

Abstract

Mapping, labeling and localization are central modules to most autonomous robot

platforms. Not only do they make it possible for the robot to understand its sur-

rounding environment and its location in it, it also can improve drastically the

accuracy of other downstream tasks such as behavioral planning or dynamic object

detection and tracking.

While it is possible to achieve reasonable results with traditional dynamic sensors

such as IMUs and GPS, modern robotics systems have shown that visual based

sensors, mainly laser or camera-based, are extremely well suited for these tasks,

since the final localization results returned by such sensors do not only depend on

the robot itself, but also on its surrounding environment. While both types of

sensors possess numerous qualities that result into a good performance, they also

suffer from some limitations. Such limitation can sometimes be overcome by using

cross-modal approaches which have the unique advantage of benefiting from the best

of both worlds, while still deploying a limited amount of sensors to save on cost and

processing power. This thesis shows how we can take advantage of such methods.

First, we start by exploring the cross-modal mapping task in the case of 3D

mapping for UAV’s. Here, our goal is to be construct 3D maps, using data collected

by UAV’s equipped with a monocular camera only. Using height prediction and deep

learning, we propose a method capable of accurately predicting the height value of

each pixel in an input 2D camera image, which can be processed to form a 3D point

cloud, thus replacing the traditional and costly ”Structure From Motion” (SFM)

based methods. This solution achieves state-of-the-art performance compared with

all recently published height prediction methods.

Next, we explore the cross-modal labeling task. Labeling is typically necessary

for any self-driving car that is traveling in an urban environment. In this work,

we tackle the labeling of pre-built point cloud maps by taking advantage of the

advancements made in camera based deep learning and show how we can predict

relevant road data (such as road boundaries and traffic lane’s locations) from 2D

camera images, before processing them and projecting them to 3D, to automatically

generate height quality labels.

Finally, we explore the case of cross-modal vehicle localization when 3D maps

are unavailable. In this case, we use the popular and free OpenStreetMap (OSM)

platform, to show how it is possible to accurately localize LiDAR sensors, without

the need for point cloud maps or data training. Thanks to a constrained formulation

of the popular particle filter method, we are able to track a moving vehicle on OSM,

while keeping its position constrained to the road boundaries. This method achieves

state-of-the-art performance compared with all satellite or OSM-based methods for

LiDAR localization.

2

Acknowledgements

I would like to express my deepest gratitude to my advisor and mentor, Professor

Huang, for his generous support and valuable guidance.

I would like to also thank Professor Zhang for having been always available to

answer my questions and propose new ideas, Professor El-Korchi for giving me my

first opportunity at WPI and Professor Agu for his thoughtful comments and advice.

Finally, I would like to thank my family for their support and encouragements.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivations . 3

1.3 Contributions . 5

1.4 Publications . 8

1.5 Outline . 9

2 An Overview of Visual Cross-Modal Mapping, Labeling and Local-

ization 10

2.1 Cross-Modal Mapping . 10

2.2 Cross-Modal Map Labeling . 13

2.3 Cross-Modal Map Localization . 15

2.3.1 Place recognition . 16

2.3.2 Metric map localization . 23

3 Building Point Cloud Maps Using Cameras and Height Prediction 30

3.1 Introduction . 30

3.2 Related Work . 33

3.3 Method . 35

3.3.1 Problem Formulation . 35

ii

3.3.2 Height Prediction Network . 37

3.3.3 Height Refinement Network 40

3.4 Experiments . 40

3.4.1 Datasets . 40

3.4.2 Implementation Details . 42

3.4.3 Results . 43

3.4.4 Discussion . 46

3.5 Applications . 49

3.5.1 Single Aerial Image 3D Reconstruction 50

3.5.2 Area Reconstruction with Simulated UAV Flight 51

3.6 Summary . 52

4 Labeling Point Cloud Maps Using Cameras and Deep Learning 54

4.1 Introduction . 54

4.2 Related Work . 57

4.3 Methods . 59

4.3.1 Mapping Pipeline . 59

4.3.2 Road labeling . 59

4.3.3 Lane labeling . 63

4.4 Experiments . 66

4.4.1 Experimental Setup . 66

4.4.2 Road Labeling . 69

4.4.3 Lane Labeling . 71

4.4.4 Discussion . 72

4.5 Summary . 74

iii

5 Localizing Point Cloud Scans in OpenStreetMaps 75

5.1 Introduction . 75

5.2 Previous Work . 79

5.3 Method . 81

5.3.1 From OSM to LiDAR . 82

5.3.2 Constrained Particle Filter . 88

5.4 Experiments . 92

5.4.1 Dataset . 92

5.4.2 Implementation Details . 92

5.4.3 Results . 93

5.4.4 Discussion . 95

5.5 Summary . 100

6 Conclusion 102

iv

List of Figures

2.1 Examples of Visual Maps. From left to right: LiDAR map, satellite

map, OSM and simulated LiDAR map. 13

2.2 Visual Map Localization Block Diagram. 16

2.3 Front view camera frame (top), followed by the same area in a satellite

map (middle left) and in OSM (middle right). The final image is the

polar projection of the satellite crop (bottom). 17

2.4 An example of LiDAR frame depicted as a 3D point cloud (top left),

a BEV projection (top right) and a panoramic projection (bottom). . 20

3.1 The outputs of our multi-task network. From left to right: The input

RGB image, the output semantic labels, surface normals and height

predictions. 32

3.2 Our two stage height prediction and refinement pipeline. We use

DenseNet121 to extract a global feature vector from the input aerial

images, which is used to predict the normals map, semantic labels and

a first guess at the height map (first stage, in blue). These results

are concatenated with the input aerial image and fed into a denoising

autoencoder to generate the refined final height map (second stage,

in purple). Red boxes represent the ground truth, while green ones

represent the networks predictions. 35

v

3.3 Architecture of our multi-task learning network for height, semantic

and surface normals predictions. Note that each tconv block is fol-

lowed by the ReLu function and drop out layers are inserted after

each tconv layers in the main height prediction branch. 38

3.4 Qualitative comparison of a reconstructed tile from the testing dataset.

From left to right: The input RGB tile, the height prediction and the

height ground truth. 43

3.5 Qualitative comparison. From left to right: The input RGB image,

the height prediction of our multi-task network, the refined height

map of our denoising autoencoder and the ground truth. 47

3.6 Uncertainty results. From left to right RGB Image, Height Predic-

tion, Uncertainty Map. Prediction errors are mostly concentrated

around the edges. 50

3.7 3D reconstructions using a single image. (a) RGB Image, (b) Height

Colorized Point Cloud, (c) Semantic Point Cloud, (d) RGB Colorized

Mesh. 51

3.8 3D reconstructions from simulated UAV flight. From left to right:

Positions of the UAV images, Reconstructed 3D scene. 52

4.1 Point cloud, lanes coordinates and driveable region limits generated

by our pipeline. 55

4.2 Road labeling pipeline . 60

4.3 Histogram of the elevation z of the road point cloud. 61

4.4 Road labeling before (Red) and after (Green) the curb detection. . . 62

4.5 Lane labeling pipeline . 64

4.6 Vehicle used for data collection. 67

4.7 Aerial imagery of the selected areas. 68

vi

4.8 Qualitative roads comparison : Red is the ground truth, Blue is before

the curb detection, and Green is after. 70

4.9 Qualitative lanes comparison : Red lanes are the ground truth and

Green ones are automatically generated. 73

5.1 Result of our approach. LiDAR point clouds overlaid on top on OSM.

Colors reflects the position error (m). 78

5.2 Our full method. The LiDAR point cloud and OSM region of inter-

est are processed by the LiDar processing module (LPM) and map

processing module (MPM), respectively, to produce four images, a

pair of top-view road images and a pair of top-view building edges,

with each pair containing a real and a simulated point cloud image.

The two pair of images are processed by a dual input particle filter

which produces a first estimate of the vehicle position, followed by a

road check to verify if the estimated position is on the road or not.

In the latter case, the constrained resampling is triggered, until the

road check condition is satisfied. 83

5.3 Road and building masks, extracted from OSM. 84

5.4 LPM. The LiDAR point cloud is divided into two sections using the

height value of each point, a top section (capturing surrounding build-

ings walls) and bottom one (capturing the road). The bottom section

undergoes RANSAC plane fitting to extract the road, then the two

point clouds are projected to produce two top-view point cloud images. 85

5.5 Steps of the raycasting process applied to OSM. 86

5.6 Comparison between LiDAR building images (top) and simulated

LiDAR images by using raycasting (bottom). 86

vii

5.7 MPM. The OSM region of interest is segmented to produce a building

and a road mask. Raycasting is applied to the building mask, whereas

rejection sampling on the road mask with a Gaussian proposal is

applied to the road mask, in order to produce two simulated top-

view point cloud images. 87

5.8 Comparison between OSM and LiDAR. 88

5.9 Qualitative results of our cross-modal pose tracking method on the

KITTI dataset. 94

5.10 The effects of the constrained particle filter on sequence 09 of the

KITTI dataset. Here, we show three cases where the constrained

particle filter had to correct itself using the road structure, in addition

to a case where it successfully estimated the right position using the

output of the motion and observation models only. 96

5.11 Chamfer distance correlation between road and building point clouds.

On the right, mean distance values across sequence 05. On the left,

distance values for a single random frame in sequence 00. 97

5.12 Interpolated heatmaps representing the weight distribution of the par-

ticles for different weights formulation, according to Equation (5.1).

Red dots represent the true vehicle position. 98

5.13 Runtime distribution. 99

viii

List of Tables

3.1 Height prediction network details. 39

3.2 Height refinement network details. 41

3.3 Comparison with other height prediction methods on the ISPRS Vai-

hingen and the 2018 DFC datasets in meters. 45

3.4 Comparison with method trained on VHR aerial images. 45

3.5 Semantic labels and surface normals results on the ISPRS Vaihingen

and the 2018 DFC datasets. 46

3.6 Comparison of our height prediction methods with and without re-

finement, on the ISPRS Vaihingen and the 2018 DFC datasets in

meters. 47

3.7 Encoder comparison on the DFC2018 dataset in meters. 48

3.8 Comparison of height prediction results of single and multi-task net-

works in meters. 48

3.9 Comparison of height refinement results of single and multi-input

denoiser in meters. 48

3.10 Comparison of our reconstruction results (meters) based on the step

size (pixels). 49

4.1 Scenarios details. 69

ix

4.2 Errors in the areas occupied by the labelled road. ϵ1 and ϵ2 are

the errors (m2) before and after the curb detection respectively. δ

represents the percentage of points that were excluded. 71

4.3 Errors in the areas occupied by the automatically labelled road de-

pending on the number of bins in the elevation histogram. 71

4.4 Translation error (m) between the automatically labeled lanes and

the ground truth. 72

5.1 Comparison of the lengths of each of the tested KITTI sequences. . . 93

5.2 Comparison of the translation error on KITTI dataset in meters (m). 94

5.3 Comparison of the mean rotation error on KITTI dataset in degrees

(◦). Best results are in bold. 94

5.4 Constraint particle filter mean translation error comparison. 97

5.5 Voxel-downsampling resolution and mean translation (m) error com-

parison. 100

5.6 Voxel-downsampling and random sampling mean translation error

(m) comparison. 100

x

Chapter 1

Introduction

1.1 Background

Visual Sensors: In this thesis, ”Visual Sensors” mainly refers to laser-based or

camera-based sensors. Both are uniquely equipped to deal with the mapping, la-

beling and localization tasks for robots: Laser-based sensors such as LiDARs are

capable of providing accurate metric measurements to all the objects present on

the line of sight of the sensor, making it uniquely adapted to the mapping aspect

of autonomous driving, and as a consequence, capable of accurately achieving the

localization task as well. On the other hand, camera-based sensors are capable of

capturing rich texture-based keypoints, which can be matched across frames, and

used as reference to calculate the displacement of the robot equipped with it or

detect road structures and information that can help to safely guide the vehicle.

Unfortunately, both these sensor modalities suffer from some significant limita-

tions: For instance, for the laser-based sensors, the inability to capture colors and

textures may sometimes introduce ambiguity during the point matching process or

the labeling of pre-built maps, and for the camera-based sensors, sudden changes

1

in the brightness levels or the absence of an adequate lighting source can cause

complete failure of the localization or mapping systems.

Because of these issues, we propose to use cross-modal approaches to deal with

them, in order to take advantages of the strengths of both types, at a minimum

cost.

Cross-Modal Methods: In this thesis, we mean by “cross modal” methods,

the approaches that use a single sensor output and attempt to generate a final result

in a different modality. We mostly focus on two major modalities: 3D laser-based

and 2D camera-based. Some examples of cross-modal approaches include: localizing

3D point clouds in a 2D camera-based map or using a 2D images to construct a 3D

point cloud map. We focus only on single-sensor, single-map methods, which have

the advantage of being more cost and resource effective than the traditional sensor

fusion approaches, since each sensor is only used when it makes sense to do so.

Mapping: This represents the process of creating a map, which is an abstract

and symbolic representation of a space that we are interested in. Mapping, first

known as cartography, started in ancient times, with the first map dated as early as

the 6th century BCE. Nowadays, and thanks to the advances in the area of visual

sensors, maps have taken different shapes and can mean different things depending

on the context. The most popular maps are undoubtedly satellite maps and/or

maps that derive from satellite imagery: this includes also some popular simplified

maps such as Google Maps or OpenStreetMaps. These maps can be very useful for

localization, but their accuracy can sometimes be limited. Lately, a new type of

maps has become very popular in the autonomous driving industry, which is HD

maps. These are point cloud-based maps, which have been labeled with relevant

road information and are used for localization, navigation and planning.

Labeling: In this thesis, we mostly talk about pre-built maps labeling, which

2

means adding relevant semantic information to maps, whether that is done manually

or automatically. In the case of 2D camera-based maps, such as satellite maps or

OSM, this usually refers to adding semantic labels to mark roads and walkways, in

addition to markers of important buildings and/or businesses. On the other hand, in

the case of 3D point cloud maps, labeling can be more complex, because in addition

to the labels present in the 2D case, more details can be added such as lane positions

on the ground or traffic lights location in 3D. These labels have multiple uses: they

make it much easier for the robot to understand its surroundings, can help in the

localization pipeline and are crucial to make correct and safe behavioral planning

decisions.

Localization: As a natural result of mapping and labeling, localization plays

a very important role in any autonomous robot system. Findings one’s location

has been a challenge for human for a very long time: from first using the sun and

other famous stars which were known to be stable landmarks, human then evolved

to use scientific instruments, such as the astrolabe which was used by navigator

during long trips at sea. Eventually, the GPS was invented, representing a major

advancement in global localization. However, researchers have lately showed that in

order to obtain accurate localization for autonomous robots, visual sensors should

be used because they make it possible for the robots to also consider its environment

when trying to locate itself, and not only rely on its own movement approximation,

which tend to be noisy.

1.2 Motivations

Autonomous robots are on track to become one of the main tools of the future.

From self-driving vehicles and UAVs to home assistant robot, autonomy has clearly

3

become the next major milestone for robotics researchers. For robots to be fully

autonomous, it is essential for them to be able to determine their position in their

surrounding environment accurately and efficiently, so that they can safely interact

with the world.

This as a result pushed the robotics community to invest more time and resources

into solving the mapping, labeling and localization tasks, specifically using visual

sensors. These tasks are typically co-dependent since building a map implies that

we know the distance between its different component and their relative locations,

and that obtaining an accurate localization solution can usually be facilitated by

using of a map, whether it was built offline or optimized online over a restricted

local area.

The main visual sensors that are typically deployed to solve these tasks are

cameras and LiDARs. Both sensors have clear advantages when it comes to solving

the tasks at hand, such as the ability to capture textures when using cameras, which

facilitates the frame-to-frame matching and alignment, or the detection of relevant

scene data, and the additional space dimension present in the LiDAR data, which

results in accurate and dense representation of the environment. However, current

commercial solution focus on using either one sensor or the other across these three

tasks, resulting in expansive platforms and cost prohibitive robots for those opting

for LiDAR only solutions, and in unstable and sometimes unsafe solutions when

using cameras only. A more practical solution would be to utilize one sensor or

the other only when the situation where it is used, and the cost implications are

justified. Therefore, in this dissertation we explore a set of problems where cross-

modal solutions involving LiDARs and camera are being used, in order to provide

more cost-effective solution for the future. It is important to note that we make

a clear distinction between cross-modal methods and sensor fusion methods, where

4

the first uses only one sensor at a time during deployment, while the second uses all

available sensors at once.

In this thesis, our work will involve three of the main stages of the development

of most autonomous robotic platforms: (a) building the map of environment where

the robot will be evolving, which is demonstrated using the case of 3D mapping for

UAV’s using height prediction and cameras. (b) the labeling of pre-built maps, in

our case the labeling of 3D point cloud HD maps for self-driving cars using camera

data. (c) the localization of the robot in a pre-built and labeled maps, in this case

localization of LiDAR equipped cars on camera-based maps such as OSM.

1.3 Contributions

We tackle three of the essential steps in any autonomous robot development: Map-

ping, labeling and localization.

Building Point cloud Maps Using Cameras and Height Prediction:

Building accurate maps that can later be used is very helpful in improving both the

accuracy and the efficiency of the localization stack. However, contrary to when

using cars, UAV point cloud building can face certain challenges such as the heavy

load of the LiDAR sensor when attached to a UAV, leading to shorter battery life

and longer mapping process, or when using stereo camera rigs which can suffer from

noisy outputs due to brightness changes or the need for very high-resolution cameras

which can increase the cost significantly.

On the other hand, it is possible to combine a single monocular camera with

deep learning in order to obtain height information that can be used to generate the

needed point clouds. Also, thanks to the flexibility of proposed neural network, we

are also able to generate semantic labels that cam used to construct semantic maps,

5

and surface normals which can help in generating 3D mesh maps.

