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Abstract

Since its conception in the early 1980s, quantum computing has rapidly grown as a field of study. This growth

has placed it in the eye of the public, where it is often seen as inscrutable and restricted to post-graduate

studies. Furthermore, the rapid development of physical quantum computers, the existence of algorithms

that prove the distinct advantage that quantum computing holds over classical computing, and the threat

to current cryptographic schemes has emphasized the need for “quantum computer literacy” now more than

ever.

This paper aims to rigorously instruct the reader on the basics of quantum computing with only the

assumption of introductory linear algebra—no physics background necessary. A collection of algorithms

is discussed, including the Deutsch-Jozsa problem and Shor’s algorithm. Alongside each algorithm is an

explanation of how to implement and simulate that algorithm using Qiskit.
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Chapter 1

Introduction

Scientists, engineers, and mathematicians alike have all striven for more powerful computers. Tasks such as

simulation of a physical system, searching through a large list, or factoring a large semiprime number are all

inefficient or even impossible to do by hand. Computers have been used to complete these arduous tasks.

As our problems grow more and more complicated, our computers have grown more and more powerful.

However, even a classical computer has its limits: a broad range of tasks of practical importance are widely

believed to require exponential time on a Turing machine.

Seeking to circumvent these limitations, the quantum computer was proposed at three separate times by

three separate notable researchers. The first was Paul Benioff, in 1979, who suggested that such a machine

could be built. A year later, Yuri Manin, a mathematician, proposed the idea in his book Computable and

Non-Computable, which was only available in Russian at the time. In 1981, Richard Feynman in one of

his seminal lectures put forward the idea of a quantum computer as a device better suited for simulating

quantum systems. [1].

The quantum computer was only a hypothetical device at that point, and yet it had captured the attention

of many. This theoretical device would utilize the properties of quantum states, including superposition and

entanglement. Such a device would be capable of performing tasks in less time than the classical computer—

not due to its inherent power, but rather the utilization of these quantum properties in algorithms run on it.

The fundamental idea of superposition of quantum states gives the impression of a data input that represents

all possible values simultaneously—we will soon make this precise—opening the door to some sort of massive

parallelization of algorithms.

It would be almost 20 years before Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec implemented

the first publicly known physical quantum computer, with two hard-won qubits and no error correcting [2].

Since then, there has been significant progress in the development of a physical quantum computer. However,
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as with any new technology, significant progress comes with significant setbacks. A handful of companies

have risen to the challenge of implementing a scalable, error-correcting, useful quantum computer.

1.1 State of the Art

As with any new technology, early implementations usually provide proof of concept. The quantum computer

created in 1998 [2] implemented a powerful algorithm of Grover that locates an item in a list far faster than

exhaustive search would do, but that implementation handled a list of size four! The question that naturally

follows is: how can we make quantum computers bigger, and therefore more useful?

By nature, quantum computers and the way they implement physical qubits are sensitive and prone to

disruption via noise. For our physical qubits to even begin behaving like the abstract notion of the logical

qubit, most known versions of the quantum computer must be kept at near-absolute zero temperatures [3].

Furthermore, it is necessary to utilize quantum error correction to prevent errors that nonetheless arise.

The concept of “logical qubit” versus “physical qubit” is derived from this concept. Many implementations

of quantum error correction have come forward. Peter Shor demonstrated one code that utilized 9 physical

qubits to error correct 1 logical qubit, while Andrew Steane reduced the requirement to 7 physical qubits.

Raymond LaFlamme showed that 5 physical qubits for 1 logical qubit is the smallest number that fulfills the

requirements [4]. While the theory of quantum error correction does offer an economy of scale—for instance,

ten physical qubits suffice to protect a system of four logical qubits against errors affecting any single qubit

[5]—the number of logical qubits that can be relied upon for computational use is typically much smaller

than the number of physical qubits. As the number of logical qubits thus depends on the specifics of the

error correcting code, the quantum computers below are introduced with their number of physical qubits.

The rapid growth and scaling of quantum computers becomes all the more awe-inspiring with this knowl-

edge. More and more companies and universities are rising to the challenge of creating a quantum computer

that can outperform a classical one; to do so requires more qubits than the first 2-qubit machine from 1998.

In November 2021, IBM announced its 127-qubit processor, Eagle. The company also announced its

plans for a 433-qubit processor, Osprey, to be released in 2022, and a 1,121-qubit processor, Condor, to be

released in 2023 [6].

Companies that develop quantum computers often wish to demonstrate their superiority over leading

classical supercomputers. However, physical implementations (as of the writing of this report) are incapable

of tasks that would easily demonstrate this, such as factoring large semiprimes. Sampling distributions

from randomly-chosen quantum circuits, known as random circuit sampling (RCS), has become a popular

means to demonstrate “quantum supremacy”. While RCS has not been proven to be classically hard, strong
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evidence has been given by Bouland, Fefferman, Nirkhe, and Vazirani [7]. RCS remains the leading choice

for demonstrating the quantum advantage.

The University of Science and Technology of China, in June 2021, also announced the completion of a

66-qubit processor, named Zuchongzhi. In the paper by Wu et al., they estimate that Zuchongzhi could

complete a RCS task 58,400 times faster than IBM’s Summit, the most powerful classical supercomputer at

the time [8].

Google has also stepped into the quantum race. In 2021, Google’s Quantum AI team published a paper

claiming that their 54-qubit processor Sycamore firmly demonstrated “quantum supremacy” by outperform-

ing a classical supercomputer. The paper claimed that Sycamore had completed a RCS task in 200 seconds

that IBM’s Summit would take 10,000 years to complete [9]. IBM, however, contested this claim, stating

that Summit would only take 2.5 days to complete the task [10]. The question of “quantum supremacy” was

once more unanswered.

Comparatively, smaller groups have created their own quantum processors, such as Starmon-5, a 5-qubit

processor from QuTech, of the Netherlands’ Delft University of Technology [11], and IonQ of Maryland’s

11-qubit processor [12].

We see that quantum computing has rapidly gone from a hypothetical speedup to a very real development

that promises immense speedups in simulation and computation, as well as threatens cryptography as we

know it. Literacy in this topic is more imperative than ever. Perhaps surprisingly, once a student has studied

the basics of linear algebra, they are prepared to study and understand many of the fundamental quantum

algorithms, and prepare themselves for the future of computing.

The technological side of quantum computing—the application of physics and engineering to model the

processes described only abstractly in this report—advances at a rapid pace. New announcements are made

every month. To the best of our knowledge, the following table presents a list of all important physical

quantum computers built in recent years.
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Company Computer Name Year
Physical

Qubits
Computer Type

IBM Eagle 2021 127 Superconducting Source

Atom

Computing
Pheonix 2021 100 Nuclear Spin Source

UST China Zuchongzhi 2021 66 Superconducting Source

IBM Hummingbird 2021 65 Superconducting Source

Rigetti Aspen-10 2021 32 Superconducting Source

Rigetti Aspen-9 2021 32 Superconducting Source

Xanadu X8 2020 - Photonic Source

ColdQuanta Hilbert (Prototype) 2020 64 Cold Atom Source

IonQ - 2020 32 Trapped Ion Source

Rigetti Aspen-8 2020 31 Superconducting Source

IBM Falcon 2020 27 Superconducting Source

Honeywell System Model H1 2020 10 Trapped Ion Source

QuTech Starmon-5 2020 5 Superconducting Source

Qutech Spin-2 2020 2 Spin Source

Rigetti Aspen-7 2019 28 Superconducting Source

Rigetti Aspen-4 2019 13 Superconducting Source

IonQ - 2019 11 Trapped Ion Source

Google Sycamore 2018 56 Superconducting Source

Rigetti Aspen-1 2018 16 Superconducting Source

Alibaba - 2018 11 Superconducting Source

Google Bristlecone 2017 72 Superconducting Source

Rigetti Acorn 2017 19 Superconducting Source

IBM Canary 2017 16 Superconducting Source

Rigetti Agave 2017 8 Superconducting Source

Raytheon - 2017 5 Superconducting Source

Google Foxtail 2016 22 Superconducting Source

Table 1.1: An incomplete list of announced, developed quantum computers.
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Chapter 2

The Basics of Quantum Computing

2.1 Notation

In this paper, we will use Greek letters such as ϕ (“phi”) for vectors. Column vectors will be written as

“kets”, |ϕ〉 (“ket phi”) and the conjugate transpose of this is the row vector, or “bra”, 〈ϕ| (“bra phi”). The

dimension of a complex vector space will often be denoted by N .

Any square N × N matrix A represents a linear transformation CN → CN with respect to a specified

basis. For a vector ϕ, instead of writing Aϕ, we write A |ϕ〉 (“A ket phi”).

We use † (“dagger”) to represent the conjugate transpose: if A is an M ×N matrix with entries aij and

B = A†, then B is an N ×M matrix with entries bij = aji. The bar over aij denotes a scalar complex

conjugate.

The correspondence between symbols familiar to linear algebra and the notation we will use includes

ϕ ϕ† Aϕ A† ϕ†A ϕ†A† ϕ†Aψ

|ϕ〉 〈ϕ| A |ϕ〉 A† 〈ϕ|A 〈Aϕ| 〈ϕ|A |ψ〉

In quantum computing, we apply operations represented by unitary matrices with complex coefficients.

A unitary N ×N matrix U has the property U† = U−1, and consequently, UU† = IN .

2.2 Complex Vector Spaces

Everything we do with regard to quantum computing happens in complex vector spaces. This section gives

a short overview of relevant terms that will often be seen throughout the text. It can be skipped by those
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very familiar with the concepts. For ease of understanding, clickable references are included throughout the

text which points back to these definitions in the glossary.

The complex counterpart of RN is CN , consisting of ordered N -tuples of complex numbers. So a vector

in CN is in the form |ϕ〉 = (a1 + b1i, a2 + b2i, . . . , aN + bN i) with a1, b1, a2, b2, . . . , aN , bN ∈ R. A more

common representation of vectors in CN is by N × 1 matrices:

|ϕ〉 =


a1 + b1i

a2 + b2i
...

aN + bN i

 .

A complex vector space is a set V of vectors forming an abelian group under vector addition which is closed

under multiplication by complex scalars in such a way that the following identities hold for all |ϕ〉 , |ψ〉 ∈ V

and all c, d ∈ C:

• (c+ d) |ϕ〉 = c |ϕ〉+ d |ϕ〉

• c(|ϕ〉+ |ψ〉) = c |ϕ〉+ c |ψ〉

• (cd) |ϕ〉 = c (d |ϕ〉)

• 1 |ϕ〉 = |ϕ〉

If |ϕ1〉, |ϕ2〉, . . . , |ϕm〉 are vectors in a complex vector space and c1, c2, . . . , cm are scalars in C, then the

sum c1 |ϕ1〉 + c2 |ϕ2〉 + · · · + cm |ϕm〉 is called a linear combination of |ϕ1〉 , . . . , |ϕm〉. Because V is closed

under vector addition and scalar multiplication, a linear combination of vectors in V is also a vector in V .

As with vectors in the real vector space, addition and scalar multiplication in CN are performed component

by component.

When we have a set of vectors S = {|ϕ1〉 , |ϕ2〉 , . . . , |ϕm〉}, the span of S is the set of all linear combinations

c1 |ϕ1〉 + c2 |ϕ2〉 + · · · + cm |ϕm〉 with c1, c2, . . . , cm ∈ C. A set of vectors S is linearly independent if

c1 |ϕ1〉 + c2 |ϕ2〉 + · · · + cm |ϕm〉 = |0〉 is true only when c1 = c2 = · · · = cm = 0. If there are multiple

solutions to c1 |ϕ1〉+ c2 |ϕ2〉+ · · ·+ cm |ϕm〉 = |0〉, then S is linearly dependent.

A basis of a vector space V is set of vectors B ⊆ V which is linearly independent and whose span is V . In

this case, B has the following properties.

• B is a maximal linearly independent set. Adding any vector in V would cause the set to become linearly

dependent. The set is maximal when there does not exist a linearly independent set S where B ⊂ S
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other than S = B.

• B is a minimal spanning set. The span of B equals V but there does not exist a set S whose span

equals V and S ⊂ B other than S = B.

In the case where V has a finite spanning set, achieving one of these properties guarantees the other by a

corollary to the Replacement Theorem [13, p. 45]. In the case where a vector space V has a finite spanning

set, the dimension of V is the cardinality of any basis of V . In fact, if V has a finite basis, all bases of V

contain the same number of vectors, also by that same corollary to the Replacement Theorem. Additionally,

any vector in V is uniquely expressed as a linear combination of the basis vectors in basis B.

Two vectors |ϕ〉 and |ψ〉 are orthogonal if their Hermitian inner product is zero. We use a norm function

to determine the length of a vector. Norm functions always yield non-negative real “lengths” and obey three

properties: they respect scalars, they satisfy the triangle inequality, and they output 0 only when the input

is the zero vector. The norm function we will use is the Euclidean or 2-norm: ||ψ〉| =
√
〈ψ|ψ〉. A unit vector

is a vector which has norm 1. We can convert any vector, |ψ〉, into a unit vector, |ψ〉||ψ〉| , by dividing each of

the vector components by its norm. An orthonormal basis is a basis whose vectors are all unit vectors and

are all orthogonal to each other.

2.3 Qubits

In a classical system, a bit is in one of two states, 0 or 1. A qubit is the quantum equivalent of a classical

bit. Instead of 0 and 1, a qubit is typically in superposition, and this is modeled as a linear combination of

two basis states of qubits. We first look at the simplest basis, and we call its vectors |0〉 and |1〉:

|0〉 =

 1

0

 and |1〉 =

 0

1

 .
The vectors |0〉 and |1〉 form the computational basis for C2. To represent a qubit in superposition, we

interpret its coordinates with respect to a basis as “probability amplitudes” as we will shortly see.

A qubit in state |ϕ〉 is a two-dimensional complex vector space V with orthonormal basis {|0〉 , |1〉}

together with a unit vector |ϕ〉 ∈ V . This unit vector |ϕ〉 is expressed uniquely as a linear combination with

respect to the basis:

|ϕ〉 = c1 |0〉+ c2 |1〉 .

Since |ϕ〉 is a unit vector, we have 〈ϕ|ϕ〉 = 1, that is,

c1c1 + c2c2 = 1.
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Let |ϕ〉 be a state of a qubit and let (c1, c2) be its coordinate vector with respect to the computational

basis. The scalar entries of the coordinate vector are called the probability amplitudes of the qubit.

|1〉

|0〉

|ψ〉 = c1 |0〉+ c2 |1〉

Figure 2.1: A visual of the unit circle on a slice of C2 with a real |ψ〉. A qubit is a vector on this unit circle.

2.4 Quantum Registers

An n-qubit quantum register is a 2n-dimensional complex vector space with a prescribed orthonormal basis.

The full vector space is a tensor product of n qubits:

C2n ∼= C2 ⊗ C2 ⊗ · · · ⊗ C2.

The most important basis for our registers is the computational basis

B = {|b〉 | b ∈ Zn2}

which, when convenient, we will write as B = {|b〉 | 0 ≤ b < 2n} interpreting bit strings as binary expansions

of integers. For example, the 2-qubit register has computational basis,

{|00〉 , |01〉 , |10〉 , |11〉}.

The computational basis is a nice basis to work with. Each element is a Kronecker product of the
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single-qubit computational basis states:

|00〉 = |0〉 ⊗ |0〉 =

 1

0

⊗
 1

0

 =


1

0

0

0



|01〉 = |0〉 ⊗ |1〉 =

 1

0

⊗
 0

1

 =


0

1

0

0



|10〉 = |1〉 ⊗ |0〉 =

 0

1

⊗
 1

0

 =


0

0

1

0



|11〉 = |1〉 ⊗ |1〉 =

 0

1

⊗
 0

1

 =


0

0

0

1

 .

