

Analogical Matching Using Device-Centric and

 Environment-Centric Representations of Function

by

Greg Milette

A Thesis

Submitted to the Faculty

of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfilment of the requirements for the

Degree of Master of Science

in

Computer Science

May 2006

Approved:

Dr. David C. Brown, Advisor

Dr. George Heineman, Reader

Dr. Michael A. Gennert, Department Head

 2

AbstractAbstractAbstractAbstract

Design is hard and needs to be supported by software. One of the ways software can

support designers is by providing analogical reasoning. To make analogical reasoning

work well, the software makers need to know how to create a knowledge

representation that will facilitate the kind of analogies that the designers want. This

thesis will inform software makers by experimenting with two kinds of knowledge

representations, called device-centric (DC) and environment-centric (EC), and to try

to determine the relative benefits of using either one of them for analogical matching.

We performed computational experiments, using Structure Mapping Engine for

matching, to determine the quantity and quality of analogical matches that are

produced when the representation is varied. We conducted a limited human

experiment, using questionnaires and repertory grids, to determine if any of the

computational results were novel, and to determine if the human similarity ratings

between devices correlated with the computer results. We show that design software

should use DC representations to produce a few focused matches which have high

average weight. It should use EC representations to produce many matches some of

high weight and some of low weight. Based on our human experiment, design

software can use either DC or EC representations to produce novel matches. Our

experiments also show that human matches correlate most strongly with a combined

DC and EC representation and that their similarity reasons are more EC than DC. This

suggests that designers tend to think more in EC terms than in DC terms.

Keywords: Analogy, Design, Functional Modeling, Functional Reasoning,

 Knowledge Representation, Repertory Grid, SME, Structure

 Mapping Engine.

 3

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

I would like to thank David Brown for his fearless support as my advisor during my

four years as a grad student.

Thank you to my wife, family, and friends for tolerating my desire to be a mad

scientist on the weekends.

Thank you to my respondents for donating 1 hour of their time for the good of

science.

 4

Table of ContentsTable of ContentsTable of ContentsTable of Contents

Abstract ..2

Acknowledgements..3

Table of Contents ...4

1. Introduction..6

1.1 Problem Statement ...8

1.2 Document Organization ...8

2. Relevant Literature...10

2.1 Functional Representation ...10

2.1.1 Functional Ontology ...11

2.1.2 Interactions Between Devices and their External Environments17

2.1.3 Purpose and Function in Design from the Socio-Cultural to the Techno-

Physical ..19

2.1.4 Functional Reasoning in Design ...20

2.1.5 Functional Basis..21

2.1.6 Relationship Between Functional Modeling and Functional Reasoning23

2.1.7 Summary ...24

2.2 Analogy..25

2.2.1 Analogy in General ...26

2.2.2 SME ..28

2.2.3 KDSA..35

2.2.4 Qian and Gero ...37

2.2.5 Summary ...38

2.3 Repertory Grids..39

2.3.1 Repertory Grid Technique...39

2.3.2 Repertory Grid Software ...43

2.3.3 Summary ...43

2.4 Creativity..44

2.4.1 Assessing Creativity..44

2.4.2 Conceptual Domains and Creativity ...46

2.4.3 Creativity in Design ..48

2.4.4 Summary ...50

3. Knowledge Representation ..51

3.1 Requirements and Design Decisions..51

3.2 Primitives in the Representation ..52

3.3 Using the Knowledge Representation..52

3.4 Functional Basis...54

3.5 Comparison to Other Research ..55

4. Experimental Test Setup ..57

4.1 Test Examples..57

4.1.1 Clock Test Examples ..57

4.1.2 Applying Functional Basis..61

4.2 Applying SME ...64

4.2.1 Relevant Properties of SME..64

4.2.2 Converting Knowledge Representation into SME Input64

 5

4.3 Test Harness...67

5. Computational Experiment and Results ..71

5.1 Experimental Procedure...71

5.1.1 Experimental Runs..71

5.1.2 Experimental Factors ..72

5.1.3 Normalized Gmap Weight and Variance ..73

5.1.4 Normalized Number of Gmaps ...74

5.2 Computational Results ...74

5.2.1 DC and EC Comparison..75

5.2.2 BOTH Dataset...75

5.2.3 Robustness to Level of Detail ...77

6. Human Experiment and Results...78

6.1 Experimental Procedure...79

6.1.1 Experimental Setup...79

6.1.2 Repertory Grid Collection...82

6.1.3 Questionnaire ..83

6.2 Results and Analysis ..87

6.2.1 Summarizing Constructs...88

6.2.2 Analysis of Constructs ..88

6.2.3 Percent Similar Analysis from Repertory Grid ...89

6.2.4 Respondent Constructs Characterizations Compared to Respondent

Correlations..92

6.2.5 Questionnaire ..96

7. Evaluation of Results ...99

7.1 Evaluation of Process...100

8. Conclusions..102

8.1 Future Work ...103

9. References..106

10. Appendix..107

Appendix A Computational Experiment ...107

A.1 Device Input Format ...107

A.2 SME Input Format...112

A.3 SME Example Raw Output...113

A.4 Computational Experiment Raw Data ..115

Appendix B Clock Figures For Human Experiment..121

B.1 Digitial Clock Schematic ..122

B.2 Pendulum Clock ..123

Appendix C Questionnaire...123

C.1 Questionnaire ..123

C.2 Questionnaire Raw Data..132

Appendix D Repertory Grid...133

Appendix D.1 Repertory Grid Data ...133

Appendix D.2 Repertory Grid Construct Categories ...138

 6

1. Introduction1. Introduction1. Introduction1. Introduction

Designing something is challenging, so providing computational help is important.

Software systems can help the designer, or might replace the designer in some

situations [Brown, 1992]. Functional reasoning is especially critical for innovative and

creative design. Analogical reasoning can be used to support this kind of reasoning.

However, in order for analogical reasoning to be useful, we have to describe devices

in some way using a knowledge representation. This thesis is interested in quantifying

what kind of analogical matches an analogical reasoning algorithm produces when the

knowledge representation is varied. The results can be used to improve the reasoning

capabilities of design software.

 This thesis experiments with two different knowledge representations: both based

on the Structure-Behavior-Function model for describing devices [Chandrasekaran

and Josephson, 2000]. That work describes two different ways to represent the

function of devices, Device-Centric (DC) and Environment-Centric (EC). Each may

create different effects that may be advantageous for the designer. For example, EC

may give the designer more “freedom.” Also, the designer may decide to switch

between EC and DC representation at some point during the design process in order to

gain an advantage. [Chandrasekaran and Josephson, 2000]. Even though these ideas

could be useful for determining when a designer should use each representation, there

appears to be no research showing what the effects are of using DC verses EC

representations of function.

According to Chandrasekaran & Josephson the difference between a DC and an EC

representation of a device is whether or not the environment is included [2000]. For

example, a DC representation of a pen’s function might be “releases ink into the

world” while an EC representation might be, “pen transfers ink to paper.”

This thesis experiments with using both kinds of knowledge representations for

analogical reasoning. Analogical reasoning involves expressing what the current

situation is, looking for past situations that might apply (matching), and finally

applying them to the current situation (transfer). A full study would require a system

that performs all the steps in analogical reasoning, but for this thesis we take the first

 7

step and focus only on the matching phase. We use an algorithm called SME

[Falkenhainer et al., 1989]. SME was chosen because it is well tested in much

research, it is claimed to have psychological backing, the software is available, and

because it is suited for the problem.

Using SME we can take a pair of devices represented with a particular knowledge

representation and produce a list of possible matches between them with associated

weights. We measure the quantity and quality of the matches in order to measure the

effect of DC versus EC representations.

We are also interested in computational support for creativity [Boden, 1994].

Analogy is often cited as a key ingredient of creativity [Goel, 1997] [Gentner et al.,

2001]. As it is possible that our analogical reasoning could produce creative results,

our experiment will attempt to determine whether novel matches are produced: i.e.,

whether DC vs. EC representations might have any effect on novelty, a key aspect of

creativity [Besemer and Treffinger, 1982]. We consult a group of humans to get their

judgment on the novelty of analogical matches produced by SME.

We have performed a set of experiments that that indicate where the results are

coming from: i.e., the credit assignment problem. The issue is whether DC vs. EC

representations, or the representation used (level of detail; ontology) should be given

credit [Kitamura et al., 2004].

We show through experimentation with SME that EC produces more matches than

DC, DC produces higher quality matches than EC on average, and a combined

representation produces comparatively fewer matches and more lower quality matches

than EC alone. These results are true even when the level of detail in the

representations are varied.

 In addition, from limited experiments with humans we show that they tend to rate

low weighted matches as being more novel than high weighted matches and rate DC

matches as being more novel than EC matches. Our human experiments also show

that human matches correlate most strongly with a combined DC and EC

representation and that their similarity reasons are more DC than EC.

 8

1.11.11.11.1 Problem Statement Problem Statement Problem Statement Problem Statement

The goal of this thesis is to compare the DC and EC knowledge representations by

comparing the results obtained from an analogical reasoning when using DC, EC, or

combined DC and EC knowledge representations. We call this combined

representation BOTH. Specifically, this thesis answers several questions, which are

listed below. Our hypotheses are listed in italics after each question.

1. Which representation produces more matches?

EC representations will produce more matches than DC representations. The

BOTH representations will produce the most matches.

2. Which representation produces higher weighted matches?

 EC matches will be of lower weight than matches made using representations

 that are DC. BOTH matches will have the highest weights.

3. Will DC or EC representations produce more novel matches?

 EC representations will produce more novel matches than DC representations.

4. When the level of detail is varied, are the results from questions 1, 2, and 3 still

true?

 Yes, the results are not sensitive to the level of detail.

5. How much do matches from each representation correlate with human

matches?

 Human matches will correlate best with matches from EC representations.

6. Are human reasons for similarity more DC or EC?

 The humans’ reasons will be more EC than DC.

1.2 1.2 1.2 1.2 DocumentDocumentDocumentDocument Organization Organization Organization Organization

The rest of this document describes the work done in this thesis and the results that

were obtained. Section 2 describes the literature that is relevant. It covers functional

representation, analogy, repertory grids, and creativity. Sections 3 and 4 describe how

we set up the experiments, with section 3 focusing on the knowledge representation

and section 4 focusing on what was needed to execute the experiment, which included

test examples, details about using SME, and a test harness. Sections 5 and 6 discuss

 9

the computation and human experiments and results. Section 7 covers an evaluation

and summary of the results with respect to the original hypotheses. Finally, section 8

makes some conclusions from these results, and discusses future work.

 10

2. Relevant Litera2. Relevant Litera2. Relevant Litera2. Relevant Literatureturetureture

This thesis investigates how changing the representation of the function of devices

affects the output from an analogy-making system. It also evaluates the creativity of

the output from the analogy making system. Thus, this thesis draws on four main

research areas: functional representation, analogy, repertory grids, and creativity.

 Section 2.1 describes functional representations that model devices and the

function of those devices. That research is used to influence the representation of

function used in this thesis. Section 2.2 describes what analogy is and some systems

that can perform analogy. In particular, section 2.2.2 describes the particular analogy

making algorithm called Structure Mapping Engine (SME), that this thesis uses for

experimentation. Section 2.3 describes repertory grids, which is the technique this

thesis uses to elicit similarity information from its human respondents. Finally, section

2.4 describes creativity. Information about creativity is important for understanding

how to evaluate the creativity of the results produced by the analogy making system.

2.1 2.1 2.1 2.1 Functional RepresentationFunctional RepresentationFunctional RepresentationFunctional Representation

There has been much research on how to represent devices for the purposes of

reasoning about their function. An important part of the representations described in

this research is representing the structure, behavior, and function of devices. Different

researchers also describe various ways to represent how the device interacts with the

environment and with humans.

 Chandrasekaran and Josephson describe a basic ontology for structure, behavior,

and function, but also make the distinction between functions that are environment-

centric vs. device-centric [2000]. Section 2.1.1 goes into detail about their ideas

because they are used heavily in this thesis. Section 2.1.2 describes a way to separate a

device’s external environment from its outer environment, thus making the distinction

between the elements in the environment which are not important to the device and

the ones that are. Section 2.1.3 describes the difference between a device’s techno-

physical environment in which the device has structure, behaviors, and functions that

may or may not be a part of the human’s view and the socio-cultural environment

where the designer selects structure, behaviors, and functions of the device which

 11

serve a purpose. Section 2.1.4 describes some issues researchers have faced when

working with functional representations.

 A related set of research is called functional modeling. Functional modeling

attempts to describe a set of terms that form a common design language. Section 2.1.5

describes one such set of terms. Section 2.1.6 describes how the functional modeling

research can be used in conjunction with the functional reasoning research described

in sections 2.1.1 to 2.1.4.

2.1.1 Functional Ontology

Chandrasekaran and Josephson present a simple ontology for describing devices

[2000]. They use this ontology to define the structure, behaviors, and functions of

devices. An example of a device represented using the ontology is given in the pen

example from figure 2.1. It will be used throughout this section to illustrate how the

ontology works. Chandrasekaran and Josephson also explain the how functions can be

represented as device-centric (DC) or environment-centric (EC) and how

representations might be used by designers.

Figure 2.1: This is a representation of a pen. It includes structural elements, state variables, a causal

relation, a mode of deployment, an EC function, and a DC function. Two causal generic causal

interactions are also given.

Device: Pen
Structural element 1: tip
Structural element 2: ink container
Structural relation: tip is at the end of the container
State variable 1: force on tip
State variable 2: orientation
State variable 3: location
State variable 4: ink
Causal relation 1: If the orientation is tip pointing down, the pen contacts a
 surface, and force is applied to the tip, ink flows out of the tip.
Mode of deployment: human orients the pen down, makes the pen contact the
 paper, and applies force to tip
EC function: to cause a piece of paper to have ink on it
DC function: to cause ink to flow out of the tip if the orientation is tip pointing
 down and force is applied to tip
Causal interaction 1: apply force from object X to object Y
Causal interaction 2: orient object X

 12

2.1.1.1 Ontology for Devices

A description of a device consists of its structure, behaviors, and functions. These

concepts can be expressed using a simple ontology that consists of state variables,

causal relations, and actions.

 State variables describe the current properties of the device that can change. They

can be any kind of value: discrete, logical, qualitative, etc. In the pen example, the pen

has several state variables such as ink and orientation.

 Causal relations describe how changes in one variable affect another. They can

describe how the variables in one device relate, or they can describe how variables

between different devices relate. If two devices are involved, the causal relation is

called a causal interaction. Either kind of relation could exist in many forms. Three

possible kinds of relations are simple formulas, complex algorithms, and logical

expressions. In the pen example, the causal relation is a logical if-then expression, but

it could also be expressed as a formula which decreases the amount of ink in the

container at a certain rate.

 Actions are needed to allow for reasoning about devices acting on other devices.

Actions are instantiations of causal relations and causal interactions. For example,

when a human uses a pen, he creates an instantiation of causal interaction 1, expressed

as “apply force from pen to paper.” This causal interaction describes how the pen

interacts with the paper.

Views: Since the complete representation of a device is not always necessary and

could be distracting, portions of a device representation can be represented in different

levels of detail. Each of these variations on the representation of the device is called a

view. Also, depending on the purpose of the representation and function of the device,

a particular view might be more applicable.

 One way to construct different views of a device is to split up the device into

several components or to consider several components as the same device. In the pen

example, the pen could be split up into two individual components, tip and ink

container, and causal interactions could specify how they work together. However, the

 13

view in the pen example combines the tip and the ink together so that the pen can be

conveniently reasoned about as a whole.

 If the function of the pen is something other than writing, then the pen might be

represented in a different view. For example, if the pen is being used as a paper

weight, there is no reason to represent the pen's ink container. The ink container

would be left out and an additional state variable would be added to represent its

weight.

 A view could also be an abstraction of another view. These abstracted views may

be useful for comparisons. For example, it may be difficult to directly compare a pen

to a water bottle. However, if the pen is abstracted to be an ink container and the

water bottle is abstracted to be a water container, it might be easier to find similarities

between the pen and the water bottle since they are both containers of something.

Also, abstracted views contain a mapping between the original view and the

abstracted view. Thus, any information discovered between abstracted views could

potentially be applied to the original view.

 It is up to the designer to decide which view of the device is appropriate. If a

device is too complicated, the designer might split up the device into sub devices. If a

device is being used in two different ways, there may be two different views of the

device. Finally, the designer might chose to abstract away certain aspects of the device

for making comparisons with other devices.

Structure, Behavior, Function, and Needs: The simple ontology defined previously

can be used to define a device’s structure, behavior and function.

 Structure is represented as state variables that have fixed values. Any structural

relationships are represented as causal relations that do not change. While other causal

relations may be active or inactive based on which actions have been performed,

structural relations always remain stable. For modeling these, the pen example

identifies two state variables as "structural elements" and one causal relation as a

"structural relation."

 The behavior of a device describes what a device does. However, there are several

ways to express a device’s behavior. A behavior can be the values of one or more state

 14

variables at a particular instant, or the values of one or more state variables as they

change over time. In the pen example a behavior might be “the ink container has 1

milliliter of ink” or “the ink in the ink container decreases.” Another way to describe

behavior is to describe the behavior of something as the state of only the "output"

variables, such as "the ink is decreasing" and not mention other variables in the

device. In any case, the point of a behavior description is to describe what a device

can do. The choice to use one behavioral description type over another depends on the

context of the engineering conversation taking place.

 A device's behavior is closely related to its function. The difference between a

behavior and a device’s main function is that the function is intended by the designer.

Section 2.1.1.2 covers functions in more detail.

 Having an intended function implies that the designer has a purpose in mind for the

device and the reason why the designer has this purpose is to satisfy a need. Behaviors

become intended and hence a function because they serve a purpose. Also, functions

ultimately exist to satisfy some need. For example, the designer of the pen could have

a need, "to write my name," and the designer could assign the pen the purpose, “to

write.” Any behaviors that support the pen in performing this purpose would be

considered the pen’s function. The designer is satisfied because pen’s function

satisfies the need, “to write my name.”

 Sometimes needs are not specified in enough detail to allow a specific function to

be described. For example, there is nothing in the pen representation about writing, so

how does the representation able satisfy the need of writing? The answer is there is a

translation step required to transform a designer's needs into a device's function.

 When describing the device, Chandrasekaran and Josephson suggest a heuristic,

which states that in the definition of the device’s function all translations from the

need to the function are left out except the one that most closely describes the device’s

function [2000]. The need "to write my name" might be translated into sub-needs such

as needing ink on paper and then needing something that releases ink into the world.

The function of the device is not said to be "writing." It is said to be "releasing ink." It

is also possible that a designer's need, if it is specific enough, might be identical to its

function. In this case no translation is required. This process is how a designer's needs

 15

eventually get expressed in terms of function.

2.1.1.2 Environment and Device Centric Representations of Function

Functions can be described as environment centric (EC) or as device centric (DC).

The notation that this section uses is summarized in table 2.1.

Notation Description

F a set of behavioral constraints

D a device

W the world or environment

Fw an EC function

Fd a DC function

M(D,W) mode of deployment

Table 2.1: Functional notation

EC Representations of Function: EC representations of function describe the function

in terms of the device’s effect on the environment. In other words, an EC

representation of function describes a device D which causes a set of behavioral

constraints F to be satisfied in some world W causing an EC function Fw to occur.

 The F for a Fw contains references to parts of W, but has no references to any parts

of the device. In the pen example, the Fw is "to cause a piece of paper to have ink on

it,” F is "the paper has ink on it," and W contains a human, a pen, and paper. The Fw

does not make any commitments about which device is performing the function. It

only mentions how part of W must be modified in order to satisfy F. Thus, the Fw in

the pen example mentions the paper, which is part of W, but not anything about the

pen.

 A mode of deployment, written as M(D,W), is a set of instantiated causal

interactions that specify how D is embedded in W. A M(D,W) can be important to

determining if a Fw is occurring because the causal interactions they instantiate could

cause F to be satisfied.

 There are different kinds of modes of deployment. One kind specifies the structural

relationship between D and entities in W. In the pen example, specifying that the

human "makes the pen contact the paper" is an example of this. Another kind of mode

of deployment is a sequence of actions. A sequence of actions can be a mode of

 16

deployment because it produces a series of relationships between the D and entities in

W. The M(D,W) from the pen example is an example of this because it is made up of

a series of three actions.

 When a device is used with different modes of deployment, different effects may

result, causing different Fw to occur. Using the M(D,W) specified in the pen example,

the pen is causing the EC function “to cause a piece of paper to have ink on it” to

occur. However, if the M(D,W) is "thrust the tip of the pen through the paper," the

pen would perform the new function of hole punching instead. Thus, by changing the

M(D,W), a device can potentially perform a different function. Having devices that

can perform several functions can be desirable because such devices can reduce the

number of components necessary in a design.

DC Representations of Function: In contrast to EC functions, DC functions, notated

as Fd, do not mention their effect on the environment. The DC function has the

assumption that desirable effects on the environment will occur so long as Fd occurs.

 The F that causes Fd to occur are specified in device-centric terms. This means that

the behavioral constraints in F only specify values for variables within the device or

causal relations within the device. For example, the pen has a Fd of "to cause ink to

flow out of the tip if the orientation is tip pointing down and force is applied to the

tip." The F contains the constraints "the orientation is tip pointing down" and "force is

applied to the tip." These are DC because they mention orientation and tip which are

both part of D and not W. Note that the F does not mention how or what is causing the

orientation to be tip pointing down or force to be applied to the tip. Presumably there

is some M(D,W) that is causing it to occur, but for an Fd that M(D,W) is assumed.

2.1.1.3 Relationship Between EC and DC Device Representations

The matter of representing a device as EC or DC is a matter of convenience for the

designer. One of the advantages of an EC representation is that more than one device

could be used to perform the same function. This is because EC representations can be

written without mentioning a specific device. For example, using the EC function

from the pen example, a water bottle filled with ink could perform the same function

as the pen. This shows that with EC representations, the designer has more freedom to

 17

explore different possibilities. In contrast, DC representations are more limiting

because the descriptions contain some assumptions about how it will interact with the

environment. For example, because the DC function from the pen example states

“force is applied to the tip” the water bottle could not perform the same DC function

as the pen.

 Depending on what the description is used for, an EC or DC representation might

be more favorable. For example, at one point in the design process it may be useful

for the designer to imagine what kinds of surfaces the pen might write on. For this, an

EC representation might be more appropriate. However, for the designer who is

interested in manufacturing the pen, reasoning about the surfaces external to the pen

might be distracting. The designer has adequate information to manufacture the pen as

long as the design states that the pen will function if ink is released from the tip. In

this case, the designer might prefer a DC representation.

2.1.2 Interactions Between Devices and their External Environments

Prabhakar and Goel provide an alternate set of definitions relating to how to represent

a device and its interactions with the environment [1996a][1996b]. They characterize

devices that interact with the environment as low, medium, and high interaction

devices (LID, MID, HID).

 LIDs have a small amount of interaction with the environment that consists of a

series of discrete events. Examples of LIDs include simple electronic circuits, heat

exchangers, and inertia controllers.

 HIDs have a high amount of interactivity with the environment. Therefore, a model

of such a device needs to include a detailed model of both the device and the

environment. An example of a HID is an air plane, which relies heavily on the action-

reaction cycle between the plane and the air around it.

 In between the two extremes are the MIDs. These devices rely on the interaction

between the device and its environment, but the interactions are more limited than the

HIDs. For example, an air conditioner continuously removes heat from air around it.

This is a mode of interacting with the environment that is similar to what a LID would

have. However, the description does not completely describe the functioning of the

device because the amount of heat that has to get removed depends on the

 18

characteristics of the environment such as the size of the room and number of items in

it. Thus, to describe how the MID functions the description needs to include

information about the device and the environment.

 The environment in which the MID operates can be characterized as having two

parts, called the external environment and the outer environment. The external

environment is the physical environment outside the device. For a refrigerator, it

includes the enclosure of the refrigerator as well as items outside the enclosure. The

outer environment for a device is the elements in the external environment that play a

role in the functioning of the device. There may be elements in the external

environment that play no role in the functioning of the device. For the refrigerator, the

outer environment is the food items in the refrigerator.

