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AbstractAbstractAbstractAbstract    

Design is hard and needs to be supported by software. One of the ways software can 

support designers is by providing analogical reasoning. To make analogical reasoning 

work well, the software makers need to know how to create a knowledge 

representation that will facilitate the kind of analogies that the designers want. This 

thesis will inform software makers by experimenting with two kinds of knowledge 

representations, called device-centric (DC) and environment-centric (EC), and to try 

to determine the relative benefits of using either one of them for analogical matching. 

We performed computational experiments, using Structure Mapping Engine for 

matching, to determine the quantity and quality of analogical matches that are 

produced when the representation is varied. We conducted a limited human 

experiment, using questionnaires and repertory grids, to determine if any of the 

computational results were novel, and to determine if the human similarity ratings 

between devices correlated with the computer results. We show that design software 

should use DC representations to produce a few focused matches which have high 

average weight. It should use EC representations to produce many matches some of 

high weight and some of low weight. Based on our human experiment, design 

software can use either DC or EC representations to produce novel matches. Our 

experiments also show that human matches correlate most strongly with a combined 

DC and EC representation and that their similarity reasons are more EC than DC. This 

suggests that designers tend to think more in EC terms than in DC terms. 
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1. Introduction1. Introduction1. Introduction1. Introduction    

Designing something is challenging, so providing computational help is important. 

Software systems can help the designer, or might replace the designer in some 

situations [Brown, 1992]. Functional reasoning is especially critical for innovative and 

creative design. Analogical reasoning can be used to support this kind of reasoning. 

However, in order for analogical reasoning to be useful, we have to describe devices 

in some way using a knowledge representation. This thesis is interested in quantifying 

what kind of analogical matches an analogical reasoning algorithm produces when the 

knowledge representation is varied. The results can be used to improve the reasoning 

capabilities of design software. 

 This thesis experiments with two different knowledge representations: both based 

on the Structure-Behavior-Function model for describing devices [Chandrasekaran 

and Josephson, 2000]. That work describes two different ways to represent the 

function of devices, Device-Centric (DC) and Environment-Centric (EC). Each may 

create different effects that may be advantageous for the designer. For example, EC 

may give the designer more “freedom.” Also, the designer may decide to switch 

between EC and DC representation at some point during the design process in order to 

gain an advantage. [Chandrasekaran and Josephson, 2000]. Even though these ideas 

could be useful for determining when a designer should use each representation, there 

appears to be no research showing what the effects are of using DC verses EC 

representations of function.  

According to Chandrasekaran & Josephson the difference between a DC and an EC 

representation of a device is whether or not the environment is included [2000]. For 

example, a DC representation of a pen’s function might be “releases ink into the 

world” while an EC representation might be, “pen transfers ink to paper.” 

This thesis experiments with using both kinds of knowledge representations for 

analogical reasoning. Analogical reasoning involves expressing what the current 

situation is, looking for past situations that might apply (matching), and finally 

applying them to the current situation (transfer). A full study would require a system 

that performs all the steps in analogical reasoning, but for this thesis we take the first 



 

 7 

step and focus only on the matching phase. We use an algorithm called SME 

[Falkenhainer et al., 1989]. SME was chosen because it is well tested in much 

research, it is claimed to have psychological backing, the software is available, and 

because it is suited for the problem. 

Using SME we can take a pair of devices represented with a particular knowledge 

representation and produce a list of possible matches between them with associated 

weights. We measure the quantity and quality of the matches in order to measure the 

effect of DC versus EC representations. 

We are also interested in computational support for creativity [Boden, 1994]. 

Analogy is often cited as a key ingredient of creativity [Goel, 1997] [Gentner et al., 

2001]. As it is possible that our analogical reasoning could produce creative results, 

our experiment will attempt to determine whether novel matches are produced: i.e., 

whether DC vs. EC representations might have any effect on novelty, a key aspect of 

creativity [Besemer and Treffinger, 1982]. We consult a group of humans to get their 

judgment on the novelty of analogical matches produced by SME. 

We have performed a set of experiments that that indicate where the results are 

coming from: i.e., the credit assignment problem. The issue is whether DC vs. EC 

representations, or the representation used (level of detail; ontology) should be given 

credit [Kitamura et al., 2004]. 

We show through experimentation with SME that EC produces more matches than 

DC, DC produces higher quality matches than EC on average, and a combined 

representation produces comparatively fewer matches and more lower quality matches 

than EC alone. These results are true even when the level of detail in the 

representations are varied. 

 In addition, from limited experiments with humans we show that they tend to rate 

low weighted matches as being more novel than high weighted matches and rate DC 

matches as being more novel than EC matches. Our human experiments also show 

that human matches correlate most strongly with a combined DC and EC 

representation and that their similarity reasons are more DC than EC. 
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1.11.11.11.1 Problem Statement Problem Statement Problem Statement Problem Statement    

The goal of this thesis is to compare the DC and EC knowledge representations by 

comparing the results obtained from an analogical reasoning when using DC, EC, or 

combined DC and EC knowledge representations. We call this combined 

representation BOTH. Specifically, this thesis answers several questions, which are 

listed below. Our hypotheses are listed in italics after each question. 

1. Which representation produces more matches? 

EC representations will produce more matches than DC representations. The 

BOTH representations will produce the most matches. 

2. Which representation produces higher weighted matches? 

 EC matches will be of lower weight than matches made using representations  

 that are DC. BOTH matches will have the highest weights. 

3. Will DC or EC representations produce more novel matches? 

 EC representations will produce more novel matches than DC representations. 

4. When the level of detail is varied, are the results from questions 1, 2, and 3 still 

true? 

 Yes, the results are not sensitive to the level of detail. 

5. How much do matches from each representation correlate with human 

matches? 

 Human matches will correlate best with matches from EC representations. 

6. Are human reasons for similarity more DC or EC? 

 The humans’ reasons will be more EC than DC. 

1.2 1.2 1.2 1.2 DocumentDocumentDocumentDocument Organization Organization Organization Organization    

The rest of this document describes the work done in this thesis and the results that 

were obtained. Section 2 describes the literature that is relevant. It covers functional 

representation, analogy, repertory grids, and creativity. Sections 3 and 4 describe how 

we set up the experiments, with section 3 focusing on the knowledge representation 

and section 4 focusing on what was needed to execute the experiment, which included 

test examples, details about using SME, and a test harness. Sections 5 and 6 discuss 
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the computation and human experiments and results. Section 7 covers an evaluation 

and summary of the results with respect to the original hypotheses. Finally, section 8 

makes some conclusions from these results, and discusses future work.  
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2. Relevant Litera2. Relevant Litera2. Relevant Litera2. Relevant Literatureturetureture    

This thesis investigates how changing the representation of the function of devices 

affects the output from an analogy-making system. It also evaluates the creativity of 

the output from the analogy making system. Thus, this thesis draws on four main 

research areas: functional representation, analogy, repertory grids, and creativity.

 Section 2.1 describes functional representations that model devices and the 

function of those devices. That research is used to influence the representation of 

function used in this thesis. Section 2.2 describes what analogy is and some systems 

that can perform analogy. In particular, section 2.2.2 describes the particular analogy 

making algorithm called Structure Mapping Engine (SME), that this thesis uses for 

experimentation. Section 2.3 describes repertory grids, which is the technique this 

thesis uses to elicit similarity information from its human respondents. Finally, section 

2.4 describes creativity. Information about creativity is important for understanding 

how to evaluate the creativity of the results produced by the analogy making system. 

2.1 2.1 2.1 2.1 Functional RepresentationFunctional RepresentationFunctional RepresentationFunctional Representation    

There has been much research on how to represent devices for the purposes of 

reasoning about their function. An important part of the representations described in 

this research is representing the structure, behavior, and function of devices. Different 

researchers also describe various ways to represent how the device interacts with the 

environment and with humans. 

 Chandrasekaran and Josephson describe a basic ontology for structure, behavior, 

and function, but also make the distinction between functions that are environment-

centric vs. device-centric [2000]. Section 2.1.1 goes into detail about their ideas 

because they are used heavily in this thesis. Section 2.1.2 describes a way to separate a 

device’s external environment from its outer environment, thus making the distinction 

between the elements in the environment which are not important to the device and 

the ones that are. Section 2.1.3 describes the difference between a device’s techno-

physical environment in which the device has structure, behaviors, and functions that 

may or may not be a part of the human’s view and the socio-cultural environment 

where the designer selects structure, behaviors, and functions of the device which 
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serve a purpose. Section 2.1.4 describes some issues researchers have faced when 

working with functional representations. 

 A related set of research is called functional modeling. Functional modeling 

attempts to describe a set of terms that form a common design language. Section 2.1.5 

describes one such set of terms. Section 2.1.6 describes how the functional modeling 

research can be used in conjunction with the functional reasoning research described 

in sections 2.1.1 to 2.1.4. 

2.1.1 Functional Ontology 

Chandrasekaran and Josephson present a simple ontology for describing devices 

[2000]. They use this ontology to define the structure, behaviors, and functions of 

devices. An example of a device represented using the ontology is given in the pen 

example from figure 2.1. It will be used throughout this section to illustrate how the 

ontology works. Chandrasekaran and Josephson also explain the how functions can be 

represented as device-centric (DC) or environment-centric (EC) and how 

representations might be used by designers.  

 

Figure 2.1: This is a representation of a pen. It includes structural elements, state variables, a causal 

relation, a mode of deployment, an EC function, and a DC function. Two causal generic causal 

interactions are also given.  

Device: Pen 
Structural element 1: tip 
Structural element 2: ink container 
Structural relation:  tip is at the end of the container 
State variable 1:  force on tip 
State variable 2:  orientation 
State variable 3:  location 
State variable 4:  ink 
Causal relation 1:  If the orientation is tip pointing down, the pen contacts a 
  surface, and force is applied to the tip, ink flows out of the tip.  
Mode of deployment: human orients the pen down, makes the pen contact the  
  paper, and applies force to tip 
EC function:   to cause a piece of paper to have ink on it  
DC function:   to cause ink to flow out of the tip if the orientation is tip pointing  
  down and force is applied to tip 
Causal interaction 1: apply force from object X to object Y 
Causal interaction 2: orient object X 
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2.1.1.1 Ontology for Devices 

A description of a device consists of its structure, behaviors, and functions. These 

concepts can be expressed using a simple ontology that consists of state variables, 

causal relations, and actions. 

 State variables describe the current properties of the device that can change. They 

can be any kind of value: discrete, logical, qualitative, etc. In the pen example, the pen 

has several state variables such as ink and orientation. 

 Causal relations describe how changes in one variable affect another.  They can 

describe how the variables in one device relate, or they can describe how variables 

between different devices relate. If two devices are involved, the causal relation is 

called a causal interaction. Either kind of relation could exist in many forms. Three 

possible kinds of relations are simple formulas, complex algorithms, and logical 

expressions. In the pen example, the causal relation is a logical if-then expression, but 

it could also be expressed as a formula which decreases the amount of ink in the 

container at a certain rate. 

 Actions are needed to allow for reasoning about devices acting on other devices. 

Actions are instantiations of causal relations and causal interactions. For example, 

when a human uses a pen, he creates an instantiation of causal interaction 1, expressed 

as “apply force from pen to paper.” This causal interaction describes how the pen 

interacts with the paper. 

 

Views: Since the complete representation of a device is not always necessary and 

could be distracting, portions of a device representation can be represented in different 

levels of detail. Each of these variations on the representation of the device is called a 

view. Also, depending on the purpose of the representation and function of the device, 

a particular view might be more applicable. 

 One way to construct different views of a device is to split up the device into 

several components or to consider several components as the same device. In the pen 

example, the pen could be split up into two individual components, tip and ink 

container, and causal interactions could specify how they work together. However, the 
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view in the pen example combines the tip and the ink together so that the pen can be 

conveniently reasoned about as a whole.  

 If the function of the pen is something other than writing, then the pen might be 

represented in a different view. For example, if the pen is being used as a paper 

weight, there is no reason to represent the pen's ink container. The ink container 

would be left out and an additional state variable would be added to represent its 

weight. 

 A view could also be an abstraction of another view. These abstracted views may 

be useful for comparisons. For example, it may be difficult to directly compare a pen 

to a water bottle. However, if the pen is abstracted to be an ink container and the 

water bottle is abstracted to be a water container, it might be easier to find similarities 

between the pen and the water bottle since they are both containers of something. 

Also, abstracted views contain a mapping between the original view and the 

abstracted view. Thus, any information discovered between abstracted views could 

potentially be applied to the original view. 

 It is up to the designer to decide which view of the device is appropriate. If a 

device is too complicated, the designer might split up the device into sub devices. If a 

device is being used in two different ways, there may be two different views of the 

device. Finally, the designer might chose to abstract away certain aspects of the device 

for making comparisons with other devices. 

 

Structure, Behavior, Function, and Needs: The simple ontology defined previously 

can be used to define a device’s structure, behavior and function.  

 Structure is represented as state variables that have fixed values. Any structural 

relationships are represented as causal relations that do not change. While other causal 

relations may be active or inactive based on which actions have been performed, 

structural relations always remain stable. For modeling these, the pen example 

identifies two state variables as "structural elements" and one causal relation as a 

"structural relation."  

 The behavior of a device describes what a device does. However, there are several 

ways to express a device’s behavior. A behavior can be the values of one or more state 
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variables at a particular instant, or the values of one or more state variables as they 

change over time. In the pen example a behavior might be “the ink container has 1 

milliliter of ink” or “the ink in the ink container decreases.” Another way to describe 

behavior is to describe the behavior of something as the state of only the "output" 

variables, such as "the ink is decreasing" and not mention other variables in the 

device. In any case, the point of a behavior description is to describe what a device 

can do. The choice to use one behavioral description type over another depends on the 

context of the engineering conversation taking place. 

 A device's behavior is closely related to its function. The difference between a 

behavior and a device’s main function is that the function is intended by the designer. 

Section 2.1.1.2 covers functions in more detail. 

 Having an intended function implies that the designer has a purpose in mind for the 

device and the reason why the designer has this purpose is to satisfy a need. Behaviors 

become intended and hence a function because they serve a purpose. Also, functions 

ultimately exist to satisfy some need. For example, the designer of the pen could have 

a need, "to write my name," and the designer could assign the pen the purpose, “to 

write.” Any behaviors that support the pen in performing this purpose would be 

considered the pen’s function. The designer is satisfied because pen’s function 

satisfies the need, “to write my name.” 

 Sometimes needs are not specified in enough detail to allow a specific function to 

be described. For example, there is nothing in the pen representation about writing, so 

how does the representation able satisfy the need of writing? The answer is there is a 

translation step required to transform a designer's needs into a device's function. 

 When describing the device, Chandrasekaran and Josephson suggest a heuristic, 

which states that in the definition of the device’s function all translations from the 

need to the function are left out except the one that most closely describes the device’s 

function [2000]. The need "to write my name" might be translated into sub-needs such 

as needing ink on paper and then needing something that releases ink into the world. 

The function of the device is not said to be "writing." It is said to be "releasing ink." It 

is also possible that a designer's need, if it is specific enough, might be identical to its 

function. In this case no translation is required. This process is how a designer's needs 
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eventually get expressed in terms of function. 

2.1.1.2 Environment and Device Centric Representations of Function 

Functions can be described as environment centric (EC) or as device centric (DC). 

The notation that this section uses is summarized in table 2.1. 

Notation Description 

F a set of behavioral constraints 

D a device 

W the world or environment 

Fw an EC function 

Fd a DC function 

M(D,W) mode of deployment 

Table 2.1: Functional notation 

 

EC Representations of Function: EC representations of function describe the function 

in terms of the device’s effect on the environment. In other words, an EC 

representation of function describes a device D which causes a set of behavioral 

constraints F to be satisfied in some world W causing an EC function Fw to occur. 

 The F for a Fw contains references to parts of W, but has no references to any parts 

of the device. In the pen example, the Fw is "to cause a piece of paper to have ink on 

it,” F is "the paper has ink on it," and W contains a human, a pen, and paper. The Fw 

does not make any commitments about which device is performing the function. It 

only mentions how part of W must be modified in order to satisfy F. Thus, the Fw in 

the pen example mentions the paper, which is part of W, but not anything about the 

pen. 

 A mode of deployment, written as M(D,W), is a set of instantiated causal 

interactions that specify how D is embedded in W. A M(D,W) can be important to 

determining if a Fw is occurring because the causal interactions they instantiate could 

cause F to be satisfied.  

 There are different kinds of modes of deployment. One kind specifies the structural 

relationship between D and entities in W. In the pen example, specifying that the 

human "makes the pen contact the paper" is an example of this. Another kind of mode 

of deployment is a sequence of actions. A sequence of actions can be a mode of 
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deployment because it produces a series of relationships between the D and entities in 

W. The M(D,W) from the pen example is an example of this because it is made up of 

a series of three actions.  

 When a device is used with different modes of deployment, different effects may 

result, causing different Fw to occur. Using the M(D,W) specified in the pen example, 

the pen is causing the EC function “to cause a piece of paper to have ink on it” to 

occur. However, if the M(D,W) is "thrust the tip of the pen through the paper," the 

pen would perform the new function of hole punching instead. Thus, by changing the 

M(D,W), a device can potentially perform a different function. Having devices that 

can perform several functions can be desirable because such devices can reduce the 

number of components necessary in a design. 

 

DC Representations of Function: In contrast to EC functions, DC functions, notated 

as Fd, do not mention their effect on the environment. The DC function has the 

assumption that desirable effects on the environment will occur so long as Fd occurs. 

 The F that causes Fd to occur are specified in device-centric terms. This means that 

the behavioral constraints in F only specify values for variables within the device or 

causal relations within the device. For example, the pen has a Fd of "to cause ink to 

flow out of the tip if the orientation is tip pointing down and force is applied to the 

tip." The F contains the constraints "the orientation is tip pointing down" and "force is 

applied to the tip." These are DC because they mention orientation and tip which are 

both part of D and not W. Note that the F does not mention how or what is causing the 

orientation to be tip pointing down or force to be applied to the tip. Presumably there 

is some M(D,W) that is causing it to occur, but for an Fd that M(D,W) is assumed.  

2.1.1.3 Relationship Between EC and DC Device Representations 

The matter of representing a device as EC or DC is a matter of convenience for the 

designer. One of the advantages of an EC representation is that more than one device 

could be used to perform the same function. This is because EC representations can be 

written without mentioning a specific device. For example, using the EC function 

from the pen example, a water bottle filled with ink could perform the same function 

as the pen. This shows that with EC representations, the designer has more freedom to 



 

 17 

explore different possibilities. In contrast, DC representations are more limiting 

because the descriptions contain some assumptions about how it will interact with the 

environment. For example, because the DC function from the pen example states 

“force is applied to the tip” the water bottle could not perform the same DC function 

as the pen. 

 Depending on what the description is used for, an EC or DC representation might 

be more favorable. For example, at one point in the design process it may be useful 

for the designer to imagine what kinds of surfaces the pen might write on. For this, an 

EC representation might be more appropriate. However, for the designer who is 

interested in manufacturing the pen, reasoning about the surfaces external to the pen 

might be distracting. The designer has adequate information to manufacture the pen as 

long as the design states that the pen will function if ink is released from the tip. In 

this case, the designer might prefer a DC representation. 

2.1.2 Interactions Between Devices and their External Environments 

Prabhakar and Goel provide an alternate set of definitions relating to how to represent 

a device and its interactions with the environment [1996a][1996b].  They characterize 

devices that interact with the environment as low, medium, and high interaction 

devices (LID, MID, HID).  

 LIDs have a small amount of interaction with the environment that consists of a 

series of discrete events. Examples of LIDs include simple electronic circuits, heat 

exchangers, and inertia controllers.  

 HIDs have a high amount of interactivity with the environment. Therefore, a model 

of such a device needs to include a detailed model of both the device and the 

environment. An example of a HID is an air plane, which relies heavily on the action-

reaction cycle between the plane and the air around it.  

 In between the two extremes are the MIDs. These devices rely on the interaction 

between the device and its environment, but the interactions are more limited than the 

HIDs. For example, an air conditioner continuously removes heat from air around it. 

This is a mode of interacting with the environment that is similar to what a LID would 

have. However, the description does not completely describe the functioning of the 

device because the amount of heat that has to get removed depends on the 
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characteristics of the environment such as the size of the room and number of items in 

it. Thus, to describe how the MID functions the description needs to include 

information about the device and the environment. 

 The environment in which the MID operates can be characterized as having two 

parts, called the external environment and the outer environment. The external 

environment is the physical environment outside the device. For a refrigerator, it 

includes the enclosure of the refrigerator as well as items outside the enclosure. The 

outer environment for a device is the elements in the external environment that play a 

role in the functioning of the device. There may be elements in the external 

environment that play no role in the functioning of the device. For the refrigerator, the 

outer environment is the food items in the refrigerator. 

 The difference between the external and internal environments is the kind of 

variables involved. The internal environment is characterized with endogenous 

variables such as the compression ratio of the refrigerator. The external environment 

is characterized by variables exogenous to the device such as the number of food 

items in the enclosure. 

 Any kind of device has an internal environment. The internal environment is 

particularly important for LIDs. In the internal environment, the structure the device 

allows it to have internal behaviors. The internal behaviors create certain output 

behaviors which are an abstracted form of the internal behaviors. A subset of the 

output behaviors can be considered the function of the device. 

 For MIDs it is important to describe the outer environment in addition to the inner 

environment. Like the inner environment, the outer environment has certain 

behaviors. Some of these are abstracted to be output behaviors. A subset of those 

output behaviors become behavior abstractions for the outer environment of the 

device. The inner and outer behavioral abstractions interact. A subset of those 

interactions become the functions of the MID. 

 One important distinction to make between the behaviors of the inner and outer 

environments is that the inner environment has intentional behavioral abstractions 

while the outer environment does not. The outer environment only comes into 

existence when part of the external environment is needed to support a behavioral 
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abstraction from the inner environment. This is why, for example, the outer 

environment for the refrigerator only contains the items in the food enclosure and not 

other parts of the external environment such as the shelves in the refrigerator. Since 

the shelves are not necessary to describe any of the inner environment behavioral 

abstractions of the refrigerator, they are not included in the description of the outer 

environment. In contrast, an inner environment behavioral abstraction, such as 

“remove heat from cooling liquid,” exists because the designer intended it to exist. 

Thus, the outer environment is defined based on what the internal behavioral 

abstractions require. 

2.1.3 Purpose and Function in Design from the Socio-Cultural to the Techno-Physical 

Rosenman and Gero describe a design process that follows the following sequence:  

Pr � Fr � Br � S � Ba � Fa,{Ba,Fa,Pa} � {Br,Fr,Pr} 

Figure 2.2: P is purpose, F is function, B is behavior, S is Structure. "r" subscript means “ required”, 

"a" subscript means “actual.” The symbol “�” is a convert step, and the” �” symbol is a compare 

step [Vermaas, 2002]. 

 The first two steps (Pr � Fr, and Fr � Br) are called problem formulation and 

involve the processes of translating required purposes into required functions and 

required functions into required behaviors. Behaviors are then converted to structure. 

Once the structure exists, the actual device has to be analyzed such that “Structure 

exhibits Behavior effects Function enables Purpose.” Finally, the behavior, function, 

and purpose of the actual device are compared with the required behavior, function, 

and purpose. If there is a discrepancy, the design process begins again with a 

reformulation. 

 Rosenman and Gero distinguish which of these processes occur in the socio-

cultural and techno-physical environments [Rosenman and Gero 1998]. In the socio-

cultural environment, the human creates purposes and evaluates utility of the function, 

behavior, and structure with respect to the purposes. By doing so, the human creates a 

view of the device that relates to desired intentions. 

 In the techno-physical environment, the device has structure, behaviors and 

functions, which interact with the natural environment. Part of the techno-physical 

environment consists of structure, behaviors, and functions that the human intended. 
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However, the device also interacts with the natural environment which behaves 

according to the physical laws. This may cause the device to have unintended 

behaviors. Also, the techno-physical environment may have irrelevant structures 

which are not part of the human's view of the device.  

