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Abstract

This thesis provides a case study on how the wind direction plays an important

role in the amount of rainfall, in the village of Somió. The primary goal is to illus-

trate how a meta-analysis, together with circular data analytic methods, helps in

analyzing certain environmental issues. The existing GLS meta-analysis combines

the merits of usual meta-analysis that yields a better precision and also accounts for

covariance among coe�cients. But, it is quite limited since information about the

covariance among coe�cients is not utilized. Hence, in my proposed meta-analysis,

I take the correlations between adjacent studies into account when employing the

GLS meta-analysis. Besides, I also fit a time series linear-circular regression as a

comparable model. By comparing the confidence intervals of parameter estimates,

covariance matrix, AIC, BIC and p-values, I discuss an improvement on the GLS

meta analysis model in its application to forecasting problem in Environmental

study.

Keywords: Covariance matrix, Generalized least square, Linear-circular regres-

sion, Meta-analysis, Time series
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Chapter 1

Introduction

Climate can be influenced by many variables like wind direction, humidity,

SO
2

or temperature, but most studies investigated by climatology focus on wind

direction and related variables[4] such as rainfall amount. A non-parametric method

introduced in [3] summarizes that rainfall amount is particularly influenced by wind

direction. Motivated by the paper, my goal of this study is to step further and try to

model it with a parametric approach in order to determine an association between

wind direction and amount of rainfall.

Di↵erently from linear variables, it worth noting that wind direction is a circular

variable, which arises when we measure it in the form of angle. Since it is presented

as a point on the circumference of the unit circle, it should be dealt quite di↵erently

from usual statistical analysis, called Circular Statistics[8]. Also bearing in mind the

nature of a time series, some backgrounds on time series[11]is needed, as long as some

knowledge about linear-circular regression[7][6], where a linear-circular regression

refers to a regression with a linear dependent variable and a circular independent

variable.

In this thesis, I use a meta-analysis on a linear-circular regression, whose main

1



goal is to provide an estimated overall e↵ect by combining the results from related

small studies. A prevalent practice in recent years in a meta-analysis is the rationale

for summarizing regression coe�cients. A meta-analysis yields a better precision of

regression coe�cient estimates than the usual linear-regression coe�cient estimates

in each small study. In [1], the authors briefly review several existing approaches in

meta-analysis and point out the complexities and potential problems in synthesizing

coe�cients from regression models.

The synthesis of regression coe�cients is very di�cult for several reasons includ-

ing nonequivalence of the matrix for the predictors and outcomes across studies, very

diverse models across studies and lack of information of raw data. First, considering

that Y should be measured similarly across studies is very important, because the

raw regression coe�cients in each study depends on the scales of that predictor and

the outcome. For two-scale coe�cients to be comparable across studies, the scales

of X and Y must be the same (or proportional). Another problematic assumption is

that focal X should be measured similarly across studies. When the index of study

results is an elasticity and represents proportional change in X and Y (commonly

in economics, such as inflation), the scale of X may not be critical.

Apart from strict measurements, there also exists limitations for existing meth-

ods, the article[5] used direct and simple summaries of slopes. By using ordinary

least square (OLS) regression analysis for a dummy variable that represented union

membership to predict low wage between union and non-union workers, they didn’t

acknowledge that the errors in their model were likely to be heteroscedastic. This

method focuses on a single focal coe�cient, while ignores dependence and precision

of coe�cients. In addition, the weighted least squares (WLS) approach was pro-

posed in [2]. Its method combines slopes by using weights after estimating slopes in

each study using method like ordinary least square. The strength of weighted least
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square approach is that it is relatively simple and has ability to handle regression

slopes in which the coe�cients are varying. But the weakness is the same as the

simple summaries of slopes that it ignores dependence of coe�cients.

In [1], the authors presented a new approach based on generalized least square

(GLS) estimation of the synthesis of regression coe�cients and outcomes, since

previous existing methods ignore dependence among coe�cients and the inherent

precision of coe�cients across studies. It combines the merits in previous meta-

analysis and also accounts for covariance among coe�cients. An overview of the use

of the GLS is given in Chapter 3.

In my proposed model, I employ 12 months as small studies in 240 monthly time

series. After confirming a significant association between rainfall amount and wind

direction, I combine the results of 12 month studies consisted of 20 years data, in

order to determine an overall linear relationship between rainfall and wind direction.

When calculating the overall e↵ect of wind direction on rainfall amount, the meta-

analysis proposed in [1] did not consider a possible correlation between adjacent

studies, and treated them as independent studies which may threaten the validity of

the resulting conclusions. In this thesis, I claim that a meta-analysis that assumes

independence of studies has a limitation due to an apparent dependent structure

present among related small studies. Hence, in the proposed meta-analysis, a new

form of covariance matrix is utilized, where the correlations between adjacent studies

are taken into account and GLS method is employed.

Additionally, given the nature that the rainfall data form a monthly time se-

ries of successive measurements made over twenty years, I also fit a time series

linear-circular regression of rainfall amount (linear) on wind direction (circular),

and include in a comparison study as a comparable model with the proposed and

existing meta-analysis models. Autoregressive moving average (ARMA) model is
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considered for the dataset.

