
Security Robot

A Major Qualifying Project

Submitted to the faculty

Of the

Worcester Polytechnic Institute

In partial fulfilment of the requirements for the

Degree of Bachelor of Science

By

Timothy Hannafin, Class of 2006

Cheuk Wai David To, Class of 2006

TsungTao Wu, Class of 2005

April 27, 2006

Michael Ciaraldi
Project Advisor

i

Abstract

As robotic technology continues to advance, robots are becoming capable of

performing ever more complex tasks. Robotic workers never get tired, do not need to be

paid, and can be made to perform even the most dangerous tasks without concern. The

purpose of this project was to combine several existing technologies, wireless internet,

neural networks, and hardware controllers, into a system that can perform the job of a

night security guard.

ii

Table of Contents

Abstract .. i
1. Introduction... 1
2. Background... 3

2.1 History of Robots.. 3
2.2 History of Neural Networks.. 4

3. Methodology... 8
3.1 The Robot Hardware... 8
3.2 The Robot Software .. 11

3.2.1 Navigation System... 11
3.2.2 Robot Vision .. 12

4. Implementation ... 13
4.1 Physical Construction ... 13

4.1.1 Structure... 13
4.1.2 Custom Components.. 14
4.1.3 Wiring .. 16

4.2 Software Design.. 17
4.2.1 Hardware Interface... 17
4.2.2 Server ... 17
4.2.3 Client.. 18
4.2.4 Navigation.. 18

4.3 Neural Network... 21
4.3.1 The Learning Algorithm .. 24
4.2.3 Designing the Neural Network .. 25

5. Results... 26
5.1 Physical Results .. 26
5.2 Neural Network Results.. 26

Experiment 1:.. 26
Experiment 2:.. 27

6. Conclusions... 29
7. Future Work .. 30
8. Appendices.. 32

Appendix A: Structural Diagrams .. 32
Appendix B: Software Diagrams .. 38
Appendix C: Parts List.. 40
Appendix D: Included Files .. 41

1

1. Introduction

The job of a nighttime security guard is simple and boring; there are two basic tasks

to be done. First, they must watch security camera feeds often enough to make sure

nothing is wrong. Second, they need to patrol routes to check in person if there is

anything unusual. Both of these tasks require a large amount of time and personnel to

completely cover a very large and complicated building. And in certain instances,

performing his job might even endanger the life of the security guard. Automating these

tasks would free up time and personnel for jobs more suiting of a human.

The purpose of this project was to design and build a system to replace human

guards on security routes. Replacing human guards with robotic ones will have several

advantages. First, the owner of a property that is patrolled by robots will require fewer

human workers in that role and will be able to devote surplus employees to tasks more

suited to human-level intelligence. Second, human security guards cannot constantly be

on patrol, unlike robots which are limited only by their battery life. Thirdly, with internet

control capability, an operator can monitor the security of a property from anywhere in

the world instead of having a security guard on site. Fourth, a human guard can control

multiple robots, increasing efficiency. Lastly, in the event of a dangerous occurrence,

only an easily replaceable robot will be threatened instead of a human life. By physically

removing the human operator from a potentially dangerous environment, the robotic

security guard has the ability to save lives.

Any robot meant to replace a security guard would have to have a few key features.

First, the robot must have the ability to move autonomously and avoid obstacles such as

2

walls. Second, it would need to be capable of following defined routes like its human

counterpart. Third, a human must be able to take control of the system at any time and

pilot it to where it is needed. Lastly, and most importantly, the robot must be able to

recognize when it encounters something that warrants the intervention of a human. The

prototype built in this project meets all these requirements. It avoids obstacles and

follows a predefined route using a variety of sensors. It allows for remote control using a

client program over a wireless internet connection. And it detects anomalies by using a

neural network to analyze an image stream taken from an onboard camera.

3

2. Background

2.1 History of Robots

The word “robot” was first coined in 1921 by the Czech playwright Karel Čapek.