In summary, our key contributions for this work are:

• We propose a triple-branch multi-task learning network, including semantic

label, surface normal and height prediction.

• We introduce a denoising autoencoder as a refinement step for the final height

prediction results.

• We achieve state-of-the-art performance on two publicly available datasets,

and an extensive ablation study shows the importance of each step in the 3D

reconstruction pipeline.

• We show through two applications how our height prediction pipeline can be

used to reconstruct dense 3D point clouds with semantic labels.

Labeling Point cloud Maps Using Cameras and Deep Learning: Nowa-

days, the typical next step after building a map is to label it accordingly. This

is especially important for self-driving cars that are traveling in an urban environ-

ment, since many road and driving laws are defined by road features and visual

signs. Currently, the most popular method is to use manual labeling, since it guar-

antees the level of accuracy needed to safely drive. However, this can be at times

both expensive and resource intensive.

Instead, we propose to use deep learning to label our point cloud maps, thus

proving a more automated labeling process that is less depending on human oper-

ators. In addition to that, we decided to leverage camera data to do the labeling,

by first detecting the relevant features of camera images using deep learning, then

processing them and projecting them onto the pre-built LiDAR map using a pre-

calculated camera-LiDAR extrinsic projection matrix.

6

In summary, our contributions can be summarized as a collection of algorithms

and pipelines aiming to automatically label HD Maps for urban autonomous driving.

Localizing Point Cloud Scans in OpenStreetMaps: As stated before, lo-

calization is an essential component of any robots that is autonomously moving in

its environment. For self-driving cars, 3D HD point cloud maps represent the gold-

standard in the industry today. However, such maps are not available everywhere,

and can be very challenging and expensive to build and deploy.

We propose to explore other map platform, although not designed originally for

LiDAR localization, but can be used to simulate a LiDAR point cloud map. We

focus on using OSM, a free and up to date 2D abstracted map, similar to what

can be found when using Google Maps. By combining semantic segmentation with

raycasting applied to OSM, we are able to generate simulated point clouds that can

be used to compare with and localize the output LiDAR scans. We also make use of

the road data present on OSM to design a constrained particle filter that guarantees

a bounded localization error.

In summary, our key contributions for this work are:

• We propose a fast and consistent method to generate simulated top view Li-

DAR images from OSM, and accordingly show how we can use those images

to accurately localize LiDAR point clouds in OSM.

• We propose a dual-input particle filter algorithm with an added constraint

that the vehicle location must be on the road.

• We demonstrate the state-of-the-art accuracy of our method on the KITTI

dataset, by comparing it to other LiDAR cross-modal localization methods by

using OSM or satellite maps.

7

1.4 Publications

• LiDAR-OSM-Based Vehicle Localization in GPS-Denied Environments by Us-

ing Constrained Particle Filter. M Elhousni, Z Zhang, X Huang. Sensors

2022.

• A Survey on Visual Map Localization Using LiDARs and Cameras. M El-

housni, X Huang. 2022.

• Distance Transform Pooling Neural Network for LiDAR Depth Completion.

Y Zhao, M Elhousni, Z Zhang, X Huang. IEEE Transactions on Neural

Networks and Learning Systems. 2021.

• Height Prediction and Refinement from Aerial Images with Semantic and Ge-

ometric Guidance. M Elhousni, Z Zhang, X Huang. IEEE Access 9. 2021.

• DepthNet: Real-time LiDAR point cloud depth completion for autonomous

vehicles. L Bai, Y Zhao, M Elhousni, X Huang. IEEE Access 8. 2020.

• A Survey on 3D LiDAR Localization for Autonomous Vehicles. M Elhousni,

X Huang. IEEE Intelligent Vehicles Symposium (IV). 2020.

• Automatic Building and Labeling of HD Maps with Deep Learning. M El-

housni, Y Lyu, Z Zhang, X Huang. The Thirty-Second Annual Conference

on Innovative Applications of Artificial (IAAI). 2020.

• Pedestrian Tracking with Gated Recurrent Units and Attention Mechanisms.

M Elhousni, X Huang. IEEE International Symposium on Circuits and

Systems (ISCAS). 2020.

• An interactive lidar to camera calibration. Y Lyu, L Bai, M Elhousni, X

8

Huang. IEEE High Performance Extreme Computing Conference (HPEC).

2019.

1.5 Outline

This dissertation is organized as follows:

Chapter 2: Cross-modal localization, labeling and mapping have been given

increasingly more attention lately in the robotics community. This chapter gives an

overview of the current state of the art for these three essential tasks.

Chapter 3: Mapping is a cornerstone of any localization system for autonomous

robots and point clouds typically represent the best mapping format available today.

This chapter discuss a cross-modal approach to generate UAV semantic point cloud

maps using 2D camera images only.

Chapter 4: labeling point cloud maps is becoming standard across the self-

driving cars industry. Here, we show a cross-modal method capable of using data

predicted from camera images and deep learning to automatically label a 3D point

cloud map.

Chapter 5: Finally, we tackle the localization task, by taking a closer look

at cases where 3D point clouds are unavailable. Thus, we propose a cross-modal

localization approach capable of accurately localizing LiDAR point clouds in OSM,

using a road-constrained particle filter.

Chapter 6 draws the conclusions.

9

Chapter 2

An Overview of Visual

Cross-Modal Mapping, Labeling

and Localization

2.1 Cross-Modal Mapping

Mapping our surroundings is one of the oldest challenges faced by human beings.

This reflects the importance of maps in general, and the role they play in localization

and planning. For robots, maps represent a crucial tool, and multiple methods for

buildings them have been proposed over the years. The most popular approach for

robot map buildings is the SLAM approach, where the map is created online, while

the robot is moving. This is typically done using a 2D or 3D LiDAR but can also be

extended to stereo or satellite cameras. This method has the advantage of making

it possible for robots to explore new environments and can be easier and faster to

deploy. However, due to the inevitable issues of odometry drifting, and unless more

advanced methods and constrains are used, the maps constructed using SLAM will

10

always lead to an accumulation of the odometry error, which is reflected in poor

mapping accuracy.

A more traditional, but stable approach, is to do the mapping offline. This

gives us the possibility to optimize the map by recording a sensor output during a

pre-defined path and combining it with the pre-calculated ground truth odometry

(obtained using an advanced Differential GPS system for example) and other op-

timization techniques, to make sure that the map is as accurate as possible before

deploying it onto the robots. Therefore this method is today standard across mul-

tiple industries and disciplines, such as satellites maps using cameras for UAV’s or

HD point cloud maps using LiDARs for self-driving cars.

Visual offline mapping can take many forms, depending on which sensor is being

used. When using LiDAR sensors, typical maps are either point cloud-based or

mesh-based, resulting from the concatenations of the successive LiDAR scans using

the ground truth. For cameras, they are usually used for top view mapping to

construct geo-tagged satellite maps. This maps can then be processed further to

produce abstracted 2D maps, such as google maps or OpenStreetMaps.

Visual cross-modal mapping for autonomous robots typically involves the ability

to generate point clouds using camera data only, leading to building point cloud

maps where either cameras or LiDARs can be used for localization. In this thesis,

we explore a new cross-modal approach to visual mapping, by taking advantage of

the ability to construct simulated LiDAR point cloud maps, using OSM as an input,

combined with other techniques such as raycasting and semantic segmentation. An

example of such maps can be seen in Fig. 2.1, in addition other classic visual maps.

However, stereo camera rigs have traditionally been the most popular camera

sensor configuration to build point clouds, thanks to their ability to generate depth

images that can be converted to point clouds, and concatenated to build a 3D

11

point cloud map [1] [2] [3] [4]. Although capable of producing impressive results,

calculating 3D points position using stereo cameras can lead sometimes to very noisy

point clouds, due many reasons: sharp changes in brightness, false keypoint matches

between the two left and right views, low resolution cameras etc.

During the last few years with the success of deep learning in computer vision,

and as an extension to the depth completion task, the task of depth prediction has

gained a lot in popularity, thanks to the denser depth maps that it can produce

and its increased resiliency to noisy inputs compared to stereo cameras. Using deep

learning networks, researchers can show that it’s possible to bypass the use of stereo

cameras completely in favor of monocular cameras only, and to predict a depth

value to each pixel in an input image, resulting in dense depth maps. Similarly, to

the stereo camera case, these depth maps can then be used to generate 3D point

cloud maps. First proposed by Eigen al. in [5], the authors present a two-stage

approach with two CNNs, where the first one is used to generate a coarse prediction

of the corresponding depth map to the the input RGB image, followed by the second

network which is tasked with refining the first prediction locally. The use of residual

networks was later introduced in [6] combined with the use of the reverse Huber

loss, trained in an end-to-end fashion.

The success of monocular depth estimation led researchers to explore other pos-

sible cross-modal predictions, especially when it makes it possible to predict 3D

data using 2D images as input, which can be very challenging when using computer

vision techniques only. One such tasks is height prediction using UAV-captured

images. First introduced in [7] using a classical encoder-decoder structure, it was

later extended and combined with other tasks using multi-task networks in [7].

12

Figure 2.1: Examples of Visual Maps. From left to right: LiDAR map, satellite
map, OSM and simulated LiDAR map.

2.2 Cross-Modal Map Labeling

Building the map is great for localization, however, it is usually not enough to

achieve autonomy. For example, in the case of self-driving cars: After the mapping

is done, and for the car to be able to autonomously travel in urban environment, it

is necessary to add other relevant semantic information related to the road rules and

road structures. Another example is the case of satellite maps: after stitching all the

camera images together, it is necessary to label the roads and buildings, if we want

to eventually transform them to 2D abstract maps such as OSM. This makes the

maps much easier to process and use, since it only keeps the relevant information.

Labeling pre-built maps has always been knows as a tedious task. This is espe-

cially the case when dealing with 3D point clouds maps that contains millions of

points. The current standard in the industry is to use manual labeling and label the

maps using human operators. This is the case because self-driving cars and other

autonomous systems today need very accurate labels, such as precise and abstracted

waypoint-based labels representing specific road features such as the road bound-

aries or lanes and traffic sign positions etc. Multiple tools have been developed over

the years, where some other point cloud or image processing techniques can be used

by the labeler to facilitate the whole process, such as edge detection or clustering.

13

Some of the popular free manual labeling tools today for 2D images include:

• labelImg: the most popular graphical image annotation tool today, written in

Python, specialized in object detection and designed to output labels as XML

files in PASCAL VOC format.

• Computer Vision Annotation Tool (CVAT): a video and image annotation

tool, capable of generating semantic and object detection labels in multiple

popular formats.

• labelme: written in python, and capable of generating similar labels as CVAT.

Although less popular, free LiDAR annotation tools exist too:

• labelCloud: lightweight tool specialized in 3D bounding box labeling for point

clouds.

• SUSTechPOINTS: similar to labelCloud but has asome additional features

that make the labeling process more flexible.

• Vector Map Builder: an advanced labeling tools designed for HD map labeling

for self-driving cars by Autoware. Contains most of the typical road features

such as traffic signs, lanes, road markings etc.

Other popular research approaches follow the deep learning semantic segmentation

scheme and try to predict a label to each point in the point cloud map [8] [9] or

pixel in the satellite map. This can result in good semantic segmentation results in

general but remains too dense to be processed effectively for the point cloud case,

and can result in blurred and inaccurate borders for the camera case.

Cross-Modal map labeling is currently still an open question, which is why we

decided to explore it in this thesis. In the case of HD point cloud maps, by taking

14

advantage of the unique textures captured with the onboard camera, we can label

the point cloud map by detecting relevant areas on the images using deep learning,

then process those results and project them to generate abstracted and simplified

labels, which are adapted to the self-driving task.

2.3 Cross-Modal Map Localization

Localization is essential to any autonomous robots. Not only does it make it possible

to track it, but it also makes it safe for the robots to move, by being able to avoid

obstacles for example, when combined with other visual tasks. Localization can

be done either in relative way, by using SLAM and always considering the starting

point as the origin. This can be considered a ”local” form of localization. On the

other hand, ”global” localization typically involves the use of a pre-built map.

Visual map localization can typically be divided into two major steps: place

recognition and metric map localization. We show in Fig. 2.2 a Block Diagram of

the typical Visual Map Localization pipeline: First, the Visual Place Recognition

stage where the map is rasterized to produce a database of geo-tagged samples for

more efficient processing. This is followed by the encoding into feature vectors of

both the sensor output and all the samples from the map. A nearest neighbor search

is then used to find the closest map sample to the sensor output, and thus produce

a guess at the initial position of the vehicle in the map. Next is the Metric Map

Localization stage where a registration algorithm is used to align the sensor output

with the map, making it possible to track the vehicle.

For both of the major steps mentioned above, we will first start by exploring the

traditional LiDAR and camera based methods, before the discussing the cross-modal

methods.

15

Figure 2.2: Visual Map Localization Block Diagram.

2.3.1 Place recognition

First, the vehicle (or robot) must find its initial location on the map, especially

when no other sensor such as a GPS is available to provide an initial guess or a

region of interest. The solution in this case is to use the Visual Place Recognition

approach, where using only the input of our visual sensor and an intermediate

representation, we can find the best match in the pre-built map. Visual Place

Recognition is typically approached differently, depending on the sensors that is

being used.

Camera-based place recognition (also called Camera Cross-View Localization)

can be very challenging due to the large difference in viewpoint between the images

collected by the ground vehicles, and the images extracted from the aerial maps.

Fig. 2.3 shows different representation of same camera frame that can be used to

solve this task. Because of the challenges mentioned above, most of the popular and

successful methods rely on deep learning. This was first demonstrated in [10], by

16

Figure 2.3: Front view camera frame (top), followed by the same area in a satellite
map (middle left) and in OSM (middle right). The final image is the polar projection
of the satellite crop (bottom).

relying on a Faster R-CNN [11] to detect buildings then match them using a siamese

network trained using the contrastive loss. Note that both the contrastive and triplet

losses are very popular when trying to solve this challenge as we will see in the

following cited publications. This was improved upon the following year in [12] by

simplifying the first stage from object detection to CNN feature extraction followed

by an encoding stage using the NetVLAD architecture [13]. The two previously

cited works established a common basis which was typically used as a starting point

to the methods that followed.

In [14], the authors proposed to attach a color encoded orientation map to the

input queries during training and testing, which seems to improve the accuracy on

the most challenging metrics. The importance of orientation alignment was further-

more represented in [15] where the authors showed that training using images that

were pre-aligned first in terms of orientation will produce a siamese network that is

capable of producing activation maps that perform better at pointing similar objects

in different views. The activation maps, which were produced using GRAD-CAM

17

[16] can also be used during testing to approximate the orientation that best aligns

the two views. Another approach to improve the accuracy of a siamese network

trained for cross-view geo-localization is to take advantage of the results of tradi-

tional semantic segmentation networks and include them in the data augmentation

procedure during training: this was done by removing different segmented objects

in the ground images, to make the network more robust to temporal changes in

the images. This, combined with a multi-scale attention module, produces better

ranking and matching results.

The authors of [17] introduced the use of optimal features transport [18] to

facilitate the extraction of similar features in both views. This was implemented

in a way that allowed the end-to-end training on the network and showed great

improvements across all metrics.

While most works use some sort of variation of the contrastive or triplet losses,

the authors in [19] proposed their own metric, dubbed Soft Exemplar Highlighting

Loss. In their formulation, this loss, combined with a polar transform applied to

the aerial images to reduce the viewpoint gap, was used to assign different weights

to the training examples depending on their difficulty, in an effort to emphasize

meaningful hard samples and remove problematic ones. Another typical assumption

in most cross-view geo-localization works in the literature is the one-to-one matching

assumption between aerial and ground images. This does not always hold during

testing and was the main motivation in [20]: in this work, the authors did not

only attempt to predict the matching score between two samples, but also using a

regression branch, predicted a latitude and longitude-based offset between the two

inputs. Also, in addition to the triplet and regression losses, the authors introduced

an IOU-based loss to better learn from semi-positive sample (meaning aerial samples

with a non-zero offset).

18

Lately, because of the success of attention models in computer vision [21], more

works have been trying to use the attention mechanisms [22] and the Transformer

architecture [23] to solve this task, starting with [24] where the authors proposed

to use what they call a Spatial-aware position embedding module to process both

the ground and polar transformed aerial images, tasked with encoding the relative

positions among object features extracted by the backbone network. This module

consists of a max pooling block, followed by two fully connected layers in order

to select the most important features. In [25] the authors proposed an architecture

where first, for both views, 1D learnable encodings were combined with a set a CNN

extracted features, before being fed into what the authors called a Layer-To-Layer

Transformer: basically, a transformer with skip connections between timesteps. In

[26], the authors attempted a pure transformer architecture which does not make use

of CNN’s as pre-processing step for feature extraction: this was done by following

a two-stage procedure, where in the first step, two traditional Vision Transformer

(ViT) architectures were trained using the triplet loss to generate embedding fea-

tures for both street and aerial views. In the second stage, the aerial attention map

generated from the first stage was used as guidance to crop and zoom-in on the most

relevant portion of the image. This new generated aerial image was then used to

finetune the aerial embedding using another ViT.

LiDAR place recognition has become very popular since HD point cloud maps

have become the norm for many autonomous driving vehicles. Fig. 2.4 shows

different depiction of the same LiDAR frame that can be used to solve this stage.

The earlier attempts to solve this task tried to capitalize on the advances in keypoint

detection and matching for point clouds. In [27], based on a random sampling

procedure, keypoints were selected and encoded using a variation of the gestalt

descriptor [28], before being matched using the nearest neighbor voting approach. In

19

Figure 2.4: An example of LiDAR frame depicted as a 3D point cloud (top left), a
BEV projection (top right) and a panoramic projection (bottom).

[29], the keypoints based place recognition task was solved by taking advantage of the

geometrical relations between points: after extracting features using points of high

curvature, the authors encoded the point cloud data into a 2D histogram based on

the distances between them and their co-bearings, which resulted in a signature that

was later used to match the point cloud with other scenes using the Approximate

Nearest Neighbor Search. In [30] the authors proposed SegMatch, an algorithm

based on segmentation results which were then used to construct feature descriptors.

