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Integer-valued DEA super-efficiency based on directional distance function with an 

application of evaluating mood and its impact on performance 

 

Abstract: The conventional data envelopment analysis (DEA) assumes that the inputs and 

outputs are real values. However, in many real world instances, some inputs and outputs must be 

in integer values. While integer-valued DEA models have been proposed, the current paper 

develops an integer-valued DEA super-efficiency model. Super-efficiency DEA models are 

known to have the problem of infeasibility. Recent studies have shown that directional distance 

function (DDF) based super-efficiency does not seem to have the infeasibility issue. However, 

the existing DDF DEA approach cannot be directly modified to incorporate integer values under 

the concept of super-efficiency. The current paper thus modifies the DDF approach so that 

integer values can be incorporated under the concept of super-efficiency. Our proposed approach 

is then applied to evaluating mood and its impact on performance. We use both traditional 

methods as well as the new DEA model to calculate a set of scores for the constructs under the 

investigation.  These analyses extend the application of the DEA method to judgment and 

decision making.  In particular, the results show that the new DEA model is able to reveal subtle 

nuances such as the impact of mood on performance with a decision support system. 

 

Keywords: Data envelopment analysis (DEA); Efficiency; Integer; Super-efficiency; Mood 
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1. Introduction 

Data envelopment analysis (DEA) is a data-oriented technique originally introduced by Charnes, 

Cooper and Rhodes (1978) for measuring relative efficiency for peer decision making units 

(DMUs). These DMUs have multiple performance measures that are called inputs and outputs. A 

recent citation-based study by Liu et al. (2013) indicates that DEA literature’s size will 

significantly eventually grow in the coming years in many application areas. Such a projected 

growth is accompanied with new methodological development in DEA along with new 

applications.  

Standard DEA models assume real values for all inputs and outputs. However, there are 

situations when inputs and outputs have integer values. In fact, in many behavioral studies 

integer values representing an individual’s perceptions of and/or reactions to a stimulus form a 

good portion of collected data.  For example, the technology acceptance model (TAM) (Davis, 

1989), a widely used acceptance theory in information system (IS) research is composed of 

integer values only. According to this theory a user’s perception of ease of use and usefulness of 

a system can predict the user’s willingness to use the system. All three variables in this model 

(ease of use, usefulness, and intention to use) are captured as subjective self-report measures on a 

Likert-type scale (e.g., Djamasbi et al., 2010). Similarly, behavioral studies often capture a 

person’s affective state using Likert-type scales (e.g., Djamasbi et al., 2010; Djamasbi, 2007). 

For example, a person’s positive mood is often reported by integer values that represent the 

person’s “happy”, “pleased”, and/or “glad” feeling states (Djamasbi, 2007; Djamasbi et al., 2010; 

Elsbach and Barr, 1999). 

Researchers have studied the issue of modeling integer inputs/outputs in DEA. Lozano and 

Villa (2006) propose the mixed integer linear programming (MILP) model to restrict the 

computed targets to integers. Kuosmanen and Kazemi Matin (2009) later improve Lozano and 
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Villa’s (2006) model based upon a new axiomatic foundation for production models involving 

integers. One related issue is how to develop super-efficiency models when integer inputs and 

outputs are present. The concept of super-efficiency was first introduced by Andersen and 

Petersen (1993) to differentiate the performance of efficient DMUs. Super-efficiency refers to a 

situation when the DMU under evaluation is removed from the reference set. In general, the 

super-efficiency models work well under the assumption of constant returns to scale (CRS), but 

become infeasible for certain DMUs under the assumption of variable returns to scale (VRS) 

(Seiford and Zhu, 1999). This infeasibility restricts a broader use of super-efficiency method. 

While the infeasibility issue of super-efficiency under the standard DEA has been well studied 

(see, e.g., Tone, 2002; Liang et al., 2009; Du et al., 2010), super-efficiency of DEA models with 

integer values has received limited attention. Du et al. (2012) are the first and only study that 

develops an additive super-efficiency model with integer inputs and outputs. Although their 

super-efficiency model is always feasible (under VRS condition), their model requires a two-

stage procedure where the efficient and inefficient DMUs are calculated in two different 

computer runs, and their approach is based upon non-radial DEA measures. Later Chen et al. 

