trip time are relatively higher than other three habit features,

which implies that overall taxi drivers prefer higher number of pickups and longer trips.

From Fig.2.21-2.23, we find that the self-improving drivers and the stabilized drivers have

higher preferences to H1: Number of pickups, which indicates that they learned sufficient

knowledge on which regions have high demands. In contrast, the exploring drivers have

lower preferences to H1: Number of pickups. It reflects that they are still learning the

distribution pattern of travel demands. Moreover, the preference to H2: average trip

distance of the exploring drivers is higher than that of other groups, which implies that

the exploring drivers paid excessive attention to the long distance trips. This may be one

of the negative effects leading to a decreasing earning efficiency trend since the longer the

trip distance is, the more time it costs.
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2.1.4.5 Case Study.

Case of Preference Dynamics. To further understand the preference dynamics, we look

into individual drivers to showcase how the preference and working behaviors evolve

over time. Here we show one randomly selected driver from Group #1. Let us call him

“John”. John’s earning efficiency grew from 41.84 CNY/hour to 52.24 CNY/hour from

07/16 to 12/16. His preferences in both months are listed in Fig. 2.24 -2.25. Clearly, the

preferences to the profile features remain unchanged, while the preferences to some habit

features, such as H1 Number of pickups, H5&H6 Distance to Train Station & Airport

changed. When we look into John’s driving behaviors, it matches the preference change

perfectly.

Preference change to H1. The preference change to feature H1 indicates that John in-

creased his preference to areas with high volume of pickup demands. Fig. 2.26-2.27

shows the distribution of trajectories when the taxi was idle in the morning rush hours in

07/16 and 12/18, respectively. Fig. 2.28-2.29 shows the all taxi pickup demand distribu-

tions in the morning rush hours in 07/16 and 12/16, respectively. The city-wide demand

distribution does not change. However, during the morning rush hours, John changed his

strategy from 07/16 to 12/16, i.e., to look for passengers from the high demand areas.

This is consistent to the preference change to feature H1 (number of pickups).

Preference change to H5. The preference change to feature H5, i.e., distance to train

station, is also significant. The negative preference indicates John prefers to be closer to

the train station to look for passengers. Over time this preference became stronger. To

explain this phenomenon, we highlighted the train station in Fig. 2.26-2.27. The statistics

we obtained from John’s trajectory data showed that the percentage of order received near

the train station increased from 11.93% in 07/16 to 14.21% in 12/16, which is consistent

with the preference change.

The results of preference dynamics analysis in Section 4.2.1 shows the overall pattern
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Figure 2.24: John’s Preference in 07/16 Figure 2.25: John’s Preference in 12/16

Figure 2.26:
John’s Trajectory
in 07/16

Figure 2.27:
John’s Trajectory
in 12/16

Figure 2.28:
Overall Pickups in
07/16

Figure 2.29:
Overall Pickups in
12/16

of Group #1, which illustrate that the self-improving drivers showed significant dynamics

on their preferences to features H1: Number of pickups and H4: traffic condition, and

the preference to H1 tends to decrease in the group. While in the case study, “John”

is an individual driver randomly selected from the group, who was happened to have a

reversed trend regarding the preference to feature H1. This is not a contradiction since

the results in Section 4.2.1 are for the overall group, while in the case study, the randomly

selected driver is an individual in the group, who might not maintain the same preference

dynamics as the whole group.

Case of Preference Trend. To further understand the preference trend, we also look

into an individual driver’s show case to investigate how exactly the preference changed

Figure 2.30: The decision-making preferences of Mike in July, October and December
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over time from July to December. We randomly select a driver from Group 3. Let’s

call him ”Mike”. Mike’s earning efficiency dropped from 46.15 CNY/hour to 41.34

CNY/hour from 07/16 to 12/16. His preferences in 07/16, 10/16 and 12/16 are shown

in Fig. 2.30. The preferences to some features changed randomly, e.g., H5. H5 is the

habit feature: distance to the train station. The negative values indicate that Mike prefers

to be closer to the train station. Comparing with the preference to H5 in July, the prefer-

ence goes weaker in October and goes stronger in December. To explain this, we visu-

alize the distributions of the trajectories of Mike in Fig. 2.31-2.33. The distribution near

the train station becomes more scattered in October and more concentrated in December

comparing with that in July.

2.1.4.6 Takeaways and Discussions.

From our studies on a large amount of taxi trajectory data spanning for 3 years, we made

the first ever report on how real world taxi drivers make decisions when looking for

passengers, and how their preferences evolve over time. Overall, three key takeaways are

summarized as follows.

1. Each driver has its unique preferences to their profile features, which tend to be stable

over time.

2. Drivers while learning the environments, may change their preferences to habit fea-

tures.

Figure 2.31: July, 2016 Figure 2.32: October, 2016
Figure 2.33: December,
2016
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3. Drivers while exploring the environments, may change their preferences to profile and

habit features randomly.

Our findings can be potentially utilized to assist and guide taxi drivers to improving

their earning efficiencies. For example, for those slow learning drivers, by learning their

preferences, especially, the preferences to habit features, we can diagnose which knowl-

edge in terms of the features they are lacking, e.g., not familiar with the high demand

regions. As a result, some guiding messages, may be sent directly to the drivers about

such information, to assist the drivers to improve a better policy faster. In addition, our

proposed DHPA framework can easily adapt to different time interval analyses, e.g. over

months, over days, over time in a day, etc. One only needs to change the trajectory ex-

traction in Stage 1 according to the different settings of time interval.

2.2 Human Learning and Reinforcement Learning

2.2.1 Overview

2.2.1.1 Introduction

Learning to make decisions is ubiquitous for human beings. For example, a Go player

learns to imitate other players to devise better game strategies. A physician learns to

determine doses of drugs through extensive case studies and sometimes ad-hoc experi-

mentation. A professional driver learns to cruise through repeated practice to effectively

find the next passenger. While a learning process is often complex, recent advances in

machine learning have enabled computer agents to automate some learning tasks. For

example, reinforcement learning (RL) is used to train AlphaGo [39] to beat the human

champion and build systems to recommend medical treatments [40]. Optimizing taxi op-

eration strategies has also been extensively studied in the literature [2, 12, 41, 42, 43].
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Figure 2.34: Diverse patterns of drivers’ per-hour income dynamics in Shenzhen, China.

Many recent solutions also rely on RL techniques.

While progress was made to design RL algorithms for computer agents to learn, it

remains unclear how the human counterpart learns. Do human learning processes exhibit

similar patterns to the one driven by RL algorithms, or they deviate from any known learn-

ing strategies? Answering this problem is important for three reasons: (i) many decision-

making problems remain challenging for machines and still require “human learning”,

so it becomes important to distill decision strategies from humans; (ii) effective humans

learning strategies can be used to train beginners such as new Go players and new taxi

drivers; and (iii) it also advances cognitive and social science research by taking an algo-

rithmic lens at human learners’ behaviors.

This work examines how traditional taxi drivers learn to cruise for seeking their next

passengers. Here, traditional drivers refer to those that do not rely on mobile-based plat-

forms such as Uber, Lyft, or DiDi. These drivers represent a significant portion of per-

sonnel in taxi service, despite recent growth of online platforms. Prior studies [2] on this

problem assumed drivers are rational and use inverse reinforcement learning to charac-

terize drivers’ behaviors. Although these works offer useful insights, not all drivers are

rational. Some drivers learn faster than others. Some drivers’ performance even deterio-

rates over time. For example, Fig. 2.34 shows the dynamics of per-hour incomes from

four typical taxi drivers in 2016 in Shenzhen, China. Driver 1 (dark green line) started

at a relatively low-income level, but then rapidly doubled the income level by the end of
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the year. Driver 2 (light green line) started at a similar (low) income level as Driver 1, but

had a much slower increasing trend. Driver 3 (blue line) had a stable income level over

time. Moreover, the income level of Driver 4 (red line) went down roughly by 30% in six

months.

This example suggests that different drivers use different strategies to learn. Thus, our

work focuses on investigating i) what learning strategies they are following, especially for

those “quick learners”?; ii) how do these strategies compare to what a computer agent

would follow in reinforcement learning?

Specifically, we investigate and validate human learning strategies through a data-

driven case study on taxi drivers. To the best of our knowledge, this is the first attempt of

its kind in the context of taxi operations. Specifically, we extract trips of taxi drivers from

a large-scale dataset spanning 6 months with over 17,000 taxis. We categorize drivers into

different groups based on their hourly earning dynamics. For each group of drivers, we

build estimation procedures to construct the time series of a driver’s policy and advantage

functions and examine whether their patterns are consistent with those of an agent in a

RL algorithm. In addition, we validate under what scenarios the drivers are following the

paradigm of RL, if not always.

Our major finding is that a taxi driver’s improvement in earning efficiency is posi-

tively correlated with how well he/she follows the process of RL algorithm. In addition,

human drivers usually do not completely follow RL when learning. They tend to follow

RL first for those scenarios (e.g., certain urban areas) that lead to higher earning improve-

ment. Our contributions are summarized as follows: (1) We propose a three-stage ana-

lytical framework to rigorously validate whether human agents (e.g., taxi drivers) follow

RL paradigms to improve their earning efficiencies.

(2) It is evident from the analytical results on a large-scale taxi trajectory dataset that

successful drivers are likely those who follow the RL paradigm better. Moreover, they
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tend to follow RL first for those scenarios (e.g., certain urban areas) that lead to higher

earning improvement.

2.2.1.2 Problem Definition

Problem Definition: Given real trajectory data of taxi drivers T̃ in a sequence of time

intervals T0, T1, ..., Tn, we aim to validate or reject the following hypotheses: (1) Drivers

that are successful in learning passenger-seeking experiences (i.e., with increasing earn-

ing efficiency), employ learning strategies that are closer to reinforcement learning (RL)

paradigms; (2) The RL paradigm is followed by human drivers only at certain scenarios

(e.g., locations, times) rather than all circumstances. We also aim to identify what these

scenarios are.

We also use two data sources in this project: (i) taxi trajectory data and (ii) road

map data, both collected in Shenzhen, China in 2016. See Sec. 2.1.1.3 for details.

Data Preprocessing: We preprocess the datasets by map gridding and time discretiza-

tion.

(1) Map gridding. The urban road network forms a continuous space. We use the

gridding-based method to simply partition the road map into equally sized grids [15, 33].

This method is easy to implement and make adjustment. It allows us to adjust the size of

the grids, and examine the impact of the grid size. We let s be the side-length of each cell.

Cells adjacent to each other are considered reachable if there is at least one road across

their boundary. Fig. 2.6 visualizes of our gridding results with side-length of s = 0.01◦

in latitude and longitude. By removing grid cells in those unreachable regions in the city

(e.g., in the center of a part), we have a total of n = 1, 018 valid cells (highlighted in light

colors in Fig. 2.6) covered by the road network.

(2) Time Discretization. We divide each day (24 hours) into three time intervals,

i.e., 00:00 – 06:00, 06:00 – 16:00, and 16:00 – 24:00, based on the common schedules
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Figure 2.35: Solution framework

of taxi drivers. In Shenzhen, each taxi is usually operated by two drivers. One driver

operates in day time and the other operates at nights. Thus, taxi trajectories in different

time intervals are considered from different drivers. Two drivers usually switch at around

6AM and 4PM everyday. Finally, because there are exceedingly small numbers of taxi

trips between mid-night and early morning, we focus on only two time intervals, i.e.,

06:00 - 16:00 and 16:00 - 24:00.

Solution Framework: Our proposed solution framework is outlined in Fig. 2.35, which

takes two sources of urban data as inputs and contains three analytical stages: (1) catego-

rizing taxi drivers in section 2.2.3.1, (2) modeling decision-making and learning process

in section 2.2.3.2, (3) learning strategy validation in section 2.2.3.3.

2.2.2 Related Work

Taxi operating strategies (e.g., dispatching, passenger seeking), and driver behavior anal-

ysis have been extensively studied in recent years due to the emergence of the ride-sharing

business model and urban intelligence. The related works are summarized below.

Urban Computing integrates urban sensing, data management, and data analytic as a

unified process to explore, analyze, and solve problems related to people’s everyday

life [13, 15, 16, 17, 18, 19, 21, 44, 45, 46, 47, 48, 49]. In particular, a group of works
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have studied the topic of taxi operation [27, 28, 50, 51, 52, 53, 54, 55], such as vehi-

cle dispatching with reinforcement learning [52, 56, 57, 58, 59, 60, 61, 62, 63, 64], and

passenger-seeking strategies [3, 10, 11, 29, 65, 66]. They aim to find optimal solutions to

improve the revenue of individual taxi drivers as well as the entire fleet. For instance, [12]

solved the passenger-seeking problem by giving direction recommendations to drivers.

However, few studies investigate the relation between the machine learned strategies and

human drivers’ strategies. Some studies directly assume that human drivers follow re-

inforcement learning [2, 41, 67] without validation through real cases. To the best of

our knowledge, our study makes the first attempt to validate if taxi drivers follow the

paradigm of reinforcement learning when earning their driving experiences.

Human Learning is a process of interacting between a person and the external environ-

ment, which leads human to change capacity permanently not due to biological matura-

tion [68]. To characterize how the process works, research in Cognitive Neuroscience,

Psychological Sciences, and Behavioural Sciences has studied over five decades [69].

[70] investigated the role of brain’s modular structures and found that flexibility mea-

sured by the allegiance of nodes to modules in a past session could predict the relative

amount of learning in a future session. [71] contended the essential factors that can lead

to progress in learning mathematics from the perspective of psychology. [72] introduced

a structured learning tool and teaching process to translate the learning principles into

practice for learning clinical skills regarding behavioral sciences. Compared with pre-

vious works, we deliver an innovative insight of leveraging the understanding of human

learning to engineer the learning process through machine learning.
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2.2.3 Methodology

2.2.3.1 Stage I: Categorizing Taxi Drivers

This section introduces the definition of taxi drivers’ earning efficiencies, the earning

efficiency dynamics of taxi drivers, and classification of taxi drivers based on the trends

of their earning efficiencies.

Quantifying Taxi Drivers’ Earning Efficiencies. To quantify the earning efficiencies

of taxi drivers, we need to address two issues: 1. Effective working hours. 2. Changes in

earning efficiencies. Drivers’ earning efficiencies evolve over time. Thus, we re-estimate

drivers’ earning efficiencies every week.

Let rie be the earning efficiency of driver e in week i (1 ≤ i ≤ 27). We let

rie =
Ei
e

tie
, (2.17)

where Ei
e is his/her total income in week i and tie is the total working hours. Here, the

total working hours are the time when the driver is seeking for passengers or serving

passengers. We eliminate the time when the driver takes a break (the taxi stays still for 30

minutes or more).

Earning Efficiency Trend Analysis. We aim to detect the following patterns in

drivers’ earning efficiencies changes:

• Monotonic increase/decrease. The increase or decrease occurs constantly over the

entire time series.

• Abrupt increase/decrease. At a certain time point, an abrupt increase or decrease

occurs, differing the statistics of time series before and after that significantly.

When the efficiency of a driver does not exhibit any of the above changes, we define the

driver as a stabilized driver. Fig. 2.36-2.38 show examples of different learner groups.
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Figure 2.36: Trending-up
drivers

Figure 2.37: Trending-
down drivers

Figure 2.38: Stabilized
drivers

Next, we devise two statistical tools to detect the aforementioned patterns.

Mann-Kendall (MK) Trend Test [73] is a hypothesis test method for monotonic

trend in time series data, which indicates whether a trend exists and whether the trend is

positive or negative. The null hypothesis H0 is no monotonic trend, while the alternative

hypothesis H1 is monotonic trend is present.

The statistic of Mann-Kendall test can be calculated as follows,

ZMK =


S−1√
V AR(S)

if S > 0,

0 if S = 0,

S+1√
V AR(S)

if S < 0,

(2.18)

S =
n−1∑
k=1

n∑
j=k+1

sgn(rje − rke ), (2.19)

sgn(rje − rke ) =


1 if rje − rke > 0,

0 if rje − rke = 0,

−1 if rje − rke < 0,

(2.20)

V AR(S) =
1

18
[n(n− 1)(2n+ 5)]. (2.21)

Given a confidence α, the null hypothesis is rejected if |ZMK | > Z1−α, where Z1−α
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is the (100(1− α))th percentile of the standard normal distribution.

Pettitt’s Test [74] is to detect change points in time series data. A change point in a

time series r1
e , r

2
e , r

3
e , ..., r

t
e, ..., r

n
e refers to a time index t such that {rt1e }t1≤t and {rt2e }t2>t

follow two distributions [75]. The null hypothesis H0 is no abrupt change points exist,

while the alternative hypothesis H1 is an abrupt change point exists.

Pettitt’s test uses a non-parametric test statistics Ut defined as

Ut =
t∑
i=1

n∑
j=t+1

sgn(rie − rje). (2.22)

Then we can calculate:

K = max
1≤t≤n

Ut. (2.23)

The change-point of the series is located at time K, provided that the statistic is sig-

nificant. The significance probability of K is approximated for p ≤ 0.5 with:

p ≈ 2 exp
−6K2

n3 + n2
. (2.24)

Results on Trend Analysis. We next describe our result. Our dataset contains 2,403

taxis in the 6am to 4pm interval and 2,790 taxis in the 4pm to 12am interval. We catego-

rize taxi drivers into three groups: (1) Trending-up: if at least one of the tests (MK and

Pettitt) show significant increasing trend, (2) Trending-down: if at least one of the tests

show significant decreasing trend, and (3) Stabilized if none of the tests is significant.

The two tests do not produce any inconsistent conclusions among drivers we examine

(i.e., one test shows it trends up whereas the other shows it trends down).

Fig. 2.39 presents the results. Note Week #14 and #15 are excluded from the dataset

because they have much smaller trip numbers due to the national holiday. This is to avoid

biased results.
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Figure 2.39: Driver groups
Figure 2.40: Mean earning
efficiency of each group

We can see that around half of the drivers are stabilized drivers, and the number of

trending-up drivers is larger than the number of trending-down drivers in both intervals.

Fig. 2.40 shows the average earning efficiencies for each group of drivers over 25 weeks.

The trends exhibit here are consistent with the test results.

2.2.3.2 Stage II: Modelling Decision-Making and Learning Processes

We next model the drivers’ behaviors. We need to model: (i) how drivers make decisions

(i.e., how they look for and serve passengers). This is modeled by a Markov Decision Pro-

cess. (ii) how drivers learn to make decisions (i.e., how they use their past experience to

update their decision policies over time). Based on our hypothesis, we use reinforcement

learning (RL) to model this process.

Decision-Making Process as an MDP. A taxi driver needs to determine the travel di-

rection when the taxi is idle and this decision impacts his/her chance to find a new passen-

ger. We model this decision-making process as a Markov Decision Process (MDP) [34].

Review of MDP. An MDP is represented as a 5-tuple 〈S,A, T, γ, µ0, R〉.