 The difference between the external and internal environments is the kind of

variables involved. The internal environment is characterized with endogenous

variables such as the compression ratio of the refrigerator. The external environment

is characterized by variables exogenous to the device such as the number of food

items in the enclosure.

 Any kind of device has an internal environment. The internal environment is

particularly important for LIDs. In the internal environment, the structure the device

allows it to have internal behaviors. The internal behaviors create certain output

behaviors which are an abstracted form of the internal behaviors. A subset of the

output behaviors can be considered the function of the device.

 For MIDs it is important to describe the outer environment in addition to the inner

environment. Like the inner environment, the outer environment has certain

behaviors. Some of these are abstracted to be output behaviors. A subset of those

output behaviors become behavior abstractions for the outer environment of the

device. The inner and outer behavioral abstractions interact. A subset of those

interactions become the functions of the MID.

 One important distinction to make between the behaviors of the inner and outer

environments is that the inner environment has intentional behavioral abstractions

while the outer environment does not. The outer environment only comes into

existence when part of the external environment is needed to support a behavioral

 19

abstraction from the inner environment. This is why, for example, the outer

environment for the refrigerator only contains the items in the food enclosure and not

other parts of the external environment such as the shelves in the refrigerator. Since

the shelves are not necessary to describe any of the inner environment behavioral

abstractions of the refrigerator, they are not included in the description of the outer

environment. In contrast, an inner environment behavioral abstraction, such as

“remove heat from cooling liquid,” exists because the designer intended it to exist.

Thus, the outer environment is defined based on what the internal behavioral

abstractions require.

2.1.3 Purpose and Function in Design from the Socio-Cultural to the Techno-Physical

Rosenman and Gero describe a design process that follows the following sequence:

Pr � Fr � Br � S � Ba � Fa,{Ba,Fa,Pa} � {Br,Fr,Pr}

Figure 2.2: P is purpose, F is function, B is behavior, S is Structure. "r" subscript means “ required”,

"a" subscript means “actual.” The symbol “�” is a convert step, and the” �” symbol is a compare

step [Vermaas, 2002].

 The first two steps (Pr � Fr, and Fr � Br) are called problem formulation and

involve the processes of translating required purposes into required functions and

required functions into required behaviors. Behaviors are then converted to structure.

Once the structure exists, the actual device has to be analyzed such that “Structure

exhibits Behavior effects Function enables Purpose.” Finally, the behavior, function,

and purpose of the actual device are compared with the required behavior, function,

and purpose. If there is a discrepancy, the design process begins again with a

reformulation.

 Rosenman and Gero distinguish which of these processes occur in the socio-

cultural and techno-physical environments [Rosenman and Gero 1998]. In the socio-

cultural environment, the human creates purposes and evaluates utility of the function,

behavior, and structure with respect to the purposes. By doing so, the human creates a

view of the device that relates to desired intentions.

 In the techno-physical environment, the device has structure, behaviors and

functions, which interact with the natural environment. Part of the techno-physical

environment consists of structure, behaviors, and functions that the human intended.

 20

However, the device also interacts with the natural environment which behaves

according to the physical laws. This may cause the device to have unintended

behaviors. Also, the techno-physical environment may have irrelevant structures

which are not part of the human's view of the device.

 The interaction between socio-cultural and techno-physical environments is such

that if a device is taken out of a socio-cultural environment and put in another, it will

have the same techno-physical environment, but different purposes and functions. The

distinction is useful because it allows the device to be represented in different views

based on the designer and use of the device, without changing the entire

representation. Allowing a device to have different views may allow for new uses of a

particular device to be uncovered.

2.1.4 Functional Reasoning in Design

Functional reasoning is an important concept in a widely accepted design

methodology described by Pahl and Beitz [2003]. Using this methodology the

designer specifies the function for the entire product, splits the function into sub

functions, looks up elements that can perform the functions, and composes a solution

based on the elements.

 Despite the fact that functional reasoning is a major part of the design process,

current CAD systems typically only support geometric modeling. To further support

designers, future systems should support the entire process including functional

reasoning. These systems should do this because functional reasoning has many

advantages, including helping to determine a products basic characteristics and

helping to decompose the design problem. Also, products that have problems with

their main functions do not sell very well. Umeda and Tomiyama provide an overview

of the various issues involved in defining function and implementing functional

reasoning in CAD systems [1997].

 The definition of function can be different for each researcher. Researchers agree

that function is related to behavior, but they disagree about the definition of function

in two ways. First, a function could contain the designer’s intention. When it is

included, the function includes the reasons why the behaviors are required and the

 21

intentions can be represented explicitly or inferred. If it is not included, the function is

just an abstracted behavior. There may be some advantages to representing the

designer’s intention in the definition of function since the intentions can be used to

support design activities such as verification, reuse, or explaining results.

 The second issue in the definition of function is the behavioral representation.

Some possible approaches include either state transitions, bond graphs, functions, and

behavior structure (FBS) modeling. These approaches differ because of their

application domain. A particular approach is good for some tasks but struggles at

others. For example, bond graphs are appropriate for power systems design, but it is

hard to use bond graphs to represent devices that do not transform anything. Thus,

researchers are still investigating the question of when to use a particular behavioral

representation.

 While implementing advanced CAD systems that perform functional reasoning,

researches have learned some lessons. Representing function helps organize designs

for reuse. The ability to verify designs early on using simulation is critical. In order to

represent functions, a designer must be experienced. Functional CAD systems should

be able to deal with quantitative attributes and geometry to make it easier to bridge the

gap between existing design systems.

 There are two additional issues that future CAD system designers must face in

order to make CAD systems that go beyond verification of existing designs and

configuration designs.

 The first issue is that designers need to be able to design from the view point of

structure, behavior, and function. Since a certain function might have very different

behaviors and structural hierarchies, future CAD systems must figure out how to

make representations consistent and useful.

 The second issue is a top-down versus bottom-up issue. Since systems can be

designed starting with the structure and then finishing with function and vice versa, a

functional reasoning tool should be able to combine the two kinds of reasoning.

2.1.5 Functional Basis

The functional basis [Stone and Wood, 1999] is a common design language that can

be used for functional modeling. It consists of two main parts: functions and flows. A

 22

function is a description of an operation performed by a device. The reader should

note that this definition of function is different from other definitions described in this

section. For example, the work described in section 2.1.1 would classify these as

behaviors not functions. A flow is the change in material or energy caused by a

function. A flow is the recipient of the function’s operation. Concepts using the

functional basis are expressed as verb-object pairs, where functions are the verbs and

flows are the objects.

 Flows represent the quantities that are input and output by functions. For example,

the function convert could take the flow human force as input and output mechanical

force. Flows are broken down into three classes: material, signal, and energy. Signal

flows are actually made of material or energy, but they are given a special

classification in the functional basis. Each class has basic and sub-basic flows such as

the basic flow human or mechanical and the sub-basic flows human hand, or

mechanical force.

 Flows can be expressed in three ways depending on how specific the description

needs to be. The most general description is just the class expressed as human or

signal. A more specific flow is the basic description + class pair such as human

energy, or an even more specific flow is the sub-basic description + class pair such as

human force. Depending on the customer needs, the designer may use more general

flows to allow a more general description and use variants, or specific flows to give a

more detailed, concrete design. The functional basis also provides clear written

definitions for each flow.

 Functions are defined in eight classes with basic functions in each. The functional

basis provides clear definitions for each basic function as well as lists the synonyms

that might be used to represent that function. Some example functions include import,

export, transmit, couple, display, rotate, and change.

 The authors of the functional basis suggest a way to apply the functional basis to

designing. They suggest that the first step is to figure out a black box model of the

product and to identify the flows in and out of the model. Then, the designer creates

function chains for each input flow, envisioning how the flow moves through the

device. The designer expresses each change in the flow as a sub-function using the

 23

functional basis vocabulary. The next step is to order the function chains by time.

There may be sequential or parallel function chains in the system. The final step is to

aggregate all the flows together connecting them as necessary by possibly adding new

sub-functions.

 There are several advantages to using the functional basis. First, the functional

basis can help designers to make a product architecture more modular earlier in the

design process. This is done by grouping sub functions together.

 Second, the functional basis allows functional models to be expressed in a

consistent way. The functional basis allows functional models to be consistent

because each model uses the same set of terms and because each term has a clear

definition.

 Third, functional models can be stored in a corporate body of design knowledge.

Designers can use the stored models to find products of with similar functions, or

products that are directly usable.

 Fourth, functional models can aid in creative concept generation because they

provide a way to represent abstract or incomplete information, and because they can

help decompose a problem into sub functions.

 Finally, functional models can reduce the guesswork involved in creating metrics

for a certain product. Instead of defining a new set of metrics for each product, metrics

can be defined over a range of products. One type of metric could be a high-level

physical model of a product’s technical progress. Other types of metrics could

measure product benchmarks and product quality.

2.1.6 Relationship Between Functional Modeling and Functional Reasoning

Sections 2.1.1 through 2.1.4 describe different parts of functional reasoning (FR)

research. Section 2.1.5 describes one kind of functional modeling (FM) research.

These two research areas are in fact related and are complementary to each other

[Chandrasekaran, 2005].

 The definition of function in FR and FM are similar, but not the same. Both

research areas agree that a function is what the device does and that the vocabulary for

functions is the same as behaviors. However, FR makes the further distinction that a

function is only the set of behaviors that are desired. Therefore, according to the FR

 24

terminology, FM is doing something more like “behavior modeling” than “functional

modeling” because for FM all the behaviors can be considered functions.

 Another difference between FR and FM research is that FM research is not driven

by a need to experiment with automated reasoning, while FR is. FR research worries

about the fine details of the representational aspects of devices so that it can use

functional representations for automated reasoning. Having this automation can allow

a system to determine, for example, if a device actually achieves the desired function.

FM is not as formal as FR, one only needs an intuitive understanding of what the

terms mean in order to use the system. However, ontology development is in fact a

challenging process that requires extensive experimentation.

 Therefore, FM research could benefit from utilizing FR research. Doing so would

allow FM researchers to make their primitives more precise. One way that FR

research could make FM research more precise is by making the distinction between

DC and EC representations. This distinction is currently not made in the FM research.

 Researchers from FR and FM communities could benefit from each other’s work

because FM refines the general ontologies that FR defines. The behavior primitives

described in FM research can become a content theory for FR. This can be very useful

because FR has no specific primitives for properties, behaviors, and functions in

specific domains. Another way to describe this is FM specifies what variables exist in

the domain, and FR specifies what types of variables might exist in the domain. FR

describes what kinds of objects are involved in making devices and FM refines the

kinds of behaviors that can exist for certain subclasses of devices. Having a theory

that uses both FR and FM would be applicable to wider variety of domains than a

theory that just encompasses only FR or FM.

2.1.7 Summary

Functional representation research forms the theory used in this thesis to design the

knowledge representation and test examples. There are several views about how to

describe devices. These views help to influence the knowledge representation used in

this thesis and show why functional representation is important for computer-based

systems that support design.

 25

 The functional ontology described in section 2.1.1 shows how the represent the

structure, behavior, and function of devices using a simple ontology and, in particular,

it describes how to represent devices in DC and EC ways. The DC vs. EC difference

is the main variable varied in the experiments for this thesis.

 The environment can be split into an outer environment and external environment.

For some devices it is necessary to represent the environment in order to accurately

describe its function. This means that a precise understanding of how to model the

environment is important.

 Interaction between the device and the environment can also be viewed as an

interaction between the techno-physical and socio-cultural environments. This

distinction allows the device to have many kinds of structure, behaviors, and functions

in the techno-physical environment, but only a subset which are relevant to the human

in the socio-cultural environment. This indicates that functions exist to satisfy a

designer’s purpose and the designer might have different purposes for the same

device. Thus, the device remains largely the same, but the designer will assign it

different functions depending on the particular socio-cultural environment.

 Lastly, Umeda and Tomiyama say that the behavioral representation is important

for systems that perform functional reasoning and that there are several competing

approaches [1997]. Thus, the results from this thesis will be useful because they help

define which kind of behavioral representation is useful in which circumstances.

 An area of research related to functional representation is functional modeling. The

functional basis is a language for functional modeling that provides a set of domain

specific terms for describing flows and functions. In this thesis, these terms are used

in conjunction with functional representation theories to create accurate test examples.

2.2 Analogy2.2 Analogy2.2 Analogy2.2 Analogy

Analogical reasoning is, in fact, a fundamental reasoning process that people use all

the time in everyday life [Gentner et al., 2001, p. 499-537]. It is also a particularly

important process for producing creative designs [Pahl and Beitz, 2003] and for

inventing [Wolverton and Hayes-Roth, 1995]. Because of the importance of

analogical reasoning, researchers have developed a good understanding of analogy

making and several analogical systems have been built.

 26

 Section 2.2.1 reviews analogy in general. Section 2.2.2 describes an algorithm for

performing analogical matching that will be of particular use in this thesis. Finally,

section 2.2.3 and 2.2.4 describe selected systems that perform design by analogy.

Overall, this section provides an overview of analogy and some analogy systems that

can perform it.

2.2.1 Analogy in General

Analogy is “the ability to identify patterns, to identify recurrences of those patterns

despite variation in the elements that compose them” [Gentner et al., 2001, p. 2]. In

particular, analogy is the ability to think about relational patterns. For example, if two

circles are compared to two possible analogs, two squares or a square and a triangle,

the best analog is the two squares because they both share the relationship: sameness

of shape. The importance of this analogy is that the analogy between the two circles

and two squares relies on a common relationship, not their physical appearance. In

order to make this analogy, a person needs to represent and reason about the

relationship between the objects [Gentner et al., 2001, p. 2].

 The analogy making process can be broken down into a series of steps in order to

make a mapping between two domains, called the source and target. The target is the

new description that must be matched with a known source. The source is sometimes

called the base. First, the analogy system must access relevant source analogs from

long term memory. Second, parts of the source are mapped to the target. Third,

analogical inferences are made between the source and target to fill in any missing

knowledge in the target. Finally, learning occurs as the new analog is incorporated

into the analogy system’s memory [Gentner et al., 2001, p. 9].

 There are three issues that computer-based analogy systems face. First, in order to

make more complicated analogies, more complex representations are necessary. Thus,

any computational system must be able to build and manipulate complex

representations. The second issue analogy systems face is the “binding problem.” This

problem involves identifying the roles for a particular piece of knowledge. A third

issue is the need for representations that are dynamic enough to allow a reasoner to

change the source and target representations during the reasoning process. Since the

 27

reasoner might be trying to find analogies between different domains which have very

different representations, the representations might need to change significantly in

order for them to be compared.

 There have been three approaches for implementing analogy systems. One is based

on using methods such as logic, planning, and search, and another is based on

connectionist methods that use nodes, weights, and spreading activation in a network

[French, 2002]. The final approach is a hybrid of the first two approaches.

 Symbolic methods do well at dealing with the first two issues analogy systems face

because they have explicit symbols to represent the analogies and relationships

between elements in the analogies. The two issues are more of a challenge for

connectionist approaches, which uses activations over a neural substrate to represent

symbols instead of using explicit representations. However, connectionist approaches

have the advantage that they provide a natural internal measure of similarity [French,

2002]. Both kinds of analogy systems have problems with the third issue.

 An example of a symbolic method for analogy making is an algorithm called

Structure Mapping Engine (SME). SME makes analogies based on the structural

similarity between two domains. Thus, analogs are mapped based on the relationships

rather than on the attributes of the source and target. The algorithm also uses the

systematicity principle which states that larger, more coherent mappings are preferred

over individual mappings thus allowing it to build complex analogies.

 An example of a connectionist method for analogy making is ACME [Holyoak and

Thagard, 1989]. ACME uses an architecture based on the parallel activation of nodes

in a neural network-like structure. It frames the problem as a constraint satisfaction

problem. The system represents the pairings between the source and target as links

between nodes in a neural network [French, 2002]. When the system is presented with

source and target representations, certain links get deactivated and the most active

hypothesis becomes the best analogy.

 An example of a hybrid approach is a model like AMBR [Kokinov and Petrov,

1988]. AMBR has symbolic methods that encode declarative and procedural

knowledge. AMBR has a connectionist part that computes the activation level of a

particular reasoner in the system. When a reasoner is more activated its actions are

 28

more relevant. Using this connectionist model, AMBR is able to process an analogy

all at once without a preset order of steps.

2.2.2 SME

As mentioned in the previous section, the Structure Mapping Engine (SME) is a kind

of analogy making system. Since this thesis will be using SME, this section goes into

more detail about how SME works. It describes the overall algorithm, and pays

particular attention to how changing the SME parameters affects its output. For a

more complete description of the algorithm see [Falkenhainer et. al., 1989].

2.2.2.1 Structure Mapping Theory

SME is an implementation of the psychological theories of Gertner [1983]. It is an

analogical matching algorithm that produces mappings between parts of source and

target representations. As of 1990 there were over 40 projects used it [Falkenhainer et.

al., 2005]. In a more recent review, French said Structure Mapping Theory is

“unquestionably the most influential work to date on the modeling of analogy-

making” [2002].

 SME is useful because it ignores surface features and finds matches between

potentially very different devices if they have the same representational structure. For

example, SME could determine that a pen is like a sponge because both are involved

in dispensing liquid, even though they accomplish it very differently.

 Structure Mapping Theory is based on the systematicity principle, which states that

more connected knowledge is preferred over independent facts. Therefore, SME

should ignore isolated source-target mappings unless they are part of a bigger

structure. SME should map objects that are related to knowledge already mapped.

 Structure Mapping Theory also requires that mappings be one-to-one, which means

that no part of the source description can map to more than one item in the target and

no part of the target description can map to more than one part of the source. In

addition, structure mapping theory requires that if a match maps S to T then the

arguments of S and T must also be mapped. If both these conditions are met, the

mapping is said to be structurally consistent.

 29

2.2.2.2 SME Algorithm

SME takes two descriptions called the source and target, and maps knowledge from

the source into the target. SME calls each description a dgroup. Dgroups contain a list

of entities and predicates. Entities represent the objects or concepts in a description

such as an inputgear or a switch. Predicates are one of three types and are a general

way to express knowledge for SME. Relation predicates contain multiple arguments

which can be other predicates or entities. An example relation is: (transmit (what

from to)). This relation has a functor “transmit” and takes three arguments: “what,”

“from,” and “to.” Attribute predicates are the properties of an entity. An example of an

attribute is (red gear) which means that gear has the attribute red. Finally, function

predicates map an entity into another entity or constant. An example of a function is

(joules powersource) which maps the entity powersource onto the numerical

quantity joules. Functions and attributes have different meanings and consequently

SME processes them differently. For example in SME’s true analogy rule set,

attributes differ from functions because they cannot match unless there is a higher

order match between them. The difference between attributes and functions will be

explained further in this section’s examples.

 All predicates have four parameters. They have a functor, which identifies it and a

type, which is either relation, attribute, or function. The other two parameters are for

determining how to process the arguments in the SME algorithm. If the arguments

have to be matched in order, commutative is false. If the predicate can take any

number of arguments, N-ary is false. An example of a predicate definition is:

(sme:defPredicate behavior-set (predicate) relation :n-ary? t :commutative? t)

The predicate’s functor is “behavior-set,” its type is “relation,” and its n-ary and

commutative parameters are both set to true. The “(predicate)” part of the definition

specifies that there will be one or more predicates inside an instantiation of behavior-

set.

 The first step of the algorithm is to create a set of match hypotheses between source

and target dgroups. A match hypothesis represents a possible mapping between any

part of the source and the target. This is controlled by a set of match rules. By

changing the match rules, one can change the type of reasoning SME does. For

 30

example, one set of match rules may perform a kind of analogy called “literal

similarity” and another performs a kind analogy called “true-analogy.” These rules are

not the place where domain dependent information is added, but rather where the

analogy process is tweaked depending on the type of cognitive function the user is

trying to emulate.

 There are two types of match rules: filter rules and intern rules. Intern rules only

use the arguments of the expressions in the match hypotheses that the filter rules

identify. This makes the processing more efficient by constraining the number of

match hypotheses that are generated. At the same time, it also helps to build up the

structural consistencies that are needed later on in the algorithm. An example of a

filter rule from the true-analogy rule set creates match hypotheses between predicates

that have the same functor. The true-analogy rule set has an intern rule that iterates

over the arguments of any match hypotheses, creating more match hypotheses if the

arguments are entities or functions, or if the arguments are attributes and have the

same functor.

In order to illustrate how the match rules produce match hypotheses consider these

two predicates:

transmit torque inputgear secondgear (p1)

transmit signal switch div10 (p2)

The filter match rule generates a match between p1 and p2 because they share the

same functor, “transmit.” The intern rules then produce three more match hypotheses:

torque to signal, inputgear to switch, and secondgear to div10. The intern rules

created these match hypotheses because all the arguments were entities.

If the arguments were functions or attributes instead of entities, the predicates

would be expressed as:

transmit torque (inputgear gear) (secondgear gear) (p3)

transmit signal (switch circuit) (div10 circuit) (p4)

These additional predicates make inputgear, secondgear, switch, and div10

functions or attributes depending on the value defined in the language input file. The

representation also contains additional entities for gear and circuit.

 31

Depending on what type inputgear, secondgear, switch, and div10 are, their

meanings change. As attributes, each one is a property of the gear or circuit. For

example, the gear has two attributes, inputgear and secondgear. The circuit has two

attributes, switch and circuit. As functions inputgear, secondgear, switch, and

div10 become quantities of the gear and circuit. In this example, the functions

inputgear and secondgear now map to the numerical quantities “torque from

inputgear” and “torque from secondgear,” For the circuit the quantities map to logical

quanitity “switch engaged” and the numerical quantity “current count on the divide by

10 counter.”

SME processes these differently. It does not allow attributes to match unless they

part of a higher order relation, but it does allow functions to match, even if they are

not part of a higher order relation. It allows functions to match because they indirectly

refer to entities and thus should be treated like relations that involve to entities.

However, as section 2.2.2.3 shows, the intern rules assign lower weights to matches

between functions than matches between relations. The reason why SME does not

match attributes is because it is trying to create connected knowledge based on

relationships and thus satisfy the systematicity principle. For example, if both a clock

and a car have inputgear attributes SME will not mark them as similar. If it did, it

would be making a match between the clock and car based on their appearance not on

the relationships between them.

When the additional predicates in p3 and p4 are functions, the results from

matching p3 and p4 are similar to the results from p1 and p2 except there is an

additional match between gear and circuit and the values for the match hypotheses

between (inputgear gear) and (switch circuit), and (secondgear gear) and (div10

circuit), are lower. Section 2.2.2.3 describes the reason for this in more detail.

If the inputgear, secondgear, switch, and div10 are attributes instead of entities,

SME does not find matches between any of the attributes. It only finds matches

between the transmit predicates and between torque and signal. Additionally, the

structural evaluation scores for the remaining two matches decreases. In order to get

the two predicates to match, p3 would need to be replaced by p5. P5 is shown below.

transmit torque (inputgear gear) (div10 gear) (p5)

 32

Since the true-analogy rule set identifies that the div10 attributes are the same

between p5 and p4 and because the div10 attributes are both part of the higher relation

match between torque and signal SME makes a match between (div10 gear) and

(div10 circuit) which leads to a match between gear and circuit.

 Being part of a higher order match is a requirement only for attributes. For

example, if (div10 gear) and (div10 circuit) are not part of a higher order match,

SME does not create a match hypothesis between match them. However, if div10 is a

function or relation SME does create a match.

2.2.2.3 Structural Evaluation Score

Once the match hypotheses are generated, SME needs to compute an evaluation score

for each match hypothesis. SME does this by using a set of intern match rules to

calculate positive and negative evidence for each match. Multiple amounts of

evidence are correlated using Dempster’s rule [Shafer, 1978] resulting in positive and

negative belief values between 0 and 1. The match rules assign different values for

matches involving functions and relations. These values are programmable, however

some default values that can be used to enforce systematicity principle are described

in [Falkenhainer et. al., 1989].