(2012) incorporate undesirable factors into Du et al.’s (2012) integer-valued additive efficiency 

and super-efficiency models to cope with the special cases where production outputs are 

undesirable and restricted to integer values. 

On the other hand, Ray (2008) develops a radial super-efficiency model based upon 

Nerlove-Luenberger (N-L) measure of directional distance function (DDF) (Chambers et al., 

1996). The advantage of Ray’s (2008) is that the model is based upon radial measures and does 

not pose a similar infeasibility problem in the conventional VRS super-efficiency models. The 

current paper therefore seeks to incorporate integer values into Ray’s (2008) model. We show 
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that Ray’s (2008) approach cannot be directly modified to incorporate integer values, because the 

modified model can rate all DMUs (including inefficient DMUs) being efficient or on the 

frontier. Note that the DDF requires that the inputs decrease at the same rate as outputs increase 

to reach the DEA frontier. Such a requirement becomes problematic when inputs and outputs are 

integer valued under the concept of super-efficiency. We therefore modify this particular 

requirement by assuming that inputs and outputs of a DMU under evaluation can use different 

changing rates to reach the frontier constructed by the remaining DMUs under super-efficiency. 

Our integer DDF-based model does not suffer the problem of infeasibility (under the condition of 

VRS).  

Unlike the model of Du et al. (2012), the two-stage calculation procedure is no longer 

needed in our approach. Our integer DDF-based measure of super-efficiency is capable of 

deriving a full ranking of efficient DMUs. Being able to distinguish the performance of efficient 

DMUs can not only provide decision makers with better insights into the performance of peer 

DMUs, but also help carry out further analysis for decision makings. For example, as 

demonstrated in our empirical application section, the newly developed model can be used to 

study whether decision makers in positive mood made more accurate judgments when using a 

Decision Support System (DSS). 

The remainder of the paper is organized as follows. The next section briefly presents the 

concept of directional distance function (DDF) along with the DEA super-efficiency models with 

integer values. We use a numerical example to show that DDF-based super-efficiency with 

integer inputs and outputs will produce undesirable results. We then develop our integer DDF-

based super-efficiency model that is always feasible (under the VRS condition). We then apply 

the newly developed model to examine several hypotheses that were formed based on research in 
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the area of the effective usage of a Decision Support System (DSS). Conclusions are given in the 

last section. 

 

2. Directional distance function and DEA models with integer values 

Suppose we have n DMUs with m inputs and s outputs. Unit j is represented by 

 njDMU j ,...,1 , whose ith input and rth output are denoted as  mixij ,...,1  and 

 sryrj ,...,1 , respectively. Then under the assumption of VRS, the production possibility set 

(PPS) formed from the above set of n DMUs is represented by 

   








 


njsryymixxyxT j

n

j

j

n

j

rjjr

n

j

ijji ,...,1,0,1;,...,1,;,...,1,,
111

  

Consider an input-output bundle or 
kDMU
 
 kk yx ,  and a reference input-output bundle 

 yx gg , . Then based on T, the directional distance function (DDF) is defined as (Chambers et al., 

1996): 
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The reference bundle  yx gg ,  can be chosen in an arbitrary way, which makes the DDF 

varies with reference to any specific DMU. Chambers et al. (1996) select  rkik yx ,  for  yx gg , , 

and obtain the standard DDF as 

                                                 TyxyxD kkkk   1,1:max,                                        (1) 

In DDF (1), each input is decreased and each output is increased simultaneously by the same 

proportion  . 