• S is a finite set of states;

• A is a finite set of actions;

• T is the probabilistic transition function with T (s′|s, a) as the probability of arriving

at state s′ by executing action a at state s;
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• γ ∈ (0, 1] is the discount factor1;

• µ0 : S → [0, 1] is the initial state distribution;

• R : S × A→ R is the reward function.

A randomized, memoryless policy is a function that specifies a probability distribution

on the action to be executed in each state, defined as π : S × A → [0, 1]. We use

τ = [(s0, a0), (s1, a1), . . . , (sL, aL)] to denote a trajectory generated by MDP. Here L is

the length of trajectory.

Applying MDP to model drivers. We model the decision-making process of taxi drivers

with MDP as follow:

• State: a spatial region, specified by a geographical grid cell, created with map grid-

ding in data preprocessing phase;

• Action: traveling from the current cell to one of the eight neighboring cells.

Fig. 2.12 shows an example of taxi trajectory as an MDP: a driver starts in state s0

with the taxi idle, and takes the action a0 to travel to the neighboring cell S1 on the right.

After two decisions, the driver traverses S1 and reaches state S2, where a passenger is

found at S2. Then, a passenger trip corresponds to a transition in the MDP from starting

state S2 to ending state S3. Each decision made at a certain state would lead to a reward as

the expected monetary income of finding and serving a passenger. The policy π employed

by a driver is a probability distribution of choosing each action at each state.

Learning Process as Reinforcement Learning.

Hypothesis. When one starts working as a taxi driver, he/she may not have knowledge

about where to find the next passenger, and may choose a simple initial policy π0. Actor

1Without loss of generality, we assume γ = 1 in this study, and it is straightforward to generalize our
results to γ 6= 1.
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Table 2.1: Typical methods of RL

Typical Method Update function

Value-based Q-learning
Q(s, a)← Q(s, a)+

α[r(s, a) + γmaxa′ Q(s′, a′)−Q(s, a)] [76]

Methods SARSA
Q(s, a)← Q(s, a)+

α[r(s, a) + γQ(s′, πQ(s
′))−Q(s, a)] [76]

Actor-Critic Actor-Critic ∇Rθ ≈ 1
N

∑N
n=1

∑Tn
t=1(Q

πθ (snt , a
n
t )−

V πθ (snt ))∇ log pθ(a
n
t |snt ) [77]

Methods Advantage Actor-Critic(A2C) ∇Rθ ≈ 1
N

∑N
n=1

∑Tn
t=1(r

n
t + V πθ (snt+1)−

V πθ (snt ))∇ log pθ(a
n
t |snt ) [77]

Policy-based Methods Policy gradient
θ ← θ + α∇Rθ,∇Rθ ≈ 1

N

∑N
n=1

∑Tn
t=1

(
∑Tn
t′=t γ

t′−trnt′ − b)∇ log pθ(a
n
t |snt ) [78]

The driver repeats this process so his/her policy evolves continuously (see also [12, 41,

42]).

Types of reinforcement learning. Reinforcement learning (RL) algorithms can be clas-

sified into three major categories including value-based RL [76], policy-based RL [78],

Actor-Critic based approach [77]. We briefly outline the key ideas of the three types of

RL algorithms below. A key similarity of all these algorithms is that they optimize the

policy functions by “taking the gradient” with respect to the advantage function, which is

defined as the additional reward gained from the current policy comparing to the one in

the previous iteration.

• Value-based RL [76] does not learn the optimal policy directly. It learns the so-called

Q value (or V value) instead, which is defined on each state-action pair (s, a), namely,

Q(s, a) (or on each state s, namely, V (s)). Specifically, Q(s, a) refers to the expected

future reward, after taking an action a at a state s, while V (s) refers to the expected

reward after leaving a state s. Once Q-functions are well learned, the optimal policy π∗

can be recovered from the optimal value function of each state-action pair (e.g., Q(s, a)).

The Q-learning [76] and State-Action-Reward-State-Action (SARSA) methods [76] are

the state-of-the-art value-based RL algorithms.

• Policy-based RL [78] learns an optimal policy directly. Usually, policy π is represented
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by a (deep) neural network with parameter set θ. A well known policy-based method is

policy gradient [78]. The objective of policy gradient is to maximize the expected future

reward over trajectories:

max
θ
Rθ = max

θ
{E(Rθ)} = max

θ
{
∑
τ

R(τ)pθ(τ)}. (2.25)

Where R(τ) is the accumulated reward in trajectory τ and pθ(τ) denotes the probability

of generating trajectory τ under the policy with parameter θ. Then, we can apply gradient

ascent to find the optimal θ. The gradient of the objective function with respect to θ is:

∇Rθ ≈
1

N

N∑
n=1

Tn∑
t=1

(
Tn∑
t′=t

γt
′−trnt′ − b)∇ log pθ(a

n
t |snt ), (2.26)

whereN is the number of trajectories, Tn is the length of trajectory n, t and t′ are the time

steps. b is the baseline, i.e., average reward received.

• Actor-Critic based RL [77] combines both value-based and policy based methods,∑Tn
t′=t γ

t′−trnt′ is evaluated using Qπθ(snt , a
n
t ), and we can use V πθ to be the baseline b.

Moreover, Qπθ(snt , a
n
t )−V πθ is denoted by Aθ(st, at) which is called the advantage func-

tion. If the expected reward after taking a state-action pair is higher than the average

expected reward after exiting the state, i.e., the advantage is positive, the agent will in-

crease the probability of taking this action in this state. The advantage function is used to

update the gradient, which in turn updates the parameter of the policy network.

Similarities of three RL paradigms. The gradient update functions of the three typical

methods of RL are listed in Table 2.1. They all try to maximize the expected accumulated

reward in each state or state-action pair, which is related to Q(s, a) and V (s). In other

words, all these RL algorithms are equivalent, in a sense that a larger advantage of an

state-action pair results in a increased probability of choosing such pair in the future

policy.
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Figure 2.41: Heatmap of a driver’s D(s) Figure 2.42: Heatmap of a driver’s V (s)

Figure 2.43: Q(S0, A0), V (S0) Figure 2.44: Weight matrix

Empirical estimates. Our main goal is to validate whether the real-world learning pro-

cess of the drivers is consistent with the policy gradient method. Here, we describe how

the key variables/functions are estimated through data.

• Estimation of advantage functions. Recall that the advantage function captures the addi-

tional reward gained from the change of one’s policy. We estimate the advantage function

value of each state-action pair for each driver. In time span T0, the advantage of a driver in

each state-action pair can be estimated by the empirical Q value and empirical V value.

The empirical Q value is the average earning efficiency of the driver within a certain

range of time after exiting each state via each action, whereas the empirical V value is

the average earning efficiency of the driver with a certain range of time after exiting each

state. The difference between Q value and V value is that V value characterizes the ex-

pected reward after leaving each state s, while Q value characterizes the expected reward

after taking each state-action pair (s, a) As shown in Fig. 2.43, V (S0) is calculated using

all red trajectories and blue trajectories, which are the service trips exiting S0, whereas

Q(S0, A0) is calculated using only the blue trajectories, which are the service trips exiting
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S0 through action A0.

A(s, a) = Q(s, a)− V (s). (2.27)

• Estimation of policy functions and their differences. We also need to estimate the dif-

ference of policies between two consecutive time spans, T0 and T1. The empirical policy

π(s, a) of each state-action pair in each time span can be estimated via the visitation

frequencies,

π(s, a) =
D(s, a)

D(s)
, (2.28)

where D(s, a) and D(s) denote the visitation frequency of the state-action pair (s, a) and

state (s) respectively. Validating if taxi drivers follow RL is equivalent to examine if there

exists significant correlation between the difference of policy ∆π(s, a) and the advantage

A(s, a). Next section continues the discussion of the validation process.

2.2.3.3 Stage III: Learning Strategy Validation

This section describes our validation process. This consists of (i) identifying the correla-

tion between the policy difference and the advantage, and (ii) correcting spatial bias of the

empirical policy difference and the advantage by analyzing the spatial auto-correlation.

Advantage Correlation. To validate if there exists a correlation between the policy

difference ∆π(s, a) and the advantageA(s, a), a correlation coefficient should be used. A

common one is Pearson’s correlation coefficient[79], but it has the assumption of indepen-

dent and identical distribution of data. The Spearman’s rank correlation coefficient [80]

works for non-parametric data measuring a statistical relationship between two variables,

which is more applicable in our ordinal data. Therefore, we employ Spearman’s rank

correlation coefficient in addition to the Pearson’s correlation coefficient to evaluate the

correlation coefficient and test its significance. The statistic of Spearman’s rank correla-
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tion coefficient can be calculated by the formula below:

ρ =

∑n
i=1(rank(Ai)− rank(A))(rank(∆πi)− rank(∆π))√∑n

i=1(rank(Ai)− rank(A))2
∑n

i=1(rank(∆πi)− rank(∆π))2

, (2.29)

where Ai is the advantage of the i − th sample, and ∆πi is the policy difference of the

i − th sample. rank denotes the ordinary rank of the corresponding value, and n is the

sample size.

ρ ranges from −1 to 1, and the sign of ρ indicates the direction of the association

between the advantage and the policy difference, e.g., if the sign is positive, the policy

difference tends to decrease with the increase of the advantage.

We can also determine the significance of the ρ. We calculate the t value according to

the formula below:

t = ρ

√
n− 2

1− ρ2
. (2.30)

Then we check the p value by calculating the t value according to the Student’s t distri-

bution.

Incorporating Spatial Auto-Correlation. Intuitively, nearby grids may cover the

same urban functional zone in a city and share similar demand patterns. This can be

observed from the real world data. Fig. 2.41 & 2.42 show the heatmaps of the D(s) and

V (s) of a driver in July 2016, where we can observe that similar values are clustered.

Therefore, it’s reasonable to incorporate spatial auto-correlation when estimating D(s)

and V (s).

(1) Quantifying spatial auto-correlation in D(s) and V (s). Given a grid cell, we con-

sider the eight neighboring grid cells as its spatial neighbors (i.e., the Queen neighbor-

hood). A weight matrix is used to define the strength of correlation between pairs of

locations, based on the inverse Manhattan distance between each pair of grid cells, i.e.,
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the original weight wij between grid i and grid j (i 6= j) is:

wij =


1

Manh dist(i,j)+1
if neighbor(i, j) = True,

0 if neighbor(i, j) = False,
(2.31)

where Manh dist(i, j) returns the Manhattan distance between grid i and grid j, and

neighbor(i, j) returns True if grid i and j are neighboring and vise versa. Then the

weights for each grid are normalized among its neighbors. Fig. 2.44 shows an example

of the weights between the neighboring grids and the red grid.

Moran’s I [81] is a measure of spatial auto-correlation. The statistic of Moran’s I test

can be calculated in Eq. 2.32

I =
N

W

∑
i

∑
j wij(xi − x)(xj − x)∑

i(xi − x)2
, (2.32)

where x is the value of interest in each location, N is the number of spatial units, i, j

are the indexes of two spatial locations, wij is the weight between location i and location

j, W is the sum of all wij . Value of I ranges from −1 to 1, and values significantly

below −1
N−1

indicate negative spatial autocorrelation and values significantly above −1
N−1

indicate positive spatial autocorrelation [81]. To verify if there is a significant spatial auto-

correlation in the data, a hypothesis test is conducted, the null hypothesis H0 is the values

are spatially independent and assigned at random among the regions, while the alternative

hypothesis H1 is the values are spatially correlated. The null hypothesis is rejected if the

statistical significance (p-value) of a Moran’s I score is below a given threshold. It can be

calculated through estimating the distribution of z-score of I .

The average I score of V (s) and D(s) among the drivers is 0.5241 and 0.5551. Given

the confidence level 0.95 (p < 0.05), for V (s), the values from 99.25% drivers reject the

null hypothesis, which means V (s) has spatial correlation; and for D(s), the values from
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Figure 2.45: Policy dif-
ference VS. Advantage of
Trending-up drivers

Figure 2.46: Policy dif-
ference VS. Advantage of
Trending-down drivers

Figure 2.47: Policy differ-
ence VS. Advantage of Sta-
bilized drivers

99.07% drivers reject the null hypothesis, which indicates D(s) also has strong spatial

correlation.

(2) Integrating spatial auto-correlation in advantage correlation analysis. From the

results above, it is safe to conclude that bothD(s) and V (s) exhibit spatial auto-correlations

under the weight matrix designed. Thus we should take the spatial auto-correlation into

account to reduce the bias. The spatial normalized value SN(x) can be calculated by

Eq. 2.33

SN(xi) = αxi + (1− α)
∑
j 6=i

wijxj, (2.33)

where x is either D(s) or V (s). SN(xi) is a convex combination of xi and weighted

sum of that from its neighboring cells, with combination parameter α ∈ [0, 1]. In this

study, we employ α = 0.5.

2.2.4 Evaluation

In this section, we apply the proposed analysis on the aforementioned real world taxi tra-

jectory data from Shenzhen, China, to validate the established hypotheses of this work.

We quantitatively evaluate the correlations between the advantage and the policy differ-

ence among the different groups of drivers and present a case study to show that how

typical drivers learn experiences in a paradigm which is similar to reinforcement learning

52



2.2 HUMAN LEARNING AND REINFORCEMENT LEARNING

Figure 2.48:
Mike’s state-action
pairs with greatest
advantages in July

Figure 2.49:
Mike’s greatest
policy differences
between July and
August

Figure 2.50: Ja-
cob’s state-action
pairs with greatest
advantages in July

Figure 2.51: Ja-
cob’s greatest pol-
icy differences be-
tween July and Au-
gust

(RL).

2.2.4.1 Experiment Settings

Following the steps discussed in Section 2.2.1.2 and extracting trips of taxi drivers, we

use 6 months trajectory data in 2016, i.e., 07/2016-12/2016, with an average of around

600k trips per day. We conduct the experiments in two different time intervals respec-

tively: 6am-4pm (day-time driver working hours) and 4pm-12am (night-time driver work-

ing hours). After eliminating those taxis whose records are not complete during these 6

months, there are 2, 760 valid taxis found in 6am-4pm time interval, while 2, 403 found

in 4pm-12am time interval.

We apply Pearson’s correlation coefficient and Spearman’s rank correlation coefficient

for the correlation analysis between policy difference and the advantage, and evaluate the

statistical significance of the correlations to test our hypotheses.

Table 2.2: Results of correlation analysis

Trending-up drivers Trending-down drivers Stabilized Drivers
Pearson’s Corr 0.26 -0.21 0.023

Pearson’s p-value 6.59e−12 2.30e−25 0.11
Spearman’s Rank Corr 0.39 -0.32 0.029

Spearman’s p-value 1.17e−26 6.85e−65 0.05
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2.2.4.2 Correlation analysis

In this section, we present the correlation results between the policy difference and the

advantage for each of the three groups of taxi drivers. To reduce bias in the analysis,

we only consider grids (i.e., states) with sufficient visits in the data. Here we set 20 as

the minimum visit count threshold, and exclude grids with fewer visits. As discussed in

Section 2.2.3.3 for each driver we calculate the advantage over each state-action pair in

a time slot T0 and the policy difference of the same state-action pair in the next time slot

T1 over T0 to understand how they adjust their strategies based on historical experiences.

Here we use 3 weeks as the length of each time slot since it may take certain time for the

adjustments to be observed.

Analysis Results. Fig. 2.45-2.47 shows the results of the three groups drivers, re-

spectively. Each point in the plot represents the policy difference and advantage of a

state-action pair of one driver. The x-axis is the advantage in the first time span T0, and

the y-axis is the preference difference between T0 and T1. The blue line is the linear

regression line of the points.

Fig. 2.45 shows the results for the trending-up drivers. There is a positive correlation

between the policy difference and the advantage, which imply the state-action pairs with

larger advantages tend to have larger policy difference. In other words, the drivers are

leaning towards increasing the relative visitation frequency of an state-action pair if she

found that the advantage of the state-action pair was large in the previous time slot, and

vise versa.

Fig. 2.46 shows the results of the trending-down drivers. The linear regression line

of the points (blue) has a negative slope. It shows that the trending-down drivers have a

negative correlation between the policy difference and the advantage, which states these

drivers increase the relative visitation frequency of those state-action with smaller advan-

tages, and vise versa, which is a counter-act with the learning process of policy-gradient
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RL.

Fig. 2.47 shows the results of the stabilized drivers. The slope of the linear regres-

sion line is close to 0. The stabilized drivers reflect little correlation between the policy

difference and the advantage. We consider that these drivers have finished the learning

process and reached a stable status.

Table 2.2 provides the quantitative results of three groups of taxi drivers. For trending-

up drivers, the Spearman’s rank correlation coefficient is 0.39 with a p-value of 1.17e−26,

which means that the correlation between the policy difference and the advantage is sig-

nificantly positive. A similar conclusion is drawn based on the result of the Pearson’s

correlation coefficient. Although the Pearson’s correlation coefficient is smaller, it still

suggests a significant positive correlation. For the trending-down drivers, the Spear-

man’s rank correlation coefficient is −0.32 with a p-value of 6.85e−65. It implies that the

correlation between the policy difference and the advantage is significantly negative. The

Pearson’s correlation analysis results suggest the same conclusion. Stabilized drivers

have little correlation between the policy difference and the advantage with the Spear-

man’s rank correlation coefficient of 0.029 and a p-value of 0.05.

Correlation Analysis Summary: The trending-up drivers who improved earning ef-

ficiencies over time show a similar learning process as that of the agent in an policy gra-

dient RL algorithm, while the trending-down drivers who worsened earning efficiencies

show an opposite learning process to the learning process of the agent in a policy gradi-

ent RL algorithm. This in turn proves that (1) the trending-up taxi drivers are following

the paradigm of RL effectively when learning strategies, and (2) drivers tend to be more

successful in terms of their increasing earning efficiency if they better follow the learning

process of RL.

The result of stabilized drivers implies that these taxi drivers may have found strategies

that they believe to be “optimal”. They are loyal to the strategies and not temporally
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affected by the advantages. They are similar as agents in RL that have already reached

the optimal status.

2.2.4.3 Case Study

In this section, we provide two concrete examples from two real drivers to help illustrate

our findings in details.

(1) A trending-up driver. We select a driver, Mike, from the group of trending-up.

Mike’s earning efficiency shows a monotonic increasing trend from the first week in 07/16

to the last week in 12/16. We extracted the top 5 grids with the highest visitation frequency

of Mike during July and August, as shown in Fig. 2.48. We can see that Mike likes

working near the Airport. We calculated the advantage of the state-action pairs of these 5

grids. The state-action pair with the highest advantage value among the state-action pairs

of each state is marked with a blue arrow in Fig. 2.48. These blue arrows show that the

driver tends to get closer to the airport to get better earnings. Then, we extract the policy

difference of these state-action pairs from July to August, and the state-action pair with

the largest policy difference among the state-action pairs in each state are marked with

black arrows in Fig. 2.49. Comparing Fig. 2.49 with Fig. 2.48, we can find that from July

to August Mike increased the probability of taking those exact actions which he learned

to have the highest advantage based on experiences from July. Mike maintained a similar

strategy as the agent in RL, which helped him improve his earning efficiency from July

to August.