It comes from the Czech word “robota” meaning labor1. The Robot Institute of America

defines a robot as "A reprogrammable, multifunctional manipulator designed to move

materials, parts, tools, or specialized devices through various programmed motions for

the performance of a variety of tasks." Machines fitting this description can be dated

back to ancient Greek clepsydra water clocks through which the constant rate at which

the water flowed could be changed2. However, the earliest modern robot fitting this

description was a remotely operated boat invented by Nicola Tesla in 1898. At the 1939

World’s Fair the Westinghouse Corporation exhibited Elektro, the world’s first

operational humanoid robot3. Elektro was controlled via a pair of cables attached to his

right foot. The entire machine contained only 6 motors and could “walk” using a pair of

rollers in each foot, open and close both hands, and even smoke with the aid of a small air

pump inside the mouth.

The first autonomous robots to react to outside stimulus were built by

neurophysiologist W. Grey Walter in the late 1940s. The 3-wheeled, bubble-bodied

machines were referred to as “tortoises”. Walter’s purpose in building these robots was

1 http://en.wikipedia.org/wiki/Robot
2 http://www.britannica.com/clockworks/clepsydra.html
3 http://pages.cpsc.ucalgary.ca/~jaeger/visualMedia/robotHistory.html

4

to show how a set of simple instructions can create a complex behavior. The robots were

programmed to drive towards a light if a light was visible, back away and turn if they

bumped into something, and drive forward oscillating from side to side looking for light

if none was visible4. Walter’s experiments with these uncomplicated machines showed

that the root of impressively complex behavior can be astoundingly simple.

Today the descendants of these simple robots have permeated the modern world.

Robots do the repetitive, labor intensive jobs on assembly lines. It is estimated that by

the end of 2006, the number of industrial robots world-wide will number over 875,0005.

They do jobs too dangerous for humans, such as defusing bombs or exploring the depths

of the ocean. They even clean our houses. And in the future they will protect our

property as security sentinels.

2.2 History of Neural Networks

Humans have been studying the structure of the human brain and how it works for

thousands of years. The brain is made up of groups of neurons with roughly 100-billion

nerve cells. These nerve cells have the amazing ability to gather and transmit

electrochemical signals like the gates and wires in a computer. The electrochemical

aspect of these cells lets them transmit signals up to several feet and pass messages to

each other. With the advancement of modern electronic technology, humans were able to

mimic the behavior of these neurons with simple electric circuits. In 1943 Warren

McCulloch, a neurophysiologist and mathematician, and Walter Pitts, wrote a paper on

4 http://www.cerebromente.org.br/n09/historia/documentos_i.htm
5 http://www.ifr.org/generalInformation/missState.htm

5

how neurons work. They modeled a simple neural network according to their theory with

electrical circuits. In 1949 Donald Hebb published Organization of Behavior which

pointed out that neural pathways strengthen each time that they are used.

In the 1950’s, as the advancement of computer technology continued, it became

possible to put the theory into practice and actually model brain processes. The first

attempt, led by Nathanial Rochester from the IBM research laboratories, failed. However,

the later attempts were successful. Despite these successes, the contemporary

advancement of traditional computing drew attention away from neural networks. There

was no apparent need for a highly complex analysis structure when processing speeds

continued to jump higher. In 1956 the Dartmouth Summer Research Project on Artificial

Intelligence provided a push to both artificial intelligence and neural networks. One of

the outcomes of the process was to stimulate research in AI, and the neural processing of

the brain. After the Dartmouth Project, John von Neumann suggested imitating neural

function by using telegraph relays or vacuum tubes. Later that year, Frank Rosenblatt, a

neurobiologist at Cornell, began work on the Perceptron. The Perceptron was a hardware

device and it is the oldest neural network concept that is still in use today. A network

with a single layer of perceptrons was found to be useful for a continuous set of inputs

which it puts into one of two classes. The perceptron computes a weighted sum of the

input and subtracts a threshold then passes one of the possible values as result.

Unfortunately, the perceptron was limited and later disproved by Marvin Minsky and

Seymour Papert's 1969 book Perceptrons. The first neural network to be applied to a real

problem was MADALINE. MADALINE was an adaptive filter to eliminate echoes on a

6

phone line. This network was developed by Widrow and Marcian Hoff of Stanford in

1959. It is still in commercial use till today.

The early successes caused people to exaggerate the potential of the network.

This exaggeration also made its way to the general public. The public started to fear

what disasters these “thinking machine” would bring upon mankind. Asimov's series on

robots revealed the effects on man's morals and values when machines where capable of

doing all of mankind's work. These fears, combined with outrageous claims, and

unfulfilled promises, caused scientists and the public to start to criticize neural network

research. The funding of research was halted as a result of this criticism. This period of

stunted growth lasted until the 1980’s.