My thesis is organized as follows. In Chapter 2, data preparation is given along

with data description. In Chapter 3, I provide a review of the existing methods in

meta-analysis. In Chapter 4, I propose an improved model from the existing model.

In Chapter 5, I build the regression model using both existing and proposed models.

The results show some di↵erences and similarities. In Chapter 6 and Chapter 7, I

discuss the results from the three models: proposed GLS model, existing GLS model,

and time series linear-circular regression model, where I also summarize their main

strengths and limitations.
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Chapter 2

Data Description and Preparation

2.1 Data Description

The dataset contains 20 ⇥ 240 daily observations of rainfall amount and wind

direction from 1995 to 2014 obtained from the Davis station in the village of Somió,

about 4 km from Gijón. The observatory coordinates are 43�32’17” N, 5�37’26” W

and 30 m above sea level. The dataset is available from http://infomet.am.ub.

es/clima/gijon/. Wind directions are measured in degrees from 0� to 359� and

rainfall amounts are measured on a grid of 0.2 liters per square meter.

2.2 Data Preparation

Figure 2.1 shows histograms of wind direction conditioning on the weather being

dry days and rainy days. The di↵erence between two graphs is evidently shown in

the figure.

Due to what I am interested in is the wind direction when orographic rain is

produced, I select the data from the rainy days only and calculate the monthly av-

erage of the amount of rainfall, as well as the circular mean of wind direction in each
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Figure 2.1: Histograms of wind direction on dry days(top) and rainy days(bottom)

month. The circular mean of wind direction is calculated in the following way[8].

Consider a random sample of circular observations of size n, denote ✓
1

, . . . , ✓

n

. Then,

we obtain

Y =

P
n

i=1

sin ✓
i

n

, X =

P
n

i=1

cos ✓
i

n

,

r =
p
X

2 + Y

2

cos ✓̄ =
X

r

, sin ✓̄ =
Y

r

, ✓̄ = arctan⇤
✓
sin ✓̄

cos ✓̄

◆
,
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where arctan⇤ is quadrant specific as shown below, and ✓̄ denote the circular mean.

✓̄ =

8
>>>>>>><

>>>>>>>:

arctan( sin
¯

✓

cos

¯

✓

), if cos ✓̄ > 0 and sin ✓̄ > 0.

⇡ � arctan( sin
¯

✓

cos

¯

✓

), if cos ✓̄ < 0 and sin ✓̄ > 0.

arctan( sin
¯

✓

cos

¯

✓

) + ⇡, if cos ✓̄ < 0 and sin ✓̄ < 0.

2⇡ � arctan( sin
¯

✓

cos

¯

✓

), if cos ✓̄ > 0 and sin ✓̄ < 0.

Figure 2.2 shows a rose diagram (circular histogram) of the monthly circular

mean of wind directions for rainy days only. Areas of the sectors in the rose diagram

indicate the frequencies in 12 divided sub-intervals of 360 degrees. It is shown that

predominant wind direction is towards 17⇡

12

in radians.

Figure 2.2: Rose diagram for the monthly circular mean of wind directions.

In Figure 2.3, it is shown that the density plot of the monthly average of rainfall

amount is skewed to the right. In order to meet the assumption that the errors
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follow a normal distribution, a log
10

-transform is applied to the monthly average of

rainfall amount. A more normal looking of the density plot of rainfall amount after

log
10

-transform is shown in Figure 2.4.

Figure 2.3: Density plot of the monthly average of rainfall amount

Figure 2.4: Density plot of the log
10

-transformed monthly average of rainfall amount
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2.3 Linear-Circular Association

Following the logic of Spearman’s rank correlation coe�cient[10], Mardia pro-

posed a rank-based analogue[9], where x

0
j

s and ✓

0
j

s are replaced by their ranks and

uniform scores, respectively. Although ranks are not well defined on a circle, the

rank correlation measure is origin-invariant and provides a useful measure.

To calculate the correlation coe�cient, the original data vector, x
1

, . . . , x

n

, are

first reordered by x

(1)

 · · ·  x

(n)

, where x

(i)

is the i

th

largest value among

x

1

, . . . , x

n

, i = 1, . . . , n. Next, the uniform scores of the associated ✓

i

are com-

puted, which is given by 2⇡r

i

n

, where r

i

is the linear rank relative to an arbitrary

origin of the angle ✓

i

paired with x

i

in which x

0
i

s are replaced by their ranks. The

Mardia’s rank correlation coe�cient is obtained by,

U

n

=
24(T 2

c

+ T

2

s

)

n

2(n+ 1)

where

T

c

=
nX

j=1

i cos

✓
2⇡r

i

n

◆
, T

s

=
nX

i=1

i sin

✓
2⇡r

i

n

◆

A test of independence based on U

n

rejects the independence of linear and cir-

cular variables, if the observed value of U
n

is large compared to the percentiles of

its sampling distribution under the independence. For large n, the sampling distri-

bution of U
n

under the independence is approximately chi-squared with two degrees

of freedom.
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Chapter 3

Existing Methods

3.1 Meta-Analysis

For a simple linear regression, consider a model in study i relating predictor X

to an outcome Y for observation j, i.e

Y

ij

= �

i0

+ �

i1

X

ij

+ e

ij

for i = 1, . . . , k studies and j = 1, 2, . . . , n
i

cases. The usual assumptions of normal-

ity and homoscedasticity of errors apply such that e
ij

⇠ N(0, �2

i

).

