WILD Goblin Sensor Pod Design, Development, and Integration

Lillian Walker and Daniel Zaleski

Final Presentation

Wednesday, October 15, 2014

- - WILD Goblin Concept
 - Software Design
 - Turret Control
 - Turret Stability
 - Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work

WILD Goblin Concept

- WILD Goblin project
 - Smart Unmanned Aerial Vehicle (UAV)
 - Performs autonomous reconnaissance
- BAE Coyote Airframe based
- "Piggyback Deployment"
- Missions
 - Border patrol, infrastructure patrol, and security
 - Identifying targets in heavy clutter
 - Searching for camouflaged and concealed targets

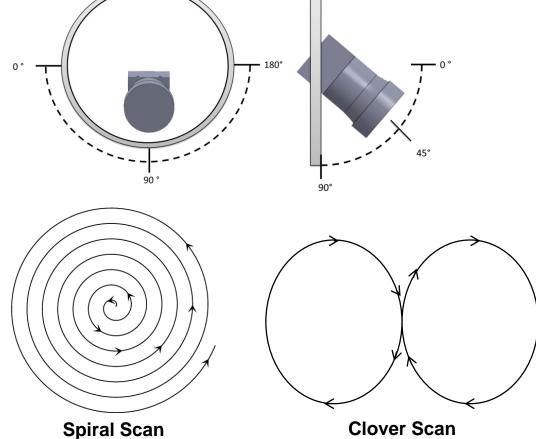
Coyote Animation

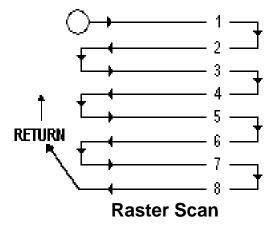
Coyote and its Sonobuoy Tube

Motivation

- COTS UAV turrets available
 - Not optimized for our required SWaP constraints
 - Challenging to facilitate the desired scan geometry in the confined space of a SUAV

- COTS sensor systems available
 - Not optimized for our target set

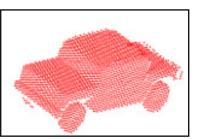

Goals


Design a sensor turret

- Houses a laser rangefinder, short-wave infrared camera, and long-

wave infrared camera

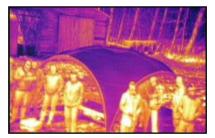
- Mechanical Design
 - Roll-tilt turret
- Software Design
 - Precision scans and target tracking



Sensor Pod

- Jenoptik DLEM-SR Laser Rangefinder
 - Laser: 1.55 micron
 - 5 km, 25 Hz, <1 m resolution
- Sensors Unlimited Micro-SWIR (short-wave infrared) Camera
 - Standard Spectral Response: 0.9 1.7 micron
- FLIR Quark LWIR (long-wave infrared) Camera
 - Spectral Band: 7.5 13.5 micron

Laser Rangefinder


SWIR

LWIR

- WILD Goblin Concept
- Software Design
- Turret Control
 - Turret Stability
 - Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work

- Serial Commands
 - Point to point
 - Speed control
 - Home
 - Heartbeat
 - Status
 - Scan
- Point and scan programs were completed using only the microcontroller

Point to Point Movement with Speed Change

Demonstration of point to point movement

Raster Scan

- Used on stationary targets usually while orbiting
- Able to change speeds
- Input a height and a width
- Acquire time of specific point

Raster Scan

Raster scan performed using a roll-tilt turret aimed at a target board

Spiral Scan

LW, DZ 10/15/14

- Used for moving targets
- Starts in center of desired spiral
 - Input a radius and density
 - Returns back to center when complete
- Returns all the points in order to get the time at which the desired point occurred

Spiral Scan

Spiral scan performed using a roll-tilt turret aimed at a target board

Clover Scan - Figure 8

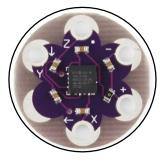
Clover Scan

- Used to replicate a convoy driver (human-behavior)
- Starts in center, performs a clover with a desired number of leaves at a certain radius
- Enter a desired point to get the time at which that point occurred