These rules are:

1. If the source and target are not functions and have the same order the match

gets +0.3 evidence. If the orders are within 1 of each other, the match gets

+0.2 evidence and -0.05 evidence.

2. If the source and target have the same functor, the match gets 0.2 evidence if

the source is a function, and 0.5 if the source is a relation.

3. If the arguments might match, the match gets +0.4 evidence. The arguments

might match if all the pairs of arguments between the source and target are

entities, if the arguments have the same functors, or it is never the case that

the target is an entity but the source is not.

4. If the predicate type matches, but the elements in the predicate do not match,

then the match gets -0.8 evidence.

5. If the source and target expressions are part of the a matching higher order

match, add 0.8 of the evidence for the higher order match.

 33

 In the example match between p1 and p2, SME gives the match between the

transmit relations a positive evidence value of 0.7900 and the others get values of

0.6320. The transmit relation receives the evidence value of 0.7900 because it gains

evidence from rules 1, 3, and 2. The other matches get a value of 0.6320 because 0.8

of the evidence from the transmit is propagated to these matches because of rule 5.

 For predicates p3 and p4, SME assigns less evidence because the arguments of the

transmit relations are functions. The transmit relation gets positive evidence of 0.65

because rule 3 no longer adds evidence. The match between (input gear) and (switch

circuit) becomes 0.7120. This match gets 0.4 evidence because of rule 3, and 0.52

evidence propagated from the transmit relation because of rule 5.

 When the predicates in p3 and p4 are attributes, rule 4 adds -0.8 evidence to the

transmit match because though the functors of the transmit relation match, the

arguments do not have the potential to match and the arguments are not functions.

 To summarize, the intern match rules compute a structural evaluation score for

each match hypothesis. These rules enforce the systematicity principle. Rule 5

provides trickle-down evidence in order to strengthen matches that are involved in

higher order relations. Rules 1, 3 and 4 add or subtract support for relations that could

have matching arguments. Rule 2 adds support for when the functors match thereby

adding support for matches that emphasize relationships.

 The rules also enforce the difference between attributes, functions, and relations.

For example, they have checks which give less evidence for functions than relations.

Attributes are not specifically dealt with by the intern match rules, but SME’s filter

rules ensure that they will only be considered for these rules if they are part of a higher

order relation and rule 2 ensures that attributes will only match if they have identical

functors.

2.2.2.4 Gmap Creation

The rest of the SME algorithm is involved in creating maximally consistent sets of

match hypotheses. These sets of match hypotheses are called gmaps. SME must

ensure that any gmaps that it creates are structurally consistent. This means that they

are one-to-one, such that no source maps to multiple targets and no target maps to

multiple sources. It also means that they must have support, which means that if a

 34

match hypothesis is in the gmap, then so are the match hypothesis that involve the

source and target items.

 The gmap creation process follows two steps. First, SME computes some

information about each match hypothesis. This includes entity mappings, what other

match hypotheses it conflicts with, and what other match hypotheses it is structurally

inconsistent with.

 SME then uses this information to merge match hypotheses using a greedy

algorithm and the structural evaluation score. It merges the match hypotheses into

maximally structurally consistent connected graphs of match hypotheses. Then it

combines gmaps that have overlapping structure if they are structurally consistent.

Finally, it combines independent gmaps together while maintaining structural

consistency.

 Comparing a source to a target dgroup may produce one or more gmaps. The

weight for each gmap is the sum of all the positive evidence values for all the match

hypotheses involved in the gmap. For example, if a source containing p1 and p6

below, is compared to a target containing p2, SME will generate two gmaps. Both

gmaps have a weight of 2.9186.

Source:

transmit torque inputgear secondgear (p1)

transmit torque secondgear thirdgear (p6)

Target:

transmit signal switch div10 (p2)

 35

Figure 2.3: Gmaps resulting from comparing a source containing a p1 and p6 and a target containing

p2.

The gmaps in figure 2.3 show pairs of predicates or entities that match. For example

in gmap #1, the entities torque and signal match and the behaviors transmit torque

inputgear secondgear and transmit signal switch div10 match. Gmap #1

represents combining p1 and p2. Gmap #2 represents combining p1 and p6. Although

p2 is compatible with both p1 and p6, the one-to-one mapping constraint enforces that

both mappings cannot be in the same gmap. Therefore, SME produces two

independent gmaps. In addition, combining the two gmaps together would make the

entity mappings between thirdgear and div10 conflict with the entity mapping

between secondgear and div10.

2.2.3 KDSA

Wolverton and Hayes-Roth describe a system called KDSAID, which is designed to

find semantically distant, innovative analogies between devices [1995]. It is based on

three observations of how inventors use analogies. First, inventors draw analogies

from an unpredictable number of domains that can be a very different from each other.

 Second, inventors use concepts that are unusual or unexpected to find more

analogies. Thus, concepts that are as different as possible from the target concept

while still being useful are the best for innovative analogies. Useful means that only

the features that are necessary for the device to function are included and any

extraneous features are mismatched as much as possible. Surface similarity is not

good for innovative designs.

Gmap #1:
(TORQUE SIGNAL)
(INPUTGEAR SWITCH)
(SECONDGEAR DIV10)
 (*TRANSMIT-TORQUE-INPUTGEAR-SECONDGEAR
 *TRANSMIT-SIGNAL-SWITCH-DIV10)

Gmap #2:
(TORQUE SIGNAL)
(SECONDGEAR SWITCH)
(THIRDGEAR DIV10)
(*TRANSMIT-TORQUE-SECONDGEAR-THIRDGEAR
 *TRANSMIT-SIGNAL-SWITCH-DIV10)

 36

 Third, inventors can stumble across a solution while working on the design

problem. They proceed using a conscious or unconscious search of memory. Inventors

might find a phenomenon and search for a problem to apply it to. They could also start

with a problem and search for a solution or start with a solution and search for a

problem.

 Wolverton and Hayes-Roth developed an algorithm called KDSA and the

knowledge that applies it to design, called KDSAID. The KDSA algorithm retrieves

semantically distant analogues and then uses heuristics defined by KDSAID to guide

KDSA to useful analogues between devices.

 KDSA represents the world as a single semantic network which has nodes that are

associated with links. To retrieve a concept, the target concept nodes, and possibly

nodes representing characteristics of the solution, are activated.

 KSDA has several steps. First, the graph matcher maps concepts to the target.

Second, mapping evaluation evaluates the map using a task specific similarity metric.

Third, search control uses heuristics to focus the spreading activation search. KDSA

proceeds to search for an analogue until it finds one that exceeds a desired set of

thresholds.

 A distinguishing characteristic of this approach is that the mapping evaluation step

provides feedback to the search control step and vise versa through changes to the

semantic network. Other analogy algorithms serialize retrieval and mapping as

independent processes.

 KDSAID adds heuristics for the map evaluation and search control stages of KDSA.

The heuristics for map evaluation are set up to make source and target devices have

similar functions but different behaviors. This ensures that both devices will be able to

perform the same function, but that they will be more novel in the behaviors used to

accomplish the function. Second, the map evaluation makes sure the source is

adaptable to the target so that if a possible match is found the match can be mapped

back to the target. Map evaluation makes sure that the analogies are not so different

that they are useless.

 To get these effects, the map evaluation component makes decisions based on two

measures: isomorphism and semantic distance. Isomorphism is the percentage of

 37

nodes and links that match between the target and source. Semantic distance is the

average path distance between mapped nodes. KDSAID defines different similarity

metrics based on these measures. It defines thresholds on these values so that it can

stop the search when a suitable analogy is found. For example, one of the conditions

requires that the analogy must have high isomorphism. Another requires that the

distance measure between the structure of the devices in the source and target is high.

These measures are set to encourage KDSAID to find innovative designs.

 KDSAID also defines some heuristics for search control. The heuristics are set to

increase likelihood of future mappings working and to reduce amount of search

necessary to do it. The “activate promising concept” heuristic strengthens the

activation levels of parts of the concepts that are close to meeting the thresholds.

“Prune unpromising concept” clears activation for unpromising concepts and makes it

so they cannot be activated. “Cross-domain bridge” utilizes known abstractions to

move analogues out of the same domain. “Modify retrieval condition” makes is so

that devices are only retrieved if the representation of its behaviors are highly

activated.

 In order to make KDSA useful, the heuristics and thresholds must be set so that

“flaky”, useless analogies are eliminated, but yet KDSA is still allowed to find novel,

surprising analogies. For example, Wolverton and Hayes-Roth mention KDSA found

an innovative analogy between a rock crusher and an irrigation system that suggested

that the irrigation system should transport water on a conveyor belt [1995]. When the

researchers added an “adaptability requirement” to one of their heuristics, the system

no longer found that analogy. Thus, adding too many constraints to an analogy system

could eliminate potential innovative analogies.

2.2.4 Qian and Gero

Qian and Gero describe an analogy making system called DESSUA that utilizes a

knowledge representation consisting of qualitative causal relations and generalized

design knowledge of devices to perform creative design [1992][1996]. The knowledge

is put into three categories: structure, behavior, and function. The analogy system has

several parts: a concept retriever, analogy retriever, an analogy elaboration step, and

an evaluation step.

 38

 The concept retriever searches for a source design based on the conceptual design

name and design requirements. The design requirements are expressed with the same

structure, behavior, function model as the devices in the design library. The concept

retriever uses the conceptual design to find an existing design and uses that design to

generate analogical retrieval clues in the form of a target concept.

 The analogy retriever retrieves analogous designs that have the same function or

behavior as the design in the target concept. It may also retrieve designs based on the

design requirements.

 The elaboration step identifies correspondences between the source and target. If

two functions match, then the behavior, structure, and external effects are mapped. If a

behavior matches, only the structure can be mapped. Thus, matching can occur

between two function variables, two behavior variables, or two behavior graphs if

they are the same at some abstract level. Variables that represent structure and

exogenous variables can get mapped only if they have the same associated functions

or behaviors.

 The evaluation step requires a human to comment on the system’s output. This is

needed because the design variables introduced from the source to the target may not

have associated domain knowledge. Therefore the system cannot evaluate them.

 Qian and Gero show that the system is capable of designing devices by analogy.

For example, it designed a buzzer based on an analogy with a blinking cursor. It also

designed a new kind of folding door based on an analogy with a curtain.

2.2.5 Summary

There are many different analogy systems that have been built. Some of them use

symbolic representations like SME and DESSUA, and others like KSDA use a

network like structure to make analogies.

 SME is effective at finding analogies based on relationships. This means that SME

could possibly find analogies that come from different domains. Such analogies have

the potential to be seen as creative. Since this thesis seeks to measure if creative

analogies can be produced, this is an important property of SME. Also, the format of

the SME input works off of symbols. This is important because the knowledge

 39

representation this thesis uses is based on the theories described in section 2.1, which

largely discuss symbolic representations of functions that include objects such as

“behaviors” and “functions.”

 A notable feature of KSDA is that it uses thresholds to control when a suitable

analogy was found. The researchers who developed KSDA found that if they over

constrain the system, it does not produce some interesting analogies. This lesson could

be relevant to this thesis since one representation might be more constraining than

another. One representation may produce too many analogies that are not all useful or

one may produce too few. As KSDA has shown, the parameters of the analogy

making system need to be tuned to produce enough useful analogies without

producing too many useless ones. It is possible that the representation type used could

be one of these parameters.

 Lastly, an important lesson for this thesis from the work on DESSUA is that the

human needs to be involved in the evaluation especially when the products lack

represented domain knowledge. This suggests that humans might need to be involved

in some part of the evaluation process used in this thesis.

2.3 Repertory Grids2.3 Repertory Grids2.3 Repertory Grids2.3 Repertory Grids

One way to measure how computer based analogical reasoning systems, such as the

ones described in section 2.2, perform is to compare the results to what people

produce, since people also perform analogical reasoning. In order to make this

comparison, this thesis requires a technique such as repertory grids to extract

measures of similarity from human experts.

 The repertory grid technique is well suited for this purpose. Since computational

analogical reasoning systems can produce the same kind of similarity measure that the

repertory grid analysis produces, repertory grids can be used to compare human results

to the computer’s results. Additionally, there is a software package that simplifies

collecting and analyzing repertory grids.

2.3.1 Repertory Grid Technique

The repertory grid is a technique for eliciting knowledge about the way an expert

categorizes the world and reasons about it. It allows a knowledge engineer to record

 40

the expert’s view of a particular problem and to get the expert thinking about the

problem [Hart, 1986].

 A repertory grid involves two concepts: elements and constructs. Elements are the

items in the world that the expert is trying to categorize. Constructs are bi-polar scales

that the expert uses to rate each element. The scale is a numeric scale, such as 1 to 5,

and the expert names each pole. For example, if an expert were describing a set of

people elements. The expert might create a construct where 1 is “short” and 5 is “tall”

and then rate each person on a height scale of 1 to 5.

 Since each expert may provide a wide array of constructs, it is important to note

that the ratings that a particular expert gives are useful for comparison purposes only.

It does not make sense to compare two experts’ ratings, even if they have exactly the

same constructs.

 Also, the ratings are only relative. For example, if an expert gives Brian a rating of

4 on the height scale, and gives Sue a rating of 2, it does not mean that Brian is twice

as tall as Sue, it just means that Brian is taller than Sue. Figure 2.4 is an example of a

grid.

Figure 2.4: Example of a repertory grid for people. Elements are on the bottom and constructs are on

either side. This figure was made using software by Shaw and Gaines [2005].

 Eliciting a grid is an iterative process, between a knowledge engineer and the

expert. The process ends when the expert is satisfied that the grid accurately reflects

his or her views. The expert could just fill out the grid directly by naming all the

elements and constructs. However, this is often to difficult for an expert, so the

elicitation process is usually an iterative process, where the knowledge engineer asks

the expert to evaluate triads of elements at a time. For example, in eliciting the above

grid, the knowledge engineer might ask how Sue, Bill, and Charlie are in some way

 41

different. The expert’s response is that Charlie likes sports and Sue and Bill do not

and the expert rates them as such. The advantage of using triads is that a triad of

elements is the minimum the expert needs to evaluate in order to identify one

difference and one similarity. The small number of elements is easy for the expert to

evaluate. By comparing enough sets of triads, the expert eventually fills in the entire

grid. The expert is allowed to add elements, or change constructs at any time during

the elicitation process.

 Once the grid is elicited, the grid can then be analyzed by a clustering technique.

This clustering technique involves two steps. First, it computes a percent similarity

measure between each element and construct. Then, the clustering technique orders

the elements and constructs into a “focused” grid that helps to show the expert which

elements are most similar.

 Figure 2.5 shows an example of a focused grid, which is based on the percent

similarity measures from the cluster analysis. The elements that are most similar are

next to each other. For example, Kelly is most like Sue, and Bill is most like Charlie

and Brian. The lines above the elements represent the percent similar measure

between elements. The lines show Kelly and Sue are about 80% similar. When the

lines connect it means that all elements in the cluster are at that level of similarity.

Thus, John, Brian, Bill, and Charlie are all about 70% and all the elements are about

45% similar. A similar arrangement is made for the constructs and shown with the

lines on the right.

 42

Figure 2.5: A focused grid for people. The elements are on the bottom and the constructs are on either

side. The lines above the elements and beside the constructs show the clusters on a scale of percent

similar. This figure was made using software by Shaw and Gaines [2005].

 The cluster analysis computes a measure of difference between each element or

construct and then computes their percent similarity. Difference is measured by the

sum of the absolute differences in the ratings. Thus, the ratings for John are: 4 5 5 2 2

4 and for Brian the ratings are: 1 4 5 3 4 4. The differences between ratings are 3 + 1 +

0 + 1 + 2 + 0 = 7. To compute the difference measure between two elements or

constructs the formula is:

(-100Dij / (m * n)) + 100

Where Dij is the difference between element or construct i and j, m is the maximum

difference between elements, and n is the total number of elements or constructs in the

grid. Therefore, the percent similarity between John and Brian is 71%.

 Each construct undergoes an extra step in analysis that does not occur for the

elements. A construct may give different similarity measures when depending on

which pole is the low pole and which is the high. When a reversed construct gives

more similarity, the cluster analysis uses it instead of the original.

 There are several advantages of the grid. First, the grid can be analyzed using

techniques such as clustering and then the results can be compared to grids from other

experts. Second, the grid makes the expert think carefully about the problem, thereby

clarifying the expert’s views and explicitly representing their implicit knowledge.

 43

2.3.2 Repertory Grid Software

Many tools exist to make the repertory grid elicitation and analysis easy to do. One

tool is Rep IV [Shaw and Gaines, 2005] which is a commercial tool that is free for

academic use. This tool helps elicit a grid from an expert and performs all the

repertory grid cluster analysis.

 The elicitation tool in Rep IV uses triadic elicitation to ask an expert how two

elements are alike and differ from a third. Then, it asks the expert to create a construct

and some poles for that construct. Next, the tool asks the expert to rate all elements

according to the poles.

 After four constructs have been elicited in this way, Rep IV tests the constructs and

elements for similarity. If any two are more than 80% similar, it asks the expert to

lower the similarity by either entering a new element or a new construct. If Rep IV

gets a new construct, it asks the expert to rate all elements by that construct. If the Rep

IV gets a new element, it asks the expert to rate it according to all the existing

constructs.

 Rep IV can analyze a grid and produce the charts like figures 2.4 and 2.5. Rep IV

also can output the raw data used to compute the grid, including the element and

construct percent matches. During the elicitation process, the expert can use these

charts to decide how to further refine the grid.

 Rep IV also facilitates allowing another user to fill in ratings that another expert

has generated. This allows comparisons between different experts’ ratings.

 Overall, Rep IV is easy to use. It is user friendly and robust. Its elicitation feature

makes it easy to collect grids from experts. It also performs all the necessary analysis

for repertory grids.

2.3.3 Summary

Repertory grids are a technique for eliciting knowledge about similarities from

experts. Analyzing the grid produces a numerical percent-similar result that this thesis

can use to compare human and computer results. This thesis can include an analysis of

the constructs in a grid in order to determine what reasons the respondents had for

choosing their constructs and ratings. The technique also has software that can help in

 44

the eliciting and analysis of the grid. Together, this makes repertory grids a technique

that is both useful and easy to use in this thesis.

2.4 Creativity2.4 Creativity2.4 Creativity2.4 Creativity

Creativity is a concept that is hard to define and evaluate. Still, there has been much

research about how to quantify creativity and how to build systems that exhibit

creative reasoning. One kind of reasoning that, if applied correctly, can produce

creative reasoning is the kind of analogical reasoning that section 2.2 describes.

However, in order to make an analogical reasoning system produce creative analogies,

a more precise knowledge of creativity is necessary. In particular, a designer of a

creative system must know how to judge if a system produces a creative product and

what methods a system can use to produce them. This understanding is critical in this

thesis because a one of its goals is to judge if the analogical reasoning system used

can produce any creative results.

 The following sections describe three important aspects of creativity that can be

used to design a reasoning system, such as an analogy making system, that can

produce creative products. First, section 2.4.1 describes a set of criteria that can be

used to assess creative products. This is useful for judging if a reasoning system has

produced anything creative. Second, section 2.4.2 defines creativity in respect to

conceptual spaces, which gives another perspective about how to evaluate creative

products. It also compares the analogical reasoning approach to other ways of

producing creative products. Finally, section 2.4.3 describes how creativity is applied

to design tasks specifically for analogical reasoning. This gives more detail about

what an analogical reasoning system must do in order to produce creative designs and

how useful analogical reasoning can be for design tasks.

2.4.1 Assessing Creativity

Assessing creative products is a difficult skill that requires highly trained judges. Even

among highly trained judges there can be disagreement. One kind of disagreement

could come from different interpretations of the factors that the judges are using. In

one real example, during the evaluation of art, there was a criteria called “merit”

[Besemer and Treffinger, 1982]. The merit ratings for two teams of judges had

 45

significant negative correlations.

 Besemer and Treffinger attempt to make the criteria for judging creative products

less ambiguous [1982]. By doing so, it should allow judges to make more accurate

assessments of creative products and even allow people to train themselves to become

more creative. They break down the criteria into three groups: novelty, resolution, and

elaboration and synthesis with 14 sub categories divided between them. In the rest of

this section, the sub categories are written in italics.

 Novelty is a measure of the newness of a creative product. The product could have

new concepts, new techniques or other new aspects to it. Originality refers to the

“statistical infrequency” or unusualness of the product. Something that is original, is

something that is judged to be infrequent among a certain population. A germinal

product is considered novel if it has a greater influence on later products. This means

that the product allows for later creative products. Finally, a transformational product

is novel because it presents a new way to look at the world. After understanding the

transformational product one might think, “the world will never be the same again.”

 Resolution is the correctness or rightness of the product to the solution. The

resolution of the product can be logical. This means that it is consistent with the facts

and is a valid solution. This kind of product must still be new and hard to invent.

Adequate refers to how much of the problem is addressed by the product. If the

problem is particularly difficult, important and experts think there’s no way to solve

it, then a solution that is only adequate is more likely to seem creative. An

appropriate product is one that solves the problem in a sensible way. The appropriate

sub category is a basic one, but if a product cannot solve the problem, then it cannot

be considered creative. A product can also be creative if it is useful and thus has clear

applications. It can be valuable, if judges evaluate it to be worth some value. The

value is a measure that can be defined in different terms. It might be particularly

important for judges to agree upon to how to assess value in order to increase

consistency among evaluations.

 Finally, elaboration and synthesis refers to the style and aesthetic value of the

product. An expressive product describes how well the product is presented in a

understandable manor and how easy it is to use. A complex product is seen as creative

 46

if it takes a complex problem and makes it simple. A product is not creative if it is

simply complex for no reason. A well-crafted product describes how much effort was

put into the solution. An attractive product is a product that attracts the attention of an

observer, not through beauty, but through surprise, humor, or enjoyment. An organic

product describes a product that is comprehensive, complete, and coherent. Finally, an

elegant product is an understated or economical solution.

 Besemer and Treffinger make several observations about evaluating creative

products [1982]. First, a product may be considered creative, even if it does not have a

high rating in all 14 sub categories. For example, a product might be highly original,

but not elegant, and still be considered creative. Second, creativity has to be measured

with respect to a particular group of products. Third, the more criteria used, the better

agreement there should be within a group of judges. Highly trained judges could help

to foster agreement, but there is still some ambiguity. Therefore, defining specific

creative criteria is meant to reduce the ambiguity.

2.4.2 Conceptual Domains and Creativity

The previous section mentioned some ways of evaluating creative products and started

to define some different types of creativity. It also mentioned that a creative product

must be evaluated by a group or within a certain domain in order to determine how

creative it is. Boden further defines some ideas about creativity and describes

examples of systems that can perform creative reasoning [2003].

 Boden proposed that a creative idea can classified as either Psychological

creativity (P creativity) or Historical-sociological creativity (H creativity). A P-

creative idea is new with respect to an individual. An H-creative idea is new with

respect to any idea ever created. All H-creative ideas are P-creative ideas because if

the idea is creative with respect to all individuals, then it was creative for the one

individual who thought up the idea. Thus, the ideas of P-creativity and H-creativity

are used to define the scope of the creative idea in terms of what kind of group the

creative product is creative relative to.

 As in the previous section, creative ideas are shown to be relative to other ideas

within a certain domain. Boden calls this domain a conceptual space. A conceptual

 47

space is a culturally familiar domain like music, physics, or story telling. It is defined

by a set of enabling constraints which make the structures within it possible. For

example, the conceptual space of chemistry would have particular rules for how

molecules react. When the constraints are changed, the space is transformed and

concepts that were impossible become possible.

 There are two ways this space can be explored. One way is through combinational

creativity which involves the combining or associating between a set of known ideas.

It involves techniques such as association and analogy. These methods are used to

make comparisons between concepts that already exist within the conceptual space.

An example of a creative association would be noticing similarities between things

that are different such as “the sun is like a lamp” or recognizing something despite

noise, such as recognizing an amateur’s drawing of a famous painting.

 Analogy is different from association because it performs more deep reasoning

about any two particular ideas. It is a more sustained comparison between the internal

structure of the two ideas.