The matching of segments was achieved following a two-step approach: first using a

random forest classifier, followed by a geometrical verification using RANSAC [31].

This was eventually extended in [32], by augmenting the SegMatch descriptor with

a handcrafted spatiotemporal descriptor which was constructed following two stages

of spatial and temporal feature pooling.

The authors of [33] proposed to take advantage of the intensity field returned

by the LiDAR sensor to construct an intensity-augmented 3D keypoint descriptor

named ISHOT, which was matched following a strategy combining probabilistic

voting and nearest neighbor search. A similar method was used in [34] where the

intensity field was central to the approach, but in this work, the intensity data was

first projected to the 2D image space using a panoramic projection, before using a

20

traditional computer vision (CV) keypoint extractor and encoder, in this case ORB

[35]. This was followed by a traditional CV matching procedure relying on PnP

[31] and BoW [36]. Projecting 3D point clouds to 2D in order to take advantage of

traditional CV techniques is a common method used when processing LiDAR data.

Another method that utilizes this principle was proposed in [37], but this time, the

Bird Eye View (BEV) projection was used. An appropriate descriptor named BVFT

was proposed, and similarly to the previous discussed method, a BoW matching

method was deployed, followed by ICP [38] refinement. Lately, approaches relying

on encoding the full scan into some sort of compressed representation have become

more popular, which resulted in the development of the popular ScanContext [39]

encoder. In this work, the authors proposed a two-step process which results in a

compressed and viewpoint invariant 3D tensor, where the position, orientation and

height of each point were encoded. The resulting global descriptors were matched

using a simple similarity score.

Lately, deep learning has been increasingly used to try and solve the LiDAR

place recognition task, first by including it into semi-handcrafted methods such as

[40, 41], where the point clouds were first pre-processed using a histogram based

method to produce rotation invariant representations, which were then fed to a

siamese neural networks, trained using the contrastive loss function in order to gen-

erate similar vector representations for similar point clouds. Likewise, the authors

in [42] followed a similar strategy by first generating a rotation invariant represen-

tation, based on the semantic segmentation of the overhead projection of the point

clouds, followed by a siamese neural network for feature extraction, and a MLP for

similarity prediction. Another semi-handcrafted method was proposed in [43]. Here

the authors started by generating an overhead projection of the point clouds, then

processed them in order to generate two types of descriptors: a global one, gener-

21

ated using the NETVlad architecture [13], and a feature based one, generated using

the SuperPoint [44] architecture. Both descriptors were combined, and matching

was achieved using the SuperGlue algorithm [45]. End-to-end methods attempting

to solve this problem have been proposed too, notably in [46], based on the combi-

nation of a graph neural layer with an optimal transport layer. The network was

then trained using a distance-based matching loss that rewards closer points and

penalize farther ones, instead of the typical binary ground truth used for match-

ing. Graph neural networks were also used in [47]. Here the graph was generated

based on semantic segmentation results of the point clouds, then fed into a graph

neural network with the following steps: node embedding, graph embedding and

graph-graph interaction.

Because of the scarcity and lack of availability of accurate HD point clouds

maps, cross-modal approaches can be very useful, and researchers have been trying

to solve the place recognition challenge when having a LiDAR point cloud as input

by using freely available and sometimes opensource maps such as satellite maps or

OpenStreetMaps (OSM). Solving this typically involves the use of deep learning

since we not only have to deal with the gap in modality, but this is exacerbated

by the gap in viewpoint too. Lately, the authors in [48] proposed a method where

based on a predicted occupancy map from a satellite image, raycasting was used

to generate simulated overhead LiDAR images, which were then combined with the

overhead projections of the sensor inputs and fed into a DGCNN architecture [49]

to predict a transformation offset, but also in a NetVLAD architecture to generated

embeddings that could be used for place recognition. In [50], it was OSM that was

used as main map. By taking advantage of the buildings and roads information’s,

the authors used raycasting to generate simulated overhead LiDAR images, which

were matched with the LiDAR sensor’s input using the Scan-Context [39] descriptor

22

discussed previously.

2.3.2 Metric map localization

Once the initial location is found, the robot can now start to navigate the map,

while we track its movements as accurately as possible. We call this step Map Metric

Localization which is achieved by enforcing both a temporal consistency between the

subsequent frames provided by the input sensor, in addition to a spatial consistency,

which is guaranteed by matching with the map’s region of interest and can be seen

as a correction to the first transformation that was calculates using the sensors

inputs only. This second step runs in a recurrent fashion, as long as the localization

error stays at a reasonable level, guaranteeing enough overlap between the sensor’s

outputs and the map’s region of interest.

When it comes to metric map localization using cameras, the task typically suf-

fers from the same issues faced when attempting to first solve the place recognition

step, meaning the drastic difference in viewpoint. In addition to that, we now also

must deal with classical odometry and map localization challenges such as the ac-

cumulation of positional error or the lack of sufficient overlap between the map and

the sensor output. One of the earliest solutions was proposed in [51] based on the

graph representation of the road network in OSM and the input of two cameras.

Using the same setup, in [52], the proposed approach relies on the buildings struc-

ture represented in OSM, rather than the road network. Here, buildings geometry

was extracted from the input point clouds using filtering and clustering and scored

against the OSM buildings data using a 2D scoring function based on orthogonality,

in order to keep track of the vehicle position in OSM.

The authors in [53] chose to use satellite maps instead. By using the depth

information than can be generated using a stereo camera rig, the authors trained a

23

Ground-Satellite Dictionary to be able match features from both views. Localization

was achieved by first extracting features and their feature vectors from the ground

views, then queering up the aerial images containing features with the closest feature

vectors. In [54], only a single monocular camera was used to find the vehicle position

in the satellite map. This was achieved by training a siamese neural network to

predict a similarity score between ground images and aerial regions of interest (ROI).

The predicted similarity score was then used to update the weights in a particle filter

[55] in order to localize the monocular camera in the map.

While multiple methods rely on extracting and matching visual features, oth-

ers proposed to rely on extracting and matching visual landmarks instead. The

landmarks used in [56] were poles. The authors first started by constructing a pole

map by detecting poles using the disparity image that can be generated using stereo

cameras, combined with edge detection and logistic regression. Subsequently, lo-

calization was achieved by detecting poles in the same way, and then using that

information to update a particle filter, which was coupled with a Kalman Filter [55]

for additional sensor fusion. As an extension to [24], another sensor fusion method

was proposed in [57] to take advantage of the noisy GPS measurements that are

usually available: using a modified triplet loss function, the authors argue that the

rough GPS measurements of the ground and polar transformed aerial images in a

pre-defined region of interest could be used to calculate a weight capable of scaling

the contribution of each pair of images accordingly. The effectiveness of the method

was later demonstrated by combining it with a particle filter. The same authors

proposed later a more advanced method in [58] where in addition to the popular

polar transform, they introduce a geometry-constrained projective transform that

results in much more realistic ground looking images. In addition to that, a new

fine-grained cross-matching solution was proposed: Based on the prediction of their

24

baseline network, a corresponding aerial image was selected, tagged with a rough

GPS location. The authors then proceed to transform the aerial image using their

proposed projective transform and a set of pre-defined positions. Finally, the SSIM

similarity loss function was used to select the best matching one.

One final camera map representation, which is still sometimes used (although

not very popular due to its sparsity), is Google StreetView. The authors of [59]

transformed the closest panoramic image available in Google StreetView according

to GPS to a set of eight rectilinear images, followed by a traditional homography-

based feature matching, using SIFT features, to keep track of the vehicles position.

LiDAR localization using a pre-built map has been the most successful approach

for autonomous driving vehicle in terms of accuracy. This is due to the rich amount

of detail typically available in such maps, since every area is the result of multiple

scans that were aligned and concatenated. 2D LiDAR localization has a long and

rich amount of published research in the robotics community, especially for indoor

scenarios. In contrast, we will mainly focus on 3D LiDAR which are more adapted

to outdoor scenarios and are typically available in modern autonomous driving cars.

Earlier methods such as [60] relied on sensor fusion and particle filters to localize

LiDAR equipped vehicles in point clouds maps. In [61] a solution to LiDAR map

localization was proposed through the design of handcrafted features that could be

matched across the map and the sensor input point clouds and which were based

on the histogram of the frequency of points clusters sizes. Some works such as [62],

only relied on the intensity field returned by the LiDAR sensor, and in [63] a method

combining features and filters to deal with noisy LiDAR data due to rainy conditions

was discussed: Feature extraction is based on the position and reflectivity of each

point, followed by a combination of a particle filter (to process for vertical features)

and a histogram filter (to process for ground features).

25

The authors in [53] drew inspiration from the NDT odometry algorithm [64] and

proposed to use Gaussian Mixture Maps (GMM). By using the ground plane xy as a

2D grid, each cell in the grid can be filled using a one-dimensional Gaussian mixture

that models the distribution over that cell’s height. An efficient multi-resolution

branch-and-bound search was used to match cells and align the sensor point cloud

with the map. Compressing the 3D map into a 2D representation to achieve faster

results has also been explored in [65] which proposed to use buildings footprints to

generate a simplified segments-based map, which was then combined with NDT to

solve the localization challenge.

If the authors are using the full 3D map, they sometimes have access to labels

such as traffic lights or lanes, which can aid in the localization process. For example,

the authors in [66] proposed to take advantage of the lane information to achieve

lane-level accuracy using LiDARs. Roads were extracted mainly based on their

height information, then lanes were detected using the intensity field returned by

the LiDAR sensor. Finally, the map matching and pose tracking were achieved using

a particle filter. [67] is an extension of the lane based localization but instead uses

traffic signs (extracted using the points normals) as landmarks, and in [68], authors

used poles and curbs to localize the vehicle in a HD map. A pole cost function

and a curb cost function were proposed and fused to generate a rough guess at the

vehicle’s position.

Deep learning is very popular when talking about place recognition, so naturally

researchers try to use it with this task as well. First, some methods only rely on

the results of other neural networks to improve their localization pipeline: In [69] a

system that combines LiDAR odometry with segmap’s place recognition to reduce

the LiDAR position drift was proposed. This was achieved by taking advantage of

the matched segments and aligning them in order to finetune the transformation

26

obtained by the LiDAR odometry. In [70] the authors proposed a multi-vehicle

collaborative approach aided by semantic segmentation. In the case of two vehicles

for example, the proposed system enforces a geometrical and semantic consistency

matching across the inputs of both vehicles. This produces a weighting matrix

which subsequently used in an Expectation-Maximization algorithm to align the

point clouds with the map.

End-to-end methods have also been proposed: the authors in [71] used a siamese

network, which processes the panoramic projection of different cues generated from

the point clouds (semantic labels, point locations etc.) and predicts two quanti-

ties: a similarity score representing the overlap between both inputs and a relative

yaw angle. The predictions were combined with a particle filter to achieve LiDAR

map localization. In [72], the authors proposed a network that attempts to learn

the residual value between a traditional localization system and the ground truth.

Relevant features were first extracted and fed into a miniPointNet [73] to gener-

ate their corresponding feature descriptors. A cost volume was then constructed in

the solution space (x, y, z) and regularized with 3D convolutional neural networks.

Additionally, an RNN branch was added to the network structure to guarantee the

temporal smoothness of the displacement’s predictions. Following the latest trends,

[74] proposed to use attention mechanisms to solve the self-localization challenge

in a point cloud HD map. The localization process was split in two phases: first,

a landmarks association step where points association was achieved by combining

kNN and local attention, followed by a global point cloud registration where the

associations made in the first step were fed into a pose regression network which

mainly contains a global attention/pooling layer followed by a MLP.

Cross-modal approaches have also been proposed to deal the metric map localiza-

tion step. We will focus on methods that attempt to localize LiDAR point clouds on

27

camera-based maps, such as satellite maps or OSM(-like) maps: In [75], the authors

proposed a handcrafted 4-bit semantic descriptor, based on buildings and intersec-

tions positions in OSM cropped images and LiDAR semantic range images, which

was combined with a particle filter to achieve global map localization. This work

showed that semantic segmentation can be a great tool to break the multi-modality

issue. For satellite maps, the authors of [76] also leverage the correlation of the

semantic segmentation results from both the LiDAR point cloud and the satellite

images in order to optimize the soft cost function of a particle filter. More advanced

deep learning-based methods have recently been proposed: In [77] and [78], a Gen-

erative Adversarial Network (GAN) [79] was trained to generate synthetic top view

LiDAR images based on input satellite crops. The synthetic and real LiDAR im-

ages were then both fed to a neural network to predict the value of the displacement

between frames in a cascaded fashion, by first predicting the rotation value, then

using that to predict the translation offset.

It is also possible to localize camera data in LiDAR maps. Stereo cameras are

the natural pick when trying to localize video data in LiDAR maps because we

can process their output to transform the data from 2D to 3D, which makes its

alignment with point clouds much easier: the method proposed in [80] attempted to

localize a stereo camera in a 3D LiDAR map, in this case by first relying on visual

odometry to provide an initial guess at the transformation, before fine tuning it,

using the synthetic and stereo depth maps residual alignment.

More challenging is the task of localizing monocular camera images in 3D point

cloud maps since they do not contain any depth or 3D information by definition.

Some early attempts include a method that was proposed in [81] based on the

idea of correlation between synthetic maps views and camera images. Here, the

synthetic images were populated using the intensity returned by the LiDAR sensor,

28

instead of the depth data, which as a result produces synthetic images with a closer

visual aspect to the camera images. Using a discreet number of possible synthetic

images located around an initial pose guess, the authors used the Normalized Mutual

Information (NMI) to evaluate them and determine the correct vehicle pose.

As with all other challenges, solution involving deep learning were soon showing

great potential: In [82] and [83] the authors proposed CMRNET, a neural network

capable of processing as input a RGB camera image and a synthetic depth map

image and predicts as a result the relative pose between both inputs. A modified

version of PWC-Net [84] (an optical flow prediction network), was used, and the

original method was later improved with the incorporation of PnP and RANSAC

as a post-processing step.

29

Chapter 3

Building Point Cloud Maps Using

Cameras and Height Prediction

3.1 Introduction

Aerial imagery analysis was known as a very tedious task owing to the low quality

of the acquired images and the lack of some appropriate automated process that

could extract the relevant information from the data. Fortunately, recent advances

in computer vision have made it possible to directly extract predefined patterns

from the images, by applying some carefully designed algorithms. Moreover, deep

learning brings in a new revolution to the field of aerial imagery analysis with more

intelligence and better accuracy. As a result, multiple deep learning challenges

related to aerial imagery processing, such as semantic segmentation [85, 86] and

object detection [87, 88], have been routinely featured each year by the geoscience

and remote sensing (GRSS) community [89],[90],[91].

This work focuses on the height prediction task that is to predict and reconstruct

the corresponding height map, or in other words, predict the height value for every

30

pixel in the input aerial image. Predicting such height maps can be very useful

in the subsequent task of 3D reconstruction. By obtaining the accurate height

of each building or structure appearing in the input images, 3D models can be

generated as an accurate representation of the surrounding world. These 3D models

are crucial for GPS-denied navigation, or other fields such as urban planning or

telecommunications. Theses reconstructions are traditionally done using Structure

from Motion (SfM) [92, 93] technique with stereo camera rigs, which can be very

sensible to noise and changes in lighting condition.

Motivation: 3D reconstruction using SfM has long been known as the go-

to method to obtain 3D information from camera data. However, with the suc-

cess of deep learning, the encoder-decoder models have shown impressive result in

the monocular depth prediction task for autonomous driving cars. In the case of

height prediction for UAV’s, we propose to deploy a multi-task network to provide

high quality height maps, using only a single RGB image as input. The additional

branches that will be constructed will be tasked with predicting the semantic labels

and surface normals corresponding to the input image and feeding all this additional

information to the main branch in order to improve the height prediction. The rea-

son we chose semantic labels and surface normals are as follow: for the first, knowing

the semantic label of a certain pixel can help us get better height approximating,

for example: a pixel that is labeled as ground will have a different height than a

pixel that is labeled as building. For the second, they make it possible to improve

the height predictions at the edges, where the surface normals change drastically,

thus signaling the switch from one surface to another.

Approach: For the task of height prediction from aerial images, we propose a

multi-task learning framework where additional branches are introduced to improve

height prediction accuracy. Previous works have showed that multi-task learning

31

Figure 3.1: The outputs of our multi-task network. From left to right: The input
RGB image, the output semantic labels, surface normals and height predictions.

helps improving the accuracy of height prediction networks by including semantic

labels [94]. We propose to add a third branch to the multi-task network which

will be devoted to predicting the surface normals, as shown on Fig. 3.1. In this

configuration, the main height prediction branch will have access to both semantic

and geometric guidance, improving the results of the height prediction network.

However, since the input is only an aerial image, our predictions sometimes can

be noisy due to artefacts such as shadows or unexpected changes in color. Therefore,

we introduce a refinement network which is a denoising autoencoder taking the

outputs from the prediction network, removing the noise present in the prediction

and producing a higher quality and more accurate height map. By combining these

two steps, we are able to produce results that surpass the current state-of-the-art

on multiple datasets. We are also able to produce reasonable semantic labels and

surface normal predictions without additional optimizations.

In summary, our contributions in this work are the following: (a) We propose a

32

triple-branch multi-task learning network, including semantic label, surface normal

and height prediction. (b) We introduce a denoising autoencoder as a refinement

step for the final height prediction results. (c) We achieve state-of-the-art perfor-

mance on two publicly available datasets, and an extensive ablation study shows the

importance of each step in the 3D reconstruction pipeline. (d) We show through two

applications how our height prediction pipeline can be used to reconstruct dense 3D

point clouds with semantic labels.