Figure 8 clover scan performed using a roll-tilt turret aimed at a target board

Clover Scan - 6 Leaves

6 leaved clover scan performed using a roll-tilt turret aimed at a target board

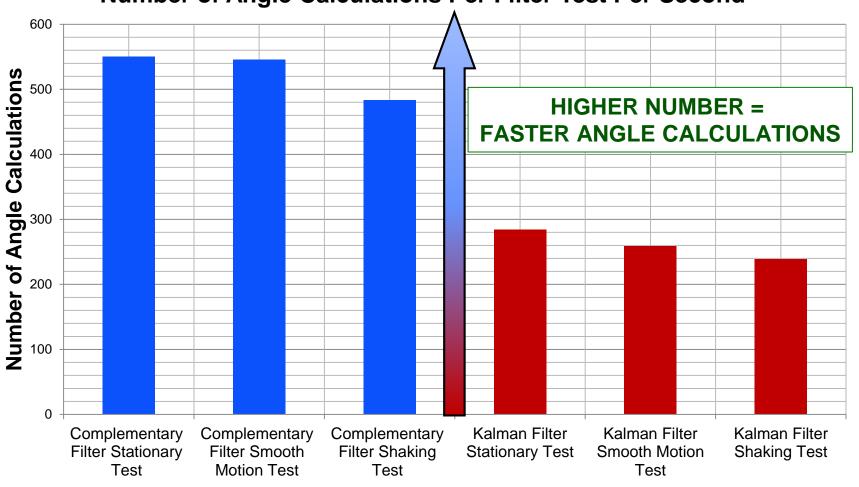

- WILD Goblin Concept
- Software Design
 - Turret Control
- Turret Stability
 - Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work

Software Design - Turret Stability

- Once the desired coordinates are sent to the turret, an accelerometer and a gyroscope are used to stabilize the turret in a specified orientation.
 - Inertial Measurement Unit (IMU)
- Decouple sensor field of view (FOV) from the motion of the aircraft