 The other kind of creativity is called Exploratory-Transformational creativity or

“ET creativity.” It is broken up into two types E and T. E-creativity involves tweaking

the conceptual space to achieve creativity. In an E-creative system called AARON,

paintings are drawn using a genetic algorithm which tweaks the drawing parameters.

The result is a set of similar looking, but novel pictures. When AARON draws

acrobats they always have 2 arms, but they might be different in terms of how big they

are and their orientation. The systems would never draw acrobats with one arm

because its conceptual space does not allow it.

 If AARON were T-creative, it would be able to change much more than just the

number of arms in the drawings. It would be able to change the overall style of the

drawings making something different but related. Thus, T-creative systems differ

from combinational and E-creative systems because they can change the conceptual

space beyond finding unusual ways of thinking within a conceptual space and

tweaking a conceptual space's superficial dimensions.

 T-creative systems also have the additional challenge of being able to alter their

way of evaluating their creative products. Because they must change what is legal to

 48

express in their conceptual domain, they must also be able to change their evaluation

criteria.

 ET-creative systems differ from analogy systems in the way they reason about the

conceptual space. Both consider the structure of the concepts in the conceptual space,

but analogy is focused on the individual concepts that exist, while ET-creativity is

concerned with the styles of thinking that exist in the domain.

2.4.3 Creativity in Design

A problem space is defined by the reasoning goal and the operators that enable state

space search [Goel, 1997]. If the design variables and their ranges in the problem

space remain fixed throughout the design process, it is called routine design. If the

ranges can change, it is called innovative design. If the design variables can change

too, it is called creative design. The type of design can also change depending on what

the designer knows as well. Thus, if the designer knows the structure of the design

space and the procedures for searching it, it is routine design, if the designer knows

only the structure then it is innovative design, and if the designer knows neither it is

creative design.

 Creativity in design occurs to different degrees depending on the state of solution

and how much knowledge has been transferred from other sources. This transition

from creative to routine design happens because, at first, designers may be radically

changing the solution space and may even add new knowledge to the design space

using techniques such as analogical transfer. Once these are in place, the designer may

proceed with innovative or routine design, refusing to change the determined

parameters.

 The analogy process consists of first taking a given problem Pnew and a possible

solution Snew for Pnew. Then the analogy process applies analogical reasoning to be

reminded of a familiar problem Pold with a solution Sold. Finally, the analogy process

transfers selected elements from Sold to Snew. Goel further explores the issues involved

in creative design by asking the questions why, what, how, and when [Goel, 1997].

 Analogies can be useful for generating a new solution to a design problem by

proposing a new design or by modifying an initial design. Analogies could also help

 49

in other tasks, such as elaboration or decomposition of the problem. Thus, there are

many reasons why analogies can be useful for designing.

 Answering the what question means describing what kind of knowledge gets

transferred by an analogy. The type of knowledge depends on the reasoning task. The

knowledge could be design elements, components, and relations between components

for tasks like design proposition. For a task like reinterpreting a problem, a different

kind of knowledge may be transferred. The transfer of strategic knowledge, such as a

method for problem decomposition, is also possible.

 Answering the how question means providing methods for reminding and transfer.

One method is case-based reasoning. Case-based reasoning is useful when Pold is very

similar to Pnew, all of the Sold can be transferred to Snew, and part of it can be modified

to fit the Pnew. However, case-based reasoning may not work for creative design. If

Pold and Pnew are so similar, then Sold is probably not going to suggest changes in the

variables of Pnew. Thus, case-based reasoning is probably not going to generate

creative solutions because creative solutions must add new design variables to the

problem space.

 To create such design variables analogical reasoners must use generic abstractions

to suggest new variables for the problem space. Generic abstractions express the

structure of the relationships between objects as well as the features of objects. In

design there could be abstractions for things such as geometric structures or even

design goals and methods.

 Answering the when question requires describing the strategic control of

processing, which can occur during different parts of the design process. For example,

generic design abstractions can be learned by an analogical reasoner at different stages

of the analogy process. They can be learned by using the existing design library before

the designer has made an input, or it could be done during the retrieval stage, once the

designer was reminded of a design.

 Goel describes several systems that perform creative analogies, two of which are

DSSUA and IDEAL.

 DSSUA, which was described in section 2.2.4, is creative because it can introduce

new variables into the initial solution [Qian and Gero, 1992]. For example, in a door

 50

design problem DSSUA was able to add a variable of sliding motion into the design

of a sliding door based on a comparison to a window curtain.

 IDEAL is also able to add variables to designs through generic design patterns

[Bhatta and Goel, 1996]. The generic design patterns allow for cross domain transfer,

which introduces the new variables to the design space.

 Goel proposes a research agenda which includes determining what kind of

knowledge representation is appropriate for enabling the more efficient processing of

generic design abstractions.

2.4.4 Summary

Creativity has various groups of categories including novelty, resolution, and

elaboration and synthesis. Evaluating creativity can be improved by giving judges

specific criteria. This means that this thesis needs to be careful about which particular

groups of creativity it is evaluating and must specify to any judges the criteria they

should use.

 Boden’s work, described in sections 2.4.2, and Goel’s work, described in 2.4.3,

both describe the concept of a space, called a conceptual space or a problem space,

where the range of possible products is specified. The more the reasoner is able to

change this space, the more creative the products will be.

 From Boden’s perspective, the analogical reasoner used in this thesis is not be

involved in any dramatic changes in the conceptual space because all the possible

products are defined by combining existing products. Thus, the analogical reasoner is

it is capable of combinational creativity.

 From Goel’s perspective the analogical reasoning system is capable of creative

design because it can add new variables to the problem space. Since this thesis uses

test examples from different domains, the system should be able to introduce design

variables from the source domain that did not exist in the target domain.

 Also, Goel describes how creativity can be useful for many different design tasks

and therefore, if this research can have an impact on making design tools better at

being creative, it would be widely applicable.

 51

3. Knowledge Representation3. Knowledge Representation3. Knowledge Representation3. Knowledge Representation

The experiments described in this thesis use SME as the analogical matching

algorithm. Since SME uses a symbolic approach, the knowledge representation (KR)

must be defined in terms of symbols. In addition to this, the experiments requires the

KR to be used to describe some physical objects. Section 2.2.2 contains details about

the SME algorithm.

 This section describes the goals of the KR and the primitives it uses. It also

describes the “functional basis”, which provides the set of domain specific terms for

representing physical devices. Lastly, this section describes how this KR compares to

other function representations described in the literature.

3.1 3.1 3.1 3.1 ReReReRequirementsquirementsquirementsquirements and Design Decisions and Design Decisions and Design Decisions and Design Decisions

There are several requirements for the knowledge representation:

1. It must represent DC and EC functions.

2. It must represent devices at different levels of detail.

3. It must allow the DC and EC parts to be combined to form a “BOTH”

representation (see example in section 3.3).

The KR must be descriptive enough to describe functions and must allow for different

experiments. These experiments (sections 5 and 6) require the ability to represent

devices at different levels of detail, and also to use the DC only, EC only, or BOTH

versions of the each device’s representation.

 We consider a function to be a set of desired behaviors. Rather than including all of

the constructs from Chandrasekaran and Josephson’s work [2000], such as mode of

deployment, the KR represents only behaviors and functions, leaving further

exploration of Chandrasekaran and Josephson’s concepts to future work.

The KR is somewhat independent from SME concepts, but is still easily

translatable. This decouples the KR from the particular intricacies of the matching

algorithm implementation used.

 52

3.2 3.2 3.2 3.2 PrimitivesPrimitivesPrimitivesPrimitives in the in the in the in the RRRRepresentationepresentationepresentationepresentation

There are five main primitives in the KR: devices, functions, behaviors, relations, and

flows. To completely specify a device using the KR, one must provide a library of

relations and flows, a set of behaviors and a set of functions that group the behaviors.

A device has a set of functions that are either DC or EC. Each function consists of

a set of behaviors. Since a device may have multiple functions, some of a device’s

behaviors may be mentioned in more than one function.

Devices are physical objects in the world and their behaviors describe how they

interact. Behaviors are instantiations of relations. The relations (e.g., import) provide

constructs that are filled in with domain specific elements, such as flows or other

devices, in order to specify a behavior. For example “import <flow> <device>” is an

example of a relation with two arguments. Instances are import torque gear and

import force drum.

Flows are the material, energy or signals involved in a particular behavior. For

example, a behavior change force surface describes how the flow “force” interacts

with the device “surface”.

The environment for a particular device is an outer environment defined by a set of

external objects that interact with the device. It is not the entire external environment.

The representation does not have an explicit representation of the complete

environment. Instead it describes the environment using behaviors. For example, the

behavior transmit torque minutegear references “minutegear,” which is part of the

environment. Also, the representation can have behaviors that do not refer to the

environment at all. To distinguish objects which are part of the environment from the

device we mark objects in the environment by underlining them.

3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation

The primitives described in section 3.2 can be used to satisfy the goals we had for the

knowledge representation. This section provides examples of devices represented with

high and low detail. This section also provides examples of DC and EC behaviors and

functions.

 53

Figure 3.1a (left): A gear. Figure 3.1b (right): A gear and a weight. Other devices that interact with

these two, earth and gear2, are not shown.

 The KR can be used to represent DC behaviors and functions for the gear pictured

in 3.1a. The relation “import <flow> <device>” is used to define the behavior:

import force gear (b1)

The relation “export <flow> <device>” is used to describe the result of behavior b1:

export force gear (b2)

The two behaviors combine to form a single DC function.

b1, b2 (dc1)

 To represent EC behaviors and functions, the representation needs to introduce

another device to interact with the gear because EC behaviors need to mention

something in the gear’s environment.

 For the situation with a weight and two gears, partially represented in figure 3.1b,

two EC behaviors are available for the gear:

transmit force from weight to gear (b3)

transmit force from gear to gear2 (b4)

The environment of the gear consists of weight and gear2. The behaviors b3 and b4

combine to form an EC function:

b3, b4 (ec1)

The weight in the mechanism can also be represented with two behaviors:

transmit force from earth to weight (b5)

transmit force from weight to gear (b6)

 54

The environment of the weight consists of earth and gear. The behaviors b5 and b6

combine to form an EC function for the weight:

b5, b6 (ec2)

 When representing with low detail, the representation focuses on a particular

device. A device has no internal components and the behaviors for the device either

refer to the device itself or to objects in the environment.

 For a high detail representation, the KR needs to combine low detail descriptions

together. The representation does this by combining the behaviors and functions from

several low detail devices. For example, the gear and weight from figure 3.1b could be

combined to form a high detail device called “powerprovider”. The EC function of

this new device would contain four behaviors instead of two and only describe one

function. The EC function would be:

b3, b4, b5, b6 (ec3)

 This KR can be used to create a BOTH representation by concatenating the EC and

DC version of each device representation. Thus, the BOTH representation for the gear

consists of the functions dc1 and ec1 as well as the behaviors b1, b2, b3, and b4. Note

that as the DC and EC representations use different relations there is no overlap when

constructing the BOTH representation.

3.43.43.43.4 Functional Basis Functional Basis Functional Basis Functional Basis

The terms used to describe the function of different devices must be consistent and at

the same level of abstraction so that device descriptions are comparable. This will

reduce the variation and noise in results. For example, using more abstract terms for

one device may cause SME to generate more matches, making strong conclusions

harder to make, while inconsistent terms may cause fewer matches, with similar

consequences.

 This thesis uses a set of domain specific terms called the “functional basis,” which

was described in section 2.1.5 [Stone and Wood, 1999]. The functional basis provides

a set of domain-dependent terms for flows and functions. The representations in this

thesis use flows in the same way the functional basis does. The functional basis

 55

represents flows of material, energy or signal that transfer from one device to the next.

The basic functions available include import, export, transmit, couple, display,

rotate, and change. Our representation uses the basic functions from the functional

basis work as a way of describing device behaviors.

3.5 Comparison to 3.5 Comparison to 3.5 Comparison to 3.5 Comparison to OOOOther ther ther ther RRRResearchesearchesearchesearch

Overall, our KR is a simpler representation than many others that are described in the

literature because it focuses only on behaviors and functions. The KR uses

Chandrasekaran and Josephson’s ontology as a way to define behaviors and to

differentiate DC and EC functions. In their view, however, our EC representation

would viewed as mixed since it allows the mention of the device. A pure EC

representation would not mention the device at all. For example, our representation

permits the EC behavior: transmit force from weight to gear. To make this a pure

EC behavior, it would need to change to become: transmit force to gear. In this pure

EC representation the gear is part of the environment and the behavior is still a

behavior for the weight. Also, the KR does not use all of the parts of Chandrasekaran

and Josephson’s ontology. For example, it does not contain an explicit representation

for modes of deployment. Adding modes of deployment would add extra detail about

how the devices are embedded in the environment. However, this was not necessary

for our experiments.

 Based on the work of Prabhakar and Goel [1996a][1996b], described in section

2.1.2, our EC representation describes the interaction between the device and its outer

environment. Our outer environment is defined as the set of objects with which the

device interacts. Our KR does not model the external environment.

 Rosenman and Gero [1998] and others have described the concept of a purpose and

the concept that a device could have several purposes depending on the design

situation. This is an important concept in functional reasoning since a function only

exists to fulfill some purpose. However, our KR does not explicitly mention purposes.

It simply assumes that all functions have some implied purpose. Because there can be

more than one implied purpose, our KR allows a device to have more than one

function.

 56

 Rosenman and Gero also describe a way of describing devices in terms of their

structure, behavior, function (SBF). Our KR is only concerned with the BF part of that

relationship. The KR assumes that the underlying structure is already there. This is an

acceptable assumption because our analogical reasoning does not try to reason about

structure or determine how a device works. If it did, then the KR would require a

representation of structure in order to determine if behaviors were possible.

 Another piece of research this thesis takes advantage of is the ideas suggested by

Chandrasekaran [2005], which are described in section 2.1.6. Our KR combined the

functional reasoning research, which has defined various KRs, with the functional

modeling approach described in the functional basis. This shows Chandrasekaran was

correct that the two research streams can be used together and that they can be

complementary to each other.

 57

4. 4. 4. 4. Experimental Test SetupExperimental Test SetupExperimental Test SetupExperimental Test Setup

Our experimental system required three parts: a set of test examples, an analogical

reasoning algorithm, and a “test harness”. The test examples were represented using

the KR. The test harness executed the experiment by preparing the test examples,

executing analogical reasoning, and analyzing the results. This section describes these

different pieces.

4.4.4.4.1111 Test Examples Test Examples Test Examples Test Examples

The requirements for the test examples to be used are that they: must have varied

levels of detail; must include both DC and EC representations; should be similar

enough to allow analogical matches; should allow for novel matches; must be a large

enough sample so that general conclusions can be reached; and must be capable of

being understood by humans.

 The test examples used in this thesis are a set of clocks, which are ideal for

satisfying these requirements. Clocks can be decomposed into components and

subcomponents. By combining different subcomponents together, the level of detail

can be adjusted. Because different types of clocks share component types, there are

obvious analogical matches that SME can make, providing good contrast for results

that people may consider novel. The test examples represent 21 individual

subcomponents, which can be grouped into 8 larger components.

4.1.1 Clock Test Examples

We use two kinds of clocks: a pendulum clock, such as a grandfather clock, and a

digital clock, such as a bedroom alarm clock. Each clock has a different way to

achieve the functions of setting and displaying the time.

Each clock works differently, but they share common component types and

common functions. These components are the powerprovider, which provides some

kind of energy into the clock, the timebase, which converts the energy into a periodic

signal, a gear, which converts the signal into a once-per-second or once-per-minute

signal, and a face which displays the time.

 58

We used articles by Brain [2005a; 2005b] as sources of information about clocks.

When using a clock a human needs to observe the time and be able to set the time.

Figure 4.1 shows a conceptual diagram of these components and how they interact.

Arrows indicate the direction of flow in the clock. For example, the powerprovider

transfers energy to the timebase. The human interacts with the clock by resetting it or

by receiving a visual signal.

Figure 4.1: Generic model of a clock: components and how they interact with each other and with a

human.

 Figure 4.2 shows a schematic for a pendulum clock. The schematic labels all the

pendulum clock’s components. Figure 4.3 shows how these subcomponents get

grouped into components. For example, the secondhand and minutehand are

subcomponents of face. Figure 4.4 shows the flow diagram for the pendulum clock

which indicates how the clock works.

Figure 4.2: Schematic for an idealized pendulum clock showing all its components. Diagram based on

[Brain 2005b].

 59

Figure 4.3: Hierarchy for the pendulum clock. Boxes show the devices; arrows represent a component-

subcomponent grouping.

Figure 4.4: Flow diagram for pendulum clock. Boxes represent subcomponents; solid arrows represent

flow; the dotted line represents flow when the gear release lever is pressed.

The other clock example is a digital clock. Unlike the pendulum clock, which works

primarily with gears, the digital clock uses many divide-by-x counters. Figures 4.5,

and 4.6 show the hierarchy, and flow diagrams for the digital clock. A schematic for

the digital clock is not provided because it would look very similar to the flow

diagram.

 60

Figure 4.5: Hierarchy for the digital clock. Boxes show the devices; arrows represent a component-

subcomponent grouping; bc stands for binary converter; divX stands for divide-by-X counter; tbdivX

means divide-by-X counter for the timebase

Figure 4.6: Flow diagram for the digital clock. Boxes represent subcomponents; solid arrows

represent flow; the dotted line represents flow when the reset switch is pressed. The abbreviations are

the same as in figure 4.5.

 The hierarchy for the digital clock includes subcomponents such as a divide-by-10

counter, which is part of the digital gear, and a plug, which is part of the digital power

provider.

 Thus, the test examples are made up of two different clocks that can be represented

at two levels of detail. The low detail representations are the subcomponents of the

clocks such as secondgear or plug. The high detail representations include clock

components such as pendulum timebase and digital powerprovider.

 The test examples also have obvious analogical matches both within the same kind

of clock and between different kinds of clocks. For example, secondgear could have

 61

an analogical match with minutegear. Secondgear may also be similar to the other

gears in the pendulum clock. One reason these analogical matches might happen is

because all the gears work the same way, they rotate when torque is applied to them.

 Matches between different kinds of clock are also possible and they may appear

more novel. They may be more novel because the clock components from different

clocks do not work with the same flows or behaviors and they have different surface

features. One of the only features they share is their function. For example, both plug

and weight both perform the same function of providing energy within their

respective the powerprovider components. Thus, there can be an analogy between

them, even though one of them works with electricity and the other with gravity.

4.1.2 Applying Functional Basis

This section describes how we applied the terms in the functional basis to model the

pendulum and digital clocks. Although the functional basis is intended to be

unambiguous, there are still some conventions that we had to follow to apply it

consistently to our test domain. Some terms are similar and to apply them consistently

we had to be clear about how they would be used. We also had conventions for

describing equivalent DC and EC behaviors using separate functional basis terms.

Finally, we chose terms that distinguish between changing, transmitting, importing,

and exporting a flow.

 Tables 4.1, 4.2, and 4.3 describe the flows and behaviors that the test examples use.

Each functional basis flow or function in the tables has a description of how we used

it to represent a flow or behavior in our test examples. Both the DC and EC test

example types use the same kinds of flows, but they have separate behavior

vocabularies.

 62

Functional

basis flow

Usage Example

torque when one device

causes another to

spin

transmit torque weightgear escapementgear

force physical energy

like gravity

transmit force weight weightgear

signal when a part of a

circuit is sending

information over

the circuit

transmit signal div10 bc10

electromotive

force (eforce)

when part of the

circuit is sending

just electricity

transmit eforce bridge diode

visual-signal to represent the

flow that was

moving from the

device to the

human’s eyes

transmit visual-signal secOnesDisplay human

Table 4.1: functional basis flows used in the test examples

Functional

basis

function

Usage Example

rotate when a device is

moving on its own

rotate minutehand

import/export when a flow comes in

or out of a device

import torque minutehand

export eforce plug

change when a flow is already

moving between two

objects, and then it

changes

change signal div10

stop when a flow stops

happening

stop force gear-release-lever

display showing a visual effect display visual-signal secOnesDisplay

Table 4.2: functional basis functions used to describe DC behaviors

 63

Functional

basis

function

Usage Example

transmit when a flow is moving

from one place to

another

transmit signal div6 bc6

change-

between

Similar to change, only

this one describes two

objects. Note: This

behavior refers to the

“change” function in

the functional basis

change-between eforce diode tbdiv10

couple to describe actively

making a physical

connection between

objects

couple plug wall

Table 4.3: functional basis functions used to describe EC behaviors

 Some of the functional basis terms we use appear to be very similar, however the

test examples use them in different circumstances. For example, both torque and

rotate describe making devices spin, however the device representations use torque to

describe when one device causes another to spin and use rotate to describe when a

device is moving on its own In describing the digital clocks, device representations

use signal when a part of a digital clock is sending information over the circuit and

use electromotive force when part of the circuit is sending just electricity.

 Since the DC and EC representations have distinct behaviors, there are parallel

ways to describe the same kind of behavior. In a DC representation, the devices use

import and export to describe flow coming in and out of a device, but in EC

representations the device representations use transmit when a flow moves from one

device to another. Change and change-between are similar ways of describing the

same behavior. However, the change-between, which is used in EC representations,

has an additional argument in order to describe an object from the environment.

 Finally, changing a flow is different from transmitting, importing, or exporting it.

This is an important distinction because it allows the representations to differentiate

between two modes of operation. For example, a circuit might normally transmit a

signal from a counter chip to a display chip, but when a certain button is pressed on

 64

the circuit board, the representation of the counter chip represents it as a change in the

signal between the counter chip and the display chip. Having these extra terms allows

the representations to be more complex and precise.

4.24.24.24.2 Applying Applying Applying Applying SMESMESMESME

This section describes how we used SME in this thesis. This involved recognizing

which features of SME were important to consider, and converting the KR into a

format suitable for the particular SME implementation this thesis uses.

4.2.1 Relevant Properties of SME

Since this thesis is comparing two kinds of KR, there are some properties of SME that

are relevant for determining reasons why one KR produces different results than

another. These properties are:

• More information in a particular representation should allow for matches of

higher weight. This is because longer representations can produce more match

hypotheses and thus have higher weighted gmaps.

• Making longer representations may not produce a greater number of gmaps

because gmaps can be combined together during the creation of maximally

consistent gmaps or because additional information may cause interference

when it conflicts with existing information.

Our experiments use these properties to explain why results using the DC and EC

representations differ.

4.2.2 Converting Knowledge Representation into SME Input

The experiment needs a way to convert the devices from the KR, which is described

in section 3, into the SME format before executing. This input format is specific to the

SME implementation this thesis uses. The conversion requires two considerations.

First, the input to SME should represent the KR accurately. This means it should be

able to represent flows, behaviors, and functions. Second, the input to SME should be

set up so that the output is easy to read, otherwise it will take a long time to interpret

the results. To fix this, each line in the SME input has only one relation and a unique

name.

 65

 Table 4.4 shows the mapping between SME concepts and KR concepts. Section

2.2.2 describes the SME concepts in more detail. Converting the KR into SME does

not require all the SME concepts. Since the KR only has behaviors and functions

relations and entities are all that it needs. SME functions, which are not the same as

the functions in the KR, and attributes would be required if the KR had structural

relations.

SME concept Knowledge representation concept

dgroup all the behaviors and functions associated with a single clock

component or subcomponent.

entity a clock component or subcomponent mentioned in a particular

dgroup. Also any flow.

relation instantiations of behaviors and DC and EC functions

function none

attribute none

predicate behavior and function specifications

Table 4.4: mappings between SME and Knowledge representation concepts

The SME implementation requires us to specify a language file that describes all the

relations and some of the entity types that are used in the test examples. Relations are

specified by “defPredicate” statements and entities are specified by “defEntity”

statements. Thus, the language file contains one predicate for each behavior type, and

one entity for each flow. The files for each clock component or subcomponent define

additional “defEntity” statements. Appendix A.2 shows some examples of complete

clock subcomponents converted into SME input.

 An example of a behavior definition is shown below. This definition means that

there is a relation called “transmit” which takes three named arguments. The first is an

entity type called what and the other two are other relations called from and to.