Similarly,

|111〉 = |1〉 ⊗ |1〉 ⊗ |1〉

|011010〉 = |0〉 ⊗ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉 .

Often we will omit the ⊗ symbol and write |x〉 |y〉 = |x〉 ⊗ |y〉 .

A quantum register in state |ψ〉 is an ordered pair (V, |ψ〉) where V is a quantum register and |ψ〉 is a

unit vector in V . We represent |ψ〉 as a linear combination of the elements of any basis:

|ψ〉 =
∑
|φi〉∈B

ci |φi〉 .

Example: Using the computational basis for V and

|ψ〉 =
1√
2


1

0

0

1
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our state |ψ〉 can be represented as the linear combination:

|ψ〉 =
1√
2

(|00〉+ |11〉).

2.5 Measurement

Measurements are how we get information from qubits when they are in superposition. We cannot directly

look at any individual probability amplitude of a qubit. Instead, we must collect information differently than

standard computations. We note that while the following paragraphs describe a measurement as a process

playing out over time, this is merely for pedagogical purposes: we work only with the linear-algebraic model

and make no claims about what happens in “reality”.

To execute a measurement on a quantum register V , we define an orthogonal decomposition of V ,

M = {S1, S2, . . . , Sk}

where Si is a subspace of V for 1 ≤ i ≤ k, and each subspace is orthogonal to each other, that is,

V = S1 ⊥ S2 ⊥ · · · ⊥ Sk.

Now suppose we wish to measure V when it is in state |ψ〉. We represent |ψ〉 as a unit vector linear

combination of elements from each of the subspaces of M

|ψ〉 = c1 |φ1〉+ c2 |φ2〉+ · · ·+ ck |φk〉

with conditions

|φi〉 ∈ Si, 〈φi|φi〉 = 1, c1c1 + c2c2 + · · ·+ ckck = 1.

We then measure the state against this decomposition. During measurement, we may imagine in our

model three events occurring:

• An index j ∈ {1, 2, . . . , k} is chosen with probability cjcj .

• The index j is returned as classical information.

• The quantum state collapses to |φj〉 .

The only information gained is the index j. At no point are we able to look at the probability amplitudes of

the state |ψ〉. Additionally, if |ψ〉 6= |φj〉, then we have permanently destroyed our previous state! Measuring

again will continue to return |φj〉 with probability 1.
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Given a n-qubit quantum register (V, |ψ〉), we can measure |ψ〉 usingM = {S1, S2, . . . , Sk}. We represent

|ψ〉 as a linear combination of unit length elements from the respective subspaces

|ψ〉 = c1 |φ1〉+ c2 |φ2〉+ · · ·+ ck |φk〉

and j is returned to us. We now have |ψ〉 replaced by |φj〉. If we measure again using the same decomposition

of V we have |ψ〉 represented as

|ψ〉 = 0 |φ1〉+ 0 |φ2〉+ · · ·+ 1 |φj〉+ · · ·+ 0 |φk〉 .

Thus, the probability of returning j again is 1.

Example: Given a 2-qubit quantum register (V, |ψ〉), and |ψ〉 = 1√
2
(|00〉 + |11〉), measure |ψ〉. Choose M

to be composed of subspaces spanned by the computational basis vectors:

M = {S1, S2, S3, S4}

S1 = span{|00〉}, S2 = span{|01〉}

S3 = span{|10〉}, S4 = span{|11〉}.

Then we write |ψ〉 just as it is already written:

|ψ〉 =
1√
2
|00〉+

1√
2
|11〉

with |00〉 ∈ S1 and |11〉 ∈ S4. The probability of being given index 1 is
∣∣∣ 1√

2

∣∣∣2 :

Pr(|ψ〉 = |00〉) =

(
1√
2

)2

=
1

2
.

The probability of being given index 4 is the same. The remaining two probabilities are zero:

Pr(|ψ〉 = |11〉) =

(
1√
2

)2

=
1

2
.

After measurement, either

|ψ〉 will be |00〉 with 50% chance, and we are returned the index 1

or

|ψ〉 will be |11〉 with 50% chance, and we are returned the index 4.

While we had full freedom in choosing the measurement, we have no control over which of these two outcomes

arises.
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This act of using another basis to generate 1-dimensional subspaces is very common, so we will define it as

measuring in the specified basis. In general, measuring in basis B is a decomposition of V into 1-dimensional

subspaces created by the span of elements in B:

M = {span{|φ〉} | |φ〉 ∈ B} .

Basis B has 2n elements to match the dimension of V . For the example measurement, we measured in

the computational basis. Measuring in the computational basis is called the standard measurement. Also of

importance is the fact that the number of subspaces k was equal to the dimension of the 2-qubit register.

This means we did a complete measurement, as we measured every qubit.

Example: Given a 2-qubit quantum register (V, |ψ〉), and |ψ〉 = 1√
2
(|00〉 + |11〉), now let our chosen

decomposition be M = {S1, S2} with S1 and S2 as

S1 = span {|00〉 , |01〉}

S2 = span {|10〉 , |11〉} .

We again write |ψ〉 just as it is already written,

|ψ〉 =
1√
2
|00〉+

1√
2
|11〉 .

After measurement, either

|ψ〉 will be |00〉 with 50% chance, and we are returned the index 1

or

|ψ〉 will be |11〉 with 50% chance, and we are returned the index 2.

The results of measuring will be equivalent to the first example, but instead, this measurement can only

return an index of 1 or 2, instead of the original indices of 1 and 4. The probabilities of returning index 1

and index 2 are also the same, at 50%.

Since the number of subspaces is 2 and the dimension of our quantum register is 4, we do not have a

complete measurement. This is a partial measurement. We also notice that the first qubit is always 0 in S1

and always 1 in S2. Specifically, what we have just done is measure the first qubit. We interest ourselves

only with the result of the first qubit. If the index returned is 1, we know the first qubit is in state 0; if the

index returned is 2, we know the first qubit is in state 1.

Assume the index returned was 1. Then |ψ〉 is now in the state |00〉. Even though we only measured the

first qubit, the second qubit was still affected. This is because the qubits were entangled. The definition of

entanglement is covered in §2.8.
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We could instead measure the second qubit by fixing the second qubit in each of the subspaces of M :

S1 = span {|00〉 , |10〉}

S2 = span {|01〉 , |11〉} .

Partial measurements allow for the observer to be specific about which qubits they want to know the results

of without destroying other information encoded in the state. For example, if we measured state

|ψ〉 =

(
3

5
|0〉+

4

5
|1〉
)
⊗
(

1√
2
|0〉 − 1√

2
|1〉
)

=
3

5
√

2
|00〉+

4

5
√

2
|10〉 − 3

5
√

2
|01〉 − 4

5
√

2
|11〉

in this basis M = {S1, S2}, the reader may check that, with 50% chance, the measurement will return 1

and |ψ〉 will collapse to 3
5 |00〉+ 4

5 |10〉 and, with 50% chance, the measurement will return index 2 and |ψ〉

will collapse to − 3
5 |01〉 − 4

5 |11〉. This is what we mean by saying that information in the first qubit is not

destroyed.

Example: Now, let’s measure |ψ〉 = 1√
2

(|00〉+ |11〉) in the basis

B =
{
|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉

}
where

|Φ+〉 =
1√
2

(|00〉+ |11〉)

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉)

|Ψ−〉 =
1√
2

(|01〉 − |10〉).

This basis is called the Bell basis. Measuring |ψ〉 in B results in drawing a |Φ+〉 with probability 1, returning

an index of 1, and the state remaining unchanged.

Now there is something odd going on here—the state collapsed in the first example, but not here. When

we compute a non-standard measurement, we must perform a change of basis before and after measuring.

We take the vectors of the Bell basis and place them into a matrix:

A =
1√
2


1 1 0 0

0 0 1 1

0 0 1 −1

1 −1 0 0

 . (2.1)

19



A is the change of basis matrix. Applying A−1 to our state vector before measuring, taking the standard

measurement, then applying A will give us the desired results. In a circuit diagram, this looks like

A−1 A

where A is our unitary basis transformation, the “meter” is the standard measurement in V , and A−1 is the

reverse computation of A. Note that A is unitary, so the inverse is easily computed as A†:

A−1 |ψ〉 =
1√
2

1√
2


1 0 0 1

1 0 0 −1

0 1 1 0

0 1 −1 0




1

0

0

1

 =


1

0

0

0

 .

Measuring with the computational basis returns the index 1 with probability 1 and leaves the register in

state |00〉. Reapplying the change of basis yields

A |00〉 =
1√
2


1 1 0 0

0 0 1 1

0 0 1 −1

1 −1 0 0




1

0

0

0

 =
1√
2


1

0

0

1


and our register is left in state |Φ+〉.

This conjugation technique is what allows us to consider more general measurements M. While we do

not have full freedom to choose S1, . . . , Sk, we will gloss over this efficiency issue and restrict ourselves to

fairly standard measurements.

Exercise:

1. Given a 2-qubit register (V, |ψ〉), where V is the computational basis, and |ψ〉 = 1
2 (|00〉+ |01〉+ |10〉+

|11〉):

(a) perform a complete measurement in the computational basis.

(b) perform a complete measurement in the Bell basis.

(c) perform a partial measurement on the first qubit.

i. Did this measurement affect the second qubit?
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2. Given a 3-qubit register (V, |ψ〉), where V is the computational basis, and |ψ〉 = 1√
3
(|000〉 + |011〉 +

|101〉) :

(a) perform a complete measurement in the computational basis.

(b) perform a partial measurement on the second qubit.

2.6 Single Qubit Gates and Unitary Transformations

A quantum logic gate (or quantum gate) is a simple quantum circuit operating on a small number of qubits.

These gates can be used to build complex quantum circuits, much like how classical logic gates form con-

ventional digital circuits. Quantum gates are unitary operators described as unitary matrices relative to a

given basis. The not gate, Z gate, and Hadamard gate are some of the standard single-bit gates used in

quantum circuits.

2.6.1 Not Gate

The not gate or X gate is represented by the unitary matrix

X =

 0 1

1 0


and is written in wire diagrams as X .

To see the effect a gate will have on a qubit, we multiply the qubit’s state vector on the left by the matrix

representing that gate. Let’s take a look at how the not gate affects a qubit in state |0〉:

X |0〉 =

 0 1

1 0

 1

0

 =

 0

1

 = |1〉 .

We can see that the not gate flips a qubit in state |0〉 to state |1〉. Now let’s look at applying a not gate

to |1〉 :

X |1〉 =

 0 1

1 0

 0

1

 =

 1

0

 = |0〉 .

So for a not gate,

X |0〉 = |1〉 and X |1〉 = |0〉 .
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Consider a state other than a standard basis element:

|ψ〉 = c1 |0〉+ c2 |1〉 .

So,

X |ψ〉 =

 0 1

1 0

 c1

c2

 =

 c2

c1

 = c2 |0〉+ c1 |1〉 .

The not gate swaps the probability amplitudes of |0〉 and |1〉.

2.6.2 Z Gate

The Z gate is represented by the unitary matrix

Z =

 1 0

0 −1



and is written in wire diagrams as Z .

Let’s apply a Z gate to both |0〉 and |1〉:

Z |0〉 =

 1 0

0 −1

 1

0

 =

 1 + 0

0 + 0

 = |0〉

Z |1〉 =

 1 0

0 −1

 0

1

 =

 0 + 0

0− 1

 =

 0

−1

 = − |1〉 .

The Z gate did nothing to |0〉, but it changed the sign of |1〉. This corresponds to a reflection across the

x-axis in our coordinate vector model of Figure 2.1.

2.6.3 Y Gate

It may seem strange to approach the gates outside of alphabetic order, but there is a reason for this. The Y

gate is represented by the unitary matrix

Y =

 0 −i

i 0
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and is written in wire diagrams as Y . We can represent the Y gate as a combination of the X and

Z gates and a scalar multiplication by i:

Y = iXZ = i

 0 1

1 0

 1 0

0 −1

 =

 0 −i

i 0

 .
The Y gate combines the concepts of the Z gate (reflecting across an axis) and the X gate (swapping

the probability amplitudes) with a scalar multiplication by i. This interacts with our system:

Y |0〉 =

 0

i

 = i |1〉

Y |1〉 =

 −i
0

 = −i |0〉 .

When we take |Y |0〉|2 , we get i · (−i) = 1. Similarly, |Y |1〉|2 = −i · (i) = 1. Scaling a vector by a

complex number of absolute value one does not change its length.

2.6.4 Hadamard Gate

A Hadamard gate is represented by the unitary matrix

H =
1√
2

 1 1

1 −1


and is written in wire diagrams as H .

Let’s apply the Hadamard gate to |0〉:

H |0〉 =
1√
2

 1 1

1 −1

 1

0

 =
1√
2

 1 + 0

1 + 0

 =
1√
2

 1

1

 .
We have just created a qubit in an equal superposition of |0〉 and |1〉. This specific vector is common, so

have a special notation for it. We write it as

|+〉 =
1√
2

(|0〉+ |1〉) =
1√
2

 1

1

 .
Now let’s apply a Hadamard gate to |1〉:
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H |1〉 =
1√
2

 1 1

1 −1

 0

1

 =
1√
2

 0 + 1

0− 1

 =
1√
2

 1

−1

 .
This yielded almost the same vector. We again have a special notation for this vector:

|−〉 =
1√
2

(|0〉 − |1〉) =
1√
2

 1

−1

 .
When applying a Hadamard gate to |0〉, the resulting state is |+〉. A Hadamard gate applied to |1〉 results

in the state |−〉.

2.6.5 Phase Shift Gate

The phase shift gate is represented by the matrix

P (θ) =

 1 0

0 eiθ

 .
The symbol of the phase gate in a circuit diagram depends on the author. Some represent it with an ’R’(
R

)
, some with a ’P’

(
P

)
, and some with the angle of rotation divided by 2

(
θ/2

)
. The

angular division representation means that a phase shift gate with θ = π
4 is called π

8 .

The phase shift gate leaves the probability amplitude of |0〉 as is, but changes the probability amplitude

of |1〉. To show that this transformation preserves the unit vector condition of our qubit, we will use Euler’s

formula, eiθ = cos θ + i sin θ, and the Pythagorean identity, cos2 θ + sin2 θ = 1:

eiθeiθ = (cos θ + i sin θ)(cos θ − i sin θ) = cos2 θ + sin2 θ = 1.

Since the phase shift only affects |1〉, the probability of drawing a |0〉 or |1〉 after applying a phase shift gate

is preserved.

2.7 Multi-Qubit Gates

The gates we have looked at so far only work on a single qubit. We need a way to extend them to n-qubit

registers. One cannot apply a regular Hadamard gate to a 2-qubit register, since the dimensions do not

match! The solution to this problem is to use the same technique as for creating multi-qubit registers: apply

Kronecker products to our unitary transformations.
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Our first gate was the not gate:

X |0〉 = |1〉 and |1〉 = |0〉 .

If we apply it to the second qubit of the computational basis states of the 3-qubit register, we get:

I2 ⊗X ⊗ I2 |000〉 = |010〉 I2 ⊗X ⊗ I2 |001〉 = |011〉

I2 ⊗X ⊗ I2 |010〉 = |000〉 I2 ⊗X ⊗ I2 |011〉 = |001〉

I2 ⊗X ⊗ I2 |100〉 = |110〉 I2 ⊗X ⊗ I2 |101〉 = |111〉

I2 ⊗X ⊗ I2 |110〉 = |100〉 I2 ⊗X ⊗ I2 |111〉 = |101〉

Thus, we can construct the full matrix transform for applying a not gate to just the second qubit:

I2 ⊗X ⊗ I2 =



0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0



.

Likewise, we can apply the Z gate to just the third qubit:

I4 ⊗ Z =



1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 −1



.