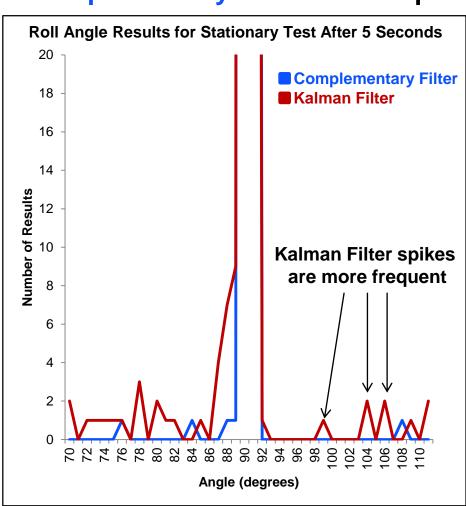
ADXL335 - Accelerometer

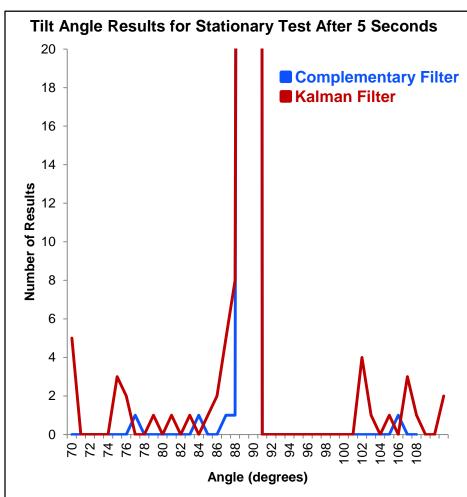
L3G4200D - Gyro


Software Design - Turret Stability

Initial Stabilizing Turret Movement

Software Design – Turret Stability




Test

Software Design – Turret Stability

Complementary filter was compared to Kalman Filter

Software Design - Turret Stability

Test Turret Staying Focused around a Point

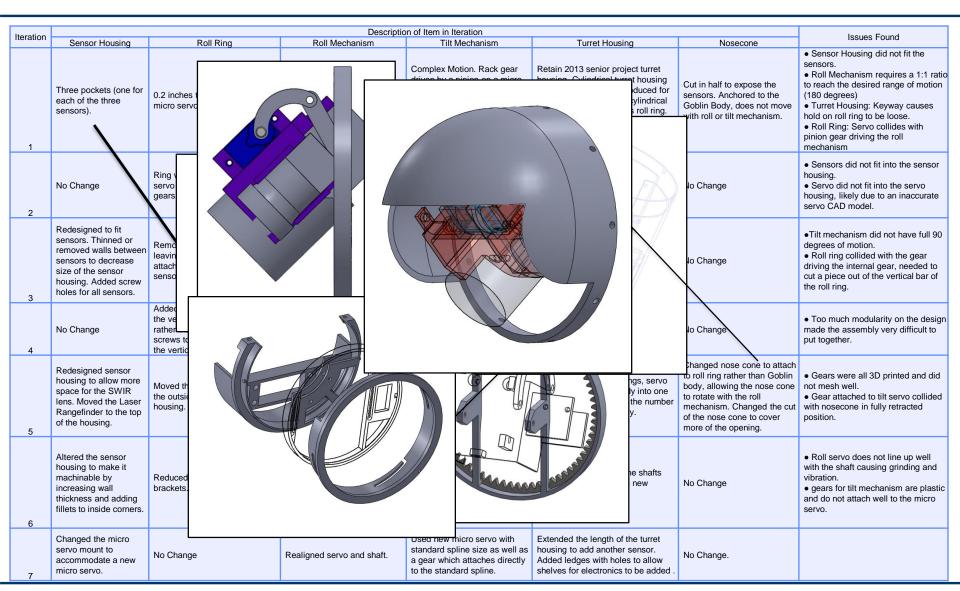
Test Turret View

Camera View

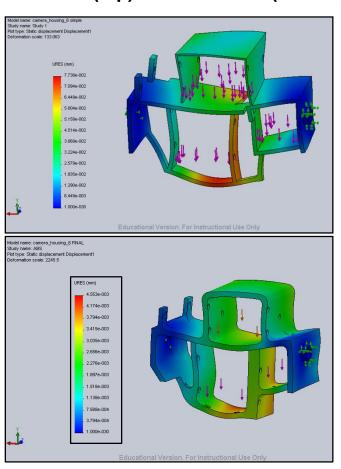
- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
- Design Requirements
 - Design Process
 - Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work

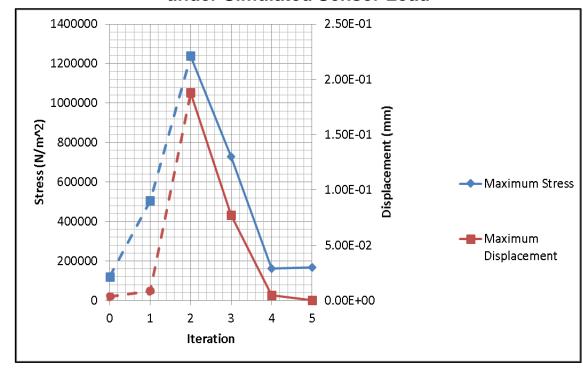
Requirements

ID	Category	Requirement
R01	Weight	The turret assembly without sensors shall weigh less than 17 ounces.
R02	Size	The outer diameter of the turret assembly shall be less than 5.375".
R03	Size	The complete length of the turret assembly shall be no longer than 5".
R04	Torque - Tilt Platform	The torque supplied to actuate the tilt platform shall be more than 10 oz-in, with a goal of at least 20 oz-in.
R05	Torque - Roll Platform	The torque supplied to actuate the roll platform shall be more than 20 oz-in with a goal of at least 50 oz-in.
R06	Speed - Tilt Platform	The tilt mechanism shall tilt at a rate of at least 15 degrees/second.
R07	Speed - Roll Platform	The roll mechanism shall roll at a rate of at least 15 degrees/second.