Ray (2008) points out that the optimal value of   in (1) is the Nerlove-Luenberger (N-L) 

measure of technical inefficiency for the evaluated DMU, whose efficiency can be calculated as 
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 1 . Ray (2008) further develops a super-efficiency model 
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We now suppose that part of the inputs and outputs are constrained to integer values. We 

follow the notations used in Kuosmanen and Kazemi Matin (2009), and denote the subsets of 

integer-valued, real-valued inputs and outputs by II , 
NII , 

IO  and NIO , respectively. We 

assume that 
II  and 

NII , as well as IO  and NIO  are mutually disjoint, and satisfy 

 mII NII ,...,2,1 ,  sOO NII ,...,2,1 . For any integer-restricted measure, its reference 

target with respect to the efficient frontier is also supposed to be an integer. Then, the VRS 

version of Kuosmanen and Kazemi Matin’s (2009) input-oriented mixed integer linear 

programming (MILP) model is developed as 
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where 


iir sss ~,,  represent slack variables, k̂  represents the input-oriented efficiency for 

kDMU , and I

ik Iix   ,~  is the integer-valued reference point for inputs from 
II . kDMU  is 
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considered efficient if the optimal value for k̂  equals one. If we remove the kDMU  under 

evaluation from the reference set, we get the super-efficiency version of (3). However, such 

super-efficiency model can be infeasible for some efficient DMUs. 

Based upon (3), the super-efficiency version of (2) can be presented as 

                                  
signinfree

OrsIis

IIiOOrss

kjnj

OrZy

Iix

Oryysy

Iixxsx

Orysy

Iixsx

Iisxxx

Orsyyyts

k

II

r

II

i

NIINII

ir

j

n

kj
j

j

I

rk

I

ik

I

rkkrkrrk

I

ikkikiik

I
n

kj
j

rjj

I

rrk

I
n

kj
j

ijj

I

iik

NI

i

n

kj
j

ijjikkik

NI

r

n

kj
j

rjjrkkrk

k
















































































,0,,0

,,0,0

,,...,1,0,1

,~

,~

,~

,~

,~

,~

,

,..

max

1

1

1

1

1



                                           (4) 

We next consider the numerical example presented in Table 1 where we have five DMUs 

with two integer-valued inputs and one integer-valued output. 

<Insert Table 1 about here> 

If we apply model (4) to the DMUs in Table 1, we have 
*

k  = 0 for all five DMUs, 

indicating that all five DMUs are on the frontier. This is obviously an erroneous result since 

DMUs C and D are dominated by DMUs A and B, respectively. This problem is caused by using 

a unified changing rate k  for both inputs and outputs, which leads to the same optimal solution 
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between DMUs A and C (or B and D). In the next section, we will modify model (4) so that the 

frontier determined by the DMUs is correctly reflected in the super-efficiency model. 

 

3. Integer DDF-based super-efficiency 

From the numerical example in Table 1, we see that both the two inputs and the single output 

cannot be moved at the same rate to the frontier due to the fact that output level is already 

efficient. This indicates that different rates x  and y  should be used for inputs and outputs, 

respectively. If DMU k is efficient, inputs should be augmented and outputs should be contracted, 

which means 0x  and 0y . On the other hand, if DMU k is inefficient, inputs should be 

contracted and outputs should be augmented, which means 0x  and 0y . These conditions 

can be incorporated by enforcing 0yx . Therefore, model (4) can be modified as  
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Due to the constraint of 0yx , model (5) is a non-linear program. However, the following 

procedure will convert it into a mixed integer linear programming problem. 

 By introducing two binary integer variables, w and z, the nonlinear constraint 0yx  

can be transformed into a set of linear constraints as follows: 
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Where M is a sufficiently large number. Note that 1w  and 0z  signify 0x  and 0y , and 

0w  and 1z  signify 0x  and 0y , respectively. Replacing 0yx  with the above set 
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of linear constraints along with the two binary integer variables, model (5) now becomes a mixed 

integer linear programming problem. 

Note that 1* x  and 1* y . We therefore define the super-efficiency score as  
*

*

1

1

y

x








. 

The higher the score, the more efficient a DMU under evaluation is. Note also that when a DMU 

under evaluation is inefficient, this score is between 0 and 1. When a DMU under evaluation is 

efficient, this score is greater than 1. When 1* y , the score diverges to infinity and we allow 

the super-efficiency score of infinity.  