Lastly, apply the Hadamard gate to just the first qubit:
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H ⊗ I4 =
1√
2



1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 −1 0 0 0

0 1 0 0 0 −1 0 0

0 0 1 0 0 0 −1 0

0 0 0 1 0 0 0 −1



.

Suppose we have a 3-qubit quantum register, and we want to apply H to the first qubit, X to the second

qubit, and Z to the third qubit. Then the transformations on the entire register are

H ⊗ I4, I2 ⊗X ⊗ I2, I4 ⊗ Z

and the circuit diagram for this sequence of three gates is simply

H

X

Z

By the mixed product property, this is equivalent to

(H ⊗ I2 ⊗ I2)(I2 ⊗X ⊗ I2)(I2 ⊗ I2 ⊗ Z) = (HI2I2)⊗ (I2XI2)⊗ (I2I2Z) = H ⊗X ⊗ Z.

So we could have applied them in any order or simultaneously. The circuit diagrams below are equivalent

(note this is not an exhaustive list of arrangements):

H

X

Z

H

X

Y

H

X

Y

2.7.1 Hadamard Gate on a Quantum Register

Performing a Hadamard transform on a register of n qubits can be represented by

H⊗n = H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

.
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If we apply this Hadamard transform to a register of n qubits initialized to |0〉, it will put the register in an

equal superposition of all 2n computational basis states. We can represent this as

1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉+ |1〉)⊗ · · · ⊗ 1√
2

(|0〉+ |1〉)︸ ︷︷ ︸
n times

=
1√
2n

2n−1∑
i=0

|i〉 .

The binary dot product of two vectors a = (a1, a2, . . . , an) in and b = (b1, b2, . . . , bn) in Zn2 plays a key

role here: a · b = a1b1 + a2b2 + · · · + anbn (mod 2). The rows and columns of H⊗n are indexed by binary

n-tuples, and the (a, b)-entry is (−1)a·b 1
2n/2

. What if we apply this Hadamard transform to some other state

in the computational basis? We have

H⊗n |a〉 =
1

2n/2

2n−1∑
b=0

(−1)a·b |b〉 .

Notice that exactly half of the states b result in a +1 coefficient and the other half result in a -1 coefficient,

unless a is the zero state. So if we apply the transformation twice, we have

H⊗nH⊗n |a〉 =
1

2n/2

2n−1∑
b=0

(−1)a·bH⊗n |b〉

=
1

2n

2n−1∑
b=0

(
(−1)a·b

2n−1∑
c=0

(−1)b·c |c〉

)

=
1

2n

2n−1∑
c=0

(
2n−1∑
b=0

(−1)(a⊕c)·b

)
|c〉

where ⊕ is vector addition in Zn2 . The sum a⊕ c is the zero state if and only if a = c. As stated previously,

unless this is the case, exactly half the tuples b result in a +1 coefficient and the other half result in a -1

coefficient. Therefore, these coefficients cancel, and we are left with only the case where c = a:

1

2n

2n−1∑
c=0

(
2n−1∑
b=0

(−1)(a⊕c)·b

)
|c〉 =

1

2n

2n∑
b=0

(−1)(a⊕a)·b |c〉 =
1

2n

2n−1∑
b=0

|c〉 = |c〉 .

Thus H⊗nH⊗n |a〉 = |a〉, and the square of this matrix is the identity.

2.7.2 CNOT Gate

We can also form unitary matrices that don’t factor into Kronecker products of 2×2 single-qubit gates. Per-

haps the most important one is the cnot (“controlled not”) gate, shown here with its matrix representation

and its wire diagram notation:
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CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 •

The gate maps |00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉, and |11〉 7→ |10〉. It flips the second bit if and only if

the first bit is equal to one.

2.7.3 SWAP Gate

The swap gate has matrix representation and wire diagram notation:

SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ×
×

This gate maps |00〉 7→ |00〉, |01〉 7→ |10〉, |10〉 7→ |01〉, and |11〉 7→ |11〉. It always swaps qubit 1 with qubit

2. If we look at a 2-qubit state in superposition and apply a swap gate, we see that only the probability

amplitudes of |01〉 and |10〉 were swapped. This is because swapping qubit 1 and qubit 2 when they are both

in state |0〉 has no effect on drawing |00〉. The same is true for |11〉.

We can see the effect on the probability amplitudes of an arbitrary 2-qubit register:

SWAP (c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉) = c1 |00〉+ c3 |01〉+ c2 |10〉+ c4 |11〉 .

2.7.4 Controlled Gates

The Toffoli gate is a “controlled-controlled-not” gate. Its matrix representation and wire diagram notation

are
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CCNOT =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



•
•

Similarly, the Fredkin gate is a “controlled swap” gate. Its matrix representation and wire diagram notation

are

CSWAP =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



•

By now, a pattern may present itself. We can apply an arbitrary number of control qubits to a unitary

matrix U which acts on n qubits. A controlled U gate with k control qubits can be represented as

C · · ·CU =

 I2k+n−2n 0

0 U

 •
...•
U

2.8 Entanglement

When the state of a quantum register is not expressible as a Kronecker product of single qubit states, we

say that the state of that register is entangled.
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For example,

1√
2

(|00〉+ |10〉) =
1√
2


1

0

1

0


is not an entangled state because it can be represented by a Kronecker product of two other single qubit

states. We can illustrate this:

1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

 1

1

⊗
 1

0

 .
However, the state

|Φ+〉 =
1√
2

(|00〉+ |11〉) =
1√
2


1

0

0

1


is entangled. We can show this by supposing there is a Kronecker product which results in |Φ+〉:

 a

b

⊗
 c

d

 =



a

 c

d



b

 c

d




=


ac

ad

bc

bd

 =


1√
2

0

0

1√
2

 .

This gives us the system of equations:

ac =
1√
2

ad = 0

bc = 0

bd =
1√
2

Which we can reduce to

ac = bd =
1√
2

ad = bc = 0.
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We cannot have a equal to zero or else ac will equal zero, which violates our constraint. So d must be

zero since ad = 0. But this causes bd to be zero, which also violates the constraints. Therefore, no Kronecker

product of single qubit states can create the state |Φ+〉.

When we measure |Φ+〉 in the standard basis, the state collapses to either |00〉 or |11〉. The strange part

of entanglement comes from the fact that in a physical implementation, we may measure individual qubits

one at a time instead of looking at the whole register. If we measured just the first qubit, there would be an

equal chance of it being a 0 or 1, but once the measurement is done, the second qubit is guaranteed to be

equal to the first qubit upon measurement.

|Φ+〉 also exhibits another interesting property: it is maximally entangled. This means that the proba-

bilities of obtaining any result are equal. There is an equal chance of drawing |00〉 or |11〉. These maximally

entangled pairs in C4 form a basis called the Bell basis:

B =
{
|Φ+〉 , |Φ−〉 , |Ψ+〉 , |Ψ−〉

}
|Φ+〉 =

1√
2

(|00〉+ |11〉)

|Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉)

|Ψ−〉 =
1√
2

(|01〉 − |10〉)

Each of these vectors may also be referred to as an EPR pair, named after Einstein, Podolsky, and Rosen

[14]. These pairs are useful in demonstrating the benefits of entanglement on a small scale. EPR pairs are

used in quantum teleportation and cryptography.

To get a Bell state, we can use our change of basis transform from (2.1). In fact, this unitary transfor-

mation is represented by applying a Hadamard gate to the first qubit, then a cnot gate from the first qubit

targeting the second:

cnot (H ⊗ I2) |00〉 =
1√
2


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1




1

0

0

0

 =
1√
2


1

0

0

1

 =
1√
2

(|00〉+ |11〉).

This gate combination on any state in the computational basis will generate its corresponding Bell state in

the Bell basis:
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q0 H •
q1

|00〉 → |Φ+〉

|01〉 → |Φ−〉

|10〉 → |Ψ+〉

|11〉 → |Ψ−〉
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Chapter 3

An Introduction to Qiskit

Qiskit [15] is an open-source development kit for working with quantum computers in Python. This package

allows you to build and run quantum circuits either on local simulators or real IBM quantum machines [3].

3.1 Installation

The recommended configuration for Qiskit, and the configuration we will use here, involves installing the

packages within an Anaconda environment. Anaconda is a distribution platform for Python that allows you

to create separate Python environments (called conda environments). To download Qiskit and Anaconda:

1. Download and install the latest version of Python: You can find installers for Windows, Lin-

ux/UNIX, and macOS at

https://www.python.org

Ensure that you download Python version 3.6 or later; downloading the latest version is usually the

best option.
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Figure 3.1: Screenshot of the Python website highlighting the download link[16]

2. Install Anaconda on your machine: You can find installers for Windows, Linux/UNIX, and macOS

at

https://www.anaconda.com/

Figure 3.2: Screenshot of the Anaconda website highlighting the download link[17]

3. Open an Anaconda environment: In the Anaconda Command Prompt on a Windows machine,
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or in the Terminal on a macOS or Linux/UNIX machine, create a new conda environment with the

following command.

Figure 3.3: Opening the Anaconda Command Prompt in Windows and the Terminal in macOS

conda create -n environment-name anaconda

This command will create a new conda environment running Python 3 called environment-name and

will automatically install all default packages. We will install and use Qiskit within this new environ-

ment.

Figure 3.4: Creating a conda environment on Windows (left) and macOS (right)

4. Open the environment and install the Qiskit package: We can open our new environment with
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conda activate environment-name

Figure 3.5: Activating a conda environment on Windows (left) and macOS (right)

When you activate an environment, you should see this change reflected in your command prompt/ter-

minal.

Figure 3.6: Seeing active environment on Windows (left) and macOS (right)

Once you are in your environment, install Qiskit with the command

pip install qiskit

Figure 3.7: Installing Qiskit in a conda environment on Windows (left) and macOS (right)

As an optional step, you can install Qiskit’s visualization package. This will make the visual outputs,

for example the drawings of circuits, look much nicer. All the drawings in this report have been made

using this visualization package. To install the package on a Windows, Linux/UNIX, and older macOS

machines use
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pip install qiskit[visualization]

To install on newer macOS (those which use zsh) machines use

pip install ’qiskit[visualization]’

You can verify that Qiskit was installed correctly with the command

conda list

This command lists the packages installed in your current environment.

Figure 3.8: Output of the conda list command on Windows (left) and macOS (right)

If everything has been installed correctly, you should see Qiskit and its subsidiaries in this list.

Figure 3.9: Qiskit package and its subsidiaries in the list of installed packages on Windows (left) and macOS

(right)
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5. Open a new Jupyter Notebook: A Jupyter Notebook is a special type of Python file that allows

you to run lines of code in distinct chunks. Jupyter Notebook and JupyterLab can be installed from

https://jupyter.org/

To open a new Jupyter Notebook file and get started using Qiskit, use the command

jupyter notebook

within your conda environment.

Figure 3.10: Command to open Jupyter Notebook on Windows(left) and macOS(right)

This will launch Jupyter Notebook in your default browser at localhost:8888. You can then navigate

to the folder of your choice and create a new script. To use Qiskit, make sure that the file you create

is using the right version of python. You can also use the Anaconda Navigator GUI to launch Jupyter

Notebook if you have it installed on your computer.
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Figure 3.11: Creating a new Python 3 script with Jupyter Notebook launched in a browser

For more information, visit the installation page on the Qiskit website

https://qiskit.org/.

3.2 Building Simple Circuits

Now that we have installed Qiskit, let’s build some simple circuits. To start out, we need to import some

things from Qiskit. Open Jupyter Notebook and create a new cell using the menu bar or by pressing ‘a’ and

add the following code to the cell.
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# Build and use quantum circuits

from qiskit import QuantumCircuit

# Create and use state vectors

from qiskit.quantum_info import Statevector

# Use the Qiskit's Aer quantum machine simulator

from qiskit.providers.aer import *

# Visualize quantum circuits in a nicer format

# If you did not install the visualization package,

# remove this import

from qiskit.visualization import *

Now run the first cell, so we can use these within this file. Next, let’s build our first quantum circuit. Create

a new cell and write the following.

# QuantumCircuit(q,c) returns a new QuantumCircuit with

# q quantum bits and c classical bits

circuit = QuantumCircuit(2,2)

# QuantumCircuit.draw() outputs the circuit to the console

# The argument output='mpl' specifies it draw the circuit

# using matplotlib.

circuit.draw(output='mpl')

When you run this cell, it should output the following diagram.

Figure 3.12: Quantum circuit with 2 qubits and 2 classical bits

This shows that our circuit has 2 quantum bits and 2 classical bits. Next, let’s add some simple quantum

gates to our new circuit. To add a Hadamard gate and a not gate, write and execute the following in

another cell:
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# QuantumCircuit.h(n) adds a Hadamard gate to qubit n

circuit.h(0)

# QuantumCircuit.x(n) adds a NOT gate to qubit n

circuit.x(1)

circuit.draw(output='mpl')

We can verify our gates were added correctly by looking at the resulting diagram.

Figure 3.13: Quantum circuit after adding a Hadamard gate and a NOT gate

The ‘Statevector’ object in Qiskit holds the output state vector of an input state evolved by a given

instruction or circuit. By default, this function assumes the starting state is the same number of qubits as

the input instruction or circuit all in the state |0〉. In this case, we can find the state vector of the default

register after being evolved by our quantum circuit.

# state = Statevector(c) Returns a Statevector for

# the QuantumCircuit c

state = Statevector(circuit)

# Output the state vector using the parameter

# 'latex' to format the output using LaTeX

state.draw('latex')

This should result in this output vector. [
0 0 1√

2
1√
2

]

But this result is backwards! Rather than numbering bits from left to right, as we were working

with above, Qiskit numbers them right to left. It’s really important to take note of this for the

calculations we will do in the future. Getting back to our circuit, we can add some entanglement with

another gate.
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# To create a CNOT gate use QuantumCircuit.cx(c,t) where

# c represents the control qubit's number, and

# t represents the target qubit's number

circuit.cx(0,1)

# Draw the circuit

circuit.draw(output.'mpl')

# Calculate and draw the Statevector

state2 = Statevector(circuit)

state2.draw('latex')

This cell outputs the following circuit diagram and output state vector. Recall that by default, the output

state vector is calculated assuming that both qubits are in state |0〉.

Figure 3.14: Quantum circuit after adding a CNOT gate

[
0 1√

2
1√
2

0
]

Now we can see we have entangled the qubits!

Let’s measure the output of our circuit.

# QuantumCircuit.measure([q1,q2,..qn], [c1,c2,..,cn])

# where q1,q2,..qn is a list of qubits and

# c1,c2,..,cn is a list of classical bits

# It maps q1 to c1, q2 to c2, etc.

circuit.measure([0,1],[0,1])

# Draw the circuit

circuit.draw(output.'mpl')
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Figure 3.15: Quantum circuit after adding measurement

Now that we have it all set up, we can run our quantum circuit on a simulated quantum machine. We

run multiple simulations to see the distribution of the final measurements.

Right now, we will use Qiskit’s default quantum machine simulator, the Aer Simulator. It has different

properties you can specify when setting it up, but for now we will use the default. Later, we will expand on

using these properties, using other simulators, and running circuits on real IBM quantum machines.

Let’s now create a simulator, run some trials, and then print out the statistics of the measurements we

take for each trial.

# AerSimulator() returns the default Aer simulator

sim = Aersimulator()

# AerSimulator.run(c, shots = n) creates and returns a job for the simulator

# where c represents a QuantumCircuit and n is the number of simulations to run

job = sim.run(circuit, shots=1000)

# job.result() returns the result object for the given simulation job

result = job.result()

# results.get_counts() returns the number of simulations that resulted

# in each measurement

counts = result.get_counts()

# Stating the variable prints out the value of counts

counts

If you run this cell it will report the number of ‘10’ measurements and the number of ‘01’ measurements.

It should be around a 50/50 split. However, if you run the cell a couple more times, you can see that this

distribution changes slightly. Our entanglement is working!