In 1982, John Hopfield of Caltech presented a paper to the national Academy of

Sciences, and revived interest in neural networks. He had a plan to not just simply mimic

the human brain but to create useful devices. With brilliant mathematical analysis, he

showed how such networks could be built and what they might be capable of. Around

that same time, the US-Japan Joint Conference on Cooperative/Competitive Neural

Networks was held in Kyoto, Japan. There, the Japanese announced their Fifth

Generation effort. The US government worried about being left behind; soon increased

funding and neural network research once again began to flourish.

By 1985, an annual meeting called “Neural Networks for Computing” was held by the

American Institute of Physics. By 1987, the first International Conference on Neural

Networks held by the Institute of Electrical and Electronic Engineer's (IEEE) drew more

than 1800 attendees. By 1989 at the Neural Networks for Defense meeting, Bernard

Widrow told his audience that they were engaged in World War IV, since "World War III

7

never happened", where the battlefields were world trade and manufacturing. The 1990

US Department of Defense Small Business Innovation Research Program named 16

topics which specifically targeted neural networks with an additional 13 mentioning the

possible use of neural networks.

Today, neural networks discussions are occurring everywhere, and many promise

a bright future on what such technology is capable of. However, the future of the

network is controlled by hardware development. This research is developing neural

networks that, due to processing limitations, take weeks to learn, and to put them into

actual use requires specialized chips. Companies are working on three types of neuro

chips - digital, analog, and optical. Some companies are working on creating a "silicon

compiler" to generate a neural network Application Specific Integrated Circuit (ASIC).

These ASICs and neuron-like digital chips appear to be the wave of the near future.

Ultimately, optical chips look very promising. Yet, it may be years before optical chips

see the light of day in commercial applications. Despite their drawbacks, the learning

capability of neural networks makes it an extremely powerful tool for information

analysis with applications limited only by the imagination6.

6 http://en.wikipedia.org/wiki/Neural_network

8

3. Methodology

Although this was primarily a computer science project, it started from scratch,

with no hardware on which on base the hardware. A robot had to be constructed that had

a high enough power to move all the robot hardware as well as the necessary surveillance

equipment. It was believed the size of robot would be relatively small because this was

only a prototype, and a smaller robot would require less power and construction expense.

The robot needed be at least high enough to offer an onboard camera enough visibility of

the hallway in front of it to se when there is a person in it. The robot would operate

wirelessly on battery power. For testing purposes, the prototype would be able to run for

at least one hour before needing to be recharged.

3.1 The Robot Hardware

Several different solutions were considered in the process of designing this

prototype security robot, the primary concerns were the cost and the ease of construction

since all team members are Computer Science majors and had little to no experience in

robot-building. To minimize complications with embedded systems, it was decided to

use an onboard computer to do the main processing and wireless communication on the

robot. There were two primary choices for the onboard processor: a laptop computer or a

mini computer based on an ITX board. The laptop was selected, after it was decided that

the portability, compactness, and preassembled form were all desirable.

9

A project in Japan was found that had many similarities to this project, a robot

that is Internet-controllable through a flash player7.

Fig 3.1-1: A robot built on a remote controlled car chassis.

From this, came the initial design; to purchase a low-price and large remote control

vehicle. Then, disassemble it and integrate the necessary control modules on the vehicles

and turn it into a functional robot. It was later decided that the poor alignments on toy

vehicles might make the robot running in a straight line a challenge, and it was

potentially more difficult to control the complex turning mechanism. It was then decided

to look into remote-control units with tank-like steering mechanisms.

A remote-control toy tank was found which was priced reasonably and at 32

inches long, was more than big enough to carry all the necessary equipment. However,

detailed information on the parts this tank used was unavailable since the manufacturer

could not be located. It was decided that this lack of information could lead to unforeseen

problems later on ad this chassis was also abandoned.

7 http://www.marumushi.com/apps/remotedriver2

10

Further into the term after an introduction from Prof. Ciaraldi, we met up with

Ken Stafford and Brad Miller, who are robotics experts at WPI, and they believed that it

could be very difficult to implement the initial ideas since retail toy units likely to have

all their electronics integrated on one circuit board. Instead, they suggested the use of a

VEX robotic kit8. These kits were designed for rapid building of simple robots. The only

parts of the kit needed for this project were the structural hardware and motors. The

movement of the robot would be provided by the Vex Robotics Multi-Speed motors.