The generalized least square (GLS) method is used to combine ordinary least

square (OLS) estimates of slopes and intercept from each of the k studies. The

OLS estimator of �
i

= (�
i0

, �

i1

) is given by b

i

= (b
i0

, b

i1

) = (X 0
i

X

i

)�1

X

0
i

Y

i

with

⌃
i

= Cov(b
i

) = (X 0
i

X

i

)�1

�

2

i

,where X

i

is given by

0

BBBB@

1 x

i1

...
...

1 x

in

i

1

CCCCA
.
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Usually �

2

i

is unknown, so it is estimated by s

2

i

, the mean square error (MSE) of the

regression in study i. After stacking k coe�cients. The GLS estimation is given in

the following.

First, the coe�cient estimates vector is given by

b

2k⇥1

=

2

66666664

b

1

b

2

...

b

k

3

77777775

=

2

666666666666666664

b

10

b

11

b

20

b

21

...

b

k0

b

k1

3

777777777777777775

,

and ⌃, the 2k ⇥ 2k block diagonal matrix, is given by

⌃ =

2

66666664

cov(b
1

) 0 0 0

0 cov(b
2

) 0 0

0 0
. . . 0

0 0 0 cov(b
k

)

3

77777775

. (3.1)
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The following model is used in order to get the OLS estimates of �
0

and �

1

,

b = W ⇤ � + e

=

2

666666666666666664

1 0

0 1

1 0

0 1

...
...

1 0

0 1

3

777777777777777775

⇤

2

64
�

0

�

1

3

75+ e. (3.2)

A design matrix W is composed of 0’s and 1’s that identify intercept and slope

estimates in each sample. The GLS estimates of �
0

and �

1

and their covariances are

given by

�̂ = (W 0⌃�1

W )�1

W⌃�1

b (3.3)

and

Cov(�̂) = (W 0⌃�1

W )�1

. (3.4)

With a large sample and under typical regularity conditions,

�̂ ⇠ N(�,Cov(�̂)).

Thus confidence intervals for each element of � are available, using �̂

p

±Z

1�↵

2

p
C

pp

where Z 1�↵

2
is the upper tail 1� ↵

2

critical value of the standard normal distribution

and C

pp

is the (p + 1)
th

diagonal element of the Cov(�̂) matrix, the variance of �̂,

for p = 0, 1.
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3.2 Time Series Linear-Circular Regression

A time series model known as ARMA model may include autoregressive (AR)

terms and moving average (MA) terms in [11]. An autoregressive model specifies

that the output variable depends linearly on its own previous values. The notation

AR(p) indicates an autoregressive model of order p, indicating p previous values are

used to predict the present time. The model is defined as

Y

t

= c+
pX

i=1

'

i

Y

t�i

+ "

t

where '

1

, . . . ,'

p

are linear parameters of the model, c is a constant, and "

t

is an

white noise. A moving average term in a time series model is a past error. The

notation MA(q) refers to the moving average model of order q. The MA(q) model

is defined as

Y

t

= µ+ "

t

+
qX

i=1

�

i

"

t�i

where the �
1

, . . . , �

q

are linear parameters, µ is the mean of the series (often assumed

to equal 0), and the "
t

, "

t�1,...

are white noise error terms. ARMA(p, q) refers to the

model with p autoregressive terms and q moving-average terms. This model contains

the AR(p) and MA(q) models,

Y

t

= c+ "

t

+
pX

i=1

'

i

Y

t�i

+
qX

i=1

�

i

"

t�i

where '
1

, . . . ,'

p

and �

1

, . . . , �

q

are linear parameters, c is a constant, and "

t

, "

t�1,...

are white noise error terms.

Looking at the autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) plots of the stationary series, we can tentatively identify the numbers of

AR and MA terms that are needed. If the partial autocorrelation function (PACF) of

13



the series displays a sharp cuto↵ or the lag-1 autocorrelation is positive, then adding

one or more AR terms to the model is desired. If the autocorrelation function (ACF)

of the series displays a sharp cuto↵ or the lag-1 autocorrelation is negative, then we

may consider adding an MA term to the model.

Combined with the significant association between rainfall amount and wind

direction, we consider a regression model that involves a simple cosine function

given by

Y

t

= �

0

+ �

1

cos(✓
t

� µ) +
pX

i=1

'

i

Y

t�i

+
qX

i=1

�

i

"

t�i

+ "

t

where Y

t

is the linear response variable, µ is the sample mean direction, �
0

and �

1

are the regression coe�cients, ✓
t

is the circular independent variable subject to time

t, "0
t

s are white noises. Choosing a good model is an important step in the analysis

of a time series regression in the later chapter. The method of linear least squares

is applied to the parameter estimation.
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Chapter 4

Proposed Method

A meta-analysis is used to get overall parameter estimates by combining many

results from related small studies. However, the problem with the existing meta-

analysis described in Section 3.1 is that the o↵-diagonal entries of the block diagonal

matrix in (3.1) are equal to zero, indicating independence of k included small stud-

ies. Synthesizing regression coe�cients with block diagonal elements only can be

potentially misleading the outcome of a meta-analysis due to apparent dependent

structure present among small studies.