3.2 Related Work

Multi-task learning: This learning framework aims at optimizing a single neural

network that can predict multiple related outputs, each represented by a task-specific

loss function [95]. Lately, this approach has become increasingly popular, especially

in the area of autonomous driving cars, where multiple outputs (such as object

detection, semantic segmentation, motion classification) are derived simultaneously

from the input of camera images [96, 97].

Height prediction from aerial images: This task has received a considerable

amount of attention by the deep learning and remote sensing communities, especially

after the use of UAVs to collect aerial images has become widely accessible. The

goal here is to generate a height value for each pixel in an input aerial image. In

works such as [7],[98],[99], deep learning methods such as residual networks, skip

connections and generative adversarial networks are leveraged in order to predict

the expected height maps.

Other works such as [94, 100] proposed to reformulate the task as a multi-learning

problem, by introducing neural networks capable of predicting both the height maps

and the semantic labels simultaneously. These works showed that both outputs can

33

benefit from each other, during the simultaneous optimization process of the multi-

task network. We choose to extend that formulation by including a third branch in

our network tasked for predicting surface normals, which was inspired by previous

works [101, 102] in the depth prediction task for autonomous driving cars. Surface

normals are also known to be extremely useful during 3D reconstruction tasks and

are required for surface and mesh reconstruction algorithms such as the Poisson

surface reconstruction algorithm [103] or the Ball pivoting algorithm [104].

Denoising Autoencoders: Removing noise from images is a traditional task in

computer vision. Over the years, many techniques were presented in the literature

which can be broadly divided into two categories [105] : spatial filtering methods

and variational denoising methods. The spatial filtering methods can either be

linear, such as mean filtering [106] or Wiener filtering [107, 108], or nonlinear such

as median filtering [109] or bilateral filtering [110]. These filtering methods work

reasonably well but are limited. If the noise level becomes too high, these methods

tend to lead to over-smoothing of the edges that are present in the image. On

the other hand, in variational denoising methods, an energy function is defined and

minimized to remove the noise, based on image priors or the noise-free images. Some

popular variational denoising methods include total variation regularization [111],

non-local regularization [112] and low-rank minimization [113].

Lately, a new trend based on deep learning autoencoders has shown great poten-

tial on image denoising. Autoencoder is a class of popular neural networks that has

shown to be very powerful across multiple tasks such as segmentation of medical

imagery [114], decoding the semantic meaning of words [115] or solving facial recog-

nition challenges [116]. For our task, the most useful type of autoencoders available

in the literature is the denoising autoencoder. As shown in [117], autoencoders

can be trained to remove noise from an arbitrary input signal such as an image.

34

Figure 3.2: Our two stage height prediction and refinement pipeline. We use
DenseNet121 to extract a global feature vector from the input aerial images, which
is used to predict the normals map, semantic labels and a first guess at the height
map (first stage, in blue). These results are concatenated with the input aerial im-
age and fed into a denoising autoencoder to generate the refined final height map
(second stage, in purple). Red boxes represent the ground truth, while green ones
represent the networks predictions.

We propose to use denoising autoencoder to refine the height predictions from the

multi-task learning network.

3.3 Method

3.3.1 Problem Formulation

Our main objective is to predict an accurate height map using only a monocular

aerial image as input. We attempt to do so by constructing a two-stage pipeline,

where two different networks are cascaded in serial. The first stage of our pipeline

is a multi-task learning network, where the main branch is tasked with predicting

preliminary height images, aided by semantic and surface normal information that

was extracted by two additional branches of the neural network. The second stage

can be seen as a denoising autoencoder: All the predictions from the multi-task

network are concatenated and fed into the autoencoder, in order to deal with noisy

35

areas remaining in the height results from the first stage. This effectively produces

sharper images that are closer to the ground truth. An overview of the full pipeline

can be seen in Fig. 3.2.

Fundamentally, the height prediction task is a non-linear regression problem that

can be formulated as:

min
ψ∈Ψ

∑
i

ℓ(yi, ψ(xi)) (3.1)

where ψ : X → Y denotes the height prediction mapping function from the

feasible space Ψ, ℓ : Y ×Y → R denotes a loss function such as the least-square, xi

is the input aerial image and yi is the output height map.

Predicting height only using a single branch neural network is possible. How-

ever, previous works such as [94, 100] showed that including additional branches to

predict other related information such as segmentation labels can be beneficial for

both tasks. In our case, in addition to predicting the height maps, we also predict

semantic labels and surface normals, which provide semantic and geometric guid-

ance by augmenting the main height prediction branch with information from the

semantics and surface normal branches. More details can be found in the height

prediction section below. Hence, our ψ function can now be defined as:

ψ(xi) = {Ph,Ps,Pn} (3.2)

where Ph, Ps and Pn are the height, semantic and surface normal predictions re-

spectively, that are trying to approximate yi = {P∗
h,P

∗
s,P

∗
n} where P∗

h,P
∗
s and P∗

n

are the height, semantic and surface normal ground truth respectively. Finding a

good approximation of the ψ function can be seen as the first stage in our proposed

method.

36

Regression problems such as the one we are facing are difficult to solve due to the

high number of values expected to be predicted. This makes our height prediction

Ph noisy by definition, so the use of denoising autoencoders is appropriate in this

situation.

First, we can write: Ph = P′
h + e where P′

h is the clean height value, and e the

noise inherent to our approximation of the function ψ. By introducing a denoising

autoencoder, we can approximate the noise function γ such as Ph = P′
h + γ(zi),

where zi is the concatenation of the outputs of ψ with the input aerial image xi.

This makes it possible to re-write equations (3.2) as ψ(xi) = {P′
h + γ(zi),Ps,Pn}.

We can also now define the objective of the second stage of our method such as:

min
γ∈Γ

∑
i

ℓ(P∗
h,Ph − γ(zi)) (3.3)

In this paper, our goal is to approximate both function ψ and γ by using two

cascaded deep neural networks.

3.3.2 Height Prediction Network

We solve the height prediction problem via multi-task learning where, in addition to

the main height prediction, semantic and surface normals predictions are conducted

too. We found that by re-routing the information in the semantic and surface normal

branches to the main height branch, our neural network can learn to predict more

accurate height values, especially around the edges.

Fig. 3.3 shows our multi-task learning network architecture. We propose a

convolutional neural network where we combine a pretrained encoder (tasked with

extracting relevant features from the input aerial images), with three inter-connected

decoder branches, one for each type of predictions respectively. We chose to use

37

Figure 3.3: Architecture of our multi-task learning network for height, semantic and
surface normals predictions. Note that each tconv block is followed by the ReLu
function and drop out layers are inserted after each tconv layers in the main height
prediction branch.

38

a DenseNet121 network, pretrained on ImageNet, as our main encoder. We show

later in the experimentation section that DenseNet121 yields the best accuracy when

compared to other popular architectures. Our decoder on the other hand is inspired

by [6] and are characterized by being able to reconstruct the expected predictions

efficiently. We list in Table 3.1 the different layers that we used.

Layer Output Size
Encoder DenseNet121 (10,10,1024)
Decoder DeConv1 (20,20,1024)

Concat (20,20,3072)
Conv11 (20,20,1024)
Conv12 (20,20,1024)
DeConv2 (40,40,512)
Concat (40,40,1536)
Conv21 (40,40,512)
Conv22 (40,40,512)
DeConv3 (80,80,256)
Concat (80,80,768)
Conv31 (80,80,256)
Conv32 (80,80,256)
DeConv4 (160,160,64)
Concat (160,160,192)
Conv41 (160,160,64)
Conv42 (160,160,64)
DeConv5 (320,320,32)
Concat (320,320,96)
Conv51 (320,320,32)
Conv52 (320,320,32)
Convout (320,320,1)

Table 3.1: Height prediction network details.

This network is optimized by using a multi-objective loss function defined as:

L = w1Lh + w2Ls + w3Ln (3.4)

where Lh = 1
n

∑n
i=1(Ph−P ∗

h)2, Ls = − 1
n

∑n
i=1 P

∗
s log(Ps), Ln = 1

n

∑n
i=1(Pn−P ∗

n)2

39

and w1, w2 and w3 are weights set up according to the training dataset and the scale

of each loss function: We found that by using weights that keep all the loss functions

at the same scale, the CNN would converge faster and achieve higher final accuracy

levels.

3.3.3 Height Refinement Network

As mentioned previously, the height prediction map Ph produced by the multi-task

learning network still contains some noisy areas that must be refined in order to

generate the final height prediction P′
h. We introduce an autoencoder to estimate

the noise and produce more accurate height map predictions.

We choose the popular U-Net architecture [114] as network structure. The input

of the network is the concatenation of the multi-task network outputs Ph,Ps and

Pn with the aerial image xi, as shown in Fig. 3.2. Details of the different layers

forming the denoising network are listed in Table 3.2. The loss function used to

optimize this network is the mean square error between the refined height map and

the ground truth : Lr = 1
n

∑n
i=1(P

′
h − P ∗

h)2 = 1
n

∑n
i=1(Ph − γ − P ∗

h)2, with γ being

the noise function defined in Eq. 3.

3.4 Experiments

3.4.1 Datasets

2018 DFC [118] dataset was released during the 2018 Data Fusion Contest or-

ganized by the Image Analysis and Data Fusion Technical Committee of the IEEE

Geoscience and Remote Sensing Society. It was collected over the city of Hous-

ton, which contains multiple optical resources geared toward urban machine learn-

40

Layer Output Size
Encoder Conv1 (320,320,64)

MaxPooling (160,160,64)
Conv2 (160,160,128)

MaxPooling (80,80,128)
Conv3 (80,80,256)

MaxPooling (40,40,256)
Conv4 (40,40,512)

MaxPooling (20,20,512)
Conv5 (20,20,1024)

Decoder Upsampling (40,40,512)
Concat (40,40,1024)
Conv6 (40,40,512)

Upsampling (80,80,256)
Concat (80,80,512)
Conv7 (80,80,256)

Upsampling (160,160,128)
Concat (160,160,256)
Conv8 (160,160,128)

Upsampling (320,320,64)
Concat (320,320,128)
Conv8 (320,320,64)
Convout (320,320,1)

Table 3.2: Height refinement network details.

ing tasks such multispectral LiDAR, hyperspectral imaging, Very High-Resolution

(VHR) imagery and semantic labels. Using the results of the multispectral LiDAR,

it is possible to obtain Digital Structural Models (DSM) and Digital Elevation Mod-

els (DEM), which, if subtracted from one another, produces height maps that we

can use as ground truth. Four tiles of data are used for training while ten tiles are

used for testing.

ISPRS Vaihingen [119] dataset was released during the semantic labeling

contest of ISPRS WG III/4. It was collected over the city of Vaihingen, Germany

and consists of very high resolution true ortho photo (TOP) tiles, corresponding

Digital Surface Models (DSM) and semantic labels. As it is usually done when

41

dealing with this dataset, we use the normalized DSM (nDSM) produced by [120]

as ground truth for our height prediction. Sixteen tiles were used for training while

seventeen tiles are used for testing.

Surface normal maps: The surface normal maps for both dataset are gener-

ated using the given height maps, following practices usually used for surface normal

estimation from dense depth maps based on the Sobel operator [121]. The details

are listed in Algorithm 1.

Algorithm 1 Surface normals generation

Input: Height map Ph
Ouput: Surface normals map Pn
zx← Sobel(Ph, 0)
zy ← Sobel(Ph, 1)
N ← stack(−zx,−zy, 1)

Pn ← N/∥N∥
2

+ 1
return Pn

3.4.2 Implementation Details

Our training process is not end-to-end. This is due to the formulation and loss

function that we chose in the second network, which assumes that the first network

is trained when trying to approximate the noise that it could generate. Instead,

we follow a two stages approach: we first remove the denoising autoencoder and

only focus on training the multi-task network. To do so, random 320x320 crops

are sampled from the aerial tiles and corresponding semantic, surface normals and

height ground truth are used for training. Once the multi-task network converges,

we freeze its weights and then plug into the denoising autoencoder to obtain the

final height predictions. We train this second network following the same random

sampling process used to train the first one. We use Tensorflow [122], a learning

rate of 0.0002, a batch size of 64, the Adam optimizer[123] and a single RTX2080Ti

42

Figure 3.4: Qualitative comparison of a reconstructed tile from the testing dataset.
From left to right: The input RGB tile, the height prediction and the height ground
truth.

to train both stages. During training, we saw that altering the network’s hyper

parameters can sometimes have a slight effect of the convergence speed, but no

significant effect on the final accuracy level.

Note that in the case of the DFC2018 dataset, the input VHR aerial tiles are

ten times bigger than their corresponding DSM, DEM and semantic labels. To deal

with that, we first down sample the aerial tiles ten times before starting to collect

training crops.

3.4.3 Results

Height prediction results: The aerial tiles were reconstructed using a sliding

window of the same size as of the training samples and with a constant step size.

We use Gaussian smoothing to deal with overlapping areas. This makes it possible

to deal with cases where different crops of the same area produce different height

43

values, while also protecting the final result from the ”checkerboard effect”. We

report the results of our height prediction and refinement pipeline on both datasets

in Table 3.3, where we use the mean square error (MSE), the mean absolute error

(MAE) and root-mean-square error (RMSE) as metrics, all in meters. We also show

a qualitative comparison in Fig. 3.4. When comparing with previous proposed

methods in the literature, we can see that by using our multi-task network combined

with the refinement step, we are able to surpass the state-of-the-art performance

across all metrics on both datasets, with improvement up to 25%.

We credit this increase in accuracy to multiple factors. Firstly, the choice of

our encoder (in this case DenseNet121), which is capable of extracting features that

are relevant to this task. The second is the context information brought by our 2

additional branches in the multi-task prediction network. Knowing if a pixel falls

on a building rather than the road, in addition to the orientation of its associated

surface normal vector, helps the network predict height values better. Finally, the

denoising autoencoder helps us deal with certain artefacts that tend to confuse the

prediction network. We provide numerical analysis of these observations in the

ablation study.

It is also interesting to note that we are able to achieve similar scores to methods

which were trained on the high-definition aerial tiles directly without any down

sampling as shown in Table 3.4. For reconstruction of the same sized area, such

networks would take much longer processing time and significantly more computing

resources than our proposed method.

Missing values in Table 3.3 were not reported by the cited publications. We

also exclude the results reported by [99] because it did not follow the same train-

ing/testing split of the data.

Semantic label and surface normal predictions: Although this work does

44

ISPRS Vaihingen 2018 DFC
Method MSE MAE RMSE MSE MAE RMSE

Ours 0.0042 0.036 0.062 6.92 1.37 2.57
Carvalho [94] 0.0060 0.045 0.074 9.34 1.53 2.97

Srivastava [100] - 0.063 0.098 - - -
IMG2DSM [98] - - 0.090 - - -

Table 3.3: Comparison with other height prediction methods on the ISPRS Vaihin-
gen and the 2018 DFC datasets in meters.

Method MSE MAE RMSE Time (s) Input Resolution
Ours 6.92 1.37 2.57 72 1192x1202

Carvalho VHR [94] 7.27 1.26 2.59 774 11920x12020

Table 3.4: Comparison with method trained on VHR aerial images.

not focus on the semantic label and surface normal predictions and only uses them

to improve the height predictions, we share the results of those two branches and

compare them with available methods in the literature in Table 3.5. Our results

in Table 3.5 show that our multi-task network is able to produce semantic label

results that are comparable with the state of the art on the Vaihingen dataset

and acceptable ones on the DFC2018 (which has 20 classes compared to the 6 of

the Vaihingen dataset). We use the following metrics for the semantic segmentation:

The overall accuracy (OA), defined as the sum of accuracies for each class predicted,

divided by the number of class, the average accuracy (AA), defined as the number

of correctly predicted pixels, divided by the total of pixels to predict and Cohen’s

coefficient (Kappa), which is defined as Kappa = p0−pe
1−pe , such as pe is the probability

of the network classifying a pixel correctly and p0 is the probability of the pixel

being correctly classified by chance. The network is also able to produce meaningful

surface normal maps as seen on Fig. 3.1. Missing values in Table 3.5 were not

reported by the cited publications.

45

ISPRS Vaihingen 2018 DFC
Semantic Labels

Method OA AA Kappa OA AA Kappa
Ours 85.6 74.8 80.1 51.89 47.01 49

Carvalho [94] 87.7 85.4 75.9 64.70 58.85 63
Srivastava [100] 78.8 73.4 71.9 - - -

Cerra [124] - - - 58.60 55.60 56
Fusion-FCN [125] - - - 63.28 - 61

Surface Normals
Method MSE MAE RMSE MSE MAE RMSE

Ours 0.0115 0.0642 0.1066 0.0620 0.2119 0.2572

Table 3.5: Semantic labels and surface normals results on the ISPRS Vaihingen and
the 2018 DFC datasets.

3.4.4 Discussion

Height refinement: To demonstrate the usefulness of the aforementioned refine-

ment network, we test our method with and without the denoising autoencoder,

on both datasets. In Table 3.6, we compare the results obtained after both exper-

iments and show that the refinement step always produces more accurate height

maps, resulting in an increase of up to 16% in accuracy. By combining the infor-

mation present in the semantic and surface normal inputs with the initial guess

of the height produced by the previous network, the refinement network is able to

concentrate on noisy areas where the height values are abnormal and fix them au-

tomatically. In addition, we compare our deep learning based denoiser with other

popular non-learning denoising algorithms such as Bilateral Filtering (BF) [110] and

Non-local Means (NIM) regularization [112].

We also show qualitatively on Fig. 3.5 that the refinement height maps are

much closer to the ground truth and contains less noise than the direct output of

the multi-task network.

Choosing the right encoder : Our network structure for height prediction

46

ISPRS Vaihingen 2018 DFC
Method MSE MAE RMSE MSE MAE RMSE

multi-task only 0.0045 0.043 0.065 7.36 1.50 2.64
multi-task + BF 0.0046 0.043 0.065 7.27 1.51 2.62

multi-task + NIM 0.0045 0.043 0.065 7.34 1.48 2.63
multi-task + Unet 0.0042 0.036 0.062 6.92 1.37 2.57

Table 3.6: Comparison of our height prediction methods with and without refine-
ment, on the ISPRS Vaihingen and the 2018 DFC datasets in meters.