(2) A trending-down driver. We select another driver from the group of trending-

down, namely, ”Jacob”. Jacob’s earning efficiency shows a monotonic decreasing trend

from the first week in 07/16 to the last week in 12/16. We extracted the top 5 grids with

the highest visitation frequency of Jacob during July and August, as shown in Fig. 2.50.

Jacob likes working near the downtown area. Similarly, we calculate the advantages and
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the policy difference for each state-action pair in these grids. The results are marked in

Fig. 2.50 & 2.51. Comparing the results in these two figures, we can find that from July to

August Jacob increased the probability of taking those actions that didn’t give him high

advantages in July. It is the opposite to what an agent in RL would do. Thus, the earning

efficiency of Jacob was lowered from July to August.

2.2.4.4 Takeaways and Discussions

Based on our study upon a large real-world taxi trajectory dataset, we acquired promising

findings about whether a taxi driver follows the learning process of RL and why different

groups of taxi drivers have different earning efficiency trends over time. The takeaways

are summarized:

(1) Taxi drivers, especially the ones with improving earning efficiencies, indeed follow

the learning process of RL. Drivers with the different trends of earning efficiency result

from the different extents to follow the paradigm of RL.

(2) Even the best drivers cannot completely follow the RL paradigm in all the sce-

narios. The possible reasons are that human drivers have limited memories and they do

not precisely calculate the advantage over all the state-action pairs. Trending-up drivers

tend to better follow the RL paradigm for those state-action pairs with low-to-medium

expected rewards. The reason could be that their strategies are already (near) optimal for

those high-reward state-action pairs. The improvement primarily comes from the low-to-

medium reward scenarios.

Our findings establish the foundation for future research related to behavior analysis of

taxi drivers. It can be used for strategy recommendations. For example, for slow-growing

drivers, one can focus on helping them keep better track of their advantages so that they

better follow RL and their earning efficiencies grow faster. Also, one can expect drivers

to learn the best strategies in the most profitable areas quickly. Learning is efficient if

drivers focus more on improving their decisions in low-to-medium reward areas.
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Human Behavior Explanation

3.1 Explainable Generative Adversarial Imitation Learn-

ing

3.1.1 Overview

3.1.1.1 Introduction

Humans make daily decisions, based on their own “strategies” (such as taxi drivers’

passenger-seeking processes and commuters’ transit mode choices). It is crucial to under-

stand what factors humans think about when making decisions, which can greatly facili-

tate many applications. As three examples shown in Fig. 4.1, understanding the decision-

making strategies from taxi drivers, personal vehicle drivers, and urban commuters can

facilitate the service providers (e.g., taxi/ride-hailing companies) to better serve the pas-

sengers, and enable the urban planners to design better road networks and transit routes

to meet the needs of urban travelers.

Many real-world humans’ decision-making processes (e.g., taxi passenger-seeking

and transit mode choices) can be modeled as Markov Decision Processes (MDPs) [2,
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Figure 3.1: Applications with Explainable Knowledge from Human Decision-Making Strate-
gies

3, 12, 41, 42, 43, 67, 82, 83]. In the MDP model, the human agents’ decision-making

strategies (e.g., the passenger-seeking strategies) can be captured by sequences of human

decisions, which aims to maximize his/her total “rewards”. In the literature, inverse re-

inforcement learning (IRL) and imitation learning (IL) techniques have been applied to

recover such reward functions to learn how humans make decisions. For example, Pan

et al. propose to use relative entropy based IRL to recover linear reward functions and

to dissect drivers’ preference dynamics over time [2]. Zhang et al. extend Generative

Adversarial Imitation Learning (GAIL) [84] to conditional GAIL (cGAIL) to unveil taxi

drivers’ policies by transferring knowledge across taxi drivers and locations [82]. A GAIL

model [84] consists of two deep neural networks (DNNs), i.e., a policy net (learning a

non-linear policy function) and a reward net (learning a non-linear reward function).

However, there are significant limitations in these solutions. The IRL approaches [31,

32, 37] manually extract features to represent the linear reward function. It is likely to

neglect some counter-intuitive while effective features [84]. On the other hand, although
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a GAIL model [84] is able to integrate high dimensional rich feature sets and better imitate

a human agent’s strategy, it is hard to explain what knowledge the model has learned from

human. This is due to the “black-box” nature of deep neural networks. Therefore, both

types of approaches are not much helpful in understanding human agents’ strategies. In

recent years, a number of approaches have been proposed to interpret machine learning

models, such as classifier interpretations [85, 86, 87]. However, none of them focuses

on the explanation of knowledge learned by imitation learning models (e.g., GAIL) from

human-generated spatial-temporal data, such as vehicle trajectories.

In this work, we make the first attempt to address the above challenges by proposing

xGAIL, a novel explainable Generative Adversarial Imitation Learning model for learning

both i) human decision-making strategies (as deep neural networks) to mimic how a hu-

man behaves, and ii) human-understandable knowledge to explain how a human (and the

learned model) makes decisions. The proposed xGAIL framework consists of two novel

components, Spatial Activation Maximization (SpatialAM) and Spatial Randomized In-

put Sampling Explanation(SpatialRISE), which extracts both global and local knowledge

from a pre-trained GAIL model that has learned a human agent’s decision-making strat-

egy. Especially, we take taxi drivers’ passenger-seeking strategies as an example to val-

idate the effectiveness of our proposed xGAIL framework. Our main contributions are

summarized as follows:

• We formulate human agents’ decision-making processes (using taxi drivers’ passenger-

seeking processes as an example) as Markov Decision Processes (MDPs), and to

inversely learn each agent’s decision-making strategy by a Generative Adversarial

Imitation Learning (GAIL) model.

• We propose an explanation framework with both global and local interpretation

mechanisms, i.e., Spatial Activation Maximization (SpatialAM) and Spatial Ran-
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domized Input Sampling Explanation (SpatialRISE), to explain what knowledge a

GAIL model learns so as to generate a specific decision-making strategy.

• We conduct a case study using real-world taxi driver’s trajectory data to validate our

framework. Our analysis shows interesting results from two facets: i) global ex-

plainable knowledge of what nearby traffic condition impels a taxi driver to choose

a particular direction to find the next passenger, and ii) local explainable knowl-

edge of what key (sometimes hidden) factors a taxi driver considers when making

a particular decision.

3.1.1.2 Sequential Human Decision-Making Processes as MDPs

Markov decision processes (MDPs) [88] provide a mathematical framework for modeling

decision-making processes. An MDP includes an agent as the decision maker and an

environment that interacts with the agent. An MDP is defined as a 5-tuple 〈S,A, T, R, γ〉,

where S is the state space, A is the action space, T : S × A × S 7→ [0, 1] represents

the probability P (st+1|st, at) of transiting to state st+1 from st after taking action at,

R : S × A 7→ R is the reward function of each state-action pair, and γ ∈ (0, 1] is

the discount factor. An agent at a state s ∈ S makes a decision of taking an action

a ∈ A following a memoryless policy π. The memoryless policy π is a function that

specifies a probability distribution on the action to be executed in each state, defined as

π : S × A 7→ [0, 1]. Taking a passenger-seeking process as an example, a taxi driver

makes a sequence of decisions about which directions (as actions) to go based on his/her

own decision-making strategy. The MDP components of a passenger-seeking process are

highlighted as follows.

• State s ∈ S: A state of a taxi driver can be uniquely defined by the spatial location

and time stamp.
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• Action a ∈ A: There are 9 possible actions that a taxi driver can choose at a state s,

including traveling to 8 neighboring directions, and staying at the current location.

• Reward R(s, a): The reward that a taxi driver receives follows an inherent function

R(s, a) to evaluate an action a taken at a state s.

• Policy π(a|s): A policy π(a|s) of a taxi driver is a mapping from a state s to an

action a, i.e., the probability distribution of choosing an action a given a state s.

As a result, a human agent’s (e.g., taxi driver’s) decision-making strategy can be char-

acterized by two functions: policy function π(a|s) controlling how the agent chooses an

action, reward function R(s, a) governing how the agent evaluates states and actions.

Decision-making Strategy Learning with Generative Adversarial Imitation Learn-

ing (GAIL). Given a large amount of trajectory data from a human agent (e.g., a taxi

driver), each trajectory is defined as a sequence of decisions, namely, state-action pairs,

τ = [(s0, a0), (s1, a1), ..., (sL, aL)], with L as the trajectory length. Generative adversar-

ial imitation learning (GAIL) [37, 84] was proposed to inversely learn both the policy

function π(a|s) and reward function R(s, a) employed by the agent. As defined in [84],

the strategy learning problem can be modeled as the following constrained optimization

problem, namely, finding the policy π with maximum causal entropy (eq. (3.1)), and find-

ing the reward function R such that the expected reward of a trajectory under π matches

that under the empirical policy πE from observed data (enforcing eq.(3.2)).
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MaximumCausalEntropy Inverse Reinforcement Learning

max
R

min
π

: −H(π), (3.1)

s.t. : Eπ[R(s, a)] = EπE [R(s, a)], (3.2)∑
a∈A

π(a|s) = 1,∀s ∈ S, (3.3)

whereH(π) = Eπ[
∑T

t=0 γ
t(− log π(at|st))] is the γ-discounted causal entropy π, Eπ[R(s, a)] =

Eπ
[∑T

t=0 γ
tR(st, at)

]
represents the expected reward of a trajectory under the policy

π, and πE (empirical policy) represents the policy observed from the collected data.

GAIL [84] proves that the above maximum causal entropy inverse reinforcement learning

problem is equivalent to solving a minimax problem (eq. (3.4)) with the objective as a

Jensen-Shannon (JS) divergence as follows.

max
R

min
π∈Π
−λH(π) + Eπ[log(R(s, a))] + EπE [log(1−R(s, a))], (3.4)

with Π as the policy probability simplex space, guaranteeing constraint eq. (3.3), λ as the

Lagrangian multiplayer. As a result, a generative adversarial networks (GANs) frame-

work [89] is naturally employed to solve the strategy learning problem with a generator

network G (equivalent to the policy function π) and a discriminator network D (equiva-

lent to the reward function R). However, the policy and reward functions are learned as

two deep neural networks, thus it is hard to explain what knowledge and aggregated fea-

tures the two networks have learned from human agents’ trajectory data, i.e., depending

on what complex factors, human agents make decisions. Below, we formally define the

strategy explanation problem and outline our solution framework.

63



3.1 EXPLAINABLE GENERATIVE ADVERSARIAL IMITATION LEARNING

Figure 3.2: xGAIL Solution Framework

3.1.1.3 Strategy Explanation Problem and Solution

Problem Definition. We aim to extract human understandable knowledge from the

learned policy (π) and reward (R) nets in the GAIL model to understand why and how a

human agent (e.g., a taxi driver) makes a certain decision a at a state s.

Solution Framework. The proposed strategy explanation problem is challenging, be-

cause the policy function π learned from GAIL is a deep neural network (DNN), which

as a blackbox model is hard to explain. Fig. 3.2 outlines our proposed explainable gen-

erative adversarial imitation learning (xGAIL) framework (using taxi driver passenger-

seeking strategy as an example). xGAIL takes two sources of data as inputs and consists

of three stages, including (1) data preprocessing, (2) GAIL, and (3) Strategy Explanation

Module, which will be detailed below from Sec 3.1.3.2 to Sec 3.1.3.3.

3.1.2 Related Work

In this section, we summarize the literature from two related areas, imitation learning (IL)

and explainable artificial intelligence (XAI).

Imitation learning (IL), also known as learning from demonstrations, inverse rein-
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forcement learning (IRL), inversely recovers the agent’s policy and reward functions from

the collected demonstrations. IL approaches [31, 32, 37] have been proposed based on

different principles, including maximum entropy, maximum causal entropy, and relative

entropy principles [31, 32, 37]. All the approaches assume that the underlying reward

function is a linear function and features have to be manually extracted. Generative adver-

sarial imitation learning (GAIL) [84], and its extension works cGAIL [82] and adversarial

IRL [90] learn the non-linear policy and reward functions as two deep neural networks

(DNNs), with theoretical connections to generator and discriminator in generative adver-

sarial networks (GANs) structure. These works either rely on manually extracted features

or learn policies through black-box models (i.e., DNNs) which make the processes hard

to explain the key features human agents are considering. In this work, we make the first

attempt to tackle this challenge.

Explainable artificial intelligence (XAI) as an emerging topic has been extensively

studied in recent years [91, 92, 93], which all aim to provide explanations of what DNNs

capture. In the category of post-hoc global explanation, Activation Maximization (AM)

aims to generate an input that maximizes the activation of a neuron in a network [94, 95,

96]. Karpathy et al. provide an analysis of Long Short-Term Memory (LSTM)’s represen-

tations, predictions, and error types through character-level language models [97]. Kádár

et al.’s word level interpretation approach estimates the amount of contribution of individ-

ual tokens in the input to the final prediction [98]. Augasta et al. introduce a new neural

network rule extraction algorithm RxREN to overcome the lack of explanation capability

of neural network models [99]. The algorithm prunes the insignificant input neurons and

constructs the classification rules only with significant input neurons based on reverse

engineering technique [99]. In addition, other research focuses on local explanation.

Ribeiro et al. identify an interpretable model, LIME, over the interpretable representa-

tion of a binary vector indicating the presence or the absence that is locally faithful to
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the classifier [85]. Petsiuk et al. establish RISE which can generate the importance maps

through tons of pixel masks [86]. Ribeiro et al. put forward high-precision rules repre-

senting local “sufficient” conditions for predictions [100]. Differing from these works,

we focus on a framework to explain what GAIL model learned from human-generated

spatial-temporal data.

3.1.3 Methodology

3.1.3.1 Stage 1: Data Preprocessing

In this section, we take a taxi driver passenger-seeking process as an example to illustrate

the data preprocessing mechanism. The novelty of the data preprocessing is our design of

the state observation. Note that the data preprocessing approaches can be easily applied to

other scenarios, such as commuter transit mode choice, personal vehicle route choice, etc.

Data Description. We employ two datasets, the GPS dataset and the road map dataset,

in this study.

GPS dataset. Taxi trajectory dataset records were collected from July to September in

2016 in Shenzhen, China. The dataset recorded the traces from 17, 877 unique taxis. For

each taxi, a GPS point was collected every 30 seconds on average. There were a total

of 51, 485, 760 GPS points generated in a day. Each GPS point contains five attributes,

a unique taxi ID, a timestamp, a latitude, a longitude, and a passenger indicator. The

passenger indicator is a binary value with 1, indicating the taxi was occupied, and 0,

indicating it was vacant.

Road map dataset. The road map data were collected from OpenStreetMap [14] for the

region of Shenzhen in China, ranging from 22.44◦ to 22.87◦ in latitude and 113.75◦ to

114.63◦ in longitude. There are 455, 944 road segments collected in this region.

Map and Time Quantization. The human agents (i.e., taxi drivers) traverse the spa-
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tial and temporal spaces when seeking and serving passengers. We define those states

that a driver can visit by i) dividing and discretizing Shenzhen city into equal side-length

(spatial) grid cells with a given side-length l = 0.01◦ in latitude and longitude, ii) a

day into 288 five-minute (temporal) intervals. By eliminating grid cells in the ocean and

unreachable regions in the city, there are a total of 1, 934 remaining cells that are well-

connected by the road network. Each cell is represented as ` = (x, y), where x and y are

longitudinal and latitudinal cell indexes, respectively. A spatial-temporal state s is then

uniquely defined by a spatial gird cell `, a time interval t, and the day of the week d, i.e.,

s = (x, y, t, d).

State Observation of A Human Agent. Each human agent makes a sequence of

decisions to traverse geographical locations over time when seeking for passengers. Each

decision (e.g., which direction to go) made by the driver is based on various features (such

as traffic) in the surrounding urban environment of the nearby area, referred to as the

state observation of the driver. Given a spatial-temporal state s, we model a taxi driver’s

observations as the state observation Os = [O1,O2,O3,O4,O5], with five statistics for the

surrounding 15 × 15 grid cells of s, including O1 the number of pickups, O2 the traffic

volume, O3 traffic speed, O4 the waiting time; and O5 the distances to points of interests

(POIs), such as train stations, airports, shopping malls, ports, and hospitals in the city. For

example, Fig. 3.4 shows an example of the traffic volume observation map O2 of a state

(the blue box at the center).

3.1.3.2 Stage 2: Strategy learning with GAIL

Now, we introduce the structure of the generative adversarial imitation learning (GAIL)

model [84] for leaning a human agent’s decision-making strategy (from his/her generated

data).

A GAIL model trains a generator network for the policy function π(a|s), and a dis-
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Figure 3.3: GAIL model with a policy net π and a reward net R trained as a GAN.

criminator network for the reward function R(s, a) (see Fig. 3.3).

The generator network (i.e., policy) takes the state observation Os, the high dimensional

feature maps, as the input, and outputs the decision-making policy π(a|s). Based on the

learned policy, an action (namely, a direction to go to find the next passenger) is then

randomly chosen.

The discriminator network (i.e., reward) takes both the state observation Os of state s,

and the sampled action a as input, and outputs the reward signal which indicates to what

degree the generated state-action pair matches the demonstrated trajectories.

When implementing GAIL, we employ convolutional neural networks [101]. For

the policy and reward nets, they both consist of three convolutional layers with ReLU

activation functions. Given the input state observation with the size of 5 × 15 × 15 (5

channels are the number of pickups, traffic volume, speed, waiting time, and distances

to POIs), we use a kernel size of 3 × 3 for the convolutional layers with padding of size

1. The sampling process for actions makes the entire network no longer differentiable,

so that it is not trainable by backpropagation [102]. We, thus, use the Reinforcement

Learning (RL) based approach [88] to train the network, i.e., using the output of reward

net as signals to update the policy net.

3.1.3.3 Stage 3: Strategy Explanation with xGAIL

The trained GAIL model recovers the taxi driver’s strategy. Given a state and its state
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Figure 3.4: Real
state
π(a1) = 0.30

Figure 3.5: Origi-
nal AM
π(a1) = 0.98

Figure 3.6: L2

AM
π(a1) = 0.42

Figure 3.7: Spa-
tialAM
π(a1) = 0.41

observation, the policy net predicts an action just as the driver does. However, the pol-

icy and reward nets both are “black boxes”. The inscrutable internal processes cause

considerable difficulty in explaining why and how the nets generate that specific strategy

and make that specific action. In other words, what ”knowledge” the nets learned re-

mains unknown. To solve this problem, in this section, we formally propose Explainable

Generative Adversarial Imitation Learning (xGAIL), a strategy explanation framework to

extract human understandable knowledge from the trained nets. Our xGAIL framework is

designed to provide both global and local explanations for the learned policy and reward

nets. We use the policy net as an example to illustrate xGAIL. The xGAIL framework

consists of the global explanation and the local explanation. The global explanation aims

to reveal the state observation O∗
s(a) which leads to the highest probability of choosing a

target action a, and the local explanation extracts the most effective local features.