Unlike the model of Du et al. (2012), the two-stage calculation procedure is no longer 

needed in our approach. 

Note that non-zero slacks can still exist after the movements represented by 
*

x  and 
*

y  

in model (5). We can incorporate a non-Archimedean infinitesimal with sum of slacks into the 

objective function of model (5) to reflect the optimal slack calculation process in the standard 

DEA model. 

 Table 2 reports the results when model (5) is applied to the numerical example in Table 1. 

The fourth column of Table 2 shows the reference point for a DMU under evaluation. Both 

DMUs A and B are efficient, and therefore their supper-efficiency scores are greater than 1. 

DMU E is inefficient, and therefore its supper-efficiency score is less than 1. Both DMUs C and 

D are on the integer frontier, and thus their super-efficiency scores are equal to 1. Note that under 

the standard DEA, C and D would be inefficient or dominated. 

<Insert Table 2 about here> 

We need to point out because of the integer-valued inputs and outputs, the DEA frontier 

is different from the one under the standard DEA model. Under the standard DEA, the frontier is 
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AB. Under the integer DEA, the frontier is expanded with other efficient points (that are 

dominated by AB under the standard DEA). In Figure 1, we have four points that are integer-

efficient within the production possibility set (DMUs A and B, and other two squared points). 

Note that the concept of integer-efficient is different from the conventional DEA efficient. The 

projection of E is E' in Figure 1. Except for DMU E, all points in Figure 1 are on the integer 

DEA frontier. However, we note that DMU C is dominated by DMU A, and DMU D is 

dominated by DMU B. This dominance is reflected by the slack value in input 1 and input 2. In 

other words, DMUs C and D are weakly integer-efficient. A DMU is integer-efficient if and only 

if there is no integer point within the production possibility set that dominates the DMU, or 

0**  yx   and all slacks are zero at optimality. Otherwise, if 0**  yx   and some slacks are 

positive, then a DMU is weakly integer-efficient.  

<Insert Figure 1 about here> 

 

We finally examine a situation when 2x  is not integer-valued in Table 1, namely, we 

assume only 1x  and 1y  are integer-valued. Table 3 reports the results. 

<Insert Table 3 about here> 

Under this situation, A, B and C are all efficient (C is weakly efficient) and their 

reference points are themselves. D' and E' are the reference points of D and E, respectively. Note 

that D' and E' are not exactly on the line segment between A and B. D' and E' are weakly efficient. 

The integer efficient points are A and B and the four squared points in between A and B in Figure 

2, when 1x  and 1y  are integer-valued. 

<Insert Figure 2 about here> 
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4. Application 

Decision making models in the information systems (IS) literature often rely on a cognitive 

framework (e.g., Davis et al., 1989; Tao et al., 2007; Benbasat and Todd, 1996). Grounded in 

empirical findings of cognitive psychology in the past three decades, a number of IS studies have 

shown that including users’ mild positive mood states in such models can provide a more 

complete picture of user behavior (Djamasbi et al., 2010; Djamasbi et al., 2009; Djamasbi 2007). 

These studies show that a user’s mild positive mood state not only can impact the user’s 

evaluation of a decision support system (Djamasbi et al., 2010; Djamasbi et al., 2009), but also 

can influence his or her effective usage of that system (Djamasbi, 2007). For example, users who 

were induced with a positive mood, compare to those whose mood was not manipulated, utilized 

more information that was provided by a DSS and made more accurate decisions (Djamasbi, 

2007). 

In this study we use our new proposed model to examine users’ decision behavior. A task 

based on Holt et al.’s (1960) model of the production-scheduling problem is used. The 

production-scheduling problem is often used in decision making studies (e.g., Djamasbi et al., 

2004; Lim et al., 2005; Djamasbi, 2007) because it is a managerially relevant problem which has 

been calibrated with actual data (Holt et al., 1956). 