Figure 3.5: Qualitative comparison. From left to right: The input RGB image, the
height prediction of our multi-task network, the refined height map of our denoising
autoencoder and the ground truth.

is generic, since any off-the-shelf encoder can be used in the first stage to extract

features from the input aerial image.

However, we show in Table 3.7 that DenseNet121 outperforms other popular

encoder structures and produces the most accurate height maps. This is owing to

the fact that DenseNet121 is much deeper than the other two networks and contains

a higher number of skip connections between layers, making it possible to extract

much finer features from the input image. All the networks are trained for the same

number of epochs and using the same hyper parameters, such that it ensures the

47

Encoder MSE MAE RMSE
ResNet101 [126] 18.95 3.33 4.19

VGG19 [127] 8.57 1.87 2.85
DenseNet121 [128] 7.36 1.50 2.64

Table 3.7: Encoder comparison on the DFC2018 dataset in meters.

fairness when comparing both the convergence speed and accuracy scores.

Geometric and semantic guidance : In this section, we show the effect

of the geometric and semantic guidance in our method in both height prediction

and height refinement stages. First, we show in Table 3.8 that using a multi-task

network instead of a single task one improves the overall height prediction results.

We also show in Table 3.9 that by concatenating all the results of the first stage as

the input to the denoising autoencoder, we are able to generate more accurate and

refined results compared to only using the height image as input. This shows that

the semantic and geometric context information brought by two additional branches

assist in producing more accurate height values.

ISPRS Vaihingen 2018 DFC
Method MSE MAE RMSE MSE MAE RMSE

single-task 0.0048 0.046 0.067 8.17 1.64 2.78
multi-task 0.0045 0.043 0.065 7.36 1.50 2.64

Table 3.8: Comparison of height prediction results of single and multi-task networks
in meters.

ISPRS Vaihingen 2018 DFC
Method MSE MAE RMSE MSE MAE RMSE

single-input 0.0043 0.037 0.063 7.13 1.47 2.62
multi-input 0.0042 0.036 0.062 6.92 1.37 2.57

Table 3.9: Comparison of height refinement results of single and multi-input denoiser
in meters.

48

Finding the right reconstruction step : The accuracy of our final tile recon-

struction depends also on the step size of the sliding window that we choose when

collecting the aerial crops. We show in Table 3.10 the different results corresponding

to different step sizes. We found that a step size of 60 pixels results the best across

both datasets.

ISPRS Vaihingen 2018 DFC
Step MSE MAE RMSE MSE MAE RMSE
80 0.00421 0.0363 0.0625 6.98 1.38 2.58
60 0.00420 0.0362 0.0623 6.92 1.37 2.57
40 0.00421 0.0362 0.0623 6.93 1.37 2.58

Table 3.10: Comparison of our reconstruction results (meters) based on the step
size (pixels).

Visualizing the uncertainty : In order to investigate the performance of our

pipeline more thoroughly, we generate uncertainty maps according to the method

proposed in [129]. The results are displayed in Fig. 3.6 and show that most of the

prediction errors can be attributed to the areas such as the edges of buildings due

to the sudden changes in brightness and color, and trees where shadows introduce

a significant amount of color noise.

3.5 Applications

In this section, we propose two applications to show how to take advantage of

the results generated by our proposed pipeline. The first is 3D reconstruction of

select buildings from a single aerial image. In the second application, we simulate

a UAV flight over a certain area and show that we can reconstruct the entire 3D

area by combining odometry and aerial images. In comparison to the classic SfM

algorithm, our method provides a significant gain in speed, accuracy and density.

49

Figure 3.6: Uncertainty results. From left to right RGB Image, Height Prediction,
Uncertainty Map. Prediction errors are mostly concentrated around the edges.

More importantly, our proposed method requires significantly smaller number of

images since only minimal overlaps are necessary when taking the aerial shots.

3.5.1 Single Aerial Image 3D Reconstruction

Usually, in order to reconstruct the 3D shape of a building, multiple shots from

multiple angles with significant overlap are necessary in order to apply the sequential

surface from motion algorithm. We show in Fig. 3.7(b) that owing to our multi-task

network, we are able to produce accurate 3D point clouds of the buildings using a

single image only.

The proposed method is also capable of generating semantic point clouds in

Fig. 3.7(c) and 3D meshes of buildings and their surrounding areas in Fig. 3.7(d)

by leveraging the semantic labels and surface normals generated by the networks.

Specifically, semantic point clouds are generated by projecting the semantic labels

onto the point clouds, while the meshes are generated by combining the surface

50

Figure 3.7: 3D reconstructions using a single image. (a) RGB Image, (b) Height
Colorized Point Cloud, (c) Semantic Point Cloud, (d) RGB Colorized Mesh.

normals with the reconstructed point clouds using the ball pivoting algorithm [104].

3.5.2 Area Reconstruction with Simulated UAV Flight

3D reconstruction of urban areas is a very useful application. Similarly to what

we mentioned in the first application, reconstructing an entire area would generally

require a series of captured images with significant overlaps, by flying the drones in

multiple passes over the same area, in order to generate a semi-dense point cloud.

In our case, we show in Fig. 3.8 that by using a single pass with a small number of

captured images and minimal overlap (only to avoid gaps in the final reconstruction)

we are able to produce accurate and dense 3D reconstructions. We also note that

when we feed the same data to an SfM algorithm, it typically leads to failures since

only a small number of features can be matched among the single-pass aerial shots.

51

Figure 3.8: 3D reconstructions from simulated UAV flight. From left to right:
Positions of the UAV images, Reconstructed 3D scene.

The data is collected by simulating a constant altitude UAV flight over a certain

neighborhood in one of the tiles available in the testing datasets. The odometry is

assumed to be known from on-board IMU or GPS sensors.

3.6 Summary

In this work, we propose a deep learning based two-stage pipeline that can predict

and refine height maps from a single aerial image. We leverage the power of multi-

task learning by designing a three-branch neural network for height, semantic label

and surface normal predictions. We also introduce a denoising autoencoder to refine

the predicted height maps and largely eliminate the noise remaining in the results

of the first stage height prediction network. Experiments on two publicly available

datasets show that our method is capable of outperforming state-of-the-art results in

height prediction accuracy. In future work, we plan on exploring the computational

efficiency of the proposed neural networks for their applications towards real-time

52

processing of aerial images. Future works include the use of additional connection

between the three branches of the multi-task network in the first stage, or the addi-

tion of graph neural networks in the second denoising stage order to take advantage

of the spatial connections between different segmented classes.

53

Chapter 4

Labeling Point Cloud Maps Using

Cameras and Deep Learning

4.1 Introduction

During the last couple of decades, autonomous driving has become one of the most

researched topics in the scientific community. This stems from the fact that sci-

entists, governments and people in general are starting to realise the huge positive

impacts that autonomous driving could have on our daily lives: According to [130],

self-driving cars could reduce traffic fatalities by up to 94% by eliminating the acci-

dents that are due to human error.

The race toward full autonomous driving cars, or level 6 autonomy such as it

categorized by SAE International, has given rise to multiple new fields and was

the catalyst to launch or greatly improve several new disciplines. This manifested

itself in the field of deep learning, which has made it possible today to achieve

a respectable level of autonomy when driving on roads that fall into the classic

scenario box. Lanes and roads (or driveable regions) detection can be achieved with

54

neural networks trained to excel in task related to pixel-wise segmentation of images

captured by cameras [131],[132],[133], making the car aware of where it is safe to

drive. Other types of networks are trained to detect obstacles and classify them into

several independent classes [134],[135],[11], sometimes with the help other sensors

such as radars to mitigate the accuracy issue when it comes to depth and 2D images.

This helps the car drive safely by avoiding obstacles on the road and take account

of traffic rules represented by traffic signs or traffic lights.

Figure 4.1: Point cloud, lanes coordinates and driveable region limits generated by
our pipeline.

This approach has multiple advantages that revolve mostly around the real time

aspect of the method and the fact that it is mostly built on top of cheap sensors.

However, methods based solely on deep learning and cameras, while being very

performant in highway scenarios for example, cameras are bound to fail when de-

ployed in urban scenarios because cameras have major weaknesses, mostly related

to brightness issues. These weaknesses could be covered by fusing the camera data

with other more powerful and accurate sensors, such as LiDARs. This introduces

the most accurate method to date to navigate and drive autonomously in urban

areas: using HD Maps.

HD Maps are a combination between 3D point clouds and relevant semantic

information. 3D point clouds can be used for localization by match the incoming

55

scans of the LiDAR when driving, with the pre-build and stored 3D point clouds.

However, in order for these point clouds to be used for autonomous navigation,

additional data has to be stacked on top of it: Information such as the position of

the lanes, roads or traffic signs has to be labeled in order for the car the navigate

safely while respecting basic traffic rules.

Motivation : The usual solution used today to label pre-built maps is to man-

ually label them and store them. The shortcomings of this method are: the lack

of accuracy, the high financial and labor cost in addition to how time consuming it

can be. For the HD maps model of localization to be scalable, we need to introduce

automation in the building and labeling process of these maps, where most of the

work is done by the machine, and the human is only there to supervise, correct or

validate.

Approach : A different approach would be to use the great results achieved

by neural networks not to navigate directly on the road, but to build and label HD

Maps offline before deploying them on cars. Therefore, we propose in this paper to

use deep learning to automate the labeling process of HD Maps, by combining them

with other methods to guarantee accuracy and robustness. This is done by first

prediction relevant semantic labels on the input camera images. The predictions are

then processed by removing outliers, introducing smoothing or clustering, in order

to generate waypoint-based labels that can be used by the autonomous vehicle to

safely navigate in the mapped environment. Our contributions can be summarized

as a collection of algorithms and pipelines aiming to automatically label HD Maps

for urban autonomous driving.

56

4.2 Related Work

Used by many major companies in the autonomous driving business and research

community such as Waymo or Autoware [136], navigation using HD Maps has proven

to be the most robust method up to date. HD Maps are maps based on laser

data collected using a LiDAR sensor. The most recent HD maps are built using a

360 rotating LiDAR sensor, where after each full rotation, a scan is packaged and

sent to the computer. Multiple scans are then accumulated in order to generate a

point cloud where the 3D geometry of the surrounding environment is represented.

Accumulating these scans can be done using multiple approaches: The output of an

Extended Kalman Filter (EKF) [137] where IMU and odometry data have been fused

can be used to align the point clouds. Other methods based on feature detection

and feature matching [138],[139] allows us to find the right translation and rotation

between two consecutive scans. Another approach based on an algorithm called the

Iterative Closest Point (ICP) algorithm [140] can be used: the ICP is an algorithm

designed to minimize the difference between two point clouds and thus finding the

right transformation between them. ICP was the leading and most robust algorithm

to align two consecutive point clouds until it was surpassed by the 3D Normal

Distribution Transform (3D NDT) algorithm [141].

The 3D NDT algorithm was proposed by M. Magnusson et al. in order to help

the deployment of autonomous mining vehicle. It builds on the 2D method of the

same name [142] by transforming the point cloud into a probability density function

which can be used with Newton’s algorithm to match another point cloud.

In his paper, M. Magnusson shows that the 3D NDT algorithm outperforms

the ICP algorithm, which was the standard 3D matching algorithm at that time.

In order to improve both the speed and accuracy of the 3D NDT algorithm, an

57

EKF is used to fuse both IMU and GPS data to generate an initial guess of the

transformation that is passed to the 3D NDT algorithm as a starting point for the

minimization procedure.

After constructing the point cloud, it is it is necessary to add semantic infor-

mation to it such as lanes and driveables regions in order for the car to be able to

autonomously navigate itself. Traditionally, the way this information is labelled on

the point cloud is by using a manual method. As an example, Autoware gives access

to their user to an online tool named Vector Mapper, where they can load up their

pre-constructed point clouds and label them manually. The labels are then exported

and available for download as CSV files, called Vector Maps. However, manual la-

beling of point clouds tends to be extremely tedious, time consuming and not as

accurate as we would like it to be. Also what could be a one step process is now

divided into two independent ones where the point cloud is first built as first step

then labeled as a second one. Since most of the information that is being labelled

can be generated from deep learning networks, we propose in this paper to bypass

the manual labeling process and use the predictions generated by the networks to

label the point cloud automatically. We also propose other post-predictions methods

to mitigate the false positives and uncertainty that tend to occur sometimes when

using deep learning.

The deep learning networks that we deploy in this process (namely LaneNET

and FCN8s) are monocular camera based and not LiDAR based. This choice stems

from the fact that the level of accuracy reached by camera-based networks has yet to

be matched by the LiDAR based ones and also by the fact that deploying multiple

LiDAR networks at the same time will require a lot more processing power. The

LiDAR might outperform the camera when it comes to range, but our algorithm here

relays on accumulating information from successive samples which helps covering a

58

larger amount of space. In order to fuse both the camera predictions and the LiDAR

point clouds, a transformation consisting of a translation and rotation between the

camera and LiDAR is needed and can be found using a Lidar-camera calibration

method. One of the proposed methods in the literature, which we used in this paper,

is described in [143].

4.3 Methods

4.3.1 Mapping Pipeline

The mapping pipeline presented in this paper concentrates on constructing the 3D

geometry of the surrounding environment. This is done thanks to the 3D NDT

algorithm, used to align successive LiDAR frames, that were collected during a pre-

defined path. For clarity purposes, we define two frames: The map frame Fm, which

the origin of is the center of the first scan at the start of the map, the car frame Fc,

which the origin of is the center of gravity of the autonomous car and the LiDAR

frame Fl which the origin of is the center of the LiDAR sensor.

4.3.2 Road labeling

After building the map offline, we proceed to deploy our automated road labeling

pipeline. We define a road R as polygone in the Fm frame limiting the areas where

it is possible to drive, but not necessarily legal to do so. Road labeling is performed

for two main reasons :

• It can guide the autonomous car when no lanes are present on the road, as it

is sometimes the case for one way streets.

59

• It will help us later when doing lane labeling.

The road is detected using the camera, projected on the LiDAR data, refined

to remove outliers and then accumulated onto the pre-built map using the output

of the 3D NDT algorithm. We then compute the region occupied by the road and

extract the road limits. We will explain each of these steps in the following. Fig.

4.2 shows an overview of the road labeling pipeline.

Figure 4.2: Road labeling pipeline

Detection : For detecting the road we use a Fully Convolutional Network. We

apply the network to the front camera data, in order to segment the image into 2

regions: Road and Not Road. This results into a binary image that we will use in

combination with the Lidar-Camera calibration to segment the point cloud of the

road.

Projection : We start by using the camera parameters to crop the 360 point

60

Figure 4.3: Histogram of the elevation z of the road point cloud.

cloud, so that we are only operating on the points that fall within the field of view

of the camera. Then, using the Lidar-Camera calibration, we project the image on

top of the point cloud while making sure that the color information from the image

is preserved and transferred to the point cloud. This results into a binary point

cloud where the road points are colorized differently than other points on the point

cloud.

Curb detection : At this point, if the road detection results from the FCN were

perfect, the labeling process would be done. However, this is not the case, since

the road detected by the FCN tends to bleed on the edges of the curb, especially

when the curb is hard to distinguish in the pictures because of shadows, brightness

changes or the curb being too small. This means that we need to refine the results

from the FCN by detecting if any curb portions were included into the predictions.

In order to do so, we use the colorized point cloud and the elevation according

to the z axis. We start by extracting the road point cloud from the colorized point

61

Figure 4.4: Road labeling before (Red) and after (Green) the curb detection.

cloud that we obtained previously using a color segmentation-based method, and

then, as it is shown in Fig. 4.3 we display the elevation of the points in the road

point cloud as histogram. This shows us that the points in the extracted road

point cloud follow a bimodal distribution, meaning a distribution that contains two

peaks, or in other word, two normal distributions with means µ1 and µ2 respectively

and standard deviations σ1 and σ2 respectively. This makes sense because the

first normal distribution represents the points on the curb, and the second one the

points on the road. In this scenario, detecting the curb consists of separating the

bimodal distribution into two normal distributions and excluding the distribution

representing the curb points. In order to do that, we use a method commonly

employed in computer vision for segmentation and clustering purposes called the

Otsu method [144].

The Otsu method, applied to a bimodal distribution, calculates the optimum

threshold separating the two classes (in our case “road” and “curb”). This makes

it possible to exclude most of the points that lay on the curb as it shown on Fig.

4.4 and leaves us with a portion of points, which the elevation of, follows a normal

distribution with a mean µ1 and standard deviation σ1. As a final check, and to

remove the rest of the outliers still present, we apply the 68–95–99.7 rule to the

resulting distribution and exclude all the points which the elevation lay outside of

µ1 − σ1 and µ1 + σ1.

62

Region Extraction : In order to extract the limits of the driveable area, we

need to compute the contour of the road point cloud projected onto the (x, y) plane.

This is achievable by using a Concave Hull (CH) [145].

The CH is an algorithm based on the k-nearest neighbours approach and designed

to generate a envelope describing the area occupied by a set of points in a plane.

The envelope generated by the CH is used to generate a polygone describing the

driveable area.

4.3.3 Lane labeling

We define a lane L as a set of points L = {p1, p2, ..., pn} where pi = {xi, yi, zi} are the

coordinates of the i′th point in the Fm frame. Lane labeling is performed in order to

help the autonomous car navigation process on the road by keeping it centred. The

lanes are detected using the camera data, projected on the LiDAR data, clustered

and smoothed to generate meaningful waypoints and then accumulated with the

previous scans using the output of the 3D NDT algorithm. We also generate the

missing lanes that were not detected in the camera data. We will explain each of

these steps in the following. Fig. 4.5 shows an overview of the lane labeling pipeline.