1) SpatialAM: Global Explanation Method for GAIL.

Design Goal. Given a policy net π, the goal of the global explanation is to extract the state

observation O∗
s(a) that maximizes the probability of a target action a in policy π(a|s)

among all the actions. It thus can be formulated as below,

O∗
s(a) = arg max

Os

π(a|Os). (3.5)

Limitations of state-of-the-art works. This objective function has been extensively studied
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in the literature as an activation maximization (AM) problem [94, 95, 96]. For example,

the AM model from [94] aims to find the image that maximizes the likelihood of being

classified as a goose, which introduces an L2 regularization term to guarantee the obtained

image is close to a real image, without overfitting. The optimal input can be obtained by

gradient ascent via back propagation.

However, for our policy net explanation problem, the input traffic state observations

possess intrinsic geographic characteristics, i.e., spatial auto-correlations across grids. As

a result, the activation maximization model with L1 and L2 norm regularization cannot

preserve these spatial auto-correlations in the obtained O∗
s(a). Fig. 3.5 3.6 show O∗

s(a)

(in traffic volume distribution) obtained using AM without regularization and with L2

norm regularization. Comparing to the real state observation in Fig. 3.4, neither of them

captures the real traffic volume distribution. To tackle this problem, we propose Spatial

Activation Maximization (SpatialAM).

Spatial Activation Maximization (SpatialAM). To enable activation maximization to out-

put O∗
s(a) that preserves the spatial auto-correlation pattern presented in the real world

observations, we introduce a new spatial regularization term into the AM problem (to

capture the realness of a state observation) as

Realness(Os(a)) = −Dist(Os(a), Ōs(a)), (3.6)

where Dist(Os(a), Ōs(a)) is the mean square distance of Os(a) from Ōs(a), which is

the mean state observation from the demonstration data, and captures what a real state

observation looks like. And the objective function of SpatialAM is

O∗
s(a) = arg max

Os

{π(a|Os) + λ ·Realness(Os)}, (3.7)

where λ is the weight of the regularization term. The introduced spatial regularization
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Figure 3.8: SpatialAM Figure 3.9: SpatialRISE

term guides the activation maximization problem to find a state observation that maxi-

mizes the probability of a, and minimizes the difference to the mean state observation

Ōs(a). Fig. 3.7 shows O∗
s(a) obtained by SpatialAM, is clearly closer to the real state

observation (and with a higher probability of 0.41 for the target action a). An illustration

of SpatialAM is shown in Fig. 3.8.

2) SpatialRISE: Local Explanation Method for GAIL.

Post-hoc local interpretation approaches help us learn the local explanations of neural

networks. We aim to answer the question “which areas of the input layer play important

roles in producing the policies in the learned policy and reward nets”. One of the basic

ideas behind the local explanation is to generate an importance map, which can show how

important each entry of the input is to the prediction of the model.

Spatial randomized input sampling explanation. Randomized Input Sampling Explana-

tion (RISE) [86], as a local interpretation approach, can discover the importance map

of the input by probing the model with randomly masked versions of the input image and

obtaining the corresponding outputs. The masks are then aggregated into the importance

map according to the corresponding outputs. However, when being applied to the GAIL

model that learns spatial features, RISE has two limitations. First, it does not segment

the input observation map based on intrinsic geographic characteristics. As a result, the

high importance areas identified by RISE are large and do not align meaningfully with

the functional region of the city. Second, RISE employs a bi-linear interpolation method

to generate the mask values, which ignores the spatial auto-correlation of the features.
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This may lead to drastically different importance values being assigned to highly similar

locations in the same functional region of the city. To deal with these challenges, we

propose a novel spatial importance discovery model named SpatialRISE to discover the

importance of geographic regions with respect to a specified output in the learned GAIL

model. It consists of three steps: map segmentation, mask generation, and importance

map generation.

Map segmentation. As LIME [85] tries to discover the importance of the meaningful

super-pixels in the image, we want to discover the importance of the functional regions of

the city. To do this, we first segment the map into functional regions. Within each func-

tional region, the observation values are expected to have strong spatial auto-correlation.

We measure the strength of spatial auto-correlation at each location using a Local

Getis-Ord Gi∗ statistic[103]. The local Gi∗ statistic can be calculated via eq.(3.8),

Gi∗ =

∑n
j=1 wi,jxj − X̄

∑n
j=1wi,j

S

√
n
∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)

2

n−1

, (3.8)

where xj is the observation value at location j, wi,j is the spatial neighborhood indicator

between location i and j, and n is the total number of locations, X̄ =
∑n

j=1 xj/n, and

S =
√∑n

j=1 x
2
j/n− (X̄)2. In this work, wi,j = 1 if i and j are geographically neigh-

boring to each other, otherwise wi,j = 0. A large positive local Gi∗ score indicates a

hotspot (high observation values clustered), and a small negative local Gi∗ score indi-

cates a coldspot (low observation values are clustered). Thus, we can segment the map

into clusters according to the local Gi∗ scores of the grids given cut-off threshold. The

cluster algorithm is shown in Algorithm 2.

Mask generation. With the segmented observation maps, we are able to take the spatial

auto-correlation into consideration to generate masks. The mask values within each clus-
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Input: observation map O, threshold Git of |Gi∗|;
Output: Clusters C for all grids;

1: C = {}, k = 0;
2: Calculate Gi∗ for each grid gi based on O;
3: for Each grid gi in the observation map do
4: if |Gi∗| > Git then
5: if gi is neighboring to any grid in an existing cluster cj(0 < j ≤ k) and have

the same sign of Gi∗ then
6: Add gi to the cluster cj;
7: else
8: k = k + 1;
9: Create a new cluster with gi as the first grid in the cluster ck;

10: end if
11: else
12: k = k + 1;
13: Consider gi itself as an independent cluster ck;
14: end if
15: end for
16: Return the clusters C = {c1, ..., ck} for all grids.

Algorithm 2: Observation map segmentation

ter have strong spatial auto-correlation. To generate mask values for the grids in each

cluster, we first randomly sample an overall trend tr ∈ {1, 0} for each cluster, i.e., pre-

serving or covering the original observation values, with the covering probability p. Then,

inside each cluster, we assign mask value, m(i), to grid i according to eq.(3.9),

m(i) =


1− α ∗ random(0, 1), if tr = 1;

α ∗ random(0, 1), if tr = 0,

(3.9)

where α ∈ (0, 1) is the weight of the randomness. The mask generation method can

adapt to all kinds of random distributions. In this work, we employ uniform distribution

to generate random values, which makes sure that the mask values of the grids in the same

cluster are within an expected range.

Importance map generation. Once we generate a set of masks, we can estimate the im-
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Figure 3.10: Learning
curves with different λ’s

Figure 3.11: Impact of λ
in SpatialAM

Figure 3.12: Impor-
tance map evaluation

portance map for each observation map. Since we introduce randomness in each cluster,

the importance map produced by our proposed SpatialRISE can tell the pixel-wise impor-

tance.

The framework of SpatialRISE is shown in Fig. 3.9. The input of the policy net is Is,

and π(a|Is) is the output of the policy net regarding action a. Let m : Λ → [0, 1] be a

random mask, and M be the population of all possible masks following distribution D.

Is �m is the masked input. Then the importance map IptIs,π,a of Is regarding the output

of action a in policy net π can be calculated by the weighted sum of the masks with the

model output π(a|Is �m) as the weight for each mask m:

IptIs,π,a =
1

E(M)

∑
m∈M

π(a|Is �m) ·m · P [M = m]. (3.10)

The intuition is that π(a|Is�m) is high if entries of Is preserved by maskm are impor-

tant. Empirically, we can estimate IptIs,π,a by sampling a set of N masks M ′ according

to D:

IptIs,π,a ≈
1

E(M ′) ·N
∑
m∈M ′

π(a|Is �m) ·m. (3.11)
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3.1.4 Evaluation

In this section, we evaluate our xGAIL framework on a pre-trained GAIL model to inter-

pret what knowledge the policy net (learned from GAIL) has learned.

3.1.4.1 Model Performance Evaluation

We conduct experiments to evaluate the effectiveness and efficiency of our proposed Spa-

tialAM and SpatialRISE.

SpatialAM model evaluation. We evaluate SpatialAM algorithm by comparing it

with baselines and examining the impact of the choice of regularization weight λ.

Comparison with Baselines. We first compare our SpatialAM model with two baseline

models, including Activation Maximization with L1-norm and L2-norm regularization

terms [104]. Fig. 3.11 shows the comparison results about the learned policy and the real-

ness of state observation (measured by the realness regularization termRealness(O∗s(a)))

with different regularization weight λ ranging from 1 to 100. It clearly indicates that

when increasing λ, the policy probability π(a|O∗s) decreases, and the realness of state

observation increases for all methods, which makes sense because λ controls how much

to maximize the policy vs. maximize realness of the solution state observation. However,

note that when λ is sufficiently large (i.e., λ ≥ 98), all three approaches tend to the sim-

ilar high realness, but SpatialAM can always find state observations with higher policy

probability than the baselines. The comparisons show that SpatialAM can generate like

real state observations with higher policy probabilities, thus, it provides a better view of

the global explanation of what an ideal state observation looks like for the human agent

to choose a target action a.

Impact and Choice of λ. Fig. 3.10 shows an example of the learning curve of SpatialAM

with λ = 1, 20, and 98, respectively, the y-axis is the output of the objective function

defined in eq.(3.7), the x-axis is the number of iterations. The results illustrate that the
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Table 3.1: Gap between the maximum policy from real states and the policy from SpatialAM

Mean gap Max gap Min gap
0.2882 0.3885 0.1113

learning process of our proposed SpatialAM converges to a state observation O∗
s with

monotonically increased objective function by gradient ascent.

λ is designed to balance the trade-off between maintaining the spatial auto-correlation

in the generated state observation, and obtaining maximum output policy. Fig. 3.11 shows

the optimal output with different settings of λ, which illustrates that, with the increase of

λ, the maximum policy π(a|O∗
s) obtained by SpatialAM decreases, and the realness reg-

ularization term Realness(O∗
s(a)) increases. Fig. 3.11 shows that when λ is sufficiently

large, i.e., λ ≥ 98, the spatial regularization term converges to a large realness regular-

ization term Realness(O∗
s(a)) ≥ −5e−3, i.e., small distance from true state observation.

On the other hand, the policy π(a|O∗
s) converges to 0.41. As a result, we select λ ≥ 98.

To better illustrate the ability of SpatialAM in generating like-real observations and

maximizing the policy probability of a target action, Table 3.1 summarize the statisti-

cal results, by comparing the maximum policy obtained by SpatialAM vs that from the

dataset. Overall different target actions, SpatialAM can generate observations with on

average 0.2882 (i.e., the mean gap) more policy probabilities than that from the dataset.

SpatialRISE model evaluation. We first quantitatively evaluate the importance map

generated by SpatialRISE, then we compare spatialRISE with RISE, PixelRISE, and

SolidRISE, respectively.

Importance map evaluation. The question we aim to answer in this evaluation is, “Is the

important region found by SpatialRISE really important to the maximum policy?” The

more important a region is, the greater its impact on the output policy should be. We

propose a measurement that the impact of a region on the output policy can be quantified

by the drop amount of the output policy when covering the region in a channel, i.e., a state
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observation obtained by SpatialAM. Therefore, we make comparisons in the output policy

drops between covering the most important regions found by SpatialRISE and covering

other regions. Fig. 3.12 shows the results of the output drops when covering different

regions. The x-axis is the number of channels, i.e., state observations, where the most

important regions found by SpatialRISE are covered. For example, “3 chs” means that in

3 out of 4 channels the most important regions found by SpatialRISE are covered, while

in the remaining channel a region other than the most important one is covered. Since

there are multiple regions other than the most important one, we just show the maximum

output drops as the y-axis in Fig. 3.12. The results prove that covering the most important

regions in all 4 channels leads to the most significant output policy drop. In other words,

the impact of the SpatialRISE detected regions is much greater than the impacts of other

regions. Thus, the important region found by SpatialRISE is the key to the maximum

policy.

Comparison experiments. We compare our proposed SpatialRISE with the following base-

lines:

• RISE [86]: masks are generated with bilinear interpolation;

• RISE with pixel-independent masks(PixelRISE): The mask value in each grid is

independent with each other;

• RISE with solid cluster masks(SolidRISE): We first partition the underlying spa-

tial region into clusters using Algorithm 2. The masks are generated with respect

to the clusters, such that all grids in the same cluster are assigned with the same

random number.

Comparison Results. For all baselines, we set the zero mask value probability p = 0.3.

Taking the observation channel of “the number of pickups” as an example, Fig. 3.13

shows the importance map generated from the original RISE. Although it provides the
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Figure 3.13:
RISE

Figure 3.14: Pix-
elRISE

Figure 3.15:
SolidRISE

Figure 3.16: Spa-
tialRISE

Figure 3.17: Results of SpatialAM and SpatialRISE

importance of grids, it does not take the underlying geographic information into consid-

eration. Thus, the city functional regions, such as Dalang business center and Longhua

Market marked by the red boxes in Fig. 3.13, cannot be detected. Fig. 3.14 is the impor-

tance map generated by RISE with pixel-independent masks, which scatters noise with

no reliable information of importance. The reason is that the pre-trained policy net is not

sensitive to the change of individual pixels with the pixel-independent masks. Fig. 3.15

represents the importance map generated via RISE with solid cluster masks. The clusters

extracted by Algorithm 2 (the white boxes in Fig. 3.15) identify the two nearby functional

regions, as highlighted in Fig. 3.13. However, since the mask values in the same cluster

are the same, the results can only provide cluster-level importance, rather than pixel-wise

importance interpretation in finer granularity. Fig. 3.16 is the importance map using our

proposed spatialRISE. It is able to distinguish the geographic functional regions, as well

as provide the pixel-wise importance, i.e., the importance score of each pixel integrates
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both region-level and pixel-level importance information.

3.1.4.2 Explainable knowledge Learned from Passenger-Seeking Strategies

To interpret how the input observations affect the taxi driver’s passenger-seeking pol-

icy, we generate optimal state observations O∗1,O
∗
2,O

∗
3,O

∗
4 in different locations, which

maximize the policy on a target action via SpatialAM, and use SpatialRISE to gener-

ate importance maps for state observations. By examining the results using SpatialAM

and SpatialRISE for different locations, we observe and present three interesting findings

which explain how human taxi drivers make decisions for seeking passengers.

Experimental results of SpatialAM. Fig. 3.17a-d & Fig.3.17i-l present the generated

observation maps maximizing the policy at location loc1 on action a1 (northeast direction)

and loc2 on action a5 (southwest direction) respectively. Taking Fig. 3.17a as an example,

Fig. 3.17a-d are four observation maps of O∗1(a1) (number of pickups), O∗2(a1) (traffic

volume), O∗3(a1) (traffic speed), and O∗4(a1) (waiting time), respectively. Except for the

unreachable grey area, the color map spanning from white to red corresponds to the small

to large observation values. For example, a grid cell in Fig. 3.17a with white color means

that in this grid cell the number of pickups is close to 0, and a grid cell with red color

means the number of pickups in it is close the the maximum of the map. These plots show

the global observations of the four input features under which the driver’s likelihood to

go northeast at loc1 and southwest at loc2 is the highest.

Experimental results of SpatialRISE. The importance maps produced by Spatial-

RISE for the observations generated by SpatialAM at location loc1 on action a1 and loc2

on action a5 are shown in Fig. 3.17e-h & Fig.3.17m-p. Except the unreachable grey area,

the color map spanning from white to blue indicates the importance value ranging from 0

to 1. A grid cell in Fig. 3.17e, for example, with dark blue color (value close to 1) means

that the value of O∗1(a1) at this grid cell is quite important for obtaining the maximum pol-
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icy on action a1, namely, the taxi driver considers the number of pickups in this particular

grid cell heavily, when making decisions.

Knowledge learned from SpatialAM and SpatialRISE results. Integrating the re-

sults of SpatialAM and SpatialRISE, we observe the following interesting findings which

explain what human agents (i.e., taxi drivers) think about when making decisions:

Finding 1: Taxi drivers prefer the regions with large numbers of pickups. Take

the case of location loc1 and action a1 as an example, Fig. 3.17a shows that there are

many pickups in the grids in the direction of the northeast. Fig. 3.17e indicates that the

taxi driver pays her attention to the grids in the direction of the northeast where there is

Longhua Market. Recall that both Fig. 3.17a and Fig. 3.17e are based on the maximized

policy of the action towards northeast, and generated time slot for the state observation

in Fig. 3.17a is 6:50 pm- 6:55 pm which is the evening rush hours. Thus, the taxi driver

prefers northeast direction primarily because of a large number of pickups near Longhua

Market in the evening. A similar observation can be found in the case of loc2 and action

a5 from Fig. 3.17i & Fig. 3.17m.

Finding 2: Taxi drivers prefer to avoid visiting regions with high traffic volume and

long waiting time. For the case of location loc1 and action a1, Fig. 3.17b and Fig. 3.17d

suggest that the traffic volume and waiting time in the direction of the southeast are high.

Fig. 3.17f and Fig. 3.17h show that the driver cares much about the grids in the southeast

direction, where there is Shenzhen North Railway Station. As a result, the high traffic

volume and waiting time near the railway station propel the driver choosing to go another

direction (northeast in this case). The possible reason is that the high traffic volume and

long waiting time indicate traffic jams near the railway station. The driver wants to avoid

approaching these areas. A similar finding can be interpreted in the case of location loc2

and action a5 from Fig. 3.17j & l and Fig. 3.17n & p.

Finding 3: Taxi drivers do not prefer regions with high traffic speeds. From the case
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of location loc1 and action a1, Fig. 3.17c and Fig. 3.17g indicate that the high traffic speed

in the southwest direction leads the driver to go to another direction, i.e., northeast. This

is somehow counter-intuitive because a high traffic speed usually means a good traffic

condition, which taxi drivers should prefer. However, in fact a high traffic speed probably

also imply that the path is for vehicles only, such as highway and expressway. Therefore,

there are few pedestrians. Taxi drivers know that they are unlikely to find passengers.
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Human Mobility Signature

Identification

4.1 Spatio-Temporal Siamese Networks for Human Mo-

bility Signature Identification

4.1.1 Overview

4.1.1.1 Introduction

Given the historical movement trajectories of a set of individual human agents (e.g.,

pedestrians, taxi drivers) and a set of new trajectories claimed to be generated by a specific

agent, the Human Mobility Signature Identification (HuMID) problem aims at validating

if the incoming trajectory was indeed generated by the claimed agent. The HuMID prob-

lem has many real-world applications. Fig. 4.1 shows a few such examples. One of the

major applications is automatic driver identification for taxi and rider-sharing services.