Throughout the rest of the report, we will build and run circuits using Qiskit to implement each of the

algorithms we discuss.

43



Chapter 4

Early Algorithms

Many quantum algorithms have been developed, each demonstrating some advantage over their classical

counterparts. Some, such as Shor’s algorithm for factoring integers, were developed before a physical quan-

tum computer was implemented. However, as quantum computing is mostly linear algebra, mathematicians,

physicists, and computer scientists alike can work to develop algorithms that demonstrate the quantum

advantage and emphasize the need for quantum computer literacy.

4.1 The Hidden Subgroup Problem

Some of the first applications of quantum algorithms found speedups by theoretically being able to solve

the hidden subgroup problem (HSP) faster than a classical computer. The first four algorithms covered—

Deutsch-Jozsa, Bernstein-Vazirani, Simon, and Shor—solve a variation of this problem.

Hidden Subgroup Problem

Let G be a group. Let H ≤ G be a subgroup of G. Let X be a set and let f : G→ X, where, for all

g1, g2 ∈ G, f(g1) = f(g2) if and only if g1H = g2H. By querying f , find a generating set for H.

For this general description of the problem, G could be an infinite group, it could lack commutativity

of elements, or both. This lack of structure causes the problem to be difficult to approach. There are

no known algorithms for solving this problem classically, or by quantum means, in full generality. However

when G holds certain properties, we can find a classical and quantum algorithm to solve the hidden subgroup

problem. For the rest of this report, we will assume G is finite and abelian.
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4.1.1 Problem Reductions

At first glance, the hidden subgroup problem does not seem very useful. Its usefulness becomes more apparent

when we consider problem reductions. A reduction is a transformation from one problem into another in

such a way that solving the second allows a solution for the first to be found using that transformation.

Finding the period of an element in a multiplicative group modulo n is reducible to the hidden abelian

subgroup problem. The function that hides the subgroup is periodic, that is, for all g in G, f(g) = f(g + r)

and the subgroup hidden is the group generated by r. Solving this problem is central to Shor’s algorithm in

Chapter 5.

The discrete logarithm problem is also reducible to the hidden abelian subgroup problem. This problem

is covered in §5.7. Not covered in this text are reductions from the graph isomorphism problem and shortest

vector problem. These problems are not abelian; instead, they rely on symmetric groups and dihedral groups,

respectively.

In 2003, Kuperberg [18] created a sieving algorithm for dihedral groups, DN , utilizing quantum com-

puting. His algorithm achieves a runtime of 2O(
√
logN). This is an improvement over a classical query

algorithm, which would require O(
√
N) queries. At first glance, the runtime of the quantum algorithm

does not appear to be an improvement, but as an exercise, plot out both runtimes in a graphing calculator.

Kuperberg improved the space requirements with the help of Regev in 2011 [19]. However, the reduction

of the shortest vector problem to the HSP does not yield an improvement over classical algorithms such as

Lenstra-Lenstra-Lovász (LLL) and Block Korkine-Zolotarev (BKZ) [20].

4.2 Deutsch-Jozsa

The Deutsch-Jozsa problem [21] was designed to show the usefulness of quantum computing. Thus, its main

goal is not to solve a real-world problem, but to demonstrate how a quantum computer might solve a specific

problem more efficiently than a classical computer. The Deutsch-Jozsa problem and subsequent algorithm

additionally helped separate the complexity classes P and EQP (exact quantum polynomial).

The first iteration of the algorithm was developed by David Deutsch in 1985 [22], although this version

only provided a solution for the simplest case. In collaboration with Richard Jozsa, Deutsch was able to

improve the algorithm to solve a more general case in 1992 [21]. The now deterministic algorithm was able

to take n bits of input and determine whether the function was balanced using 2 queries.

In 1998, Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca developed the algorithm

we know today [23]. Though the name Deutsch-Jozsa was kept to pay homage to the groundbreaking work
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of the original creators, this new version is able to solve the problem in a single query instead of two.

4.2.1 The Problem

In the Deutsch-Jozsa problem, we are given a function f : {0, 1}n → {0, 1} and asked to find whether it is

constant (i.e., all outputs are 1, or all outputs are 0) or balanced (i.e., the outputs are split 50-50 between 0

and 1). Computing this on a classical computer requires 2n−1 + 1 queries of f in the worst case. However,

using the Deutsch-Jozsa algorithm, we only need to query f once, using it as a quantum oracle. This oracle

maps |x〉 |y〉 to |x〉 |y ⊕ f(x)〉. For an example of the implementation of the oracle, see §4.2.3.

4.2.2 The Algorithm

We start with n+ 1 qubits, with the first n initialized to |0〉 and the last to |1〉. We then apply a Hadamard

gate to all n+ 1 qubits. Utilizing what we learned in §2.7.1 the resulting state of the quantum register is

1√
2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉). (4.1)

From here, we apply the oracle introduced in the previous subsection. Note that we have two possible

results from applying this oracle:

|x〉 |0〉 → |x〉 |0⊕ f(x)〉 = |x〉 |f(x)〉

and

|x〉 |1〉 → |x〉 |1⊕ f(x)〉 .

By linearity, the state (4.1) is mapped to

1√
2n+1

2n−1∑
x=0

|x〉 (|f(x)〉 − |1⊕ f(x)〉) . (4.2)

Note that, as f(x) always outputs either 0 or 1, we can simplify this last qubit further. If f(x) = 0, then

|f(x)〉 − |1⊕ f(x)〉 = |0〉 − |1〉 .

If f(x) = 1, then

|f(x)〉 − |1⊕ f(x)〉 = |1〉 − |0〉 .

We see that the sign is dependent on the outcome of f(x), and thus rewrite as

|f(x)〉 − |1⊕ f(x)〉 = (−1)f(x)(|0〉 − |1〉).
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Our state (4.2) can now be written as

2n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉).

We now disregard the last qubit, and are left with

1√
2n

2n−1∑
x=0

(−1)f(x) |x〉 .

Finally, we apply another Hadamard gate to the first n qubits, bringing our register to

1√
2n

2n−1∑
x=0

(−1)f(x)

(
1√
2n

2n−1∑
y=0

(−1)x·y |y〉

)
. (4.3)

After rearranging the summations, we obtain

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉 .

To determine the result of the algorithm, we now measure the first n qubits. Let’s look at the behavior

of the summation in the cases where f(x) is constant and balanced.

If f(x) is constant, then the term (−1)f(x) is constant. If f(x) = 0 for all x, then

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)0(−1)x·y

]
|y〉 =

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)x·y

]
|y〉 .

Let’s examine the bitwise dot product mod 2, x · y. When y = 0, x · y = 0 for all x. So the sign on the

inner summation will always be 1. Pulling out the term where of y = |00 . . . 0〉 gives us

1

2n

(
2n |00 . . . 0〉+

2n−1∑
y=1

[
2n−1∑
x=0

(−1)x·y

]
|y〉

)
.

Now let y 6= 0. Then y ·x will result in an equal number of zeros and ones when iterated across each x. With

an equal number of zeros and ones, the double summation reduces to

1

2n

(
2n |00 . . . 0〉+

2n−1∑
y=1

2n−1 |y〉 − 2n−1 |y〉

)

which then causes the whole summation to reduce to 0. Our state (4.3) is now

1

2n
(2n |00 . . . 0〉+ 0) = |00 . . . 0〉 .
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So when measuring the first n qubits, we get 0 with a probability of 1.

If f(x) = 1 for all x, we have

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)1(−1)x·y

]
|y〉 = − 1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)x·y

]
|y〉 .

The only difference between the first case and this one is that the sign is different. So the whole summation

reduces to − |00 . . . 0〉. This also gives a result of 0 with probability 1.

Now we look at the summation when f(x) is balanced:

1

2n

2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉 .

If we draw out the y = 0 term again, (−1)y·x = 1 for each x, but now since f(x) is balanced, there are now

an equal number of 1 and -1 coefficients from (−1)f(x). So extracting |00 . . . 0〉 gives us

1

2n

(
2n−1 |00 . . . 0〉 − 2n−1 |00 . . . 0〉+

2n−1∑
y=1

[
2n−1∑
x=0

(−1)f(x)(−1)x·y

]
|y〉

)

and the |00 . . . 0〉 cancels out to have amplitude of 0. While the actual result measured depends on f(x) (and

is subject to quantum noise), we are guaranteed that we can never draw |00 . . . 0〉 when f(x) is balanced.

Thus, when we measure the first n qubits, we will receive a register of all zeros if f(x) is constant, and a

non-zero result if f(x) is balanced.

We can look at the circuit diagram of this algorithm to view it from another perspective:

|00 . . . 0〉 H⊗n

Uf
H⊗n

|1〉 H

Another way to think about the Deutsch-Jozsa algorithm is that the oracle will not alter the input state

in a meaningful way if f(x) is constant. Since the Hadamard transform inverts itself, if the unitary oracle

does not alter the first n qubits, the value measured is just the initial state, which was zero.
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4.2.3 Qiskit

This function will create a Deutsch-Jozsa circuit when given an oracle which applies gates to match a constant

or balanced function, and the dimension of the input.

# import basic quantum circuits, simulators, and plot tools

from qiskit import QuantumCircuit

from qiskit import Aer

from qiskit.visualization import plot_histogram

def deutsch_jozsa_circuit(oracle, dim):

"""Construct a circuit to solve the Deutsch-Jozsa

problem when given a function that is promised to either

be balanced or constant

:param oracle: A method which applies the unitary oracle

to the circuit

:param dim: The dimension of the domain of the oracle

:return: A qiskit QuantumCircuit object which when run

will solve the problem

"""

# Create a circuit with n + 1 qubits, n classical bits,

# and give it a name

circuit = QuantumCircuit(dim + 1, dim,

name=f'Deutsch-Jozsa on {dim} qubits')

# Register is in state |00...00> so flip the last bit

circuit.x(dim)

# Apply a Hadamard gate to every qubit

[circuit.h(i) for i in range(dim + 1)]

circuit.barrier()

# Apply the oracle

oracle(circuit,dim)

circuit.barrier()

# Apply a Hadamard gate to every qubit except for the

# last one

[circuit.h(i) for i in range(dim)]

# Measure all qubits but the last qubit

[circuit.measure(i, i) for i in range(dim)]

return circuit
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Now all that is needed is to make some oracles. We have 3 cases: all zeros, all ones, or a balanced number

of ones and zeros.

The (n + 1)st qubit stores the output of our function, so at the simplest level, all we have to do is set

that output based on what the result is. A 0 constant oracle will do nothing, while a 1 constant oracle flips

the (n+ 1)st qubit to 1. Both of these leave the first n qubits alone, so that the Hadamard gates will undo

themselves before measurement and leave us with 0.

# 0 constant oracle

def constant_0_oracle(circuit, dim):

pass

# 1 constant oracle

def constant_1_oracle(circuit, dim):

circuit.x(dim)

Next is the balanced oracle. There are many possibilities to choose from. This simple one is easy to

implement, and illustrative. We apply cnot gates from each qubit as a control to the (n+ 1)st qubit. This

entangles the state, and results in a non-zero measurement. We can then build and view the Deutsch-Jozsa

circuit.

# Balanced oracle

def balanced_oracle(circuit, dim):

[circuit.cx(i, dim) for i in range(dim)]

# View the circuit with a balanced oracle and dimension 4

circuit = deutsch_jozsa_circuit(balanced_oracle, 4)

display(circuit.draw('mpl'))

The algorithm produced by this code fragment is shown below. The oracle is applied between the two

barriers. We must remember that the implementation of the oracle is hidden to the algorithm.

Figure 4.1: The circuit generated by Qiskit for a balanced oracle with n = 4.
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Now we can run some simulations and view the results.

# Run the simulator 1024 times and view the results

aer_sim = Aer.get_backend('aer_simulator')

results = aer_sim.run(circuit, shots=1024).result()

plot_histogram(results.get_counts())

The result of the simulations should be depicted in the histogram generated by the above code fragment.

For this example, the results should look like the following.

Figure 4.2: The results from 1024 iterations of the Deutsch-Jozsa algorithm for n = 4.

From the results and the analysis in the section above, we see that our function was constant. As an

exercise, run the code yourself to verify that the algorithm returns the correct results.

4.3 Bernstein-Vazirani

In 1992, Ethan Bernstein and Umesh Vazirani developed their own algorithm to solve a modified version of

the Deutsch-Jozsa problem [24]. Rather than classifying functions, this algorithm attempts to find a string

encoded within a function. No significant improvements in efficiency or success probability over the original

algorithm have been discovered.
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4.3.1 The Problem

We are given oracle access to a function f : {0, 1}n → {0, 1} and are promised that the result is always

f(x) = x · s, where (·) is the binary dot product modulo 2, and s is a bit-string of length n that is secret to

us. Our goal is to determine what this string is.

When viewing the Bernstein-Vazirani problem through the lens of the hidden subgroup problem, the

group G is Z2n , and the hidden subgroup H is {h ∈ G |h · s = 0}.

4.3.2 The Algorithm

On a classical computer we can make n queries to the function where we have only a single bit set to 1 for

each query. The result returned gives us the value of the bit in s at that position.

However, with just a single oracle call on a quantum device, we can find the entire bit-string s. We

start with n+ 1 qubits, with the first n in state |0〉 and the last in state |1〉. We then perform a Hadamard

transform on all the qubits:

1√
2n+1

2n−1∑
x=0

|x〉 (|0〉 − |1〉).

We then apply the oracle function, which sends |x〉 |y〉 → |x〉 |y ⊕ f(x)〉, where (⊕) is vector addition

mod 2. Since we apply this to the entire superposition, we end up with the sign being determined by the

result of f(x), similar to Deutsch-Jozsa. We can now disregard the last qubit, leaving us with

1√
2n

2n−1∑
x=0

(−1)f(x) |x〉 .

Then we take a second Hadamard transform. Recalling that f(x) = x · s, this gives us

1√
2n

1√
2n

2n−1∑
x=0

2n−1∑
y=0

(−1)x·y(−1)f(x) |y〉 =
1

2n

2n−1∑
y=0

2n−1∑
x=0

(−1)x·s+x·y |y〉 .

The sum x · s+ x · y can be rewritten as x · (s⊕ y). So,

1

2n

2n−1∑
y=0

2n−1∑
x=0

(−1)x·s+x·y |y〉 =
1

2n

2n−1∑
y=0

2n−1∑
x=0

(−1)x·(s⊕y) |y〉 .

The vector addition mod 2 of s⊕ y is equal to the zero vector only when y = s.
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Remark

Consider when y has been chosen not equal to s, that is, let y be given such that y 6= s.

Then
2n−1∑
x=0

(−1)x·(s⊕y) =

2n−1∑
x=0

(−1)x·k

where k is a new non-zero vector from the result of s ⊕ y. Since k is non-zero, over x =

0 . . . 2n − 1, x · k will equal 0 exactly half the time, and equal 1 exactly half the time. This

means that an equal number of 1s and −1s are added together in the summation and

2n−1∑
x=0

(−1)x·k = 0.

Summing over x from 0 to 2n − 1, the only vector left is |y〉 such that y = s:

1

2n

2n−1∑
y=0

(
2n−1∑
x=0

(−1)x·(s⊕y)

)
|y〉 = |s〉 .

Measuring the state will give us the secret string s.
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4.3.3 Qiskit

We can see this algorithm in action using Qiskit. The code snippet below creates a circuit to solve the

Bernstein-Vazirani problem for a given binary string s.

# import basic quantum circuits, simulators, and plot tools

import matplotlib.pyplot as plt

import numpy as np

from qiskit import Aer, QuantumCircuit, ClassicalRegister, QuantumRegister

from qiskit.visualization import plot_histogram

def bern_vaz_circuit(s,n):

"""Construct a circuit to solve the Bernstein-Vazirani

problem when given a hidden binary string.