In our example, we consider a model in study i relating the predictor cos(✓
t

�µ)

to an outcome Y for case j. Specifically, in study i,

Y

ij

= �

i0

+ �

i1

cos(✓
ij

� µ) + e

ij

for i = 1, 2, . . . , 12 studies and j = 1, 2, . . . , 20 cases. One important thing to note

is that under usual assumptions of normality and homoscendasticity of errors, the

covariance of error term across time periods is zero and variance of the error is

constant across time. But in the presence of monthly correlation, the covariance of

error term across di↵erent time periods is no longer zero. Let e
t

be the error term
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at time t. The error covariance matrix ⌦ is a 12⇥ 12 matrix that takes the form

⌦ =

0

BBBBBBB@

�

2

1

�

1,2

· · · �

1,12

�

2,1

�

2

2

· · · �

2,12

...
...

. . .
...

�

12,1

�

12,2

· · · �

2

12

1

CCCCCCCA

where �
i,j

means error covariance between observation i and j studies. For simplicity,

I assume that only the adjacent months are related in my example, implying that

cov(e
t1 , et2) =

8
>>>><

>>>>:

�

2

t

t

1

= t

2

= t

�

t1,t2 |t
1

� t

2

| = 1

0 |t
1

� t

2

| > 1

.

Therefore, the error covariance matrix takes the following form

⌦ =

0

BBBBBBBBBBBBBBBBB@

�

2

1

�

1,2

0 0 · · · 0 �

1,12

�

2,1

�

2

2

�

2,3

0 · · · 0 0

0 �

3,2

�

2

3

�

3,4

· · · 0 0

0 0 �

4,3

�

2

4

· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · �

2

11

�

11,12

�

12,1

0 0 0 · · · �

12,11

�

2

12

1

CCCCCCCCCCCCCCCCCA

where �

t

i

,t

j

refers error covariance between adjacent month in our example, t
1

, t

2

=

1, 2, . . . , 12. Using (3.3) and (3.4), I obtain the vector of GLS estimates of the

regression coe�cients and its covariance matrix as

�̂

⇤ = (W 0(⌃⇤)�1

W )�1

W

0(⌃⇤)�1

b
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and

Cov(�̂⇤) = (W 0(⌃⇤)�1

W )�1

,

where b is a 24⇥1 vector, W is a 24⇥2 design matrix give in (3.2). Then employing

a large sample theory, �̂⇤ ⇠ N(�,Cov(�̂⇤)), similarly to the covariance matrix of

error, the covariance structure of coe�cients estimates in our example is obtained in

the following. However, in the proposed model, one can assume a more complicated

covariance structure.

⌃⇤ =

0

BBBBBBBBBBBBBBBB@

cov(b
1

, b
1

) cov(b
1

, b
2

) 0 0 · · · 0 cov(b
1

, b
12

)

cov(b
2

, b
1

) cov(b
2

, b
2

) cov(b
2

, b
3

) 0 · · · 0 0

0 cov(b
3

, b
2

) cov(b
3

, b
3

) cov(b
3

, b
4

) · · · 0 0

0 0 cov(b
4

, b
3

) cov(b
4

, b
4

) · · · 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0 · · · cov(b
11

, b
11

) cov(b
11

, b
12

)

cov(b
12

, b
1

) 0 0 0 · · · cov(b
12

, b
11

) cov(b
12

, b
12

)

1

CCCCCCCCCCCCCCCCA

,

where

cov(b
i

, b

j

) =

2

64
cov(b

i0

, b

j0

) 0

0 cov(b
i1

, b

j1

)

3

75

in which cov(b
i1

, b

j1

) and cov(b
i0

, b

j0

) are given by
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i

)
P

N

j=1

(x
ij

� x̄

i

)2
,

P
N

j=1

(x
i

0
j

� x̄

0
i

)(y
i

0
j

� ȳ
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i

0 � b

i

0
1

x̄

i

0)

= cov(ȳ
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Chapter 5

Results

In this chapter, I use 240 monthly observations of amount of rainfall and wind

direction obtained in Davis station to analyze a functional relationship between

rainfall amount and wind direction. By treating 12 months as small related studies.

we fit the proposed meta-analysis model, the traditional meta-analysis model and a

time series linear-circular regression model.

5.1 Meta-analysis

The regression model with cos(✓
t

� µ) as predictors of Y
t

was estimated within

each month. The coe�cient estimates are shown in Table 5.1. Inspection of the

models for 12 months yields some variation in the slopes and intercepts.

5.1.1 Existing Method

In our example, the combined regression coe�cients are estimated using 12 re-

gression models of each study. The design matrix W is in (5.1), the OLS estimates

of �0
i

s, i = 1, . . . , 12 are =in Table 5.1, and the covariance matrix for 12 months are
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Month n

i

Intercept cos(✓
t

� µ) MSE

1 20 0.682 -0.032 0.030
2 20 0.661 0.049 0.045
3 20 0.694 0.006 0.055
4 20 0.673 0.007 0.053
5 20 0.565 0.161 0.041
6 20 0.528 0.108 0.068
7 20 0.591 0.080 0.069
8 20 0.630 -0.058 0.062
9 20 0.669 0.162 0.043
10 20 0.693 0.126 0.036
11 20 0.786 0.128 0.035
12 20 0.731 0.033 0.025

Table 5.1: Fitted regression coe�cients and MSE values for 12 studies

shown in (5.2).