According to the New York City Taxi and Limousine Commission (TLC) released statis-

tics, there were on average 850, 000 trips taken by taxis and ride-sharing services per day
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Figure 4.1: Applications of HuMID problem

in New York City in 2018 [105]. Meanwhile, the safety concerns have been raised by

people recently. For example, some unauthorised drivers are reported to have taken the

place of authorised drivers, and behave offensively towards passengers. Companies like

Uber have taken actions to ensure the safety of passengers by enabling on-trip reporting

from the APP [106, 107]. HuMID can help identify the above illegal driver substitutions

as early as possible and help improve the safety of the passengers. Another example is

insurer identification in the auto insurance industry. Insurance companies need to make

sure that a vehicle was driven by the insured driver rather than others when the insurer

filed a claim. All of these examples are downstream applications of and can benefit from

solving HuMID problems.

Many prior works pay attention to the driving behavior identification problem, an

instance of the HuMID problem. Hallac et al. [108] identified driver using automobile

sensor data from a single turn. They monitored 12 sensors installed inside and outside

the vehicle and implemented a hand-crafted rule-based classifier, which classifies up to

5 drivers. Chowdhury et al. [109] extracted 137 statistical features from smartphone

sensors and used a random forest classifier to classify trajectories into small groups of
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4 to 5 drivers. Kieu et al. [110] presented a multi-task learning model which captured

geographic features and driving behavior features of trajectories in 3D images as input

to perform trajectory clustering and driver identification. Oh and Iyengar [111] used

inverse reinforcement learning in sequential anomaly detection problem. They estimated

reward function for each driver and evaluated 10 individuals from GeoLife-GPS dataset

and aggregated normal behaviors of taxi drivers from Taxi Service Trajectory dataset.

Nonetheless, there exist significant limitations when implementing these methods in

real-world applications. First, some of these works require additional data rather than

the GPS records by installing sensors on the vehicles, for example, 12 sensors in Hallac

et al.’s work [108]. However, few vehicles is equipped with these additional sensors,

and it will be costly to install sensors to the vehicles. Second, most existing works can

only deal with a small group of drivers because they employ classification or clustering

approaches. For example, Chowdhury et al. [109] employed random forest to classify the

trajectories of 4 to 5 drivers, and Oh et al. [111] estimated 10 reward functions for 10

drivers by using inverse reinforcement learning. In real-world cases, the pool of drivers

is large. Thus, these methods are hard to be implemented. Third, a group of previous

works require that all the drivers be known in advance [108, 109, 111]. Those methods

are unsuitable for applications where only a subset of the drivers is known at training.

To address these limitations, in this work we propose a Spatio-temporal Siamese net-

works (ST-SiameseNet) framework to identify the behavior of a large group of human

agents (e.g., drivers) by using only their movement trajectory data. Since GPS devices

are widely equipped on vehicles and smart phones nowadays, the data ST-SiameseNet

requires can be easily collected. Also, ST-SiameseNet can deal with large groups of hu-

man agents in a single model and be used on new agents who are previously-unseen from

training pool. To be more specific, we first extract different transit modes of the agents

from the trajectory data. For example, there are two transit modes in taxi driving, i.e.,
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the seeking trajectory where the vehicle has no passengers on-board, and the driving tra-

jectory where the vehicle has passengers on-board. Besides, we extract different profile

features and online features from the historical trajectories of each agent to augment the

performance of ST-SiameseNet. Then, we input the trajectories together with the profile

features to ST-SiameseNet pair-wisely and train the ST-SiameseNet to identify the sim-

ilarity of each pair of inputs. Experiments on a real-world taxi trajectory dataset show

that ST-SiameseNet outperforms all baselines in identification performances. Our main

contributions are summarized as follows:

• We formulate the Human Mobility Signature Identification (HuMID) problem as a

predictive analysis problem and, for the first time, employ the idea of the Siamese

network to identify agents by their “mobility signatures” from solely their trajectory

data.

• We design a novel ST-SiameseNet framework that can handle multimodal trajectory

data. We also utilize both profile features and online features extracted from the

agents’ trajectory data to train ST-SiameseNet.

• We conduct substantial experiments using a real-world taxi trajectory dataset to

evaluate the performance of our proposed ST-SiameseNet.

4.1.1.2 Problem Definition

In this section, we introduce some important definitions and formally define the problem.

Definition 4.1.1. Human-generated spatio-temporal trajectory tr. With the wide use

of GPS sets, people can generate massive spatio-temporal data while they are using the

devices equipped with GPS sets, e.g., the GPS records of vehicles, smartphones, smart

watches, etc. Each GPS point p consists of a location in latitude lat and longitude lng,

and a time stamp t, i.e. p = 〈lat, lng, t〉. A trajectory tr is a sequence of GPS points with
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a label of the agent a who generated the data, denoted as tr = {a, 〈p1, p2, ..., pn〉}, where

the set of trajectories is T.

Definition 4.1.2. Transit mode. Transit modes are defined as a set of categories of trajec-

tories, where each category is generated under a different mobility pattern. For example,

taxi driving trajectories can be categorized into two modes, i.e., with and without any pas-

senger on-board. Private car trajectories can be grouped into commute and recreational

driving trajectories, etc. In this work, we use taxi driving as the application. The seeking

trajectory Ts is the sequence of GPS records while the vehicle is without any passengers

on-board, and the driver is seeking for passengers to serve. The driving trajectory Td is

the sequence of GPS records while the vehicle is with passengers on-board, and the driver

is taking the passengers to the destination.

Definition 4.1.3. Profile feature fp. Each agent has unique personal (or profile) charac-

teristics which can be extracted from his/ her trajectory data, such as frequent start/end

locations, average trip time duration, and preferred geographic area, working as different

dimensions fp,i of the profile features, where i is the i-th dimension of these features. The

profile features of each agent can be extracted in different time period. Here we denote

time period as T , where T can be one hour, one day or one week, etc.

Definition 4.1.4. Online feature fo. Online features represent agents’ mobility patterns

resulting from the agent’s personal judgment, experience and skills, such as speed, accel-

eration, turning left, turning right of each grid cell, working as different dimensions fo,i

of the online features, where i is the i-th dimension of these features. For each trajectory,

we build the online features.

Problem definition. Given a set of historical trajectories T collected from a group of

agents A in time periods T0, T1, ..., Tt, we aim to develop a framework to verify if the
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incoming trajectories Tt+1 which are claimed being collected from an agent a’s vehicle

in Tt+1 are indeed matching the agent a’s behavior.

4.1.1.3 Data Description

The purpose of our framework is to recognize human mobility signatures with GPS

records. In this work, we use taxi driving scenario as an example to demonstrate our

techniques. However, the proposed solution can be easily generalized to other types of

agents and trajectories. Our analytical framework takes two urban data sources as input,

including (1) taxi trajectory data and (2) road map data. For consistency, both datasets are

collected in Shenzhen, China in July 2016.

Taxi trajectory data contains GPS records collected from taxis in Shenzhen, China

during July 2016. There were in total 17, 877 taxis equipped with GPS sets, where

each GPS set generates a GPS point every 40 seconds on average. Overall, a total of

51, 485, 760 GPS records are collected on each day, and each record contains five key

data fields, including taxi ID, time stamp, passenger indicator, latitude and longitude.

The passenger indicator field is a binary value, indicating if a passenger is aboard or not.

Road map data of Shenzhen covers the area defined between 22.44◦ to 22.87◦ in

latitude and 113.75◦ to 114.63◦ in longitude. The data is from OpenStreetMap [14] and

has 21, 000 roads of six levels.

4.1.1.4 Solution Framework

Our proposed solution framework is outlined in Fig. 4.2, which takes two sources of urban

data as inputs and contains two stages: (1) extracting trajectories and profile features, (2)

identifying driving behavior. c
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Figure 4.2: HuMID Solution framework

4.1.2 Related Work

Human mobility signature identification has been extensively studied in recent years due

to the emergence of the ride-sharing business model and urban intelligence[15, 17, 21,

112]. However, to the best of our knowledge, we make the first attempt to employ siamese

network to verify human mobility signature identification. Related work are summarized

below.

Urban computing. Urban computing is a general research area which integrates

urban sensing, data management and data analytic together [13, 16, 18, 19, 20]. In partic-

ular, a group of work focus on taxi operation management, such as dispatching [27, 28]

and passenger seeking [10, 11, 29]. They aim at finding an optimal actionable solution

to improve the performance/revenue of individual taxi drivers or the entire fleet. Rong

et al.[12] solved the passenger seeking problem by giving direction recommendations to

drivers. However, all of these works focus on finding “what” are the best driving strate-

gies (as an optimization problem), rather than considering the benefits of passengers. By
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contrast, our work focuses on driver identification, which can enhance the safety of pas-

sengers.

Driver behavior learning. Most existing literature on human driving behavior rely

on human-defined driving style feature set. These handcrafted vehicle movement fea-

tures derived from sensor data or constructed from real-world GPS data [108, 109, 112,

113, 114]. They used supervised classification, unsupervised clustering or reinforcement

learning to solve problems as such driver identification, sequential anomaly detection,etc

[110, 111, 112, 113, 115]. Ezzini et al. [114] addressed the driver identification prob-

lem using real driving datasets consisting of measurements taken from in-vehicle sensors,

such as driver camera, smartphone are placed within the car and the driver is connected to

electrodes and skin conductance response. However, such existing work require expen-

sive sensor installed in the vehicle or excessively rely on human-defined features. Dong et

al. [115] proposed a deep-learning framework to driving behavior analysis based on GPS

data. They used CNN and RNN respectively to predict driver identity among 50 and 1000

drivers for a given trajectory. Such frameworks are generally require all the categories be

known in advance as well as the training examples be available for all the categories, as

opposed to our objective which only a subset of the categories is known at the time of

training.

Siamese network. The siamese network [116] is an architecture for similarity learn-

ing of inputs, which has been widely used in multiple applications, namely but a few, vi-

sion area, unsupervised acoustic modelling, natural language processing [117, 118, 119,

120, 121]. Chopra et al.[117] learned complex similarity metrics of face verification by in-

troducing convolutional networks to siamese networks. Hoffer and Ailon [118] proposed

a variant of siamese networks, triplet networks to learn an image similarity. Hu et al.[119]

applied siamese networks with convolutional layers to match two sentences. However, to

our best knowledge, we are the first one to employ siamese network to human-generated
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spatio-temporal data.

4.1.3 Methodology

4.1.3.1 Data Preprocessing

In this stage, we employ the GPS trajectory data and the road map data to extract the

seeking and driving trajectories and online features, together with the profile features of

each human agent in each time period.

Map Gridding and Time Quantization. We use a standard quantization trick to

reduce the size of the location space. Specifically, we divide the study area into equally-

sized grid cells with a given side-length s in latitude and longitude. Our method has

two advantages: (i) we have the flexibility to adjust the side-length to achieve different

granularity, and (ii) it is easy to implement and highly scalable in practice [2, 15, 33].

Fig. 2.6 shows the actual grid in Shenzhen, China with a side-length l = 0.01◦ in latitude

and longitude. Eliminating cells in the ocean, those unreachable from the city, and other

irrelevant cells gives a total of 1,934 valid cells. We denote each grid cell as gi, with

1 ≤ gi ≤ 1, 934, and the complete grid cell set as G = {gi}. We divide each day

into five-minute intervals for a total of 288 intervals per day, denoted as I = {t̃j}, with

1 ≤ j ≤ 288. A spatio-temporal region r is a pair of a grid cell s and a time interval t̃.

Each GPS record p = 〈lat, lng, t〉 and be represented as an aggregated state s = 〈g, t̃〉,

where the location (lat, lng) ∈ g, the time stamp t ∈ t̃. A trajectory of agent a then can

be mapped to sequences of spatio-temporal regions, tr = {a, 〈s1, s2, ..., sn〉}.

Transit Modes Extraction. Different transit modes can show different patterns of

driving behavior. In the taxi driving scenario, seeking and driving trajectories reflect

different characteristics for each human agent taxi driver. Thus, we split the trajectories

into seeking Ts and driving trajectories Td based on the status of the vehicle whether
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Figure 4.3: No. of
seeking trajectories

Figure 4.4: Length
of seeking trajecto-
ries

Figure 4.5: Mean
seek time

Figure 4.6: Mean
seek distance

there are passengers on board. Fig. 4.4 and 4.3 illustrate the distribution of the number

of driving trajectories and the length of each driving trajectory for each agent in each day,

respectively. Here, T = 1 day. The distributions suggest that most agents have 20 seeking

trajectories every day, and the average length of each seeking trajectory is around 14.03

km. The ratio between driving and seeking trips per day is approximately 1:1.

Features Extraction. Each agent has unique personal (or profile) characteristics, such

as the location with the longest stay (possibly home location), daily working schedule

(time duration), preferred geographic area, etc. These characteristics can be the statistical

values extracted from their trajectory data. In this work, to augment the performance

of driving behavior identification, we extracted the following 11 profile features for each

agent in each time period of analysis. Moreover, we extract one online feature, i.e., speed,

over time for each trajectory.

fp,1 & fp,2: The coordinates (in longitude and latitude direction) of

the longest-staying grid. Each agent can have his/her own preference on where to take a

break during work, thus we extract fp,1 & fp,2: longest-staying grid to represent the place

where an agent takes a break. The longest staying grid is the grid where the GPS records

remain unchanged for the longest time.

fp,3 & fp,4: Break start & end time. Similarly, each agent can have his/her own preference

on when to take a break during work, thus we extract fp,3 & fp,4: Break start & end time

to capture the schedule when an agent takes a break.
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fp,5 & fp,6: The coordinates of the most frequently visited grid. Each agent has his/her own

favorite region to go, which can help identify the agent. Thus, we extract fp,5 & fp,6: most

frequently visited grid to capture the region that an agent visits the most frequently in T.

fp,7 & fp,8: Average seeking trip distance & time. Each agent has his/her own efficiency

on looking for passengers. The experienced agents can find passengers quickly after

serving a trip, while the new agents may take longer time and distance to find a new

passenger. Thus, we extract fp,7 & fp,8: Average seeking trip time & distance to capture

their efficiency on finding new passengers. The distribution of these two features are

shown in Fig. 4.5 and 4.6, respectively, where the x-axis the average seeking distance

(in km) and the average seeking time (in min) for an agent in a day, and the y-axis is the

number of driver-day’s. Here T = 1 day. From the figures, we can see that averagely

agents spend 15 minutes to seek passengers within 3 km from his/her current location.

fp,9 & fp,10: Average driving trip time & distance. Each of the agent can have his/her own

preference on the length of trips that he/ she serves. For example, some agents prefer to

serve long trips, because they think they can earn much more at a time, and they may

look for passengers near the airport or train station where the passengers have higher

probabilities of asking for long trips. Some other agents prefer to look for short trips

because they think they can earn money more efficiently by serving short trips. Thus,

we calculate the average driving trip time and distance to capture each agent’s unique

preference on the length of driving trips.

fp,11: Number of trips served. Each agent has his/ her own strategy on looking for pas-

sengers. The experienced agents may serve more trips in T than the new agents. Thus,

we count the number of trips served of each agent in T to capture each agent’s level of

experience. This feature is just the number of driving trajectories in T.

fo,1: Speed. Given a trajectory tr = {a, 〈(g1, t̃1)...(gn, t̃n)〉}, we also extract an online

feature by calculating the speed information, denoted as v, for each data point in each
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Figure 4.7: Siamese Network

trajectory to extract more information about driving behavior. The updated trajectory

would be τ = 〈(g1, t̃1, v1)...(gn, t̃n, vn)〉, where the set of trajectories is T̃.

4.1.3.2 Data Driven Modeling

The increasingly pervasiveness of GPS sensors has accumulated large scale driving be-

havior data, which makes it possible to identify human mobility signature from trajecto-

ries. However, two challenges arise in achieving this goal. First, the pool of agents is

large but the number of trajectories per agent is limited and a large number of new agents

rise up every day, thus the data is sparse and maybe only subset of the data can be seen

during training. Second, as a type of sequential data, trajectories has temporal depen-

dencies which needs to be learned. We outline how we tackle these two main challenges

next.

Siamese networks. To address the first challenge, we employ the siamese networks[117,

122]. Siamese networks train a metric to measure the similarity (or dissimilarity) from

data, where the number of categories is very large or even not known during training, and

where the size of training samples for a single category is very small. The key idea of

the siamese networks is to find a function that maps the input patterns X into a lower-

dimensional target space Eθ to approximate the “semantic” distance in the input space,

where similar inputs are closer and dissimilar inputs are separated by a margin. Learning

the dissimilarity metric is done by training a network, which consists of two identical

sub-networks with shared weights. Fig. 4.7 shows an illustration of this structure. In
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particular, the end-to-end dissimilarity metric learning is replicated twice (one for each

input) and the representations Gθ(X1), Gθ(X2) are used to predict whether the two in-

puts belong to the same category. A commonly used optimization function for siamese

networks training[117] is :

min
θ
−((1− Y )Ls(Eθ(X1, X2)i) + Y Ld(Eθ(X1, X2)i))

s.t. Eθ(X1, X2) = ‖Gθ(X1)−Gθ(X2)‖,
(4.1)

where θ is the weights of the neural network, Y = 0 if the inputs X1 and X2 belong to

the same category and Y = 1 otherwise, Eθ(X1, X2)i is the i-th sample, which consists

of a pair of inputs and a label (similar or dissimilar), Ls is the partial loss function for a

similar pair, Ld is the partial loss function for an dissimilar pair.

Long short-term memory (LSTM) networks. The second challenge is that trajec-

tory data has temporal dependencies. Therefore, we employ LSTM networks[123], which

are capable of learning long-term dependencies for sequential data (x1, x2, ..., xT ). LSTM

sequentially updates a hidden-state representation by introducing a memory state Ct and

input gate it, output gate ot and forget gate ft to control the flow of information through

the time steps. At each time step t ∈ {1, 2, ..., T}, the hidden-state vector ht as:

it = σ(Wi · [ht−1, xt] + bi)

ft = σ(Wf · [ht−1, xt] + bf )

ot = σ(Wo · [ht−1, xt] + bo)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t)

ht = tanh(Ct) ∗ ot,

(4.2)

where Wx represents the weights for the respective gate(x) neurons and bx is the bias
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Figure 4.8: ST-SiameseNet framework

for the respective gate(x). Since the trajectory data is a sequence of (g, t̃, v), we employ

LSTM to learn the embeddings of trajectories in the framework of siamese networks.