:param s: A hidden binary string

:param n: The length of the hidden binary string

:return: A qiskit QuantumCircuit object which when run

will solve the problem

"""

# Create a circuit with n qubits + 1 ancillary qubit

# and n classical bits.

bv_circuit = QuantumCircuit(n+1, n)

# Initialize the state of the ancillary qubit

bv_circuit.x(n)

# Apply a Hadamard gate to each qubit

for i in range(n):

bv_circuit.h(i)

bv_circuit.barrier()

# Apply the inner-product oracle

s = s[::-1] # Remember qiskit uses backwards ordering

for q in range(n):

if s[q] == '0':

bv_circuit.i(q)

else:

bv_circuit.cx(q, n)

bv_circuit.barrier()

# Apply Hadamard gates to the first n qubits

for i in range(n):

bv_circuit.h(i)

# Measure the first n qubits and return the final circuit

for i in range(n):

bv_circuit.measure(i, i)

return bv_circuit
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Let’s run this function using the hidden string s = 011 and view the resulting circuit.

# Hidden binary string

s = '011'

# Build and view the Bernstein-Vazirani circuit

circuit = bern_vaz_circuit(s,len(s))

display(circuit.draw('mpl'))

This should produce the following circuit.

Figure 4.3: The circuit generated by Qiskit for s = 011.

# Run the simulator 1024 times and view the results

aer_sim = Aer.get_backend('aer_simulator')

results = aer_sim.run(circuit, shots=1024).result()

plot_histogram(results.get_counts())

These simulations yield the following results.

Figure 4.4: The results from 1024 simulations of the Bernstein-Vazirani algorithm.
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Our hidden bit string was 011 and all 1024 simulations produced 011 as well. As an exercise, run the

code above to make sure you get the same answer. Then try your own bit strings and explore the results.

4.4 Simon

Simon’s problem [25] is another problem designed to show the efficiency of quantum computing over classical

computing, first proposed by Daniel Simon in 1994, and was later the inspiration for Shor’s algorithm [26].

Simon’s algorithm solves the problem described below exponentially faster than any classical algorithm.

Specifically, it uses a linear number of queries, whereas any classical algorithm must use an exponential

number of queries. Like the Deutsch-Jozsa problem, Simon’s problem has little real-world use, but the

algorithm helped demonstrate the advantages quantum computers have over classical ones.

4.4.1 The Problem

In Simon’s problem, we are given oracle access to a function f : {0, 1}n → {0, 1}n with the promise that for

some unknown s ∈ {0, 1}n, for all x, y ∈ {0, 1}n, f(x) = f(y) if and only if x⊕ y = s. Note that this means

f is a one-to-one function if s = 0n, since then

f(x) = f(y) =⇒ x = y ⊕ 0n =⇒ x = y

and f is a two-to-one function if s 6= 0n. The goal in this problem is to determine s with as few queries to

f(x) as possible. As in the Deutsch-Jozsa problem, the oracle maps |x〉 |y〉 → |x〉 |y ⊕ f(x)〉.

Simon’s problem is a clear illustration of the hidden subgroup problem with G = {0, 1}n and H = {0G, s}

for some element s in G.

4.4.2 The Algorithm

Simon’s algorithm starts with two n-qubit registers in the state |0n〉 ⊗ |0n〉. A Hadamard transform is then

applied to the n qubits of the first register, resulting in the state

(H⊗n |0n〉) |0n〉 =

2n−1∑
x=0

1√
2n
|x〉 |0n〉 =

1√
2n

2n−1∑
x=0

|x〉 |0n〉 .

Next, the oracle is applied to this state, giving us

1√
2n

2n−1∑
x=0

|x〉 |f(x)〉 .
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We next apply another Hadamard transform to the first register to obtain

1√
2n

2n−1∑
x=0

((
1√
2n

2n−1∑
y=0

(−1)x·y |y〉

)
|f(x)〉

)
=

1

2n

2n−1∑
x=0

(
2n−1∑
y=0

(−1)x·y |y〉 |f(x)〉

)
.

We can rewrite this state as

2n−1∑
y=0

(
|y〉

(
1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

))
.

Finally, a complete measurement is performed, but we are concerned with the bits in the first register only.

The probability of measuring a string y is

∣∣∣∣∣ 1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

∣∣∣∣∣
2

.

There are now two cases to consider. If s 6= 0n, then there are two possible inputs, x1 and x2 = x1 ⊕ s,

which correspond to each output z = f(x). Letting A = f({0, 1}n) be the image of f , we have

∣∣∣∣∣ 1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2n

∑
z∈A

((−1)x1·y + (−1)x2·y) |z〉

∣∣∣∣∣
2

.

Since x2 = x1 ⊕ s, we know

(−1)x1·y + (−1)x2·y = (−1)x1·y + (−1)(x1⊕s)·y = (−1)x1·y(1 + (−1)y·s).

Thus, the probability can be rewritten as

∣∣∣∣∣ 1

2n

∑
z∈A

(−1)x1·y(1 + (−1)y·s) |z〉

∣∣∣∣∣
2

.

If y · s = 1, then 1 + (−1)y·s = 1− 1 = 0, so this probability is zero. If y · s = 0, then 1 + (−1)y·s = 1 + 1 = 2,

so the probability is

∣∣∣∣∣ 1

2n

∑
z∈A

(−1)x1·y(2) |z〉

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2n−1

∑
z∈A

(−1)x1·y |z〉

∣∣∣∣∣
2

=
1

2n−1
.

Thus, we know that if we measure a string y, then it is guaranteed that y · s = 0.

Repeating the algorithm n times gives us the system of equations:
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y1 · s = 0

y2 · s = 0
...

yn−1 · s = 0

If these equations are linearly independent, we can solve the system for s. If they are not linearly independent,

we can repeat the algorithm until we have n− 1 equations which are linearly independent.

If s = 0n, then there is a unique input x corresponding to each output f(x). Since f is one-to-one, the

probability that the measurement results in a string y is

∣∣∣∣∣ 1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2n

2n−1∑
x=0

(−1)x·y |x〉

∣∣∣∣∣
2

=
1

2n
.

As s = 0n, we have that y · s = 0 for all y. In this case, we eventually obtain a system of n equations which

are linearly independent.

In both cases, we have obtained a homogeneous system of n− 1 or n linearly independent equations. In

the first case, this system has two solutions: the trivial solution 0n and a non-trivial solution s′. We can

solve the system for s′, and then check whether f(s′) = f(0n). If f(s′) = f(0n), then s′ = s. If f(s′) 6= f(0n)

or we arrive at a system of rank n (hence admitting only the trivial solution), then it follows that s = 0n.

Either way, the problem is solved.

4.4.3 Query Complexity

We have proved above that we can find the solution using Simon’s algorithm by obtaining a system of at

most n linearly independent equations. We can now ask ourselves how we can guarantee n − 1 randomly

generated equations of the form y · s = 0 are linearly independent. In order to prove this, we will find the

bounds of the probability that any n equations returned by the algorithm are linearly independent.

Suppose we have k linearly independent equations associated with the vectors y1, y2, . . . , yk. These vectors

span a subspace S ⊂ Zn2 of size 2k where S consists of all vectors in the form a1y1 + a2y2 + · · · + akyk for

a1, a2, . . . , ak ∈ {0, 1}.

Now suppose we find a new equation associated with a vector yk+1. This equation will be linearly

independent of all the previous equations as long as yk+1 lies outside S.

There is a 1− 2k−n probability that yk+1 lies outside S. So the probability that any n equations are linearly

independent is the product of those probabilities for every k. This can be expressed as
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Pr =

(
1− 1

2n

)
×
(

1− 1

2n−1

)
× · · · ×

(
1− 1

22

)
×
(

1

2

)

=

n∏
k=1

(
1− 1

2k

)
>

∞∏
k=1

(
1− 1

2k

)
>

1

4
.

Therefore, we obtain the solution using n linearly independent y vectors with a probability of greater

than 1
4 . With any fewer than n− 1 queries, there will not be a unique non-zero solution. The lower bound

for the number of queries required for Simon’s algorithm is Ω(n) [27].
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4.4.4 Qiskit

Let’s see Simon’s algorithm in action using Qiskit. First, we will walk through creating a Simon circuit by

building our own oracle that we know works for our example. Then we will take a look at a Qiskit package

subsidiary that will automatically generate the appropriate oracle for a given bit string.

First, we need to include the necessary imports, then create a function to build the circuit used in Simon’s

algorithm. This function below will create a Simon circuit for a given bit string s with length n. We know

the oracle we created is appropriate for the given bit string s = 101 that we will use for this example.

# import basic quantum circuits, simulators, and plot tools

from qiskit import Aer, QuantumCircuit, QuantumRegister, ClassicalRegister

from qiskit.visualization import plot_histogram

def simon_circuit(n):

"""Construct a circuit to solve Simon's problem for

a given dimension

:param n: The dimension of the domain of the oracle

:return: A qiskit QuantumCircuit object which when

run will solve the problem

"""

# Create a circuit with two quantum registers of 'n' qubits,

# register q and register r, and one classical register of 'n' bits

# Building the registers individually, while not

# required, will make future steps clearer

q = QuantumRegister(n, 'q')

r = QuantumRegister(n, 'r')

c = ClassicalRegister(n)

circuit = QuantumCircuit(q, r, c)

# Apply a Hadamard gate to all the qubits in the first register

circuit.h(q)

circuit.barrier()

# Apply Simon's oracle specific to our example

circuit.cx(q, r)

circuit.cx(q[0],r[0])

circuit.cx(q[0],r[2])

circuit.barrier()

# Apply a Hadamard gate to all the qubits in the first register again

circuit.h(q)

# Measure the qubits of first register and return the completed circuit

circuit.measure(q, c)

return circuit
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Now that we’ve written this function, let’s take a look at the circuit it generates when we input s = 101.

# Define the starting bitstring and construct the circuit

s = '101'

circuit = simon_circuit(len(s))

display(circuit.draw('mpl'))

This should output the circuit below.

Figure 4.5: The circuit generated for n = 3. The oracle is applied between the two barriers.

Now that we have our circuit, we can run some simulations and view the results. Afterwards, we can compare

the simulations to the numerical solution.

# Run the simulator 100 times and view the results

aer_sim = Aer.get_backend('aer_simulator')

results = aer_sim.run(circuit, shots=1024).result()

plot_histogram(results.get_counts())
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Figure 4.6: Results from running Simon’s algorithm 1024 times with s = 101.

We can verify these results by calculating the dot product of s and z.

# Calculate the dot product of the results

def sdotz(s, z):

accum = 0

for i in range(len(s)):

accum += int(s[i]) * int(z[i])

return (accum % 2)

for z in results.get_counts():

print( '{} . {} = {} (mod 2)'.format(s, z, sdotz(s,z)) )

For this example, this snippet should produce the following output.

Figure 4.7: Output showing the dot product of the original bit string and the results from Simon’s algorithm.

From this calculation, we can verify that the dot products of s and all output values z are 0.

The oracle we used above won’t necessarily work for any other inputs. Luckily, the qiskit textbook

package has a function which generates Simon’s oracle for a given s. In order to install qiskit textbook,

activate your conda environment and run the command below.
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pip install git+https://github.com/qiskit-community/qiskit-textbook.git
#subdirectory=qiskit-textbook-src

Once you have installed qiskit textbook, then you can add an additional import and change our simon circuit

function.

# Import simon_oracle

from qiskit_textbook.tools import simon_oracle

def qiskit_simon_circuit(s,n):

"""Construct a circuit to solve Simon's problem for a

given dimension using the Qiskit simon_oracle function.

:param s: A hidden binary string

:param n: The dimension of the domain of the oracle

:return: A qiskit QuantumCircuit object which when run

will solve the problem

"""

# Create a circuit with two quantum registers of 'n'

# qubits, register q and register r, and one classical

# register of 'n' bits

circuit = QuantumCircuit(n*2, n)

# Apply a Hadamard gate to all the qubits in the

# first register

circuit.h(range(n))

circuit.barrier()

# Apply Simon's oracle using Qiskit's simon_oracle

circuit += simon_oracle(s)

circuit.barrier()

# Apply a Hadamard gate to all the qubits in the

# first register

circuit.h(range(n))

# Measure the qubits of first register and return

# the completed circuit

circuit.measure(range(n), range(n))

return circuit

Now we can try inputting another bit string and see how the circuit changes. For example, we can use

s = 111.
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# Define the starting bit string and construct the circuit

s = '111'

circuit = qiskit_simon_circuit(s,len(s))

display(circuit.draw('mpl'))

The resulting circuit below is different from the one above! The simon oracle function built a different

oracle for the different input value.

Figure 4.8: The circuit generated for s = 111. The oracle is applied between the two barriers.

Now we can run some simulations and view the results.

# Run the simulator 100 times and view the results

aer_sim = Aer.get_backend('aer_simulator')

results = aer_sim.run(circuit, shots=1024).result()

plot_histogram(results.get_counts())
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Figure 4.9: Results from running Simon’s algorithm 1024 times with s = 101.

If we compare the output with the output of our first example, we can see the results are different. We can

verify our algorithm worked by calculating the dot product of s and all possible z values using our sdotx(s,z)

function from before. Looping through all of our solutions will produce the following output.

Figure 4.10: Output showing the dot product of the original bit string and the results from Simon’s algorithm.

This gives evidence that our algorithm works. As an exercise, run the above code to verify you get the

correct results, then try the algorithm with different s values.
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Chapter 5

Shor’s Algorithm

Inspired by Simon’s algorithm, Peter Shor first developed an algorithm to find the prime factors of an

integer in 1994 [26]. Since then, many have offered improvements to Shor’s original algorithm (e.g. [28]),

but the core has remained largely unchanged. Shor’s algorithm is perhaps the most impactful quantum

algorithm yet discovered, not because it is immediately implementable or solves a problem of wide industrial

applicability, but because of its implied threat to cybersecurity and global commerce. Since the algorithm

could hypothetically be employed to break any key for the most widely used public-key encryption schemes—

RSA, elliptic curve, and ElGamal—governments worldwide have taken notice and this implication seems to

be a common one in justifying further research and investment. To be clear, the threat seems a long way

off based on our knowledge of the unclassified implementations. In Chapter 1, all the machines we listed

handled fewer than 200 qubits, while a less-than-clever implementation of the factoring algorithm would

require many millions of high-fidelity qubits. A recent study [29] by Gidney and Eker̊a, however, estimated

that one could break an RSA key of 2048 bits in just eight hours with 20 million noisy qubits. It is not out

of the question that further efficiencies can be found in the coming years.

5.1 The Problem

Suppose we wish to factor a large integer N into, say, N = M1M2 with 1 < M1 ≤ M2 < N . A well-

established classical approach is to find non-trivial solutions a to a2 = 1 (mod N) (We will discuss this in

§5.5.1). This, in turn, becomes feasible if we can efficiently compute the order of an element in the group

Z∗N : if xr = 1 in ZN and r happens to be even, then a = xr/2 squares to one. We will show that a randomly

chosen element of Z∗N has a reasonable chance of having even order. So the problem to attack is efficient

computation of the order of an element.
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But this can be reduced to the Hidden Abelian Subgroup Problem (HASP) as follows. Suppose x ∈ ZN
with gcd(x,N) = 1. Define F : Zφ(N) → Z∗N via F (s) = xs mod N . Then F (s) = F (t) if and only if

F (t− s) = 1 and, with G = Zφ(N), the subgroup we seek a generator for is

H = { s | xs = 1 mod N } = 〈r〉

where r is order of x in the group Z∗N . The cosets of H in G are s + 〈r〉 = F−1(F (s)) so our function F

satisfies the conditions for the input to the HASP.