These motors are designed to run at between 5.5 and 9 volts. A standard rechargeable 7.2

volt Nickel-Metal Hydride battery pack would supply power to the motors. At 7.2v the

max speed of the motor is about 100RPM. The stall torque of each motor is 6.5in-lbs, so

they were far from powerful, even with a motor directly driving all 4 wheels; weight

would be a major concern and the total weight should be limited to less than 10 lbs.

While researching for robotics controllers a line of robotic components called

Phidgets was found9. Phidgets makes a variety of robotic components that operate over a

USB interface, perfect for a robot with a laptop at its core. Phidgets also had a number of

similar robotics project listed on their website, clearly suggesting this robot could also be

built using these parts. The Phidget 4-Servo Motor Controller is capable of sending 4

PWM signals to motor speed controllers. This can control up to 4 motors through a

single USB port.

The Phidget InterfaceKit 8/8/8 is an interface board that allows up 8 analogue

input, 8 digital input, and 8 digital output devices to be controlled from a single USB

port. Attached to this interface are the following:

8 http://www.vexlabs.com/
9 http://www.phidgetsusa.com

11

One IR Reflective Sensor mounted on the bottom of the robot to see reflective lines

indicating checkpoints, and three IR Distance Sensors are mounted on the front and sides

of the robot for collision detection.

3.2 The Robot Software

Unfortunately, the only programming language directly supported by Phidgets

was Visual Basic 6, and it was somewhat outdated. However, a group at the University

of Calgary has developed a Phidgets interface for the .NET framework which makes

controlling the components from the C# language possible. Therefore, C# was selected

as the language for the entire project.

Navigation System

Because the robot was designed to save time on routine building checks, it needed

some sort of a navigation system that allows it to navigate preset routes autonomously. A

check point system was deemed the simplest solution. All corners, turning points, and

edges in the potential route would be marked with reflective tape. The robot would be

equipped with an infrared sensor to detect the tape. It would then just continue in a

straight line until it detected a reflective tape, indicating a checkpoint. Then it would

read from an internally stored data tree to see which way to turn to get to the next check

point, turn in that direction, and continue in a straight line again.

12

Robot Vision

This security robot also needed an artificial intelligence that would allow it to

recognize the world around it and be able detect intruders and alert the human operator.

A neural network is a highly flexable data-processing structure made up of a number of

nodes arranged in layers. The nodes of one layer may or may not trigger the nodes of the

layer below it and so on. The relationship between each node is weighted and these

weights can be adjusted automatically by training the neural network on a set of test data.

The camera would take in a continuous stream of images of what is in front of the robot,

and periodically (typically every 0.3 seconds) select one of the frames from the video

stream and feed it to neural network. The neural network should be able recognize when

a human is in the picture, stop the robot, and then alert the guards. In order to be

effective, neural networks first have to be trained. To build the training set for this

project, over 300 pictures were taken of a particular hallway. 200 of these pictures had a

human in them and 100 did not.

13

4. Implementation

4.1 Physical Construction

4.1.1 Structure

The structural components of the robot are made up mainly of pieces from an off-

the-shelf Vex robotics kit. These structural pieces are designed to fit together in any

configuration, similar in concept to an Erector Set. The pieces are held together with hex

bolts which are also part of the kit. On top of this frame rides the laptop which provides

all the processing power of the robot.

Movement is provided by four Vex Omni-Directional wheels. Each wheel is

directly driven by a Vex Continuous Spin Motor which is attached to the frame.

The three Phidgets Distance sensors are mounted directly to the frame with 6-32

machine screws and nuts. The forward sensor is mounted in the center of the front frame

rail. The left and right sensors are mounted on their respective side rails just behind the

front wheels. The reflective sensor is mounted on a slotted angle bracket facing

downward. The slot on this bracket allows the height of the sensor to be easily changed

to account for varying floor conditions.

All other components such as motor, power, and feedback controls are mounted to

one of two 6.5 x 8” perforated circuit boards which are held to the frame using strips of

Velcro for easy removal. The forward board holds the USB hub, attached with Velcro,

and the Phidgets 8/8/8 Interface, held with 4 6-32 machine screws. The rear board carries

14

the rechargeable battery pack, also attached with Velcro, as well as the Phidgets 4-Servo

Controller and 3 Phidgets Distance Sensor Interfaces all held with 6-32 machine screws.