Detection : For lane detection, we use LaneNET. This network was selected be-

cause it is able to detect all the lanes that are visible from the front view camera and

not only the ego lanes. The network outputs a mask image of the same size as the

input image, where the pixels belonging to the lanes are labeled and color coded.

Similarly to what we did for the road labeling, the mask image will be combined

with the Lidar-camera calibration to generate a lanes point cloud.

Projection : Since the Lidar-camera calibration will become less accurate the

63

Figure 4.5: Lane labeling pipeline

further we are from car, we start by cropping the “camera field of view point cloud”

to a certain distance L from the origin of the Fc frame before projecting the lanes

on it. This helps preserving the shape of the lanes as we will be accumulating the

projections and point clouds while advancing. Once again, we make sure that lanes

in the resulting point cloud are colorized differently than the rest of the point cloud

it was projected on. Finally, using a color segmentation method, we extract the

points belonging to the lanes to form a “lanes point cloud”.

Clustering & smoothing : The generated lanes point cloud is noisy and does

not always follow a coherent geometry. Therefore, we set up a series of clustering

and smoothing steps that will be applied to the lanes point cloud in order to gen-

erate a series of waypoints that could be used by the autonomous car to know the

positions of the lanes in the space. The smoothing and clustering is applied on two

different levels: first in the LiDAR frame Fl when dealing with a single frame, then

second in the map frame Fm when the current frame has been accumulated with

64

the previous ones using the output of the 3D NDT algorithm.

We first start, in the Fl frame, by dividing the resulting lanes point cloud into

equally separated Regions of Interests (RoI) in order to operate on the different

lanes independently. These lanes are then clustered following the method proposed

in [146] which is mainly based on the Euclidean distance between neighboring points,

and which generate 3 points that describe the geometry and curvature of the lane.

These points are then smoothed by being fitted to quadratic function before being

transformed into the Fm frame and accumulated with the previous scans using the

result of the 3D NDT algorithm. When in the Fl frame, the clustering follows the

same method used in the first step, but with a higher tolerance and the smoothing

is done by fitting the points to a logarithmic curve instead of a quadratic one.

We define the smoothing index N as the index in the lane L from where the

smoothing process starts and the “look-back” parameter l that defines how much of

the full lane do we want to include in the smoothing process. The smoothing and

clustering of the lane points will be applied if certain criteria are met :

1. If the accumulated distance of the lane portion is superior to a threshold L1,

that lane portion is smoothed, and the smoothing index, is moved to the N ′th

position, where N = n −m − l with n being the size of the full lane point L

cloud and m the size of the last lane portion L′ = {pn+m, pn−m+1, ..., pn} that

was added during the last scan.

2. If we receive S scans without lane points, signaling the presence of an inter-

section for example, that lane portion is smoothed and the smoothing index

is moved to the n′th position, where n is the size of the full lane point cloud.

3. If the accumulated distance of the lane portion is superior to a threshold L2,

that lane portion is clustered in order to produce reference points.

65

Setting up the thresholds L1, L2 and l is critical in order to obtain lane points

that are not too curved/straight or too dense/light.

Lane completion : One of the other imperfections of deep learning that we need

to deal with is missing lanes. LaneNET will sometimes not be able to detect a lane

either because of a sudden change in brightness/contrast, the lane not being in the

field of view of the camera, or the lane simply not being drawn on the road. We

deal with this issue by combining the successful lanes that were detected, our curb

detection algorithm and the fact that the lanes on the road are parallel.

We first start by using the curb detection results to check if all the lanes were

detected : based on the position of the curbs and the lanes width (which is derived

from the successful detections), we can conclude if the right number of lanes was

detected. If a certain lane is missing, we use the closest left or right lane to it to

generate it by fitting the lane points obtained from the last scan to a quadratic

curve and then combining the normals to the curve at each of those points with the

lanes width to generate a new lane.

4.4 Experiments

4.4.1 Experimental Setup

Our experimental setup consists of a Lincoln MKZ, equipped with one Velodyne

Lidar VLP-16 and one FLIR PointGrey RGB camera. Both sensors are recording

at 10 Hz and 30 Hz respectively. The car is also equipped with an IMU/GPS to

assist the 3D NDT algorithm. The data is synchronized and recorded thought the

Robot Operating System (ROS) as ROS bags and processed offline. Fig. 4.6 shows

an image of our experimental setup vehicle.

66

Figure 4.6: Vehicle used for data collection.

We recorded and built multiple HD maps using the pipeline, from which we

selected 5 scenarios.

Fig. 4.7 shows satellite imagery of the 5 selected areas. Each of these scenarios

was selected for a specific reason:

• straightRoad was selected to demonstrate the effectiveness of the curb detec-

tion step in the road labeling pipeline.

• curvedRoad was selected to demonstrate the accuracy of the Smoothing and

Clustering step in the lane labeling pipeline.

• mergeLane was selected to demonstrate that the lane labeling pipeline is able

to handle scenarios where new lanes appear and that we are not restricted to

the lanes that we started with.

• intersection was selected to demonstrate the results of merging multiple maps.

• highway was selected to demonstrate that the labeling pipeline is still effective

in significantly bigger areas.

67

Figure 4.7: Aerial imagery of the selected areas.

68

Table 4.1: Scenarios details.

Scenario Number of recordings Number of LiDAR scans Driveable region area (m2) Number of lanes
straighRoad 1 123 1374 3
curvedRoad 1 145 1346 3
mergeLane 1 112 1296 4
intersection 3 321 3282 6
highway 2 169 6173 7

The ground truth was manually labeled using the intensity of the LiDAR point

cloud and satellite imagery as reference. When building and labeling our HD Maps

using our automatic pipeline, we select key-frames from the LiDAR scans based on

the synchronization with the camera and we set our thresholds such as L1 = L2 = 30

meters, l = 5 and S = 5. Table 4.1 presents some statistics regarding each scenario.

Since we run our experiments on our own data, that no public labeling dataset is

currently available and that we do not have access to any similar works code, we

only compare our results to the ground truth.

4.4.2 Road Labeling

We present the results of our road labeling pipeline : Fig. 4.8 shows a qualitative

comparison between the manually labeled ground truth and automatically labeled

roads, with and without the curb detection algorithm. Table 4.2 lists the errors in the

areas occupied by the road polygon before and after the curb detection algorithm.

The results show that the curb detection algorithm is very effective in excluding the

points that do not belong to the road. However, traffic on the road can sometimes

lead to results where valid road points are excluded, as it is the case during the

mergeLane recording. A potential solution would be to detect the objects on the

road and exclude the points that belong to those objects before applying the curb

detection algorithm.

When applying the curb detection algorithm, we found that obtaining great

results depends highly on the number of bins we set when construct the elevation

69

Figure 4.8: Qualitative roads comparison : Red is the ground truth, Blue is before
the curb detection, and Green is after.

70

ϵ1 ϵ2 δ
straighRoad 0.232 0.008 0.16
curvedRoad 0.261 0.034 0.22
mergeLane 0.252 0.127 0.30
intersection 0.357 0.017 0.18
highway 0.007 0.160 0.32

Table 4.2: Errors in the areas occupied by the labelled road. ϵ1 and ϵ2 are the errors
(m2) before and after the curb detection respectively. δ represents the percentage
of points that were excluded.

Table 4.3: Errors in the areas occupied by the automatically labelled road depending
on the number of bins in the elevation histogram.

Number of bins 5 10 25 50
Error value 0.263 0.051 0.167 0.008

histogram of the road point cloud that will be fed to the Otsu method. Table 4.3 lists

the error values when varying the number of bins between the values {5, 10, 25, 50}

on the straighRoad scenario. We chose that example due to similarities in color

and shade between the curb and the driveable region which tends to mislead the

FCN network.

4.4.3 Lane Labeling

We also present the results of our lane labeling pipeline: Fig. 4.9 shows a qualitative

comparison between the manually labeled ground truth and automatically labeled

lanes. Table 4.4 lists the translation error mean values and the standard deviations

in x and y of the automatically labelled lanes from the ground truth. When being

evaluated, both the maps generated from the intersections and highway were split

into two maps representing each of the roads present. These results show that the

lane labeling pipeline is capable of accurately labeling the lanes and generating the

71

Lane1 Lane2 Lane3 Lane4 σx σy
straighRoad 0.918 0.605 0.300 N/A 0.102 0.190
curvedRoad 0.941 0.788 1.395 N/A 0.325 0.525
mergeLane 0.977 0.943 0.562 0.877 0.282 0.468
intersection1 1.238 0.409 0.583 N/A 0.384 0.303
intersection2 0.635 0.951 1.054 N/A 0.634 1.101
highway1 0.507 0.625 0.764 N/A 0.613 0.619
highway2 0.585 0.583 0.618 0.565 0.726 0.340

Table 4.4: Translation error (m) between the automatically labeled lanes and the
ground truth.

missing ones. However, this last part is highly dependent on the success or not of

the road labeling pipeline in finding the furthest curb.

4.4.4 Discussion

As the results show, automatic labeling from deep learning results is a viable option

to replace human labeling when building HD Maps. However, some practices need

to be taken in account in order to generate acceptable results:

• Weather : The recording should be gathered during good weather and prefer-

ably during a time of the day where sun reflections will not be an issue. This

makes it easier for the deep learning network to detect lanes or road bound-

aries.

• Traffic : The recording should be gathered during a time where traffic is at

its minimum. Cars on the road tend to throw off the curb detection algorithm

by adding noise to the road point cloud and thus to the elevation histogram.

• Merging maps : Areas such as intersection or exit lanes need multiple record-

ings to be reconstructed. The recordings should cover as much overlapping

72

Figure 4.9: Qualitative lanes comparison : Red lanes are the ground truth and
Green ones are automatically generated.

73

areas as possible to facilitate their merger. GPS data should be collected

also to help construct an initial guess of the transformation between the maps

generated by the different recordings.

4.5 Summary

In this work, we proposed a pipeline designed to automatically label HD Maps

for autonomous driving cars. The pipeline relies on the results of deep learning

networks trained to detect the driveable areas and the lanes. These results are then

automatically post-processed in order to be corrected, improved or completed. A

comparison between the results of our pipeline and a manually labelled ground truth

proved the accuracy and effectiveness of the methods employed in this work. Future

work includes automatic labeling of more details on the HD Maps such as traffic

sign and traffic lights. Future works include the extension of this pipeline to the

traffic light and traffic signs labeling, by using a similar method based on 2D camera

object detection.

74

Chapter 5

Localizing Point Cloud Scans in

OpenStreetMaps

5.1 Introduction

Localization is one of the key modules in an autonomous driving system. Knowing

the precise location of the vehicle is critically important to perception and controls.

LiDAR sensors have been proven to be very useful when attempting to solve localiza-

tion challenges [147, 148, 149, 71], owing to their accurate and dense representations

of the vehicle’s surroundings. The localization results achieved by LiDARs can be

further enhanced based on pre-built 3D maps [150, 72]. These 3D maps, sometimes

called HD maps, are built by concatenating successive point clouds that were aligned

by using additional data from other sensors (e.g., differential GPS), or by using a

complex SLAM pipeline, which would typically include practices such as loop clo-

sure. Then the HD maps need to undergo a labelling process, either manually or by

using an automated process [151].

Although these types of maps can help achieve a high-level accuracy when track-

75

ing the vehicle, they nonetheless come with drawbacks which make their deployment

very challenging, due to the current technological issues. For instance,

• Expensive and time-consuming: Building and maintaining such maps requires

us to drive repeatedly around all the areas where we would be interested in

locating the vehicles, which not only can be tedious, but also very expensive.

• Large storage: HD maps are known to be very large due to the millions of

points that they contain, which can also make their deployment difficult in

real time.

Therefore, we argue that 3D point clouds may not be the best format to use in

terms of maps. In contrast, we propose to combine LiDAR with a widely available,

free, and routinely updated map namely OpenStreetMaps (OSM) [152].

Motivation: LiDAR sensors excel at representing the geometrical features of

the surrounding environment. In the case of a vehicle driving in an urban setting,

the surrounding environment is mostly composed of the road and buildings (nearby

objects such as cars are included as well), due to the effects of occlusion. Naturally,

these two classes are commonly labeled in OSM, and an intuitive way to use them

would be to match them across modalities in order to localize a vehicle. Although

some impressive advances were made in neural network alignment between camera

and LiDAR such as [82, 83], matching RGB images extracted from an abstract map

such as OSM with point clouds as accurately as possible for localization is very

challenging. To address this issue, we propose to use ray casting, combined with a

buildings mask that we extract from OSM, so that we can produce simulated LiDAR

images. We also extract road masks from OSM and use them in two different ways:

(1) as a secondary map where we will localize vehicles on the road extracted from the

input point clouds; (2) as the constraint map to make sure that the final localization

76

result does not leave the road, in case of a noisy sensor input.

Objectives: Our goal in this method is to propose a non-learning, simple and

stable method capable of localizing vehicles in OSM by only using LiDAR senors,

with an accuracy level on par with or superior to GPS sensors (which is reported to

be more than 5 m in an urban setting [153, 154]). This means that our method will

be able to replace GPS, or act as backup when GPS is not available. It can also be

used as an initial guess to other more advanced sensor suites.

Approach: The difficulty of aligning LiDAR point clouds with OSM is mainly

owing to the modality gap between these two representations. Point clouds returned

by a LiDAR are typically represented by an (N, 4) unsorted array representing the

(x, y, z) 3D locations and the reflectivity r of each point. In contrast, the OSM

representation that we are using is an (L,W, 3) RGB image, representing a top view

of the environment, with different classes labeled accordingly.

A common first step when attempting to localize 3D point clouds in 2D aerial

maps, is to proceed to a bird’s eye view (BEV) projection, which means first cropping

the point cloud to an acceptable region of interest, then projecting it on the ground

plane, and re-scaling it according to a pre-defined scale (in this case, matching the

scale from OSM), so that it can be represented as a 2D image, where each non-zero

pixel stores the height value of the corresponding point. This results in a top view

representation of the LiDAR point cloud, and a closer visual appearance to the top

view 2D map. However, even after proceeding with this projection, the modality

gap is still too big to attempt any direct matching between these two. In order to

solve this issue, we propose to first extract a road and buildings mask from OSM,

because those are the most common classes of objects in an urban environment.

These masks are then used in combination with ray casting, to generate simulated

top view LiDAR images. We use a dual input particle filter that attempts to align

77

the simulated LiDAR images with input point cloud BEV images. Because it is

reasonable to assume that our vehicle should never leave the road, we also use the

road mask to constrain the particle filter, making sure that the final solution always

lies within the constrained region.

Figure 5.1: Result of our approach. LiDAR point clouds overlaid on top on OSM.
Colors reflects the position error (m).

Our method does not rely on any type of machine learning and uses only open-

source maps for LiDAR based localization input. It has the potential to be used

anywhere as long as OSM is available and can act as a replacement of GPS when

the GPS sensor or GPS signal is unavailable. Figure 5.1 shows an example of our

method’s results.

The contributions of this research can be summarized as follows: (a) We propose

a fast and consistent method to generate simulated top view LiDAR images from

OSM, and accordingly show how we can use those images to accurately localize

LiDAR point clouds in OSM. (b) We propose a dual-input particle filter algorithm

with an added constraint that the vehicle location must be on the road. (c) We

78

demonstrate the state-of-the-art accuracy of our method on the KITTI dataset, by

comparing it to other LiDAR cross-modal localization methods by using OSM or

satellite maps.

5.2 Previous Work

Cross-Modal LiDAR Localization: LiDAR localization [155], odometry, and

SLAM are classical robotics challenges that have become popular with the advent

of autonomous driving, owing to the richness of the data that the sensor produces.

Lately, cross-modal LiDAR localization has been attracting more attention, due to

the fact that it requires a significant amount of time, effort and resources when

trying to build and maintain HD point cloud maps. This led researchers to look

for alternative platforms that could be used as maps when trying to localize a ve-

hicle driving in an urban environment. The most accessible and available maps to

the public today are top view 2D maps such as OSM and satellite maps. Open-

StreetMaps (OSM) are one type of such maps, which provide 2D shapes of most

major structures, tagged with geo-localization data. Thanks to its open-source char-

acter, OSM has been very popular within the SLAM research community. In [156],

a classifier is trained to distinguish between LiDAR points that fall on the road or

not. Based on this information, a cost function is optimized, and a particle filter

is used to localize the vehicle in OSM. Another approach was proposed in [157]

and is based on matching building planes from LiDAR to cuboids in OSM. In [75],

a handcrafted feature descriptor, based on buildings and intersections positions is

proposed for global localization in OSM. Moreover, several other works attempted

to solve the cross-modal localization task on OSM by using cameras rigs instead of

LiDAR sensors, such as [158, 52, 159].

79

Another type of top view 2D maps are satellite maps. These maps provide real-

world RGB images captured from an aerial position. In [76], the authors leverage

semantic segmentation results from both the LiDAR point cloud and the satellite

images in order to optimize the soft cost function of a particle filter. In [160], another

particle filter is combined with a similarity network, which was trained to match

point clouds that were projected to BEV with satellite map crops. In [78] and [77], a

generative adversarial network [79] is trained to generate synthetic top-view LiDAR

images based on input satellite crops. The synthetic and real LiDAR images are

then both fed to a neural network to predict the value of the displacement between

frames. In [161], the authors take advantage of the reflectivity field returned by

the LiDAR sensor to match their top view projected scans to aerial imagery maps

by using the normalized mutual information (NMI) technique [162]. Although these

methods can be seen as “dense” methods because they use most, if not all, the points

available to them, other methods, such as [163] try to extract and match features

(represented by cropped patches) from both modalities by using a similarity-trained

CNN. Although satellite maps might provide a more lifelike image of the surrounding

environment, they tend to be cluttered with additional objects that are irrelevant,

and sometimes detrimental to the localization results, such as cars and trees. That is

the main reason why we chose to use OSM instead, which provides clear boundaries

and edges of buildings and roads that our method can rely upon.