5.2 Discrete Fourier Transform

Before we get to Shor’s algorithm, we need to understand the discrete Fourier transform and the quantum

Fourier transform. The discrete Fourier transform (DFT) takes a vector x of length N—often N values

evenly spaced from 0 to 2π—and maps it to a vector y, defined by

yk =

N−1∑
n=0

xnω
−kn
N

where ωN = e
2πi
N is a primitive complex N -th root of unity. The inverse discrete Fourier transform (IDFT)

is given by

xn =
1

N

N−1∑
k=0

ykω
kn
N .

Shor’s algorithm utilizes the quantum analogue of the inverse discrete Fourier transform.

5.3 Quantum Fourier Transform

The discrete Fourier transform (DFT) converts a finite sequence of evenly-spaced samples of a function

into a sequence of equally-spaced samples of another complex valued function, known as the discrete-time

Fourier transform (DTFT). The inverse discrete Fourier transform uses the DTFT samples as coefficients of

complex sinusoids at the corresponding frequencies. The quantum Fourier transform (QFT) is the quantum

application of the inverse discrete Fourier transform. It is applied as a linear transformation to quantum

bits.

The QFT takes a quantum state |x〉 =
∑N−1
k=0 xk |k〉 and maps it to a state

∑N−1
k=0 yk |k〉, where each yk

is defined by

yk =
1√
N

N−1∑
n=0

xnω
nk
N
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and ωN = e2πi/N .

Notice that when |x〉 is a computational basis state, xn = 1 only when n = x and xn = 0 otherwise, so

the QFT can be expressed as

QFTN |x〉 =
1√
N

N−1∑
k=0

ωxkN |k〉 .

Thus, the matrix representing this transformation can be expressed as a sum of N2 rank-one matrices:

QFTN =
1√
N

N−1∑
j=0

N−1∑
k=0

ωjkN |k〉 〈j| .

For simplicity, we take N = 2` and we look at how QFTN acts on a computational basis vector |j〉:

QFTN |j〉 =
1√
N

N−1∑
k=0

ωjkN |k〉 =
1√
N

N−1∑
k=0

e2πijk/N |k〉

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
1∑

k`=0

e2πijk/N |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |k`〉

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
1∑

k`=0

e
2πij

(
k1
2 +

k2
4 +···+ k`

2`

)
|k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |k`〉

=
1√
N

1∑
k1=0

1∑
k2=0

· · ·
1∑

k`=0

e2πij
k1
2 |k1〉 ⊗ e2πij

k2
4 |k2〉 ⊗ · · · ⊗ e2πij

k`
2` |k`〉

=
1√
2

(
|0〉+ e

2πi
2 j |1〉

)
⊗ 1√

2

(
|0〉+ e

2πi
4 j |1〉

)
⊗ · · · ⊗ 1√

2

(
|0〉+ e

2πi

2`
j |1〉

)
where we have written k =

∑
kN2`+1−N so that k/N expands as given.

Now we look at the tth qubit in this register, 1 ≤ t ≤ `. We want it to be in the state:

|ψt〉 =
1√
2

(
|0〉+ e

2πi
2t
j |1〉

)

=
1√
2

(
|0〉+ e

2πi
2t

(2`−1j1+2`−2j2+···+j`) |1〉
)

=
1√
2

 1 0

0 eiθ1

j1  1 0

0 eiθ2

j2 . . .
 1 0

0 eiθ`

j` (|0〉+ |1〉)

where we have expanded j = j1j2 · · · j` = 2`−1j1 + · · ·+ 20j` and the phase is rotated by angles:

θ1 = π2`−t, θ2 = π2`−t−1, . . . , θ` = π21−t.
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Notice that we can ignore all rotations by integer multiples of 2π, that is, θk when k < `− t+ 1.

We are almost finished. This evolution of the tth qubit, assuming initial state |0〉, is represented by a

Hadamard gate followed by a sequence of `− t controlled phase rotation gates R2π/2k , abbreviated as Rk, for

k = 2, 3, . . . , `− t+1. Note that Rk :=

 1 0

0 e2πi/2
k

 can be built from a single cnot gate and single-qubit

gates:

|j1〉 H R2 R3 R4 · · · R`

|j2〉 • · · ·
|j3〉 • · · ·
|j4〉 • · · ·

...
...|j`〉 · · · •

Figure 5.1: The first few gates of the QFT

At the end of the first part of our circuit, the qubit represented by the first wire is in the state

|0〉+ e2πi(
j1
2 +

j2
4 +

j3
8 +···+ j`

2`
) |1〉 ,

and, continuing in this fashion, we reach state:

1√
2`

(
|0〉+ e2πi(

j1
2 +

j2
4 +

j3
8 +···+ j`

2`
) |1〉

)
⊗
(
|0〉+ e2πi(

j2
2 +

j3
4 +···+ j`

2`−1 ) |1〉
)
⊗ · · · ⊗

(
|0〉+ e2πi(

j`
2 ) |1〉

)
.

This is almost what we need, except the qubits are in the wrong order. We need to swap the first and last

qubits, then the second and second-to-last, etc. which gives us

1√
2`

(
|0〉+ e2πi(

jl
2 ) |1〉

)
⊗
(
|0〉+ e2πi(

j`−1
2 +

j`
4 ) |1〉

)
⊗ · · · ⊗

(
|0〉+ e2πi(

j1
2 +

j2
4 +

j3
8 +···+ j`

2`
) |1〉

)
.

This is the result of applying the QFT as a linear transformation to a state |j〉.

5.4 Phase Estimation

The last piece we need for Shor’s algorithm is quantum phase estimation. Quantum phase estimation is a

way of estimating the eigenvalue corresponding to an eigenvector |ψ〉 of a unitary operator U . If we write

this eigenvalue as e2πiθ, then the parameter θ is called the phase. We can write the eigenvalue in this form

because U is a unitary operator, so its eigenvalues must have an absolute value of 1.
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On a high level, phase estimation involves putting the first register in superposition using Hadamard gates,

applying controlled U gates to the second register, then applying the inverse quantum Fourier transform to

the first register and measuring the results. This can be represented by the following circuit:

Figure 5.2: Components of a quantum phase estimation circuit

Let U be a unitary operator which operates on m qubits. Let U have eigenvector |ψ〉 with corresponding

eigenvalue e2πiθ.

Our circuit uses two registers, the first with n qubits and the second with m qubits. The initial state is

|0n〉 |ψ〉. We first apply a Hadamard gate to the first register, resulting in the state:

1√
2n

2n−1∑
x=0

|x〉 |ψ〉 .

Now we apply controlled U gates to the second register with control qubits in the first register. We use

the kth qubit (counting the qubits from right to left starting with 0, as Qiskit does) in the first register as

the control for a U2k gate on the second register. The U2k gate maps |φ〉 → e2πi2
kθ |ψ〉, so the controlled

gate maps

1√
2

(|0〉+ |1〉)⊗ |ψ〉 =
1√
2

(|0〉 |ψ〉+ |1〉 |ψ〉)→ 1√
2

(|0〉 |ψ〉+ e2πi2
kθ |1〉 |ψ〉) =

1√
2

(|0〉+ e2πi2
kθ |1〉)⊗ |ψ〉 .

This stores the phase θ in the control qubit and leaves the second register unchanged. After applying all the

controlled U2k gates, the first register is left in state:

1√
2n

(|0〉+ e2πi2
n−1θ |1〉)⊗ (|0〉+ e2πi2

n−2θ |1〉)⊗ · · · ⊗ (|0〉+ e2πi2
0θ |1〉) =

1√
2n

2n−1∑
x=0

e2πixθ |x〉 |ψ〉 .
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Now we apply the inverse quantum Fourier transform to the first register. The inverse QFT maps a

computational basis vector |x〉 to

1√
2n

2n−1∑
k=0

e−2πixk/2
n

|k〉 ,

so our state becomes

1√
2n

2n−1∑
x=0

e2πixθ

(
1√
2n

2n−1∑
k=0

e−2πixk/2
n

|k〉

)
|ψ〉 =

1

2n

2n−1∑
x=0

2n−1∑
k=0

e2πix(2
nθ−k)/2n |k〉 |ψ〉 .

Finally, we perform a measurement on the first register. The probability of measuring a state |k〉 is

∣∣∣∣∣ 1

2n

2n−1∑
x=0

e2πix(2
nθ−k)/2n

∣∣∣∣∣
2

.

Let δ = (2nθ − k)/2n. If δ = 0 then this probability is 1. Otherwise, this becomes

∣∣∣∣∣ 1

2n

2n−1∑
x=0

e2πixδ

∣∣∣∣∣
2

=
1

22n

∣∣∣∣e2πi2nδ − 1

e2πiδ − 1

∣∣∣∣2 =
1

22n
sin2(2nπδ)

sin2(πδ)
.

This probability is higher the closer δ is to an integer a ∈ Z, that is, when δ = θ − k/2n ≈ a. But θ and

k/2n are both non-negative and less than 1, so it must be that a = 0. Thus,

θ − k/2n ≈ 0 =⇒ θ ≈ k/2n.

This means that k is likely to be close to a n-bit approximation for θ. We can try to determine the phase θ

more precisely by using more qubits in the first register.

5.5 The Algorithm

Now that we have the building blocks necessary, we can construct the full algorithm. Phase estimation and

the quantum Fourier transform are utilized in the quantum period finding subroutine. Shor’s algorithm

differs from the previously covered algorithms in that is has fairly sizable classical pre- and post-processing

steps.
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Shor’s Algorithm for Factoring

Input: A non-prime number N

Output: Two factors of N

1 Repeat until factors found

2 Pick a number a, 1 < a < N

3 Compute g = gcd(a,N)

4 if g 6= 1 then

5 return g,N/g

6 end

7

8 Find the order r of a ∈ (Z/NZ)∗

9 if 2 | r and ar/2 6≡ −1 (mod N) then

10 p = gcd(ar/2 − 1, N)

11 q = gcd(ar/2 + 1, N)

12 return p, q

13 end

5.5.1 Classical Component

The key classical concept behind Shor’s algorithm is finding a factor of N by looking at square roots of 1

modulo N . If a is a square root of 1 modulo N , then we have

a2 ≡ 1 (mod N)

a2 − 1 ≡ 0 (mod N)

(a− 1)(a+ 1) ≡ 0 (mod N)

(5.1)

This implies that N divides (a− 1)(a+ 1). If we can find a value for a, we can compute gcd(a− 1, N) to

try to obtain a factor of N . There are only two cases in which this will not work: when gcd(a− 1, N) = N

and when gcd(a− 1, N) = 1.

If gcd(a− 1, N) = N , then N divides (a− 1), so

a− 1 ≡ 0 (mod N)

a ≡ 1 (mod N)
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As long as we choose a 6≡ 1 (mod N) we can avoid this case.

If gcd(a − 1, N) = 1, a − 1 and N are coprime, so by the Extended Euclidean Algorithm there exist

u, v ∈ Z such that

(a− 1)u+Nv = 1.

Multiplying both sides by a+ 1, we find that

(a2 − 1)u+ (a+ 1)Nv = a+ 1.

We know that N divides a2 − 1 from (5.1), so there exists m ∈ Z such that

Nmu+N(a+ 1)v = N(mu+ (a+ 1)v) = a+ 1.

Therefore, N divides a+ 1, so

a+ 1 ≡ 0 (mod N)

a ≡ −1 (mod N).

Thus, we also have to avoid a ≡ −1 (mod N).

If we avoid these values of a, we are guaranteed

1 < gcd(a− 1, N) < N

and

1 < gcd(a+ 1, N) < N.

So both are factors of N . By the Chinese Remainder Theorem, an odd integer N with s prime divisors yields

2s solutions to the equation x2 ≡ 1 (mod N).

We examine the multiplicative group of integers modulo N (often denoted (Z/NZ)∗),

G = ({n : gcd(n,N) = 1, 0 < n < N}, ∗)

with modular multiplication as its operation and where every element g ∈ G is coprime to N , that is,

gcd(g,N) = 1. The order of this group is exactly φ(N), where φ is Euler’s totient function.

Let a ∈ G. The order of a is the smallest integer r such that ar = e where e is the identity of the group.

In (Z/NZ)∗, this would be ar ≡ 1 (mod N), as e = 1.

Using the square root of 1 expansion trick above:

ar ≡ 1 (mod N)

ar − 1 ≡ 0 (mod N)

(ar/2 − 1)(ar/2 + 1) ≡ 0 (mod N)
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Does this order grant us the desired factors? By definition of r, we cannot have gcd(ar/2−1, N) = 1, since

that would imply that r is not the order of a, as r/2 < r. So we avoid the case where gcd(ar/2 − 1, N) = 1.

We must be able to divide r by 2, and we cannot have ar/2 ≡ −1 (mod N). This is why we have the

conditional at line 9 in Shor’s algorithm. As long as those conditions are met, we will be given two factors.

Example: Given the number N = 21, we have the group

G = ({1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}, ∗)

with the operation being multiplication modulo 21.

The order of each element in G can be found easily since G is small:

1 2 4 5 8 10 11 13 16 17 19 20

1 6 3 6 2 6 6 2 3 6 6 2

Would it be bad to draw a number not in G as the randomly selected number a? No, it would be great!

Each of these share a common factor with N , so computing the GCD in step 3 of the algorithm would

immediately give an answer.

With larger semiprimes, though, the number of coprime elements will greatly outnumber any numbers

with a common factor.

Looking at the numbers coprime to 21 and their orders again, we see that an order of 3 appears twice, 6

appears 4 times, and 2 appears 3 times. Since 3 is odd, we cannot take half of it, so it will not be usable in

Shor’s algorithm. We have to find an element with a different order.

Looking at a = 5 with r = 6, we have

53 = 125 ≡ 20 (mod 21)

≡ −1 (mod 21)

Thus, 5 does not work.

Looking at a = 8 with r = 2, we have

81 = 8 ≡ 8 (mod 21)

gcd(7, 21) = 7

gcd(9, 21) = 3

Picking 8 would give us the desired answer. We can now calculate the rest of the possible a values:
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103 ≡ 13 (mod 21)

113 ≡ 8 (mod 21)

131 ≡ 13 (mod 21)

173 ≡ −1 (mod 21)

193 ≡ 13 (mod 21)

201 ≡ −1 (mod 21)

There are 5 elements which have a usable order out of 11 possible choices. But any of the elements not

coprime to 21 would also have sufficed, so the odds of choosing a random number that would lead to a factor

of 21 are 12/19 ≈ 63%. The probability of not choosing a correct number by the fifth try is approximately

(1− .63)5, less than 1%.

We use custom quantum circuits to find the period r of f(x) = ax mod N for integer N . The period

of f is the smallest non-zero integer r such that f(x + r) = f(x). It follows that ar mod N = 1. Shor’s

solution is to use the quantum circuit below to estimate the resulting phase from the circuit shown below.

This period finding algorithm is an example of the hidden subgroup problem with G = Zφ(N) and H = 〈r〉.

5.5.2 Quantum Component

We choose Q such that Q = 2q and N2 ≤ Q < 2N2. This implies that Q
r > N , since r < N . Next we need

input and output registers. The input register needs to hold a superposition of values from 0 to Q− 1, and

therefore has q qubits. This may seem like twice as many qubits as we need, but it guarantees that there

are at least N different values of x which map to the same f(x), even when r approaches N
2 . The output

register needs to hold values ranging from 0 to N −1, so it has n qubits, where n is the smallest integer such

that N ≤ 2n.

We first initialize each qubit in both registers to the state |0〉. We next apply a Hadamard transform to

the entire register to obtain the state :

|Φ0〉 =
1√
Q

Q−1∑
x=0

|x〉 |0n〉 .

Let there be a unitary transformation Uf such that

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 .

When applied to the register above, this results in the state

|Φ1〉 = Uf |Φ0〉 = Uf

[
1√
Q

Q−1∑
x=0

|x〉 |0n〉

]
=

1√
Q

Q−1∑
x=0

|x〉 |f(x)〉 .