ST-SiameseNet. Given those two challenges, we present a spatio-temporal repre-

sentation learning method to verify human mobility signature identity by implementing

siamese networks with LSTM, named as ST-SiameseNet. The purpose of this work is to

learn the representation of trajectory with limited data and to use representation of tra-

jectory data to compare or match new samples from previously-unseen categories (e.g.

trajectories from agents not seen during training). To represent the feature of trajectory

and learn the dissimilarity of driving behavior, we incorporate LSTM and fully-connected

networks (FCN) into the middle layer of ST-SiameseNet, which is briefly depicted in Fig.

4.8.

We first extract profile features for each agent and the online feature for each data point

in the trajectory. And then randomly select a pair of seeking trajectories T̃s,1 and T̃s,2, a

pair of driving trajectories T̃d,1 and T̃d,2 (all the trajectories contain the online feature) and
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a pair of profile features fp,1 and fp,2 in each time period. In the original siamese net-

works, there are two sub-networks with identical weights. To a further step, we introduce

six sub-networks where each two identical sub-networks share the set of weights since we

have three types of inputs, i.e., T̃s,1 and T̃s,2 would share the weights of LSTMS , while

T̃d,1 and T̃d,2 use the same LSTMD to learn the representation. Since each agent has a

vectorized profile features in each time period, here we implement fully-connected layers

as a profile-learner to project the profile features. ST-SiameseNet learns the driving be-

havior from seeking, driving trajectories and profile features respectively and aggregates

the embedding layers with a sequence of fully-connected layers, i.e. dissimilarity-learner

as the dissimilarity metric. Differing from previous works [117] that use the L1 norm

to approximate the “semantic” distance, we utilize neural networks (as a more powerful

function) to learn the dissimilarity.

The learning process minimizes the binary cross entropy loss that drives the dissimi-

larity metric to be small for pairs of trajectories from the same agent, and large for those

from different agents. To achieve this property, we pose the following ST-SiameseNet

optimization problem:

min
θ
−(y log(Dθ(X1, X2)) + (1− y) log(1−Dθ(X1, X2))),

s.t. X1 = (T̃s,1, T̃d,1, fp,1), X2 = (T̃s,2, T̃d,2, fp,2),

(4.3)

where y = 0 if the trajectories belong to the same agent and y = 1 if the trajectories

come from two different agents, Dθ(X1, X2) is the prediction probability of how likely

the trajectories are from two different agents.

Algorithm 3 shows the training process of the ST-SiameseNet model. During the

training process, we apply the gradient descent approach to update parameters θ, with

learning rate α and a predefined imax, (i.e. the total number of iterations). We first extract

profile features fp from trajectories T for each agent. And then compute the online feature

96



4.1 SPATIO-TEMPORAL SIAMESE NETWORKS FOR HUMAN MOBILITY
SIGNATURE IDENTIFICATION

fo,1, i.e. speed information in each grid cell and update trajectories with the online feature

from T to T̃. Moreover, we split trajectories into seeking trajectories T̃s and driving trajec-

tories T̃d for each agent. Since ST-SiameseNet pair-wisely trains the data, we randomly

select a pair of trajectories, either from the same agent or from different agents in two

time periods, with equal probability in each iteration. Next, we update ST-SiameseNet

parameters θ by using Eq 4.3, with α as the step size (Line 7).

Input: Trajectories T, initialized parameters θ, learning rate α, max iteration imax.
Output: A well trained ST-SiameseNet with parameters θ.

1: Extract profile feature expectation vector fp.
2: Calculate the online feature fo,1 and update trajectories from T to T̃.
3: Split seeking T̃s and driving T̃d trajectories.
4: Sample a pair of trajectories with the online feature T̃s,i, T̃d,i and a pair of profile

features fp,i.
5: while iter < imax do
6: Calculate gradient∇g(θ) using Eq 4.3.
7: Update θ ← θ + α∇g(θ).
8: end while

Algorithm 3: ST-SiameseNet Training

4.1.4 Evaluation

In this section, we demonstrate the effectiveness of our proposed method by utilizing

GPS records collected 10 workdays from 2197 taxis in Shenzhen, China in July 2016.

We compare our model with other baseline methods, analyze the generalization of our

approach and evaluate the importance of transit modes and profile features for each agent.

4.1.4.1 Evaluation Metrics

To evaluate the performance of our proposed model and baseline methods, we measure

accuracy, precision, recall and F1 score against the ground truth among labels. In our

implementation, the dissimilarity score threshold is set to 0.5. If it is less than 0.5, we
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Figure 4.9: Mod-
els accuracy across
days

Figure 4.10: Mod-
els accuracy across
agents

Figure 4.11: Tran-
sit modes across
days

Figure 4.12: Tran-
sit modes across
agents

consider that the trajectories belong to the same agent. Otherwise they are from different

agents. Note the threshold can be tuned on different datasets. In particular, precision is

intuitively the ability of the classifier not to confuse different agents. Recall shows the

ability of the classifier not to miss pairs of different drivers. The F1 score is a weighted

average of the precision and recall.

4.1.4.2 Baseline Algorithms

We compare the performances of our method against the following baseline algorithms.

• Support Vector Machine (SVM). Taigman et al. [122] tested the similarity be-

tween faces using a linear SVM. Here we utilize the set of profile features as input,

described in section 4.1.3.1. We conduct absolute difference between profile feature

vectors of two agents and then employ SVM to classify whether these two agents

are same.

• Fully-connected Neural Network (FNN). Fully-connected neural network is a ba-

sic classification or regression model in deep learning. Here we concatenate all the

trajectories in two time periods from two agents together as the inputs of the neural

network. In addition, we compare the model accuracy with and without features.

• Naive Siamese Network. Chopra et al. [117] used a Siamese architecture for

face verification. Here we train a network which consists of two identical fully
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connected networks that share the same set of weights. We concatenate all the

trajectories in two time periods from each agent and evaluate the baseline with and

without features.

• ST-SiameseNet-L1. To evaluate the advantages of using FCN than a predefined

function in learning dissimilarity, we replace FCN with the L1-norm distance to

approximate the ”semantic“ distance.

4.1.4.3 Results

Comparison results. We compare our ST-SiameseNet with the baseline models in terms

of precision, recall and F1 score. All the models train with trajectories from 500 agents

in 5 days, validate with trajectories from the same agents as training set but in another

5 days and test with trajectories from 197 new agents in the latter 5 days. Similar to

the training dataset, we uniformly sample two sets of trajectories from the same agent

or different agents in two time periods during validation and testing. Table 4.1 shows

the evaluation metrics from all the methods. It is clear that our approach achieves the

best performance. SVM outperforms other baseline models using profile features but

is worse than our model. This is because SVM is not able to model sequential inputs

and the aggregation will lose information of driving behavior. With profile and basic

features added, both FNN and Siamese FNN work better, indicating that features can

provide useful information in both models. However, all of the deep learning and machine

learning models perform worse than our model, since ST-SiameseNet has a more effective

ability to capture the information of sequential inputs by using LSTM. In addition, ST-

SiameseNet-L1 performs worse than ST-SiameseNet with FCN to learn the dissimilarity,

showing that L1 norm has limited ability to learn the dissimilarity between two identities.

In particular, the F1 score of ST-SiameseNet is over 0.85, which is significantly higher

than all baselines.
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Table 4.1: Average F1, recall and precision on real-world dataset and comparison with base-
lines

Methods Precision Recall F1 score

ST-SiameseNet 0.8710 0.8317 0.8508
SVM 0.8100 0.7661 0.7874
FNN (with features) 0.6112 0.6298 0.6195
FNN (without features) 0.5266 0.5470 0.5365
Naive Siamese (with features) 0.6137 0.6707 0.6407
Naive Siamese (without features) 0.5580 0.5657 0.5617
ST-SiameseNet-L1 0.8052 0.7775 0.7910

Figure 4.13: Mean
serving time

Figure 4.14: No.
of serves per day

Figure 4.15: Fea-
tures across days

Figure 4.16: Fea-
tures across agents

Model generalization. We evaluate different design choices of our model on classi-

fication accuracy. Similar to the previous experiments, we use the trajectories of the first

500 agents in 10 consecutive days as training and validation sets and vary the split ratio.

Impact of different number of days. First, we vary the number of days in the training set

of the 500 agents to Nday = 3, 5, 7 and 9 respectively. We train trajectories of 500 agents

from Day 1 to DayNday, validate trajectories of the same 500 agents from Day (Nday+1)

to Day 10, test trajectories of the new 197 agents from Day (Nday + 1) to Day 10. Fig.

4.9 depicts the training, validation and test accuracy across different days. As more days

are added to the training dataset, the training accuracy decreases slightly, while validation

and test accuracy gradually increase, indicating that larger datasets can help with over-

fitting problem. In addition, when the number of days extending from 3 to 5, both the

validation and test accuracy have a dramatically increase, while the validation and test

accuracy have a small increase after adding more days, indicating that trajectories of 500
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agents from 5 days contain enough information to learn the similarity of agents.

Impact of different number of agents. we also vary the training dataset size by using a sub-

set of the agents. Subsets of sizes Nagents = 100, 500, 1000, 1500 and 2000 agents in 5

days are used. We train trajectories ofNagents agents from Day 1 to Day 5, validate trajec-

tories of the sameNagents agents from Day 6 to Day 10, test trajectories of new 197 agents

from Day 6 to Day 10. Fig. 4.10 shows the training, validation and test accuracy across

different number of agents. With more agents added to the training dataset, the neural

networks have better generalizability and can have a better performance when seeing new

data. There is an enormous increase of validation and test accuracy when the number

of training agents growing from 100 to 500, indicating that the neural networks benefits

from the increase of diversity of agents. However, similar to the impact of different num-

ber of days, the validation and test accuracy are flattening when adding more agents to the

training pool, showing that trajectories of 500 agents from 5 days are sufficient to learn

the mobility signatures of agents.

Importance of transit modes. Transit modes can show different driving habits among

different agents. Seeking and driving trajectories are two typical transit modes, defined

based on the situation of the vehicle whether any passenger on-board. Different agents

would have different strategies to seek passengers [2]. In this section, we would test if

each of the transit mode can contribute to identify the drivers’ behavior. As can be seen

from Fig. 4.11 and 4.12, both seeking and driving trajectories have the ability of discrim-

inating the same and different agents. All the accuracy of seeking trajectories are higher

than driving trajectories, which is consistent with human intuition that different agents

have different strategies when seeking passengers, while agents do not have the choice

of destination when passengers on board. With both seeking and driving trajectories in-

cluded, ST-SiameseNet performs the best by integrating the information of both seeking

and driving trajectories. Fig. 4.11 and 4.12 also show the same trend as Fig. 4.9 and 4.10
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that models of seeking trajectories only and driving trajectories only benefit from larger

dataset.

Importance of features. In this section, we evaluate the importance of features by

comparing our model with and without features. Each agent has unique personal char-

acteristics which can be extracted from his/her trajectory data over a time period [2]. In

addition, Speed information of each trajectory are able to capture agents’ driving behavior

[115]. Fig.4.13 and 4.14 describe the distribution of two profile features, mean serving

time and number of service trips. The orange bar depicts the absolute difference of profile

features between same agents, while the blue bar otherwise. There is an obvious differ-

ence between same agents and different agents, indicating the profile features are able to

identify the similarity of driving behavior.

From Fig. 4.15 and 4.16, we can see that our ST-SiameseNet with trajectories and

features works the best comparing with the model with profile features only as well as

with trajectories only in different number of training days and different number of train-

ing agents. In particular, the model with profile features only gets the worst performance,

indicating that the aggregation may lose information of driving behavior. Besides, if we

only use trajectories as inputs i.e. tr = 〈s1, s2...sn〉 (s = 〈g, t̃〉), all the test accuracy

across days and agents are also lower than our ST-SiameseNet with both trajectories and

features included, probably because some statistical information, such as mean seeking

distance, mean seeking time, number of serves, cannot be captured by LSTM. In addition,

Fig. 4.15 and 4.16 shows the same trend as Fig. 4.9 and 4.10 that the neural networks ben-

efit from larger datasets. Overall, with raw trajectory data and extracted features working

together, we can learn the driving patterns from trajectory data more effectively and ver-

ify the agent more accurately. Note that we only extract 11 profile features and 1 online

feature, which requires little human work of feature engineering comparing with [109],

which extracted 137 statistical human-defined features.
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Figure 4.17:
Driver 1 in Case 1

Figure 4.18:
Driver 2 in Case 1

Figure 4.19:
Driver 3 in Case 2

Figure 4.20:
Driver 4 in Case 2

4.1.4.4 Case Studies

To further understand how ST-SiameseNet identifies agents’ behaviors, we investigate

individual agents’ cases to show what factors ST-SiameseNet considers when identifying

the agents. Four case studies are presented.

Cases 1: identifying different drivers. First, we show an example of two randomly

selected human agent taxi driver, driver 1 and driver 2. We extract their trajectories

and profile features on July 4th, 2016, then, our proposed ST-SiameseNet consumes the

trajectories and features and produces a dissimilarity score of 0.99, which means ST-

SiameseNet identifies that this pair of inputs is from two different agents. To figure out

what factors that ST-SiameseNet consider to identify them, we visualize the heat map of

their visitation frequency on that day to each grid of the city in Fig.4.17&4.18. The darker

red color in the grid indicates higher visitation frequency. Fig.4.17&4.18 illustrate that

driver 1 and driver 2 have significantly different active regions. Driver 1 likes working

in the west part of the city, especially near the airport, while driver 2 prefers to work in

the east part near the downtown area. The difference in the active regions of driver 1 and

driver 2 helps ST-SiameseNet identify them. Fig.4.21 shows the comparison of the pro-

file features of driver 1 and driver 2, which illustrates that they have significantly different

feature values on fp,2: the longest staying grid id in latitude direction and fp,6: the most

frequently visited grid id in latitude direction. This is consistent with the finding from the

heat map, i.e., the difference in their active regions.

Cases 2: identifying different drivers with similar active regions. ST-SiameseNet
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Figure 4.21:
Driver 1 & driver 2
Profile Features

Figure 4.22:
Driver 3 & driver 4
Profile Features

Figure 4.23:
Case 3 profile
features

Figure 4.24:
Case 4 profile
features

Figure 4.25: Day 1
in Case 3

Figure 4.26: Day 2
in Case 3

Figure 4.27: Day 1
in Case 4

Figure 4.28: Day 2
in Case 4

can also identify different drivers even if their active regions are similar to each other. We

select another case of identifying different drivers from our data randomly. Fig.4.19&4.20

show the heat map of the visitation frequency of driver 3 and driver 4, which indicate that

driver 3 has similar active region as driver 4. They both like working near the downtown

area. And our proposed ST-SiameseNet successfully identifies them with a dissimilarity

score of 0.88, which means they are significantly different. Fig.4.19&4.20 show that

driver 3 and driver 4 have similar active region near the downtown area, and the difference

on fp,2: the longest staying grid id in longitude direction and fp,6: the most frequently

visited grid id in longitude direction is small as shown in Fig.4.22. However, they have

significantly different profile feature values on fp,3 & fp,4: Break start & end time., and

this information has been discovered by ST-SiameseNet, thus driver 3 and driver 4 can be

identified by ST-SiameseNet.

Case 3: identifying abnormal behavior of one driver ID. Apart from the case of

identifying different drivers, ST-SiameseNet can deal with the case of identifying abnor-

mal driving behavior of ”one” driver. Our dataset contains only the licence plate of each

vehicle. Therefore, abnormal behaviors of the same vehicle can might suggest a change
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of driver. Here, we study a driver’s behavior in 2 days from July 5th to July 6th 2016.

Let’s call this driver ”John”. Our ST-SiameseNet produces a dissimilarity score of 0.84

for the trajectories in these 2 days, which indicates that John’s behavior changes signifi-

cantly from day 1 to day 2. To figure out how John’s behavior changed significantly, we

plot the heat map of his visitation frequency in Fig.4.25 & 4.26, from which, we find that

his active region changes from the west part of the city in day 1 to the east part in day

2. Also, Fig.4.23 shows the profile features in these 2 days. Most of the profile features

change significantly, e.g., fp,2: the longest staying grid id in longitude direction, fp,6: the

most frequently visited grid id in longitude direction, fp,3 & fp,4: Break start & end time.

We also study a few more days after day2, the behaviors are similar to that in day2, thus,

this abnormal behavior after day 1 appears to be the result of a new driver operating the

vehicle after day 1.

Case 4: identifying normal behavior of one driver ID. For the normal behavior of

a driver, ST-SiameseNet can identify it correctly. Here, we study a driver’s behavior in 2

days from July 5th to July 6th 2016. Let’s call this driver ”Mike”. Our ST-SiameseNet

produces a dissimilarity score of 0.03, which indicates that Mike’s behavior remains con-

sistent from day 1 to day 2. The heat maps of his visitation frequency in Fig.4.27 & 4.28

illustrate his active region does not change. Also, his profile features in these 2 days as

shown in Fig.4.24 remain stable.
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Smart Cloud Commuting System

5.1 Feasibility Study of Smart Cloud Commuting System

5.1.1 Overview

5.1.1.1 Introduction

In most urban cities today, there are two primary modes of transit: i) Public transit ser-

vices such as buses, subways which run along fixed routes with fixed timetables, and

have limited coverage areas. These limitations mean that one cannot take public transport

between any two arbitrary points in a city. ii) private transit services such as taxis, shared-

van shuttles, (mobile app-based) ride-hailing services (e.g., Uber or Lyft) are largely “on-

demand” – although their service may not be immediate or “real-time”. However, taxi

and ride-hailing services can be expensive, limiting them mostly for ad hoc use, namely,

occasional short trips.

It is optimistic for us to imagine that, in the near future, there will be autonomous

vehicles 1 (AVs) on the road networks either for commerce or private use. So far there

1Colloquially known as “self-driving cars” – however in our study we will use the term AVs to refer to
not only passenger cars, but also “self-driving” shuttles, vans or busses; namely, AVs of varying sizes.
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are some exciting news about the application of AVs, for example, Voyage Auto, Opti-

mus Ride and Waymo One have deployed robo-taxi systems in Florida, California and

Arizona. Voyage Auto employs AV taxis to shuttle residents in a large retirement com-

munity in Florida. TuSimple, Kodiak, Ike Robotics, and Pronto. AI are developing long-

haul autonomous driving system for trucks. Nuro.AI, Starship Technologies, Refraction

AI and others are developing smaller, slower speed vehicle systems designed for last

mile delivery (from a local warehouse to customer’s home or business) of groceries and

packages[124]. The emergence of autonomous vehicles although will offer new poten-

tials to address the challenges facing the current urban transit systems, and challenge and

transform how we view and design public and private transport systems in future smart

cities. For instance, with their autonomy, would it still make sense to take “self-driving”

cars to work, but have them spend most time parked, when in fact they can go somewhere

by themselves? We envisage a forward-looking, ambitious and disruptive cloud commut-

ing based transport system – smart cloud commuting system (SCCS) – for future smart

cities based on shared AVs. Employing giant pools of AVs of varying sizes, SCCS seeks

to supplant and integrate various modes of transport – most of personal vehicles, taxis,

and low ridership public buses used in today’s private and public transport systems – in a

unified, on-demand fashion, and provides passengers with a fast, convenient, and low cost

transport service for their daily commuting needs.