4.1 Data 

Consistent with previous IS decision making studies that investigate the impact of mood on 

adoption and effective usage of decision support systems (e.g., Djamasbi, 2007; Djamasbi et al., 

2010), we included users’ positive mood in our investigations. To measure a user’s positive mood, 

we used a previously validated 3-item Likert-type self-report questionnaire which asked the 

participants to rate how accurately a number of descriptors matched their current mood 
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(Djamasbi, 2007). The participants rated on a seven-point scale (with 1 denoting “strongly 

disagree”, 4 denoting “neutral”, and 7 denoting “strongly agree”) how the words  “pleased”, 

“happy”, and “glad” described their mood. These words have been shown to reliably capture 

one’s mild positive affective states (Djamasbi, 2007; Djamasbi et al., 2010; Elsbach and Barr, 

1999). It is customary to calculate a single composite mood score for each participant. As in prior 

studies (e.g., Djamasbi et al., 2010), we calculated a single mood score by averaging the items 

“happy”, “pleased”, and “glad” on the survey for each participant.  

Decision behavior, as in prior studies (Djamasbi et al., 2004; Djamasbi, 2007) was 

operated as quality of judgments made using a DSS. Judgment is a cognitive process in which an 

individual comes to a conclusion about a future event which is represented through a set of data 

(Hammond, 1975; Djamasbi et al., 2004). In our case, participants had to make a judgment about 

the production level at a manufacturing plant based on a set of available data regarding the size 

of the work force, the inventory levels, and product demand. The production-scheduling decision 

was modeled through the following equation (Holt et al., 1956): 

      eDTMDNMDCMINVWFDecisionoduction  543210Pr          (6) 

where WF refers to workforce, INV to inventory, DCM to current demand, DNM to demand for 

the next month, DTM to demand for two months ahead. The coefficients values were 0 =148.5, 

1 =1.005, 2 =0.464, 3 ==0.464, 4 ==0.239, and 5 ==0.113. The last variable in the above 

equation is a randomly generated and normally distributed error term (e) which represents the 

uncertainty of the real world decision environments (Djamasbi, 2007; Djamasbi et al., 2004).  

 

To calculate quality of judgments, we used the approach proposed by Lee et al. (2003). 

This approach assesses the accuracy of a judgment in terms of mean squared error (MSE) and 
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decomposes it into three sub-error components: bias, variability, and linear correspondence:   

                                   encecorrespondlineariabilitybiasMSE  var                                       (7) 

Bias, in the above equation, represents the extent to which participants’ judgments fall 

above or below the production decisions calculated with the formula in Equation (6). Variability 

represents the error attributable to the difference between the standard deviations of the decision 

values calculated via Equations (6) and those of the participants’ judgments. Linear 

correspondence refers to deviation between decision values derived from Equation (6) and those 

decisions made by participants. This last term reflects decision makers’ lack of achievement in 

matching their judgments with the optimal decision values generated by Equation (6).  

The participants were 134 business students in a major university. As in prior studies 

(Djamasbi, 2007), each participant made 30 production decisions. The task is designed in a way 

so that decision makers who are new to the task can improve their judgments over the course of 

the trials by utilizing the provided feedback after each trial (Djamasbi, 2007; Lim et al., 2005; 

Remus et al., 1996). Because our participants were business students who had no prior 

experience with the task, they served as a suitable population for our experiment (Cooksey, 1996; 

Swieringa and Weick, 1982). 

The overall judgment quality was assessed by examining participants’ performance over 

all 30 trials (Djamasbi et al., 2004). As in prior research, to track improvement over the course of 

the trials we also tracked performance in blocks of trials (Djamasbi et al., 2004; Gillis, 1975).  

Prior research suggests that participants need roughly about fifteen trials to gain experience with 

the task and adopt a decision strategy (Remus and Katteman, 1987; Djamasbi et al., 2004).  Thus, 

we examined performance in the first and last blocks, each of which consisted of fifteen trials.  