(sme:defPredicate transmit
 ((what entity) (from relation) (to relation)) relation)

An instantiation of transmit looks like this:

((transmit eforce plug bridge) :name *transmit_eforce_plug_bridge)

The name part of the instantiation makes the output more readable. The asterisk is not

a special character, it is just a way to clearly distinguish names from the other parts of

the input. The function predicates are shown below:

(sme:defPredicate DC ((predicate)) relation)

 66

(sme:defPredicate EC ((predicate)) relation)

An instantiation of an EC function is:

((EC *behavior_set_behavior_couple_plug_wall :name
 *function_behavior_couple_plug_wal)))

The EC function has a behavior-set predicate, which is the name of a set of behaviors,

and a name, which is unique. Finally, here are some entity definitions which define

the flow force and the entity plug:

(sme:defEntity force)
(sme:defEntity plug)

In addition to statements which map SME inputs directly to KR concepts, some of the

predicates were explicitly intended to make the output more readable by putting only

one relation on a line. For example, to mark something as a behavior we use this

predicate:

(sme:defPredicate behavior ((predicate)) relation)

Using this makes it so two lines are required to specify a behavior, one to specify the

details of the behavior in a relation and the other to mark the relation as a behavior.

The benefit of this is that each line of the SME representation has a unique name in

the output that marks it as a behavior. Below is an example of how the representation

specifies a behavior.

((transmit force weight gear) :name *transmit_force_weight_gear)
((behavior *transmit_force_weight_gear) :name *behavior_transmit_force_weight_gear).

To mark a set of behaviors we use this predicate inside function statements:

(sme:defPredicate behavior-set (predicate) relation :n-ary? t :commutative? t)

Again the reason for introducing behavior-set was so that it could have a unique name

in the SME output.

 The parameters “n-ary” and “commutative” define important properties for the

behaviors specified in a function. They mean that there can be any number of

behaviors and that the behaviors can be specified in any order.

 We chose not to include attributes of the entities because that would allow SME to

make matches based on structure and we wanted SME to make matches based on the

behaviors and functions.

 67

4.34.34.34.3 Test HarnessTest HarnessTest HarnessTest Harness

This thesis requires an experimental test harness that allows us to encode test

examples, run computational experiments, and perform analysis on both the test

examples and the computational test results. The test harness also needs to process the

results from the human experiment.

 The test harness has several components: test examples, an experiment runner, an

SME implementation, a results processor, a repertory grid elicitation program, a grid

analyzer, and two analysis tools. There are a variety of technologies that this thesis

uses to implement these components. Figures 4.7 and 4.8 show the flow through the

test harness as well as the types of technology that were used to implement and

represent the various components. The figures also note the format of any

intermediate files.

 68

Figure 4.7: Data flow diagram for the experimental system. Boxes with thick edges show the parts that

do processing. The format or technology used is in parenthesis. The boxes with rounded edges are

pieces of data.

Experiment

runner (java)

SME

(LispWorks Lisp)

Results

processor

(java)

analysis

(Matlab)

analysis

(Excel)

results

(test file)

SME

output

(text file)

test example 2

(SME format)
test example 1

(SME format)

run script

(Lisp)

analysis

of test

examples

(text file)

digital

clock

(XML)

pendulum

clock

(XML)

 69

Figure 4.8: Data flow through the test harnesses for human experiment. The format or technology used

is in parenthesis. The boxes with rounded edges are pieces of data.

 The test harness begins with the test examples, which are expressed as XML files.

There is one test example for each type of clock in the experiment. Appendix A.1

shows these input files. The experiment runner reads the files and then performs three

operations using the information in them. First, it analyzes them and outputs statistics

such as “representation length.” Second, it converts the test example representations

to a format suitable for SME. Third, it outputs Lisp script that describes a set of

device comparisons that SME will run.

 The next step is to run SME. This involves loading the Lisp interpreter and running

the scripts. The SME implementation is in Lisp because we wanted to take advantage

of an existing implementation of SME [Falkenhainer, 2005]. We use LispWorks

[www.lispworks.com] as the Lisp interpreter because it has a freeware version and it

works with the SME implementation. The result of running SME is a set of text

output files. The results processor, reads these files and converts them to convenient

formats for Excel and Matlab. Appendix A shows the various input and output

formats for some of these steps.

 The experiment requires another simpler test harness to analyze data from the

human experiment. Figure 4.8 shows the information flow through the test harness.

Repertory Grid

(Rep IV)

grid analyzer

(java)

analysis

(Excel)

analysis

(Excel)

analysis output

(text file)

Questionnaires

(paper)

 70

We typed the output from the repertory grid software directly into the java code for

the grid analysis. Thus, the figure does not show an intermediate format for the

repertory grid data. Next, grid analysis outputs an analysis of the grid data. Excel

reads this data and summarizes it. For the questionnaire, we simply tallied the various

results using Excel. Appendices B, C, D, and E show the kind of data that this test

harness processed.

 In summary, this test harness can be used to orchestrate the computational and

human experiments and then analyze the results. The experimental procedures and

results will be explained in the next two sections.

 71

5555. Computational Experiment. Computational Experiment. Computational Experiment. Computational Experiment and Results and Results and Results and Results

5555.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure

SME produces a list of gmaps for each match, each with an associated weight. The

goal of the computational experiment is to analyze these lists of gmaps and explain

how they are affected by different representation types. Overall, the experiment

demonstrates the following effects:

• EC has lower weighted matches than DC

• EC has lower weighted matches than DC

• EC generates more matches than DC

• EC matches have higher variance than DC

• BOTH matches are fewer in number and have lower weights than DC or EC

alone

The experiment and analysis is able to measure these effects, explain them, and show

that they are robust. The experiment measures the gmap weights, the gmap weight

variance, and the number of gmaps generated.

The experimental results can be influenced by several factors including the

representation length, the representation complexity, and the number of devices

mentioned. To make fair comparisons between the datasets the gmap weights and

number of gmaps are normalized. Each experiment is run on low and high detail test

examples in order to show that any observed effects remain the same even when the

level of detail is varied.

5.1.1 Experimental Runs

The experiment uses the factorial experiment design shown in Table 5.1.

 Low detail High detail

EC

DC

BOTH

Table 5.1: Factorial experiment design showing the 6 different device sets.

Overall, there are 6 different device sets that the experiment uses. The rows of table

5.1 show the three versions of device representations, EC, DC, and BOTH. The

 72

columns show that each version is categorized into low detail and high detail. Each

combination of a row and column makes up an experiment test set. For example, there

is a low detail EC dataset and a high detail DC dataset. There are 21 low detail and 8

high detail devices. The devices are the 21 subcomponents and 8 components of the

clocks described in section 4.1.

 An experiment test run consists of analyzing pairs of devices from a particular test

set. SME compares each device in the test set to the other devices in the test set. The

experiment disregards comparisons between the same device. This results in n
2
–n

comparisons where n is the number of devices in the test set. For example, the low

detail test set has 420 matches in it.

 There was a problem with using our LISP interpreter to execute SME with one of

the devices in the high detail BOTH dataset. Because of this, we omitted that device

from the high detail BOTH dataset. To make fair comparisons with this dataset, we

made sure that any comparisons we made between the high detail BOTH dataset and

other datasets were made with an equal number of devices. This involved removing

the device, which could not be processed with SME using our LISP interpreter, from

the results only for the purposes of comparing it with the results from the BOTH

dataset. For example, to compare the high detail DC dataset with the high detail

BOTH dataset, we removed the one device that could not run from the DC and BOTH

datasets and then performed the comparison, but when we compared the high detail

DC dataset to the high detail EC dataset, we used all devices.

5.1.2 Experimental Factors

This experiment needs to show how the gmap weight, gmap weight variance, and

number of gmaps differ for the EC, DC, and BOTH datasets. This is complicated by

the fact that several factors can affect these statistics.

 The representation length is the sum of the number of functions and behaviors in

the source representation. We find that for most of the data, the representation length

and the number of gmaps are positively correlated (p<0.05). This means that as the

representation length increases more gmaps get generated. Our normalization

procedure decreases this correlation.

 73

 The representation complexity is the sum of the number of behaviors in each

function and the number of arguments in each behavior divided by the representation

length. For example, the DC version of the gear from section 3.3, with behaviors b1,

b2 and function dc1, has a representation complexity of 2. This measure of

complexity is similar to the one used in [Balazs, 1999].

 In our data, on average, EC representations have the highest amounts of

complexity. This is because DC representations only mention the device, and EC

representations mention both the device and the environment.

5.1.3 Normalized Gmap Weight and Variance

The experiment needs to compare the magnitude and variance of the weights between

the datasets. The factors described in 4.2.1 imply that the gmap weights cannot be

compared directly unless some aspects of the representation are taken into account.

Therefore, we use a normalization strategy in order to make a fair comparison

between the representations. The normalization formula first computes the value,

MAXVAL, which is equal to the highest weighted gmap SME produces when the

device is compared to itself. Then the weight of each gmap made with that device is

divided by MAXVAL to obtain a new normalized weight.

This strategy should adjust the magnitudes of the gmap weights to account for both

the representation length and complexity. It also gives the measurement more

meaning. Instead of measuring its overall strength, this normalized weight measures

the relative amount of a device’s representation that is matched by the target device.

Thus, the higher the normalized weight, the more of the target device fits with the

source device.

Each time SME generates a match it outputs a list of gmaps, each of which has an

associated weight. Since our comparisons are done on a per match basis and not on a

per gmap basis we need to aggregate the gmap weights for each match and then use

the aggregated result for our analysis. Thus, for each match, we compute the average,

standard deviation, and highest of its gmap weights. Then, for all matches we compute

additional statistics to create results such as “average of average gmap weights” or

“average standard deviation of gmaps.”

 74

5.1.4 Normalized Number of Gmaps

The number of gmaps is positively correlated with the representation length. In order

to account for this influence and to compare the different datasets, we normalize the

data by the representation length. Unlike the gmap weight measure, we could not use

the number of gmaps generated when a device is compared to itself because it was not

close to an upper bound on the number of gmaps.

 The formula for computing the normalized number of gmaps is the number of

gmaps divided by the representation length. For example, if a match has a

representation length of 5 and generates 10 gmaps, then the normalized number of

gmaps would be 2.

5555.2 .2 .2 .2 CCCComputational omputational omputational omputational RRRResultsesultsesultsesults

Tables 5.2 to 5.5 show the averages of the computational results for the various

measurements in the experiment. Higher values indicate a stronger match. Appendix

A.4 shows the raw data used as well as additional summary statistics.

 Low detail High detail

EC 0.5543 0.4705

DC 0.6907 0.5580

BOTH 0.4390 0.3935

Table 5.2: average of average normalized gmap weights per match

 Low detail High detail

EC 0.7629 0.6460

DC 0.6907 0.6086

BOTH 0.7081 0.6233

Table 5.3: average highest normalized gmap weight per match

 75

 Low detail High detail

EC 0.1796 0.1212

DC 0.0 0.0435

BOTH 0.2512 0.1275

Table 5.4: average standard deviations of normalized gmap weights per match

 Low detail High detail

EC 0.9421 2.5664

DC 0.2952 1.2389

BOTH 0.4883 1.9624

Table 5.5: normalized number of gmaps per match

5.2.1 DC and EC Comparison

Our hypothesis concerning gmap weights was that the DC weights would be higher

than EC weights. This is true for average gmap weight, but not true for highest gmap

weight. The difference for low detail result (Table 5.2) is statistically significant

(p<0.05), while the difference for high detail is not.

 This can be explained by the standard deviations in Table 5.4: it shows that the

standard deviation for EC is higher than it is for DC. The standard deviations are

statistically different (p<0.05). Although the EC representation might have a few

gmaps with higher weights, it has other lower weighted gmaps that decrease the

match’s average gmap weight. Thus, in the experiments DC representations produced

a few high weighted matches that have similar weights while, the EC representations

produced matches that have a wider variety of weights. This resulted in lower average

gmap weights and higher highest gmap weights for the EC representation.

 Another one of our hypotheses was that EC would produce more matches than DC.

The data, shown in Table 5.5, shows that EC produces at least twice as many gmaps

as DC. This result is statistically significant (p<0.05).

5.2.2 BOTH Dataset

Our final hypothesis is that the matches from the BOTH dataset will have more

matches of higher weights than the DC or EC datasets. This makes sense because the

more information the representation has, the more it should be able to match.

 76

 Our results show the hypothesis is correct for absolute gmap weights, but not for

the normalized weights. The normalized weights measure how much of the

representation was matched. This result means that a large portion of the BOTH

representation is left unused in each gmap.

 We observed that gmap weights from the BOTH dataset have a lower highest gmap

weight than the ones from the EC dataset and only a slightly higher highest gmap

weight than the ones from DC dataset. The EC dataset has statistically different

highest gmap weights and the DC dataset does not have statistically different highest

gmap weights.

 We also observed that the average gmap weight for the BOTH dataset was lower

than it was for the DC and EC datasets. This effect is partly caused by the fact that

BOTH has a higher standard deviation than DC. However, this does not explain the

difference the BOTH dataset has with the EC dataset, because they have about the

same standard deviation. A statistical test did not reject the possibility that the

standard deviations are similar.

 One explanation for this is that when DC and EC information are together the DC

information is preventing the matches that would have been generated if only the EC

information was present. It could be that with the BOTH representation it is harder to

make globally consistent gmaps, as there is so much data with which to be globally

consistent. Because the normalization discounts for not having large matches, the

match weights are lower.

 Another observation about the BOTH dataset is that its highest gmap weight and

number of gmap measures are in between DC and EC measures. It seems that adding

EC information to the DC information improved the highest gmap weight and number

of gmaps by only 39% and 55% of what would have been gained by using the EC

information only. Investigating this further, we found that the number of gmap

weights from the BOTH dataset is not statistically different from a dataset made by

averaging the number of gmap weights from the DC and EC datasets. The average

number of gmaps for the averaged DC/EC dataset is 1.8245, which is close to the

value of 1.9624 for BOTH.

 77

5.2.3 Robustness to Level of Detail

With a few exceptions, these observations are robust to changes in the detail of the

representation. The data shows that the same trends occur in the low detail as in the

high detail data. The observations that are different are caused by special properties of

the low detail data. One difference is that the DC representation seems to be less

effective in low detail devices than in high. The low detail DC representations

produced one gmap at most for any matches. The high detail representation, however,

did not have this problem. We conclude that the reason for this is that the low detail

representation did not have enough information to produce many potential matches.

 78

6666.... Human Experiment Human Experiment Human Experiment Human Experiment and Results and Results and Results and Results

In the computational experiments we present SME with representations of two

devices, and it outputs a list of potential matches between portions of each

representation. For example, based on these lower level matches, SME might suggest

that a pen is like a hammer.

As our hypothesis concerns the possible benefits of different styles of device

representation, the representation is varied throughout the experiments, and the

resulting matches are measured and evaluated.

We are interested in performing an experiment with human respondents, which

examines these computational results, for two reasons. First, we would like to

determine whether or not the matches proposed by SME are “novel”: e.g., a pen is like

a sponge. We hypothesize that EC device representations are more likely to produce

novel matches.

Second, we would like to investigate how the match weights generated by

respondents correlate with SME match weights. There are two ways the SME results

can correlate.

First, the human and SME results could place the same relative weights on certain

device matches. For example, both the human and SME could think that the pen is

more like a hammer than it is like a sponge.

Second, the human results can lend support to the DC or EC representation if the

reasons the humans are using match with the representation that SME uses, and if the

human's and SME’s match weights correlate. We might get this result if the human

thought the pen was most like a sponge because they both interact with liquid and if

SME marked them as most similar because the pen and sponge both interact with a

human's hand. Though the reasons are not exactly similar, they both involve EC

reasoning: i.e., about how the device interacts with the environment.

To gather this information from human respondents, we use two techniques:

repertory grids and a questionnaire [Hart, 1986]. The respondents are a volunteer

group of engineers.

The repertory grid technique provides several benefits:

 79

• It is a proven technique that allows respondents to give information about the

similarity of different devices in a group.

• The result of collecting the grid information is a “percent similar” measure

describing the human’s evaluation of device similarity. After normalization, it

can be compared to SME output which also reports how similar devices are.

• As part of the grid creation process, respondents give reasons why they

differentiated one device from another. This information can be classified as

DC or EC, lending support to that approach. It can also be compared directly

to the lower level matches in the computer results.

• A good computer tool is available that makes collection of repertory grids

relatively easy [Shaw and Gaines, 2005].

6666.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure

The experimental procedure provided a way for human respondents to describe

similarities between different clock components and a way for them to rate the novelty

of matches made from those clock components. To complete the procedure, the

respondents first read information about clocks, then completed a repertory grid, and

finally filled out a questionnaire. This section describes rationale and additional

details about the human experiment. For details about the repertory grid technique see

section 2.3.

6.1.1 Experimental Setup

Setting up the human experiment required several considerations. The experiment

addresses these considerations while trying to make sure that the respondents could

perform well and the experiment did not take longer than one hour. First, the

experiment required a set of clock components that would allow the computer and the

human to discover a wide range of similarities. The set of components also needed to

be small enough so the experiment did not overwhelm the respondents with too much

information. Second, the respondents needed to understand some background

information in order to make judgments about the clock components. Finally, the

experiment needed to be sequenced such that the respondents would perform best on

each task.

 80

The experiment used six clock components that were identical to the ones used in

the computational experiment. These were: digital power provider, digital timebase,

digital gear, pendulum power provider, pendulum gear, and pendulum face. There are

several reasons why the experiment used clock components and why the experiment

used these particular clock components.

Preliminary experiments with simpler examples, such as pens and sponges,

indicated that the respondents were using reasons that we could classify as DC or EC.

However, many of their reasons were focused on surface features. The clock examples

subsequently adopted have similar functions, but very different surface features.

Therefore, the respondents tend to focus their attention on the function of the clock

components, which is what we want. For example, one respondent created a repertory

grid construct called “display converter” which is refers to the function of the clock

component.

The experiment used an equal number of components from the pendulum and

digital clocks. This meant that the respondents did not have an advantage if they

understood one clock better than another.

The set of clock components contained either one pendulum or digital clock type or

both types for each generic clock component. Table 6.1 shows which types were

included in the set of clock components.

Generic clock component Types included (Pendulum and/or digital)

power provider pendulum and digital

time base digital only

gear pendulum and digital

face pendulum only

Table 6.1: shows the type of clock components included in the human experiment.

The experiment included both versions of the power provider and gear, but only the

digital version of the time base and the only pendulum version of the face clock

component. Having both similar and dissimilar versions of components allowed the

possibility of the respondents observing a wider variety of similarities and differences.

For example, the respondent observations could be “both versions of the gear convert

a signal to a periodic signal, but the pendulum one uses mechanical force” or “the face

is observed by an external entity but both versions of the gears are involved in the

 81

internal workings of the clock.”

Keeping the number of clock components to a minimum kept the respondents from

being overwhelmed and also helped keep the experiment time short. If the

respondents had to consider too many devices they might not have been able to think

as deeply about the devices they were evaluating. Thus, keeping them from being

overwhelmed should increase the quality of their evaluations. Since the respondents

took time to evaluate each component based on each of the six constructs they

created, adding more components increased the overall repertory grid collection time.

In an experiment with six clock components, the respondent would have to make 36

ratings, but with eight it would be 48. Our observation was that it took the

respondents about 1 minute to come up with a construct and then a least 30 seconds to

create an average rating. Thus, reducing the number of components saves about 6

minutes of respondent time.

 The second consideration the human experiment required was ensuring the

respondents had adequate understanding of how clocks work. To accomplish this, the

respondents had to read articles about clocks are part of the experiment. These articles

were the same ones that we used to create the representations for the computational

experiment, taken from How Digital Clocks Work [Brain, 2005a] and How Pendulum

Clocks Work [Brain, 2005b]. Also, during the experiment the respondents had a

schematic for the pendulum and digital clocks that they used throughout the

experiment. Appendix B shows these schematics. Giving them all this information

should bias their comparisons. This was intentional because we wanted the

respondents to use the same information the computer used as much as possible.

Since the respondents were engineers, they had little trouble understanding the

examples, given the documentation. Despite this, they were still allowed to ask questions to

clarify the schematics or their understanding of the clocks. For example, they asked

clarifying questions such as “are the two div10’s the same object or are they

different?” or “what does tb mean”? They also asked for simple explanations of what

the diagram was showing like “I don’t understand what the stopper is for.” In general,

however, the respondents understood the clocks well and only asked one or two

questions during the experiment.

 82

The last the experimental consideration was determining the order in which each

respondent would complete the tasks. The experimental procedure was to first allow

the respondents to read the background material about clocks. Next, the experimenter

collected a repertory grid and then had the respondent fill out a questionnaire. Giving

them the articles about clocks first gave them the background knowledge they would

need in the experiment. Collecting the repertory grid before the questionnaire was

important because it allowed the respondents to determine for themselves how the

devices relate to each other. Thus, when they filled out the questionnaire, they were

able to compare the computer’s answers to their own and be better able to judge the

novelty of them.

 This sequence seemed to work well for allowing the respondents to have the right

knowledge to perform the experimental tasks. We found that the allotted 15 minutes

was an adequate amount of time for the respondents to read the documentation

because most were done reading the documentation within that amount of time.

 The respondents were able to understand the workings of the clocks because the

respondents seemed to have the right kind of mental models for the clocks. They

mentioned words like “divider” without needing prompting from the experimenter.

 Our observations of the respondents filling out the questionnaire show that

performing the repertory grid before the questionnaire was advantageous. Many of the

respondents were able to fill out the questionnaire quickly, in less than 10 minutes.

Also, some of the respondents, such as #7, did not need to refer to the schematics

while they filled out the questionnaire.

In summary, the experimental procedure had 3 steps:

1. Respondents review material on clocks for 15 minutes.

2. Respondents complete a repertory grid.

3. Respondents complete a questionnaire.

The next two sections will describe steps 2 and 3 in more detail.

6.1.2 Repertory Grid Collection

After looking over the documentation about clocks the respondents’ second task was

to complete a repertory grid using the Rep IV software. This involved three steps,

 83

introducing the respondent to the software, collecting the first four constructs, and

collecting the final two constructs.

Rep IV is not a complicated piece of software to use. The main challenge for a

respondent is to know what kinds of questions it will ask and how to select constructs

properly. To give the respondent this understanding, the experiment required the

respondent to practice completing two constructs of a grid for some practice data

about fruits and vegetables. During the practice, the experimenter clarified that the

respondent should try to select constructs that applied to all items. This practice

helped to get the respondent familiar with the software.

After the respondent completed the practice grid, the respondent began with the

real experiment by collecting the first four constructs from the clock components

dataset. The Rep IV facilitated this by asking the respondent to evaluate three

elements at a time. These sets of three elements are called triads. Each element in Rep

IV was a clock component. Every respondent received the same first four triads to

generate the constructs. These four triads were dependent on the order in which the

clock components were entered into Rep IV.

Each respondent except respondent #1 received the clock components in the same

order. Respondent #1 was a special case because he was the first respondent. After

observing the results from respondent #1 and respondent #2, each respondent

consistently received the elements the order that was used with respondent #2.

The last two constructs were different for each respondent. As described in section

2.3.2, if Rep IV determined that two elements were more than 80% similar, it asked

for a clarifying construct. If all elements were less than 80% similar, the experimenter

commanded Rep IV to generate an additional triad. The experiment always ended

once six constructs were collected.

6.1.3 Questionnaire

The goal of the questionnaire is for the respondents to evaluate the novelty of the

computer matches between components of the pendulum and digital clocks. Preparing

the questionnaire required several considerations. First, the questionnaire required a

rating scale. Second, the questionnaire required a way to present the information so

that the respondents would understand how to properly complete it. Lastly, the

 84

questionnaire required some test questions which needed to be based on the gmaps in

the computational experiment. Appendix C.1 contains the final questionnaire that was

used.

The respondent rated each match on the questionnaire as being low, medium, or

high novelty. This rating system has three choices because it allows the analysis to

discern when the respondent had a strong opinion about the novelty of the match. If

the respondents did not have a strong feeling about the novelty of the match, we

assumed that they would select medium novelty. Thus, the analysis should concentrate

on the high and low results.