W =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1
1 0
0 1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, b =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0.6818
�0.0317
0.6608
0.0485
0.6940
0.0061
0.6731
0.0072
0.5647
0.1612
0.5276
0.1079
0.5911
0.0798
0.6302
�0.0582
0.6691
0.1617
0.6931
0.1256
0.7858
0.1281
0.7311

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

. (5.1)
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With 12 studies in total, there are 12 within-study covariance matrix. The within

study covariance matrices for study 1 through 12 are:

Cov(b
1

) =

0

B@
0.00178 �0.00067

�0.00067 0.00374

1

CA ,Cov(b
2

) =

0

B@
0.00251 �0.00040

�0.00040 0.00429

1

CA ,

Cov(b
3

) =

0

B@
0.00328 �0.00110

�0.00110 0.00521

1

CA ,Cov(b
4

) =

0

B@
0.00352 �0.00190

�0.00190 0.00598

1

CA ,

Cov(b
5

) =

0

B@
0.00232 �0.00050

�0.00050 0.00482

1

CA ,Cov(b
6

) =

0

B@
0.00425 �0.00230

�0.00230 0.01100

1

CA ,

Cov(b
7

) =

0

B@
0.00502 �0.00388

�0.00388 0.01240

1

CA ,Cov(b
8

) =

0

B@
0.00401 �0.00213

�0.00213 0.00792

1

CA ,

Cov(b
9

) =

0

B@
0.00239 �0.00015

�0.00015 0.00420

1

CA ,Cov(b
10

) =

0

B@
0.00199 0.00021

0.00021 0.00299

1

CA ,

Cov(b
11

) =

0

B@
0.00202 �0.00048

�0.00048 0.00426

1

CA ,Cov(b
12

) =

0

B@
0.00146 �0.00045

�0.00045 0.00303

1

CA .

The covariance matrix ⌃ for meta-analysis is a 24 ⇥ 24 matrix like in (3.1) as:

Diag(Cov(b
1

), . . . ,Cov(b
12

)). After substituting an estimate of covariance matrix,

we compute �̂

⇤ and its covariance as equation (3.3) and (3.4) and get,

�̂ =

0

B@
0.66760928

0.06319353

1

CA , Cov(�̂) =

0

B@
0.000205 �0.0000559

�0.0000559 0.000391

1

CA . (5.2)
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The data from 12 monthly studies are pooled and the overall estimated model for

12 months together is:

Ŷ

t

= 0.66761 + 0.06319 cos(✓
t

� µ). (5.3)

where µ is overall sample mean direction.

5.1.2 Proposed method

In the presence of serial correlation, the covariance term across di↵erent time periods

is no longer zero. Our covariance matrix should look like (4.1), where any covariance

between two consecutive month is calculated by

cov(b
i

, b

i

0) =

2

64
cov(b

i0

, b

i

0
0

) 0

0 cov(b
i1

, b

i

0
1

)

3

75

=

2

64
1

N

cov(y
i

, y

i

0) + x̄

i

x̄

i

0
1

N

1

S

2
x

i

S

2
x

i

0
cov(y

i

, y

i

0) 0

0 1

N

1

S

2
x

i

S

2
x

i

0
cov(x

i

, x

i

0)cov(y
i

, y

i

0)

3

75

(5.4)

The o↵-diagonal terms within covariance matrix for study 1 through 12 are:
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Cov(b
1

, b

2

) = Cov(b
2

, b

1

) =

✓
0.00035 0

0 0.0000156

◆
,

Cov(b
2

, b

3

) = Cov(b
3

, b

2

) =

✓
0.00113 0

0 0.0000816

◆
,

Cov(b
3

, b

4

) = Cov(b
4

, b

3

) =

✓
0.00091 0

0 0.0000591

◆
,

Cov(b
4

, b

5

) = Cov(b
5

, b

4

) =

✓
0.000823 0

0 0.000272

◆
,

Cov(b
5

, b

6

) = Cov(b
6

, b

5

) =

✓
0.00137 0

0 0.000516

◆
,

Cov(b
6

, b

7

) = Cov(b
7

, b

6

) =

✓
�0.0011 0

0 �0.00045

◆
,

Cov(b
7

, b

8

) = Cov(b
8

, b

7

) =

✓
0.0005 0

0 �0.00053

◆
,

Cov(b
8

, b

9

) = Cov(b
9

, b

8

) =

✓
0.00085 0

0 0.0000582

◆
,

Cov(b
9

, b

10

) = Cov(b
10

, b

9

) =

✓
0.00065 0

0 0.00031

◆
,

Cov(b
10

, b

11

) = Cov(b
11

, b

10

) =

✓
0.00093 0

0 0.00082

◆
,

Cov(b
11

, b

12

) = Cov(b
12

, b

11

) =

✓
0.00106 0

0 0.0006

◆
,

Cov(b
12

, b

1

) = Cov(b
1

, b

12

) =

✓
0.000252 0

0 0.0000685

◆
,

with the diagonal terms are same as (4.1). We compute �̂ and its covariance as

equation (4.4) and get

�̂

⇤ =

0

B@
0.65136

0.05862

1

CA , cov(�̂⇤) =

0

B@
0.000303 �0.000065

�0.000065 0.000430

1

CA .
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Hence the full estimated model using our proposed model is given by

Ŷ

t

= 0.65136 + 0.05862 cos(✓
t

� µ)

where µ is overall sample mean direction.