4.2. Extending the application of DEA  
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A major objective of the paper is to show that DEA technique is applicable to many different 

problems. To achieve this objective, we selected a problem that is typically not examined using 

the DEA method. In the following sections, we first test our research question via a method that 

is typically used in the DSS literature to test the phenomenon under investigation and then we 

repeat the same test using the DEA scores.  

4.2.1 Will higher mood scores lead to better performance (smaller MSE errors)? 

Positive affect theory asserts that positive mood has a significant impact on a person’s problem 

solving ability (for a review of this theory and related literature, see Isen, 2008). Grounded in 

this theory, a previous study shows that users induced with a positive mood, compare to those 

whose mood was not manipulated, made more accurate decisions using a DSS (Djamasbi, 2007). 

Because people who were induced with a positive mood had higher mood scores than those 

whose mood was not manipulated, the results of this previous study suggests a possible positive 

relationship between mood scores and performance. We test this assertion with the following 

regression model: 

                                                     MSBbbMSE  10301                                                                (8) 

where MSE1-30 represents errors as calculated in Equation (7) for all the 30 trials in the task, and 

MSB refers to average mood scores before starting the task. The results showed that 4% (R
2
 = 

0.04) of the variation in error (MSE1-30) was explained by mood scores. MSB had significant 

negative relationship with MSE1-30 ( 1b =-3449.59, t=-2.25, p=0.03), that is, the higher the average 

mood scores the smaller the MSE1-30 values and thus the better performance. 

Next we tested the same regression model by using the DEA technique for calculating the 

error values for all 30 trials. We developed the DEA scores based upon the MSE measures. We use 

model (5) to develop a composite error measure by using the bias, variability, and linear 
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correspondence. Note that bias, variability, and linear correspondence are not integer values, and 

smaller values for all the three measures indicate better performance. Therefore, we treat them as 

DEA inputs in model (5). In this case, there are no DEA outputs, or we can assume there is one 

output with an equal value of 1 across all DMUs (students). The resulting super-efficiency score 

is called “DEA error score”. A larger “DEA error score” indicates smaller errors. 

                                                 MSBbbErrorDEA   10301                                                        (9) 

The results showed that 4% (R
2
 = 0.04) of the variation in the error in the above model was 

explained by users’ mood scores before starting the task. MSB had significant positive 

relationship with DEA-Error1-30 ( 1b =0.05, t=2.26, p=0.03).  Because higher DEA-Error1-30 values 

represent better performance, these results indicate that higher mood scores resulted in better 

performance.  

Next we tested the regression model by using the DEA technique for calculating both the 

error values for all 30 trials and the mood scores before starting the task. We calculated a new set 

of DEA scores based upon the mood scores. While in Djamasbi et al. (2010), the average of three 

mood scores is used as a composite measure (assuming that the three mood scores are equally 

important), the new DEA model enables us to develop a composite mood score without the need 

for averaging and focusing on the best-mood frontier. Since a higher value for “glad score”, 

“happy score”, and “pleased score” indicates a better mood, we treat these three mood 

measures/scores as DEA outputs in model (5). In this case, there are no DEA inputs, or we can 

assume there is one input with an equal value of 1 across all DMUs (students). Note that all these 

three mood measures are integer factors in model (5). We call the resulting super-efficiency score 

as “DEA mood score”. A larger “DEA mood score” indicates better mood. 

                                           MSBDEAbbErrorDEA   10301                                                  (10) 
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where as before DEA-Error1-30 is the DEA score for error in all trials and DEA-MSB is the DEA 

score representing users’ mood before starting the task. The results showed that 3% (R
2
 = 0.03) 

of the variation in DEA-Error1-30 was explained by DEA-MSB and that higher DEA-MSB scores 

resulted in higher DEA-Error1-30 values ( 1b =0.23, t=2.01, p=0.04).   

4.2.2 Do higher positive mood scores before the task lead to higher mood scores after the 

task? 