There are two issues with making sure that the respondents understood how to

properly make novelty judgments. First, based on Besemer and Treffinger’s

definitions [1982], which are described in section 2.4.1, novelty is only one type of

creativity. Second, Besemer and Treffinger show that giving judges of creativity a set

of criteria in which to judge creative products will improve the consistency of the

ratings. Thus, the questionnaire needed to be clear about the precise meaning of what

novelty meant and how to judge it. Before beginning the questionnaire, the

experimenter described the meaning of novelty and gave examples of how to judge

the matches they were about the evaluate. These instructions are included in beginning

of the questionnaire (Appendix C.1). The main concepts that the respondents needed

to understand were that the correctness of the match should not influence their

judgment since then they would be evaluating logical correctness instead of novelty,

and also that they should rate a match higher if the match was surprising to them or if

it was something they would not have thought up easily.

The other issue with making the questionnaire’s goals clear was turning the output

from the computer into a human readable format that emphasized the match

hypotheses that are contained in the match. To accomplish this, the questionnaire

separated the concepts in a match into categories and presented them in a table format.

Figure 6.1 shows a sample question.

 85

Figure 6.1 a sample question from the questionnaire.

Figure 6.1 shows the three tables that each question included. The categories were

“devices similar”, “flows similar”, and “behaviors similar.” The table format

emphasized that the match was saying that the item on the left is similar to the item on

the right. For example, the flow “electric signal” is similar to “torque” and the

behavior “import signal tbdiv6’ is similar to “import torque secondhand.”

The selection of questions needed to vary two different dependent variables while

minimizing other factors which might add noise to the results. The two dependent

variables were whether the match was EC or DC and how much weight the computer

assigned to the matches. The questions also had to allow the respondent to make

relative comparisons since creativity is a relative judgment. The experiment needed to

accomplish this while keeping the number of questions low so that the respondents

could complete them in a reasonable amount of time.

Table 6.2 shows the classification for each of the eight questions on the

questionnaire.

3. digital timebase :: pendulum face

___low ___medium ___high

Devices similar:

tbdiv10 minutehand

tbdiv6 secondhand

Flows similar:

electric signal torque

electric force torque

Behaviors similar:

import electric force tbdiv10 import torque minutehand

import signal tbdiv6 import torque secondhand

 86

Question Weight Type Gmap weight

1 High EC 8.422

2 Low EC 4.4068

3 High DC 7.1871

4 Low DC 11.0076

5 High DC 13.21

6 Mid EC 7.406

7 High DC 14.0506

8 High EC 8.1836

Table 6.2: question number, SME weight, question type, gmap weight

The questions included an equal number of DC and EC types with a variety of

weights. The weights were classified as either high, mid, or low according to their

relative gmap weight among the list of gmaps for a particular match. When the chosen

match was the highest value in the list of gmaps, it was classified as “high,” if the

match was the lowest, it was coded as “low” and if there was a match in between high

and low, it is coded as “mid”. Thus, these measures relate to the relative value of the

gmaps, not to the absolute values.

Table 6.2 shows the resulting weight classifications. There are three high DC

weight, two low EC weight, one low DC weight, one low EC weight, and one mid EC

weight. The distribution of weight types is not ideal, since the type of weight is not

evenly balanced between DC and EC representations and the number of high, mid,

and low is not the same. However, the selection of gmaps was limited by the selected

clock components and by the matches that were actually available. The resulting

questions are the best balance of these factors.

The questions are always between components of the pendulum and digital clock

types because we thought that those matches would have the greatest potential for

being novel since they are cross domain matches.

The selection of which clock component matches to include was influenced by

wanting to control the number of dependent variables being varied. One of the

dependent variables we wanted to reduce was the effect of having different clock

components, since having more clock components would reduce the number of

relative comparisons the respondents could make. Thus, all the matches in the

questionnaire involved the digital timebase and the questionnaire included multiple

 87

questions comparing the same pair of clock components. For example, questions 1, 2,

and 3 all compared the digital timebase to the pendulum face. Questions 1 and 2 were

EC, question 3 was DC, question 2 was low value, and questions 1 and 3 were high

value. The only difference between question 1 and 2 is the value. The only difference

between 1 and 3 is its question type.

Another factor we wanted to minimize was the respondents’ unfamiliarity with the

clock components mentioned in the questionnaire. Being unfamiliar with the clock

components would make it hard for the respondents to judge novelty. The

questionnaire minimizes unfamiliarity by containing questions about clock

components that the respondents were familiar with from the repertory grid

experiment.

A final factor we wanted to minimize was a respondent’s bias towards one

particular clock component, thus the questions include comparing the digital time

base to the pendulum face, pendulum gear, and pendulum power provider.

One potential bias in our questionnaire was the fact that the respondents had much

more knowledge than the computer did and therefore, the computer could not possibly

come up with matches that respondents thought were novel. In fact, one respondent

thought that all of the computer matches were not novel. The computer was at a

disadvantage because it only has the knowledge that we encoded in it, which is

limited. However, this effect is reduced because the computer’s and respondents’

knowledge were both based at least somewhat on the same articles. Also, there are not

too many different ways to represent the functions and workings of the clocks.

6666.2 Results and Analysis.2 Results and Analysis.2 Results and Analysis.2 Results and Analysis

This section contains analysis of the repertory grid and questionnaires collected from

ten respondents between November and December 2005. The results include an

analysis of the repertory grid constructs and the similarity measures. They also include

analysis of the question representation types and question gmap weights. Each section

describes the results and how they were analyzed.

 88

6.2.1 Summarizing Constructs

Each respondent contributed six constructs during the repertory grid elicitation. One

goal in the human experiment was to try to determine if there was a correlation

between the reasons people gave and the computer results. Another goal was to

determine if humans were thinking more in DC terms or more in EC terms. To do

this, we had to classify all the human constructs as either DC, EC, or neither.

 We classified the constructs in a two step process. First, we grouped the constructs

into categories without determining their classification. Each of the categories had a

central theme. Once the constructs were categorized, we characterized the individual

constructs as DC, EC, or neither according to the following criteria:

• The construct is EC if the construct required knowledge of the environment in

order to understand or make a judgment based on it.

• The construct is DC if the construct only required knowledge of the clock

component to understand or make a judgment based on it.

• The construct is neither if the respondent was making a superficial judgment

that did not require much thought. An example of a superficial constructs is:

“has two words in it.” In this case, the respondent was referring to the way the

clock component was represented on the page.

• The construct is neither if the construct was the result from obvious use of our

experimental setup. For example, “part of pendulum vs. part of digital” is

neither since it was related to an artificial grouping made by the experiment,

not by the respondents. It also was part of nearly all the respondents constructs,

which confirms that it is an obvious construct.

6.2.2 Analysis of Constructs

The result of this analysis was 16 categories. The respondents had 18 DC constructs,

31 EC constructs, and 11 constructs that were neither. Appendix D.2 contains the

categories and listing of the respondents constructs. Figure 6.2 shows the counts of the

constructs of each type per respondent for each question representation type.

 89

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Respondent

N
u
m
b
e
r
o
f
c
o
n
s
tr
u
c
ts

DC

EC

Figure 6.2: classification of respondent constructs per question representation type.

Based on the counts, the respondent who had the most EC reasons was respondent 6.

The respondents who had the most DC reasons were respondent 5 and 7.

6.2.3 Percent Similar Analysis from Repertory Grid

We used the “percent similar” measure generated by the repertory grids collected from

the respondents, and compared that measure to the normalized highest gmap weight

generated by SME. Each repertory grid had 6 devices, making 36 possible evaluations

between devices.

 For example, figure 6.3 shows the grid from respondent #7.

 90

Figure 6.3: grid for respondent #7

Using the formula described in section 2.3.1, the percent similar between the

pendulum power provider and digital power provider is 66%. The data for all

respondents can be extracted from the grids in Appendix D.1.

 Although percent similar can range between 0 and 1, it should not be directly

compared to SME data since the repertory grid collection technique asks for

clarification when similarity levels are above a certain percent. This makes the

percentages artificially low. Therefore, we computed match rankings based on the

percent similar measures generated by SME and the repertory grid.

 The rankings are between the pairs of matches that are possible between the clock

components. Table 6.3 shows a sample set of matches and what their rankings would

be.

From To Rating Rank

pendulum power provider pendulum time base 0.5 3

pendulum power provider digital time base 0.825 1

digital face pendulum face 0.72 2

Table 6.3: example of how match ratings get turned into ranks by the statistical methods.

 We looked for correlations between each of three possible data sets and each of the

10 individual respondents. The data sets are DC, EC, and BOTH. We use the

Spearman rank order test to detect correlation between the datasets and the Wilcoxon

signed rank for testing that the medians of the differences between the datasets are

different. The correlation are shown below in figure 6.4.

 91

Figure 6.4: correlation coefficients between the respondent and SME datasets.

 The tests show no significant correlations between the DC and EC datasets and the

respondents’ answers (p>0.23) and that the DC and EC datasets and the respondents’

answers are significantly different (p<0.1). Another observation is that, on average,

the EC dataset is more positively correlated to the respondent data than DC.

 For the BOTH dataset, there are two significant correlations with the answers from

respondents 5 and 8 (p<0.1). The rest are insignificant (p>0.32). The sign rank test

shows that the medians of the respondent 5 and 8 datasets are different from the

median of the BOTH dataset (p>0.5).

 Figure 6.5 shows a scatter plot for respondent #8’s match rankings. Respondent 8’s

match ratings had a correlation value of 0.41 which means that the BOTH dataset

results can account for 16.72% of respondent #8’s responses. Although the correlation

can be hard to see, there are some specific cases where results from respondent #8 and

the BOTH datasets had a match at the exact same rank. For example, the match at

rank 7, which was between the pendulum face and pendulum power, is ranked exactly

the same. Sharing the same rank means that both the computer and respondent #8

thought that this match ranked the same among all the other matches.

 92

Figure 6.5: rank order correspondence between device matches from respondent #8 and the BOTH

dataset. The figure shows, for example, that one of the device matches is ranked 9th in the BOTH

dataset, but is ranked 14 in respondent #8’s data. Ties in the ranks are possible, which can cause

multiple data points on a single column or row.

6.2.4 Respondent Constructs Characterizations Compared to Respondent
Correlations

It is interesting to try to determine whether the respondents’ constructs given in the

repertory grid correlate with the representation type used to generate the SME results.

This would enable us to determine if the respondents were thinking more in DC or EC

terms.

 The correlation coefficients measure how well the respondent’s similarity ratings

correlate with the results from the DC and EC datasets. Therefore, if the respondent’s

construct characterizations correspond to the correlation coefficients, we can conclude

that the respondent’s constructs are more DC or EC and thus the respondent is

thinking more in DC or EC terms. We performed three types of analysis to determine

this.

 The first analysis we did was we compared the respondent who had the highest

number of DC or EC constructs with the correlation coefficients. The respondent with

 93

the most EC constructs had the strongest correlation with the EC dataset. Similarly,

one of the respondents with the most DC constructs had the strongest correlation with

the DC dataset. This kind of correspondence did not always hold, however, the other

respondent who was most correlated with the DC dataset had 4 EC constructs and 2

DC constructs.

 The second analysis we did was to see if the characterization of the respondents’

constructs predicts which dataset they will be more correlated with. The data shows

that this occurred in the data from 6 of the 10 respondents.

 The first and second analyses only try to determine if the results from respondents

are more like DC or EC results. In reality, the respondents’ reasons are probably

somewhere in between the two extremes. To quantify this better the data requires a

third analysis using a statistic that is higher if the respondent’s ratings are more EC

and lower if the ratings are more DC.

 The analysis has a method for computing this statistic for both the correlation

coefficients and the respondent constructs. For correlations, the analysis computes this

statistic by a subtracting the DC correlation coefficient from the EC correlation

coefficient. For the respondent constructs, the analysis subtracts the number of EC

constructs from the DC constructs. The resulting data are suitable for a spearman rank

order test. Tables 6.4 and 6.5 show the correlation coefficients and the construct

characterizations along with the measure of how DC or EC the numbers are. For

example, respondent 1 has an statistic of -0.04 which means the similarity ratings are

slightly more DC. Respondent 9 has a statistic of 2 which means the constructs are

more EC than DC.

 94

respondent EC DC EC – DC

1 0.09 0.13 -0.04

2 0.08 -0.05 0.13

3 0.12 -0.04 0.16

4 0.087983 0.127415 -0.03943

5 0.079149 0.24091 -0.16176

6 0.174911 -0.12282 0.297728

7 0.049245 -0.07517 0.124414

8 0.114019 0.226566 -0.11255

9 0.108787 -0.05996 0.168743

10 0.08424 -0.14062 0.22486

Table 6.4: correlation coefficients of the respondent’s similarity ratings for EC and DC. The third

column is the EC correlation coefficient minus the DC correlation coefficient. The higher the number

the more EC the respondent’s similarity ratings are, the lower the number the more DC the ratings

are.

respondent EC DC EC – DC

1 3 1 2

2 3 2 1

3 4 1 3

4 4 1 3

5 2 4 -2

6 5 0 5

7 1 4 -3

8 2 1 1

9 4 2 2

10 3 2 1

Table 6.5: construct characterizations of the respondent’s constructs for EC and DC. The third column

is the number of EC constructs minus the number of DC constructs. The higher the number the more

EC the respondent’s constructs are, the lower the number the more DC the ratings are.

The results from the spearman rank order computation are that the two statistics have

a medium strength, positive correlation (r = 0.46) with a significance of (p<0.16).

Figure 6.6 shows the scatter plot of the ranks of the statistic computed for the

correlation coefficients and the respondent constructs.

 95

Figure 6.6: rank order correspondence between respondent constructs and correlation coefficients.

See the caption of Figure 6.5 for a description of the plot format.

 The high correlation coefficient between the two datasets means that there is a

reasonable chance that there is a correlation between the characterizations of the

respondents’ constructs and how much they were thinking in DC and EC terms. The

results show this because when the correlation coefficient indicates that a respondent

is using a certain amount of combination of DC and EC constructs, the classification

of the respondent’s constructs will also be about the same amount. For example, the

statistics for respondent #6 both ranked it 10, which means the respondent has the

highest amount of EC constructs. From this we can say that since respondent #6’s

constructs correlated with the correlation coefficients, respondent #6 was thinking

100% in EC terms.

 Since the two measures are not totally correlated, they might not agree all the time,

and thus, the construct percentages would not be exactly correct. For example, based

on the correlation coefficients, respondent #5’s results are ranked 2 and are most like

results generated by the DC dataset. Based on the constructs, respondent #5’s results

have a ranking of 1 and are 66% DC. The two results are not ranked the same,

therefore there may be some error in the 66% rating.

 96

6.2.5 Questionnaire

Overall, the respondents made 21 high, 30 medium, and 29 low novelty ratings. The

analysis must determine the effects of the two dependent variables, the question type,

DC or EC, and the question weights, high or not high. As described in section 6.1.3,

each question was were derived from a match made from either a DC and EC

representation of a clock component. The high or not-high classification was

determined based on the relative weight of the match used in the question. For

example if a particular match produced three gmaps with weights 1.5, 3.4, and 5.5, the

questionnaire could use the 1.5 or 3.4 gmaps as the basis for a not-high weight

question, and the 5.5 gmap for a high weight question.

 First, we expected that EC matches would be more novel because EC can make a

wider variety of matches. However, the analysis shows that the respondents thought

DC matches were more novel. Figure 6.7 shows 12 of the 21 high novelty ratings

were for DC matches.

Figure 6.7: the novelty ratings for DC and EC questions

 97

 We expected that the lower the SME match weight, the more novel the respondents

would rate the match. Since a lower weight means that the match was not a very

strong match, we expected that lower weighted matches would seem more novel to

the respondents.

 The analysis also shows that lower weighted questions are more novel. For the

purposes of this analysis, the one mid weighted question was grouped with the low

weighted questions to form a “not-high” set of questions. As table 6.6 shows, there

were 5 high match weight questions and 3 not-high match weight questions. Nine of

21 high novelty ratings were given to the not-high match weight questions for an

average of 3 high novelty ratings per not-high match weight question and 2.4 high

novelty ratings per high match weight question.

 high novelty medium novelty Low novelty

high match weight q’s 2.4 4.4 3.2

not-high match weight q’s 3 2.6 4.3

Table 6.6: average number of novelty ratings per question class

 In order to investigate these findings further we performed one additional analysis

specifically directed at looking at pairs of questions where only one dependent

variable is modified. If the results just presented are true, then the analysis should

show the following effects between the pairs of questions in table 6.7.

Questions Dependent

variable

varied

Which

should be

more novel

Result Which is more

novel based on

result

Q1, Q2 low vs. high

weight

Q2 Q2 has one more high

novelty rating than Q1

Q2

Q4, Q5 low vs. high

weight

Q4 Q4 had 4 high novelty

ratings and Q5 has 0

Q4

Q1, Q3 EC vs. DC Q3 Q3 has one more high

novelty rating than Q1

Q3

Q7, Q8 DC vs. EC Q7 Q7 has one more high

novelty rating than Q8

Q7

Table 6.7: shows pairs of questions, the only variable that is modified between them, the resulting tally

of high novelty ratings, and which is more novel based on the results. Both column 3 and column 5

should agree.

Thus, as table 6.7 shows, the two observations that DC is more novel than EC and that

low weighted questions are more novel than high hold for all four pairs of questions.

Since these same clock components were used in each pair, there was only one

 98

dependent variable that was modified, and fewer factors influencing the results. The

results provide good support for the truth of the observations, even though the

difference for three of the pairs was only one novelty rating.

 99

7777. . . . Evaluation of ResultsEvaluation of ResultsEvaluation of ResultsEvaluation of Results

This thesis addresses the problem of determining the impact of using DC, EC, and a

combined (called BOTH) knowledge representation. This thesis provides answers to

several research questions, and suggests that some hypotheses are true. This section

summarizes the results with respect to these research questions and hypotheses. This

section also evaluates the process used to generate the results. The original research

questions and hypotheses that were proposed in section 1.1 are shown below.

1. Which representation produces more matches?

 EC representations will produce more matches than DC representations. The

BOTH representations will produce the most matches.

2. Which representation produces higher weighted matches?

 EC matches will be of lower weight than matches made using representations

that are DC. BOTH matches will have the highest weights.

3. Will DC or EC representations produce more novel matches?

 EC representations will produce more novel matches than DC

representations.

4. When the level of detail is varied, are the results from questions 1, 2, and 3

still true?

 Yes, the results are not sensitive to the level of detail.

5. How much do matches from each representation correlate with human

matches?

 Human matches will correlate best with matches from EC representations.

6. Are human reasons for similarity more DC or EC?

 The humans’ reasons will be more EC than DC.

 Our computational experiment shows that our hypotheses for questions 1 and 2 are

correct for the DC and EC representations, but not for the BOTH representation. EC

representations produced higher weighted matches than DC representations, but DC

representations produced higher average weighted matches. EC representations had a

higher standard deviation than DC representations, which means that EC

 100

representations produce a wider range of results than DC representations. This

explains why matches from the EC representation have lower average match weight.

 However, the BOTH representation did not create more analogical matches or

matches of higher value than the EC or DC representations. Since the number of

matches and weight of matches are normalized, much of the BOTH representation is

not used in making analogical matches. There could also be some interference

happening between the DC and EC representations of devices that is making it harder

to make strong matches. The experiments also show that although the matches from

the BOTH representation were as varied as EC, there were not as many. The

experiments also show that adding extra DC information to EC representations causes

them to perform worse than the EC representation alone.

 In contrast to our hypothesis for question 3, our analysis shows that both DC and

EC representations can produce novel results, not just EC representations. Our results

show that DC representations can produce novel results because the respondents in

the human experiment rated more DC matches with high novelty than EC matches.

They also show that since the respondents rated low valued matches as being more

novel, and EC representation produce more low valued matches than DC

representation, EC can produce novel results.

 Our hypothesis for question 4 was mostly correct. It was not correct for the low

detail DC representation because it did not have enough information to produce many

matches. Besides the low detail DC dataset, the results show that the same trends

occur in the low detail as in the high detail representation.

 Our hypothesis was wrong for question 5. Although the human respondent matches

were more correlated with EC than DC, they were most correlated with the matches

created from the BOTH representations.

 Lastly, our hypothesis for question 6 was correct. Our analysis of the human’s

constructs showed that humans reasons for similarity were more EC than DC.

7.1 Evaluation of Process7.1 Evaluation of Process7.1 Evaluation of Process7.1 Evaluation of Process

There are three areas of our process that worked well, using the functional basis as an

ontology, the selection of clock test examples, and the human experiment procedure.

 First, using the functional basis as an ontology made developing the test examples

 101

easier. Before discovering the functional basis, we tried to invent terms that were

consistent in order to describe the test examples. This proved to be a time consuming

task, because when new test examples were added, they often required new terms,

which caused us to rethink the definitions of old terms. With the functional basis, this

problem occurred less, and the process of writing test examples took less time.

 The clock test examples worked well for eliciting analogies about function from

the human respondents. When we did earlier experiments with simpler objects like

hammers and pens, we noticed the respondents were focusing on surface features.

With the clock examples, they had to focus on the functions since the surface features

were so different.

 Finally, the human experimental procedure was effective at producing interesting

results that we could analyze. First, the humans were able to understand the clock test

examples, and perform the tasks asked of them. Second, the resulting data was very

similar to the computational data, and therefore it allowed for accurate comparisons.

In addition, the reasons the respondents provided in the repertory grid allowed us to

make conclusions about their reasoning. Thus, not only did this procedure produce

numerical data that we could analyze, but it also produced data which we could use to

make hypotheses about the respondents’ thought processes.

 102

8888. . . . ConclusionsConclusionsConclusionsConclusions

The purpose of this thesis was to explore the differences between DC and EC

representations of function. To do this we created a knowledge representation and

represented a set of clock test examples. We performed a computational experiment

with SME and performed an informal human experiment. From these we have

discovered some properties of DC and EC representations that may be useful for

computer-based design systems and the designers who use them.

 First, our experiment shows that computer-based design systems should use EC

representations for producing many, potentially novel matches for the designer. This

may be useful when the designer is brainstorming. Design systems should use DC

representations when the designer is expecting to get fewer matches and wants to find

matches that are more relevant to their work. This may occur once the designer has

decided on many parts of the design and then just wants to make refinements.

Chandrasekaran and Josephson [2000] say that it may be beneficial for designers to

switch focuses from EC to DC at a certain point in the design process. This thesis

suggests that this decision point may be when the designer wants the design system to

change from producing many conceptual designs to producing design refinements.

 Second, our experiment shows that a design system could use DC or EC

representations to produce novel matches. Unfortunately, our results are inconclusive

about whether DC or EC representations are more useful for generating novel

matches. On one hand, the low weighted matches that EC representations create can

generate novel results. On the other hand, DC representations, which produce few low

weighted matches, can also produce novel matches. Thus, more work needs to be

done in order to determine which has a greater effect on producing novel matches.

 Third, the results show that humans may be thinking more in EC terms than in DC

terms. There are multiple pieces of evidence to support this. First, the respondents’

similarity reasons are more EC than DC. Second, the humans rated DC matches as

being more novel than EC matches. This could mean that the humans are thinking

more in EC terms since they find DC matches more surprising and thus more novel.

 Fourth, our computational experiments show that although combining DC and EC

 103

representations together does make matches that correlate the best with human

matches, the additional work may not be worth it. The results show that adding DC

information to the EC representation produces comparatively fewer matches than

when the EC representation is used alone. The main observation is that that adding

DC information to the EC representation does not add proportionally as many

matches. The suggested reason for this is that more interference is occurring.

8888.1 Future Wor.1 Future Wor.1 Future Wor.1 Future Workkkk

There are several areas of this thesis that could be expanded in future work. First, the

DC and EC representations could be compared using a different analogy system such

KDSA [Wolverton and Hayes-Roth, 1995] or AMBR [Kokinov and Petrov, 1988].