 The interaction between socio-cultural and techno-physical environments is such 

that if a device is taken out of a socio-cultural environment and put in another, it will 

have the same techno-physical environment, but different purposes and functions. The 

distinction is useful because it allows the device to be represented in different views 

based on the designer and use of the device, without changing the entire 

representation. Allowing a device to have different views may allow for new uses of a 

particular device to be uncovered.  

2.1.4 Functional Reasoning in Design 

Functional reasoning is an important concept in a widely accepted design 

methodology described by Pahl and Beitz [2003]. Using this methodology the 

designer specifies the function for the entire product, splits the function into sub 

functions, looks up elements that can perform the functions, and composes a solution 

based on the elements. 

 Despite the fact that functional reasoning is a major part of the design process, 

current CAD systems typically only support geometric modeling. To further support 

designers, future systems should support the entire process including functional 

reasoning. These systems should do this because functional reasoning has many 

advantages, including helping to determine a products basic characteristics and 

helping to decompose the design problem. Also, products that have problems with 

their main functions do not sell very well. Umeda and Tomiyama provide an overview 

of the various issues involved in defining function and implementing functional 

reasoning in CAD systems [1997]. 

 The definition of function can be different for each researcher. Researchers agree 

that function is related to behavior, but they disagree about the definition of function 

in two ways. First, a function could contain the designer’s intention. When it is 

included, the function includes the reasons why the behaviors are required and the 
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intentions can be represented explicitly or inferred. If it is not included, the function is 

just an abstracted behavior. There may be some advantages to representing the 

designer’s intention in the definition of function since the intentions can be used to 

support design activities such as verification, reuse, or explaining results.  

 The second issue in the definition of function is the behavioral representation. 

Some possible approaches include either state transitions, bond graphs, functions, and 

behavior structure (FBS) modeling. These approaches differ because of their 

application domain. A particular approach is good for some tasks but struggles at 

others. For example, bond graphs are appropriate for power systems design, but it is 

hard to use bond graphs to represent devices that do not transform anything. Thus, 

researchers are still investigating the question of when to use a particular behavioral 

representation. 

 While implementing advanced CAD systems that perform functional reasoning, 

researches have learned some lessons. Representing function helps organize designs 

for reuse. The ability to verify designs early on using simulation is critical. In order to 

represent functions, a designer must be experienced. Functional CAD systems should 

be able to deal with quantitative attributes and geometry to make it easier to bridge the 

gap between existing design systems. 

 There are two additional issues that future CAD system designers must face in 

order to make CAD systems that go beyond verification of existing designs and 

configuration designs.  

 The first issue is that designers need to be able to design from the view point of 

structure, behavior, and function. Since a certain function might have very different 

behaviors and structural hierarchies, future CAD systems must figure out how to 

make representations consistent and useful. 

 The second issue is a top-down versus bottom-up issue. Since systems can be 

designed starting with the structure and then finishing with function and vice versa, a 

functional reasoning tool should be able to combine the two kinds of reasoning.  

2.1.5 Functional Basis 

The functional basis [Stone and Wood, 1999] is a common design language that can 

be used for functional modeling. It consists of two main parts: functions and flows. A 
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function is a description of an operation performed by a device. The reader should 

note that this definition of function is different from other definitions described in this 

section. For example, the work described in section 2.1.1 would classify these as 

behaviors not functions. A flow is the change in material or energy caused by a 

function. A flow is the recipient of the function’s operation. Concepts using the 

functional basis are expressed as verb-object pairs, where functions are the verbs and 

flows are the objects. 

 Flows represent the quantities that are input and output by functions. For example, 

the function convert could take the flow human force as input and output mechanical 

force. Flows are broken down into three classes: material, signal, and energy. Signal 

flows are actually made of material or energy, but they are given a special 

classification in the functional basis. Each class has basic and sub-basic flows such as 

the basic flow human or mechanical and the sub-basic flows human hand, or 

mechanical force.  

 Flows can be expressed in three ways depending on how specific the description 

needs to be. The most general description is just the class expressed as human or 

signal. A more specific flow is the basic description + class pair such as human 

energy, or an even more specific flow is the sub-basic description + class pair such as 

human force. Depending on the customer needs, the designer may use more general 

flows to allow a more general description and use variants, or specific flows to give a 

more detailed, concrete design. The functional basis also provides clear written 

definitions for each flow. 

 Functions are defined in eight classes with basic functions in each. The functional 

basis provides clear definitions for each basic function as well as lists the synonyms 

that might be used to represent that function. Some example functions include import, 

export, transmit, couple, display, rotate, and change. 

 The authors of the functional basis suggest a way to apply the functional basis to 

designing. They suggest that the first step is to figure out a black box model of the 

product and to identify the flows in and out of the model. Then, the designer creates 

function chains for each input flow, envisioning how the flow moves through the 

device. The designer expresses each change in the flow as a sub-function using the 
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functional basis vocabulary. The next step is to order the function chains by time. 

There may be sequential or parallel function chains in the system. The final step is to 

aggregate all the flows together connecting them as necessary by possibly adding new 

sub-functions. 

 There are several advantages to using the functional basis. First, the functional 

basis can help designers to make a product architecture more modular earlier in the 

design process. This is done by grouping sub functions together.  

 Second, the functional basis allows functional models to be expressed in a 

consistent way. The functional basis allows functional models to be consistent 

because each model uses the same set of terms and because each term has a clear 

definition.  

 Third, functional models can be stored in a corporate body of design knowledge. 

Designers can use the stored models to find products of with similar functions, or 

products that are directly usable.  

 Fourth, functional models can aid in creative concept generation because they 

provide a way to represent abstract or incomplete information, and because they can 

help decompose a problem into sub functions. 

 Finally, functional models can reduce the guesswork involved in creating metrics 

for a certain product. Instead of defining a new set of metrics for each product, metrics 

can be defined over a range of products. One type of metric could be a high-level 

physical model of a product’s technical progress. Other types of metrics could 

measure product benchmarks and product quality. 

2.1.6 Relationship Between Functional Modeling and Functional Reasoning 

Sections 2.1.1 through 2.1.4 describe different parts of functional reasoning (FR) 

research. Section 2.1.5 describes one kind of functional modeling (FM) research. 

These two research areas are in fact related and are complementary to each other 

[Chandrasekaran, 2005]. 

 The definition of function in FR and FM are similar, but not the same. Both 

research areas agree that a function is what the device does and that the vocabulary for 

functions is the same as behaviors. However, FR makes the further distinction that a 

function is only the set of behaviors that are desired. Therefore, according to the FR 
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terminology, FM is doing something more like “behavior modeling” than “functional 

modeling” because for FM all the behaviors can be considered functions.  

 Another difference between FR and FM research is that FM research is not driven 

by a need to experiment with automated reasoning, while FR is. FR research worries 

about the fine details of the representational aspects of devices so that it can use 

functional representations for automated reasoning. Having this automation can allow 

a system to determine, for example, if a device actually achieves the desired function. 

FM is not as formal as FR, one only needs an intuitive understanding of what the 

terms mean in order to use the system. However, ontology development is in fact a 

challenging process that requires extensive experimentation. 

 Therefore, FM research could benefit from utilizing FR research. Doing so would 

allow FM researchers to make their primitives more precise. One way that FR 

research could make FM research more precise is by making the distinction between 

DC and EC representations. This distinction is currently not made in the FM research. 

 Researchers from FR and FM communities could benefit from each other’s work 

because FM refines the general ontologies that FR defines. The behavior primitives 

described in FM research can become a content theory for FR. This can be very useful 

because FR has no specific primitives for properties, behaviors, and functions in 

specific domains. Another way to describe this is FM specifies what variables exist in 

the domain, and FR specifies what types of variables might exist in the domain. FR 

describes what kinds of objects are involved in making devices and FM refines the 

kinds of behaviors that can exist for certain subclasses of devices. Having a theory 

that uses both FR and FM would be applicable to wider variety of domains than a 

theory that just encompasses only FR or FM. 

2.1.7 Summary 

Functional representation research forms the theory used in this thesis to design the 

knowledge representation and test examples. There are several views about how to 

describe devices. These views help to influence the knowledge representation used in 

this thesis and show why functional representation is important for computer-based 

systems that support design.  
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 The functional ontology described in section 2.1.1 shows how the represent the 

structure, behavior, and function of devices using a simple ontology and, in particular, 

it describes how to represent devices in DC and EC ways. The DC vs. EC difference 

is the main variable varied in the experiments for this thesis. 

 The environment can be split into an outer environment and external environment. 

For some devices it is necessary to represent the environment in order to accurately 

describe its function. This means that a precise understanding of how to model the 

environment is important.  

 Interaction between the device and the environment can also be viewed as an 

interaction between the techno-physical and socio-cultural environments. This 

distinction allows the device to have many kinds of structure, behaviors, and functions 

in the techno-physical environment, but only a subset which are relevant to the human 

in the socio-cultural environment. This indicates that functions exist to satisfy a 

designer’s purpose and the designer might have different purposes for the same 

device. Thus, the device remains largely the same, but the designer will assign it 

different functions depending on the particular socio-cultural environment.  

 Lastly, Umeda and Tomiyama say that the behavioral representation is important 

for systems that perform functional reasoning and that there are several competing 

approaches [1997]. Thus, the results from this thesis will be useful because they help 

define which kind of behavioral representation is useful in which circumstances. 

 An area of research related to functional representation is functional modeling. The 

functional basis is a language for functional modeling that provides a set of domain 

specific terms for describing flows and functions. In this thesis, these terms are used 

in conjunction with functional representation theories to create accurate test examples. 

2.2 Analogy2.2 Analogy2.2 Analogy2.2 Analogy    

Analogical reasoning is, in fact, a fundamental reasoning process that people use all 

the time in everyday life [Gentner et al., 2001, p. 499-537]. It is also a particularly 

important process for producing creative designs [Pahl and Beitz, 2003] and for 

inventing [Wolverton and Hayes-Roth, 1995]. Because of the importance of 

analogical reasoning, researchers have developed a good understanding of analogy 

making and several analogical systems have been built.  
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 Section 2.2.1 reviews analogy in general. Section 2.2.2 describes an algorithm for 

performing analogical matching that will be of particular use in this thesis. Finally, 

section 2.2.3 and 2.2.4 describe selected systems that perform design by analogy. 

Overall, this section provides an overview of analogy and some analogy systems that 

can perform it. 

2.2.1 Analogy in General 

Analogy is “the ability to identify patterns, to identify recurrences of those patterns 

despite variation in the elements that compose them” [Gentner et al., 2001, p. 2]. In 

particular, analogy is the ability to think about relational patterns. For example, if two 

circles are compared to two possible analogs, two squares or a square and a triangle, 

the best analog is the two squares because they both share the relationship: sameness 

of shape. The importance of this analogy is that the analogy between the two circles 

and two squares relies on a common relationship, not their physical appearance. In 

order to make this analogy, a person needs to represent and reason about the 

relationship between the objects [Gentner et al., 2001, p. 2]. 

 The analogy making process can be broken down into a series of steps in order to 

make a mapping between two domains, called the source and target. The target is the 

new description that must be matched with a known source. The source is sometimes 

called the base. First, the analogy system must access relevant source analogs from 

long term memory. Second, parts of the source are mapped to the target. Third, 

analogical inferences are made between the source and target to fill in any missing 

knowledge in the target. Finally, learning occurs as the new analog is incorporated 

into the analogy system’s memory [Gentner et al., 2001, p. 9]. 

 There are three issues that computer-based analogy systems face. First, in order to 

make more complicated analogies, more complex representations are necessary. Thus, 

any computational system must be able to build and manipulate complex 

representations. The second issue analogy systems face is the “binding problem.” This 

problem involves identifying the roles for a particular piece of knowledge. A third 

issue is the need for representations that are dynamic enough to allow a reasoner to 

change the source and target representations during the reasoning process. Since the 
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reasoner might be trying to find analogies between different domains which have very 

different representations, the representations might need to change significantly in 

order for them to be compared. 

 There have been three approaches for implementing analogy systems. One is based 

on using methods such as logic, planning, and search, and another is based on 

connectionist methods that use nodes, weights, and spreading activation in a network 

[French, 2002]. The final approach is a hybrid of the first two approaches. 

  Symbolic methods do well at dealing with the first two issues analogy systems face 

because they have explicit symbols to represent the analogies and relationships 

between elements in the analogies. The two issues are more of a challenge for 

connectionist approaches, which uses activations over a neural substrate to represent 

symbols instead of using explicit representations. However, connectionist approaches 

have the advantage that they provide a natural internal measure of similarity [French, 

2002]. Both kinds of analogy systems have problems with the third issue. 

 An example of a symbolic method for analogy making is an algorithm called 

Structure Mapping Engine (SME). SME makes analogies based on the structural 

similarity between two domains. Thus, analogs are mapped based on the relationships 

rather than on the attributes of the source and target. The algorithm also uses the 

systematicity principle which states that larger, more coherent mappings are preferred 

over individual mappings thus allowing it to build complex analogies. 

 An example of a connectionist method for analogy making is ACME [Holyoak and 

Thagard, 1989]. ACME uses an architecture based on the parallel activation of nodes 

in a neural network-like structure. It frames the problem as a constraint satisfaction 

problem. The system represents the pairings between the source and target as links 

between nodes in a neural network [French, 2002]. When the system is presented with 

source and target representations, certain links get deactivated and the most active 

hypothesis becomes the best analogy. 

 An example of a hybrid approach is a model like AMBR [Kokinov and Petrov, 

1988]. AMBR has symbolic methods that encode declarative and procedural 

knowledge. AMBR has a connectionist part that computes the activation level of a 

particular reasoner in the system. When a reasoner is more activated its actions are 
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more relevant. Using this connectionist model, AMBR is able to process an analogy 

all at once without a preset order of steps. 

2.2.2 SME 

As mentioned in the previous section, the Structure Mapping Engine (SME) is a kind 

of analogy making system. Since this thesis will be using SME, this section goes into 

more detail about how SME works. It describes the overall algorithm, and pays 

particular attention to how changing the SME parameters affects its output. For a 

more complete description of the algorithm see [Falkenhainer et. al., 1989]. 

2.2.2.1 Structure Mapping Theory 

SME is an implementation of the psychological theories of Gertner [1983]. It is an 

analogical matching algorithm that produces mappings between parts of source and 

target representations. As of 1990 there were over 40 projects used it [Falkenhainer et. 

al., 2005]. In a more recent review, French said Structure Mapping Theory is 

“unquestionably the most influential work to date on the modeling of analogy-

making” [2002]. 

 SME is useful because it ignores surface features and finds matches between 

potentially very different devices if they have the same representational structure. For 

example, SME could determine that a pen is like a sponge because both are involved 

in dispensing liquid, even though they accomplish it very differently. 

 Structure Mapping Theory is based on the systematicity principle, which states that 

more connected knowledge is preferred over independent facts. Therefore, SME 

should ignore isolated source-target mappings unless they are part of a bigger 

structure. SME should map objects that are related to knowledge already mapped. 

 Structure Mapping Theory also requires that mappings be one-to-one, which means 

that no part of the source description can map to more than one item in the target and 

no part of the target description can map to more than one part of the source. In 

addition, structure mapping theory requires that if a match maps S to T then the 

arguments of S and T must also be mapped. If both these conditions are met, the 

mapping is said to be structurally consistent. 
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2.2.2.2 SME Algorithm 

SME takes two descriptions called the source and target, and maps knowledge from 

the source into the target. SME calls each description a dgroup. Dgroups contain a list 

of entities and predicates. Entities represent the objects or concepts in a description 

such as an inputgear or a switch. Predicates are one of three types and are a general 

way to express knowledge for SME. Relation predicates contain multiple arguments 

which can be other predicates or entities. An example relation is: (transmit (what 

from to)). This relation has a functor “transmit” and takes three arguments: “what,” 

“from,” and “to.” Attribute predicates are the properties of an entity. An example of an 

attribute is (red gear) which means that gear has the attribute red. Finally, function 

predicates map an entity into another entity or constant. An example of a function is 

(joules powersource) which maps the entity powersource onto the numerical 

quantity joules.  Functions and attributes have different meanings and consequently 

SME processes them differently. For example in SME’s true analogy rule set, 

attributes differ from functions because they cannot match unless there is a higher 

order match between them. The difference between attributes and functions will be 

explained further in this section’s examples.  

 All predicates have four parameters. They have a functor, which identifies it and a 

type, which is either relation, attribute, or function. The other two parameters are for 

determining how to process the arguments in the SME algorithm. If the arguments 

have to be matched in order, commutative is false. If the predicate can take any 

number of arguments, N-ary is false. An example of a predicate definition is: 

(sme:defPredicate behavior-set (predicate) relation :n-ary? t :commutative? t) 

The predicate’s functor is “behavior-set,” its type is “relation,” and its n-ary and 

commutative parameters are both set to true. The “(predicate)” part of the definition 

specifies that there will be one or more predicates inside an instantiation of behavior-

set. 

 The first step of the algorithm is to create a set of match hypotheses between source 

and target dgroups. A match hypothesis represents a possible mapping between any 

part of the source and the target. This is controlled by a set of match rules. By 

changing the match rules, one can change the type of reasoning SME does. For 
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example, one set of match rules may perform a kind of analogy called “literal 

similarity” and another performs a kind analogy called “true-analogy.” These rules are 

not the place where domain dependent information is added, but rather where the 

analogy process is tweaked depending on the type of cognitive function the user is 

trying to emulate.  

 There are two types of match rules: filter rules and intern rules. Intern rules only 

use the arguments of the expressions in the match hypotheses that the filter rules 

identify. This makes the processing more efficient by constraining the number of 

match hypotheses that are generated. At the same time, it also helps to build up the 

structural consistencies that are needed later on in the algorithm. An example of a 

filter rule from the true-analogy rule set creates match hypotheses between predicates 

that have the same functor. The true-analogy rule set has an intern rule that iterates 

over the arguments of any match hypotheses, creating more match hypotheses if the 

arguments are entities or functions, or if the arguments are attributes and have the 

same functor. 

In order to illustrate how the match rules produce match hypotheses consider these 

two predicates: 

transmit torque inputgear secondgear   (p1) 

transmit signal switch div10   (p2) 

The filter match rule generates a match between p1 and p2 because they share the 

same functor, “transmit.” The intern rules then produce three more match hypotheses: 

torque to signal, inputgear to switch, and secondgear to div10. The intern rules 

created these match hypotheses because all the arguments were entities. 

If the arguments were functions or attributes instead of entities, the predicates 

would be expressed as: 

transmit torque (inputgear gear) (secondgear gear)   (p3) 

transmit signal (switch circuit) (div10 circuit)   (p4) 

These additional predicates make inputgear, secondgear, switch, and div10 

functions or attributes depending on the value defined in the language input file. The 

representation also contains additional entities for gear and circuit. 
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Depending on what type inputgear, secondgear, switch, and div10 are, their 

meanings change. As attributes, each one is a property of the gear or circuit. For 

example, the gear has two attributes, inputgear and secondgear. The circuit has two 

attributes, switch and circuit. As functions inputgear, secondgear, switch, and 

div10 become quantities of the gear and circuit. In this example, the functions 

inputgear and secondgear now map to the numerical quantities “torque from 

inputgear” and “torque from secondgear,” For the circuit the quantities map to logical 

quanitity “switch engaged” and the numerical quantity “current count on the divide by 

10 counter.”  

SME processes these differently. It does not allow attributes to match unless they 

part of a higher order relation, but it does allow functions to match, even if they are 

not part of a higher order relation. It allows functions to match because they indirectly 

refer to entities and thus should be treated like relations that involve to entities. 

However, as section 2.2.2.3 shows, the intern rules assign lower weights to matches 

between functions than matches between relations. The reason why SME does not 

match attributes is because it is trying to create connected knowledge based on 

relationships and thus satisfy the systematicity principle. For example, if both a clock 

and a car have inputgear attributes SME will not mark them as similar. If it did, it 

would be making a match between the clock and car based on their appearance not on 

the relationships between them. 

When the additional predicates in p3 and p4 are functions, the results from 

matching p3 and p4 are similar to the results from p1 and p2 except there is an 

additional match between gear and circuit and the values for the match hypotheses 

between (inputgear gear) and (switch circuit), and (secondgear gear) and (div10 

circuit), are lower. Section 2.2.2.3 describes the reason for this in more detail. 

If the inputgear, secondgear, switch, and div10 are attributes instead of entities, 

SME does not find matches between any of the attributes. It only finds matches 

between the transmit predicates and between torque and signal. Additionally, the 

structural evaluation scores for the remaining two matches decreases. In order to get 

the two predicates to match, p3 would need to be replaced by p5. P5 is shown below. 

transmit torque (inputgear gear) (div10 gear)  (p5) 
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Since the true-analogy rule set identifies that the div10 attributes are the same 

between p5 and p4 and because the div10 attributes are both part of the higher relation 

match between torque and signal SME makes a match between (div10 gear) and 

(div10 circuit) which leads to a match between gear and circuit.  

 Being part of a higher order match is a requirement only for attributes. For 

example, if (div10 gear) and (div10 circuit) are not part of a higher order match, 

SME does not create a match hypothesis between match them. However, if div10 is a 

function or relation SME does create a match. 

2.2.2.3 Structural Evaluation Score 

Once the match hypotheses are generated, SME needs to compute an evaluation score 

for each match hypothesis. SME does this by using a set of intern match rules to 

calculate positive and negative evidence for each match. Multiple amounts of 

evidence are correlated using Dempster’s rule [Shafer, 1978] resulting in positive and 

negative belief values between 0 and 1. The match rules assign different values for 

matches involving functions and relations. These values are programmable, however 

some default values that can be used to enforce systematicity principle are described 

in [Falkenhainer et. al., 1989]. 

These rules are: 

1. If the source and target are not functions and have the same order the match 

gets +0.3 evidence. If the orders are within 1 of each other, the match gets 

+0.2 evidence and  -0.05 evidence. 

2. If the source and target have the same functor, the match gets 0.2 evidence if 

the source is a function, and 0.5 if the source is a relation. 

3. If the arguments might match, the match gets +0.4 evidence. The arguments 

might match if all the pairs of arguments between the source and target are 

entities, if the arguments have the same functors, or it is never the case that 

the target is an entity but the source is not.  

4. If the predicate type matches, but the elements in the predicate do not match, 

then the match gets -0.8 evidence. 

5. If the source and target expressions are part of the a matching higher order 

match, add 0.8 of the evidence for the higher order match.  
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 In the example match between p1 and p2, SME gives the match between the 

transmit relations a positive evidence value of 0.7900 and the others get values of 

0.6320. The transmit relation receives the evidence value of 0.7900 because it gains 

evidence from rules 1, 3, and 2. The other matches get a value of 0.6320 because 0.8 

of the evidence from the transmit is propagated to these matches because of rule 5. 

 For predicates p3 and p4, SME assigns less evidence because the arguments of the 

transmit relations are functions. The transmit relation gets positive evidence of 0.65 

because rule 3 no longer adds evidence. The match between (input gear) and (switch 

circuit) becomes 0.7120. This match gets 0.4 evidence because of rule 3, and 0.52 

evidence propagated from the transmit relation because of rule 5. 

 When the predicates in p3 and p4 are attributes, rule 4 adds -0.8 evidence to the 

transmit match because though the functors of the transmit relation match, the 

arguments do not have the potential to match and the arguments are not functions. 

 To summarize, the intern match rules compute a structural evaluation score for 

each match hypothesis. These rules enforce the systematicity principle. Rule 5 

provides trickle-down evidence in order to strengthen matches that are involved in 

higher order relations. Rules 1, 3 and 4 add or subtract support for relations that could 

have matching arguments. Rule 2 adds support for when the functors match thereby 

adding support for matches that emphasize relationships. 

 The rules also enforce the difference between attributes, functions, and relations. 

For example, they have checks which give less evidence for functions than relations. 

Attributes are not specifically dealt with by the intern match rules, but SME’s filter 

rules ensure that they will only be considered for these rules if they are part of a higher 

order relation and rule 2 ensures that attributes will only match if they have identical 

functors.  