ID	Category	Requirement
R08	Acceleration - Tilt Platform	The tilt mechanism shall accelerate at a rate of at least 15 degrees/second^2.
R09	Acceleration - Roll Platform	The roll mechanism shall accelerate at a rate of at least 15 degrees/second^2.
R10	Field of Regard - Tilt Platform	The tilt mechanism shall tilt at minimum 45 degrees with a goal of 90 degrees.
R11	Field of Regard - Roll Platform	The roll mechanism shall roll a minimum of 90 degrees with a goal of 180 degrees.
R12	Sensor Capacity	The turret assembly shall hold the Jenoptik Laser Range finder, the Flir QUARK, and the Sensors Unlimited MicroSWIR.
R13	Accuracy	The accuracy of the mechanism shall be less than 1 degree (the actual position of the turret shall be within 1 degree of the specified position).
R14	Repeatability	The repeatability of the mechanism shall be less than 1 degree.

- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
 - Design Requirements
- Design Process
 - Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work

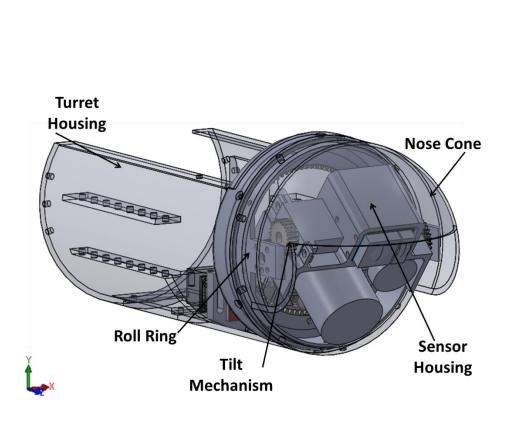

Design: Iterations

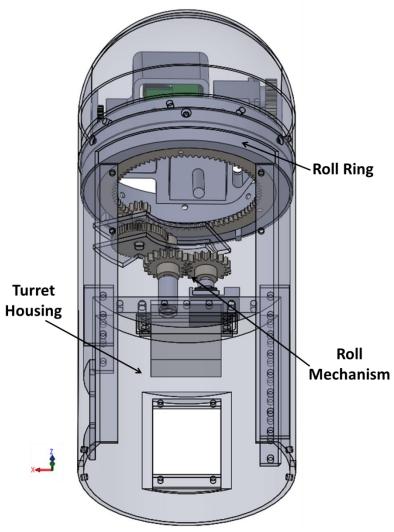


Analysis: Sensor Housing

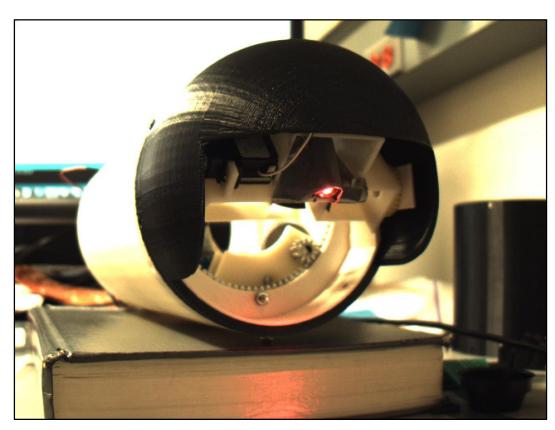
Simulated Maximum Displacement of Iteration 3 (top) and Iteration 4 (bottom)