5.2 Time Series Linear-Circular Regression

After log
10

-transformation, the time series of rainfall amount (See Figure 5.1)

appears to be stationary. In order to identify important features on it, first, I

obtain the autocorrelation function (ACF) and the partial autocorrelation function

(PACF) plots to investigate any lagged forms for rainfall amount or white noise.

Figure 5.1: A time series plot of the log
10

-transformed monthly average rainfall
amount.
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Figure 5.2 and Figure 5.3 show the ACF and PACF plots. The dotted lines

represent the 95% confidence intervals. Note that the PACF plot has a very large

positive spike at lag 1 and no other significant spikes, indicating the lag-1 autocor-

relation. However, the ACF does not display a sharp cuto↵, and coe�cients of lag-1

and lag-2 are both positive and almost equal. Therefore, I employ an AR(1) model

and include Y

t�1

in the time series linear-circular regression model.

Figure 5.2: ACF of the monthly average rainfall amount after log
10

-transform.

Next, I investigate whether the dataset provides an evidence for an association

between the amount of rainfall (a linear variable) and the wind direction (a circular

variable), by employing the Mardia’s rank correlation test [9] of independence be-

tween linear and circular variables. Since the estimated p-value is 0.0006, indicating

an association between them, I reject the null hypothesis that the wind direction is

independent of the rainfall amount in the dataset.

The regression model with Y

t�1

and cos(✓
t

� µ) as predictors of Y
t

is estimated,
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Figure 5.3: PACF of the monthly average rainfall amount after log
10

-transform.

and the estimates of coe�cients and the p-values are shown in Table 5.2. The es-

timated model is given by Ŷ

t

= 0.486 + 0.256Y
t�1

+ 0.048 cos(✓
t

� µ), where µ is

overall sample mean direction.

Coe�cients Estimate Standard Error t-value Pr(>|t|)
intercept 0.486 0.044 11.144 2⇥ 10�16

cos(✓
t

� µ) 0.048 0.021 2.303 0.0222
Y

t�1

0.256 0.062 4.102 5.65⇥ 10�5

Table 5.2: Coe�cient estimates and p-values of time series linear-circular regression
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Chapter 6

Discussion

Table 6.1 presents the coe�cients estimated using two meta-analyses. The first set

of results was obtained by eliminating all o↵-diagonal elements from Cov(b) matrix.

The second one was obtained by the proposed method which utilizes correlation

between adjacent studies, by including corresponding o↵-diagonal elements in the

covariance matrix. The 95% confidence intervals (95% CI) are provided in the table.

Methods �

0

95% CI of �

0

�

1

95% CI of �

1

Existing GLS 0.66761 [0.63955, 0.69567] 0.06319 [0.02444, 0.10195]
Proposed GLS 0.65136 [0.61724, 0.68547] 0.05862 [0.01798, 0.09926]

Table 6.1: Estimated coe�cients and corresponding 95% confidence intervals given
by the existing meta-analysis and the proposed meta-analysis

It is somewhat problematic that the length of 95% CI of the reported coe�cients

from the proposed model is a little bit larger than the values from existing method.

(L
existing

(�
0

) = 0.056, L
proposed

(�
0

) = 0.068;L
existing

(�
1

) = 0.078, L
proposed

(�
1

) =

0.081) However, it wouldn’t be generally true, simply because from one application

it is not possible to determine whether this is a result of the particular nature of the

example data.
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Hence, di↵erent approaches to assessing the fit of a model and for comparing

competing models are provided in the following. First, I use the penalized-likelihood

information criteria, such as Akaike’s Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) for model selection. AIC is an estimate of the relative

distance between the unknown true likelihood function of the data and the fitted

likelihood function of the model, so that a low AIC indicates that a model consid-

ered is closer to a truth model. BIC is an estimate of a function of the posterior

probability of a model being a true model, under a certain Bayesian setup, so that

a low BIC means that a model is considered to be more likely to be the true model.

The AIC and BIC values are given in Table 6.2, from which we can learn that the

proposed model is a better-fit to the dataset.

Method AIC BIC
Existing Method 81.283 85.995
Proposed Method 80.790 85.502

Table 6.2: Akaike information criterion (AIC) and Bayesian information criterion
(BIC) for the existing method and the proposed method

Since a model selection should depend not only on the goodness-of-fit of a model,

but also on the objective of the analysis, I perform an in-sample prediction to select

a better model. The dataset is split into two groups. One group will be used to train

the model, and the second group will be used to investigate the resulting model’s

error. In our example, we use 19 years of samples (1995⇠2013) to build the model

and the remaining 1 year of samples (2014) to evaluate that model’s error. Resulting

in-sample prediction plots are shown in Figure 6.1.
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Figure 6.1: In-sample prediction plots of the monthly rainfall amount in 2014, where

the top plot shows the entire time series, and the bottom plot shows only 2014 time

series.
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Table 6.3 shows the predicted values of the last year using the three models

based on the 19 years samples. The in-sample mean squared prediction error of an

estimator is calculated as:

MSPE = E

⇣
Y

t

� b
Y

t

⌘
2

�

where Y
t

and bY
t

are actual and forecast values, respectively. In-sample mean square

prediction error (MSPE) is not usually of direct interest since future values of the

features are not likely to coincide with their training set values. But for comparison

between models, in-sample error is convenient and often leads to e↵ective model

selection. Comparing the MSPE of the three models, Table 6.3 shows that the pro-

posed GLS meta-analysis has the least MSPE, which indicates that the prediction

bias is smallest for the proposed method.