2.2.2.4 Gmap Creation 

The rest of the SME algorithm is involved in creating maximally consistent sets of 

match hypotheses. These sets of match hypotheses are called gmaps. SME must 

ensure that any gmaps that it creates are structurally consistent. This means that they 

are one-to-one, such that no source maps to multiple targets and no target maps to 

multiple sources. It also means that they must have support, which means that if a 
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match hypothesis is in the gmap, then so are the match hypothesis that involve the 

source and target items. 

 The gmap creation process follows two steps. First, SME computes some 

information about each match hypothesis. This includes entity mappings, what other 

match hypotheses it conflicts with, and what other match hypotheses it is structurally 

inconsistent with. 

 SME then uses this information to merge match hypotheses using a greedy 

algorithm and the structural evaluation score. It merges the match hypotheses into 

maximally structurally consistent connected graphs of match hypotheses. Then it 

combines gmaps that have overlapping structure if they are structurally consistent. 

Finally, it combines independent gmaps together while maintaining structural 

consistency. 

 Comparing a source to a target dgroup may produce one or more gmaps. The 

weight for each gmap is the sum of all the positive evidence values for all the match 

hypotheses involved in the gmap. For example, if a source containing p1 and p6 

below, is compared to a target containing p2, SME will generate two gmaps. Both 

gmaps have a weight of 2.9186.  

 

 

 

 

 

Source: 

transmit torque inputgear secondgear    (p1) 

transmit torque secondgear thirdgear  (p6) 

Target: 

transmit signal switch div10   (p2) 
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Figure 2.3: Gmaps resulting from comparing a source containing a p1 and p6 and a target containing 

p2. 

The gmaps in figure 2.3 show pairs of predicates or entities that match. For example 

in gmap #1, the entities torque and signal match and the behaviors transmit torque 

inputgear secondgear and transmit signal switch div10 match. Gmap #1 

represents combining p1 and p2. Gmap #2 represents combining p1 and p6. Although 

p2 is compatible with both p1 and p6, the one-to-one mapping constraint enforces that 

both mappings cannot be in the same gmap. Therefore, SME produces two 

independent gmaps. In addition, combining the two gmaps together would make the 

entity mappings between thirdgear and div10 conflict with the entity mapping 

between secondgear and div10. 

2.2.3 KDSA 

Wolverton and Hayes-Roth describe a system called KDSAID, which is designed to 

find semantically distant, innovative analogies between devices [1995]. It is based on 

three observations of how inventors use analogies. First, inventors draw analogies 

from an unpredictable number of domains that can be a very different from each other. 

 Second, inventors use concepts that are unusual or unexpected to find more 

analogies. Thus, concepts that are as different as possible from the target concept 

while still being useful are the best for innovative analogies. Useful means that only 

the features that are necessary for the device to function are included and any 

extraneous features are mismatched as much as possible. Surface similarity is not 

good for innovative designs. 

Gmap #1:     
(TORQUE SIGNAL)   
(INPUTGEAR SWITCH)   
(SECONDGEAR DIV10) 
 (*TRANSMIT-TORQUE-INPUTGEAR-SECONDGEAR  
  *TRANSMIT-SIGNAL-SWITCH-DIV10) 
 
Gmap #2:     
(TORQUE SIGNAL)   
(SECONDGEAR SWITCH)   
(THIRDGEAR DIV10) 
(*TRANSMIT-TORQUE-SECONDGEAR-THIRDGEAR  
 *TRANSMIT-SIGNAL-SWITCH-DIV10) 
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 Third, inventors can stumble across a solution while working on the design 

problem. They proceed using a conscious or unconscious search of memory. Inventors 

might find a phenomenon and search for a problem to apply it to. They could also start 

with a problem and search for a solution or start with a solution and search for a 

problem. 

 Wolverton and Hayes-Roth developed an algorithm called KDSA and the 

knowledge that applies it to design, called KDSAID. The KDSA algorithm retrieves 

semantically distant analogues and then uses heuristics defined by KDSAID to guide 

KDSA to useful analogues between devices. 

 KDSA represents the world as a single semantic network which has nodes that are 

associated with links. To retrieve a concept, the target concept nodes, and possibly 

nodes representing characteristics of the solution, are activated.  

 KSDA has several steps. First, the graph matcher maps concepts to the target. 

Second, mapping evaluation evaluates the map using a task specific similarity metric. 

Third, search control uses heuristics to focus the spreading activation search. KDSA 

proceeds to search for an analogue until it finds one that exceeds a desired set of 

thresholds. 

 A distinguishing characteristic of this approach is that the mapping evaluation step 

provides feedback to the search control step and vise versa through changes to the 

semantic network. Other analogy algorithms serialize retrieval and mapping as 

independent processes. 

 KDSAID adds heuristics for the map evaluation and search control stages of KDSA. 

The heuristics for map evaluation are set up to make source and target devices have 

similar functions but different behaviors. This ensures that both devices will be able to 

perform the same function, but that they will be more novel in the behaviors used to 

accomplish the function. Second, the map evaluation makes sure the source is 

adaptable to the target so that if a possible match is found the match can be mapped 

back to the target. Map evaluation makes sure that the analogies are not so different 

that they are useless.   

 To get these effects, the map evaluation component makes decisions based on two 

measures: isomorphism and semantic distance. Isomorphism is the percentage of 
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nodes and links that match between the target and source. Semantic distance is the 

average path distance between mapped nodes. KDSAID defines different similarity 

metrics based on these measures. It defines thresholds on these values so that it can 

stop the search when a suitable analogy is found. For example, one of the conditions 

requires that the analogy must have high isomorphism. Another requires that the 

distance measure between the structure of the devices in the source and target is high. 

These measures are set to encourage KDSAID to find innovative designs. 

 KDSAID also defines some heuristics for search control. The heuristics are set to 

increase likelihood of future mappings working and to reduce amount of search 

necessary to do it. The “activate promising concept” heuristic strengthens the 

activation levels of parts of the concepts that are close to meeting the thresholds. 

“Prune unpromising concept” clears activation for unpromising concepts and makes it 

so they cannot be activated. “Cross-domain bridge” utilizes known abstractions to 

move analogues out of the same domain. “Modify retrieval condition” makes is so 

that devices are only retrieved if the representation of its behaviors are highly 

activated. 

 In order to make KDSA useful, the heuristics and thresholds must be set so that 

“flaky”, useless analogies are eliminated, but yet KDSA is still allowed to find novel, 

surprising analogies. For example, Wolverton and Hayes-Roth mention KDSA found 

an innovative analogy between a rock crusher and an irrigation system that suggested 

that the irrigation system should transport water on a conveyor belt [1995]. When the 

researchers added an “adaptability requirement” to one of their heuristics, the system 

no longer found that analogy. Thus, adding too many constraints to an analogy system 

could eliminate potential innovative analogies.  

2.2.4 Qian and Gero 

Qian and Gero describe an analogy making system called DESSUA that utilizes a 

knowledge representation consisting of qualitative causal relations and generalized 

design knowledge of devices to perform creative design [1992][1996]. The knowledge 

is put into three categories: structure, behavior, and function. The analogy system has 

several parts: a concept retriever, analogy retriever, an analogy elaboration step, and 

an evaluation step.  
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 The concept retriever searches for a source design based on the conceptual design 

name and design requirements. The design requirements are expressed with the same 

structure, behavior, function model as the devices in the design library. The concept 

retriever uses the conceptual design to find an existing design and uses that design to 

generate analogical retrieval clues in the form of a target concept.  

 The analogy retriever retrieves analogous designs that have the same function or 

behavior as the design in the target concept. It may also retrieve designs based on the 

design requirements. 

 The elaboration step identifies correspondences between the source and target. If 

two functions match, then the behavior, structure, and external effects are mapped. If a 

behavior matches, only the structure can be mapped. Thus, matching can occur 

between two function variables, two behavior variables, or two behavior graphs if 

they are the same at some abstract level. Variables that represent structure and 

exogenous variables can get mapped only if they have the same associated functions 

or behaviors. 

 The evaluation step requires a human to comment on the system’s output. This is 

needed because the design variables introduced from the source to the target may not 

have associated domain knowledge. Therefore the system cannot evaluate them.  

 Qian and Gero show that the system is capable of designing devices by analogy. 

For example, it designed a buzzer based on an analogy with a blinking cursor. It also 

designed a new kind of folding door based on an analogy with a curtain.  

2.2.5 Summary 

There are many different analogy systems that have been built. Some of them use 

symbolic representations like SME and DESSUA, and others like KSDA use a 

network like structure to make analogies. 

 SME is effective at finding analogies based on relationships. This means that SME 

could possibly find analogies that come from different domains. Such analogies have 

the potential to be seen as creative. Since this thesis seeks to measure if creative 

analogies can be produced, this is an important property of SME. Also, the format of 

the SME input works off of symbols. This is important because the knowledge 
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representation this thesis uses is based on the theories described in section 2.1, which 

largely discuss symbolic representations of functions that include objects such as 

“behaviors” and “functions.” 

 A notable feature of KSDA is that it uses thresholds to control when a suitable 

analogy was found. The researchers who developed KSDA found that if they over 

constrain the system, it does not produce some interesting analogies. This lesson could 

be relevant to this thesis since one representation might be more constraining than 

another. One representation may produce too many analogies that are not all useful or 

one may produce too few. As KSDA has shown, the parameters of the analogy 

making system need to be tuned to produce enough useful analogies without 

producing too many useless ones. It is possible that the representation type used could 

be one of these parameters. 

 Lastly, an important lesson for this thesis from the work on DESSUA is that the 

human needs to be involved in the evaluation especially when the products lack 

represented domain knowledge. This suggests that humans might need to be involved 

in some part of the evaluation process used in this thesis. 

2.3 Repertory Grids2.3 Repertory Grids2.3 Repertory Grids2.3 Repertory Grids    

One way to measure how computer based analogical reasoning systems, such as the 

ones described in section 2.2, perform is to compare the results to what people 

produce, since people also perform analogical reasoning. In order to make this 

comparison, this thesis requires a technique such as repertory grids to extract 

measures of similarity from human experts.  

 The repertory grid technique is well suited for this purpose. Since computational 

analogical reasoning systems can produce the same kind of similarity measure that the 

repertory grid analysis produces, repertory grids can be used to compare human results 

to the computer’s results. Additionally, there is a software package that simplifies 

collecting and analyzing repertory grids.  

2.3.1 Repertory Grid Technique 

The repertory grid is a technique for eliciting knowledge about the way an expert 

categorizes the world and reasons about it. It allows a knowledge engineer to record 
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the expert’s view of a particular problem and to get the expert thinking about the 

problem [Hart, 1986]. 

 A repertory grid involves two concepts: elements and constructs. Elements are the 

items in the world that the expert is trying to categorize. Constructs are bi-polar scales 

that the expert uses to rate each element. The scale is a numeric scale, such as 1 to 5, 

and the expert names each pole. For example, if an expert were describing a set of 

people elements. The expert might create a construct where 1 is “short” and 5 is “tall” 

and then rate each person on a height scale of 1 to 5. 

 Since each expert may provide a wide array of constructs, it is important to note 

that the ratings that a particular expert gives are useful for comparison purposes only. 

It does not make sense to compare two experts’ ratings, even if they have exactly the 

same constructs. 

 Also, the ratings are only relative. For example, if an expert gives Brian a rating of 

4 on the height scale, and gives Sue a rating of 2, it does not mean that Brian is twice 

as tall as Sue, it just means that Brian is taller than Sue. Figure 2.4 is an example of a 

grid. 

 

Figure 2.4: Example of a repertory grid for people. Elements are on the bottom and constructs are on 

either side. This figure was made using software by Shaw and Gaines [2005]. 

 Eliciting a grid is an iterative process, between a knowledge engineer and the 

expert. The process ends when the expert is satisfied that the grid accurately reflects 

his or her views. The expert could just fill out the grid directly by naming all the 

elements and constructs. However, this is often to difficult for an expert, so the 

elicitation process is usually an iterative process, where the knowledge engineer asks 

the expert to evaluate triads of elements at a time. For example, in eliciting the above 

grid, the knowledge engineer might ask how Sue, Bill, and Charlie are in some way 
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different. The expert’s response is that Charlie likes sports and Sue and Bill do not 

and the expert rates them as such. The advantage of using triads is that a triad of 

elements is the minimum the expert needs to evaluate in order to identify one 

difference and one similarity. The small number of elements is easy for the expert to 

evaluate. By comparing enough sets of triads, the expert eventually fills in the entire 

grid. The expert is allowed to add elements, or change constructs at any time during 

the elicitation process. 

 Once the grid is elicited, the grid can then be analyzed by a clustering technique. 

This clustering technique involves two steps. First, it computes a percent similarity 

measure between each element and construct. Then, the clustering technique orders 

the elements and constructs into a “focused” grid that helps to show the expert which 

elements are most similar. 

 Figure 2.5 shows an example of a focused grid, which is based on the percent 

similarity measures from the cluster analysis. The elements that are most similar are 

next to each other. For example, Kelly is most like Sue, and Bill is most like Charlie 

and Brian. The lines above the elements represent the percent similar measure 

between elements. The lines show Kelly and Sue are about 80% similar. When the 

lines connect it means that all elements in the cluster are at that level of similarity. 

Thus, John, Brian, Bill, and Charlie are all about 70% and all the elements are about 

45% similar. A similar arrangement is made for the constructs and shown with the 

lines on the right. 
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Figure 2.5: A focused grid for people. The elements are on the bottom and the constructs are on either 

side. The lines above the elements and beside the constructs show the clusters on a scale of percent 

similar. This figure was made using software by Shaw and Gaines [2005]. 

 The cluster analysis computes a measure of difference between each element or 

construct and then computes their percent similarity. Difference is measured by the 

sum of the absolute differences in the ratings. Thus, the ratings for John are: 4 5 5 2 2 

4 and for Brian the ratings are: 1 4 5 3 4 4. The differences between ratings are 3 + 1 + 

0 + 1 + 2 + 0 = 7. To compute the difference measure between two elements or 

constructs the formula is: 

(-100Dij / (m * n)) + 100 

Where Dij is the difference between element or construct i and j, m is the maximum 

difference between elements, and n is the total number of elements or constructs in the 

grid. Therefore, the percent similarity between John and Brian is 71%. 

 Each construct undergoes an extra step in analysis that does not occur for the 

elements. A construct may give different similarity measures when depending on 

which pole is the low pole and which is the high. When a reversed construct gives 

more similarity, the cluster analysis uses it instead of the original. 

 There are several advantages of the grid. First, the grid can be analyzed using 

techniques such as clustering and then the results can be compared to grids from other 

experts. Second, the grid makes the expert think carefully about the problem, thereby 

clarifying the expert’s views and explicitly representing their implicit knowledge. 
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2.3.2 Repertory Grid Software 

Many tools exist to make the repertory grid elicitation and analysis easy to do. One 

tool is Rep IV [Shaw and Gaines, 2005] which is a commercial tool that is free for 

academic use. This tool helps elicit a grid from an expert and performs all the 

repertory grid cluster analysis. 

 The elicitation tool in Rep IV uses triadic elicitation to ask an expert how two 

elements are alike and differ from a third. Then, it asks the expert to create a construct 

and some poles for that construct. Next, the tool asks the expert to rate all elements 

according to the poles. 

 After four constructs have been elicited in this way, Rep IV tests the constructs and 

elements for similarity. If any two are more than 80% similar, it asks the expert to 

lower the similarity by either entering a new element or a new construct. If Rep IV 

gets a new construct, it asks the expert to rate all elements by that construct. If the Rep 

IV gets a new element, it asks the expert to rate it according to all the existing 

constructs.  

 Rep IV can analyze a grid and produce the charts like figures 2.4 and 2.5. Rep IV 

also can output the raw data used to compute the grid, including the element and 

construct percent matches. During the elicitation process, the expert can use these 

charts to decide how to further refine the grid.  

 Rep IV also facilitates allowing another user to fill in ratings that another expert 

has generated. This allows comparisons between different experts’ ratings. 

 Overall, Rep IV is easy to use. It is user friendly and robust. Its elicitation feature 

makes it easy to collect grids from experts. It also performs all the necessary analysis 

for repertory grids. 

2.3.3 Summary 

Repertory grids are a technique for eliciting knowledge about similarities from 

experts. Analyzing the grid produces a numerical percent-similar result that this thesis 

can use to compare human and computer results. This thesis can include an analysis of 

the constructs in a grid in order to determine what reasons the respondents had for 

choosing their constructs and ratings. The technique also has software that can help in 
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the eliciting and analysis of the grid. Together, this makes repertory grids a technique 

that is both useful and easy to use in this thesis. 

2.4 Creativity2.4 Creativity2.4 Creativity2.4 Creativity    

Creativity is a concept that is hard to define and evaluate. Still, there has been much 

research about how to quantify creativity and how to build systems that exhibit 

creative reasoning. One kind of reasoning that, if applied correctly, can produce 

creative reasoning is the kind of analogical reasoning that section 2.2 describes. 

However, in order to make an analogical reasoning system produce creative analogies, 

a more precise knowledge of creativity is necessary. In particular, a designer of a 

creative system must know how to judge if a system produces a creative product and 

what methods a system can use to produce them. This understanding is critical in this 

thesis because a one of its goals is to judge if the analogical reasoning system used 

can produce any creative results. 

 The following sections describe three important aspects of creativity that can be 

used to design a reasoning system, such as an analogy making system, that can 

produce creative products. First, section 2.4.1 describes a set of criteria that can be 

used to assess creative products. This is useful for judging if a reasoning system has 

produced anything creative. Second, section 2.4.2 defines creativity in respect to 

conceptual spaces, which gives another perspective about how to evaluate creative 

products. It also compares the analogical reasoning approach to other ways of 

producing creative products. Finally, section 2.4.3 describes how creativity is applied 

to design tasks specifically for analogical reasoning. This gives more detail about 

what an analogical reasoning system must do in order to produce creative designs and 

how useful analogical reasoning can be for design tasks. 

2.4.1 Assessing Creativity 

Assessing creative products is a difficult skill that requires highly trained judges. Even 

among highly trained judges there can be disagreement. One kind of disagreement 

could come from different interpretations of the factors that the judges are using. In 

one real example, during the evaluation of art, there was a criteria called “merit” 

[Besemer and Treffinger, 1982]. The merit ratings for two teams of judges had 



 

 45 

significant negative correlations.  

 Besemer and Treffinger attempt to make the criteria for judging creative products 

less ambiguous [1982]. By doing so, it should allow judges to make more accurate 

assessments of creative products and even allow people to train themselves to become 

more creative. They break down the criteria into three groups: novelty, resolution, and 

elaboration and synthesis with 14 sub categories divided between them. In the rest of 

this section, the sub categories are written in italics. 

 Novelty is a measure of the newness of a creative product. The product could have 

new concepts, new techniques or other new aspects to it. Originality refers to the 

“statistical infrequency” or unusualness of the product. Something that is original, is 

something that is judged to be infrequent among a certain population. A germinal 

product is considered novel if it has a greater influence on later products. This means 

that the product allows for later creative products. Finally, a transformational product 

is novel because it presents a new way to look at the world. After understanding the 

transformational product one might think, “the world will never be the same again.” 

 Resolution is the correctness or rightness of the product to the solution. The 

resolution of the product can be logical. This means that it is consistent with the facts 

and is a valid solution. This kind of product must still be new and hard to invent. 

Adequate refers to how much of the problem is addressed by the product. If the 

problem is particularly difficult, important and experts think there’s no way to solve 

it, then a solution that is only adequate is more likely to seem creative. An 

appropriate product is one that solves the problem in a sensible way. The appropriate 

sub category is a basic one, but if a product cannot solve the problem, then it cannot 

be considered creative. A product can also be creative if it is useful and thus has clear 

applications. It can be valuable, if judges evaluate it to be worth some value. The 

value is a measure that can be defined in different terms. It might be particularly 

important for judges to agree upon to how to assess value in order to increase 

consistency among evaluations. 

 Finally, elaboration and synthesis refers to the style and aesthetic value of the 

product. An expressive product describes how well the product is presented in a 

understandable manor and how easy it is to use. A complex product is seen as creative 
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if it takes a complex problem and makes it simple. A product is not creative if it is 

simply complex for no reason. A well-crafted product describes how much effort was 

put into the solution. An attractive product is a product that attracts the attention of an 

observer, not through beauty, but through surprise, humor, or enjoyment. An organic 

product describes a product that is comprehensive, complete, and coherent. Finally, an 

elegant product is an understated or economical solution.  

 Besemer and Treffinger make several observations about evaluating creative 

products [1982]. First, a product may be considered creative, even if it does not have a 

high rating in all 14 sub categories. For example, a product might be highly original, 

but not elegant, and still be considered creative. Second, creativity has to be measured 

with respect to a particular group of products. Third, the more criteria used, the better 

agreement there should be within a group of judges. Highly trained judges could help 

to foster agreement, but there is still some ambiguity. Therefore, defining specific 

creative criteria is meant to reduce the ambiguity. 

2.4.2 Conceptual Domains and Creativity 

The previous section mentioned some ways of evaluating creative products and started 

to define some different types of creativity. It also mentioned that a creative product 

must be evaluated by a group or within a certain domain in order to determine how 

creative it is. Boden further defines some ideas about creativity and describes 

examples of systems that can perform creative reasoning [2003]. 

 Boden proposed that a creative idea can classified as either Psychological 

creativity (P creativity) or Historical-sociological creativity (H creativity). A P-

creative idea is new with respect to an individual. An H-creative idea is new with 

respect to any idea ever created. All H-creative ideas are P-creative ideas because if 

the idea is creative with respect to all individuals, then it was creative for the one 

individual who thought up the idea. Thus, the ideas of P-creativity and H-creativity 

are used to define the scope of the creative idea in terms of what kind of group the 

creative product is creative relative to. 

 As in the previous section, creative ideas are shown to be relative to other ideas 

within a certain domain. Boden calls this domain a conceptual space. A conceptual 
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space is a culturally familiar domain like music, physics, or story telling. It is defined 

by a set of enabling constraints which make the structures within it possible. For 

example, the conceptual space of chemistry would have particular rules for how 

molecules react. When the constraints are changed, the space is transformed and 

concepts that were impossible become possible.  

 There are two ways this space can be explored. One way is through combinational 

creativity which involves the combining or associating between a set of known ideas. 

It involves techniques such as association and analogy. These methods are used to 

make comparisons between concepts that already exist within the conceptual space. 

An example of a creative association would be noticing similarities between things 

that are different such as “the sun is like a lamp” or recognizing something despite 

noise, such as recognizing an amateur’s drawing of a famous painting.  

 Analogy is different from association because it performs more deep reasoning 

about any two particular ideas. It is a more sustained comparison between the internal 

structure of the two ideas. 

 The other kind of creativity is called Exploratory-Transformational creativity or 

“ET creativity.” It is broken up into two types E and T. E-creativity involves tweaking 

the conceptual space to achieve creativity. In an E-creative system called AARON, 

paintings are drawn using a genetic algorithm which tweaks the drawing parameters. 

The result is a set of similar looking, but novel pictures. When AARON draws 

acrobats they always have 2 arms, but they might be different in terms of how big they 

are and their orientation. The systems would never draw acrobats with one arm 

because its conceptual space does not allow it. 

 If AARON were T-creative, it would be able to change much more than just the 

number of arms in the drawings. It would be able to change the overall style of the 

drawings making something different but related. Thus, T-creative systems differ 

from combinational and E-creative systems because they can change the conceptual 

space beyond finding unusual ways of thinking within a conceptual space and 

tweaking a conceptual space's superficial dimensions. 

 T-creative systems also have the additional challenge of being able to alter their 

way of evaluating their creative products. Because they must change what is legal to 
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express in their conceptual domain, they must also be able to change their evaluation 

criteria. 

 ET-creative systems differ from analogy systems in the way they reason about the 

conceptual space. Both consider the structure of the concepts in the conceptual space, 

but analogy is focused on the individual concepts that exist, while ET-creativity is 

concerned with the styles of thinking that exist in the domain. 