For detailed diagrams and pictures of the physical construction of the robot refer

to Appendix A.

4.1.2 Custom Components

Since the robot uses a number of different components that were not designed to

work together, it was necessary to construct some custom parts to adapt from one system

to another.

The rechargeable battery pack and its charger both used a square Molex style

connector. However, the Phidgets servo controller is powered through a size N round

connector. This incompatibility required a male square to female round converter.

Because the voltage of the battery was already within the acceptable range of the motor

controller, the converter simply had to allow a connection between the two. The

converter was built by using 18-guage wire to directly connect the positive pin of a

female square connector to the center terminal of a male size N round connector, and the

negative pin of the square connector to the outer terminal of the round connector.

15

Fig 4.1.2-1 Battery to motor controller adaptor

The Phidgets 4-Servo Controller only uses input power to drive the motors

connected to ports 1-3; port 0 is driven by USB power. This means that if all four motors

were connected independently, one would receive less power than the rest. This,

however, would only be a problem if the Vex motors were compatible with the Phidgets

controller. But this is not the case since both the motors and the controller use a male

configuration for their 3-pin PWM connectors. Both of the power and the incompatibility

problems were solved by the construction of two female-female Y-splitters. The 3

female connectors of the Y-splitter allowed the two male components to be connected

and the Y configuration allowed two motors to be powered from the same port

eliminating any discrepancy in power. The Y-splitter also had the added bonus of

simplifying the software control of robot movement since now it was only necessary to

change one value instead of two to alter the speed of either side.

16

Fig 4.1.2 -2: Female-female PWM Y-splitter

4.1.3 Wiring

In order for the software to correctly interface with the hardware, each of the

components must be connected in a particular manner. Battery must be connected to the

power input of the motor controller. The front and rear motors on the left side must be

connected via a Y-splitter to port 1 of the motor controller. The right side motors must be

connected to port 2 in the same way (Fig A.6).

The left side distance sensor must be connected to an IR Sensor Interface which

must be connected to port 0 on the 8/8/8 sensor interface. The forward distance sensor

must also be connected to an interface which must be connected to port 1, and the right

side sensor’s interface must be connected to port 2. The reflective sensor can be

connected directly to port 4 of the interface. Both the motor controller and sensor

17

interface have to be connected via USB to the onboard hub which must then be connected

to the laptop (Fig A.7).

4.2 Software Design

4.2.1 Hardware Interface

Hardware control and sensor feedback is accomplished using the

GroupLab.Phidgets.NET package available under academic license at

http://grouplab.cpsc.ucalgary.ca/software/phidgets/. This package is a C# wrapper

around the standard VB6 Phidgets library. Using calls to this library it is possible to

change the speed of motors as well as get the values of any sensor attached to either the

Phidgets servo controller or the Phidgets Sensor interface.

The class Robot provides a wrapper for the relevant GroupLab.Phidgets.NET

calls. It provides a layer of abstraction for Robot commands such as “turn left”, “set

forward speed”, or “get sensor value”.

4.2.2 Server

The server runs continuously on the robot. The server is responsible for sending

feedback and video to the client as well as executing commands it receives from the

client. The server is controlled by the Server class which itself is basically a container for

several other objects:

An ImageServer object, responsible for sending video to the client.

A FeedbackServer object, responsible for sending sensor data to the client.

A CommandServer object, which executes commands send from the client.

A WebcamInterface object, which provides relevant webcam calls.

18

And A NeuralNetworkInterface, which loads and runs a neural network on input from the

camera.

4.2.3 Client

The remote client allows a user to connect to and control the robot from any

internet connected computer as well as view video and sensor feedback. A design

decision was made to give the client as little responsibility as possible; therefore, its

essential functions only include making a connection with the server, sending requests at

intervals for sensor values and video frames, and transmitting commands to the server.

Fig 4.2.3-1: Screenshot of the client

4.2.4 Navigation

Autonomous navigation is guided by a checkpoint system. These checkpoints are

represented by strips of reflective tape across the robot’s set path. When the robot detects

19

one of these strips it executes a set of commands defined in an external file, then

continues to drive straight.