2014 Original Time Series Existing GLS Proposed GLS
Jan 0.6532 0.6424 0.6762 0.6758
Feb 0.6767 0.6863 0.7016 0.6951
Mar 0.9335 0.7108 0.7301 0.7169
Apr 0.4440 0.7730 0.7191 0.7084
May 0.6053 0.6441 0.7240 0.7122
Jun 0.1732 0.6855 0.7206 0.7096
Jul 0.7308 0.5252 0.6519 0.6572
Aug 0.4298 0.7054 0.6988 0.6930
Sep 0.6618 0.5494 0.5811 0.6032
Oct 0.5551 0.6235 0.5993 0.6171
Nov 0.5587 0.6483 0.6835 0.6813
Dec 0.7396 0.6738 0.7221 0.7107

MSPE 0.04749 0.04457 0.04289

Table 6.3: Predicted values and MSEPs from the time-series linear-circular regres-
sion, the existing GLS meta-analysis and the proposed GLS meta-analysis
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Table 6.4 summarizes the strengths and weaknesses of all of the three meth-

ods. A time series linear-circular regression is relatively easy to fit but it requires

stationarity of thine series. The raw data is often transformed to meet the station-

ary requirement. The existing GLS meta-analysis provides an alternative method

to model a cylindrical time series data. But it ignores an apparent dependence

structures among related studies. Yet, the proposed method utilizes some or all

covariances to improve the precision of synthesized coe�cients.

Method Strength Weakness

Existing
GLS Method

Accounts for covariation.
Only needs coe�cients
and Cov(b).

Ignore dependence structures
among studies.

Proposed
GLS Method

Accounts for covariation.
Incorporate correlation
structures among
related studies.

Computationally involved.

Time-Series
Regression

Relatively easy to fit
Requires stationary data.
Require large number of
parameters usually.

Table 6.4: Summary of properties of the three methods
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Chapter 7

Conclusion

In this thesis, I discuss and compare the existing generalized least square (GLS)

meta-analysis and the improved GLS meta-analysis. The di↵erence between two

methods is that the improved method utilizes a general form of covariance matrix

which takes into account correlations between among studies. For the purpose of

comparison, a time series linear-circular regression model was also fitted. All three

methods have been applied to a cylindrical real dataset, to explore a functional

relationship between wind direction (circular) and rainfall amount (linear). Several

model diagnostic procedures have been performed. The primary objective of our

improved method is to improve some limitation of the existing GLS method that

assumes independence of those studies.

Firstly, I used the Mardia’s rank correlation test to check if there exists a signif-

icant association between wind direction and rainfall amount in the dataset. Next,

I fitted the existing and the proposed GLS meta-analyses without and with o↵-

diagonal entries in the covariance matrix, respectively, along with the time series

linear-circular regression. Then I provided the confidence intervals of coe�cients,

the Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC)
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and an in-sample prediction plots to compare the goodness of the three models.

It was shown that the proposed model provides a better fit for the relationship

between wind direction and rainfall amount. I claim that it is mainly due to taking

a general covariance structure into consideration. However, obtaining the estimate

of the full covariance matrix of Cov(b) is considered to be computationally involved.

I provided the full calculation for o↵-diagonal entries in Chapter 4. In my example, I

only included the covariances between adjacent months for simplicity after examine

ACF and PACF plots.

The proposed model retains the advantages of usual meta-analysis that accounts

for covariation, and also overcome the weakness of ignoring the dependence among

coe�cients. Future work will focus on how to apply the improved GLS meta-analysis

on a multiple linear regression or on an occasion when samples do not all assume

the same model (i.e., some models use fewer than the full set of p predictors).
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Appendix A

R-codes

# Mardia’s rank correlation coe�cient test[1] #

OrderScores <� function(lvar, cvar) {

ranklvar <� rank(lvar, ties.method=”random”)

n <� length(cvar) ; cvar2 <� 0

for (j in 1:n) {cvar2[ranklvar[j]] <� cvar[j] }

rankcvar <� rank(cvar2, ties.method=”random”)

uscores <� rankcvar⇤2⇤pi/n ; return(uscores)}

Ustar <� function(uniscores) {

n <� length(uniscores) ; Tc <� 0 ; Ts <� 0

for (j in 1:n) {

Tc <� Tc+j⇤cos(uniscores[j]) ;

Ts <� Ts+j⇤sin(uniscores[j]) }

UstarVal <� (Ts⇤Ts)+(Tc⇤Tc) ; return(UstarVal) }

MardiaRankIndTestRand <� function(uniscores, NR) {

UstarObs <� Ustar(uniscores) ; nxtrm <� 1
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for (r in 1:NR) {

uniscoresRand <� sample(uniscores) ;