2.4.3 Creativity in Design 

A problem space is defined by the reasoning goal and the operators that enable state 

space search [Goel, 1997]. If the design variables and their ranges in the problem 

space remain fixed throughout the design process, it is called routine design. If the 

ranges can change, it is called innovative design. If the design variables can change 

too, it is called creative design. The type of design can also change depending on what 

the designer knows as well. Thus, if the designer knows the structure of the design 

space and the procedures for searching it, it is routine design, if the designer knows 

only the structure then it is innovative design, and if the designer knows neither it is 

creative design.  

 Creativity in design occurs to different degrees depending on the state of solution 

and how much knowledge has been transferred from other sources. This transition 

from creative to routine design happens because, at first, designers may be radically 

changing the solution space and may even add new knowledge to the design space 

using techniques such as analogical transfer. Once these are in place, the designer may 

proceed with innovative or routine design, refusing to change the determined 

parameters. 

 The analogy process consists of first taking a given problem Pnew and a possible 

solution Snew for Pnew. Then the analogy process applies analogical reasoning to be 

reminded of a familiar problem Pold with a solution Sold. Finally, the analogy process 

transfers selected elements from Sold to Snew. Goel further explores the issues involved 

in creative design by asking the questions why, what, how, and when [Goel, 1997]. 

 Analogies can be useful for generating a new solution to a design problem by 

proposing a new design or by modifying an initial design. Analogies could also help 
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in other tasks, such as elaboration or decomposition of the problem. Thus, there are 

many reasons why analogies can be useful for designing. 

 Answering the what question means describing what kind of knowledge gets 

transferred by an analogy. The type of knowledge depends on the reasoning task. The 

knowledge could be design elements, components, and relations between components 

for tasks like design proposition. For a task like reinterpreting a problem, a different 

kind of knowledge may be transferred. The transfer of strategic knowledge, such as a 

method for problem decomposition, is also possible. 

 Answering the how question means providing methods for reminding and transfer. 

One method is case-based reasoning. Case-based reasoning is useful when Pold is very 

similar to Pnew, all of the Sold can be transferred to Snew, and part of it can be modified 

to fit the Pnew. However, case-based reasoning may not work for creative design. If 

Pold and Pnew are so similar, then Sold is probably not going to suggest changes in the 

variables of Pnew. Thus, case-based reasoning is probably not going to generate 

creative solutions because creative solutions must add new design variables to the 

problem space.  

 To create such design variables analogical reasoners must use generic abstractions 

to suggest new variables for the problem space. Generic abstractions express the 

structure of the relationships between objects as well as the features of objects. In 

design there could be abstractions for things such as geometric structures or even 

design goals and methods.  

 Answering the when question requires describing the strategic control of 

processing, which can occur during different parts of the design process. For example, 

generic design abstractions can be learned by an analogical reasoner at different stages 

of the analogy process. They can be learned by using the existing design library before 

the designer has made an input, or it could be done during the retrieval stage, once the 

designer was reminded of a design.  

 Goel describes several systems that perform creative analogies, two of which are 

DSSUA and IDEAL.  

 DSSUA, which was described in section 2.2.4, is creative because it can introduce 

new variables into the initial solution [Qian and Gero, 1992]. For example, in a door 
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design problem DSSUA was able to add a variable of sliding motion into the design 

of a sliding door based on a comparison to a window curtain. 

 IDEAL is also able to add variables to designs through generic design patterns 

[Bhatta and Goel, 1996]. The generic design patterns allow for cross domain transfer, 

which introduces the new variables to the design space. 

 Goel proposes a research agenda which includes determining what kind of 

knowledge representation is appropriate for enabling the more efficient processing of 

generic design abstractions. 

2.4.4 Summary 

Creativity has various groups of categories including novelty, resolution, and 

elaboration and synthesis. Evaluating creativity can be improved by giving judges 

specific criteria. This means that this thesis needs to be careful about which particular 

groups of creativity it is evaluating and must specify to any judges the criteria they 

should use. 

 Boden’s work, described in sections 2.4.2, and Goel’s work, described in 2.4.3, 

both describe the concept of a space, called a conceptual space or a problem space, 

where the range of possible products is specified. The more the reasoner is able to 

change this space, the more creative the products will be.  

 From Boden’s perspective, the analogical reasoner used in this thesis is not be 

involved in any dramatic changes in the conceptual space because all the possible 

products are defined by combining existing products. Thus, the analogical reasoner is 

it is capable of combinational creativity.  

 From Goel’s perspective the analogical reasoning system is capable of creative 

design because it can add new variables to the problem space. Since this thesis uses 

test examples from different domains, the system should be able to introduce design 

variables from the source domain that did not exist in the target domain. 

 Also, Goel describes how creativity can be useful for many different design tasks 

and therefore, if this research can have an impact on making design tools better at 

being creative, it would be widely applicable. 
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3. Knowledge Representation3. Knowledge Representation3. Knowledge Representation3. Knowledge Representation    

The experiments described in this thesis use SME as the analogical matching 

algorithm. Since SME uses a symbolic approach, the knowledge representation (KR) 

must be defined in terms of symbols. In addition to this, the experiments requires the 

KR to be used to describe some physical objects. Section 2.2.2 contains details about 

the SME algorithm. 

 This section describes the goals of the KR and the primitives it uses. It also 

describes the “functional basis”, which provides the set of domain specific terms for 

representing physical devices. Lastly, this section describes how this KR compares to 

other function representations described in the literature. 

3.1 3.1 3.1 3.1 ReReReRequirementsquirementsquirementsquirements and Design Decisions and Design Decisions and Design Decisions and Design Decisions    

There are several requirements for the knowledge representation: 

1. It must represent DC and EC functions. 

2. It must represent devices at different levels of detail. 

3. It must allow the DC and EC parts to be combined to form a “BOTH” 

representation (see example in section 3.3). 

The KR must be descriptive enough to describe functions and must allow for different 

experiments. These experiments (sections 5 and 6) require the ability to represent 

devices at different levels of detail, and also to use the DC only, EC only, or BOTH 

versions of the each device’s representation. 

 We consider a function to be a set of desired behaviors. Rather than including all of 

the constructs from Chandrasekaran and Josephson’s work [2000], such as mode of 

deployment, the KR represents only behaviors and functions, leaving further 

exploration of Chandrasekaran and Josephson’s concepts to future work.   

The KR is somewhat independent from SME concepts, but is still easily 

translatable. This decouples the KR from the particular intricacies of the matching 

algorithm implementation used. 
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3.2 3.2 3.2 3.2 PrimitivesPrimitivesPrimitivesPrimitives in the  in the  in the  in the RRRRepresentationepresentationepresentationepresentation    

There are five main primitives in the KR: devices, functions, behaviors, relations, and 

flows. To completely specify a device using the KR, one must provide a library of 

relations and flows, a set of behaviors and a set of functions that group the behaviors. 

A device has a set of functions that are either DC or EC. Each function consists of 

a set of behaviors. Since a device may have multiple functions, some of a device’s 

behaviors may be mentioned in more than one function.  

Devices are physical objects in the world and their behaviors describe how they 

interact. Behaviors are instantiations of relations. The relations (e.g., import) provide 

constructs that are filled in with domain specific elements, such as flows or other 

devices, in order to specify a behavior. For example “import <flow> <device>” is an 

example of a relation with two arguments. Instances are import torque gear and 

import force drum.  

Flows are the material, energy or signals involved in a particular behavior. For 

example, a behavior change force surface describes how the flow “force” interacts 

with the device “surface”. 

The environment for a particular device is an outer environment defined by a set of 

external objects that interact with the device. It is not the entire external environment. 

The representation does not have an explicit representation of the complete 

environment. Instead it describes the environment using behaviors. For example, the 

behavior transmit torque minutegear references “minutegear,” which is part of the 

environment. Also, the representation can have behaviors that do not refer to the 

environment at all. To distinguish objects which are part of the environment from the 

device we mark objects in the environment by underlining them. 

3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation 3.3 Using the Knowledge Representation     

The primitives described in section 3.2 can be used to satisfy the goals we had for the 

knowledge representation. This section provides examples of devices represented with 

high and low detail. This section also provides examples of DC and EC behaviors and 

functions. 
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Figure 3.1a (left): A gear. Figure 3.1b (right): A gear and a weight. Other devices that interact with 

these two, earth and gear2, are not shown. 

 The KR can be used to represent DC behaviors and functions for the gear pictured 

in 3.1a. The relation “import <flow> <device>” is used to define the behavior: 

import force gear  (b1) 

The relation “export <flow> <device>” is used to describe the result of behavior b1: 

export force gear   (b2) 

The two behaviors combine to form a single DC function. 

b1, b2 (dc1) 

 To represent EC behaviors and functions, the representation needs to introduce 

another device to interact with the gear because EC behaviors need to mention 

something in the gear’s environment. 

 For the situation with a weight and two gears, partially represented in figure 3.1b, 

two EC behaviors are available for the gear: 

transmit force from weight to gear  (b3) 

transmit force from gear to gear2  (b4) 

The environment of the gear consists of weight and gear2. The behaviors b3 and b4 

combine to form an EC function: 

b3, b4   (ec1) 

The weight in the mechanism can also be represented with two behaviors:  

transmit force from earth to weight  (b5) 

transmit force from weight to gear  (b6) 
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The environment of the weight consists of earth and gear. The behaviors b5 and b6 

combine to form an EC function for the weight: 

b5, b6  (ec2) 

 When representing with low detail, the representation focuses on a particular 

device. A device has no internal components and the behaviors for the device either 

refer to the device itself or to objects in the environment.  

 For a high detail representation, the KR needs to combine low detail descriptions 

together. The representation does this by combining the behaviors and functions from 

several low detail devices. For example, the gear and weight from figure 3.1b could be 

combined to form a high detail device called “powerprovider”. The EC function of 

this new device would contain four behaviors instead of two and only describe one 

function. The EC function would be: 

b3, b4, b5, b6 (ec3) 

 This KR can be used to create a BOTH representation by concatenating the EC and 

DC version of each device representation. Thus, the BOTH representation for the gear 

consists of the functions dc1 and ec1 as well as the behaviors b1, b2, b3, and b4. Note 

that as the DC and EC representations use different relations there is no overlap when 

constructing the BOTH representation. 

3.43.43.43.4 Functional Basis Functional Basis Functional Basis Functional Basis    

The terms used to describe the function of different devices must be consistent and at 

the same level of abstraction so that device descriptions are comparable. This will 

reduce the variation and noise in results. For example, using more abstract terms for 

one device may cause SME to generate more matches, making strong conclusions 

harder to make, while inconsistent terms may cause fewer matches, with similar 

consequences. 

 This thesis uses a set of domain specific terms called the “functional basis,” which 

was described in section 2.1.5 [Stone and Wood, 1999]. The functional basis provides 

a set of domain-dependent terms for flows and functions. The representations in this 

thesis use flows in the same way the functional basis does. The functional basis 
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represents flows of material, energy or signal that transfer from one device to the next. 

The basic functions available include import, export, transmit, couple, display, 

rotate, and change. Our representation uses the basic functions from the functional 

basis work as a way of describing device behaviors. 

3.5 Comparison to 3.5 Comparison to 3.5 Comparison to 3.5 Comparison to OOOOther ther ther ther RRRResearchesearchesearchesearch    

Overall, our KR is a simpler representation than many others that are described in the 

literature because it focuses only on behaviors and functions. The KR uses 

Chandrasekaran and Josephson’s ontology as a way to define behaviors and to 

differentiate DC and EC functions. In their view, however, our EC representation 

would viewed as mixed since it allows the mention of the device. A pure EC 

representation would not mention the device at all. For example, our representation 

permits the EC behavior: transmit force from weight to gear. To make this a pure 

EC behavior, it would need to change to become: transmit force to gear. In this pure 

EC representation the gear is part of the environment and the behavior is still a 

behavior for the weight. Also, the KR does not use all of the parts of Chandrasekaran 

and Josephson’s ontology. For example, it does not contain an explicit representation 

for modes of deployment. Adding modes of deployment would add extra detail about 

how the devices are embedded in the environment. However, this was not necessary 

for our experiments. 

 Based on the work of Prabhakar and Goel [1996a][1996b], described in section 

2.1.2, our EC representation describes the interaction between the device and its outer 

environment. Our outer environment is defined as the set of objects with which the 

device interacts. Our KR does not model the external environment.  

 Rosenman and Gero [1998] and others have described the concept of a purpose and 

the concept that a device could have several purposes depending on the design 

situation. This is an important concept in functional reasoning since a function only 

exists to fulfill some purpose. However, our KR does not explicitly mention purposes. 

It simply assumes that all functions have some implied purpose. Because there can be 

more than one implied purpose, our KR allows a device to have more than one 

function. 
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 Rosenman and Gero also describe a way of describing devices in terms of their 

structure, behavior, function (SBF). Our KR is only concerned with the BF part of that 

relationship. The KR assumes that the underlying structure is already there. This is an 

acceptable assumption because our analogical reasoning does not try to reason about 

structure or determine how a device works. If it did, then the KR would require a 

representation of structure in order to determine if behaviors were possible. 

 Another piece of research this thesis takes advantage of is the ideas suggested by 

Chandrasekaran [2005], which are described in section 2.1.6. Our KR combined the 

functional reasoning research, which has defined various KRs, with the functional 

modeling approach described in the functional basis. This shows Chandrasekaran was 

correct that the two research streams can be used together and that they can be 

complementary to each other. 
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4. 4. 4. 4. Experimental Test SetupExperimental Test SetupExperimental Test SetupExperimental Test Setup    

Our experimental system required three parts: a set of test examples, an analogical 

reasoning algorithm, and a “test harness”. The test examples were represented using 

the KR. The test harness executed the experiment by preparing the test examples, 

executing analogical reasoning, and analyzing the results. This section describes these 

different pieces.   

4.4.4.4.1111 Test Examples Test Examples Test Examples Test Examples    

The requirements for the test examples to be used are that they: must have varied 

levels of detail; must include both DC and EC representations; should be similar 

enough to allow analogical matches; should allow for novel matches; must be a large 

enough sample so that general conclusions can be reached; and must be capable of 

being understood by humans. 

 The test examples used in this thesis are a set of clocks, which are ideal for 

satisfying these requirements.  Clocks can be decomposed into components and 

subcomponents. By combining different subcomponents together, the level of detail 

can be adjusted. Because different types of clocks share component types, there are 

obvious analogical matches that SME can make, providing good contrast for results 

that people may consider novel. The test examples represent 21 individual 

subcomponents, which can be grouped into 8 larger components. 

4.1.1 Clock Test Examples 

We use two kinds of clocks: a pendulum clock, such as a grandfather clock, and a 

digital clock, such as a bedroom alarm clock. Each clock has a different way to 

achieve the functions of setting and displaying the time. 

Each clock works differently, but they share common component types and 

common functions. These components are the powerprovider, which provides some 

kind of energy into the clock, the timebase, which converts the energy into a periodic 

signal, a gear, which converts the signal into a once-per-second or once-per-minute 

signal, and a face which displays the time.  
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We used articles by Brain [2005a; 2005b] as sources of information about clocks. 

When using a clock a human needs to observe the time and be able to set the time. 

Figure 4.1 shows a conceptual diagram of these components and how they interact. 

Arrows indicate the direction of flow in the clock. For example, the powerprovider 

transfers energy to the timebase. The human interacts with the clock by resetting it or 

by receiving a visual signal. 

 
Figure 4.1: Generic model of a clock: components and how they interact with each other and with a 

human. 

 Figure 4.2 shows a schematic for a pendulum clock. The schematic labels all the 

pendulum clock’s components. Figure 4.3 shows how these subcomponents get 

grouped into components. For example, the secondhand and minutehand are 

subcomponents of face. Figure 4.4 shows the flow diagram for the pendulum clock 

which indicates how the clock works. 

 

 

Figure 4.2: Schematic for an idealized pendulum clock showing all its components. Diagram based on 

[Brain 2005b]. 
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Figure 4.3: Hierarchy for the pendulum clock. Boxes show the devices; arrows represent a component-

subcomponent grouping. 

 

Figure 4.4: Flow diagram for pendulum clock. Boxes represent subcomponents; solid arrows represent 

flow; the dotted line represents flow when the gear release lever is pressed. 

The other clock example is a digital clock. Unlike the pendulum clock, which works 

primarily with gears, the digital clock uses many divide-by-x counters. Figures 4.5, 

and 4.6 show the hierarchy, and flow diagrams for the digital clock. A schematic for 

the digital clock is not provided because it would look very similar to the flow 

diagram. 
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Figure 4.5: Hierarchy for the digital clock. Boxes show the devices; arrows represent a component-

subcomponent grouping;  bc stands for binary converter; divX stands for divide-by-X counter; tbdivX 

means divide-by-X counter for the timebase 

 

 

Figure 4.6: Flow diagram for the digital clock. Boxes represent subcomponents; solid arrows 

represent flow; the dotted line represents flow when the reset switch is pressed. The abbreviations are 

the same as in figure 4.5. 

 The hierarchy for the digital clock includes subcomponents such as a divide-by-10 

counter, which is part of the digital gear, and a plug, which is part of the digital power 

provider. 

 Thus, the test examples are made up of two different clocks that can be represented 

at two levels of detail. The low detail representations are the subcomponents of the 

clocks such as secondgear or plug. The high detail representations include clock 

components such as pendulum timebase and digital powerprovider. 

 The test examples also have obvious analogical matches both within the same kind 

of clock and between different kinds of clocks. For example, secondgear could have 
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an analogical match with minutegear. Secondgear may also be similar to the other 

gears in the pendulum clock. One reason these analogical matches might happen is 

because all the gears work the same way, they rotate when torque is applied to them. 

 Matches between different kinds of clock are also possible and they may appear 

more novel. They may be more novel because the clock components from different 

clocks do not work with the same flows or behaviors and they have different surface 

features. One of the only features they share is their function. For example, both plug 

and weight both perform the same function of providing energy within their 

respective the powerprovider components. Thus, there can be an analogy between 

them, even though one of them works with electricity and the other with gravity. 

4.1.2 Applying Functional Basis  

This section describes how we applied the terms in the functional basis to model the 

pendulum and digital clocks. Although the functional basis is intended to be 

unambiguous, there are still some conventions that we had to follow to apply it 

consistently to our test domain. Some terms are similar and to apply them consistently 

we had to be clear about how they would be used. We also had conventions for 

describing equivalent DC and EC behaviors using separate functional basis terms. 

Finally, we chose terms that distinguish between changing, transmitting, importing, 

and exporting a flow.  

 Tables 4.1, 4.2, and 4.3 describe the flows and behaviors that the test examples use. 

Each functional basis flow or function in the tables has a description of how we used 

it to represent a flow or behavior in our test examples. Both the DC and EC test 

example types use the same kinds of flows, but they have separate behavior 

vocabularies.  
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Functional 

basis flow 

Usage Example 

torque when one device 

causes another to 

spin 

transmit torque weightgear escapementgear 

force physical energy 

like gravity 

transmit force weight weightgear 

signal when a part of a 

circuit is sending 

information over 

the circuit 

transmit signal div10 bc10 

electromotive 

force (eforce) 

when part of the 

circuit is sending 

just electricity 

transmit eforce bridge diode 

visual-signal to represent the 

flow that was 

moving from the 

device to the 

human’s eyes 

transmit visual-signal secOnesDisplay human 

Table 4.1: functional basis flows used in the test examples 

 

Functional 

basis 

function 

Usage Example 

rotate when a device is 

moving on its own 

rotate minutehand 

import/export when a flow comes in 

or out of a device 

import torque minutehand 

export eforce plug 

change when a flow is already 

moving between two 

objects, and then it 

changes 

change signal div10 

stop when a flow stops 

happening 

stop force gear-release-lever 

display showing a visual effect display visual-signal secOnesDisplay 

Table 4.2: functional basis functions used to describe DC behaviors 
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Functional 

basis 

function 

Usage Example 

transmit when a flow is moving 

from one place to 

another 

transmit signal div6 bc6 

change-

between  

Similar to change, only 

this one describes two 

objects. Note: This 

behavior refers to the 

“change” function in 

the functional basis 

change-between eforce diode tbdiv10 

couple to describe actively 

making a physical 

connection between 

objects 

couple plug wall 

Table 4.3: functional basis functions used to describe EC behaviors 

 

 Some of the functional basis terms we use appear to be very similar, however the 

test examples use them in different circumstances. For example, both torque and 

rotate describe making devices spin, however the device representations use torque to 

describe when one device causes another to spin and use rotate to describe when a 

device is moving on its own  In describing the digital clocks, device representations 

use signal when a part of a digital clock is sending information over the circuit and 

use electromotive force when part of the circuit is sending just electricity. 

 Since the DC and EC representations have distinct behaviors, there are parallel 

ways to describe the same kind of behavior. In a DC representation, the devices use 

import and export to describe flow coming in and out of a device, but in EC 

representations the device representations use transmit when a flow moves from one 

device to another. Change and change-between are similar ways of describing the 

same behavior. However, the change-between, which is used in EC representations, 

has an additional argument in order to describe an object from the environment. 

 Finally, changing a flow is different from transmitting, importing, or exporting it. 

This is an important distinction because it allows the representations to differentiate 

between two modes of operation. For example, a circuit might normally transmit a 

signal from a counter chip to a display chip, but when a certain button is pressed on 
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the circuit board, the representation of the counter chip represents it as a change in the 

signal between the counter chip and the display chip. Having these extra terms allows 

the representations to be more complex and precise. 

4.24.24.24.2    Applying Applying Applying Applying SMESMESMESME    

This section describes how we used SME in this thesis. This involved recognizing 

which features of SME were important to consider, and converting the KR into a 

format suitable for the particular SME implementation this thesis uses. 

4.2.1 Relevant Properties of SME  

Since this thesis is comparing two kinds of KR, there are some properties of SME that 

are relevant for determining reasons why one KR produces different results than 

another. These properties are: 

• More information in a particular representation should allow for matches of 

higher weight. This is because longer representations can produce more match 

hypotheses and thus have higher weighted gmaps. 

• Making longer representations may not produce a greater number of gmaps 

because gmaps can be combined together during the creation of maximally 

consistent gmaps or because additional information may cause interference 

when it conflicts with existing information. 

Our experiments use these properties to explain why results using the DC and EC 

representations differ. 

4.2.2 Converting Knowledge Representation into SME Input 

The experiment needs a way to convert the devices from the KR, which is described 

in section 3, into the SME format before executing. This input format is specific to the 

SME implementation this thesis uses. The conversion requires two considerations. 

First, the input to SME should represent the KR accurately. This means it should be 

able to represent flows, behaviors, and functions. Second, the input to SME should be 

set up so that the output is easy to read, otherwise it will take a long time to interpret 

the results. To fix this, each line in the SME input has only one relation and a unique 

name.  
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 Table 4.4 shows the mapping between SME concepts and KR concepts. Section 

2.2.2 describes the SME concepts in more detail. Converting the KR into SME does 

not require all the SME concepts. Since the KR only has behaviors and functions 

relations and entities are all that it needs. SME functions, which are not the same as 

the functions in the KR, and attributes would be required if the KR had structural 

relations. 

SME concept Knowledge representation concept 

dgroup all the behaviors and functions associated with a single clock 

component or subcomponent. 

entity a clock component or subcomponent mentioned in a particular 

dgroup. Also any flow. 

relation instantiations of behaviors and DC and EC functions 

function none 

attribute none 

predicate behavior and function specifications 

Table 4.4: mappings between SME and Knowledge representation concepts 

The SME implementation requires us to specify a language file that describes all the 

relations and some of the entity types that are used in the test examples. Relations are 

specified by “defPredicate” statements and entities are specified by “defEntity” 

statements. Thus, the language file contains one predicate for each behavior type, and 

one entity for each flow. The files for each clock component or subcomponent define 

additional “defEntity” statements. Appendix A.2 shows some examples of complete 

clock subcomponents converted into SME input. 

 An example of a behavior definition is shown below. This definition means that 

there is a relation called “transmit” which takes three named arguments. The first is an 

entity type called what and the other two are other relations called from and to. 