These systems use a different, non-symbolic approach to analogy making. Such work

would have to define what DC and EC mean in terms of their network representations.

 Second, the usefulness of analogical matches created using DC and EC

representations could be studied in a complete analogy making system. This thesis

only studies the results from the matching step of making analogy. To fully

understand the usefulness of the analogical matches, they should be tested in a system

that performs all the steps of analogy, which include analog retrieval, analogical

inferencing, and learning. Ideally, the resulting analogies should be used for some

task. The usefulness of DC versus EC representations should be judged based on their

effects on the specific task. As section 2.2 shows, there are several systems that can

perform design tasks using analogy. Our system was limited to evaluating analogical

matches based on their structural evaluation score. This score may turn out not to be

useful in performing a design task such as innovative design by analogy.

 Third, the knowledge representation could have been enhanced in two ways. The

knowledge representation could be extended to include abstractions. These

abstractions could be the ones defined by the functional basis. For example in the

functional basis, both import, export, and transfer are different kinds of “channel” and

force and torque are both kinds of “energy.” Another kind of abstraction would be to

have levels of abstraction for functions and behaviors. It would be interesting to see if

our results hold when the level of abstraction is varied.

 104

 Another enhancement to the knowledge representation would be to use a pure EC

representation. Our EC representation was not purely EC because it did include some

information about the device in it. For example, our representation permitted the

behavior transmit force from weight to gear. To make this a pure EC behavior, it

would need to change to become: transmit force to gear. In this pure EC

representation the gear is part of the environment and the behavior is still a behavior

for the weight. It would be interesting to compare the results from such a

representation to the existing results.

 A fourth area of future work is to test these results on a variety of knowledge

representations to show that the results are not due to the particular representation

used in this thesis or the particular person who created the test examples. Section 2.2

shows that there are several systems that perform analogy. Each of these has a

different knowledge representation that could be used to specifically represent DC and

EC information.

 Fifth, the experimental procedure used in this thesis could be used on a more

varied set of test examples in order to verify the results recorded in this thesis. In

particular, the test examples could be from in different domains, which have less in

common than clock domains, in order to encourage cross-domain analogies. Also, the

results could be verified by using a larger set of test examples.

 Sixth, there is ambiguity in the human experiment results about whether or not DC

or EC representations produce more novel results. There were only ten human

respondents in the experiment. If more humans are added to the experiment the results

would be more accurate and benefits of one representation versus the other might

become more definitive.

 Seventh, the respondents’ constructs could be analyzed further. In this thesis, the

constructs were classified according to the criteria of one researcher. More work in

trying to classify the constructs in a different way might provide a different result.

 Lastly, there are changes that could be made to the human experiment that would

increase the likelihood of finding strong correlations between the human matches and

the computer matches. The human experiment shows that the BOTH representation

most closely matches the human results. Also, the constructs the humans chose were

 105

about more than just functions and behaviors. These two results hint that adding new

types of information to the pure DC or EC representation might make stronger

correlations. However, our computational results indicate that adding the wrong

information may not increase the results proportionally. Perhaps if the knowledge

representation included other primitives such as structure and attributes, the resulting

analogical matches would more closely correlate with the human matches because

both SME and the human knowledge representations would have more in common.

 106

9999. References. References. References. References

Balazs, ME: 1999, Design Simplification by Analogical Reasoning. Ph.D. thesis, Worcester Polytechnic Institute,
Computer Science Department, Worcester, MA, USA.

Besemer, SP and Treffinger, DJ: 1982, Analysis of Creative Products: Review and Synthesis, in GJ Puccio and
MC Murdock (eds) Creativity Assessment: Readings and Resources, Creative Education Foundation Press,
Buffalo, NY, pp. 59-76.

Bhatta, S and Goel, A: 1996, From Design Experiences to Generic Mechanisms: Model-Based Learning in

Analogical Design. Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 10:131-136.

Boden, MA: 1994, What is Creativity?, in MA Boden (ed), Dimensions of Creativity, The MIT Press, Cambridge,
MA, pp. 75-117.

Boden, MA: 2003, Computer Models of Creativity. In Sternberg, R. J., Ed. Handbook of creativity. pp. 351-373.

Brain, M: 2005a, How Digital Clocks Work. http://home.howstuffworks.com/digital-clock.htm

Brain, M: 2005b, How Pendulum Clocks Work. http://home.howstuffworks.com/clock.htm

Brown, DC: 1992, Design. Encyclopedia of Artificial Intelligence. J. Wiley & Sons, 2nd edn. pp. 331-339

Chandrasekaran, B and Josephson, JR: 2000, Function in Device Representation, Engineering with Computers,

Special Issue on Computer Aided Engineering, 16: 162-177.

Chandrasekaran, B: 2005 Representing function: Relating functional representation and functional modeling

research streams, AI EDAM, 19(2): 65-74.

Falkenhainer, B: 2005, Structure Mapping Engine Implementation. http://www.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/reasonng/analogy/sme/0.html

Falkenhainer, B, Forbus, K and Gentner, D: 1989, The structure-mapping engine: Algorithm and examples.

Artificial Intelligence, 20(41): 1–63.

French, RM: 2002. The Computational Modeling of Analogy-Making. Trends in Cognitive Science, 6(5), 200-205

Gentner, D, Holyoak, K and Kokinov, B (eds): 2001, The Analogical Mind: Perspectives from Cognitive Science,
MIT Press.

Gentner, D: 1983, Structure-mapping: A Theoretical Framework for Analogy, Cognitive Science 7(2).

Goel, A: 1997, Design, analogy, and creativity. IEEE Expert, 12(3): 62–70.

Hart, A: 1986, Knowledge Acquisition for Expert Systems, McGraw-Hill.

Holyoak, KJ and Thagard P: 1989. Analogical mapping by constraint satisfaction. Cognitive Science, 13:295-355.

Kitamura, Y, Kashiwase, M, Fuse, M and Mizoguchi R: 2004, Deployment of an ontological framework of

functional design knowledge, Journal of Advanced Engineering Informatics, 18(2):115-127.

Kokinov, B and Petrov, A: 1988, Associative memory-based reasoning: How to represent and retrieve cases. In
Artificial Intelligence III: Methodology, Systems, and Applications. 51-58. Amsterdam: Elsevier.

Pahl, G and Beitz, W: 2003 Engineering design. A systematic approach. Springer, 2nd edition.

Prabhakar, S and Goal, A: 1996a, Learning about Novel Operating Environments: Designing by Adaptive

Modelling, Artificial Intelligence for Engineering Design, Analysis, and Manufacturing, 10:151-156.

Prabhakar, S and Goel, A: 1996b, Functional Modeling of Interactions between Devices and their External
Environments for Adaptive Design, Proc. Modeling and Reasoning about Function workshop, AAAI-96
Conference, Portland, Oregon, pp. 95-106.

Qian, L and Gero, J: 1992, A Design Support System Using Analogy. In Proc. of the Second International
Conference on AI in Design, pp. 795-813. Kluwer Academic Publishers.

Qian, L and Gero, J: 1996, Function-behavior-structure paths and their role in analogy-based design, Artificial

Intelligence for Engineering Design, Analysis and Manufacturing, 10:289-312.

Rosenman, MA and Gero, JS: 1998, Purpose and function in design: from the socio-cultural to the techno-

physical, Design Studies, 19(2): 161-186.

Shafer, G: 1978, A Mathematical Theory of Evidence, Princeton University Press, Princeton, New Jersey.

Shaw, LG and Gaines, BR: 2005, Rep IV 1.10. http://repgrid.com, Cobble Hill, BC, Canada.

Stone, RB and Wood, KL: 1999, Development of a functional basis for design. Proc. ASME Design Theory and
Methodology Conference, DETC99/DTM-8765. pp. 359-370.

Umeda, Y and Tomiyama, T: 1997, Functional Reasoning in Design, IEEE Expert, 12(2): 42-48.

Vermaas, PE: 2002, A Critical Analysis of John Gero's Function-Behavior-Structure Model of Designing. In
Proceedings of the Design Research Society International Conference at Brunel University, 1163-1172.

Wolverton, M and Hayes-Roth, B: 1995, Finding analogues for innovative design. In Third Int’l Conference on
Computational Models of Creative Design.

 107

10101010. Appendix. Appendix. Appendix. Appendix

AAAAppendix Appendix Appendix Appendix A Computational Experiment Computational Experiment Computational Experiment Computational Experiment

A.1 Device Input Format

This appendix shows the input file used to describe the pendulum and digital clocks.

Also, this appendix describes how we encoded the part-of mapping. The file is in an

XML (http://www.w3.org/XML/) format. It also uses abbreviations to make it

succinct. They are listed below:

Abbreviation Meaning

t type

d DC

e EC

n name

beh behavior

subfun subfunction

sX a reference to a

subfunction with id X

f function

t type

ent entity

d1 device1

d2 device2

i unique id

<!-- beginning of a comment

--> end of a comment

Table of the abbreviations used in the input files

Pendulum clock:

<device n="pendulumclock">

<!-- get torque to the escapement -->
<beh t="e" i="1" n="transmit" ent="force" d1="earth" d2="weight"/>
<beh t="e" i="2" n="transmit" ent="force" d1="weight" d2="weightgear"/>
<beh t="e" i="3" n="transmit" ent="torque" d1="weightgear" d2="escapementgear"/>
<beh t="e" i="20" n="transmit" ent="force" d1="earth" d2="pendulum"/>
<beh t="e" i="21" n="transmit" ent="torque" d1="pendulum" d2="stopper"/>
<beh t="e" i="22" n="decouple" d1="stopper" d2="escapement"/>
<subfun t="e" i ="1" beh="1,2,20,21,22,3" goal="get torque to the escapement gear"/>

<beh t="e" i="4" n="transmit" ent="torque" d1="escapementgear" d2="inputgear"/>
<beh t="e" i="5" n="transmit" ent="torque" d1="inputgear" d2="secondgear"/>

 108

<beh t="e" i="6" n="transmit" ent="torque" d1="secondgear" d2="minutegear"/>
<subfun t="e" i="2" beh="s1,4,5,6" goal="the torque gets to the second gear"/>

<beh t="e" i="7" n="transmit" ent="torque" d1="secondgear" d2="secondhand"/>
<subfun t="e" i="3" beh="s2,7" goal="turn second hand" />

<beh t="e" i="8" n="transmit" ent="torque" d1="secondgear" d2="minutegear"/>
<beh t="e" i="9" n="transmit" ent="torque" d1="minutegear" d2="minutehand"/>
<subfun t="e" i="4" beh="s2,8,9" goal="turn the minute hand" />

<!-- reset function
when the gear release lever is enabled, the escapement transmits directly to the second

gear -->
<beh t="e" i="12" n="transmit" ent="force" d1="human" d2="gear-release-lever"/>
<beh t="e" i="10" n="transmit" ent="torque" d1="escapementgear" d2="secondgear"/>
<beh t="e" i="11" n="change-between" ent="torque" d1="secondgear" d2="minutegear"/>
<f t="e" i="30" beh="s1,12,10,11,9,34" goal="turn the minute hand faster and human sees

it" />
<f t="e" i="40" beh="s1,12,10,7,32" goal="turn the second hand faster and human sees it"

/>

<!-- human sees it -->
<beh t="e" i="32" n="transmit" ent="visual-signal" d1="secondhand" d2="human"/>
<f t="e" i="50" beh="s3,32" goal="human sees secondhand" />

<beh t="e" i="34" n="transmit" ent="visual-signal" d1="minutehand" d2="human"/>
<f t="e" i="60" beh="s4,34" goal="human sees minutehand" />

<!-- get torque to the escapement -->
<beh t="d" i="1" n="import" ent="force" d1="weight"/>
<beh t="d" i="2" n="export" ent="force" d1="weight"/>
<beh t="d" i="3" n="import" ent="force" d1="weightgear"/>
<beh t="d" i="4" n="export" ent="torque" d1="weightgear"/>
<beh t="d" i="5" n="import" ent="torque" d1="escapementgear"/>
<beh t="d" i="6" n="export" ent="torque" d1="escapementgear"/>
<subfun t="d" i ="10" beh="1,2,3,4,5,6,s36" goal="get torque to the escapement gear"/>

<beh t="d" i="7" n="import" ent="torque" d1="inputgear"/>
<beh t="d" i="8" n="export" ent="torque" d1="inputgear"/>
<beh t="d" i="9" n="import" ent="torque" d1="secondgear"/>
<beh t="d" i="10" n="export" ent="torque" d1="secondgear"/>
<subfun t="d" i="12" beh="s10,7,8,9,10" goal="torque to second gear"/>

<beh t="d" i="23" n="import" ent="torque" d1="secondhand"/>
<beh t="d" i="24" n="rotate" d1="secondhand"/>
<f t="d" i="1" beh="s12, 23, 24" goal = "show 1 second increment"/>

<beh t="d" i="11" n="import" ent="torque" d1="minutegear"/>
<beh t="d" i="12" n="export" ent="torque" d1="minutegear"/>
<beh t="d" i="21" n="import" ent="torque" d1="minutehand"/>
<beh t="d" i="22" n="rotate" d1="minutehand"/>
<f t="d" i="2" beh="s12, 11, 12, 21, 22" goal = "show 1 min increment"/>

<beh t="d" i="13" n="import" ent="torque" d1="stopper"/>
<beh t="d" i="14" n="export" ent="force" d1="stopper"/>
<beh t="d" i="15" n="import" ent="force" d1="pendulum"/>
<beh t="d" i="16" n="export" ent="torque" d1="pendulum"/>
<subfun t="d" i="36" beh="13,14,15,16" goal="actuate the pendulum"/>

 109

<beh t="d" i="17" n="import" ent="force" d1="gear-release-lever"/>
<beh t="d" i="18" n="stop" ent="force" d1="gear-release-lever"/>
<beh t="d" i="19" n="change" ent="torque" d1="secondgear"/>
<beh t="d" i="20" n="change" ent="torque" d1="minutegear"/>
<!-- don't record change torque on the sec and min hands -->
<f t="d" i="300" beh="s10,17,18,19,23,24" goal="set second hand"/>
<f t="d" i="400" beh="s10,17,18,19,20,21,22" goal="set minute hand"/>
</device>

Digital clock:

<device n="digitalclock">
<!-- this is a clock that has a two digit seconds display -->

<beh t="d" i="1" n="import" ent="eforce" d1="plug"/>
<beh t="d" i="2" n="export" ent="eforce" d1="plug"/>
<beh t="d" i="3" n="import" ent="eforce" d1="bridge"/>
<beh t="d" i="4" n="export" ent="eforce" d1="bridge"/>
<beh t="d" i="5" n="import" ent="eforce" d1="diode"/>
<beh t="d" i="6" n="change" ent="eforce" d1="diode"/>

<beh t="e" i="1" n="couple" d1="plug" d2="wall"/>
<beh t="e" i="2" n="transmit" ent="eforce" d1="plug" d2="bridge"/>
<beh t="e" i="3" n="transmit" ent="eforce" d1="bridge" d2="diode"/>
<beh t="e" i="4" n="change-between" ent="eforce" d1="diode" d2="tbdiv10"/>

<!-- invented a new term called change-between which is different from change in that

change-between specified two devices instead of one. This was done so I could make an EC
version of change -->

<!-- this is the power provider functionality -->
<subfun t="d" i ="1" beh="1,2,3,4,5,6" goal="eforce out of diode"/>
<subfun t="e" i ="10" beh="1,2,3,4" goal="eforce to tbdiv10"/>

<!-- time base functionality -->

<beh t="d" i="7" n="import" ent="eforce" d1="tbdiv10"/>
<beh t="d" i="8" n="export" ent="signal" d1="tbdiv10"/>
<beh t="d" i="9" n="import" ent="signal" d1="tbdiv6"/>
<beh t="d" i="10" n="export" ent="signal" d1="tbdiv6"/>

<beh t="e" i="5" n="transmit" ent="signal" d1="tbdiv10" d2="tbdiv6"/>
<beh t="e" i="6" n="transmit" ent="signal" d1="tbdiv6" d2="div10"/>

<subfun t="d" i ="2" beh="s1,7,8,9,10" goal="eforce out of tbdiv6"/>
<subfun t="e" i ="12" beh="s10,5,6" goal="eforce to div10"/>

<!-- gear functionality -->

<!-- import signal to in and to the reset area.. what can I call that, change? -->
<beh t="d" i="11" n="import" ent="signal" d1="div10"/>
<!-- output it to bc and to out -->
<beh t="d" i="12" n="export" ent="signal" d1="div10"/>
<!-- could call this change outward, there's not distinction of in or out or which parts -->
<beh t="d" i="13" n="change" ent="signal" d1="div10"/>
<beh t="d" i="14" n="import" ent="signal" d1="div6"/>
<beh t="d" i="15" n="export" ent="signal" d1="div6"/>

 110

<beh t="d" i="16" n="change" ent="signal" d1="div6"/>

<!--<beh t="e" i="7" n="transmit" ent="signal" d1="switch" d2="div10"/>-->
<beh t="e" i="8" n="transmit" ent="signal" d1="div10" d2="div6"/>
<beh t="e" i="9" n="transmit" ent="signal" d1="div10" d2="bc10"/>
<!-- signal that the div6 should reset by changing the signal -->
<beh t="e" i="10" n="change-between" ent="signal" d1="div10" d2="div6"/>
<!-- here change means give a special signal for resetting the bc -->
<beh t="e" i="11" n="change-between" ent="signal" d1="div10" d2="bc10"/>
<beh t="e" i="12" n="change-between" ent="signal" d1="div6" d2="bc6"/>
<beh t="e" i="13" n="transmit" ent="signal" d1="div6" d2="bc6"/>

<subfun t="d" i ="3" beh="s2,11,12,14,15,25,27,21,22" goal="increment the sec tens"/>
<subfun t="d" i ="4" beh="s7, s2,11,13,16,26,21,22" goal="reset the minutehand"/>
<subfun t="d" i ="5" beh="s2,11,12,28,30,19,20" goal="increment the sec ones"/>
<subfun t="d" i ="6" beh="s7, s2,11,13,29,19,20" goal="reset the secondhand"/>

<!-- bc's -->

<beh t="d" i="25" n="import" ent="signal" d1="bc6"/>
<beh t="d" i="26" n="change" ent="signal" d1="bc6"/>
<beh t="d" i="27" n="export" ent="signal" d1="bc6"/>
<beh t="d" i="28" n="import" ent="signal" d1="bc10"/>
<beh t="d" i="29" n="change" ent="signal" d1="bc10"/>
<beh t="d" i="30" n="export" ent="signal" d1="bc10"/>

<beh t="e" i="32" n="transmit" ent="signal" d1="bc6" d2="secTensDisplay"/>
<beh t="e" i="33" n="transmit" ent="signal" d1="bc10" d2="secOnesDisplay"/>
<!-- leave out position -->
<beh t="e" i="16" n="transmit" ent="visual-signal" d1="secOnesDisplay" d2="human"/>
<beh t="e" i="17" n="transmit" ent="visual-signal" d1="secTensDisplay" d2="human"/>

<subfun t="e" i ="13" beh="s12,8,13,32,17" goal="signal to bc6 increment the sec tens"/>
<subfun t="e" i ="14" beh="s12,s17,10,12,32,17" goal="changed to bc6 reset the sec

tens"/>
<subfun t="e" i ="15" beh="s12,9,33,16" goal="signal to bc10 increment the sec ones"/>
<subfun t="e" i ="16" beh="s12,s17,11,33,16" goal="reset the sec ones"/>

<!-- face -->
<beh t="d" i="19" n="import" ent="signal" d1="secOnesDisplay"/>
<beh t="d" i="20" n="display" ent="visual-signal" d1="secOnesDisplay"/>
<beh t="d" i="21" n="import" ent="signal" d1="secTensDisplay"/>
<beh t="d" i="22" n="display" ent="visual-signal" d1="secTensDisplay"/>

<!-- switch -->
<beh t="d" i="17" n="import" ent="force" d1="switch"/>
<beh t="d" i="18" n="export" ent="signal" d1="switch"/>
<beh t="e" i="14" n="transmit" ent="force" d1="human" d2="switch"/>
<beh t="e" i="15" n="transmit" ent="signal" d1="switch" d2="div10"/>
<subfun t="d" i ="7" beh="17,18" goal="hit the switch"/>
<subfun t="e" i ="17" beh="15,14" goal="hit the switch"/>

<!-- functions -->
<f t="d" i ="100" beh="s3" goal="increment the sec tens"/>
<f t="d" i ="200" beh="s4" goal="reset the minutehand"/>
<f t="d" i ="300" beh="s5" goal="increment the sec ones"/>
<f t="d" i ="400" beh="s6" goal="reset the secondhand"/>
<f t="e" i ="1000" beh="s13" goal="increment the sec tens"/>

 111

<f t="e" i ="2000" beh="s14" goal="reset the sec tens"/>
<f t="e" i ="3000" beh="s15" goal="increment the sec ones"/>
<f t="e" i ="4000" beh="s16" goal="reset the sec ones"/>

</device>

Part-of mapping:

The part-of mapping information is how the test harness code knows which clock

subcomponents are part of which clock components. For example, both the

secondhand and the minutehand are part of the pendulum face. We hard coded the

part of mapping information in java code so it is not an actual input file. The tables

below show the part of mapping information.

Device Part-of

weightgear pendulumpower

weight pendulumpower

escapementgear pendulumgear

inputgear pendulumtimebase

secondgear pendulumtimebase

minutegear pendulumgear

gear-release-lever pendulumgear

secondhand pendulumface

minutehand pendulumface

Part-of mapping for the pendulum clock

Device Part-of

plug digitalpowerprovider

bridge digitalpowerprovider

diode digitalpowerprovider

tbdiv10 digitaltimebase

tbdiv6 digitaltimebase

switch digitalgear

div10 digitalgear

div6 digitalgear

bc10 digitalgear

bc6 digitalgear

secOnesDisplay digitalface

setTensDisplay digitalface

Part-of mapping for the digital clock

 112

A.2 SME Input Format

This appendix shows the DC and EC versions of the SME input format used for the

bridge subcomponent and also the EC version of the diode subcomponent.

Bridge DC:

(sme:defEntity bridge :type inanimate)
(sme:defDescription bridge_DC
 entities (bridge)
 expressions (
((import eforce bridge) :name *import_eforce_bridge)
((behavior *import_eforce_bridge) :name *behavior_import_eforce_bridge)
((export eforce bridge) :name *export_eforce_bridge)
((behavior *export_eforce_bridge) :name *behavior_export_eforce_bridge)
((behavior-set *behavior_import_eforce_bridge *behavior_export_eforce_bridge)
 :name *behavior_set_behavior_import_eforce_bridge_behavior_export_eforce_bridge)
((DC *behavior_set_behavior_import_eforce_bridge_behavior_export_eforce_bridge)

:name *function_behavior_import_eforce_bridge_behavior_export_eforce_bridge)))

Bridge EC:

(sme:defEntity plug :type inanimate)
(sme:defEntity bridge :type inanimate)
(sme:defEntity diode :type inanimate)
(sme:defDescription bridge_EC
 entities (plug bridge diode)
 expressions (
((transmit eforce plug bridge) :name *transmit_eforce_plug_bridge)
((behavior *transmit_eforce_plug_bridge) :name *behavior_transmit_eforce_plug_bridge)
((transmit eforce bridge diode) :name *transmit_eforce_bridge_diode)
((behavior *transmit_eforce_bridge_diode) :name

*behavior_transmit_eforce_bridge_diode)
((behavior-set *behavior_transmit_eforce_plug_bridge

*behavior_transmit_eforce_bridge_diode) :name
*behavior_set_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diod
e)

((EC
*behavior_set_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diod
e) :name
*function_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diode)))

Diode EC:

(sme:defEntity bridge :type inanimate)
(sme:defEntity diode :type inanimate)
(sme:defEntity tbdiv10 :type inanimate)
(sme:defDescription diode_EC
entities (bridge diode tbdiv10)
expressions (
((transmit eforce bridge diode) :name *transmit_eforce_bridge_diode)
((behavior *transmit_eforce_bridge_diode) :name

*behavior_transmit_eforce_bridge_diode)
((change-between eforce diode tbdiv10) :name *change-between_eforce_diode_tbdiv10)

 113

((behavior *change-between_eforce_diode_tbdiv10) :name *behavior_change-
between_eforce_diode_tbdiv10)

((behavior-set *behavior_transmit_eforce_bridge_diode *behavior_change-
between_eforce_diode_tbdiv10)

 :name *behavior_set_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10)

((EC *behavior_set_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10) :name
*function_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10)))

A.3 SME Example Raw Output

This appendix shows the SME output for the comparison between the EC versions of

the bridge and bc10 subcomponents.