Positive mood can act as an “emotional currency” improving one’s ability to work under stressful 

situations (Aspinwall, 1998). Because complex cognitive tasks are stressful (Streufert and 

Streufert, 1978), decision makers may benefit from their positive mood. In other words, people 

with higher mood scores before completing a cognitively complex task (such as the planning task 

in our study) are likely to have higher mood scores after the task. We captured users’ mood 

before and after the task with the same survey discussed in Section 4.1 of this paper. We created 

an average mood score for each participant to describe their mood before and after the task. We 

tested the relationship between the mood scores before and after the task through the following 

regression model:   

                                                      MSBbbMSA  10                                                                 (11) 

where MSA and MSB refer to average mood scores after and before completing the task, 

respectively. The results show that 45% (R
2
= 0.45) of variation in mood scores after the task are 

explained by mood scores before the task and that the two mood scores have a significant 

positive relationship ( 1b =0.63, t=10.28, p=0.000).  

Next we repeated the above analysis by using DEA mood scores. We calculated a DEA 

mood score for moods after the task as we calculated the DEA mood scores for moods before the 

task in Section 4.1. We treated the value for mood items (“glad score”, “happy score”, and 
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“pleased score”) which were captured after the task as DEA outputs in model (5). As before, we 

assumed a single input with an equal value of 1 across all DMUs (students). As before, the three 

mood measures are integer factors in model (5). We called the resulting super-efficiency score as 

“DEA mood score after the task”. A larger “DEA mood score after the task” indicates better 

mood. We used the following regression model to test the relationship between DEA mood 

scores before and after the task: 

                                              MSBDEAbbMSADEA  10                                                    (12) 

In the above equation DEA-MSB represents users’ mood state before the task and DEA-

MSA represents users’ mood after the task. The results confirmed that the two variables were 

significantly and positively correlated (R
2
=0.41, 1b =0.60, t=9.46, p=0.000).   

4.2.3 Can performance in the first half of the task predict performance in the second half of 

the task? 

The task used in this study requires decision makers to develop a decision strategy (Remus and 

Katteman, 1987; Djamasbi et al., 2004). High quality judgments depend on a user’s ability to 

form good decision strategies (Hammond, 1975; Remus and Katteman, 1987; Djamasbi et al., 

2004). Prior studies suggest that it takes novice users about 15 trials to learn the task and build 

their decision policy (Remus and Katteman, 1987; Djamasbi et al., 2004). This suggests that 

better performance in the first 15 trials indicates the formation of a higher quality policy during 

this time. Thus, those who have a better performance in the first 15 trials are likely to have a 

better performance in the subsequent trials as well. To test this possibility we used the following 

regression model to examine the relationship between performance in the first and last block of 

the task. Note that the first and last block of the task, each consisted of 15 trials. 

                                               151103016   MSEbbMSE                                                              (13) 
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where MSE1-15  and MSE16-30 refer to performance (error) in the first and last block of trials in the 

task. The results showed a significant positive relationship between performance in the first and 

last blocks (R
2
=0.19, 1b =0.35, t=5.46, p=0.000) supporting the assertion that judgment quality in 

second block of the task can be predicted by judgment quality in the first block of the task.                                        

Then we tested the same phenomenon with DEA scores. We performed two DEA analyses 

with the same inputs and outputs used in the previous section. The first DEA analysis contained 

two DEA applications of model (5). One application contained DMUs for the first 15 trials and 

the other contained the second 15 trails. Namely, we treated these two blocks of trails in separate 

DEA runs and obtained two sets of super-efficiency scores. We performed an F-test between the 

two sets of DEA scores and accepted the hypothesis that the variances of the two sets of DEA 

scores are equal. We then performed a t-test (assuming equal variances). The test indicated that 

the averages of the two sets of DEA scores were significantly different (p=0.03). The first trial 

block had a higher average DEA super-efficiency. However, we should point out that DEA is a 

relative measure and its results are valid only within a set of DMUs under consideration. 