 
(sme:defPredicate transmit  
        ((what entity) (from relation) (to relation)) relation)  
 

An instantiation of transmit looks like this: 

((transmit eforce plug bridge) :name *transmit_eforce_plug_bridge) 
 

The name part of the instantiation makes the output more readable. The asterisk is not 

a special character, it is just a way to clearly distinguish names from the other parts of 

the input. The function predicates are shown below: 

(sme:defPredicate DC ((predicate)) relation) 
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(sme:defPredicate EC ((predicate)) relation) 
 

An instantiation of an EC function is: 

((EC *behavior_set_behavior_couple_plug_wall :name       
        *function_behavior_couple_plug_wal))) 
 

The EC function has a behavior-set predicate, which is the name of a set of behaviors, 

and a name, which is unique. Finally, here are some entity definitions which define 

the flow force and the entity plug: 

(sme:defEntity force) 
(sme:defEntity plug) 
 

In addition to statements which map SME inputs directly to KR concepts, some of the 

predicates were explicitly intended to make the output more readable by putting only 

one relation on a line. For example, to mark something as a behavior we use this 

predicate: 

(sme:defPredicate behavior ((predicate)) relation) 
 

Using this makes it so two lines are required to specify a behavior, one to specify the 

details of the behavior in a relation and the other to mark the relation as a behavior. 

The benefit of this is that each line of the SME representation has a unique name in 

the output that marks it as a behavior. Below is an example of how the representation 

specifies a behavior. 

((transmit force weight gear) :name  *transmit_force_weight_gear) 
((behavior *transmit_force_weight_gear) :name *behavior_transmit_force_weight_gear). 
 

To mark a set of behaviors we use this predicate inside function statements: 

(sme:defPredicate behavior-set (predicate) relation :n-ary? t :commutative? t) 
 

Again the reason for introducing behavior-set was so that it could have a unique name 

in the SME output.  

 The parameters “n-ary” and “commutative” define important properties for the 

behaviors specified in a function. They mean that there can be any number of 

behaviors and that the behaviors can be specified in any order. 

 We chose not to include attributes of the entities because that would allow SME to 

make matches based on structure and we wanted SME to make matches based on the 

behaviors and functions. 
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4.34.34.34.3    Test HarnessTest HarnessTest HarnessTest Harness    

This thesis requires an experimental test harness that allows us to encode test 

examples, run computational experiments, and perform analysis on both the test 

examples and the computational test results. The test harness also needs to process the 

results from the human experiment. 

 The test harness has several components: test examples, an experiment runner, an 

SME implementation, a results processor, a repertory grid elicitation program, a grid 

analyzer, and two analysis tools. There are a variety of technologies that this thesis 

uses to implement these components. Figures 4.7 and 4.8 show the flow through the 

test harness as well as the types of technology that were used to implement and 

represent the various components. The figures also note the format of any 

intermediate files.  
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Figure 4.7: Data flow diagram for the experimental system. Boxes with thick edges show the parts that 

do processing. The format or technology used is in parenthesis. The boxes with rounded edges are 

pieces of data. 
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Figure 4.8: Data flow through the test harnesses for human experiment. The format or technology used 

is in parenthesis. The boxes with rounded edges are pieces of data. 

 The test harness begins with the test examples, which are expressed as XML files. 

There is one test example for each type of clock in the experiment. Appendix A.1 

shows these input files. The experiment runner reads the files and then performs three 

operations using the information in them. First, it analyzes them and outputs statistics 

such as “representation length.” Second, it converts the test example representations 

to a format suitable for SME. Third, it outputs Lisp script that describes a set of 

device comparisons that SME will run.  

 The next step is to run SME. This involves loading the Lisp interpreter and running 

the scripts. The SME implementation is in Lisp because we wanted to take advantage 

of an existing implementation of SME [Falkenhainer, 2005]. We use LispWorks 

[www.lispworks.com] as the Lisp interpreter because it has a freeware version and it 

works with the SME implementation. The result of running SME is a set of text 

output files. The results processor, reads these files and converts them to convenient 

formats for Excel and Matlab. Appendix A shows the various input and output 

formats for some of these steps. 

 The experiment requires another simpler test harness to analyze data from the 

human experiment. Figure 4.8 shows the information flow through the test harness. 
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We typed the output from the repertory grid software directly into the java code for 

the grid analysis. Thus, the figure does not show an intermediate format for the 

repertory grid data. Next, grid analysis outputs an analysis of the grid data. Excel 

reads this data and summarizes it. For the questionnaire, we simply tallied the various 

results using Excel. Appendices B, C, D, and E show the kind of data that this test 

harness processed. 

 In summary, this test harness can be used to orchestrate the computational and 

human experiments and then analyze the results. The experimental procedures and 

results will be explained in the next two sections. 
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5555. Computational Experiment. Computational Experiment. Computational Experiment. Computational Experiment and Results and Results and Results and Results        

5555.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure    

SME produces a list of gmaps for each match, each with an associated weight. The 

goal of the computational experiment is to analyze these lists of gmaps and explain 

how they are affected by different representation types. Overall, the experiment 

demonstrates the following effects: 

• EC has lower weighted matches than DC 

• EC has lower weighted matches than DC 

• EC generates more matches than DC 

• EC matches have higher variance than DC 

• BOTH matches are fewer in number and have lower weights than DC or EC 

alone 

The experiment and analysis is able to measure these effects, explain them, and show 

that they are robust. The experiment measures the gmap weights, the gmap weight 

variance, and the number of gmaps generated.  

The experimental results can be influenced by several factors including the 

representation length, the representation complexity, and the number of devices 

mentioned. To make fair comparisons between the datasets the gmap weights and 

number of gmaps are normalized. Each experiment is run on low and high detail test 

examples in order to show that any observed effects remain the same even when the 

level of detail is varied.  

5.1.1 Experimental Runs 

The experiment uses the factorial experiment design shown in Table 5.1. 

 Low detail High detail 

EC    

DC   

BOTH   

Table 5.1: Factorial experiment design showing the 6 different device sets. 

Overall, there are 6 different device sets that the experiment uses. The rows of table 

5.1 show the three versions of device representations, EC, DC, and BOTH. The 



  

 72 

columns show that each version is categorized into low detail and high detail. Each 

combination of a row and column makes up an experiment test set. For example, there 

is a low detail EC dataset and a high detail DC dataset. There are 21 low detail and 8 

high detail devices. The devices are the 21 subcomponents and 8 components of the 

clocks described in section 4.1. 

 An experiment test run consists of analyzing pairs of devices from a particular test 

set. SME compares each device in the test set to the other devices in the test set. The 

experiment disregards comparisons between the same device. This results in n
2
–n 

comparisons where n is the number of devices in the test set. For example, the low 

detail test set has 420 matches in it. 

 There was a problem with using our LISP interpreter to execute SME with one of 

the devices in the high detail BOTH dataset. Because of this, we omitted that device 

from the high detail BOTH dataset. To make fair comparisons with this dataset, we 

made sure that any comparisons we made between the high detail BOTH dataset and 

other datasets were made with an equal number of devices. This involved removing 

the device, which could not be processed with SME using our LISP interpreter, from 

the results only for the purposes of comparing it with the results from the BOTH 

dataset. For example, to compare the high detail DC dataset with the high detail 

BOTH dataset, we removed the one device that could not run from the DC and BOTH 

datasets and then performed the comparison, but when we compared the high detail 

DC dataset to the high detail EC dataset, we used all devices. 

5.1.2 Experimental Factors 

This experiment needs to show how the gmap weight, gmap weight variance, and 

number of gmaps differ for the EC, DC, and BOTH datasets. This is complicated by 

the fact that several factors can affect these statistics. 

 The representation length is the sum of the number of functions and behaviors in 

the source representation. We find that for most of the data, the representation length 

and the number of gmaps are positively correlated (p<0.05). This means that as the 

representation length increases more gmaps get generated. Our normalization 

procedure decreases this correlation. 
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 The representation complexity is the sum of the number of behaviors in each 

function and the number of arguments in each behavior divided by the representation 

length. For example, the DC version of the gear from section 3.3, with behaviors b1, 

b2 and function dc1, has a representation complexity of 2. This measure of 

complexity is similar to the one used in [Balazs, 1999]. 

 In our data, on average, EC representations have the highest amounts of 

complexity. This is because DC representations only mention the device, and EC 

representations mention both the device and the environment. 

5.1.3 Normalized Gmap Weight and Variance 

The experiment needs to compare the magnitude and variance of the weights between 

the datasets. The factors described in 4.2.1 imply that the gmap weights cannot be 

compared directly unless some aspects of the representation are taken into account.  

Therefore, we use a normalization strategy in order to make a fair comparison 

between the representations. The normalization formula first computes the value, 

MAXVAL, which is equal to the highest weighted gmap SME produces when the 

device is compared to itself. Then the weight of each gmap made with that device is 

divided by MAXVAL to obtain a new normalized weight. 

This strategy should adjust the magnitudes of the gmap weights to account for both 

the representation length and complexity. It also gives the measurement more 

meaning. Instead of measuring its overall strength, this normalized weight measures 

the relative amount of a device’s representation that is matched by the target device. 

Thus, the higher the normalized weight, the more of the target device fits with the 

source device. 

Each time SME generates a match it outputs a list of gmaps, each of which has an 

associated weight. Since our comparisons are done on a per match basis and not on a 

per gmap basis we need to aggregate the gmap weights for each match and then use 

the aggregated result for our analysis. Thus, for each match, we compute the average, 

standard deviation, and highest of its gmap weights. Then, for all matches we compute 

additional statistics to create results such as “average of average gmap weights” or 

“average standard deviation of gmaps.” 
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5.1.4 Normalized Number of Gmaps 

The number of gmaps is positively correlated with the representation length. In order 

to account for this influence and to compare the different datasets, we normalize the 

data by the representation length. Unlike the gmap weight measure, we could not use 

the number of gmaps generated when a device is compared to itself because it was not 

close to an upper bound on the number of gmaps.  

 The formula for computing the normalized number of gmaps is the number of 

gmaps divided by the representation length. For example, if a match has a 

representation length of 5 and generates 10 gmaps, then the normalized number of 

gmaps would be 2. 

5555.2 .2 .2 .2 CCCComputational omputational omputational omputational RRRResultsesultsesultsesults    

Tables 5.2 to 5.5 show the averages of the computational results for the various 

measurements in the experiment. Higher values indicate a stronger match. Appendix 

A.4 shows the raw data used as well as additional summary statistics. 

 

 Low detail High detail 

EC 0.5543 0.4705 

DC 0.6907 0.5580 

BOTH 0.4390 0.3935 

Table 5.2: average of average normalized gmap weights per match 

 

 

 

 

 Low detail High detail 

EC 0.7629 0.6460 

DC 0.6907 0.6086 

BOTH 0.7081 0.6233 

Table 5.3: average highest normalized gmap weight per match 
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 Low detail High detail 

EC 0.1796 0.1212 

DC 0.0 0.0435 

BOTH 0.2512 0.1275 

Table 5.4: average standard deviations of normalized gmap weights per match 

 

 Low detail High detail 

EC 0.9421 2.5664 

DC 0.2952 1.2389 

BOTH 0.4883 1.9624 

Table 5.5: normalized number of gmaps per match 

5.2.1 DC and EC Comparison 

Our hypothesis concerning gmap weights was that the DC weights would be higher 

than EC weights. This is true for average gmap weight, but not true for highest gmap 

weight. The difference for low detail result (Table 5.2) is statistically significant 

(p<0.05), while the difference for high detail is not.  

 This can be explained by the standard deviations in Table 5.4: it shows that the 

standard deviation for EC is higher than it is for DC. The standard deviations are 

statistically different (p<0.05). Although the EC representation might have a few 

gmaps with higher weights, it has other lower weighted gmaps that decrease the 

match’s average gmap weight. Thus, in the experiments DC representations produced 

a few high weighted matches that have similar weights while, the EC representations 

produced matches that have a wider variety of weights. This resulted in lower average 

gmap weights and higher highest gmap weights for the EC representation. 

 Another one of our hypotheses was that EC would produce more matches than DC. 

The data, shown in Table 5.5, shows that EC produces at least twice as many gmaps 

as DC. This result is statistically significant (p<0.05).  

5.2.2 BOTH Dataset 

Our final hypothesis is that the matches from the BOTH dataset will have more 

matches of higher weights than the DC or EC datasets. This makes sense because the 

more information the representation has, the more it should be able to match.  
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 Our results show the hypothesis is correct for absolute gmap weights, but not for 

the normalized weights. The normalized weights measure how much of the 

representation was matched. This result means that a large portion of the BOTH 

representation is left unused in each gmap. 

 We observed that gmap weights from the BOTH dataset have a lower highest gmap 

weight than the ones from the EC dataset and only a slightly higher highest gmap 

weight than the ones from DC dataset. The EC dataset has statistically different 

highest gmap weights and the DC dataset does not have statistically different highest 

gmap weights.  

 We also observed that the average gmap weight for the BOTH dataset was lower 

than it was for the DC and EC datasets. This effect is partly caused by the fact that 

BOTH has a higher standard deviation than DC. However, this does not explain the 

difference the BOTH dataset has with the EC dataset, because they have about the 

same standard deviation. A statistical test did not reject the possibility that the 

standard deviations are similar. 

 One explanation for this is that when DC and EC information are together the DC 

information is preventing the matches that would have been generated if only the EC 

information was present. It could be that with the BOTH representation it is harder to 

make globally consistent gmaps, as there is so much data with which to be globally 

consistent. Because the normalization discounts for not having large matches, the 

match weights are lower. 

 Another observation about the BOTH dataset is that its highest gmap weight and 

number of gmap measures are in between DC and EC measures. It seems that adding 

EC information to the DC information improved the highest gmap weight and number 

of gmaps by only 39% and 55% of what would have been gained by using the EC 

information only. Investigating this further, we found that the number of gmap 

weights from the BOTH dataset is not statistically different from a dataset made by 

averaging the number of gmap weights from the DC and EC datasets. The average 

number of gmaps for the averaged DC/EC dataset is 1.8245, which is close to the 

value of 1.9624 for BOTH. 
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5.2.3 Robustness to Level of Detail 

With a few exceptions, these observations are robust to changes in the detail of the 

representation. The data shows that the same trends occur in the low detail as in the 

high detail data. The observations that are different are caused by special properties of 

the low detail data. One difference is that the DC representation seems to be less 

effective in low detail devices than in high. The low detail DC representations 

produced one gmap at most for any matches. The high detail representation, however, 

did not have this problem. We conclude that the reason for this is that the low detail 

representation did not have enough information to produce many potential matches.  
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6666.... Human Experiment Human Experiment Human Experiment Human Experiment and Results and Results and Results and Results    

In the computational experiments we present SME with representations of two 

devices, and it outputs a list of potential matches between portions of each 

representation.  For example, based on these lower level matches, SME might suggest 

that a pen is like a hammer. 

As our hypothesis concerns the possible benefits of different styles of device 

representation, the representation is varied throughout the experiments, and the 

resulting matches are measured and evaluated. 

We are interested in performing an experiment with human respondents, which 

examines these computational results, for two reasons. First, we would like to 

determine whether or not the matches proposed by SME are “novel”: e.g., a pen is like 

a sponge. We hypothesize that EC device representations are more likely to produce 

novel matches. 

Second, we would like to investigate how the match weights generated by 

respondents correlate with SME match weights. There are two ways the SME results 

can correlate.  

First, the human and SME results could place the same relative weights on certain 

device matches. For example, both the human and SME could think that the pen is 

more like a hammer than it is like a sponge.  

Second, the human results can lend support to the DC or EC representation if the 

reasons the humans are using match with the representation that SME uses, and if the 

human's and SME’s match weights correlate. We might get this result if the human 

thought the pen was most like a sponge because they both interact with liquid and if 

SME marked them as most similar because the pen and sponge both interact with a 

human's hand. Though the reasons are not exactly similar, they both involve EC 

reasoning: i.e., about how the device interacts with the environment.  

To gather this information from human respondents, we use two techniques: 

repertory grids and a questionnaire [Hart, 1986]. The respondents are a volunteer 

group of engineers. 

The repertory grid technique provides several benefits: 
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• It is a proven technique that allows respondents to give information about the 

similarity of different devices in a group.  

• The result of collecting the grid information is a “percent similar” measure 

describing the human’s evaluation of device similarity. After normalization, it 

can be compared to SME output which also reports how similar devices are. 

• As part of the grid creation process, respondents give reasons why they 

differentiated one device from another. This information can be classified as 

DC or EC, lending support to that approach.  It can also be compared directly 

to the lower level matches in the computer results. 

• A good computer tool is available that makes collection of repertory grids 

relatively easy [Shaw and Gaines, 2005]. 

6666.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure.1 Experimental Procedure    

The experimental procedure provided a way for human respondents to describe 

similarities between different clock components and a way for them to rate the novelty 

of matches made from those clock components. To complete the procedure, the 

respondents first read information about clocks, then completed a repertory grid, and 

finally filled out a questionnaire. This section describes rationale and additional 

details about the human experiment. For details about the repertory grid technique see 

section 2.3. 

6.1.1 Experimental Setup 

Setting up the human experiment required several considerations. The experiment 

addresses these considerations while trying to make sure that the respondents could 

perform well and the experiment did not take longer than one hour. First, the 

experiment required a set of clock components that would allow the computer and the 

human to discover a wide range of similarities. The set of components also needed to 

be small enough so the experiment did not overwhelm the respondents with too much 

information. Second, the respondents needed to understand some background 

information in order to make judgments about the clock components. Finally, the 

experiment needed to be sequenced such that the respondents would perform best on 

each task. 
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The experiment used six clock components that were identical to the ones used in 

the computational experiment. These were: digital power provider, digital timebase, 

digital gear, pendulum power provider, pendulum gear, and pendulum face. There are 

several reasons why the experiment used clock components and why the experiment 

used these particular clock components. 

Preliminary experiments with simpler examples, such as pens and sponges, 

indicated that the respondents were using reasons that we could classify as DC or EC. 

However, many of their reasons were focused on surface features. The clock examples 

subsequently adopted have similar functions, but very different surface features. 

Therefore, the respondents tend to focus their attention on the function of the clock 

components, which is what we want. For example, one respondent created a repertory 

grid construct called “display converter” which is refers to the function of the clock 

component. 

The experiment used an equal number of components from the pendulum and 

digital clocks. This meant that the respondents did not have an advantage if they 

understood one clock better than another.  

The set of clock components contained either one pendulum or digital clock type or 

both types for each generic clock component. Table 6.1 shows which types were 

included in the set of clock components. 

Generic clock component Types included (Pendulum and/or digital) 

power provider pendulum and digital 

time base digital only 

gear pendulum and digital 

face pendulum only 

Table 6.1: shows the type of clock components included in the human experiment. 

The experiment included both versions of the power provider and gear, but only the 

digital version of the time base and the only pendulum version of the face clock 

component. Having both similar and dissimilar versions of components allowed the 

possibility of the respondents observing a wider variety of similarities and differences. 

For example, the respondent observations could be “both versions of the gear convert 

a signal to a periodic signal, but the pendulum one uses mechanical force” or “the face 

is observed by an external entity but both versions of the gears are involved in the 
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internal workings of the clock.”  

Keeping the number of clock components to a minimum kept the respondents from 

being overwhelmed and also helped keep the experiment time short. If the 

respondents had to consider too many devices they might not have been able to think 

as deeply about the devices they were evaluating. Thus, keeping them from being 

overwhelmed should increase the quality of their evaluations. Since the respondents 

took time to evaluate each component based on each of the six constructs they 

created, adding more components increased the overall repertory grid collection time. 

In an experiment with six clock components, the respondent would have to make 36 

ratings, but with eight it would be 48. Our observation was that it took the 

respondents about 1 minute to come up with a construct and then a least 30 seconds to 

create an average rating. Thus, reducing the number of components saves about 6 

minutes of respondent time.  

 The second consideration the human experiment required was ensuring the 

respondents had adequate understanding of how clocks work. To accomplish this, the 

respondents had to read articles about clocks are part of the experiment. These articles 

were the same ones that we used to create the representations for the computational 

experiment, taken from How Digital Clocks Work [Brain, 2005a] and How Pendulum 

Clocks Work [Brain, 2005b]. Also, during the experiment the respondents had a 

schematic for the pendulum and digital clocks that they used throughout the 

experiment. Appendix B shows these schematics. Giving them all this information 

should bias their comparisons. This was intentional because we wanted the 

respondents to use the same information the computer used as much as possible. 

Since the respondents were engineers, they had little trouble understanding the 

examples, given the documentation. Despite this, they were still allowed to ask questions to 

clarify the schematics or their understanding of the clocks. For example, they asked 

clarifying questions such as “are the two div10’s the same object or are they 

different?” or “what does tb mean”? They also asked for simple explanations of what 

the diagram was showing like “I don’t understand what the stopper is for.” In general, 

however, the respondents understood the clocks well and only asked one or two 

questions during the experiment. 
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The last the experimental consideration was determining the order in which each 

respondent would complete the tasks. The experimental procedure was to first allow 

the respondents to read the background material about clocks. Next, the experimenter 

collected a repertory grid and then had the respondent fill out a questionnaire. Giving 

them the articles about clocks first gave them the background knowledge they would 

need in the experiment. Collecting the repertory grid before the questionnaire was 

important because it allowed the respondents to determine for themselves how the 

devices relate to each other. Thus, when they filled out the questionnaire, they were 

able to compare the computer’s answers to their own and be better able to judge the 

novelty of them. 

 This sequence seemed to work well for allowing the respondents to have the right 

knowledge to perform the experimental tasks. We found that the allotted 15 minutes 

was an adequate amount of time for the respondents to read the documentation 

because most were done reading the documentation within that amount of time.  

 The respondents were able to understand the workings of the clocks because the 

respondents seemed to have the right kind of mental models for the clocks. They 

mentioned words like “divider” without needing prompting from the experimenter.  

 Our observations of the respondents filling out the questionnaire show that 

performing the repertory grid before the questionnaire was advantageous. Many of the 

respondents were able to fill out the questionnaire quickly, in less than 10 minutes. 

Also, some of the respondents, such as #7, did not need to refer to the schematics 

while they filled out the questionnaire. 

In summary, the experimental procedure had 3 steps: 

1. Respondents review material on clocks for 15 minutes. 

2. Respondents complete a repertory grid. 

3. Respondents complete a questionnaire. 

The next two sections will describe steps 2 and 3 in more detail. 

6.1.2 Repertory Grid Collection 

After looking over the documentation about clocks the respondents’ second task was 

to complete a repertory grid using the Rep IV software. This involved three steps, 
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introducing the respondent to the software, collecting the first four constructs, and 

collecting the final two constructs. 

Rep IV is not a complicated piece of software to use. The main challenge for a 

respondent is to know what kinds of questions it will ask and how to select constructs 

properly. To give the respondent this understanding, the experiment required the 

respondent to practice completing two constructs of a grid for some practice data 

about fruits and vegetables. During the practice, the experimenter clarified that the 

respondent should try to select constructs that applied to all items. This practice 

helped to get the respondent familiar with the software.   

After the respondent completed the practice grid, the respondent began with the 

real experiment by collecting the first four constructs from the clock components 

dataset. The Rep IV facilitated this by asking the respondent to evaluate three 

elements at a time. These sets of three elements are called triads. Each element in Rep 

IV was a clock component. Every respondent received the same first four triads to 

generate the constructs. These four triads were dependent on the order in which the 

clock components were entered into Rep IV.  

Each respondent except respondent #1 received the clock components in the same 

order. Respondent #1 was a special case because he was the first respondent. After 

observing the results from respondent #1 and respondent #2, each respondent 

consistently received the elements the order that was used with respondent #2. 

The last two constructs were different for each respondent. As described in section 

2.3.2, if Rep IV determined that two elements were more than 80% similar, it asked 

for a clarifying construct. If all elements were less than 80% similar, the experimenter 

commanded Rep IV to generate an additional triad. The experiment always ended 

once six constructs were collected.  

6.1.3 Questionnaire 

The goal of the questionnaire is for the respondents to evaluate the novelty of the 

computer matches between components of the pendulum and digital clocks. Preparing 

the questionnaire required several considerations. First, the questionnaire required a 

rating scale. Second, the questionnaire required a way to present the information so 

that the respondents would understand how to properly complete it. Lastly, the 
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questionnaire required some test questions which needed to be based on the gmaps in 

the computational experiment. Appendix C.1 contains the final questionnaire that was 

used. 