Constrained Particle Filters: Particle filter (PF) [164] is a sampling-based

method which computes the weights of a set of hypotheses based on an observa-

tion and motion model, with a final result consisting of a weighted sum of the

previously emitted hypotheses. Particle filters, also called Monte Carlo localization

(MCL) [165], are very popular in the robotics field and have been used to solve

localization challenges for both indoor [166] and large-scale outdoor scenarios [167].

80

A localization algorithm such as particle filters, owing to the context in which it is

applied (where map information is available), does not suffer as much from drifting

problems as some other odometry estimation methods. However, noisy observations

and inaccurate motion estimation sometimes can lead to large errors.

A natural improvement to the PF would be to use external constraints to limit

the final result within a “feasible” region and thus reduce the error produced by the

final weighted result [168]. This is in part why constrained particle filters (CPF)

were proposed, leading to multiple strategies. For instance, constraints were ap-

plied equally to all the particles in a straightforward manner, named the accep-

tance/rejection approach [169, 170], where particles that did not respect the con-

straints were simply discarded. Other methods such as [171] proposed a complex

sampling scheme to only draw particles from the feasible region. Later methods

focused on applying the constraints to the final weighted result rather than each

hypothetical particle. In [172], the authors propose the mean density truncation

approach, where an iterative sampling process gets rid of bad particles and samples

good ones, thus gradually pushing the final position to the correct region. Improve-

ments to the sampling process and computation cost were subsequently proposed

in [173].

5.3 Method

Our goal is to propose a non-learning and reliable method that can be used to

achieve accurate LiDAR 2D pose tracking in OSM. In this section, we first explain

how to solve the cross-modality issue for comparing OSM and LiDAR point clouds,

then we tackle the pose tracking task by using a road-constrained and dual input

particle filter. Figure 5.2 shows an overview of our proposed method.

81

5.3.1 From OSM to LiDAR

Challenges: The biggest challenge when attempting to solve this task is to bridge

the modality gap between unsorted LiDAR point clouds and RGB images from OSM.

The most common feature between these two representations is the fact that they

both contain geometric information on the shapes of the structures that form the

surrounding environment of the vehicle, namely roads, buildings, and sometimes

trees. On the other hand, the biggest difference is how both formats represent

the data: point clouds are unsorted arrays containing the location information, in

a predefined frame, of any point that was reached by the LiDAR sensor, whereas

OSM visual maps are top-view RGB images containing rough shapes and class data.

The typical first step when attempting to localize LiDAR point clouds that were

collected by a vehicle in a 2D aerial map is to start with a BEV projection, which

displays the point cloud data from a top view, giving us a more similar visual

appearance to the 2D top-view maps, and thus a first step toward breaching the

cross-modality. Unfortunately, this step alone is not enough to accurately localize

the vehicle in OSM, mainly due to the sparsity of the BEV image and the effects of

occlusion of the point cloud data. This is why we need to use the data provided by

OSM, namely the roads and buildings, to produce a simulated LiDAR image, which

has similar characteristics as the input LiDAR BEV image.

82

Figure 5.2: Our full method. The LiDAR point cloud and OSM region of interest
are processed by the LiDar processing module (LPM) and map processing module
(MPM), respectively, to produce four images, a pair of top-view road images and
a pair of top-view building edges, with each pair containing a real and a simulated
point cloud image. The two pair of images are processed by a dual input particle
filter which produces a first estimate of the vehicle position, followed by a road
check to verify if the estimated position is on the road or not. In the latter case,
the constrained resampling is triggered, until the road check condition is satisfied.

Road and Building Masks: Two of the most clearly labeled classes of objects

in OSM are buildings and roads. This information is valuable because those are the

classes that are the most present in the point clouds produced by LiDAR sensors

when traveling in an urban environment.

By using color segmentation (mostly solid white for roads and a specific shade of

grey for buildings), combined with morphological transformations such as dilation

and erosion, we are able to generate buildings and road masks that we can later

use to generate simulated LiDAR top-view images. When extracting the roads, we

use the standard OSM layer style. However, for the buildings, we use the public

transport layer, to avoid noise resulting from building numbers and business names.

The morphological transformations are mostly applied to the road mask, in order to

83

close holes caused by overlaid street names on the images, with a kernel size (5,5)

for the dilation and (3,3) for the erosion. It is possible generate our own layers with

styles that do not include any overlaid text, but that is out of the scope of this work,

and we would rather use already available data. The resulting roads and buildings

masks of an area in OSM are shown in Figure 5.3.

Figure 5.3: Road and building masks, extracted from OSM.

Simulated and Real LiDAR images: Before attempting to localize the ve-

hicle, our method first starts by generating two pairs of images: a pair of road

top-view point cloud images, and a pair of building edges, also from the top view.

Both pairs share an important characteristic: they contain an image generated by

using the true LiDAR input point cloud, and a simulated LiDAR image generated

by using either the road or building masks, previously extracted from OSM. Next,

we will explain how the true LiDAR images are generated, in what we call the Li-

DAR processing module (LPM), followed by how the simulated LiDAR images are

generated, in the map processing module (MPM).

In the LPM, we define (xL, yL, zL), the frame attached to the LiDAR sensor, with

the zL axis pointing upward. The LiDAR sensor itself is fixed to the roof of the car,

which makes the (xL, yL) and ground planes parallel to each other. We first start by

splitting our input LiDAR point cloud in two by using the height values zLi of each

point: a top section, meant to capture the edges of the buildings reached by the

84

LiDAR sensor, and a bottom section, which after being filtered by using RANSAC

plane fitting [174], represents the road on top of which the vehicle is traveling. The

two point clouds are then projected onto the (xL, yL) plane to generate two BEV

LiDAR images. The LPM can be seen in Figure 5.4.

Figure 5.4: LPM. The LiDAR point cloud is divided into two sections using the
height value of each point, a top section (capturing surrounding buildings walls)
and bottom one (capturing the road). The bottom section undergoes RANSAC
plane fitting to extract the road, then the two point clouds are projected to produce
two top-view point cloud images.

In the MPM, for the simulated road point cloud, we apply rejection sampling on

the road mask with a Gaussian proposal, centered on the supposed vehicle location

in OSM (according to the initial guess of the starting position or the previous frame

results), and limited to a predefined region of interest. The sampling here is done for

two main reasons: first, to simulate the point distribution returned by the LiDAR

sensor, which is typically denser around the center of the scan, and becomes sparser

the more we move away from the sensor, and second to improve the speed processing,

because using all non-zero pixel values in the later calculations would result in a

significant slow-down of the whole method.

For the simulated top section of the point cloud, we proceed to use raycasting

on the building mask at the same position and region of interest used to generate

the simulated road point cloud. Raycasting is a common method used to simulate

LiDAR point clouds in autonomous driving cars simulators such as Carla [175]. By

85

first detecting the obstacles in the surrounding environment (which are shown in

the building mask in our case), we can use 2D raycasting and simulate a beam of

light that stops when it hits an obstacle. By doing that in a 360-degree fashion, we

are able to generate simulated LiDAR images. An example of this approach can be

seen in Figure 5.5, and its results are compared with the images from the LiDAR

sensor in Figure 5.6. The MPM is illustrated in Figure 5.7.

Figure 5.5: Steps of the raycasting process applied to OSM.

Figure 5.6: Comparison between LiDAR building images (top) and simulated Li-
DAR images by using raycasting (bottom).

86

Figure 5.7: MPM. The OSM region of interest is segmented to produce a building
and a road mask. Raycasting is applied to the building mask, whereas rejection
sampling on the road mask with a Gaussian proposal is applied to the road mask,
in order to produce two simulated top-view point cloud images.

Simulated LiDAR and OSM accuracy analysis: In our case, providing an

accurate localization result depends heavily on the accuracy of the map used. We

start by building a 3D point cloud road map and a building map by using the ground

truth odometry and segmentation provided by KITTI (note: this is only used here

for visualization purposes and not during the rest of the manuscript), which we then

proceed to project onto an image by using the previously discussed BEV projection.

Following that, we also build a simulated LiDAR road map and building map from

OSM by using color segmentation and raycasting. By overlaying both maps from

both modalities, we can see in Figure 5.8 that the maps generated by using OSM

and raycasting are pretty accurate and match the maps created by using the LiDAR

sensor. In come cases, occlusion of some buildings or the misrepresentation of road

width on OSM can cause some mismatches; however, in the majority of cases, the

shapes represented in both maps match.

87

Figure 5.8: Comparison between OSM and LiDAR.

5.3.2 Constrained Particle Filter

Problem Formulation: In order to localize our vehicle’s LiDAR in OSM, we use

a constrained particle filter. In our configuration, we suppose that we have a guess

of the initial pose of the vehicle in OSM (thanks to an external place recognition

solution, or a GPS signal that was eventually lost) and each particle corresponds

to a hypothetical position (x, y, α). The scale of the map is approximated by using

the map size and its corner coordinates. After each LiDAR frame, we rely on

our ICP based motion model to predict the particle positions by using two voxel-

downsampled 3D LiDAR point clouds, and then update the particles weights by

using results from the observation model. Low variance resampling [176] is triggered

or not depending on the effective size of the particles [177], and finally the road check

and subsequent constrained resampling is used if needed.

Motion Model: Our motion model relies on an ICP-based LiDAR odometry.

We approximate the transformation between two subsequent LiDAR point clouds

by using the Point-to-Point ICP algorithm [140]. We do not assume access to the

88

vehicle controls, and only use the ICP output to update the particles positions.

Observation Model: Our observation model is the pre-processed input LiDAR

point cloud, so we can match it to our simulated LiDAR images. As it was explained

in the previous section, for each frame, we have access to four top-view images, two

resulting from the LiDAR point cloud and two resulting from the simulated LiDAR,

containing the road and the building edges in both modalities. Inspired by [76], we

propose to calculate the weights of our particles based on combining the reciprocal

chamfer distance between the pixel locations of the point clouds in each pair of

images. The two terms forming the cost function are weighted by the reciprocal of

the standard deviation of all the distances calculated above, as a form of uncertainty

constraint on the weight’s distribution.

In summary, if dc is the chamfer distance, N the number of particles, zri and zbi

the list of all pixel positions of the points in the road and buildings LiDAR point

clouds top-view images respectively, transformed according to the ith particle, and

mr and mb the list of all pixel positions of the points in the top-view images of

the simulated point clouds. We define dri = 1
dc(zri ,mr)

and dbi = 1
dc(zbi ,mb)

, and

calculate σr and σb, which are the standard deviations of db = {dr1 , dr2 , . . . , drN}

and dr = {db1 , db2 , . . . , dbN}, respectively.

Finally, the weight of each ith particle can be defined as:

Wi = Wri +Wbi =
dri
σr

+
dbi
σb
. (5.1)

We choose to use the reciprocal of the chamfer distance in order to emphasize

strong particle candidates that align the most with the map. The inclusion of the

standard deviation terms is there to favor the data source that produce the most

“concentrated” set of particles, which can be interpreted as being less uncertain

89

about the final position. We attempted to calculate weights by using exp(−dc/λ)

instead of 1
dc

, but found the results to be very sensitive to the value of the parameter

λ. We have also tested the use of a joint-probability formulation rather than the

summed one, but saw no major difference in the final results.

Constrained resampling: When trying to approximate the correct position of

the vehicle, we try to enforce a simple constraint: the vehicle position should always

be on the road. This is done in the particle filter through a resampling procedure,

inspired by the methods proposed in [173, 172], that aims to gently push the final

weighted position toward the correct region (in our case, the road). This is done by

enforcing the constraint on the weighted mean value of the particles, rather than

the particles themselves.

After updating the weights of the particles, we check to see if the weighted mean

vehicle position resulting from the particle filter is on the road. If it is the case, no

intervention is needed. Otherwise, we discard one of the particles outside of the road

and resample one from the most highly weighted area on the road. Typically, only a

few resampling steps (less than 50) are needed to validate our road check. If we reach

the maximum resampling iteration, we relax the sampling criteria for the next step

of the particle filter. For speed purposes, when resampling good particles to replace

bad ones, we use inductive sampling: meaning we resample from the particles that

are already available to us. A global view of our constrained particle filter method

for localization of LiDAR point clouds in OSM is presented in Algorithm 2 and

Figure 5.2.

90

Algorithm 2 LiDAR-OSM Constrained Particle Filter Localization.

Input: Point cloud P , OSM Region of Interest J .
Output: Vehicle Position (x, y, α)

Particles← ParticleSampling(J)
(Pr, Pb)← LidarProcessingModule(P)
(P ′

r, P
′
b)←MapProcessingModule(J)

Weights← UpdateWeights(Pr, Pb, P
′
r, P

′
b)

If neffectiveSize < N
2

then (Particles,Weights) ←
LowV arReSampling(Particles,Weights)
(x, y, α)← Estimate(Particles,Weights)

// Split the particles on and off the road
Pr,Wr, Pnr,Wnr ← OnOffRoadSplit(Particles,Weights, J)

// Constrained Resampling
while (x, y) ̸∈ Road and size(Pnr) > 0
Pnr,Wnr ← DeleteByIndex(Pnr,Wnr, argmin(Wnr))
Pr,Wr ← InductiveSampling(Pr,Wr)
Particles← Concatenate(Pr, Pnr)
Weights← Concatenate(Wr,Wnr)
(x, y, α)← Estimate(Particles,Weights)

return (x, y, α)

91

5.4 Experiments

5.4.1 Dataset

We use the KITTI Odometry Benchmark [178] to test our method and compare

to other cross-modal or road-constrained localization methods. The KITTI dataset

was collected in Karlsruhe, Germany by using a VW stationwagon equipped with

a variety of sensor modalities such as high-resolution color and grayscale stereo

cameras, LiDAR sensor and a high-precision GPS/IMU inertial navigation system.

The recorded scenarios are diverse, ranging from urban scenarios to highways or

rural areas. Similar to the existing publications, we use the sequences (00, 02, 05,

07, 08, 09, 10) to test our approach. The naming of the sequences used here follows

the KITTI Odometry Benchmark references instead of those from the raw KITTI

dataset.

5.4.2 Implementation Details

During our experiments, we set the following parameters. Before using ICP, the

LiDAR point clouds are first downsampled by using Voxel Downsampling with a

resolution of 0.1 m, and we only keep points within a 30-m distance of the car,

leaving around 50 k points for each point cloud. In the LPM, and because the

LiDAR sensor is placed above the vehicle’s roof, we define the LiDAR point cloud

top section as any point with a positive elevation value, and the opposite for the

bottom section. After the projection to the top view, and before calculating the

cost of the particle filter, we drastically downsample the road and building point

clouds by only keeping 1000 points by using random sampling. This number was

determined through trial and error, by increasing the number of points, until no

improvements in accuracy were visible. During testing, we extract tiles from OSM-

92

Table 5.1: Comparison of the lengths of each of the tested KITTI sequences.

Sequences 00 02 05 07 08 09 10
Lengths (kms) 3.72 5.06 2.20 0.8 3.21 1.70 1.5

sized (320, 320) pixels and we use 100 particles to achieve pose tracking. Finally,

if one of two simulated point clouds has less than 50 points, we drop that point

cloud and only use the second as input to the cost function. This would typically

happen in areas where no buildings are around (in the beginning of sequence 09 for

example) and only the road can be used to localize our vehicle.

5.4.3 Results

For context, we list the lengths of the tested KITTI sequences in Table 5.1. The

results of our cross-modal localization approach, in comparison to other previously

proposed methods in the literature are shown in Table 5.2 and 5.3. For both transla-

tion and rotation results, we use the accumulated mean error defined as
∑N

i=1 |pi−pi|
N

to report our results, where pi and pi are the predicted and ground truth poses,

respectively, at the timestamp i. We compare our results to [75], which proposes a

method to localize LiDAR point clouds in OSM by using handcrafted feature de-

scriptors, [76] which proposes a method to localize LiDAR point clouds in satellite

maps by using the correlation between the semantic segmentation of both modalities

and [179], which presents a road-constrained monocular visual localization method.

The results tagged [140] are those obtained when using the output of the ICP mo-

tion model only without the subsequent proposed observation model. Values marked

N/A and rotation error values were not provided by the publications. Figure 5.9

shows a qualitative comparison between our final results and the ground truth.

In addition to the final accuracy that we achieve, if we take the length of the

93

Table 5.2: Comparison of the translation error on KITTI dataset in meters (m).

Sequences 00 02 05 07 08 09 10
Lengths (km) 3.72 5.06 2.20 0.8 3.21 1.70 1.5

mean max mean max mean max mean max mean max mean max mean max
[76] 2.0 12.0 9.1 35 N/A N/A N/A N/A N/A N/A 7.2 20 N/A N/A
[75] 20 150 N/A N/A 25 150 25 120 N/A N/A 25 50 180 50
[179] 3.7 14.01 11.32 25.6 4.02 8.7 N/A N/A 4.67 11.96 5.72 11.57 N/A N/A
[140] 51 162.2 114 307 20.75 70.34 7.07 15.47 62.99 195.22 35.5 96.2 14.73 29.6
Ours 1.37 3.34 3.37 7.55 1.45 3.38 1.62 3.50 3.60 7.73 2.88 6.85 1.56 3.32

Table 5.3: Comparison of the mean rotation error on KITTI dataset in degrees (◦).
Best results are in bold.

Sequences 00 02 05 07 08 09 10
[140] 58.5 40.2 9.3 13.2 44.3 20.7 6.9
Ours 1.15 3.50 2.3 1.97 3.28 2.68 2.19

Figure 5.9: Qualitative results of our cross-modal pose tracking method on the
KITTI dataset.

94

sequences into account, our method performs the best on sequence 00. This can be

explained by the dense building layout and clear road boundaries of the area. On

the other hand, the sequence where we struggle the most is sequence 08. The main

reason behind that is the amount of trees and other foreign objects that are picked

up in the LiDAR scan, which can produce noisy top-view images, thus leading the

PF to wrong estimates. Fortunately, the constraint that we impose helps to keep

the error bounded and makes it easier for the PF to correct itself later on.