This is still a superposition of Q states, but we have now entangled the q input qubits and n output qubits.
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Apply the Quantum Fourier Transform

To find the period r of f(x) = ax mod N , we need to apply the inverse quantum Fourier transform to the

input register. Recall that the quantum Fourier transform applied to a basis state |x〉 is defined by

QFTN |x〉 =
1√
N

N−1∑
k=0

ωxkN |k〉

where ω = e
2πi
N is a primitive N -th root of unity. But here we increase precision from n qubits to q ≈ 2n

qubits.

Let’s instead choose the primitive Q-th root of unity ω = e
2πi
Q and apply the QFT to the first register of

our state, |Φ1〉:

(QFTQ ⊗ In) |Φ1〉 =
1

Q

Q−1∑
x=0

Q−1∑
y=0

ωxy |y〉 |f(x)〉 .

Reordering this sum, we obtain

1

Q

N−1∑
z=0

Q−1∑
y=0

∑
0≤x<Q
f(x)=z

ωxy |y〉 |z〉 .

Perform a Measurement

If we take a measurement, we obtain some outcome y in the input register and some z in the output register.

The probability of measuring a given state |y〉 |z〉 is

∣∣∣∣∣∣∣∣
1

Q

∑
0≤x<Q
f(x)=z

ωxy

∣∣∣∣∣∣∣∣
2

.

Let

• r be the period of f ,

• x0 be the smallest value of x ∈ {0, .., Q− 1} such that f(x) = z,

• m =
⌊
Q−x0−1

r

⌋
+ 1 be the number of distinct input values x such that f(x) = z,

• b index the values of x running from 0 to m− 1, so that 0 < x0 + rb < Q.

Then the sum above can be rewritten as∣∣∣∣∣∣∣∣
1

Q

∑
0≤x<Q
f(x)=z

ωxy

∣∣∣∣∣∣∣∣
2

=
1

Q2

∣∣∣∣∣
m−1∑
b=0

ω(x0+rb)y

∣∣∣∣∣
2

=
1

Q2
|ωx0y|2

∣∣∣∣∣
m−1∑
b=0

ωrby

∣∣∣∣∣
2

.
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As ωx0y is unit length, this simplifies to

1

Q2

∣∣∣∣∣
m−1∑
b=0

ωrby

∣∣∣∣∣
2

=
1

Q2

∣∣∣∣ωmry − 1

ωry − 1

∣∣∣∣2 =
1

Q2

∣∣∣∣e2πimry/Q − 1

e2πiry/Q − 1

∣∣∣∣2 .
We use the fact that

∣∣e2ix − 1
∣∣2 = 4 sin2(x) to further simplify this as

1

Q2

∣∣∣∣e2πimry/Q − 1

e2πiry/Q − 1

∣∣∣∣2 =
1

Q2

sin2(πmry/Q)

sin2(πry/Q)
.

This probability is higher the closer ry
Q is to an integer k ∈ Z, and rearranging these terms gives us

y

Q
≈ k

r
.

We know the values y and Q. Since Q > N2, we propose that there is at most one fraction k
s with s < N

satisfying ∣∣∣∣ yQ − k

s

∣∣∣∣ ≤ 1

2Q
.

To prove this, we argue by contradiction. Suppose there are two fractions k1
s1

and k2
s2

that both satisfy

the inequality. Then, ∣∣∣∣k1s1 − k2
s2

∣∣∣∣ =
|k1s2 − k2s2|

s1s2
≥ 1

s1s2
>

1

Q
.

But k1
s1

and k2
s2

are both within 1
2Q of y

Q , so this is a contradiction. Therefore, there is only one fraction k
s

where s < N satisfying this inequality. Thus, we can use the continued fraction expansion of y
Q to find the

unique fraction k
s .

If k
s is irreducible, then s is very likely to be either the period r or a factor of it. To verify our answer,

we can check classically if as ≡ 1 (mod N). If so, r = s and we are done. If not, we can classically obtain

more candidates for r using either multiples of s or other s such that k
s is near y

Q . If no candidates satisfy

the equality, then we must run the phase estimation subroutine again.

5.5.3 Runtime Analysis

Now that we can find s, we can analyze the runtime of this subroutine. What is the probability that we find

a s value that allows us to recover r, and what is the expected number of iterations required to do so?

There are φ(r) possible values of k relatively prime to r, where φ is Euler’s totient function. Each of

these fractions k
r is close to one fraction y

Q with
∣∣∣ yQ − k

r

∣∣∣ ≤ 1
2Q . There are also r possible values of z for a

given y, since r is the period of f . Thus, there are rφ(r) states |y〉 |z〉 which would enable us to obtain r.

Each of these states occurs with probability at least 1
3r2 , so we obtain r with probability at least φ(r)

3r .
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To determine the number of iterations required to find r, we will use the geometric distribution. The

expected value of an event with success probability p is 1−p
p . So the expected number of iterations is

1− φ(r)
3r

φ(r)
3r

=
3r − φ(r)

φ(r)
=

3r

φ(r)
− 1.

5.6 Qiskit

Let’s see an example of Shor’s algorithm in action. For this example we’ll solve the period finding problem for

a = 7 and N = 15. For simplicity we’ll define U |y〉 = |ay mod 15〉 without explanation. Just as with phase

estimation |y〉 7→ |axy〉 can be achieved by applying a logarithmic number of oracles of the form |y〉 7→ |a2jy〉.

Then to create Ux, we’ll repeat the circuit x times. To start, we need to import some packages and define

some helper functions.
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# import quantum circuits, simulators, mathematics, and plot tools

import matplotlib.pyplot as plt

import numpy as np

from qiskit import QuantumCircuit, Aer, transpile, assemble

from qiskit.visualization import plot_histogram

from math import gcd

from numpy.random import randint

import pandas as pd

from fractions import Fraction

# Returns a controlled-U gate for a mod 15, repeated power times

def c_amod15(a, power):

# Controlled multiplication by a mod 15

if a not in [2,4,7,8,11,13]:

raise ValueError("'a' must be 2,4,7,8,11 or 13")

U = QuantumCircuit(4)

for iteration in range(power):

if a in [2,13]:

U.swap(0,1)

U.swap(1,2)

U.swap(2,3)

if a in [7,8]:

U.swap(2,3)

U.swap(1,2)

U.swap(0,1)

if a in [4,11]:

U.swap(1,3)

U.swap(0,2)

if a in [7,11,13]:

for q in range(4):

U.x(q)

U = U.to_gate()

U.name = "%i^%i mod 15" % (a, power)

c_U = U.control()

return c_U

# Apply the n-qubit QFTdagger (inverse quantum Fourier transform)

# to the first n qubits in the circuit

def qft_dagger(n):

qc = QuantumCircuit(n)

# Don't forget the Swaps!

for qubit in range(n//2):

qc.swap(qubit, n-qubit-1)

for j in range(n):

for m in range(j):

qc.cp(-np.pi/float(2**(j-m)), m, j)

qc.h(j)

qc.name = "QFT†"
return qc
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With these building blocks defined, we can write the following function to produce a circuit to implement

Shor’s algorithm.

def shor(n):

"""Construct a circuit to solve Shor's problem with an n

qubit input register

:param n: The number of qubits in the input register

:return: A qiskit QuantumCircuit object which when run

will solve the problem

"""

# Create QuantumCircuit with an n qubit input register

# plus 4 qubits for U to act on

qc = QuantumCircuit(n + 4, n)

# Initialize input register and output register

for q in range(n):

qc.h(q)

qc.x(n)

# Apply controlled-U operations

for q in range(n):

qc.append(c_amod15(a, 2**q),

[q] + [n+i for i in range(4)])

# Apply inverse QFT

qc.append(qft_dagger(n), range(n))

# Measure and return circuit

qc.measure(range(n), range(n))

return qc

Now that we have built our function, let’s see it in action using our example.

# Specify variables

n = 8

a = 7

# Create and view Shor's Algorithm for our example

qc=shor(n)

display(qc.draw('mpl', fold=-1)) # fold=-1 keeps the circuit

# on one line

This should draw the following circuit.
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Figure 5.3: Circuit generated to solve the above example using Shor’s algorithm.

Now we can run some simulations using this example.

# Run the simulator 1024 times and view the results

aer_sim = Aer.get_backend('aer_simulator')

t_qc = transpile(qc, aer_sim)

qobj = assemble(t_qc)

results = aer_sim.run(qobj).result()

plot_histogram(results.get_counts())

Running this snippet yields the following results.

Figure 5.4: Circuit generated to run the quantum subroutine of Shor’s algorithm with the above parameters.

Now we can look at these results in terms of phases instead.
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rows, measured_phases = [], []

for output in results.get_counts():

decimal = int(output, 2) # Convert (base 2) string to

# decimal

phase = decimal/(2**n) # Find corresponding

# eigenvalue

measured_phases.append(phase)

# Add these values to the rows in our table:

rows.append([f"{output}(bin) = {decimal:>3}(dec)",

f"{decimal}/{2**n} = {phase:.2f}"])

# Print the rows in a table

headers=["Register Output", "Phase"]

df = pd.DataFrame(rows, columns=headers)

print(df)

Figure 5.5: Measured eigenvalues of the results of Shor’s Algorithm.

Now that we have our measured phases, we can solve for our final result using the continued fraction

expansion.

Figure 5.6: Possible r values from continued fraction expansion on the results of Shor’s Algorithm.

We can see that two of these produced the correct result, r = 4. This illustrates what we discussed above:

some iterations of Shor’s Algorithm do not produce the desired results. The way we choose to solve this

problem is to repeat the algorithm. As an exercise, repeat the algorithm multiple times and compare the

results. Then, try out the circuit for a = 2, 4, 8, 11, and 13 and observe the results.

5.7 The Discrete Logarithm Problem

The novelty of Shor’s algorithm comes from its ability to solve the hidden abelian subgroup problem (HASP).

Any problem reducible to the hidden abelian subgroup problem also can be solved with Shor’s algorithm
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when proper modifications are made. One such problem is the discrete logarithm problem (DLP).

Discrete Logarithm Problem

Let p be a prime number, and g a generator for Z∗p. Given a ∈ Z∗p, find x such that gx ≡ a (mod p).

Note that the input for this problem, (p, g, a), consists of 3 log2 p bits. Since p is prime, Z∗p is cyclic. Every

element in Z∗p is uniquely expressed by g to some power k. To reduce this to the HASP, we work with G =

Zp−1 × Zp−1 (coordinatewise addition modulo p− 1) and consider

f : G→ Z∗p via f : (α, β) = gαa−β .

Whenever gx = a and α = xβ, we have gxβa−β = (gx)βa−β = aβa−β = 1. The hidden subgroup is

generated by (x, 1), and any other pair that produces a matching coset to (x, 1) will retain the property of

α = xβ. Finding a generator (α, β) for this hidden subgroup will give an answer to the discrete log problem

as x = α
β .

5.7.1 Baby-Step Giant-Step

It’s worth noting that the discrete logarithm problem has an elementary exponential time classical solution

for finite abelian groups called the baby-step giant-step algorithm [30]. While exhaustive search requires

O(p) = O(2log2 p) steps, this approach cuts the work toO(
√
p) steps, a quadratic speedup but still exponential

in the size of the input.

We first compute many powers of g along the unit circle as a part of the giant step. To do this, we define

t := d
√
n e, where n = p− 1 is the order of the group Z∗p. We compute gkt for integers 0 ≤ k < t:

g0t

g1tg2t

g3t

. . .
g(t−1)t

We check to see if a matches any of these values. If it does, we have found a value x such that gx ≡ a

(mod p), and we are done:
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a
g0t

g1tg2t

g3t

. . .
g(t−1)t

Otherwise, we begin to compute the baby steps. The element a must fall in one of the gaps, so we shift the

values we check:

a

g0t+1

g1t+1
g2t+1

g3t+1

. . . g(t−1)t+1

However, instead of recomputing every power gkt along the unit circle, we can instead multiply a by g and

then check against the values we already have:

ga
g0t

g1tg2t

g3t

. . .
g(t−1)t

We repeat this process of multiplying our inner value by g until we have a match:

g3a
g0t

g1tg2t

g3t

. . .
g(t−1)t

Suppose we find that g3a = g2t, then a = g−3g2t = g2t−3. So the value x is 2t−3. Since n ≤ t2, the Division

Algorithm gives x < n as x = tq + r, with 0 ≤ q < t and 0 ≤ r < t.

The running time and space complexity of this algorithm is O(
√
n), where n is the order of the group.

There are two other algorithms of interest in specific cases. Pollard’s [31] rho algorithm for logarithms can
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reduce the space complexity for cyclic groups (which Z∗p is). If p is not prime, then the Pohlig–Hellman

algorithm [32] can reduce the running complexity. But all of these have worst-case exponential running time

O(
√
p).

It is a worthwhile question to ask why the discrete log problem is considered difficult enough to have a

cryptographic scheme designed around it when a polynomial time algorithm exists which solves it. ElGamal

encryption suggests key lengths of 1024 bits or larger, so to use the baby-step giant-step algorithm, 2512

numbers need to be precomputed and stored. This requirement alone is enough to guarantee security from

attacks from an average computer, whereas the key length may require 2048 bits in order to protect against

more powerful computing hardware. The baby-step giant-step algorithm halves the security of the length

of the key, but as long as it is computationally feasible to use larger length keys, the cryptographic scheme

is feasible. In general, cryptographic schemes gauge security by the bit length of their private keys. A key

of size n really has a search space of 2n, so the baby-step giant-step algorithm finds solutions in 2n/2 time.

Shor’s algorithm runs in O
(
n2 log n log log n

)
, which is indeed polynomial in the size, 3n, of the input.

5.7.2 Overview of Shor’s Algorithm for Discrete Logs

Shor’s [33] algorithm for discrete logs follows a similar design paradigm to the factoring algorithm with usage

of the QFT for solving the hidden abelian subgroup problem, and then classically processing the reduction

steps. In 2016 [34] and in 2021 [35] Martin Eker̊a made some modifications which improve the success rate

to 99% depending on runtime tradeoffs in the quantum or classical step. The original algorithm for a general

case of discrete logarithms follows the steps below.

1. First, pick a power of two, Q = 2q, such that Q is close to p, i.e. p ≤ Q ≤ 2p.

2. Initialize three q-qubit registers to zero.

3. Apply Hadamard transformations to the first two registers.

4. Apply a unitary transformation Uf which maps |x1〉 |x2〉 |y〉 to |x1〉 |x2〉 |y ⊕ f(x1, x2)〉.

5. Apply the inverse QFT to the first two registers.

6. Measure all registers.

7. Process the output classically.

5.7.3 Quantum Component

We begin with three zero registers, and a power of two, Q = 2q, such that p ≤ q ≤ 2p. Q will be used for

the dimension of the QFT later and should be a power of two to ensure accuracy with the QFT. Our initial
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state is

|Φ0〉 = |0 . . . 0〉 |0 . . . 0〉 |0 . . . 0〉 .

Next, we apply Hadamard transformations to the first and second register. These registers go from 0 to

p− 2, not p− 1. Looking back at the formulation of the discrete log problem, we want to solve for x in the

equation gx ≡ a (mod p). Shor’s algorithm solves the hidden abelian subgroup problem, but we have a way

to reduce discrete logarithms to the hidden abelian subgroup problem. We used Zp−1×Zp−1 as the additive

group modulo p, but each Zp−1 set has p− 1 elements. Thus,

|Φ1〉 = H⊗2q |Φ0〉 =
1

p− 1

p−2∑
x1=0

p−2∑
x2=0

|x1〉 |x2〉 |0 . . . 0〉 .