Autonomous navigation is controlled by the AutonoDriver class which contains a

set of rules which govern the behavior of the robot based on the values of its sensors and

its current status. When an AutonoDriver object detects a reflective strip, it temporarily

turns control over to the Script class. A Script object contains a set of commands, each

one stored in a ScriptCommand object, to be executed at each checkpoint. It executes the

commands corresponding to the current checkpoint which are defined as a block in the

script, and then returns control of movement to the AutonoDriver.

As stated above the navigation instructions are read in from an external file. This

file, “default.dat”, is located in the program’s working directory. The script language is

based on a small set of simple commands with one or two arguments each.

Command Argument 1 Argument 2 Description

REP
Number of repetitions

(0 for infinite) NA Start a looped block
ENDREP NA NA Close a loop

STARTBLOCK Name NA Start a command block
ENDBLOCK NA NA End a command block
STRAIGHT Duration Speed Move forward

LEFT Duration Speed Turn left
RIGHT Duration Speed Turn right

Fig 4.3.4-1: Table of script commands

Example:

If the desired path is start down a corridor, turn left at the first corner, proceed

down that corridor to the end, turn back, drive to the corner turn right, and go back down

the original corridor:

20

Fig 4.3.4-2: Diagram of example script

The script to accomplish this would vary with hall size, floor conditions, or desired speed

but it would be similar to this:

REP,0
STARTBLOCK,BLOCK1
STRAIGHT,10,30
LEFT,3,20
ENDBLOCK
STARTBLOCK,BLOCK2
STRAIGHT,4,30
ENDBLOCK
STARTBLOCK,BLOCK3
LEFT,4,30
ENDBLOCK
STARTBLOCK,BLOCK4
STRAIGHT,10,30
RIGHT,3,20
ENDBLOCK
ENDREP

“REP,0” means this script will continue executing in an infinite loop.

“STARTBLOCK,BLOCK1” defines the start of the commands to execute when the first

= Reflective Tape

start

21

line is detected, called BLOCK1. It contains the instructions to first go straight to line up

with the hall, then to turn left to orient the robot in the right direction. “ENDBLOCK”

defines the end of this block. BLOCK2 just contains a “STRAIGHT” command,

essentially ignoring the line. And so on until the “ENDREP” which defines the end of

the loop.

4.3 Neural Network

A neural network is a form of artificial intelligence which is inspired by the way a

biological brain works. Like a human brain, it consists of a large amount of

interconnected data structures. These structures, called neurons, work in a unique way to

provide a solution to a given problem. A neural network must be preconfigured through

a learning process to a specific problem before it could provide any useable solution.

Learning in a biological system is accomplished by adjusting the synaptic connections

that exist between cells. This is also true for a neural network. The neural network in

this project was used to analyze the video stream taken from the onboard camera to look

for anomalies, such as intruders.

The advantage of using a neural network in this project is that it has an ability to

derive meaning from complex or imprecise data, such as a picture taken from a moving

robot. A properly trained neural network should be able to predict the outcome of a

given data set similar to those on which it was trained. However, again like a brain, a

neural network is a black box, that is, it is nearly impossible to determine exactly how the

result was reached.

22

A neural network is constructed with layers of neurons. A neuron is a data

structure that has at least one input, at least one output, and a firing rule. A neuron has

two modes of operation; training mode and running mode. In training mode, the neuron

is adjusted to fire when a certain condition, such as a threshold, is reached. In running

mode, data is fed into the inputs of a neuron and, based on the firing rule defined by

training; it may or may not fire resulting in the triggering or non-triggering of its outputs.

Each of the outputs of that neuron is connected to one or more of the inputs of a neuron

in the next layer. Each of these connections has a weight which is also determined during

training. This second neuron determines whether to fire based on the weighted value

from each of its inputs and its firing rule. When it fires the process repeats and so on

through each neuron and layer of the whole network.

The firing rule is an important concept in neural networks and accounts for their

high degree of flexibility. A firing rule determines on what set of input data a particular

neuron fires. To implement a firing rule for specific neuron, first input a set of data into

the neuron. Some of this data will cause the neuron to fire (the “yes” set) and some will

not (the “no” set). When a pattern which is not in either set is entered into the inputs of

the neuron, the neuron will fire if this new data has more inputs in common with the

“yes” set and will not fire if the new data has more inputs in common with the “no” set.