We postulate the four key aspects of system efficiency gains that could potentially be

achieved in a smart cloud commuting system with shared AVs. This work constitutes a

first attempt at exploring the feasibility and efficiency gains of the proposed SCCS; due

to space limitation, we focus primarily on the temporal multiplexing gain through time-

sharing of AVs. To this end, we model SCCS as a queueing system with passengers’ trip

demands (as jobs) being served by the AVs (as servers). Using a 1-year real trip dataset

from Shenzhen China, we quantify (i) how various design choices – such as the number
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of shared AVs and number and locations of depots (where idle AVs are stationed) – affect

the passenger waiting time and vehicle utilization; and (ii) how much system efficiency

gain (e.g., in terms of number of AVs and vehicle utilization) can be attained through

SCCS.

• Utilizing a large-scale taxi trip dataset, we develop generative models to capture the

arrival and service patterns of urban taxi trip demands over different time periods

of the day.

• By modeling SCCS as an M/G/k queuing system, we propose an theoretical

framework to estimate the average waiting time of all passengers, given the total

number of AVs and the number/locations of depots.

• We investigate the impacts of different design choices, e.g., number of AVs and

number/locations of depots, on passenger waiting time and vehicle utilizations.

• We quantify the temporal multiplexing efficiency gain of time-sharing AVs achieved

via SCCS, and compare that with the current urban taxi system. The evaluation re-

sults obtained using the 1-year taxi trip dataset demonstrate that the proposed SCCS

can serve the trip demands with 22% less vehicles and 37% more vehicle utilization.

5.1.1.2 Motivation and Problem Definition

In this section we first motivate the proposed SCCS. We then lay out a general queuing

system model for SCCS for studying its feasibility and quantifying its potential efficiency

gains.

Smart Cloud Commuting System (SCCS). As alluded in the introduction, today’s

urban transit systems suffer many well-known shortcomings. Taking taxis as an example,

Fig. 5.1 shows the number of on-road taxis in 3 days from 03/04/2014− 03/06/2014 for

each 5-minutes time interval in Shenzhen, which indicates on average more than 60% of
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Figure 5.1: Idling taxis

taxis are idle over time. Now imagine a (perhaps not-so-distant) future where we live in a

smart city with autonomous vehicles or “self-driving” cars. How would the transport sys-

tems, both public and private, be designed in such a smart city? What transport services

would be needed or plausible? Our envisaged SCCS is a bold attempt to re-imagine and

re-design transport for future smart cities by fusing information technologies with AVs to

offer a new kind of mobility-as-a-service that targets more specifically daily commuting

needs for most (if not all) users in cities and metro areas (urban and suburban). As shown

in Fig.5.2, in SCCS, each AV is controlled by (centralized) dispatch servers residing in the

cloud. Once a passenger requests a trip, the cloud servers will arrange an AV to pick up

and send the passenger to the destination. When a trip demand is completed, the vehicle

can be re-used for other passengers. In this work, we introduce the SCCS implemented

with centralized servers, and in our future work, we will study the implementation of

SCCS with decentralized cloud computing system. Our proposed SCCS can also benefit

public transportation system with high-capacity AVs, e.g., autonomous buses. To inte-

grate public transportation in SCCS, the high-capacity AVs can be assigned to pick up

a group of passengers who can share the trips along the way. Employing giant pools of

shared AVs of varying sizes, SCCS aims to provide users with a fast, convenient, and low

cost transport service to meet their daily commuting needs. The scale and the resulting

abilities to maximize system efficiencies via shared AVs differentiate our envisaged SCCS
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Figure 5.2: Framework of SCCS

from today’s ride-hailing services, which are designed primarily to serve ad hoc trips.

We postulate the following four key aspects of system efficiency gains that could po-

tentially be achieved in a smart cloud commuting system with shared AVs. (i) Temporal

multiplexing gain through time-sharing of AVs: by leveraging “bursty” travel demands

and sharing of AVs over time, the number of AVs needed would be significantly less than

what would be if every user had his or her personal AV. This is analogous to the statistical

multiplexing gain attained by a packet-switched data network. (ii) Payload multiplexing

gain through ride-sharing among users: By utilizing AVs of varying sizes to enable ride-

sharing among users (similar to today’s car-pooling, shared shuttle or transit services, but

leveraging the autonomy of AVs), the number of AVs needed can be further reduced. (iii)

Elastic demand gain through smart trip scheduling: Many travel demands are elastic in

nature (a trip to a store for grocery shopping now may not be crucial and thus can be

delayed, say, for 30 minutes). Even for peak hour travel demands, as long as a user can

reach her destination within a desired time window, the trip can be scheduled dynami-

cally to leverage such elasticity to achieve additional system efficiency gain. (iv) Road

network efficiency gain through intelligent control of AVs: With fewer vehicles on the

road through shared AVs, road congestion can be alleviated or avoided, thus shortening

trip times. Road network efficiency gain can be further increased by packing more AVs
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Figure 5.3: Request pattern

during peak demands (e.g., by reducing inter-car spacing) without creating safety issues,

and by intelligent routing of AVs through less congested roads.

As a first attempt at studying the feasibility of the envisaged SCCS, in this work we

focus primarily on the first aspect of the system efficiencies, namely, temporal multiplex-

ing gain through time-sharing of AVs, that can be potentially achieved through SCCS. In

particular, by modeling SCCS as a queueing system, we investigate how various design

choices – such as the numbers of vehicles and the number/locations of depots – affect the

quality of services (QoS) of passengers (e.g., waiting time) and the overall system perfor-

mance (e.g., vehicle utilization). For this study, we utilize a real-world, taxi trip dataset

from Shenzhen, China over a period of one year. One interesting and important feature of

this dataset lies in that due to the limited area coverage (and the fact that the public transit

capacity cannot meet the demands during the peak hours), many residents in the city rely

on taxis for daily commuting needs (see Fig. 5.3). This feature enables us to study the

feasibility of the proposed SCCS to meet daily commuting needs and compare its system

performance with that of the existing taxi system.

Modeling SCCS as a Queuing system. SCCS can be viewed as a queuing system.

Passengers request for commute services from SCCS. Their requests will be placed in a

queue, if the servers (i.e. AVs) are busy. Fig.5.4 shows the queuing model of SCCS, an

arrival event is a request received from a passenger, and a service event is the process of
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Figure 5.4: Queuing system

an AV taking the passengers to the destination. As a queueing system, there are three

components charactering the system performances, including the arrival pattern, service

pattern and number of servers.

Arrival pattern is the distribution of the arrival events coming into the queuing system.

We can use arrival rate and arrival interval to capture the arrival pattern of a queuing

system. Service pattern captures the distribution of the service time.

Definition 5.1.1 (Arrival interval A). The arrival interval is the time period between

each two successive trip requests.

Definition 5.1.2 (Arrival rate λ). The arrival rate is the number of trip requests arriving

the system within a unit time slot.

Definition 5.1.3 (Service time S). The service time is the time period when a self-driving

vehicle is dispatched to serve a passenger.

If the passengers’ requests arrive the queue while all of the AVs are busy, the requests

will be placed in a queue to wait for the next available AV. The waiting time indicates

how long a passenger waits in a queue, which characterizes the quality of experience of

the passenger in SCCS.

Definition 5.1.4 (Waiting time W ). The waiting time is the time period from the arrival

of a passenger request to an AV being dispatched to the passenger.
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Problem Definition. Thanks to the fast development of location sensing technologies,

the increasing prevalence of embedded sensors inside mobile devices, vehicles has led to

an explosive increase of the scale of urban mobility datasets, including the trip demands

data of passengers in urban areas.

Definition 5.1.5 (Trip demand). A trip demand of a passenger indicates the intent of a

passenger to travel from a source location src to a destination location dst from a given

starting time ts with an expected trip duration ∆t, which can be represented as a 4-tuple

〈src, dst, ts,∆t〉.

Fig. 5.3 shows the temporal distribution of urban taxi trip demands for each 10-minute

time interval in Shenzhen from 03/04/2014−03/06/2014, which exhibits a clear diurnal

pattern. Such pattern is driven by the daily commuting needs between residential and

working locations. Given such strong diurnal pattern, we divide each day into a few time

intervals, and focus on the daily dynamics of trip demands over intervals.

Problem definition. Given the total number of available self-driving vehicles k and the

number of depots d, we aim to (1) estimate the impact of design choices (in k and d) on

passenger waiting time and vehicle utilization; and (ii) evaluate the efficiency gains of

SCCS comparing to the current taxi system, in terms of numbers of vehicles needed and

the vehicle utilization.

5.1.2 Related Work

To the best of our knowledge, we are the first to propose a Smart Cloud Commuting Sys-

tem (SCCS) for future smart cities with AVs, and quantify its feasibility and efficiency

gains. In this section, we introduce two research areas that are related to our work, in-

cluding (1) mobility-on-demand system, and (2) urban computing.

Mobility-on-demand system (MoD). MoD ([125, 126, 127, 128, 129, 130, 131])
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is an emerging concept in solving urban transportation problems, such as unbalanced

supply-demand rates and traffic congestion. MoD aims to provide transit supplies, such

as shuttle/taxi services according to dynamic urban trip demands. In [125], authors

design a simulation platform to explore the performance of autonomous vehicle based

MoD system under various vehicle dispatching models. In another work [126], a gen-

eral mathematical model is proposed, which could make real-time assignment decision in

high-capacity ride-sharing system. This model is designed to handle a large number of

passenger demands and dynamically generate optimal assignment solution to urban trip

demands. In [127] and [128], authors propose two spatial queueing-theoretical models,

that capture salient dynamic and stochastic features of customer demand, for Autonomous

mobility-on-demand system which has autonomous vehicles in it. In [132, 133, 134, 135],

the authors envisioned mobility systems with AVs, and analyzed the performance of the

system via simulation. [136] provides a review of recent studies on investigating the im-

pacts of AVs on travel behaviour and land use. Differing from these works with focus on

the (ride-sharing) dispatching algorithms for load balancing of vehicles, we employ real

world data (rather than simulation) to analyze the underlying trip demand patterns with

queuing theory and evaluate design trade-offs and efficiency gains under a unifying SCCS

framework.

Urban Computing is a thriving research area which integrates urban sensing, data

management and data analytic together as a unified process to explore, analyze and solve

crucial problems related to people’s everyday life [15, 16, 17, 18, 137, 138, 139, 140, 141,

142, 143]. For examples, [15] presents a data-driven optimization framework to deploy

charging stations and charging points with the goal of minimizing the seeking and waiting

time of electric vehicle drivers. [137] develops novel models to predict future crowd flow

traffic in subway stations. [141] introduces a method to estimate the travel time in a

road segment using sparse trajectories data. [138] proposes a model to discover urban
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Figure 5.5: Framework of Feasibility Study of SCCS

function zones by exploring latent activity trajectory data. In [142], the authors propose

a method to diagnose the noises environment in New York city by extracting ubiquitous

data over the city. Differing from these works, in this work, we propose a future smart

cloud commuting system (SCCS) with shared autonomous vehicles, and quantitatively

evaluate the feasibility and efficiency gains of SCCS.

5.1.3 Methodology

In this section, we introduce our design model of SCCS given the total number of vehicles

k and the number of depots d, and provides an analytical framework for analyzing the

system performances and passenger quality of experience.

5.1.3.1 Framework

Fig. 5.5 illustrates our solution framework, that takes two sources of urban data as inputs

and contains four key analytical stages: (1) trip demands extraction, (2) depots deploy-

ment, (3) arrival and service pattern extraction (4) system performance evaluation.

• Stage 1 (Trip demands extraction) This stage aims to extract the passengers’ trip

demands from the collected taxi GPS data. In our datasets, each taxi trajectory

consists of a sequence of time-stamped GPS points, where a GPS point is collected
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every 40 seconds on average. A GPS data point includes the time stamp, latitude,

longitude, and binary indicator (indicating if a passenger is aboard). Moreover, the

raw trajectory data are noisy, with spatial errors from the groud-truth locations, due

to the accuracy limit of the GPS devices. By cleaning the taxi GPS data, we can

extract the passenger taxi trips, indicated by four key elements: (1) starting location

src, (2) ending location dst, (3) starting time ts, (4) trip duration ∆t. As a result,

each trip represents a passenger demand.

• Stage 2 (Depots deployment) Given the number of depots d and the number of AVs

k, this stage aims to identify the depot locations and assign AVs to depots. First,

the urban area is divided into d grids with equal sizes. Second, the trip demands

extracted in stage 1 can be aggregated into each grid based on the source locations.

Then, for each grid with trip demands, we will deploy a AV depot. To reduce the

dispatching distance, the depot location is obtained by the average geo-location of

all trip source locations inside the grid. If the location is not exactly on a road

segment, the depot location will be shifted to the nearest road network.

• Stage 3 (Arrival/Service pattern extraction) With a particular SCCS design (from

stage 2), this stage will examine the arrival and service patterns. The trip requests

arrive in a sequence of time stamps, i.e., {ts1 , ts2 , ..., tsm}. We will quantify the

arrival pattern of such time sequence. Moreover, with all trip durations (as system

service times), we will characterize the service pattern.

• Stage 4 (System performance estimation) With generative models for arrival and

service patterns of the urban trip demands, we can naturally view the taxi service

system as a queuing system, with trip demands as the customers and taxis as the

servers. In Stage 4, by modeling the SCCS as an M/G/k queueing system, we will

quantify the average waiting time of passengers and vehicle utilization.
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Figure 5.7: Heat map of
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Figure 5.8: Shen-
zhen road map

Figure 5.9: GPS set and passenger indicator
on taxis

Figure 5.10: GPS data generated by taxis

5.1.3.2 Data Description

Our analytical framework takes two urban data sources as input, including (1) taxi trajec-

tory data and (2) road map data. For consistency, both datasets are collected in Shenzhen,

China in 2014. We introduce the details of these datasets below.

Taxi trajectory data are GPS records collected from taxis in Shenzhen, China during

2014. There were in total 17, 877 taxis equipped equipped with GPS sets and passen-

ger indicators as shown in Fig.5.9, where each GPS set generates a GPS point every 40

seconds on average. The passenger indicator will be pulled down if there is a passenger

aboard, and it sends binary values indicating if a passenger is aboard or not to the GPS set.

Overall, a total of 51, 485, 760 GPS records are collected on each day, and each record

contains five key data fields, including taxi ID, time stamp, passenger indicator, latitude

and longitude. The passenger indicator field is a binary value, indicating if a passenger is

aboard or not. Note that, in this work, the results are from the data collected in 2014, and

similar results can be obtained with new data collected in 2016.

Road map data. In our study, we use Google GeoCoding [144] to retrieve a bound-
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ing box of Shenzhen, which is defined between 22.44◦ to 22.87◦ in latitude and 113.75◦

to 114.63◦ in longitude. The covered area covers a total of 1, 300km2. Within such a

bounding region, we crawl road map data in Shenzhen from OpenStreetMap [14]. The

road map data contain six levels of road segments, which are detailed in Table 5.1 and

visualized with different colors in Fig.5.8.

Table 5.1: Road Map Data in Shenzhen

Type Counts Type Counts

Motorway 563 Secondary 868

Trunk 258 Tertiary 1,393

Primary 745 Unclassified 16,829

5.1.3.3 Stage 1: Demands Extraction

In stage 1, we clean and extract the urban trip demands from the raw trajectory data.

Trajectory data cleaning. The trajectory data are noisy in nature. First of all, the GPS

locations are with errors of around 15 meters. Secondly, there are GPS points outside

the bounding box of Shenzhen. We conduct two steps to clean the noisy trajectory data,

including map-matching and spatial filtering. Map-matching is a process that project the

noisy GPS locations back to the road segments, which has been extensively studied in the

literature We apply the map-matching technique [145] to our dataset. Secondly, we apply

a simple spatial filtering step to remove GPS records that are outside the bounding region

of Shenzhen.

Trip demand extraction. The passenger indicator field in the taxi trajectory data is the

key enabler to extract the taxi trip demands. A taxi trip can be represented as a sequence

of taxi GPS points with the passenger indicator as 1. The first and last GPS locations

of the taxi trip capture the source/destination locations (src, dst) of a trip demand, and

the corresponding time stamps characterize the trip starting/ending time ts/te. The trip
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duration can be obtained as the elapsed time from ts to td, i.e., ∆t = te − ts. Once we

have all trip demand tuples 〈src, dst, ts,∆t〉, we observe that there are a small number of

trip demands with extremely short or long trip durations. From the size of the bounding

region of Shenzhen and the road map, any trip could be done within 2 hours (including the

rush hours with traffic congestion). Moreover, people would not take a taxi trip shorter

than 2 minutes in general. Thus, we simply filter out those noisy taxi trips longer than

2 hours or shorter than 2 minutes, which may be due to the issues with hardware or

data collection processes. Note that in this work, each demand can be from either one

individual passenger or a group of passengers sharing the entire trip. Without loss of

generality, we assume each demand is from one passenger.

After the two steps, we obtain a total of 595, 501 daily trip demands from our tra-

jectory data. Fig.5.6 and Fig.5.7 show the geo-distributions of source and destination

locations in Shenzhen during the morning rush hours 6–9AM on March 6th, 2014.

5.1.3.4 Stage 2: Depots deployment

Given the number of depots d and total number of available vehicles k, our system de-

ployment model works as follows: (1) road map partitioning, (2) depot placement, (3)

vehicles assignment.

Step 1: Road map partitioning. We first get the boundary of Shenzhen from Open-

StreetMap, which is defined between 22.44◦ to 22.87◦ in latitude and 113.75◦ to 114.63◦

in longitude. Then, we partition the area of the city into d grids with the sizes.

Step 2: Depot placement. After the regions are divided, we try to deploy one depot in

each region, and totally d depots will be deployed. First, we aggregate the trip demands

extracted in stage 1 into each grid. In SCCS, the request in a grid will be served by

the depot in that region. We allocate those demands into grids based on their source

locations. Then, to reduce the dispatching distances, in each grid, the center location of
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Figure 5.11: Depot placement in Shenzhen

all the source demand locations are calculated to place the depot. Moreover, if the center

source locations is not on the road network, it will be shifted to the nearest road segment.

Fig.5.11 shows the result of road map partition and depot deployment. Note that one

region is in the ocean, and we do not deploy a depot in that region.

Step 3: Vehicle assignment. After deploying the depots, the vehicles are assigned to

each depot according to the portion of demands in the region. Let N be the total demands

in the urban area, Ni be the number of demands in region i. The total number of vehicles

assigned to region i is thus ki = k ·Ni/N .

5.1.3.5 Stage 3: Arrival/Service pattern

SCCS can be viewed as a queuing system. Each trip demand and the corresponding trip

represent a customer arrival event and a service event, respectively. Self-driving vehicles

are the servers in the system. Now we characterize the arrival pattern and service pattern

from the trips.