Therefore, while the t-test indicates that the two trail blocks show a difference with respect to 

performance, we cannot use the average DEA scores to compare the performance difference. To 

compare the performance difference, we need to perform the second DEA analysis where the two 

blocks are evaluated together under the same model. Namely, we doubled the size of DMUs in 

our second DEA analysis. In this case, the average DEA super-efficiency scores of the first and 

second block trails were 0.69 and 0.74, respectively. This indicates that overall the decision 

makers in our study had a better performance in the second block of the task. These results are 

consistent with the prior studies that suggest decision makers use the first block of the task to 

learn the task (Remus and Katteman, 1987; Djamasbi et al., 2004). 
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4.2.4 Discussion 

In this study we developed a new DEA. We then used the newly developed DEA as an 

alternative method for calculating scores for several different constructs, which were used to test 

our assertions. Our analyses supported our assertions by showing significant results for the 

constructs under the investigation regardless of whether they were obtained by traditional 

methods or by the new DEA method. Our results showed a strong positive correlation between 1) 

positive mood scores before the task and performance, 2) positive mood scores before and after 

the task, and 3) performance in the first and last block of the task. Additionally, the tested models 

yielded similar results when DEA scores were used. These results together extend the 

applicability of DEA to a domain that traditionally does not use the DEA method. Additionally, 

the results revealed that the new DEA method is sensitive enough to detect subtle nuances such 

as a user’s mood and its impact on performance when using a DSS.  

These results have both theoretical and practical implications. From a theoretical point of 

view the results extend the literature on decision making by showing a significant correlation 

between mood and performance scores, and by showing that the performance in the second half 

of the task can be predicted by performance in the first half of the task. The results also 

contribute to mood literature by showing that positive mood did indeed act as emotional currency 

in our study; those who had higher mood scores before the task had also higher mood scores 

after the task.  From a practical point of view the results show that the new DEA is applicable to 

a new domain. Hence, the results extend the applicability of the DEA method to a new domain, 

namely judgment and decision making using a DSS. 

 

5. Conclusions 
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The current paper develops an integer-valued super-efficiency model based upon directional 

distance function (DDF). Such a model is necessary for our application of evaluating mood and 

its impact on performance in judgment and decision making using a DSS. Such an information 

system research domain requires user information to be collected in a Likert-type scale which 

represents integer values in DEA models. The use of super-efficiency concept is also necessary 

to break ties in efficient units in a sense that our DEA scores are used in regressions. Although 

DDF-based super-efficiency model has been proposed in the literature, we show that the existing 

DDF approach cannot be directly modified to incorporate integer values under super-efficiency 

concept. The use of DDF is for the purpose of addressing the well-known infeasibility issue in 

super-efficiency. 

 Our empirical application successfully demonstrates the usability of our newly developed 

super-efficiency model. Our model offers an alternative approach for examining several key 

issues predicting a user’s decision behavior when utilizing a DSS. 
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Table 1. Numerical example 

DMU 1x  2x  1y  

A 2 4 1 

B 7 1 1 

C 3 4 1 

D 7 2 1 

E 9 4 1 

 

 

 

Table 2. Integer DDF-based super-efficiency 

DMU 
*

x  
*

y  Projection Super-efficiency 

A -0.5 0 31 x , 42 x , 11 y  1.5 

B -1 0 71 x , 22 x , 11 y  2 

C 0 0 31 x , 42 x , 11 y  1 

D 0 0 71 x , 22 x , 11 y  1 

E 1/3 0 61 x , 22 x , 11 y  2/3 

 

 

 

Table 3. When 1x  and 1y  are integer-valued 

DMU 
*

x  
*

y  Projection Super-efficiency 

A -0.5 0 31 x , 42 x , 11 y  1.5 

B -1 0 71 x , 22 x , 11 y  2 

C 0 0 31 x , 42 x , 11 y  1 

D 0.142857 0 61 x , 714286.12 x , 11 y  0.857143 

E 0.444444 0 51 x , 222222.22 x , 11 y  0.555556 
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Figure 1. Integer DEA frontier 

 

 

 

 

Figure 2. Integer DEA frontier when only 1x  and 1y  are integer-valued 
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