23

Fig 4.3-1: Structure of a neuron

The neural network in this project consists of 3 layers. The input layer is where the raw

image data is fed into fed into the inputs of the first layer of neurons in the network. The

behavior of the second or “hidden” layer is determined by the firing of the input neurons

and the weights on the connections between the input and the hidden neurons. The

output layer neurons will take their input from the output of the hidden layer. The output

from this layer is the final output from the network.

Fig 4.3-2: Relationship between three layers of a neural network

24

4.3.1 The Learning Algorithm

As mentioned above, training is an essential part of building a neural network.

The weight of each connection between two neurons must be fine tuned to minimize

difference between the expected and actual output. To do this, the neural network must

calculate how the error changes as each weight is increased or decreased this is known as

the error derivative of the weight (EW).

A back-propagation algorithm was chosen because all the neurons in the network

are linear. The algorithm computes each EW by first computing the EA, the rate at which

the error changes as the activity level of a unit is changed. For output units, the EA is

simply the difference between the actual and the desired output. To compute the EA for

a hidden unit in the layer just before the output layer, we first identify all the weights

between that hidden unit and the output units to which it is connected. Then we multiply

those weights by the EAs of those output units and add the products. This sum should

equal the EA for the chosen hidden unit. After calculating all the EAs in the hidden layer

just before the output layer, we can compute EAs for other layers, moving from layer to

layer in a direction opposite to the way activities propagate through the network. Once

the EA has been computed for a unit, it is straight forward to compute the EW for each

incoming connection of the unit. The EW is the product of the EA and the activity

through the incoming connection 10.

10 http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html

25

4.2.3 Designing the Neural Network

There was some difficulty in designing a network for this application. Initially

the network followed a design used for a self-driving car called “Shakey”, a project from

1960 at Stanford University 11. This prototype consisted of three layers, one node for

each pixel of the image in the input layer and four nodes in the hidden layer. Since it

worked well for the driving experiment, it was assumed that it would work for this

project. However, the single frame accuracy for human detection was close to 50%. The

low number of nodes in hidden layer was potentially responsible for this low accuracy.

With so few nodes in this layer it is possible that a large amount of information was being

lost. Therefore, it was decided to try a number of different designs to see which had the

best results.

The neural network library used was designed by Franck Fleurey, and

expanded for this project 12. Since it takes a substantial time to train each network

increasing with the resolution of the input image, the experiment was done using low

resolution pictures. The goal of the experiment was to find the optimal number of hidden

layer nodes to produce the most accurate results.

11 http://www.sri.com/about/timeline/shakey.html

12 http://franck.fleurey.free.fr/NeuralNetwork/

26

5. Results

5.1 Physical Results
Tests were conducted to determine the physical performance capabilities of the

robot itself.

Top Speed: .8 feet/second

Average Speed: .4-.5 feet/second

Battery life: 2.5 hours (continuous driving)

Maximum Range: 2700 feet

5.2 Neural Network Results

Experiments were conducted to determine the optimal design for the human-

detection. These experiments tested several different neural network configurations as

well as different input resolutions for their accuracy in determining when a grey-scale

video frame was of an empty hallway or of a hallway with a person in it.

Experiment 1:
300 pictures of training data with resolution 15x20.

150 empty hall way.

150 occupied hall way.

50 pictures of testing data with resolution 15x20.

25 empty hall way.

25 occupied hall way.

27

Percent accuracy (number of times the network output matched the expected output) for

both positive (person) and negative (empty) pictures versus hidden layer size as a percent

of the input layer size:

25% 50% 75% 100%
Positive 40% 53.33% 53.33% 73.33%
Negative 53.33% 66.66% 60% 86.66%

Accuracy vs Hidden Layer Size (15x20)

0

10

20

30

40

50

60

70

80

90

100

25% 50% 75% 100%

Size of Hidden Layer vs Input Layer

A
cc

u
ra

cy
 (

%
)

Positive

Negative

Experiment 2:
300 pictures of training data with resolution 45 by 60.

150 empty hall way.

150 occupied hall way.

50 pictures of testing data with resolution 40 by 65.

25 empty hall way.

25 occupied hall way.