 SME Version 2E
 Analogical Match from BRIDGE_EC to BC10_EC.

Rule File: true-analogy.rules

MH's | # Gmaps | 1st,2nd,Worst | STD | Merge Step 3 | CI | RelGroups | 1-1 |
 22 | 3 | 9.01 / 4.46 / 4.41 | 0.00 | ACTIVE | ACTIVE | OFF | FULL |

Total Run Time: 0 Minutes, 0.030 Seconds
BMS Run Time: 0 Minutes, 0.030 Seconds
Best Gmaps: { 3 }

Match Hypotheses:
 (0.7582 0.0000) (PLUG DIV10)
 (0.9488 0.0000) (*TRANSMIT_EFORCE_PLUG_BRIDGE

*TRANSMIT_SIGNAL_DIV10_BC10)
 (0.7626 0.0000) (BRIDGE SECONESDISPLAY)
 (0.7626 0.0000) (PLUG BC10)
 (0.9556 0.0000) (*TRANSMIT_EFORCE_PLUG_BRIDGE

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)
 (0.9450 0.0000) (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE

*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10)
 (0.6647 0.2682) (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE

*BEHAVIOR_CHANGE-BETWEEN_SIGNAL_DIV10_BC10)
 (0.9856 0.0000) (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE

*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)
 (0.7582 0.0000) (DIODE BC10)
 (0.7582 0.0000) (BRIDGE DIV10)
 (0.9488 0.0000) (*TRANSMIT_EFORCE_BRIDGE_DIODE

*TRANSMIT_SIGNAL_DIV10_BC10)
 (0.7626 0.0000) (DIODE SECONESDISPLAY)
 (0.9426 0.0000) (BRIDGE BC10)
 (0.9967 0.0000) (EFORCE SIGNAL)
 (0.9556 0.0000) (*TRANSMIT_EFORCE_BRIDGE_DIODE

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)
 (0.9450 0.0000) (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE

*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10)
 (0.6647 0.2682) (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE

*BEHAVIOR_CHANGE-BETWEEN_SIGNAL_DIV10_BC10)
 (0.9856 0.0000) (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE

*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)

 114

 (0.9227 0.0000)
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE
*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT
_SIGNAL_BC10_SECONESDISPLAY)

 (0.9227 0.0000)
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE *BEHAVIOR_SET_BEHAVIOR_CHANGE-
BETWEEN_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDIS
PLAY)

 (0.7900 0.0000)
(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE
*FUNCTION_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIG
NAL_BC10_SECONESDISPLAY)

 (0.7900 0.0000)
(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE *FUNCTION_BEHAVIOR_CHANGE-
BETWEEN_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDIS
PLAY)

Gmap #1: (EFORCE SIGNAL) (PLUG BC10) (BRIDGE SECONESDISPLAY)
 (*TRANSMIT_EFORCE_PLUG_BRIDGE

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)
(*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE
*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)

 Emaps: (EFORCE SIGNAL) (PLUG BC10) (BRIDGE SECONESDISPLAY)
 Weight: 4.4630
 || # MH's: 5 || # Emaps: 3 || Max/Ave Order: 2/0.60 || Predicate Orders: (3 1 1) ||
 Candidate Inferences:

Gmap #2: (EFORCE SIGNAL) (BRIDGE DIV10) (DIODE BC10)
 (*TRANSMIT_EFORCE_BRIDGE_DIODE *TRANSMIT_SIGNAL_DIV10_BC10)

(*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE
*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10)

 Emaps: (EFORCE SIGNAL) (BRIDGE DIV10) (DIODE BC10)
 Weight: 4.4069
 || # MH's: 5 || # Emaps: 3 || Max/Ave Order: 2/0.60 || Predicate Orders: (3 1 1) ||
 Candidate Inferences:

Gmap #3: (DIODE SECONESDISPLAY) (*TRANSMIT_EFORCE_BRIDGE_DIODE

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)
(*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE
*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)

 (EFORCE SIGNAL) (PLUG DIV10) (BRIDGE BC10)
 (*TRANSMIT_EFORCE_PLUG_BRIDGE *TRANSMIT_SIGNAL_DIV10_BC10)

(*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE
*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10)
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE
*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT
_SIGNAL_BC10_SECONESDISPLAY)

(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE
*FUNCTION_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIG

 115

NAL_BC10_SECONESDISPLAY)
 Emaps: (DIODE SECONESDISPLAY) (EFORCE SIGNAL) (PLUG DIV10) (BRIDGE

BC10)
 Weight: 9.0078
 || # MH's: 10 || # Emaps: 4 || Max/Ave Order: 4/1.30 || Predicate Orders: (4 2 2 1 1) ||
 Candidate Inferences: { }

A.4 Computational Experiment Raw Data

This appendix contains raw data and summary statistics of the data used in the

computational experiment for both the high and low detail datasets

High complexity data: (note: our SME implementation was not able to compute

matches involving the high detail version of the BOTH representation for the

digitalgear. Any affected data is be marked as N/A.)

num gmaps average stdev
95% confidence interval for
average

DC 1.238946 0.322368 0.969 to 1.508

EC 2.566369 0.755572 1.935 to 3.198

BOTH 1.988946 0.4136 1.606 to 2.371

average stdev

DC 0.043522 0.030191 0.018 to 0.069

EC 0.121214 0.039503 0.088 to 0.154

BOTH 0.127673 0.043779 0.087 to 0.168

average gmap weight

DC 0.55795 0.18524 0.403 to 0.713

EC 0.470516 0.128346 0.363 to 0.578

BOTH 0.396742 0.073461 0.329 to 0.465

max gmap
weight

DC 0.608569 0.203405 0.439 to 0.779

EC 0.646049 0.158451 0.514 to 0.779

BOTH 0.623298 0.149767 0.485 to 0.762

Summary statistics for high detail dataset

 DC EC BOTH

pendulumpower 1.142857 3.571429 1.809524

pendulumgear 1.214286 2.369048 1.97619

pendulumtimebase 1.380952 2.047619 1.916667

pendulumface 0.952381 2.619048 2.547619

digitalpower 1.959184 1.571429 1.583333

digitalgear 1.166667 3.733333 N/A

digitaltimebase 1.142857 2 1.541667

digitalface 0.952381 2.619048 2.547619

Average number of gmaps for high detail dataset

 116

 DC EC BOTH

pendulumpower 0.04886 0.113636 0.179519

pendulumgear 0.063792 0.083575 0.072573

pendulumtimebase 0.101703 0.165139 0.170464

pendulumface 0.01023 0.147524 0.105597

digitalpower 0.03669 0.125547 0.091527

digitalgear 0.028685 0.045594 N/A

digitaltimebase 0.048667 0.141171 0.168447

digitalface 0.009545 0.147524 0.105585

Average standard deviation of gmaps for high detail dataset

 DC EC BOTH

pendulumpower 0.769669 0.642602 0.488142

pendulumgear 0.414677 0.300454 0.265118

pendulumtimebase 0.696866 0.48652 0.456867

pendulumface 0.47522 0.550476 0.372195

digitalpower 0.602276 0.444174 0.384429

digitalgear 0.273718 0.269124 N/A

digitaltimebase 0.78779 0.520303 0.438291

digitalface 0.443385 0.550476 0.372151

Average of average gmap weight for high detail dataset

 DC EC BOTH

pendulumpower 0.829464 0.843419 0.841239

pendulumgear 0.477087 0.461967 0.418173

pendulumtimebase 0.809779 0.75296 0.733953

pendulumface 0.485384 0.720602 0.542862

digitalpower 0.647804 0.60006 0.54428

digitalgear 0.317759 0.371128 N/A

digitaltimebase 0.848406 0.69765 0.739781

digitalface 0.452868 0.720602 0.542797

Average highest gmap weight for high detail dataset

 117

Low detail dataset:

num gmaps average stdev

95%
confidence
interval for
average

DC 0.295238 0.061721 0.269 to 0.322

EC 0.942143 0.236014 0.840 to 1.044

BOTH 0.488306 0.099092 0.445 to 0.531

average stdev

DC 0 0 0.000 to 0

EC 0.179626 0.092046 0.140 to 0.219

BOTH 0.251235 0.071771 0.220 to 0.282

average gmap
weight

DC 0.690712 0.152631 0.625 to 0.757

EC 0.554337 0.156061 0.487 to 0.622

BOTH 0.438991 0.083243 0.403 to 0.475

max gmap weight

DC 0.690712 0.152631 0.625 to 0.757

EC 0.762853 0.1965 0.678 to 0.848

BOTH 0.708088 0.135355 0.650 to 0.767

Summary statistics for low detail dataset

 118

 DC EC BOTH

weightgear 0.333333333 1.116667 0.558333

weight 0.333333333 1.116667 0.558333

escapementgear 0.333333333 1.03 0.64375

inputgear 0.333333333 1.116667 0.558333

gear-release-lever 0.333333333 1.375 0.57

secondgear 0.2 0.615 0.41

minutegear 0.2 0.65 0.379167

secondhand 0.333333333 1.116667 0.558333

minutehand 0.333333333 1.116667 0.558333

plug 0.333333333 0.7 0.366667

bridge 0.333333333 1.116667 0.558333

diode 0.333333333 0.816667 0.425

tbdiv10 0.333333333 0.783333 0.408333

tbdiv6 0.333333333 1.116667 0.558333

switch 0.333333333 1.116667 0.558333

div10 0.2 0.705 0.47

div6 0.2 0.583333 0.318182

bc10 0.2 0.68 0.34

bc6 0.2 0.68 0.34

secOnesDisplay 0.333333333 1.116667 0.558333

secTensDisplay 0.333333333 1.116667 0.558333

Average number of gmaps for low detail dataset

 119

 DC EC BOTH

weightgear 0 0.260253 0.340156

weight 0 0.248352 0.337913

escapementgear 0 0.168742 0.247488

inputgear 0 0.248352 0.337913

gear-release-lever 0 0.001442 0.114336

secondgear 0 0.104799 0.16616

minutegear 0 0.153257 0.211404

secondhand 0 0.260253 0.252031

minutehand 0 0.260253 0.252031

plug 0 0.001088 0.209258

bridge 0 0.248352 0.337913

diode 0 0.035495 0.12888

tbdiv10 0 0.073081 0.24799

tbdiv6 0 0.248352 0.337913

switch 0 0.260253 0.340156

div10 0 0.091467 0.141004

div6 0 0.172643 0.23946

bc10 0 0.207607 0.267592

bc6 0 0.207607 0.267592

secOnesDisplay 0 0.260253 0.249374

secTensDisplay 0 0.260253 0.249374

Average standard deviation for low detail dataset

 120

 DC EC BOTH

weightgear 0.828887 0.613551 0.496739

weight 0.850575 0.643483 0.518353

escapementgear 0.850575 0.460551 0.430025

inputgear 0.850575 0.643483 0.518353

gear-release-lever 0.462254 1.024629 0.58609

secondgear 0.668185 0.285384 0.266148

minutegear 0.668185 0.466286 0.401762

secondhand 0.500347 0.613551 0.441198

minutehand 0.500347 0.613551 0.441198

plug 0.850575 0.494745 0.477985

bridge 0.850575 0.643483 0.518353

diode 0.565652 0.513579 0.400072

tbdiv10 0.828887 0.503121 0.476417

tbdiv6 0.850575 0.643483 0.518353

switch 0.828887 0.613551 0.496739

div10 0.63043 0.260022 0.256575

div6 0.668185 0.417643 0.346935

bc10 0.668185 0.479936 0.377618

bc6 0.668185 0.479936 0.377618

secOnesDisplay 0.457441 0.613551 0.436143

secTensDisplay 0.457441 0.613551 0.436143

Average of average gmap weight for low detail dataset

 121

 DC EC BOTH

weightgear 0.828887 0.914068 0.868377

weight 0.850575 0.930248 0.888321

escapementgear 0.850575 0.662219 0.706636

inputgear 0.850575 0.930248 0.888321

gear-release-lever 0.462254 1.025675 0.673262

secondgear 0.668185 0.422692 0.47807

minutegear 0.668185 0.661599 0.639624

secondhand 0.500347 0.914068 0.721154

minutehand 0.500347 0.914068 0.721154

plug 0.850575 0.495539 0.627994

bridge 0.850575 0.930248 0.888321

diode 0.565652 0.551911 0.517006

tbdiv10 0.828887 0.55977 0.669162

tbdiv6 0.850575 0.930248 0.888321

switch 0.828887 0.914068 0.868377

div10 0.63043 0.396804 0.443412

div6 0.668185 0.61758 0.615852

bc10 0.668185 0.710366 0.670076

bc6 0.668185 0.710366 0.670076

secOnesDisplay 0.457441 0.914068 0.713164

secTensDisplay 0.457441 0.914068 0.713164

Average highest gmap weight for low detail dataset

Appendix Appendix Appendix Appendix B Clock Figures For HumaB Clock Figures For HumaB Clock Figures For HumaB Clock Figures For Human Experimentn Experimentn Experimentn Experiment

This appendix shows the schematics for the digital and pendulum clocks that the

respondents used during the human experiment. These diagrams are color coded in

order to show which clock subcomponents are part of which clock components. For

example, in the digital clock schematic, tbdiv10 and tbdiv6 are both in the green box

which is marked “timebase.” This shows that the two clock subcomponents, tbdiv10

and tbdiv6, are part of the timebase clock component.

 122

B.1 Digitial Clock Schematic

 123

B.2 Pendulum Clock

Appendix CAppendix CAppendix CAppendix C Questionnaire Questionnaire Questionnaire Questionnaire

This appendix shows the questionnaire used during the human experiment. It also

shows the raw data collected during the experiment.

C.1 Questionnaire

Name: _________

Date: _________

 124

Instructions:

• I'd like you to evaluate the responses that the computer gave when evaluating

the same devices you just did.

• In particular, these questions are asking you to evaluate the novelty of the

matches and the reasons behind the matches.

• Each of the 8 questions has output from SME. There are 3 boxes for similar

devices, flows, and behaviors.

• Mark how novel you think it is on a scale of low, medium, and high

• Novelty means how original the match is. If the match is something you would

have never thought of yourself, it has high novelty, but if the match is obvious,

then it has low novelty.

• Do NOT evaluate the correctness of the match. The correctness of the match

does not make it any more or less novel.

1. digital timebase :: pendulum face

___low ___medium ___high

Devices similar:

div10 human

tbdiv10 minutegear

tbdiv6 minutehand

Flows similar:

electric signal visual signal

electric signal torque

Behaviors similar:

Transmit signal from tbdiv6 to div10 transmit visual signal from minutehand to

human

 125

Transmit signal from tbdiv10 to tbdiv6 transmit torque from minutegear to

minute hand

 126

2. digital timebase :: pendulum face

___low ___medium ___high

Devices similar:

div10 Secondhand

tbdiv6 Secondgear

Flows similar:

electric signal torque

Behaviors similar:

Transmit signal from tbdiv6 to div10 Transmit torque from secondgear to

secondhand

3. digital timebase :: pendulum face

___low ___medium ___high

Devices similar:

tbdiv10 minutehand

tbdiv6 secondhand

Flows similar:

electric signal torque

electric force torque

Behaviors similar:

import electric force tbdiv10 import torque minutehand

import signal tbdiv6 import torque secondhand

 127

4. pendulumgear :: digitaltimebase

___low ___medium ___high

Devices similar:

gear-release-lever tbdiv10

secondgear tbdiv6

Flows similar:

torque electric signal

force electric force

Behaviors similar:

import force to gear-release-lever import electric force tbdiv10

export torque from secondgear export signal tbdiv6

import torque to secondgear import signal to tbdiv6

 128

5. pendulumgear :: digitaltimebase

___low ___medium ___high

Devices similar:

minutegear tbdiv10

secondgear tbdiv6

Flows similar:

torque electric signal

torque electric force

Behaviors similar:

export torque from minutegear export signal tbdiv10

import torque to minutegear import electric force tbdiv10

export torque from secondgear export signal tbdiv6

import signal to secondgear import electric force tbdiv6

 129

6. pendulum gear :: digital timebase

___low ___medium ___high

Devices similar:

Secondgear tbdiv6

Minutegear div10

Inputgear tbdiv10

Flows similar:

torque electric signal

Behaviors similar:

transmit torque from secondgear to

minutegear

tbdiv6 transmit signal tbdiv6 to div10

transmit torque from inputgear to

secondgear

transmit signal from tbdiv10 to tbdiv6

 130

7. pendulum power provider :: digital timebase

___low ___medium ___high

Devices similar:

weightgear tbdiv6

weight tbdiv10

Flows similar:

force electric force

torque electric signal

force electric signal

Behaviors similar:

export force from weight export signal from tbdiv10

import force weight import electric force tbdiv10

export torque weight gear export signal tbdiv6

import force weightgear import signal tbdiv6

 131

8. pendulum power provider :: digital timebase

___low __medium ___high

Devices similar:

escapementgear div10

weightgear tbdiv6

weight tbdiv10

Flows similar:

torque electric signal

force electric signal

Behaviors similar:

transmit torque from weightgear to

escapementgear

transmit signal from tbdiv6 to div10

transmit force weight to weightgear transmit signal from tbdiv10 to tbdiv6

 132

C.2 Questionnaire Raw Data

This tables below show the responses for each of the respondents on the

questionnaire.

question # respondent1 respondent2 respondent3 respondent4 respondent5

1 medium medium medium medium high

2 low high low low low

3 medium medium low medium medium

4 medium high high medium medium

5 medium low medium low low

6 low high medium high low

7 low low high medium high

8 low medium medium high medium

question # respondent6 respondent7 respondent8 respondent9 respondent10

1 medium medium low medium medium

2 low low low low high

3 medium high low high low

4 high high low medium high

5 low medium low medium low

6 low medium low medium medium

7 low high low high high

8 high medium low high high

 133

Appendix DAppendix DAppendix DAppendix D Repertory Grid Repertory Grid Repertory Grid Repertory Grid

Appendix D.1 Repertory Grid Data

This appendix shows the graphical representation for all the repertory grids collected

during the human experiment. Each figure corresponds to a particular respondent

number.

Repertory grid for respondent #1

Repertory grid for respondent #2

 134

Repertory grid for respondent #3

Repertory grid for respondent #4

 135

Repertory grid for respondent #5

Repertory grid for respondent #6

Repertory grid for respondent #7

 136

Repertory grid for respondent #8

Repertory grid for respondent #9

 137

Repertory grid for respondent #10

 138

Appendix D.2 Repertory Grid Construct Categories

This appendix includes all the respondent constructs grouped into themes and then

characterized as DC, EC, or neither. The constructs are in table format, where the cells

correspond to the construct’s respondent #, left and right poles, and DC, EC, or

neither characterization.

DC categories

theme: appearance

description: refers to how the device looks.

constructs:

7 round shape stick shape appearance DC

theme: complexity

description: refers to the simplicity, complexity, or consistency of the device.

7 most consistent least consistent complexity DC

7 more complicated less complicated complexity DC

10 simple machines not simple machine complexity DC

theme: has feature

description: describes a feature that the device has like "rotating parts" or "dividers".

It is DC because it is referring to something about the device and not referring to how

the device is interacting with the environment.

1 does not involve electronic dividers involve electronic dividers has feature DC

5 have rotating parts no moving parts has feature DC

5 doesn't have conversion device both have conversion device has feature DC

5 have divider doesn't have divider has feature DC

10 involve divisors doesn't involve divisors has feature DC

EC categories

theme: conditions of environment

description: refers to something in the environment that is required like human input

or gravity.

1 deals with lower frequencies deals with higher frequencies conditions of environment EC

3 doesn't need human input needs human input conditions of environment EC

7 fraction of energy constant energy conditions of environment EC

 139

9 based on gravity based on electricity conditions of environment EC

theme: function of clock

description: refers to how the device relates to the functioning of the overall clock.

6 represent time not representing time function of clock EC

10 responsible for setting time not responsible for setting time function of clock EC

theme: internal versus external

description: refers to how the device is embedded in the clock. It has an implied

description of the environment it is in.

1 connected to an external powersource internal in/ex EC

8 internal mechanism has some gui in/ex EC

theme: sequence

description: refers to the device being part of a process.

6 middle of the process at beginning or end of the process sequence EC

9 result source sequence EC

theme: structural significance

description: refers to how the device is positioned within the clock.

2 both part of the gear the powersource structural significance EC

4 close to the face close to the power provider structural significance EC

theme: used in other applications

description: refers to how the device may be used in other environments.

2 necessary and static components can be different used in other applications EC

theme: visible

description: refers to whether or not the device is visible. Since a device can only be

visible if it is in an environment, these constructs are marked as EC.

1 something you look at outside inside the clock visible EC

3 invisible visible visible EC

4 things you can see things you can't see visible EC

4 parts you get to see parts your don't always get to see visible EC

10 non-visible visible visible EC

Mixed categories

 140

theme: flow change

description: refers to how an input flow changes into another flow. The construct is

DC if the flow change is about input and output. It is EC if the flow change is related

to how the resulting flow will be used.

4
take a fast signal and turn it into a slow
signal provides power flow change DC

5
converting main oscillator source into
some kind of time representation providing power flow change EC

6 convert 1 second period to the time
converts the frequency
to one second flow change EC

theme: named function

description: a one or two word way of naming the function. Some constructs were EC

if they referred to how the device functioned with the other devices in the clock. Some

were DC if they only referred to an aspect of the device and not to any role or external

thing. For example "connecting vs. essential parts" is EC but "display vs. mechanical"

is DC. Also, this category includes one construct that is neither because it is very

generic.

2 static and necessary components varied powersource named function EC

2 escapement gear signal gear(really weightgear) named function DC

2 display mechanical named function DC

3 gears powersource named function DC

3 parts of the interface powersource named function EC

3 connecting essential parts named function EC

4 does not do power management does power management named function EC

7 same function different function named function neither

theme: unnamed flow

description: refers to a function, but not what kind of flow it operates on. The

construct is DC if it just describes the process that the device is doing like "involves

conversion". It is EC if the construct is about how the device is affecting the overall

function of the clock like "driving force."

9 turns one thing into something else inhibits something unnamed flow DC

5 doesn't involve conversion involves conversion unnamed flow DC

8 they divide no division unnamed flow DC

8 mechanism provides power unnamed flow EC

9 interference natural unnamed flow EC

9 specific division driving force unnamed flow EC

 141

theme: what it does to a flow

description: refers to performing an operation on a flow. The construct is EC if it

refers to something external or more than one device. It is DC if it does not mention

how it effects the environment.

5 display converter no display conversion what it does to a flow EC

6 process the signal signal source what it does to a flow EC

6 not on its own creating the frequency supplies the frequency what it does to a flow EC

7 signal modifiers constant signal what it does to a flow DC

9 manipulate the voltage raw source of power what it does to a flow DC

10 drive the face
doesn't immediately drive
the face what it does to a flow EC

Neither categories

theme: not about the clocks.

description: refers to the way the information about clocks was presented.

8
in a different picture far away from the
other one in the same picture unclassified neither

8 two words three words unclassified neither

theme: pendulum vs. digital

description: refers to the difference between being part of the pendulum clock vs.

being part of the digital clock.

1 both geared electric pendulum vs. digital neither

1 mechanical electrical pendulum vs. digital neither

2 part of the pendulum part of digital pendulum vs. digital neither

3 digital pendulum pendulum vs. digital neither

4 mechanical electrical pendulum vs. digital neither

6 part of the pendulum clock part of the digital clock pendulum vs. digital neither

8 digital pendulum pendulum vs. digital neither

10 not digital digital pendulum vs. digital neither