The respondent rated each match on the questionnaire as being low, medium, or 

high novelty. This rating system has three choices because it allows the analysis to 

discern when the respondent had a strong opinion about the novelty of the match. If 

the respondents did not have a strong feeling about the novelty of the match, we 

assumed that they would select medium novelty. Thus, the analysis should concentrate 

on the high and low results.  

There are two issues with making sure that the respondents understood how to 

properly make novelty judgments. First, based on Besemer and Treffinger’s 

definitions [1982], which are described in section 2.4.1, novelty is only one type of 

creativity. Second, Besemer and Treffinger show that giving judges of creativity a set 

of criteria in which to judge creative products will improve the consistency of the 

ratings. Thus, the questionnaire needed to be clear about the precise meaning of what 

novelty meant and how to judge it. Before beginning the questionnaire, the 

experimenter described the meaning of novelty and gave examples of how to judge 

the matches they were about the evaluate. These instructions are included in beginning 

of the questionnaire (Appendix C.1). The main concepts that the respondents needed 

to understand were that the correctness of the match should not influence their 

judgment since then they would be evaluating logical correctness instead of novelty, 

and also that they should rate a match higher if the match was surprising to them or if 

it was something they would not have thought up easily. 

The other issue with making the questionnaire’s goals clear was turning the output 

from the computer into a human readable format that emphasized the match 

hypotheses that are contained in the match. To accomplish this, the questionnaire 

separated the concepts in a match into categories and presented them in a table format. 

Figure 6.1 shows a sample question. 
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Figure 6.1 a sample question from the questionnaire.  

Figure 6.1 shows the three tables that each question included. The categories were 

“devices similar”, “flows similar”, and “behaviors similar.” The table format 

emphasized that the match was saying that the item on the left is similar to the item on 

the right. For example, the flow “electric signal” is similar to “torque” and the 

behavior “import signal tbdiv6’ is similar to “import torque secondhand.” 

The selection of questions needed to vary two different dependent variables while 

minimizing other factors which might add noise to the results. The two dependent 

variables were whether the match was EC or DC and how much weight the computer 

assigned to the matches. The questions also had to allow the respondent to make 

relative comparisons since creativity is a relative judgment. The experiment needed to 

accomplish this while keeping the number of questions low so that the respondents 

could complete them in a reasonable amount of time.  

Table 6.2 shows the classification for each of the eight questions on the 

questionnaire.  

3. digital timebase :: pendulum face  

___low   ___medium   ___high 

 

Devices similar: 

tbdiv10 minutehand 

tbdiv6 secondhand 

 

Flows similar: 

electric signal torque 

electric force  torque 

 

Behaviors similar: 

import electric force tbdiv10 import torque minutehand 

import signal tbdiv6 import torque secondhand 
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Question Weight Type Gmap weight 

1 High EC 8.422 

2 Low EC 4.4068 

3 High DC 7.1871 

4 Low DC 11.0076 

5 High DC 13.21 

6 Mid EC 7.406 

7 High DC 14.0506 

8 High EC 8.1836 

Table 6.2: question number, SME weight, question type, gmap weight 

The questions included an equal number of DC and EC types with a variety of 

weights. The weights were classified as either high, mid, or low according to their 

relative gmap weight among the list of gmaps for a particular match. When the chosen 

match was the highest value in the list of gmaps, it was classified as “high,” if the 

match was the lowest, it was coded as “low” and if there was a match in between high 

and low, it is coded as “mid”. Thus, these measures relate to the relative value of the 

gmaps, not to the absolute values. 

Table 6.2 shows the resulting weight classifications. There are three high DC 

weight, two low EC weight, one low DC weight, one low EC weight, and one mid EC 

weight. The distribution of weight types is not ideal, since the type of weight is not 

evenly balanced between DC and EC representations and the number of high, mid, 

and low is not the same. However, the selection of gmaps was limited by the selected 

clock components and by the matches that were actually available. The resulting 

questions are the best balance of these factors. 

The questions are always between components of the pendulum and digital clock 

types because we thought that those matches would have the greatest potential for 

being novel since they are cross domain matches. 

The selection of which clock component matches to include was influenced by 

wanting to control the number of dependent variables being varied. One of the 

dependent variables we wanted to reduce was the effect of having different clock 

components, since having more clock components would reduce the number of 

relative comparisons the respondents could make. Thus, all the matches in the 

questionnaire involved the digital timebase and the questionnaire included multiple 
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questions comparing the same pair of clock components. For example, questions 1, 2, 

and 3 all compared the digital timebase to the pendulum face. Questions 1 and 2 were 

EC, question 3 was DC, question 2 was low value, and questions 1 and 3 were high 

value. The only difference between question 1 and 2 is the value. The only difference 

between 1 and 3 is its question type. 

Another factor we wanted to minimize was the respondents’ unfamiliarity with the 

clock components mentioned in the questionnaire. Being unfamiliar with the clock 

components would make it hard for the respondents to judge novelty. The 

questionnaire minimizes unfamiliarity by containing questions about clock 

components that the respondents were familiar with from the repertory grid 

experiment. 

A final factor we wanted to minimize was a respondent’s bias towards one 

particular clock component, thus the questions include comparing the digital time 

base to the pendulum face, pendulum gear, and pendulum power provider. 

One potential bias in our questionnaire was the fact that the respondents had much 

more knowledge than the computer did and therefore, the computer could not possibly 

come up with matches that respondents thought were novel. In fact, one respondent 

thought that all of the computer matches were not novel. The computer was at a 

disadvantage because it only has the knowledge that we encoded in it, which is 

limited. However, this effect is reduced because the computer’s and respondents’ 

knowledge were both based at least somewhat on the same articles. Also, there are not 

too many different ways to represent the functions and workings of the clocks. 

6666.2 Results and Analysis.2 Results and Analysis.2 Results and Analysis.2 Results and Analysis    

This section contains analysis of the repertory grid and questionnaires collected from 

ten respondents between November and December 2005. The results include an 

analysis of the repertory grid constructs and the similarity measures. They also include 

analysis of the question representation types and question gmap weights. Each section 

describes the results and how they were analyzed.  
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6.2.1 Summarizing Constructs 

Each respondent contributed six constructs during the repertory grid elicitation. One 

goal in the human experiment was to try to determine if there was a correlation 

between the reasons people gave and the computer results. Another goal was to 

determine if humans were thinking more in DC terms or more in EC terms. To do 

this, we had to classify all the human constructs as either DC, EC, or neither. 

 We classified the constructs in a two step process. First, we grouped the constructs 

into categories without determining their classification. Each of the categories had a 

central theme. Once the constructs were categorized, we characterized the individual 

constructs as DC, EC, or neither according to the following criteria: 

• The construct is EC if the construct required knowledge of the environment in 

order to understand or make a judgment based on it. 

• The construct is DC if the construct only required knowledge of the clock 

component to understand or make a judgment based on it. 

• The construct is neither if the respondent was making a superficial judgment 

that did not require much thought. An example of a superficial constructs is: 

“has two words in it.” In this case, the respondent was referring to the way the 

clock component was represented on the page. 

• The construct is neither if the construct was the result from obvious use of our 

experimental setup. For example, “part of pendulum vs. part of digital” is 

neither since it was related to an artificial grouping made by the experiment, 

not by the respondents. It also was part of nearly all the respondents constructs, 

which confirms that it is an obvious construct. 

6.2.2 Analysis of Constructs 

The result of this analysis was 16 categories. The respondents had 18 DC constructs, 

31 EC constructs, and 11 constructs that were neither. Appendix D.2 contains the 

categories and listing of the respondents constructs. Figure 6.2 shows the counts of the 

constructs of each type per respondent for each question representation type. 
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Figure 6.2: classification of respondent constructs per question representation type. 

Based on the counts, the respondent who had the most EC reasons was respondent 6. 

The respondents who had the most DC reasons were respondent 5 and 7. 

6.2.3 Percent Similar Analysis from Repertory Grid 

We used the “percent similar” measure generated by the repertory grids collected from 

the respondents, and compared that measure to the normalized highest gmap weight 

generated by SME. Each repertory grid had 6 devices, making 36 possible evaluations 

between devices. 

 For example, figure 6.3 shows the grid from respondent #7. 
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Figure 6.3: grid for respondent #7 

Using the formula described in section 2.3.1, the percent similar between the 

pendulum power provider and digital power provider is 66%. The data for all 

respondents can be extracted from the grids in Appendix D.1. 

 Although percent similar can range between 0 and 1, it should not be directly 

compared to SME data since the repertory grid collection technique asks for 

clarification when similarity levels are above a certain percent. This makes the 

percentages artificially low. Therefore, we computed match rankings based on the 

percent similar measures generated by SME and the repertory grid. 

 The rankings are between the pairs of matches that are possible between the clock 

components. Table 6.3 shows a sample set of matches and what their rankings would 

be. 

From To Rating Rank 

pendulum power provider pendulum time base 0.5 3 

pendulum power provider digital time base 0.825 1 

digital face pendulum face 0.72 2 

Table 6.3: example of how match ratings get turned into ranks by the statistical methods. 

 We looked for correlations between each of three possible data sets and each of the 

10 individual respondents. The data sets are DC, EC, and BOTH. We use the 

Spearman rank order test to detect correlation between the datasets and the Wilcoxon 

signed rank for testing that the medians of the differences between the datasets are 

different. The correlation are shown below in figure 6.4. 
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Figure 6.4: correlation coefficients between the respondent and SME datasets. 

 The tests show no significant correlations between the DC and EC datasets and the 

respondents’ answers (p>0.23) and that the DC and EC datasets and the respondents’ 

answers are significantly different (p<0.1). Another observation is that, on average, 

the EC dataset is more positively correlated to the respondent data than DC. 

 For the BOTH dataset, there are two significant correlations with the answers from 

respondents 5 and 8 (p<0.1). The rest are insignificant (p>0.32). The sign rank test 

shows that the medians of the respondent 5 and 8 datasets are different from the 

median of the BOTH dataset (p>0.5).  

 Figure 6.5 shows a scatter plot for respondent #8’s match rankings. Respondent 8’s 

match ratings had a correlation value of 0.41 which means that the BOTH dataset 

results can account for 16.72% of respondent #8’s responses. Although the correlation 

can be hard to see, there are some specific cases where results from respondent #8 and 

the BOTH datasets had a match at the exact same rank. For example, the match at 

rank 7, which was between the pendulum face and pendulum power, is ranked exactly 

the same. Sharing the same rank means that both the computer and respondent #8 

thought that this match ranked the same among all the other matches.  
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Figure 6.5: rank order correspondence between device matches from respondent #8 and the BOTH 

dataset. The figure shows, for example, that one of the device matches is ranked 9th in the BOTH 

dataset, but is ranked 14 in respondent #8’s data. Ties in the ranks are possible, which can cause 

multiple data points on a single column or row. 

6.2.4 Respondent Constructs Characterizations Compared to Respondent 
Correlations  

It is interesting to try to determine whether the respondents’ constructs given in the 

repertory grid correlate with the representation type used to generate the SME results. 

This would enable us to determine if the respondents were thinking more in DC or EC 

terms.  

 The correlation coefficients measure how well the respondent’s similarity ratings 

correlate with the results from the DC and EC datasets. Therefore, if the respondent’s 

construct characterizations correspond to the correlation coefficients, we can conclude 

that the respondent’s constructs are more DC or EC and thus the respondent is 

thinking more in DC or EC terms. We performed three types of analysis to determine 

this.  

 The first analysis we did was we compared the respondent who had the highest 

number of DC or EC constructs with the correlation coefficients. The respondent with 
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the most EC constructs had the strongest correlation with the EC dataset. Similarly, 

one of the respondents with the most DC constructs had the strongest correlation with 

the DC dataset. This kind of correspondence did not always hold, however, the other 

respondent who was most correlated with the DC dataset had 4 EC constructs and 2 

DC constructs.  

 The second analysis we did was to see if the characterization of the respondents’ 

constructs predicts which dataset they will be more correlated with. The data shows 

that this occurred in the data from 6 of the 10 respondents. 

 The first and second analyses only try to determine if the results from respondents 

are more like DC or EC results. In reality, the respondents’ reasons are probably 

somewhere in between the two extremes. To quantify this better the data requires a 

third analysis using a statistic that is higher if the respondent’s ratings are more EC 

and lower if the ratings are more DC. 

 The analysis has a method for computing this statistic for both the correlation 

coefficients and the respondent constructs. For correlations, the analysis computes this 

statistic by a subtracting the DC correlation coefficient from the EC correlation 

coefficient. For the respondent constructs, the analysis subtracts the number of EC 

constructs from the DC constructs. The resulting data are suitable for a spearman rank 

order test. Tables 6.4 and 6.5 show the correlation coefficients and the construct 

characterizations along with the measure of how DC or EC the numbers are. For 

example, respondent 1 has an statistic of -0.04 which means the similarity ratings are 

slightly more DC. Respondent 9 has a statistic of 2 which means the constructs are 

more EC than DC. 
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respondent EC DC EC – DC 

1 0.09 0.13 -0.04 

2 0.08 -0.05 0.13 

3 0.12 -0.04 0.16 

4 0.087983 0.127415 -0.03943 

5 0.079149 0.24091 -0.16176 

6 0.174911 -0.12282 0.297728 

7 0.049245 -0.07517 0.124414 

8 0.114019 0.226566 -0.11255 

9 0.108787 -0.05996 0.168743 

10 0.08424 -0.14062 0.22486 

Table 6.4: correlation coefficients of the respondent’s similarity ratings for EC and DC. The third 

column is the EC correlation coefficient minus the DC correlation coefficient. The higher the number 

the more EC the respondent’s similarity ratings are, the lower the number the more DC the ratings 

are. 

 

respondent  EC DC EC – DC 

1 3 1 2 

2 3 2 1 

3 4 1 3 

4 4 1 3 

5 2 4 -2 

6 5 0 5 

7 1 4 -3 

8 2 1 1 

9 4 2 2 

10 3 2 1 

Table 6.5: construct characterizations of the respondent’s constructs for EC and DC. The third column 

is the number of EC constructs minus the number of DC constructs. The higher the number the more 

EC the respondent’s constructs are, the lower the number the more DC the ratings are. 

The results from the spearman rank order computation are that the two statistics have 

a medium strength, positive correlation (r = 0.46) with a significance of (p<0.16). 

Figure 6.6 shows the scatter plot of the ranks of the statistic computed for the 

correlation coefficients and the respondent constructs.  
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Figure 6.6: rank order correspondence between respondent constructs and correlation coefficients. 

See the caption of Figure 6.5 for a description of the plot format. 

 The high correlation coefficient between the two datasets means that there is a 

reasonable chance that there is a correlation between the characterizations of the 

respondents’ constructs and how much they were thinking in DC and EC terms. The 

results show this because when the correlation coefficient indicates that a respondent 

is using a certain amount of combination of DC and EC constructs, the classification 

of the respondent’s constructs will also be about the same amount. For example, the 

statistics for respondent #6 both ranked it 10, which means the respondent has the 

highest amount of EC constructs. From this we can say that since respondent #6’s 

constructs correlated with the correlation coefficients, respondent #6 was thinking 

100% in EC terms. 

 Since the two measures are not totally correlated, they might not agree all the time, 

and thus, the construct percentages would not be exactly correct. For example, based 

on the correlation coefficients, respondent #5’s results are ranked 2 and are most like 

results generated by the DC dataset. Based on the constructs, respondent #5’s results 

have a ranking of 1 and are 66% DC. The two results are not ranked the same, 

therefore there may be some error in the 66% rating.  
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6.2.5 Questionnaire 

Overall, the respondents made 21 high, 30 medium, and 29 low novelty ratings. The 

analysis must determine the effects of the two dependent variables, the question type, 

DC or EC, and the question weights, high or not high. As described in section 6.1.3, 

each question was were derived from a match made from either a DC and EC 

representation of a clock component. The high or not-high classification was 

determined based on the relative weight of the match used in the question. For 

example if a particular match produced three gmaps with weights 1.5, 3.4, and 5.5, the 

questionnaire could use the 1.5 or 3.4 gmaps as the basis for a not-high weight 

question, and the 5.5 gmap for a high weight question. 

 First, we expected that EC matches would be more novel because EC can make a 

wider variety of matches. However, the analysis shows that the respondents thought 

DC matches were more novel. Figure 6.7 shows 12 of the 21 high novelty ratings 

were for DC matches. 

 

 

Figure 6.7: the novelty ratings for DC and EC questions 
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 We expected that the lower the SME match weight, the more novel the respondents 

would rate the match. Since a lower weight means that the match was not a very 

strong match, we expected that lower weighted matches would seem more novel to 

the respondents. 

 The analysis also shows that lower weighted questions are more novel. For the 

purposes of this analysis, the one mid weighted question was grouped with the low 

weighted questions to form a “not-high” set of questions. As table 6.6 shows, there 

were 5 high match weight questions and 3 not-high match weight questions. Nine of 

21 high novelty ratings were given to the not-high match weight questions for an 

average of 3 high novelty ratings per not-high match weight question and 2.4 high 

novelty ratings per high match weight question. 

 high novelty medium novelty Low novelty 

high match weight q’s 2.4 4.4 3.2 

not-high match weight q’s 3 2.6 4.3 

Table 6.6: average number of novelty ratings per question class 

 In order to investigate these findings further we performed one additional analysis 

specifically directed at looking at pairs of questions where only one dependent 

variable is modified. If the results just presented are true, then the analysis should 

show the following effects between the pairs of questions in table 6.7. 

Questions Dependent 

variable 

varied 

Which 

should be 

more novel 

Result Which is more 

novel based on 

result 

Q1, Q2 low vs. high 

weight 

Q2 Q2 has one more high 

novelty rating than Q1 

Q2  

Q4, Q5 low vs. high 

weight 

Q4 Q4 had 4 high novelty 

ratings and Q5 has 0 

Q4 

Q1, Q3 EC vs. DC Q3 Q3 has one more high 

novelty rating than Q1 

Q3 

Q7, Q8 DC vs. EC Q7 Q7 has one more high 

novelty rating than Q8 

Q7 

Table 6.7: shows pairs of questions, the only variable that is modified between them, the resulting tally 

of high novelty ratings, and which is more novel based on the results. Both column 3 and column 5 

should agree. 

Thus, as table 6.7 shows, the two observations that DC is more novel than EC and that 

low weighted questions are more novel than high hold for all four pairs of questions. 

Since these same clock components were used in each pair, there was only one 
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dependent variable that was modified, and fewer factors influencing the results. The 

results provide good support for the truth of the observations, even though the 

difference for three of the pairs was only one novelty rating. 
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7777. . . . Evaluation of ResultsEvaluation of ResultsEvaluation of ResultsEvaluation of Results    

This thesis addresses the problem of determining the impact of using DC, EC, and a 

combined (called BOTH) knowledge representation. This thesis provides answers to 

several research questions, and suggests that some hypotheses are true. This section 

summarizes the results with respect to these research questions and hypotheses. This 

section also evaluates the process used to generate the results. The original research 

questions and hypotheses that were proposed in section 1.1 are shown below. 

1. Which representation produces more matches? 

 EC representations will produce more matches than DC representations. The 

BOTH representations will produce the most matches. 

2. Which representation produces higher weighted matches? 

 EC matches will be of lower weight than matches made using representations 

that are DC. BOTH matches will have the highest weights. 

3. Will DC or EC representations produce more novel matches? 

 EC representations will produce more novel matches than DC 

representations. 

4. When the level of detail is varied, are the results from questions 1, 2, and 3 

still true? 

 Yes, the results are not sensitive to the level of detail. 

5. How much do matches from each representation correlate with human 

matches? 

 Human matches will correlate best with matches from EC representations. 

6. Are human reasons for similarity more DC or EC? 

 The humans’ reasons will be more EC than DC. 

 Our computational experiment shows that our hypotheses for questions 1 and 2 are 

correct for the DC and EC representations, but not for the BOTH representation. EC 

representations produced higher weighted matches than DC representations, but DC 

representations produced higher average weighted matches. EC representations had a 

higher standard deviation than DC representations, which means that EC 
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representations produce a wider range of results than DC representations. This 

explains why matches from the EC representation have lower average match weight. 

 However, the BOTH representation did not create more analogical matches or 

matches of higher value than the EC or DC representations. Since the number of 

matches and weight of matches are normalized, much of the BOTH representation is 

not used in making analogical matches. There could also be some interference 

happening between the DC and EC representations of devices that is making it harder 

to make strong matches. The experiments also show that although the matches from 

the BOTH representation were as varied as EC, there were not as many. The 

experiments also show that adding extra DC information to EC representations causes 

them to perform worse than the EC representation alone.   

 In contrast to our hypothesis for question 3, our analysis shows that both DC and 

EC representations can produce novel results, not just EC representations. Our results 

show that DC representations can produce novel results because the respondents in 

the human experiment rated more DC matches with high novelty than EC matches. 

They also show that since the respondents rated low valued matches as being more 

novel, and EC representation produce more low valued matches than DC 

representation, EC can produce novel results. 

 Our hypothesis for question 4 was mostly correct. It was not correct for the low 

detail DC  representation because it did not have enough information to produce many 

matches. Besides the low detail DC dataset, the results show that the same trends 

occur in the low detail as in the high detail representation. 

 Our hypothesis was wrong for question 5. Although the human respondent matches 

were more correlated with EC than DC, they were most correlated with the matches 

created from the BOTH representations. 

 Lastly, our hypothesis for question 6 was correct. Our analysis of the human’s 

constructs showed that humans reasons for similarity were more EC than DC. 

7.1 Evaluation of Process7.1 Evaluation of Process7.1 Evaluation of Process7.1 Evaluation of Process    

There are three areas of our process that worked well, using the functional basis as an 

ontology, the selection of clock test examples, and the human experiment procedure.  

 First, using the functional basis as an ontology made developing the test examples 
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easier. Before discovering the functional basis, we tried to invent terms that were 

consistent in order to describe the test examples. This proved to be a time consuming 

task, because when new test examples were added, they often required new terms, 

which caused us to rethink the definitions of old terms. With the functional basis, this 

problem occurred less, and the process of writing test examples took less time. 

 The clock test examples worked well for eliciting analogies about function from 

the human respondents. When we did earlier experiments with simpler objects like 

hammers and pens, we noticed the respondents were focusing on surface features. 

With the clock examples, they had to focus on the functions since the surface features 

were so different. 

 Finally, the human experimental procedure was effective at producing interesting 

results that we could analyze. First, the humans were able to understand the clock test 

examples, and perform the tasks asked of them. Second, the resulting data was very 

similar to the computational data, and therefore it allowed for accurate comparisons. 

In addition, the reasons the respondents provided in the repertory grid allowed us to 

make conclusions about their reasoning. Thus, not only did this procedure produce 

numerical data that we could analyze, but it also produced data which we could use to 

make hypotheses about the respondents’ thought processes.  
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8888. . . . ConclusionsConclusionsConclusionsConclusions    

The purpose of this thesis was to explore the differences between DC and EC 

representations of function. To do this we created a knowledge representation and 

represented a set of clock test examples. We performed a computational experiment 

with SME and performed an informal human experiment. From these we have 

discovered some properties of DC and EC representations that may be useful for 

computer-based design systems and the designers who use them. 

 First, our experiment shows that computer-based design systems should use EC 

representations for producing many, potentially novel matches for the designer. This 

may be useful when the designer is brainstorming. Design systems should use DC 

representations when the designer is expecting to get fewer matches and wants to find 

matches that are more relevant to their work. This may occur once the designer has 

decided on many parts of the design and then just wants to make refinements. 

Chandrasekaran and Josephson [2000] say that it may be beneficial for designers to 

switch focuses from EC to DC at a certain point in the design process. This thesis 

suggests that this decision point may be when the designer wants the design system to 

change from producing many conceptual designs to producing design refinements. 