28

Percent accuracy (number of times the network output matched the expected output) for

both positive (person) and negative (empty) pictures versus hidden layer size as a percent

of the input layer size:

50% 100%
Positive 73.33% 80%
Negative 86.66% 93.33%

Accuracy vs Hidden Layer Size (45x60)

0

10

20

30

40

50

60

70

80

90

100

50% 100%

Size of Hidden Layer vs Input Layer

A
cc

u
ra

cy
 (

%
)

Positive

Negative

29

6. Conclusions

Based on the results of the experiment, it was determined that accuracy was

proportional to both picture resolution and hidden layer size. Therefore, the highest

accuracy network tested was the 45x60 resolution with a hidden layer 100% of the size of

the input layer and this was the one finally used on the robot. It could be inferred that as

image resolution and hidden layer size increase, the network would get more accurate.

However, training time then becomes an issue. Training a single 240x320 image on an

average computer took more than a day.

This network, when finally tested on the robot itself, was found to have an

accuracy of detecting humans in the high 80 to mid 90%s when the human was within

15-20 feet of the robot. However, the network also had a very high rate of false positives.

In order to filter out the majority of false positives, a simple counter was added to the

NeuralNetInterface class. This counter keeps track of how many positive results in a row

come out of the neural network. If the result is positive on five consecutive frames, then

the alert is triggered, the robot is stopped, and the user is notified. Implementing this

filter reduced the number of false positives to a more manageable level of around 90% in

a totally empty hall.

30

7. Future Work

Despite the success of the project, there is still a lot of room for improvement

most notably in several key areas. First and most importantly, increasing in the detection

accuracy of the neural network would greatly improve the viability of the system.

Currently, the neural network can detect when a person is within 15-20 feet of the robot

with a reasonable degree of accuracy. However, even with the false positive buffer

explained in the previous section, false detections are still common. Using a higher

resolution picture as input, increasing the size of the hidden layer, or adding more layers

could all potentially increase the accuracy and range of the neural network. Barring an

increase in the power of the neural network, other detection methods could also be used.

Heat, noise, and movement are among the possible alternate methods of detecting

intruders.

The current system of navigation is inefficient. The script is stored on the robot

itself, and the user must have physical access to it in order to change the route. Enabling

the client to change the navigation script would save time and work for the user. The use

of reflective tape on the floor is neither aesthetic nor practical. Using a more error proof

and less visible method of enabling the robot to know its location is preferable. Some

such methods are wheel rotation encoding, inertial guidance, or the use of RF or other

signals.

Currently, the robot server is capable of handling only one client connection at a

time. Allowing multiple connections would mean that more than one person could

monitor the same video stream simultaneously, reducing the chance of human error.

Allowing multiple connections introduces the possibility of control conflicts. This might

31

be avoided by having a single master client, with movement control, and multiple slave

clients, with just video feed.

The forward facing camera offers only a minimal field of view to the user and the

neural network. A panoramic or wide-angle camera would give the neural network a

much better chance of spotting an intruder. Alternately, a pan/tilt/zoom camera with

controls integrated into the client would give the user far more information about his

environment as opposed to the current stationary camera.

32

8. Appendices

Appendix A: Structural Diagrams

Fig A-1: Bottom view

33

Fig A-2: Front view

Fig A-3: Right-side view

34

Fig A-4: Top view

35

Fig A-5: Top view with components labeled

36

Fig A-6: Wiring diagram of motor system

37

Fig: A-7: Sensor system wiring diagram

38

Appendix B: Software Diagrams

Fig B-1: Image flow diagram

39

Fig B-2: Command flow diagram

40

Appendix C: Parts List

Phidgets (http://www.phidgetsusa.com)

(1) 8/8/8 Sensor Interface kit - $85.00

(1) 4 Servo Controller - $63.75

(3) IR Distance Sensor Kits - $5.95

(1) Reflective Sensor 5mm - $33.05

Vex (http://www.vexlabs.com/)

Various structural pieces - $30.00

(4) Continuous Spin Servos - $80.00

(4) Omni Directional Wheels - $40.00

Other

(1) USB hub - $20.00

(1) 7.2v 3300mAh - $25.00
NiMH battery pack

41

Appendix D: Included Files

RobotClient – Project files for the remote client. Build using VisualStudio.net.

RobotServer – Project files for the robot server. Build using VisualStudio.net.

Neural Network Trianer – Training program for the neural network.

Grouplab_Phidgets_Net – Installer and installation instructions of the

Grouplab.Phidgets.Net package

CAD Files – Pro-Engineer models of the robot and its components.

Photos – Photos of the robot.