Arrival pattern analysis. We chose the time unit as one second, and count the number

of arrived trip demands over each second in demand data we obtained from Stage 1.

Fig.5.12 shows the distributions of the arrival rate in four different intervals of a day. The
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12am-6am 6am-12pm 12pm-6pm 6pm-12am

Figure 5.12: Arrival rate ( #requests/s )

Table 5.2: Parameters of arrival rate distributions

Time slot 12am-6am 6am-12pm 12pm-6pm 6pm-12am
λ 4.1375 7.6189 8.4415 9.0023

x-axis represents the arriving rates and the y-axis is the percentage of demands. The blue

dots are obtained from original demands data, which nicely fit Poisson distributions. The

green curves are the best fitting curves with Poisson distribution. The parameters λ’s of

Poisson distributions are the mean arrival rates, which are listed in Table 5.2 for different

time intervals in a day.

Service pattern analysis. As shown in Fig.5.2, the service time of an AV include three

time intervals. The first part is pickup time, namely, the passenger sends a request to the

cloud servers to request a trip service. The cloud servers arrange a vehicle to pick the

passenger up, if there is an available vehicle in the depot, otherwise, the passenger would

wait in the queue. After the vehicle picked up the passenger, it will take the customer to

the destination, during which the passenger experiences in-vehicle time. When the trip

is completed, the vehicle returns to the nearest depot to the passenger dropoff location,

which is the return time.

Note that a complete service time include all three time intervals, i.e., pickup, in-

vehicle, and return times. Though passenger does not experience the return time, it is

counted, because the vehicle is still “reserved” and cannot serve other passengers (on the

trip back to the depot)1.

1Note that the system can be further designed to allow vehicles to direct pick up the next passengers
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Table 5.3: Average service time

# Depots 1 2 3 4 8 16
S(min) 58.45 51.67 49.80 41.31 31.60 29.38

Since each request will be served by a vehicle from the depot in the source region, and

the destination of the demand may be in a different region, a vehicle balancing approach

is required. We adopt a simple schedule-based approach for vehicle rebalancing: Every

12 hours, the vehicles will be rebalanced to the initial numbers of vehicles. Moreover,

the on-road travel time can be estimated by OSRM API [146] from one place to another.

Thus, the picking up time and the returning time of each demand can be estimated by the

API.

To extract the service time pattern from the demand data, we choose the unit time

as minute. Taking k = 12000 as an example, Fig.5.13 show the distributions of service

time given different number of depots: 1,2,3,4,8,16 depots, in the 12pm-6pm time slot on

March 5th in 2014. The x-axis represents the service time and the y-axis is the percentage

of demands. The black dots are from the raw demand data, which cannot be fitted by

a simple distribution. Hence, the service pattern follows a general distribution, denoted

as G in queueing theory. The average service times with different number of depots are

listed in Table 5.3.

5.1.3.6 Stage 4: Estimating the system performance

Now, we are in a position to introduce our queuing theory based approach to estimate the

average waiting time in SCCS, given the number of available vehicles k.

We have shown that the trip demands arrival rate follows a Poisson distribution, but

the service pattern is general. When k vehicles are available in SCCS, we can denote

without going back to depot, which require more complex system design model. To simplify our feasibility
and performance gain analysis, we adopt this simple model, and leave it for our future work to evaluate
more complex system design.
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1 depot 2 depots 3 depots

4 depots 8 depots 16 depots

Figure 5.13: Service time(k = 12000)

this queuing system as an M/G/k queue. It is still an open question to exactly quantify

the features of such a queue, such as waiting time [147]. We employ the approximation

algorithm [148] to estimate the average waiting time in M/G/k queue by adjusting the

mean waiting time in a corresponding M/M/k queue. Equation (5.1) shows the approx-

imation function of the average waiting time in M/G/k queue. where E[WM/G/k] and

E[WM/M/k] are the expected waiting times of the M/G/k and M/M/k queues, respec-

tively. The M/M/k queue has the same mean service time as the M/G/k queue.

E[WM/G/k] =
C2 + 1

2
E[WM/M/k] (5.1)

where C is the coefficient of variation of the service time distribution in M/G/k queue.

In M/M/k queue, the average waiting time can be calculated in Eq (5.2).

E[WM/M/k] =
Erc(k, ρ)S

k − ρ
, k > ρ (5.2)
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where ρ is the utilization in a queuing system, which equals to λS, and Erc(k, ρ) is the

Erlang C formula(Eq (5.3)), which indicates the probability that an arriving customer has

to wait, which is also the proportion of time that all k servers are busy. k > ρ ensures the

system can reach the steady state.

Erc(k, ρ) =

kρk

(k−ρ)k!∑k−1
k=0

ρn

n!
+ kρk

(k−ρ)k!

(5.3)

Finally, we can approximate the average waiting time in M/G/k queue. Taking one

depot deployment as an example, the arrival rate in 12pm − 6pm slot is 5.0594, and the

average service time of the system is 3536.45249, so the utilization ρ = 17876.4137, and

the coefficient of variation of the service time distribution C = 0.5563. Given the number

of vehicles k = 18000, we can first get Erc(18000, 17876) = 0.2547, which means that

25.47% of the time when all of the servers are busy. Finally the approximate average

waiting time is 4.0134 seconds.

5.1.4 Evaluation

In this section, we use real taxi trip data to conduct experiments to evaluate (1) the per-

formance of the design choices of number of available vehicles k and the number depots

d. (2) the efficiency gain in SCCS comparing with current taxi system.

5.1.4.1 Evaluation settings

Time intervals in a day. We observe that the trip demand arrival and service patterns

change dramatically over time intervals in a day. In our evaluations, we divide a day into

4 time intervals, we have the cutting-off times as [12am, 6am, 12pm, 6pm]. and evaluate

how the granularities affect the performances of our proposes models.

Baselines. We compare the performances of our SCCS (in different design choices)
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9000 vehicles 10000 vehicles 11000 vehicles

12000 vehicles 15000 vehicles 20000 vehicles

Figure 5.14: Impact of total number of taxis

with the current taxi system. To evaluate how our SCCS performs when serving the same

set of trip demands in our taxi data, we employ a data-driven simulation approach as

follows: The real world trip demands arrive by the order of their starting times. If there

are available vehicles in its regional depot, the waiting time of this demand will be 0.

Otherwise, the waiting time is the time interval from the starting time to the moment

when a vehicle returns to that depot. The results introduced below show that our SCCS

can achieve several efficiency gains comparing with the current transit system in vehicle

utilization and number of vehicles needed.

Metrics. For the design choices, we use the customer in system time and vehicle

idle rate to evaluate the performance of the system. The efficiency gain is evaluated by

the number of vehicles needed, and the utilization of the vehicles while serving the same

amount of demands in our system and current urban taxi transit system.
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1 depot 2 depots 3 depots

4 depots 8 depots 16 depots

Figure 5.15: The impact of number of depots (k=12,000)

5.1.4.2 Design choices

Impact of k. From the passengers’ perspectives, the service process consists of two

parts: passenger waiting time and in-vehicle time. The passenger waiting time includes

the system waiting time W 1 and the picking up time. We denote the total service time

passenger experienced as the in-system time, namely, the total of waiting time, pickup

time, and in-vehicle time. The in-system time is what passenger actually experiences,

and is considered as the quality of service the passenger received.

Taking 16 depots as an example, given the number of vehicles 9000, 10000, 11000,

12000, 15000, 20000, we can simulate the whole service in our SCCS, and get the pas-

senger in-system time, which is shown in Fig.5.14. We can observe that as we increase

the number of vehicles, the passenger in-system time decreases.

Moreover, Fig. 5.20 shows the average in-system time and the idle rate for different

numbers of AVs. With the increase of the total number of vehicles, the in-system time
1Note that the system waiting time is different from the passenger waiting time, where the former is

the time from the request arrival to the time a vehicle is dispatched, and the latter includes both the system
waiting time and pickup time.
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Figure 5.16:
Average in-system
time

Figure 5.17:
Average passenger
waiting time

Figure 5.18: uti-
lization of vehicles

Figure 5.19: Dis-
tance per demand
in SCCS and taxi
system

decreases, which is because the waiting time becomes shorter. However, the idle rate,

which characterizes the portion of time that a vehicle stays idle in the depot (Eq (5.4)),

increases due to the increasing number of over-deployed AVs.

Ridle =

∑k
i=1 T

i
idle

k · T
, (5.4)

with T as the total amount of time in a day (i.e., 24 hours), and T iidle is the amount of time

the vehicle i spent in depot during the day.

Fig. 5.20 clearly indicates the trade-off between the waiting time and the idle rate

when changing the number of vehicles.

The number of depots in our system can also have effects on the customer’s expe-

rience. Taking k = 12000 for example, Fig. 5.15 shows the change of the customer

in-system time according to the number of depots, when we fixed the number of AVs

Figure 5.20: Tradeoff
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to be 12000. Fig. 5.15(a)–(f) shows that as we increase the number of depots, the pas-

senger in-system time distribution evolutes from high to low in-system time. Moreover,

Fig. 5.16–5.17 indicates how the average in-system, waiting time changes, over different

numbers of depots.

The phenomena occur because the increase of the number of depots can reduce the

picking up time and the waiting time for each service. Moreover, from Fig. 5.15, we can

clearly observe that

5.1.4.3 System efficiency gains

By comparing our SCCS with the current taxi system, we now show that the SCCS system

can achieve efficiency gains in several aspects, including (1) the higher vehicle utilization,

(2)the less number of vehicles needed. Here, the results presented are from the real-world

data collected in Shenzhen, China, 2014, the traffic volume does not show significant dif-

ference over time, and similar results of vehicle utilization and number of vehicle needed

can be obtained with data collected in different time (2016).

Utilization of vehicles. In Fig. 5.1, we show that most of the taxis are idling on

the road over days, which means the utilization of the taxis in current taxi system is low.

At each time slot, e.g., in 1 hour, we can obtain a ratio of in-service vehicle vs the total

number of vehicles. We quantify the utilization of the vehicles as average ratio of in-serve

vehicles over all time slots, defined as follows.

U =

∑Tslots
i=1 (N busy

i /Ni)

Tslots
, (5.5)

where Tslots is the total number of time slots in a day, N busy
i and Ni are the number of

in-service and all vehicles at time slot i.

The utilization of the vehicles in our system is shown in Fig. 5.18 when d = 16.

Taking k = 11000 as an example, the utilization is 79.1%, while the utilization of the
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Table 5.4: V-values

# Vehicles 7k 7.5k 8k 9k 12k 20k
V 0.465 0.426 0.429 0.462 0.586 0.801

taxis in Shenzhen was 42.02%.

Number of vehicles needed. We can count the number of taxis in Shenzhen taxi

system from our trajectory data, which was in total 9, 606 taxis. When using SCCS to

serve the same trip demands, the number of vehicles would have impacts on the trade-

off between the passenger in-system time and the vehicle idle rate (see Fig. 5.20). We

define a measure V-value in Eq.(5.6) as a combination of the two measures to quantify

the system performance.

Vk = αTin−system + (1− α) ·Ridle, (5.6)

with α as a design trade-off parameter within [0, 1]. The smaller V-value indicates better

performance. Taking 32 depots and α = 0.01 as example, the V-values are listed in Table

5.4. The most appropriate number of vehicles in 32 depots is 7500, which shows a 22%

reduction on needed vehicles.

5.1.4.4 Travel Distance Analysis

In this section, we compare the travel distances of AVs in SCCS with those of taxis in

current taxi system. Fig.5.19 shows the average distance per demand for the customer

in-vehicle trips and idle trips of AVs in SCCS and taxis in current taxi system. As shown

in Fig.5.2, the AV idle trip includes the picking up trip and the returning trip, and the

distances of these trips are obtained via the OSMnx API[149]. The taxi idle trip is the

trip when the taxi has no passengers onboard. The distance of customer in-vehicle trip

is the same in SCCS and taxi system. The distances of the later two types of trips are
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extracted from the taxi GPS data. From Fig.5.19, we find that, as the number of depots

increase in SCCS, the average AV idle trip distance per demand decreases, because the

distances of picking up and returning trips decreases when there are more depots over the

city. Although the average AV idle trip distance is higher than that of taxis in current taxi

system when there are 16 depots in the city, it is safe for us to estimate that when the

number of depots is sufficiently large, the average idle distance of AVs in SCCS will be

lower than that of taxis in current taxi system.
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Conclusion and Future Work

6.1 Conclusion

Making sense of human-generated spatial-temporal data can benefit people in many as-

pects. In this dissertation, we illustrate this in the following four domains.

Human Learning Curve Dissection. In this topic, we made the first attempt to em-

ploy inverse reinforcement learning to analyze the preferences of taxi drivers when mak-

ing sequences of decisions to look for passengers. We further studied how the drivers’

preferences evolve over time, during the learning processes. This problem is critical to

helping new drivers improve performance fast. We extracted different types of inter-

pretable features to represent the potential factors that affect the decisions of taxi drivers

and inversely learned the preferences of different groups of drivers. We conducted exper-

iments using large scale taxi trajectory datasets, and the results demonstrated that drivers

tend to improve their preferences to habit features to gain more knowledge in the learning

phase and keep the preferences to profile features stable over time. Also to study how

human learns, we propose a novel framework, including trending analysis, learning mod-

eling, and strategy validation. Our experiments on a large-scale real-world taxi trajectory
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data prove that the taxi drivers’ strategy change follows the learning process of reinforce-

ment learning (RL) and the drivers with different trends of earning efficiency have the

different extents to follow RL. Our framework and findings provide an important sight in

the fields of human behavior learning and taxi operation management.

Human Behavior Explanation. Generative adversarial imitation learning (GAIL)

achieves great success in learning human decision-making strategies from demonstrated

data using deep neural networks (DNNs). However, such DNN-based models are hard

to explain what aggregate knowledge the models learned from data. To bridge this gap,

we propose the explainable generative adversarial imitation learning (xGAIL) framework

which includes two novel techniques, namely, Spatial Activation Maximization (Spa-

tialAM) and Spatial Randomize Input Sampling Explanation (SpatialRISE). They can

learn global and local explainable spatial-temporal features, respectively. In particular,

we take taxi drivers’ passenger-seeking strategy as an example to validate the effective-

ness of the xGAIL framework. Our analysis of a large-scale real-world taxi trajectory

data shows interesting results from two perspectives i) global explainable knowledge of

what nearby traffic condition impels a taxi driver to choose a particular direction to find

the next passenger, and ii) local explainable knowledge of what key (sometimes hidden)

factors a taxi driver considers when making a particular decision. All the knowledge we

found sheds light on how to promote taxi drivers’ well-being and improve the quality

of taxi services, e.g., reducing the waiting time, etc. Moreover, our proposed xGAIL

framework can be naturally applied to other urban decision-making processes, such as

commuter transit mode choice, and personal vehicle route choice.

Human Mobility Signature Identification. In this topic, we propose the Spatio-

temporal Siamese Networks (ST-SiameseNet) to solve the Human Mobility Signature

Identification (HuMID) problem. The HuMID problem aims at validating if an income set

of trajectories belong to a certain agent based on historical trajectory data. ST-SiameseNet
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can deal with large group of agents in a single model. Also, we extract several effective

profile features from the trajectories to augment the performance of the ST-SiameseNet.

The experimental results illustrate that ST-SiameseNet outperforms state-of-the-art works

and achieves an F1 score of 0.8508 on a real-world taxi trajectory dataset. Our proposed

ST-SiameseNet framework can be applied to many other real-world cases with human-

generated spatio-temporal data other than the ride-sharing and taxi case. In the future, we

will continue studying the driver identification problem with multiple inputs rather than

pairwise inputs.

Smart Cloud Commuting System. In this topic, we advocate a Smart Cloud Com-

muting System (SCCS) for future smart cities with shared AVs to meet daily commuting

demands of a large urban city. We have outlined four aspects of system efficiencies that

can potentially be attained via the envisaged SCCS. As a first attempt at studying its fea-

sibility, in this work we develop generative models to capture fundamental trip demand

arrival and service patterns, and develop a novel framework to explore the impact of de-

sign choices on the temporal multiplexing gains (through time-sharing of AVs) that can

be achieved by SCCS. We conducted extensive evaluations using a large scale urban taxi

trajectory dataset from Shenzhen, China. The results demonstrate that SCCS can reduce

the number of vehicles by 22%, and improve the vehicle utilization by 37%.

6.2 Future Work

6.2.1 Novel Spatial-temporal Data Mining Techniques

In this dissertation, the spatial-temporal data are first formulated as sequence of image-

like inputs. Then, convolutional neural networks (CNNs) are employed to extract the

spatial information, and recurrent neural networks (RNNs), e.g., LSTM, are used to in-

corporate the temporal dependency in the spatial-temporal data [5, 6]. Recently, Trans-
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former networks [150] demonstrates its outstanding performance in analysing sequential

data. Moreover, researchers find that Transformer can also perform well in dealing with

image tasks comparing with CNNs [151]. These achievements inspire me to think about

employing Transformer networks in analyzing human-generated spatial-temporal data.

Besides modeling human-generated spatial-temporal data as sequence of image-like

inputs, the intrinsic topology of many spatial-temporal data from urban environment en-

ables us to model them as graphs. Then, graph neural networks (GNNs) can be employed

to extract the hidden information. For example, the road networks can be modeled graphs

where nodes represent the road segments, and GNNs are employed to predict traffic flow

[152, 153, 154, 155, 156, 157]. Inspired by this, GNNs can be employed to understand

human behavior from human-generated spatial-temporal data.

6.2.2 Explainable Artificial Intelligence for Human-generated Spatial-

temporal Data

As presented in the second topic of this dissertation, we propose the explainable genera-

tive imitation learning framework to understand human behavior from human-generated

spatial-temporal data. This is an example of developing Explainable Artificial Intelli-

gence (XAI) techniques for human-generated spatial-temporal data. There are plenty

of machine learning models developed in analyzing spatial-temporal data, while many

of them remains “black-box” models. As a matter of this, in future research, we may

develop either intrinsic or post-hoc XAI techniques to make sense of human-generated

spatial-temporal data. For instance, the ST-SiameseNet we introduced in the third topic

of this dissertation can be further explained to help people understand what characteristics

in the mobility data help us identify the human agents. Also, the Transformer networks

and GNNs can be further explained to help understand human-generated spatial-temporal
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data.

6.2.3 Novel Application Domains in Urban Intelligence

In this dissertation, we mainly study the problems in the domains of urban human be-

havior analysis and transportation systems. There exist many other application domains

of making sense of different sources of human-generated spatial-temporal data in urban

intelligence, e.g., analysing the energy (electricity, gas) consuming data to help improve

energy supply and consuming efficiency, analysing the patients health care records to help

improve the health system, and analysing the crime events data to enhance urban safety,

etc.
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