 Second, our experiment shows that a design system could use DC or EC 

representations to produce novel matches. Unfortunately, our results are inconclusive 

about whether DC or EC representations are more useful for generating novel 

matches. On one hand, the low weighted matches that EC representations create can 

generate novel results. On the other hand, DC representations, which produce few low 

weighted matches, can also produce novel matches. Thus, more work needs to be 

done in order to determine which has a greater effect on producing novel matches. 

 Third, the results show that humans may be thinking more in EC terms than in DC 

terms. There are multiple pieces of evidence to support this. First, the respondents’ 

similarity reasons are more EC than DC. Second, the humans rated DC matches as 

being more novel than EC matches. This could mean that the humans are thinking 

more in EC terms since they find DC matches more surprising and thus more novel. 

 Fourth, our computational experiments show that although combining DC and EC 
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representations together does make matches that correlate the best with human 

matches, the additional work may not be worth it. The results show that adding DC 

information to the EC representation produces comparatively fewer matches than 

when the EC representation is used alone. The main observation is that that adding 

DC information to the EC representation does not add proportionally as many 

matches. The suggested reason for this is that more interference is occurring. 

8888.1 Future Wor.1 Future Wor.1 Future Wor.1 Future Workkkk    

There are several areas of this thesis that could be expanded in future work. First, the 

DC and EC representations could be compared using a different analogy system such 

KDSA [Wolverton and Hayes-Roth, 1995] or AMBR [Kokinov and Petrov, 1988]. 

These systems use a different, non-symbolic approach to analogy making. Such work 

would have to define what DC and EC mean in terms of their network representations.  

 Second, the usefulness of analogical matches created using DC and EC 

representations could be studied in a complete analogy making system. This thesis 

only studies the results from the matching step of making analogy. To fully 

understand the usefulness of the analogical matches, they should be tested in a system 

that performs all the steps of analogy, which include analog retrieval, analogical 

inferencing, and learning. Ideally, the resulting analogies should be used for some 

task. The usefulness of DC versus EC representations should be judged based on their 

effects on the specific task. As section 2.2 shows, there are several systems that can 

perform design tasks using analogy. Our system was limited to evaluating analogical 

matches based on their structural evaluation score. This score may turn out not to be 

useful in performing a design task such as innovative design by analogy. 

 Third, the knowledge representation could have been enhanced in two ways. The 

knowledge representation could be extended to include abstractions. These 

abstractions could be the ones defined by the functional basis. For example in the 

functional basis, both import, export, and transfer are different kinds of “channel” and 

force and torque are both kinds of “energy.” Another kind of abstraction would be to 

have levels of abstraction for functions and behaviors. It would be interesting to see if 

our results hold when the level of abstraction is varied.  
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 Another enhancement to the knowledge representation would be to use a pure EC 

representation. Our EC representation was not purely EC because it did include some 

information about the device in it. For example, our representation permitted the 

behavior transmit force from weight to gear. To make this a pure EC behavior, it 

would need to change to become: transmit force to gear. In this pure EC 

representation the gear is part of the environment and the behavior is still a behavior 

for the weight. It would be interesting to compare the results from such a 

representation to the existing results. 

 A fourth area of future work is to test these results on a variety of knowledge 

representations to show that the results are not due to the particular representation 

used in this thesis or the particular person who created the test examples. Section 2.2 

shows that there are several systems that perform analogy. Each of these has a 

different knowledge representation that could be used to specifically represent DC and 

EC information. 

 Fifth, the experimental procedure used in this thesis could be used on a more 

varied set of test examples in order to verify the results recorded in this thesis. In 

particular, the test examples could be from in different domains, which have less in 

common than clock domains, in order to encourage cross-domain analogies. Also, the 

results could be verified by using a larger set of test examples. 

 Sixth, there is ambiguity in the human experiment results about whether or not DC 

or EC representations produce more novel results. There were only ten human 

respondents in the experiment. If more humans are added to the experiment the results 

would be more accurate and benefits of one representation versus the other might 

become more definitive. 

 Seventh, the respondents’ constructs could be analyzed further. In this thesis, the 

constructs were classified according to the criteria of one researcher. More work in 

trying to classify the constructs in a different way might provide a different result. 

 Lastly, there are changes that could be made to the human experiment that would 

increase the likelihood of finding strong correlations between the human matches and 

the computer matches. The human experiment shows that the BOTH representation 

most closely matches the human results. Also, the constructs the humans chose were 
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about more than just functions and behaviors. These two results hint that adding new 

types of information to the pure DC or EC representation might make stronger 

correlations. However, our computational results indicate that adding the wrong 

information may not increase the results proportionally. Perhaps if the knowledge 

representation included other primitives such as structure and attributes, the resulting 

analogical matches would more closely correlate with the human matches because 

both SME and the human knowledge representations would have more in common. 
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10101010. Appendix. Appendix. Appendix. Appendix    

AAAAppendix Appendix Appendix Appendix A Computational Experiment Computational Experiment Computational Experiment Computational Experiment    

A.1 Device Input Format 

This appendix shows the input file used to describe the pendulum and digital clocks. 

Also, this appendix describes how we encoded the part-of mapping. The file is in an 

XML (http://www.w3.org/XML/) format. It also uses abbreviations to make it 

succinct. They are listed below: 

Abbreviation Meaning 

t type 

d DC 

e EC 

n name 

beh behavior 

subfun subfunction 

sX a reference to a 

subfunction with id X 

f function 

t type 

ent entity 

d1 device1 

d2 device2 

i unique id 

<!-- beginning of a comment 

--> end of a comment 

Table of the abbreviations used in the input files 

 

Pendulum clock: 

<device n="pendulumclock"> 
 
<!-- get torque to the escapement --> 
<beh t="e" i="1" n="transmit" ent="force" d1="earth" d2="weight"/> 
<beh t="e"  i="2" n="transmit" ent="force" d1="weight" d2="weightgear"/> 
<beh t="e"  i="3" n="transmit" ent="torque" d1="weightgear" d2="escapementgear"/> 
<beh t="e"  i="20" n="transmit" ent="force" d1="earth" d2="pendulum"/> 
<beh t="e"  i="21" n="transmit" ent="torque" d1="pendulum" d2="stopper"/> 
<beh t="e"  i="22" n="decouple" d1="stopper" d2="escapement"/> 
<subfun t="e" i ="1" beh="1,2,20,21,22,3" goal="get torque to the escapement gear"/> 
 
<beh t="e"  i="4" n="transmit" ent="torque" d1="escapementgear" d2="inputgear"/> 
<beh t="e"  i="5" n="transmit" ent="torque" d1="inputgear" d2="secondgear"/> 
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<beh t="e"  i="6" n="transmit" ent="torque" d1="secondgear" d2="minutegear"/> 
<subfun t="e" i="2" beh="s1,4,5,6" goal="the torque gets to the second gear"/> 
 
<beh t="e"  i="7" n="transmit" ent="torque" d1="secondgear" d2="secondhand"/> 
<subfun t="e" i="3" beh="s2,7" goal="turn second hand" /> 
 
<beh t="e"  i="8" n="transmit" ent="torque" d1="secondgear" d2="minutegear"/> 
<beh t="e"  i="9" n="transmit" ent="torque" d1="minutegear" d2="minutehand"/> 
<subfun t="e" i="4" beh="s2,8,9" goal="turn the minute hand" /> 
 
<!-- reset function 
when the gear release lever is enabled, the escapement transmits directly to the second 

gear --> 
<beh t="e"  i="12" n="transmit" ent="force" d1="human" d2="gear-release-lever"/> 
<beh t="e"  i="10" n="transmit" ent="torque" d1="escapementgear" d2="secondgear"/> 
<beh t="e"  i="11" n="change-between" ent="torque" d1="secondgear" d2="minutegear"/> 
<f t="e" i="30" beh="s1,12,10,11,9,34" goal="turn the minute hand faster and human sees 

it" /> 
<f t="e" i="40" beh="s1,12,10,7,32" goal="turn the second hand faster and human sees it" 

/> 
 
<!-- human sees it --> 
<beh t="e"  i="32" n="transmit" ent="visual-signal" d1="secondhand" d2="human"/> 
<f t="e" i="50" beh="s3,32" goal="human sees secondhand" /> 
 
<beh t="e"  i="34" n="transmit" ent="visual-signal" d1="minutehand" d2="human"/> 
<f t="e" i="60" beh="s4,34" goal="human sees minutehand" /> 
 
<!-- get torque to the escapement --> 
<beh t="d"  i="1" n="import" ent="force" d1="weight"/> 
<beh t="d"  i="2" n="export" ent="force" d1="weight"/> 
<beh t="d"  i="3" n="import" ent="force" d1="weightgear"/> 
<beh t="d"  i="4" n="export" ent="torque" d1="weightgear"/> 
<beh t="d"  i="5" n="import" ent="torque" d1="escapementgear"/> 
<beh t="d"  i="6" n="export" ent="torque" d1="escapementgear"/> 
<subfun t="d" i ="10" beh="1,2,3,4,5,6,s36" goal="get torque to the escapement gear"/> 
 
<beh t="d"  i="7" n="import" ent="torque" d1="inputgear"/> 
<beh t="d"  i="8" n="export" ent="torque" d1="inputgear"/> 
<beh t="d"  i="9" n="import" ent="torque" d1="secondgear"/> 
<beh t="d"  i="10" n="export" ent="torque" d1="secondgear"/> 
<subfun t="d" i="12" beh="s10,7,8,9,10" goal="torque to second gear"/> 
 
<beh t="d"  i="23" n="import" ent="torque" d1="secondhand"/> 
<beh t="d"  i="24" n="rotate" d1="secondhand"/> 
<f t="d" i="1" beh="s12, 23, 24" goal = "show 1 second increment"/> 
 
<beh t="d"  i="11" n="import" ent="torque" d1="minutegear"/> 
<beh t="d"  i="12" n="export" ent="torque" d1="minutegear"/> 
<beh t="d"  i="21" n="import" ent="torque" d1="minutehand"/> 
<beh t="d"  i="22" n="rotate" d1="minutehand"/> 
<f t="d" i="2" beh="s12, 11, 12, 21, 22" goal = "show 1 min increment"/> 
 
<beh t="d"  i="13" n="import" ent="torque" d1="stopper"/> 
<beh t="d"  i="14" n="export" ent="force" d1="stopper"/> 
<beh t="d"  i="15" n="import" ent="force" d1="pendulum"/> 
<beh t="d"  i="16" n="export" ent="torque" d1="pendulum"/> 
<subfun t="d" i="36" beh="13,14,15,16" goal="actuate the pendulum"/> 
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<beh t="d"  i="17" n="import" ent="force" d1="gear-release-lever"/> 
<beh t="d"  i="18" n="stop" ent="force" d1="gear-release-lever"/> 
<beh t="d"  i="19" n="change" ent="torque" d1="secondgear"/> 
<beh t="d"  i="20" n="change" ent="torque" d1="minutegear"/> 
<!-- don't record change torque on the sec and min hands --> 
<f t="d" i="300" beh="s10,17,18,19,23,24" goal="set second hand"/> 
<f t="d" i="400" beh="s10,17,18,19,20,21,22" goal="set minute hand"/> 
</device> 

 

Digital clock: 

<device n="digitalclock"> 
<!-- this is a clock that has a two digit seconds display --> 
 
<beh t="d" i="1" n="import" ent="eforce" d1="plug"/> 
<beh t="d" i="2" n="export" ent="eforce" d1="plug"/> 
<beh t="d" i="3" n="import" ent="eforce" d1="bridge"/> 
<beh t="d" i="4" n="export" ent="eforce" d1="bridge"/> 
<beh t="d" i="5" n="import" ent="eforce" d1="diode"/> 
<beh t="d" i="6" n="change" ent="eforce" d1="diode"/> 
 
<beh t="e" i="1" n="couple" d1="plug" d2="wall"/> 
<beh t="e" i="2" n="transmit" ent="eforce" d1="plug" d2="bridge"/> 
<beh t="e" i="3" n="transmit" ent="eforce" d1="bridge" d2="diode"/> 
<beh t="e" i="4" n="change-between" ent="eforce" d1="diode" d2="tbdiv10"/> 
 
<!-- invented a new term called change-between which is different from change in that 

change-between specified two devices instead of one. This was done so I could make an EC 
version of change --> 

<!-- this is the power provider functionality --> 
<subfun t="d" i ="1" beh="1,2,3,4,5,6" goal="eforce out of diode"/> 
<subfun t="e" i ="10" beh="1,2,3,4" goal="eforce to tbdiv10"/> 
 
<!-- time base functionality --> 
 
<beh t="d" i="7" n="import" ent="eforce" d1="tbdiv10"/> 
<beh t="d" i="8" n="export" ent="signal" d1="tbdiv10"/> 
<beh t="d" i="9" n="import" ent="signal" d1="tbdiv6"/> 
<beh t="d" i="10" n="export" ent="signal" d1="tbdiv6"/> 
 
<beh t="e" i="5" n="transmit" ent="signal" d1="tbdiv10" d2="tbdiv6"/> 
<beh t="e" i="6" n="transmit" ent="signal" d1="tbdiv6" d2="div10"/> 
 
<subfun t="d" i ="2" beh="s1,7,8,9,10" goal="eforce out of tbdiv6"/> 
<subfun t="e" i ="12" beh="s10,5,6" goal="eforce to div10"/> 
 
<!-- gear functionality --> 
 
<!-- import signal to in and to the reset area.. what can I call that, change? --> 
<beh t="d" i="11" n="import" ent="signal" d1="div10"/> 
<!-- output it to bc and to out --> 
<beh t="d" i="12" n="export" ent="signal" d1="div10"/> 
<!-- could call this change outward, there's not distinction of in or out or which parts --> 
<beh t="d" i="13" n="change" ent="signal" d1="div10"/> 
<beh t="d" i="14" n="import" ent="signal" d1="div6"/> 
<beh t="d" i="15" n="export" ent="signal" d1="div6"/> 
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<beh t="d" i="16" n="change" ent="signal" d1="div6"/> 
 
<!--<beh t="e" i="7" n="transmit" ent="signal" d1="switch" d2="div10"/>--> 
<beh t="e" i="8" n="transmit" ent="signal" d1="div10" d2="div6"/> 
<beh t="e" i="9" n="transmit" ent="signal" d1="div10" d2="bc10"/> 
<!-- signal that the div6 should reset by changing the signal --> 
<beh t="e" i="10" n="change-between" ent="signal" d1="div10" d2="div6"/> 
<!-- here change means give a special signal for resetting the bc --> 
<beh t="e" i="11" n="change-between" ent="signal" d1="div10" d2="bc10"/> 
<beh t="e" i="12" n="change-between" ent="signal" d1="div6" d2="bc6"/> 
<beh t="e" i="13" n="transmit" ent="signal" d1="div6" d2="bc6"/> 
 
<subfun t="d" i ="3" beh="s2,11,12,14,15,25,27,21,22" goal="increment the sec tens"/> 
<subfun t="d" i ="4" beh="s7, s2,11,13,16,26,21,22" goal="reset the minutehand"/> 
<subfun t="d" i ="5" beh="s2,11,12,28,30,19,20" goal="increment the sec ones"/> 
<subfun t="d" i ="6" beh="s7, s2,11,13,29,19,20" goal="reset the secondhand"/> 
 
<!-- bc's --> 
 
<beh t="d" i="25" n="import" ent="signal" d1="bc6"/> 
<beh t="d" i="26" n="change" ent="signal" d1="bc6"/> 
<beh t="d" i="27" n="export" ent="signal" d1="bc6"/> 
<beh t="d" i="28" n="import" ent="signal" d1="bc10"/> 
<beh t="d" i="29" n="change" ent="signal" d1="bc10"/> 
<beh t="d" i="30" n="export" ent="signal" d1="bc10"/> 
 
<beh t="e" i="32" n="transmit" ent="signal" d1="bc6" d2="secTensDisplay"/> 
<beh t="e" i="33" n="transmit" ent="signal" d1="bc10" d2="secOnesDisplay"/> 
<!-- leave out position --> 
<beh t="e" i="16" n="transmit" ent="visual-signal" d1="secOnesDisplay" d2="human"/> 
<beh t="e" i="17" n="transmit" ent="visual-signal" d1="secTensDisplay" d2="human"/> 
 
<subfun t="e" i ="13" beh="s12,8,13,32,17" goal="signal to bc6 increment the sec tens"/> 
<subfun t="e" i ="14" beh="s12,s17,10,12,32,17" goal="changed to bc6 reset the sec 

tens"/> 
<subfun t="e" i ="15" beh="s12,9,33,16" goal="signal to bc10 increment the sec ones"/> 
<subfun t="e" i ="16" beh="s12,s17,11,33,16" goal="reset the sec ones"/> 
 
<!-- face --> 
<beh t="d" i="19" n="import" ent="signal" d1="secOnesDisplay"/> 
<beh t="d" i="20" n="display" ent="visual-signal" d1="secOnesDisplay"/> 
<beh t="d" i="21" n="import" ent="signal" d1="secTensDisplay"/> 
<beh t="d" i="22" n="display" ent="visual-signal" d1="secTensDisplay"/> 
 
<!-- switch --> 
<beh t="d" i="17" n="import" ent="force" d1="switch"/> 
<beh t="d" i="18" n="export" ent="signal" d1="switch"/> 
<beh t="e" i="14" n="transmit" ent="force" d1="human" d2="switch"/> 
<beh t="e" i="15" n="transmit" ent="signal" d1="switch" d2="div10"/> 
<subfun t="d" i ="7" beh="17,18" goal="hit the switch"/> 
<subfun t="e" i ="17" beh="15,14" goal="hit the switch"/> 
 
<!-- functions --> 
<f t="d" i ="100" beh="s3" goal="increment the sec tens"/> 
<f t="d" i ="200" beh="s4" goal="reset the minutehand"/> 
<f t="d" i ="300" beh="s5" goal="increment the sec ones"/> 
<f t="d" i ="400" beh="s6" goal="reset the secondhand"/> 
<f t="e" i ="1000" beh="s13" goal="increment the sec tens"/> 
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<f t="e" i ="2000" beh="s14" goal="reset the sec tens"/> 
<f t="e" i ="3000" beh="s15" goal="increment the sec ones"/> 
<f t="e" i ="4000" beh="s16" goal="reset the sec ones"/> 
 
</device> 

 

 

Part-of mapping: 

The part-of mapping information is how the test harness code knows which clock 

subcomponents are part of which clock components. For example, both the 

secondhand and the minutehand are part of the pendulum face. We hard coded the 

part of mapping information in java code so it is not an actual input file. The tables 

below show the part of mapping information. 

Device Part-of 

weightgear pendulumpower 

weight pendulumpower 

escapementgear pendulumgear 

inputgear pendulumtimebase 

secondgear pendulumtimebase 

minutegear pendulumgear 

gear-release-lever pendulumgear 

secondhand pendulumface 

minutehand pendulumface 

Part-of mapping for the pendulum clock 

Device Part-of 

plug digitalpowerprovider 

bridge digitalpowerprovider 

diode digitalpowerprovider 

tbdiv10 digitaltimebase 

tbdiv6 digitaltimebase 

switch digitalgear 

div10 digitalgear 

div6 digitalgear 

bc10 digitalgear 

bc6 digitalgear 

secOnesDisplay digitalface 

setTensDisplay digitalface 

Part-of mapping for the digital clock 
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A.2 SME Input Format 

This appendix shows the DC and EC versions of the SME input format used for the 

bridge subcomponent and also the EC version of the diode subcomponent.  

Bridge DC: 

(sme:defEntity bridge :type inanimate) 
(sme:defDescription bridge_DC 
 entities (bridge) 
 expressions ( 
((import eforce bridge ) :name *import_eforce_bridge) 
((behavior *import_eforce_bridge) :name *behavior_import_eforce_bridge) 
((export eforce bridge ) :name *export_eforce_bridge) 
((behavior *export_eforce_bridge) :name *behavior_export_eforce_bridge) 
((behavior-set  *behavior_import_eforce_bridge *behavior_export_eforce_bridge ) 
 :name *behavior_set_behavior_import_eforce_bridge_behavior_export_eforce_bridge) 
((DC *behavior_set_behavior_import_eforce_bridge_behavior_export_eforce_bridge) 

:name   *function_behavior_import_eforce_bridge_behavior_export_eforce_bridge))) 

 

Bridge EC: 

(sme:defEntity plug :type inanimate) 
(sme:defEntity bridge :type inanimate) 
(sme:defEntity diode :type inanimate) 
(sme:defDescription bridge_EC 
 entities (plug bridge diode ) 
 expressions ( 
((transmit eforce plug bridge ) :name *transmit_eforce_plug_bridge) 
((behavior *transmit_eforce_plug_bridge) :name *behavior_transmit_eforce_plug_bridge) 
((transmit eforce bridge diode ) :name *transmit_eforce_bridge_diode) 
((behavior *transmit_eforce_bridge_diode) :name 

*behavior_transmit_eforce_bridge_diode) 
((behavior-set  *behavior_transmit_eforce_plug_bridge 

*behavior_transmit_eforce_bridge_diode ) :name 
*behavior_set_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diod
e) 

((EC 
*behavior_set_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diod
e) :name 
*function_behavior_transmit_eforce_plug_bridge_behavior_transmit_eforce_bridge_diode))) 

 

Diode EC: 

(sme:defEntity bridge :type inanimate) 
(sme:defEntity diode :type inanimate) 
(sme:defEntity tbdiv10 :type inanimate) 
(sme:defDescription diode_EC 
entities (bridge diode tbdiv10 ) 
expressions ( 
((transmit eforce bridge diode ) :name *transmit_eforce_bridge_diode) 
((behavior *transmit_eforce_bridge_diode) :name 

*behavior_transmit_eforce_bridge_diode) 
((change-between eforce diode tbdiv10 ) :name *change-between_eforce_diode_tbdiv10) 
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((behavior *change-between_eforce_diode_tbdiv10) :name *behavior_change-
between_eforce_diode_tbdiv10) 

((behavior-set  *behavior_transmit_eforce_bridge_diode *behavior_change-
between_eforce_diode_tbdiv10 ) 

 :name *behavior_set_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10) 

((EC *behavior_set_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10) :name 
*function_behavior_transmit_eforce_bridge_diode_behavior_change-
between_eforce_diode_tbdiv10))) 

A.3 SME Example Raw Output 

This appendix shows the SME output for the comparison between the EC versions of 

the bridge and bc10 subcomponents. 

              SME Version 2E 
     Analogical Match from BRIDGE_EC to BC10_EC. 
 