We use the same unitary transformation trick from our earlier algorithms. We apply a unitary transformation

Uf which maps |x1〉 |x2〉 |y〉 to |x1〉 |x2〉 |y ⊕ f(x1, x2)〉, where f(x1, x2) = gx1a−x2 in Zp as above. We see

something new here; the function now has two inputs. From our problem reduction, we have a function f

which can reduce the DLP to the HASP as f : (x1, x2) 7→ gx1a−x2 . This is exactly the function we will use

for our unitary transformation. So,

|Φ2〉 = Uf |Φ1〉 =
1

p− 1

p−2∑
x1=0

p−2∑
x2=0

|x1〉 |x2〉 |gx1a−x2 mod p〉 .

Now that the problem has been reduced to the HASP, we apply the inverse quantum Fourier transform as

we did in the factoring algorithm. Therefore,

|Φ3〉 = QFTQ |Φ2〉 =
1

(p− 1)Q

p−2∑
x1=0

p−2∑
x2=0

Q−1∑
x3=0

Q−1∑
x4=0

e
2πi
Q (x1x3+x2x4) |x3〉 |x4〉 |gx1a−x2 mod p〉 .

There are four summations here, but luckily, we are done. All that is left is to measure. The quantum

Fourier transform solves the hidden abelian subgroup problem, which returns us a generator for the hidden

subgroup. We pass the results of the measurement to the classical portion.

5.7.4 Classical Component

Recall the reduction from the discrete log problem to the hidden abelian subgroup problem. To recover

an answer to the discrete log problem, we have a generator (α, β) which has the property that α = xβ.

Solving for x should be as simple as dividing α by β. Since (α, β) should be a generator of subgroup H,

we expect gcd(β, p − 1) = 1 and β is invertible in Zp−1. The tuple returned from measurement consists

of (x3, x4, g
x1a−x2), and empirically, we know that the quantum Fourier transform gives us exactly such a

generator (x3, x4). Unfortunately, it is not so simple. We must do some processing to the output, as the

analysis will show.
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We create a new pair (α, β) where

α =
x4
Q

rounded to the nearest multiple of 1
p−1 and

β =
x3(p− 1)− `

Q
, ` = x3(p− 1) mod Q.

Now, we are likely to have a pair that will give x = α
β . There is still a chance we do not get back x

though, so it is important to check that gα/β (mod p) does equal a. In some cases, β is not coprime with

p− 1 and therefore cannot be used as a divisor in Z∗p−1.

5.7.5 Analysis

When we measure |Φ3〉, we interest ourselves in the case where the third register has the form y ≡ gk

(mod p) for some integer k. Here we consider all the states where the relation x1 − xx2 ≡ k (mod p− 1) is

true. So, our summation will reflect that:

σk =

∣∣∣∣∣∣∣
1

(p− 1)q

∑
x1, x2

x1−xx2≡k

e
2πi
q (x1x3+x2x4)

∣∣∣∣∣∣∣
2

.

This is not a summation of all possible states, only of states that we may consider desirable. It is now

up to us to determine what this probability value is. The relation can be reformulated so that x1 is alone

on the left side and modular arithmetic is replaced by integer arithmetic:

x1 = k + xx2 − (p− 1)

⌊
k + xx2
p− 1

⌋
.

Now that we have fully described x1 with x2 and k, we can eliminate x1 from the amplitude:

σk =

∣∣∣∣∣ 1

(p− 1)Q

p−2∑
x2=0

e
2πi
Q ((k+xx2−(p−1)bk+xx2p−1 c)x3+x2x4)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

(p− 1)Q

p−2∑
x2=0

e
2πi
Q (kx3+xx2x3−x3(p−1)bk+xx2p−1 c+x2x4)

∣∣∣∣∣
2

.

We define a new constant ` = x3(p− 1) mod Q and use this in further equations. A factor of e2πikx3/Q can

be removed from all terms because it has no effect on the probability amplitude:
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σk =

∣∣∣∣∣ 1

(p− 1)Q

p−2∑
x2=0

e
2πix2
Q (xx3+x4− x`

p−1)e
2πi`
Q ( xx2p−1−bk+xx2p−1 c)

∣∣∣∣∣
2

.

By relating the variables x1, x2, x3, and x4 to another, we have reduced the number of summations with

which we concern ourselves with down to one. All that is left is to examine what happens as x2 goes from 0

to p−2. Ideally, we want all the values that occur in the summation to be positive. We know the amplitudes

rotate around the unit circle, so if we can show that the rotation is restricted to a maximum of half the unit

circle, we can show that all the complex values in the summation have positive real part.

Looking at the left exponential, xx3 + x4 − x`
p−1 is a fixed value, and we want to say that it can be no

more than 1
2 . If so, then as x2 goes from 0 to p − 2, it never crosses over half of the unit circle and thus

remains positive.

Looking at the right exponential, if ` is less than Q/12, then the exponential falls within the range[
1− eπi/6, 1 + eπi/6

]
.

Of all the possible states, the probability a random state satisfies both of these conditions is p
240Q or

1
480 since Q ≤ 2p. Unfortunately, calculating this number is out of scope of this text, and interested parties

should instead refer to one of the modern versions of Shor’s algorithm.

So, one might have to run this algorithm around 480 times in order to receive a candidate for a pair

(α, β)! However, this number of runs is fixed for every discrete logarithm problem that is input. It does not

grow with the input, making this a constant value. It gets worse—the pair may be unusable. Once we get a

candidate, we have the relation

− 1

2Q
≤ x4
Q

+ x

(
x3(p− 1)− `

(p− 1)Q

)
≤ 1

2Q

taken by dividing our conditions of success from the left exponential and dividing by Q. We have to

extract x out of this. We know the values p, Q, x3, x4, and `. This is why we set α = x4

Q rounded to the

nearest multiple of 1
p−1 and β = x3(p−1)−`

Q . If β is not relatively prime to p − 1, then β is not invertible

in the ring Zp−1 and we cannot solve α = xβ for x in general. The probability that a value β does is not

relatively prime to p − 1 is also out of scope of this text, but we can say that it is about 1
2 ; similar to the

factoring algorithm for a suitable order value. Shor’s algorithm for discrete logs is therefore polynomial, but

it comes with a massive constant value cost. Modern versions both reduce this constant and increase the

chance of success.
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Appendix A

Glossary of Definitions

abelian group An abelian group is a group that has commutativity. That is, for a group (G, ·), for all

elements u, v ∈ G, u · v = v · u. 12, 89, 92

basis A basis B for a vector space V is a minimal spanning set of V that is linearly independent. Each

element of V can be written as a unique linear combination of vectors in B. 12

binary dot product Given two bit strings a = a1a2 . . . an and b = b1b2 . . . bn where

a1, a2, . . . , an, b1, b2, . . . , bn are either 0 or 1, the binary dot product a · b is given by a1b1 + a2b2 + . . .+

anbn mod 2. 27, 52

binary operation A binary operation is a function which takes two inputs—usually from the same set—

and gives an output in that set. It is not to be confused with binary numbers. Binary operations may

have an additional notational shorthand where the operands are on either side of the operator. For

example, given the function (·) : S × S → S, we can write (·)(a, b) = c as a · b = c. 90

complex conjugate The conjugate of a complex number z = a + bi is z = a − bi, the unique complex

number that has the same real part as z and imaginary part with the same magnitude but opposite

sign. 11

complex vector space A complex vector space is a set V of vectors forming an abelian group under vector

addition which is closed under multiplication by complex scalars in such a way that the following

identities hold for all |ϕ〉 , |ψ〉 ∈ V and all c, d ∈ C:

• (c+ d) |ϕ〉 = c |ϕ〉+ d |ϕ〉

• c(|ϕ〉+ |ψ〉) = c |ϕ〉+ c |ψ〉

• (cd) |ϕ〉 = c (d |ϕ〉)

• 1 |ϕ〉 = |ϕ〉
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. 12, 90, 92

computational basis The computational basis for the complex vector space C2n is defined by

B = {|b〉 | b ∈ Zn2}. This is the “standard basis” familiar to students of linear algebra, but with axes

labeled by binary n-tuples. 13, 14

continued fraction expansion Any number r can be expressed as a simple continued fraction

r = a1 +
1

a2 + 1
a3+...

where a1 ∈ Z and a2, a3, ... are positive integers. We can also simplify the form of a continued fraction

and write it in coefficient vector notation, [a1, a2, . . .]. Simple means that the fractions all have 1 as a

numerator. A continued fraction may be finite or infinite; particularly, the continued fraction expansion

is finite if and only if r is a rational number. To convert a rational number r into a continued fraction,

we take the floor of ri and this becomes the coefficient ai. Then, we subtract ai from ri and take the

reciprocal to get ri+1. This process is repeated until it can be continued no more. The recurrence

relations that define this process are ai := bric and ri+1 := 1/(ri − ai). 77

coprime Two numbers are coprime if they share no common factors. This is equivalent to their greatest

common divisor being 1. 87, 92

dimension The dimension of a vector space is the cardinality of a basis of that vector space. 13

group A group (G, ·) is a set G with a binary operation (·) which satisfies the following properties for all

a, b, c ∈ G:

• a · b ∈ G (closure)

• (a · b) · c = a · (b · c) (associativity)

• There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G (identity)

• Given a, there exists an element a−1 such that a · a−1 = a−1 · a = e (inverses)

A group (H, ·) is called a subgroup if H ⊆ G and it still respects the properties of being a group under

the same operation as G. Notationally, the pair may be omitted when describing a group and it can be

referred to by its set. As an example: “Let G be a group and H be a subgroup H ≤ G.” Also notice

that the symbol has changed for describing a subgroup. 44, 89

Hermitian inner product For a complex vector space V , a Hermitian inner product is a function 〈 , 〉 :

V × V → C which satisfies the following properties for all u, v, w ∈ V and λ ∈ C:
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• 〈u, v〉 = 〈v, u〉 (conjugate symmetry)

• 〈λu, v〉 = λ〈u, v〉

• 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉

• 〈u, u〉 ≥ 0

• 〈u, u〉 = 0 if and only if u = 0

On Cn, this function has the form 〈z, w〉 =
∑n
i=1 ziwi. 13

Kronecker product The Kronecker product is an operation on two matrices, denoted by the symbol ⊗,

which returns a block matrix. If A is an m × n matrix and B is a p × q matrix, then the Kronecker

product A⊗B is a mp× nq block matrix where the (i, j) block is equal to aijB :

A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 .
Note that, unlike matrix multiplication, our dimensions need not agree. The following properties hold

for Kronecker products of matrices A, B, C, D, and scalar r:

• (A⊗B)(C ⊗D) = (AC ⊗BD) (mixed product property)

• (A⊗B)† = A† ⊗B† (transposition is distributive)

• (A+B)⊗ C = A⊗ C +B ⊗ C, A⊗ (B + C) = A⊗B +A⊗ C (additivity of linearity)

• (rA)⊗B = A⊗ (rB) = r(A⊗B) (homogeneity of linearity)

with the mixed product property requiring matrix dimensions to allow for matrix multiplication to be

defined. 14

linear combination A linear combination of a set of vectors is a finite sum of scalar multiples of vectors

in that set. Let |ψ1〉 , |ψ2〉 , . . . , |ψn〉 be a set of vectors and c1, c2, . . . , cn be a set of scalars, then

c1 |ψ1〉+ c2 |ψ2〉+ . . .+ cn |ψn〉 is a linear combination. 12, 91

linearly dependent A set of vectors is linearly dependent if it is not linearly independent. That is, there

exists a non-zero set of scalars c1, c2, . . . , cn such that the linear combination c1 |ψ1〉 + c2 |ψ2〉 + . . . +

cn |ψn〉 = |0〉 is true. 12

linearly independent A set of vectors |ψ1〉 , |ψ2〉 , . . . , |ψn〉 is linearly independent if the linear combination

c1 |ψ1〉+ c2 |ψ2〉+ . . .+ cn |ψn〉 = |0〉 is true only when c1 = c2 = . . . = cn = 0. 12, 58, 89, 91
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multiplicative group modulo n A finite abelian group under the operation multiplication modulo n.

The elements of this group consist only of elements coprime to n. The order of this group is then

exactly φ(n) where φ is Euler’s totient function. The multiplicative group modulo n is denoted by

(Z/nZ)∗. 45

oracle An oracle is a “black box” operation, often defined as a function f which takes an input and produces

some output without any regard for the process by which the output is obtained. In algorithm analysis,

and oracle call is one step. 46, 52, 56

order The order of a group G is the number of elements in G. It is denoted as |G|. 92

orthogonal Two vectors v1 and v2 are orthogonal if they are perpendicular to each other. More generally,

if the inner product of the vectors v1 and v2 is 0, then they are orthogonal with respect to that inner

product. 13

orthonormal basis An orthonormal basis is a basis in some complex vector space whose vectors are all

unit vectors which are orthogonal to one another. 13

superposition A qubit is in superposition if it can be expressed as a linear combination with non-zero

constants of two or more basis states. For example, if neither c1 nor c2 is zero, the following qubit is

in superposition with respect to the computational basis: |ψ〉 = c1 |0〉+ c2 |1〉. 13

unit vector A unit vector is a vector which has a magnitude of 1. 13

vector addition mod 2 Given two vectors a, b ∈ Zn2 , vector addition mod 2 is elementwise addition with

modulo 2 applied, that is, a ⊕ b = [a1 + b1 mod 2, a2 + b2 mod 2, . . . , an + bn mod 2]. This is

equivalent to the classical operation XOR on two binary strings. This can also be done with elements

of other vector spaces and is called addition over F2, where F2 is any field modulo 2. 52

92



Bibliography

[1] Jack D. Hidary. Quantum Computing: An Applied Approach. Springer International Publishing, Cham,

2021.

[2] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. Experimental implementation of fast quantum

searching. Phys. Rev. Lett., 80:3408–3411, Apr 1998.

[3] IBM Quantum. https://quantum-computing.ibm.com/, 2021.

[4] Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Perfect quantum

error correcting code. Phys. Rev. Lett., 77:198–201, Jul 1996.

[5] Markus Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available

at http://www.codetables.de, 2007. Accessed on 2022-03-18.

[6] Jerry Chow, Oliver Dial, and Jay Gambetta. IBM quantum breaks the 100-qubit processor barrier.

https://research.ibm.com/blog/127-qubit-quantum-processor-eagle, Feb 2021.

[7] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh Vazirani. On the complexity and verifi-

cation of quantum random circuit sampling. Nature Physics, 15(2):159–163, Feb 2019.

[8] Yulin Wu, Wan-Su Bao, Sirui Cao, et al. Strong quantum computational advantage using a supercon-

ducting quantum processor. Physical Review Letters, 127(18), Oct 2021.

[9] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a programmable supercon-

ducting processor. Nature, 574(7779):505–510, Oct 2019.

[10] Edwin Pednault, John Gunnels, Dmitri Maslov, and Jay Gambetta. On “Quantum Supremacy”. https:

//www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/, Oct 2019.

[11] QuTech. Quantum Inspire Starmon-5 fact sheet. https://qutech.nl/wp-content/uploads/2020/04/

3.-Technical-Fact-Sheet-Quantum-Inspire-Starmon-5.pdf, Jun 2020.

[12] K. Wright, K. M. Beck, S. Debnath, et al. Benchmarking an 11-qubit quantum computer. Nature

Communications, 10(1):5464, Nov 2019.

93

https://quantum-computing.ibm.com/
http://www.codetables.de
https://research.ibm.com/blog/127-qubit-quantum-processor-eagle
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://www.ibm.com/blogs/research/2019/10/on-quantum-supremacy/
https://qutech.nl/wp-content/uploads/2020/04/3.-Technical-Fact-Sheet-Quantum-Inspire-Starmon-5.pdf
https://qutech.nl/wp-content/uploads/2020/04/3.-Technical-Fact-Sheet-Quantum-Inspire-Starmon-5.pdf


[13] Stephen H. Friedberg, Arnold J. Insel, and Lawrence E. Spence. Linear Algebra. Pearson, 2018.

[14] N. David Mermin. Quantum Computer Science: an Introduction. Cambridge University Press, Cam-

bridge, 2007.
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