UstarRand <� Ustar(uniscoresRand)

if (UstarRand >= UstarObs) { nxtrm <� nxtrm + 1 } }

pval <� nxtrm/(NR+1) ; return(c(UstarObs, pval))}

uniscores <� OrderScores(logmean, direction)

MardiaRankIndTestRand(uniscores, 9999)

#Proposed Method#

#o↵�diagonal elements#

covariance<�function(x1,x2,y1,y2)

{v1<�var(x1);v2<�var(x2)

cov1<�cov(x1,x2);cov2<�cov(y1,y2)

m1<�mean(x1);m2<�mean(x2)

d1<�(1/20+(1/20)⇤m1⇤m2⇤cov1/(v1⇤v2))⇤cov2;d2<�(1/20)⇤cov1⇤cov2/(v1⇤v2)

return(matrix(c(d1,0,0,d2),nrow=2,ncol=2,byrow = TRUE))}

cov12<�covariance(cos1,cos2,log1,log2)

cov23<�covariance(cos2,cos3,log2,log3)

cov34<�covariance(cos3,cos4,log3,log4)

cov45<�covariance(cos4,cos5,log4,log5)

cov56<�covariance(cos5,cos6,log5,log6)

cov67<�covariance(cos6,cos7,log6,log7)

cov78<�covariance(cos7,cos8,log7,log8)

cov89<�covariance(cos8,cos9,log8,log9)

cov910<�covariance(cos9,cos10,log9,log10)
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cov1011<�covariance(cos10,cos11,log10,log11)

cov1112<�covariance(cos11,cos12,log11,log12)

cov121<�covariance(cos12,cos1,log12,log1)

#Construct Sigma#

c1<�vcov(reg1)

s1<�cbind(c1,cov12,matrix(0,2,18),cov121)

c2<�vcov(reg2)

s2<�cbind(cov12,c2,cov23,matrix(0,2,18))

c3<�vcov(reg3)

s3<�cbind(matrix(0,2,2),cov23,c3,cov34,matrix(0,2,16))

c4<�vcov(reg4)

s4<�cbind(matrix(0,2,4),cov34,c4,cov45,matrix(0,2,14))

c5<�vcov(reg5)

s5<�cbind(matrix(0,2,6),cov45,c5,cov56,matrix(0,2,12))

c6<�vcov(reg6)

s6<�cbind(matrix(0,2,8),cov56,c6,cov67,matrix(0,2,10))

c7<�vcov(reg7)

s7<�cbind(matrix(0,2,10),cov67,c7,cov78,matrix(0,2,8))

c8<�vcov(reg8)

s8<�cbind(matrix(0,2,12),cov78,c8,cov89,matrix(0,2,6))

c9<�vcov(reg9)

s9<�cbind(matrix(0,2,14),cov89,c9,cov910,matrix(0,2,4))

c10<�vcov(reg10)

s10<�cbind(matrix(0,2,16),cov910,c10,cov1011,matrix(0,2,2))

c11<�vcov(reg11)

s11<�cbind(matrix(0,2,18),cov1011,c11,cov1112)
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c12<�vcov(reg12)

s12<�cbind(cov121,matrix(0,2,18),cov1112,c12)

sigma<�as.matrix(rbind(s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12))

t(sigma)

#Design Matrix#

a<�diag(1, 2, 2)

w<�rbind(a,a,a,a,a,a,a,a,a,a,a,a)

#Parameter Estimates#

sigmainverse<�ginv(sigma)

wsigmaw<�t(w)%⇤%sigmainverse%⇤%w

covbeta<�ginv(wsigmaw)

beta<�covbeta%⇤%t(w)%⇤%sigmainverse%⇤%b
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circular-circular and circular-linear data based on bernstein copulas. Statistics
and Econometrics, 04, Apr 2011.

[4] E. Garcia-Portugues, R. M. Crujeiras, and W. Gonzales-Manteiga. Exploring
wind direction and SO

2

concentration by circular-linear density estimation.
Reports in Statistics anf Operations Research, 2011.

[5] Stephen B. Jarrell and T. D. Stanley. A meta-analysis of the union-nonunion
wage gap. Industrial and Labor Relations Review, 44(1):54–67, 1990.

[6] Richard A. Johnson and Thomas E. Wehrly. Some angular-linear distribution
and related regression models. Journal of the American Statistics Association,
73(363):602–606, 1978.

[7] S. Kim and A. SenGupta. Inverse circular-linear/linear-circular regression.
Journal of Multivariate Analysis, 2012.

[8] K. V. Mardia. Statistics of directional data. Journal of the Royal Statistical
Society. Series B (Methodological), 37:349–393, 1975.

[9] K. V. Mardia. Linear-circular correlation coe�cients and rhythmometry.
Biometrika, 63(2):403–405, 1976.

[10] A. Pewsey, M. Neuhauser, and G. D. Ruxton. Circular Statistics in R. Oxford
University Press, 2013.

[11] R. H. Shumway and D. S. Sto↵er. Time Series Analysis and Its Applications:
With R Examples. Springer, New York, 2011.

38