Rule File: true-analogy.rules 
--------------------------------------------------------------------------------------------- 
# MH's | # Gmaps |      1st,2nd,Worst    |  STD  | Merge Step 3 |   CI   | RelGroups |  1-1 | 
   22  |     3   |  9.01 /  4.46 /  4.41 |  0.00 |   ACTIVE     | ACTIVE |     OFF   | FULL | 
--------------------------------------------------------------------------------------------- 
Total Run Time:    0 Minutes,  0.030 Seconds 
BMS Run Time:      0 Minutes,  0.030 Seconds 
Best Gmaps: { 3 } 
 
Match Hypotheses: 
     (0.7582  0.0000)  (PLUG DIV10) 
     (0.9488  0.0000)  (*TRANSMIT_EFORCE_PLUG_BRIDGE 

*TRANSMIT_SIGNAL_DIV10_BC10) 
     (0.7626  0.0000)  (BRIDGE SECONESDISPLAY) 
     (0.7626  0.0000)  (PLUG BC10) 
     (0.9556  0.0000)  (*TRANSMIT_EFORCE_PLUG_BRIDGE 

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 
     (0.9450  0.0000)  (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE 

*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10) 
     (0.6647  0.2682)  (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE 

*BEHAVIOR_CHANGE-BETWEEN_SIGNAL_DIV10_BC10) 
     (0.9856  0.0000)  (*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE 

*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 
     (0.7582  0.0000)  (DIODE BC10) 
     (0.7582  0.0000)  (BRIDGE DIV10) 
     (0.9488  0.0000)  (*TRANSMIT_EFORCE_BRIDGE_DIODE 

*TRANSMIT_SIGNAL_DIV10_BC10) 
     (0.7626  0.0000)  (DIODE SECONESDISPLAY) 
     (0.9426  0.0000)  (BRIDGE BC10) 
     (0.9967  0.0000)  (EFORCE SIGNAL) 
     (0.9556  0.0000)  (*TRANSMIT_EFORCE_BRIDGE_DIODE 

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 
     (0.9450  0.0000)  (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE 

*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10) 
     (0.6647  0.2682)  (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE 

*BEHAVIOR_CHANGE-BETWEEN_SIGNAL_DIV10_BC10) 
     (0.9856  0.0000)  (*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE 

*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 
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     (0.9227  0.0000)  
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE 
*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT
_SIGNAL_BC10_SECONESDISPLAY) 

     (0.9227  0.0000)  
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE *BEHAVIOR_SET_BEHAVIOR_CHANGE-
BETWEEN_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDIS
PLAY) 

     (0.7900  0.0000)  
(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE 
*FUNCTION_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIG
NAL_BC10_SECONESDISPLAY) 

     (0.7900  0.0000)  
(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE *FUNCTION_BEHAVIOR_CHANGE-
BETWEEN_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDIS
PLAY) 

 
Gmap #1:    (EFORCE SIGNAL)  (PLUG BC10)  (BRIDGE SECONESDISPLAY) 
            (*TRANSMIT_EFORCE_PLUG_BRIDGE 

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)  
(*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE 
*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 

  Emaps: (EFORCE SIGNAL) (PLUG BC10) (BRIDGE SECONESDISPLAY) 
  Weight: 4.4630 
  || # MH's: 5 || # Emaps: 3 || Max/Ave Order: 2/0.60 || Predicate Orders: (3 1 1) || 
  Candidate Inferences:   
 
 
Gmap #2:    (EFORCE SIGNAL)  (BRIDGE DIV10)  (DIODE BC10) 
            (*TRANSMIT_EFORCE_BRIDGE_DIODE *TRANSMIT_SIGNAL_DIV10_BC10)  

(*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE 
*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10) 

  Emaps: (EFORCE SIGNAL) (BRIDGE DIV10) (DIODE BC10) 
  Weight: 4.4069 
  || # MH's: 5 || # Emaps: 3 || Max/Ave Order: 2/0.60 || Predicate Orders: (3 1 1) || 
  Candidate Inferences:   
 
 
Gmap #3:    (DIODE SECONESDISPLAY)  (*TRANSMIT_EFORCE_BRIDGE_DIODE 

*TRANSMIT_SIGNAL_BC10_SECONESDISPLAY)  
(*BEHAVIOR_TRANSMIT_EFORCE_BRIDGE_DIODE 
*BEHAVIOR_TRANSMIT_SIGNAL_BC10_SECONESDISPLAY) 

            (EFORCE SIGNAL)  (PLUG DIV10)  (BRIDGE BC10) 
            (*TRANSMIT_EFORCE_PLUG_BRIDGE *TRANSMIT_SIGNAL_DIV10_BC10)  

(*BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE 
*BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10)  
(*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRAN
SMIT_EFORCE_BRIDGE_DIODE 
*BEHAVIOR_SET_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT
_SIGNAL_BC10_SECONESDISPLAY) 

            
(*FUNCTION_BEHAVIOR_TRANSMIT_EFORCE_PLUG_BRIDGE_BEHAVIOR_TRANSMIT_
EFORCE_BRIDGE_DIODE 
*FUNCTION_BEHAVIOR_TRANSMIT_SIGNAL_DIV10_BC10_BEHAVIOR_TRANSMIT_SIG
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NAL_BC10_SECONESDISPLAY) 
  Emaps: (DIODE SECONESDISPLAY) (EFORCE SIGNAL) (PLUG DIV10) (BRIDGE 

BC10) 
  Weight: 9.0078 
  || # MH's: 10 || # Emaps: 4 || Max/Ave Order: 4/1.30 || Predicate Orders: (4 2 2 1 1) || 
  Candidate Inferences:  { } 
 

A.4 Computational Experiment Raw Data 

This appendix contains raw data and summary statistics of the data used in the 

computational experiment for both the high and low detail datasets 

High complexity data: (note: our SME implementation was not able to compute 

matches involving the high detail version of the BOTH representation for the 

digitalgear. Any affected data is be marked as N/A.) 

num gmaps average stdev 
95% confidence interval for 
average 

DC 1.238946 0.322368 0.969 to 1.508 

EC 2.566369 0.755572 1.935 to 3.198 

BOTH 1.988946 0.4136 1.606 to 2.371 

average stdev         

DC 0.043522 0.030191 0.018 to 0.069 

EC 0.121214 0.039503 0.088 to 0.154 

BOTH 0.127673 0.043779 0.087 to 0.168 

average gmap weight       

DC 0.55795 0.18524 0.403 to 0.713 

EC 0.470516 0.128346 0.363 to 0.578 

BOTH 0.396742 0.073461 0.329 to 0.465 

max gmap 
weight         

DC 0.608569 0.203405 0.439 to 0.779 

EC 0.646049 0.158451 0.514 to 0.779 

BOTH 0.623298 0.149767 0.485 to 0.762 

Summary statistics for high detail dataset  

 

  DC EC BOTH 

pendulumpower 1.142857 3.571429 1.809524 

pendulumgear 1.214286 2.369048 1.97619 

pendulumtimebase 1.380952 2.047619 1.916667 

pendulumface 0.952381 2.619048 2.547619 

digitalpower 1.959184 1.571429 1.583333 

digitalgear 1.166667 3.733333  N/A 

digitaltimebase 1.142857 2 1.541667 

digitalface 0.952381 2.619048 2.547619 

Average number of gmaps for high detail dataset 
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  DC EC BOTH 

pendulumpower 0.04886 0.113636 0.179519 

pendulumgear 0.063792 0.083575 0.072573 

pendulumtimebase 0.101703 0.165139 0.170464 

pendulumface 0.01023 0.147524 0.105597 

digitalpower 0.03669 0.125547 0.091527 

digitalgear 0.028685 0.045594  N/A 

digitaltimebase 0.048667 0.141171 0.168447 

digitalface 0.009545 0.147524 0.105585 

Average standard deviation of gmaps for high detail dataset 

 

  DC EC BOTH 

pendulumpower 0.769669 0.642602 0.488142 

pendulumgear 0.414677 0.300454 0.265118 

pendulumtimebase 0.696866 0.48652 0.456867 

pendulumface 0.47522 0.550476 0.372195 

digitalpower 0.602276 0.444174 0.384429 

digitalgear 0.273718 0.269124  N/A 

digitaltimebase 0.78779 0.520303 0.438291 

digitalface 0.443385 0.550476 0.372151 

Average of average gmap weight for high detail dataset 

 

  DC EC BOTH 

pendulumpower 0.829464 0.843419 0.841239 

pendulumgear 0.477087 0.461967 0.418173 

pendulumtimebase 0.809779 0.75296 0.733953 

pendulumface 0.485384 0.720602 0.542862 

digitalpower 0.647804 0.60006 0.54428 

digitalgear 0.317759 0.371128  N/A 

digitaltimebase 0.848406 0.69765 0.739781 

digitalface 0.452868 0.720602 0.542797 

Average highest gmap weight for high detail dataset 
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Low detail dataset: 

num gmaps average stdev 

95% 
confidence 
interval for 
average   

DC 0.295238 0.061721 0.269 to 0.322 

EC 0.942143 0.236014 0.840 to 1.044 

BOTH 0.488306 0.099092 0.445 to 0.531 

average stdev        

DC 0 0 0.000 to 0 

EC 0.179626 0.092046 0.140 to 0.219 

BOTH 0.251235 0.071771 0.220 to 0.282 

average gmap 
weight         

DC 0.690712 0.152631 0.625 to 0.757 

EC 0.554337 0.156061 0.487 to 0.622 

BOTH 0.438991 0.083243 0.403 to 0.475 

max gmap weight         

DC 0.690712 0.152631 0.625 to 0.757 

EC 0.762853 0.1965 0.678 to 0.848 

BOTH 0.708088 0.135355 0.650 to 0.767 

Summary statistics for low detail dataset 
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  DC EC BOTH 

weightgear 0.333333333 1.116667 0.558333 

weight 0.333333333 1.116667 0.558333 

escapementgear 0.333333333 1.03 0.64375 

inputgear 0.333333333 1.116667 0.558333 

gear-release-lever 0.333333333 1.375 0.57 

secondgear 0.2 0.615 0.41 

minutegear 0.2 0.65 0.379167 

secondhand 0.333333333 1.116667 0.558333 

minutehand 0.333333333 1.116667 0.558333 

plug 0.333333333 0.7 0.366667 

bridge 0.333333333 1.116667 0.558333 

diode 0.333333333 0.816667 0.425 

tbdiv10 0.333333333 0.783333 0.408333 

tbdiv6 0.333333333 1.116667 0.558333 

switch 0.333333333 1.116667 0.558333 

div10 0.2 0.705 0.47 

div6 0.2 0.583333 0.318182 

bc10 0.2 0.68 0.34 

bc6 0.2 0.68 0.34 

secOnesDisplay 0.333333333 1.116667 0.558333 

secTensDisplay 0.333333333 1.116667 0.558333 

Average number of gmaps for low detail dataset 
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  DC EC BOTH 

weightgear 0 0.260253 0.340156 

weight 0 0.248352 0.337913 

escapementgear 0 0.168742 0.247488 

inputgear 0 0.248352 0.337913 

gear-release-lever 0 0.001442 0.114336 

secondgear 0 0.104799 0.16616 

minutegear 0 0.153257 0.211404 

secondhand 0 0.260253 0.252031 

minutehand 0 0.260253 0.252031 

plug 0 0.001088 0.209258 

bridge 0 0.248352 0.337913 

diode 0 0.035495 0.12888 

tbdiv10 0 0.073081 0.24799 

tbdiv6 0 0.248352 0.337913 

switch 0 0.260253 0.340156 

div10 0 0.091467 0.141004 

div6 0 0.172643 0.23946 

bc10 0 0.207607 0.267592 

bc6 0 0.207607 0.267592 

secOnesDisplay 0 0.260253 0.249374 

secTensDisplay 0 0.260253 0.249374 

Average standard deviation for low detail dataset 
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  DC EC BOTH 

weightgear 0.828887 0.613551 0.496739 

weight 0.850575 0.643483 0.518353 

escapementgear 0.850575 0.460551 0.430025 

inputgear 0.850575 0.643483 0.518353 

gear-release-lever 0.462254 1.024629 0.58609 

secondgear 0.668185 0.285384 0.266148 

minutegear 0.668185 0.466286 0.401762 

secondhand 0.500347 0.613551 0.441198 

minutehand 0.500347 0.613551 0.441198 

plug 0.850575 0.494745 0.477985 

bridge 0.850575 0.643483 0.518353 

diode 0.565652 0.513579 0.400072 

tbdiv10 0.828887 0.503121 0.476417 

tbdiv6 0.850575 0.643483 0.518353 

switch 0.828887 0.613551 0.496739 

div10 0.63043 0.260022 0.256575 

div6 0.668185 0.417643 0.346935 

bc10 0.668185 0.479936 0.377618 

bc6 0.668185 0.479936 0.377618 

secOnesDisplay 0.457441 0.613551 0.436143 

secTensDisplay 0.457441 0.613551 0.436143 

Average of average gmap weight for low detail dataset 
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  DC EC BOTH 

weightgear 0.828887 0.914068 0.868377 

weight 0.850575 0.930248 0.888321 

escapementgear 0.850575 0.662219 0.706636 

inputgear 0.850575 0.930248 0.888321 

gear-release-lever 0.462254 1.025675 0.673262 

secondgear 0.668185 0.422692 0.47807 

minutegear 0.668185 0.661599 0.639624 

secondhand 0.500347 0.914068 0.721154 

minutehand 0.500347 0.914068 0.721154 

plug 0.850575 0.495539 0.627994 

bridge 0.850575 0.930248 0.888321 

diode 0.565652 0.551911 0.517006 

tbdiv10 0.828887 0.55977 0.669162 

tbdiv6 0.850575 0.930248 0.888321 

switch 0.828887 0.914068 0.868377 

div10 0.63043 0.396804 0.443412 

div6 0.668185 0.61758 0.615852 

bc10 0.668185 0.710366 0.670076 

bc6 0.668185 0.710366 0.670076 

secOnesDisplay 0.457441 0.914068 0.713164 

secTensDisplay 0.457441 0.914068 0.713164 

Average highest gmap weight for low detail dataset 

Appendix Appendix Appendix Appendix B Clock Figures For HumaB Clock Figures For HumaB Clock Figures For HumaB Clock Figures For Human Experimentn Experimentn Experimentn Experiment    

This appendix shows the schematics for the digital and pendulum clocks that the 

respondents used during the human experiment. These diagrams are color coded in 

order to show which clock subcomponents are part of which clock components. For 

example, in the digital clock schematic, tbdiv10 and tbdiv6 are both in the green box 

which is marked “timebase.” This shows that the two clock subcomponents, tbdiv10 

and tbdiv6, are part of the timebase clock component.  
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B.1 Digitial Clock Schematic 
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B.2 Pendulum Clock  

 

Appendix CAppendix CAppendix CAppendix C Questionnaire Questionnaire Questionnaire Questionnaire    

This appendix shows the questionnaire used during the human experiment. It also 

shows the raw data collected during the experiment. 

C.1 Questionnaire 

Name: _________ 

Date: _________ 
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Instructions: 

• I'd like you to evaluate the responses that the computer gave when evaluating 

the same devices you just did.  

• In particular, these questions are asking you to evaluate the novelty of the 

matches and the reasons behind the matches. 

• Each of the 8 questions has output from SME. There are 3 boxes for similar 

devices, flows, and behaviors. 

• Mark how novel you think it is on a scale of low, medium, and high 

• Novelty means how original the match is. If the match is something you would 

have never thought of yourself, it has high novelty, but if the match is obvious, 

then it has low novelty.  

• Do NOT evaluate the correctness of the match. The correctness of the match 

does not make it any more or less novel. 

 

1. digital timebase :: pendulum face  

___low   ___medium   ___high 

 

Devices similar: 

div10 human 

tbdiv10 minutegear 

tbdiv6 minutehand 

 

Flows similar: 

electric signal  visual signal 

electric signal torque 

 

Behaviors similar: 

Transmit signal from tbdiv6 to div10 transmit visual signal from minutehand to 

human 
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Transmit signal from tbdiv10 to tbdiv6 transmit torque from minutegear to 

minute hand 

 



  

 126 

2. digital timebase :: pendulum face  

___low   ___medium   ___high 

 

Devices similar: 

div10 Secondhand 

tbdiv6 Secondgear 

 

Flows similar: 

electric signal torque  

 

Behaviors similar: 

Transmit signal from tbdiv6 to div10 Transmit torque from secondgear to 

secondhand 

 

3. digital timebase :: pendulum face  

___low   ___medium   ___high 

 

Devices similar: 

tbdiv10 minutehand 

tbdiv6 secondhand 

 

Flows similar: 

electric signal torque 

electric force  torque 

 

Behaviors similar: 

import electric force tbdiv10 import torque minutehand 

import signal tbdiv6 import torque secondhand 
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4. pendulumgear :: digitaltimebase 

___low   ___medium   ___high 

 

Devices similar: 

gear-release-lever tbdiv10 

secondgear tbdiv6 

 

Flows similar: 

torque electric signal 

force electric force 

 

Behaviors similar: 

import force to gear-release-lever import electric force tbdiv10 

export torque from secondgear export signal tbdiv6 

import torque to secondgear import signal to tbdiv6 
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5. pendulumgear :: digitaltimebase 

___low   ___medium   ___high 

 

Devices similar: 

minutegear tbdiv10 

secondgear tbdiv6 

 

Flows similar: 

torque electric signal 

torque electric force 

 

Behaviors similar: 

export torque from minutegear export signal tbdiv10 

import torque to minutegear import electric force tbdiv10 

export torque from secondgear export signal tbdiv6 

import signal to secondgear import electric force tbdiv6 
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6. pendulum gear :: digital timebase 

___low   ___medium   ___high 

 

Devices similar: 

Secondgear tbdiv6 

Minutegear div10 

Inputgear tbdiv10 

 

Flows similar: 

torque electric signal 

 

Behaviors similar: 

transmit torque from secondgear to 

minutegear 

tbdiv6 transmit signal tbdiv6 to div10 

 

transmit torque from inputgear to 

secondgear 

transmit signal from tbdiv10 to tbdiv6 
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7. pendulum power provider :: digital timebase 

___low   ___medium   ___high 

 

Devices similar: 

weightgear tbdiv6 

weight tbdiv10 

 

Flows similar: 

force electric force 

torque electric signal 

force electric signal 

 

Behaviors similar: 

export force from weight export signal from tbdiv10 

import force weight import electric force tbdiv10 

export torque weight gear export signal tbdiv6 

import force weightgear import signal tbdiv6 
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8. pendulum power provider :: digital timebase 

___low   __medium   ___high 

 

Devices similar: 

escapementgear div10 

weightgear tbdiv6 

weight tbdiv10 

 

Flows similar: 

torque electric signal 

force electric signal 

 

Behaviors similar: 

transmit torque from weightgear to 

escapementgear 

transmit signal from tbdiv6 to div10 

 

transmit force weight to weightgear transmit signal from tbdiv10 to tbdiv6 

 



  

 132 

C.2 Questionnaire Raw Data 

This tables below show the responses for each of the respondents on the 

questionnaire. 

question # respondent1 respondent2 respondent3 respondent4 respondent5 

1                 medium medium medium medium high 

2 low high low low low 

3 medium medium low medium medium 

4 medium high high medium medium 

5 medium low medium low low 

6 low high medium high low 

7 low low high medium high 

8 low medium medium high medium 

      

question # respondent6 respondent7 respondent8 respondent9 respondent10 

1 medium medium low medium medium 

2 low low low low high 

3 medium high low high low 

4 high high low medium high 

5 low medium low medium low 

6 low medium low medium medium 

7 low high low high high 

8 high medium low high high 
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Appendix DAppendix DAppendix DAppendix D Repertory Grid  Repertory Grid  Repertory Grid  Repertory Grid     

Appendix D.1 Repertory Grid Data 

This appendix shows the graphical representation for all the repertory grids collected 

during the human experiment. Each figure corresponds to a particular respondent 

number.  

 

Repertory grid for respondent #1 

 

Repertory grid for respondent #2 
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Repertory grid for respondent #3 

 

Repertory grid for respondent #4 
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Repertory grid for respondent #5 

 

Repertory grid for respondent #6 

 

Repertory grid for respondent #7 
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Repertory grid for respondent #8 

 

Repertory grid for respondent #9 
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Repertory grid for respondent #10 
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Appendix D.2 Repertory Grid Construct Categories 

This appendix includes all the respondent constructs grouped into themes and then 

characterized as DC, EC, or neither. The constructs are in table format, where the cells 

correspond to the construct’s respondent #, left and right poles, and DC, EC, or 

neither characterization. 

 

DC categories 

theme: appearance 

description: refers to how the device looks. 

constructs: 

7 round shape stick shape appearance DC 

 

theme: complexity 

description: refers to the simplicity, complexity, or consistency of the device. 

7 most consistent least consistent complexity DC 

7 more complicated less complicated complexity DC 

10 simple machines not simple machine complexity DC 

 

theme: has feature 

description: describes a feature that the device has like "rotating parts" or "dividers". 

It is DC because it is referring to something about the device and not referring to how 

the device is interacting with the environment. 

1 does not involve electronic dividers involve electronic dividers has feature DC 

5 have rotating parts no moving parts has feature DC 

5 doesn't have conversion device both have conversion device has feature DC 

5 have divider doesn't have divider has feature DC 

10 involve divisors doesn't involve divisors has feature DC 

 

EC categories 

theme: conditions of environment  

description: refers to something in the environment that is required like human input 

or gravity. 

1 deals with lower frequencies deals with higher frequencies conditions of environment EC 

3 doesn't need human input needs human input conditions of environment EC 

7 fraction of energy constant energy conditions of environment EC 
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9 based on gravity based on electricity conditions of environment EC 

 

theme: function of clock 

description: refers to how the device relates to the functioning of the overall clock.  

6 represent time not representing time function of clock EC 

10 responsible for setting time not responsible for setting time function of clock EC 

 

theme: internal versus external 

description: refers to how the device is embedded in the clock. It has an implied 

description of the environment it is in. 

1 connected to an external powersource internal in/ex EC 

8 internal mechanism has some gui in/ex EC 

 

theme: sequence 

description: refers to the device being part of a process. 

6 middle of the process at beginning or end of the process sequence EC 

9 result source sequence EC 

 

theme: structural significance 

description: refers to how the device is positioned within the clock. 

2 both part of the gear the powersource structural significance EC 

4 close to the face close to the power provider structural significance EC 

 

theme: used in other applications 

description: refers to how the device may be used in other environments. 

2 necessary and static components can be different used in other applications EC 

 

theme: visible 

description: refers to whether or not the device is visible. Since a device can only be 

visible if it is in an environment, these constructs are marked as EC. 

1 something you look at outside inside the clock visible EC 

3 invisible visible visible EC 

4 things you can see things you can't see visible EC 

4 parts you get to see parts your don't always get to see visible EC 

10 non-visible visible visible EC 

 

Mixed categories 
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theme: flow change 

description: refers to how an input flow changes into another flow. The construct is 

DC if the flow change is about input and output. It is EC if the flow change is related 

to how the resulting flow will be used. 

4 
take a fast signal and turn it into a slow 
signal provides power flow change DC 

5 
converting main oscillator source into 
some kind of time representation providing power flow change EC 

6 convert 1 second period to the time 
converts the frequency 
to one second flow change EC 

 

theme: named function 

description: a one or two word way of naming the function. Some constructs were EC 

if they referred to how the device functioned with the other devices in the clock. Some 

were DC if they only referred to an aspect of the device and not to any role or external 

thing. For example "connecting vs. essential parts" is EC but "display vs. mechanical" 

is DC. Also, this category includes one construct that is neither because it is very 

generic. 

2 static and necessary components varied powersource named function EC 

2 escapement gear signal gear(really weightgear) named function DC 

2 display mechanical named function DC 

3 gears powersource named function DC 

3 parts of the interface powersource named function EC 

3 connecting essential parts named function EC 

4 does not do power management does power management named function EC 

7 same function different function named function neither 

 

theme: unnamed flow 

description: refers to a function, but not what kind of flow it operates on. The 

construct is DC if it just describes the process that the device is doing like "involves 

conversion". It is EC if the construct is about how the device is affecting the overall 

function of the clock like "driving force." 

9 turns one thing into something else inhibits something unnamed flow DC 

5 doesn't involve conversion involves conversion unnamed flow DC 

8 they divide no division unnamed flow DC 

8 mechanism provides power unnamed flow EC 

9 interference natural unnamed flow EC 

9 specific division driving force unnamed flow EC 
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theme: what it does to a flow 

description: refers to performing an operation on a flow. The construct is EC if it 

refers to something external or more than one device. It is DC if it does not mention 

how it effects the environment. 

5 display converter no display conversion what it does to a flow EC 

6 process the signal signal source what it does to a flow EC 

6 not on its own creating the frequency supplies the frequency what it does to a flow EC 

7 signal modifiers constant signal what it does to a flow DC 

9 manipulate the voltage raw source of power what it does to a flow DC 

10 drive the face 
doesn't immediately drive 
the face what it does to a flow EC 

 

Neither categories 

theme: not about the clocks. 

description: refers to the way the information about clocks was presented. 

8 
in a different picture far away from the 
other one in the same picture unclassified neither 

8 two words three words unclassified neither 

 

theme: pendulum vs. digital 

description: refers to the difference between being part of the pendulum clock vs. 

being part of the digital clock. 

1 both geared electric pendulum vs. digital neither 

1 mechanical electrical pendulum vs. digital neither 

2 part of the pendulum part of digital pendulum vs. digital neither 

3 digital pendulum pendulum vs. digital neither 

4 mechanical electrical pendulum vs. digital neither 

6 part of the pendulum clock part of the digital clock pendulum vs. digital neither 

8 digital pendulum pendulum vs. digital neither 

10 not digital digital pendulum vs. digital neither 

 

 