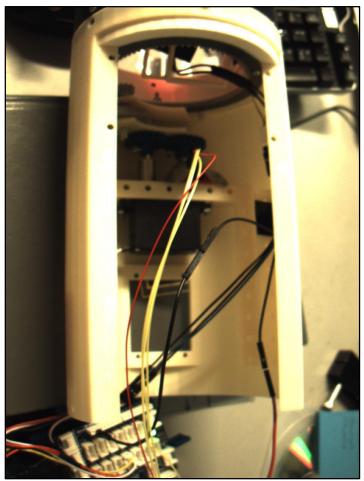
Overall Maximum Stress and Displacement under Simulated Sensor Load





- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
 - Design Requirements
 - Design Process
- Final Sensor Turret
 - Integration Tests
 - Point-to-point movement
 - Results
 - Future Work


Final SolidWorks Model



Final Turret Design



- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
- Integration Tests
- Point-to-point movement
 - Results
 - Future Work

Integration Tests – Point-to-point Movement

- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
- Integration Tests
 - Point-to-point movement
- Results
 - Future Work

Results of Integration Tests

Integration Test 1: 8 Tests performed, 6 passed

ID	Category	Requirement
R01	Weight	The turret assembly without sensors shall weigh less than 17 ounces.
R02	Size	The outer diameter of the turret assembly shall be less than 5.375" in diameter.
R03	Size	The complete length of the turret assembly shall be no longer than 5".
R06	Speed - Tilt Platform	The tilt mechanism shall be able to tilt at a rate of at least 15 degrees/second.
R10	Field of Regard - Tilt Platform	The tilt mechanism shall tilt at minimum 45 degrees with a goal of 90 degrees.
R12	Sensor Capacity	The turret assembly shall hold the Jenoptik Laser Range finder, the Flir QUARK, and the Sensors Unlimited MicroSWIR.
R13	Accuracy	The accuracy of the mechanism shall be less than 1 degree (the actual position of the turret shall be within 1 degree of the specified position).
R14	Repeatability	The repeatability of the mechanism shall be less than 1 degree.

Accuracy:

Average Error: 5.27 degrees

Goal: 1 degree

Repeatability:

Average Variance: 1.99 degrees

Goal: 1 degree

Points to a Calibration Error and Hysteresis

 Average Variance was 0.34 degrees when only considering movements in the same direction (i.e. up vs. down)

Final Integration Test

Tilt

Roll

- Accuracy:
 - Average Error = 0.75 degrees
- Repeatability:
 - Average Variance = 3.38 degrees
 - Average Variance for same direction movements= 0.41 degrees

- Accuracy:
 - Average Error = 0.44 degrees
- Repeatability:
 - Average Variance = 1.10 degrees
 - Average Variance for same direction movements= 0.44 degrees

- WILD Goblin Concept
- Software Design
 - Turret Control
 - Turret Stability
- Mechanical Design
 - Design Requirements
 - Design Process
 - Final Sensor Turret
- Integration Tests
 - Point-to-point movement
 - Results
- Future Work

Future Work

Target Tracking

- Previous MQP developed a rudimentary target tracker
- Implementing their target tracking in our stabilization system

From 2013 MQP

Summary

- Implemented IMU based stabilization, automated pointing, and scan patterns
- Designed, built, and tested a sensor turret
 - Integrated mechanical and software design
- B term: Continuing work in closed loop target identification and target tracking

Recognitions

- David Scott TOIL Supervisor
- Bryce Remesch Group 106
- Prof. Fred Looft WPI
- Antonio Rufo Group 106
- Prof. Ted Clancy WPI
- Mike Pietrucha Group 109
- Kathleen Haas Group 43
- Sarah Curry Group 108
- Emily Anesta Group 39
- Devin Mulcahy 2013 MQP
- Jonathan Dorich 2013 MQP

Questions?