5.4.4 Discussion

Constrained Particle Filter: As stated above, the main goal of the constrained

particle filter is to make sure that our final vehicle location is always on the road. We

typically need to enforce this condition when the sensor data collected by the LiDAR

is too noisy for the PF to produce accurate results. For example, in Figure 5.10, we

show in purple the areas where the road constraint was enforced, and the position

corrected by the particle filter. This happens in areas where foreign objects such as

tree trunks and thick vegetation are occluding the buildings, or when an intersection

structure is not correctly represented on OSM, causing the particle filter to be misled.

Figure 5.10 also shows that our method does not rely on the constraint all the

time and/or only tries to stay within the limits of the road. Instead, we are able to

track our position correctly most of time by using the input data, and only trigger

the constrained resampling in some corner cases, i.e., LiDAR scans are blocked by

trees. As an additional example of a good case scenario, we show a region where

the localization was successful, which can be explained by the fact that no major

occlusion is occurring in that area, and that most structures present on and around

the road are correctly represented in OSM.

95

Figure 5.10: The effects of the constrained particle filter on sequence 09 of the
KITTI dataset. Here, we show three cases where the constrained particle filter had
to correct itself using the road structure, in addition to a case where it successfully
estimated the right position using the output of the motion and observation models
only.

Finally in Table 5.4, we show results that demonstrate the superiority of our

constrained PF formulation to the acceptance/rejection approach used in [170] by

comparing the mean translation error over two sequences. The goal here is to com-

pare two ways of applying the constraints in a particle filter: first, applying the

constraints to the final estimation of the particle filter, and second, applying the

constraints while drawing the hypothesis. The latter can lead to wrong estimations

(especially when intersections are involved), which can result in discontinued tra-

96

Table 5.4: Constraint particle filter mean translation error comparison.

Method Sequence 05 Sequence 09
Ours (m) 1.4 2.8

Acceptance /Rejection (m) 17.8 3.2

jectories or even total failure of the pose tracking system. In contrast, our approach

gently pushes the estimated pose towards the road whenever it is triggered, thus

producing a smoother trajectory estimation.

Dual Input Particle Filter: Our method uses both the road and building

edges to come up with a guess at vehicle’s position by using the PF, preceding the

road check validation. We use a standard deviation-based normalizer to give more

value to the input, resulting in the best approximation. This is only safe to do if

the chamfer distances calculated when using both inputs are correlated, which is

verified in the KITTI dataset and demonstrated in Figure 5.11 for both a single

random sample and across a full sequence.

Figure 5.11: Chamfer distance correlation between road and building point clouds.
On the right, mean distance values across sequence 05. On the left, distance values
for a single random frame in sequence 00.

In Figure 5.12, we show that it is necessary to use both inputs in order to get

97

the best results possible. Figure 5.12 shows a list of heatmaps for different cases

and the use of different weight formulations. We can see from the first case that

of the weights resulting from the building edges, only db tend to result in a coarse

distribution, whereas for the road only dr tend to be smoother. This shows that

both sets of weights, when combined, can be complimentary and result in a better

final weighted sum position. While the heatmaps of the weights resulting from

the buildings only in the first case could be interpreted as “more accurate” than

the ones produced by the road, the second case that we show presents a situation

where the buildings are occluded, resulting in noisy set of weights. If we only had

access to these weights, then our position estimation would be way off compared to

the results, we would get by combining both sets of weights, because the weights

resulting from the road point cloud are reasonable in most cases. Finally, we show

a case where both inputs result in distributions that are slightly off, whereas their

combination is much more centered around the vehicle’s true position.

Figure 5.12: Interpolated heatmaps representing the weight distribution of the par-
ticles for different weights formulation, according to Equation (5.1). Red dots rep-
resent the true vehicle position.

98

Figure 5.13: Runtime distribution.

Note that it is also very useful to have access to both, in areas where only one

of them is available: For example, at the beginning of sequence 09, no buildings are

available and only the road can be used, as can be seen in top area of Figure 5.10.

Runtime analysis: Our method runs at a maximum speed of 10Hz. The LPM

takes the most amount of time with more than forty percent of the total runtime,

followed by ICP with thirty percent and the UpdateWeights step with a little bit

less than twenty percent. The constrained resampling, when triggered, consumes

less than one percent of the total runtime on average. Figure 5.13 shows the runtime

distribution for each part of the algorithm.

Robustness: We apply voxel-downsampling to all the sensor inputs in order

to speed up the whole pipeline. Table 5.5 shows a comparison of the results of

our method on sequences 07 and 10 when using different voxel sizes. These results

show that the voxel size has little effect on the accuracy of our method, giving it

the potential to work with LiDARs that produce sparser point clouds than the ones

used in this study.

We also show a comparison in Table 5.6 between the use of random sampling

and voxel sampling. Our results show that voxel downsampling is superior, which

can be explained by its ability to conserve the general structure of the point clouds.

99

Table 5.5: Voxel-downsampling resolution and mean translation (m) error compar-
ison.

Voxel Resolution (m) Sequence 07 Sequence 10
0.01 1.5 1.6
0.1 1.6 1.5
1 1.4 1.7

Table 5.6: Voxel-downsampling and random sampling mean translation error (m)
comparison.

Sampling Method Sequence 00 Sequence 07 Sequence 09
Random Sampling 2.53 3.59 9.69

Voxel Sampling 1.37 1.62 2.88

In contrast, random sampling can sometime return wildly different point clouds

from one frame to the other, leading to a decrease in accuracy when using ICP as

a motion model, but it also can end up selecting most its points from a noisy or

occluded area, which can negatively affect the accuracy of the particle filter.

5.5 Summary

This work proposes a general non-learning method for vehicle localization by using

LiDAR and OSM. We first validate the accuracy level of the OSM data needed for

vehicle localization. Subsequently, buildings and road masks are extracted to gener-

ate simulated LiDAR images by using raycasting. These images are compared with

the BEV projection of the input LiDAR point cloud by using particle filters. In ad-

dition, the extracted road mask is applied as a constraint of the vehicle location, by

making sure that the output location of our system is on the road, thus keeping our

location error bounded. The evaluation results on KITTI show that the proposed

method outperforms other existing cross-modal and road-constrained localization

100

methods that were based on OSM and/or satellite maps. We also provide a detailed

technical discussion and ablation studies to explain the advantages of the proposed

method and demonstrate its ability to produce accurate pose tracking results. Fu-

ture work will include a better way of dealing with occlusions in the sensor data, in

addition to sensor fusion methods for more precise localization.

101

Chapter 6

Conclusion

In this thesis, we covered three of the main building blocks, used in most autonomous

robots: mapping, labeling and localization. Contrary to what is typically done in

most commercial applications, and instead of relying on a single visual sensor as main

data source during the three phases mentioned above, we explored the possibility of

using cross-modal approaches, that bridge between camera and laser-based sensors.

This makes it possible for us to deploy a minimum amount of sensors and save on

cost, time and processing power.

Our first challenge what to solve the cross-modal mapping task of generating 3D

point clouds using camera images captured by UAVs. This was done by proposing

a two-stage height prediction pipeline, which combines a multi-task network with

a denosing autoencoder, in order to predict state of the art height values. The

multi-task network used in the first stage, combines the semantic labels and sur-

face normals branches with the height prediction branch to generate a coarse height

map. In the second stage, the denoising autoencoder combines all the predictions

of the first stage, and generates a final height map, which is much accurate and

noise resilient than the first one. These final height maps can then be used either by

102

themselves to generate 3D point clouds of the areas captured by the UAV or com-

bined with the available semantic and surface normals prediction to build semantic

point clouds or 3D mesh maps.

The next cross-modal task that we tackled was the labeling of pre-built point

cloud maps using camera images. Commonly done using manual labeling, this can be

both expensive and time consuming. We proposed instead, to use images captures

using an onboard camera, to detect relevant features using deep learning, before

processing them to remove noise and projecting them onto the pre-built 3D point

cloud maps. Thus, we are able to automatically generate accurate and abstracted

road and lanes labels, that can be used by a self-driving car, to guide itself in

an urban environment. This work can be extended on the future, by adding the

detection and labeling of other road features, mainly traffic sign and road markings.

Finally, we also explored the cross-modal localization challenge of LiDAR lo-

calization in OSM. Due to the scarcity of HD maps around the world, we propose

to use OSM as a map instead, since it is freely available almost everywhere and

is routinely updated by its own users. Thanks to semantic segmentation, and by

relying on the raycasting technique, we are able to use OSM to generate simulated

2D point clouds. This made it possible for us to compare the output of the LiDAR

sensor with the OSM data, and thus localize the point clouds in OSM. We also

use the road boundaries extracted from OSM, as constrain to keep our localization

error bounded. This was made possible thanks to a constrained formulation of the

particle filter algorithm. As a results, we were able to obtain the state-of-the-art

accuracy, when compared to all the recent LiDAR localization methods in OSM or

satellite maps.

103

Bibliography

[1] Ben Zhang and Denglin Zhu. A stereo slam system with dense mapping. IEEE

Access, 9:151888–151896, 2021.

[2] J.M. Saez and F. Escolano. A global 3d map-building approach using stereo

vision. In IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA ’04. 2004, volume 2, pages 1197–1202 Vol.2, 2004.

[3] Francisco Rovira-Más, Qin Zhang, and John F Reid. Stereo vision three-

dimensional terrain maps for precision agriculture. Computers and electronics

in agriculture, 60(2):133–143, 2008.

[4] Shuhuan Wen, Xin Liu, Hong Zhang, Fuchun Sun, Miao Sheng, and Shaokang

Fan. Dense point cloud map construction based on stereo vins for mobile

vehicles. ISPRS Journal of Photogrammetry and Remote Sensing, 178:328–

344, 2021.

[5] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction

from a single image using a multi-scale deep network. Advances in neural

information processing systems, 27, 2014.

[6] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and

Nassir Navab. Deeper depth prediction with fully convolutional residual net-

104

works. In 2016 Fourth international conference on 3D vision (3DV), pages

239–248. IEEE, 2016.

[7] Hamed Amini Amirkolaee and Hossein Arefi. Height estimation from single

aerial images using a deep convolutional encoder-decoder network. volume

149, pages 50–66. Elsevier, 2019.

[8] Jing Huang and Suya You. Point cloud labeling using 3d convolutional neu-

ral network. In 2016 23rd International Conference on Pattern Recognition

(ICPR), pages 2670–2675, 2016.

[9] Liqiang Zhang, Zhuqiang Li, Anjian Li, and Fangyu Liu. Large-scale urban

point cloud labeling and reconstruction. ISPRS Journal of Photogrammetry

and Remote Sensing, 138:86–100, 2018.

[10] Yicong Tian, Chen Chen, and Mubarak Shah. Cross-view image matching for

geo-localization in urban environments. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3608–3616, 2017.

[11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-

wards real-time object detection with region proposal networks. Advances in

neural information processing systems, 28, 2015.

[12] Sixing Hu, Mengdan Feng, Rang MH Nguyen, and Gim Hee Lee. Cvm-

net: Cross-view matching network for image-based ground-to-aerial geo-

localization. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 7258–7267, 2018.

[13] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.

Netvlad: Cnn architecture for weakly supervised place recognition. In Pro-

105

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 5297–5307, 2016.

[14] Liu Liu and Hongdong Li. Lending orientation to neural networks for cross-

view geo-localization. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 5624–5633, 2019.

[15] Sijie Zhu, Taojiannan Yang, and Chen Chen. Revisiting street-to-aerial

view image geo-localization and orientation estimation. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, pages

756–765, 2021.

[16] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna

Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In Proceedings of the IEEE

international conference on computer vision, pages 618–626, 2017.

[17] Yujiao Shi, Xin Yu, Liu Liu, Tong Zhang, and Hongdong Li. Optimal feature

transport for cross-view image geo-localization. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34, pages 11990–11997, 2020.

[18] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal trans-

port. Advances in neural information processing systems, 26, 2013.

[19] Yulan Guo, Michael Choi, Kunhong Li, Farid Boussaid, and Mohammed

Bennamoun. Soft exemplar highlighting for cross-view image-based geo-

localization. IEEE Transactions on Image Processing, 31:2094–2105, 2022.

[20] Sijie Zhu, Taojiannan Yang, and Chen Chen. Vigor: Cross-view image geo-

localization beyond one-to-one retrieval. In Proceedings of the IEEE/CVF

106

Conference on Computer Vision and Pattern Recognition, pages 3640–3649,

2021.

[21] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao

Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng,

and Shi-Min Hu. Attention mechanisms in computer vision: A survey. Com-

putational Visual Media, pages 1–38, 2022.

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in neural information processing systems, 30, 2017.

[23] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,

Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,

Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[24] Yujiao Shi, Liu Liu, Xin Yu, and Hongdong Li. Spatial-aware feature ag-

gregation for image based cross-view geo-localization. Advances in Neural

Information Processing Systems, 32, 2019.

[25] Hongji Yang, Xiufan Lu, and Yingying Zhu. Cross-view geo-localization with

layer-to-layer transformer. Advances in Neural Information Processing Sys-

tems, 34, 2021.

[26] Sijie Zhu, Mubarak Shah, and Chen Chen. Transgeo: Transformer is all you

need for cross-view image geo-localization. arXiv preprint arXiv:2204.00097,

2022.

107

[27] Michael Bosse and Robert Zlot. Place recognition using keypoint voting in

large 3d lidar datasets. In 2013 IEEE International Conference on Robotics

and Automation, pages 2677–2684. IEEE, 2013.

[28] Stanley Bileschi and Lior Wolf. Image representations beyond histograms

of gradients: The role of gestalt descriptors. In 2007 IEEE conference on

computer vision and pattern recognition, pages 1–8. IEEE, 2007.

[29] Marian Himstedt, Jan Frost, Sven Hellbach, Hans-Joachim Böhme, and Erik

Maehle. Large scale place recognition in 2d lidar scans using geometrical land-

mark relations. In 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 5030–5035. IEEE, 2014.

[30] Renaud Dubé, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart,

and Cesar Cadena. Segmatch: Segment based place recognition in 3d point

clouds. In 2017 IEEE International Conference on Robotics and Automation

(ICRA), pages 5266–5272. IEEE, 2017.

[31] Martin A Fischler and Robert C Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395, 1981.

[32] Kavisha Vidanapathirana, Peyman Moghadam, Ben Harwood, Muming Zhao,

Sridha Sridharan, and Clinton Fookes. Locus: Lidar-based place recognition

using spatiotemporal higher-order pooling. In 2021 IEEE International Con-

ference on Robotics and Automation (ICRA), pages 5075–5081. IEEE, 2021.

[33] Jiadong Guo, Paulo VK Borges, Chanoh Park, and Abel Gawel. Local de-

scriptor for robust place recognition using lidar intensity. IEEE Robotics and

Automation Letters, 4(2):1470–1477, 2019.

108

[34] Tixiao Shan, Brendan Englot, Fábio Duarte, Carlo Ratti, and Daniela Rus.

Robust place recognition using an imaging lidar. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 5469–5475. IEEE,

2021.

[35] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:

An efficient alternative to sift or surf. In 2011 International conference on

computer vision, pages 2564–2571. Ieee, 2011.

[36] Josef Sivic and Andrew Zisserman. Efficient visual search of videos cast as

text retrieval. IEEE transactions on pattern analysis and machine intelligence,

31(4):591–606, 2008.

[37] Lun Luo, Si-Yuan Cao, Bin Han, Hui-Liang Shen, and Junwei Li. Bvmatch:

Lidar-based place recognition using bird’s-eye view images. IEEE Robotics

and Automation Letters, 6(3):6076–6083, 2021.

[38] Zhengyou Zhang. Iterative point matching for registration of free-form curves

and surfaces, 1994.

[39] Giseop Kim and Ayoung Kim. Scan context: Egocentric spatial descriptor

for place recognition within 3d point cloud map. In 2018 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 4802–4809.

IEEE, 2018.

[40] Huan Yin, Li Tang, Xiaqing Ding, Yue Wang, and Rong Xiong. Locnet: Global

localization in 3d point clouds for mobile vehicles. In 2018 IEEE Intelligent

Vehicles Symposium (IV), pages 728–733. IEEE, 2018.

109

[41] Huan Yin, Yue Wang, Xiaqing Ding, Li Tang, Shoudong Huang, and Rong

Xiong. 3d lidar-based global localization using siamese neural network. IEEE

Transactions on Intelligent Transportation Systems, 21(4):1380–1392, 2019.

[42] Lin Li, Xin Kong, Xiangrui Zhao, Tianxin Huang, Wanlong Li, Feng Wen,

Hongbo Zhang, and Yong Liu. Rinet: Efficient 3d lidar-based place recogni-

tion using rotation invariant neural network. IEEE Robotics and Automation

Letters, 7(2):4321–4328, 2022.

[43] Yanhao Li and Hao Li. Lidar-based initial global localization using two-

dimensional (2d) submap projection image (spi). In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 5063–5068. IEEE,

2021.

[44] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint:

Self-supervised interest point detection and description. In Proceedings of the

IEEE conference on computer vision and pattern recognition workshops, pages

224–236, 2018.

[45] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Ra-

binovich. Superglue: Learning feature matching with graph neural networks.

In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 4938–4947, 2020.

[46] Kai Fischer, Martin Simon, Stefan Milz, and Patrick Mäder. Stickylocaliza-

tion: Robust end-to-end relocalization on point clouds using graph neural net-

works. In Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, pages 2962–2971, 2022.

110

[47] Xin Kong, Xuemeng Yang, Guangyao Zhai, Xiangrui Zhao, Xianfang Zeng,

Mengmeng Wang, Yong Liu, Wanlong Li, and Feng Wen. Semantic graph

based place recognition for 3d point clouds. In 2020 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 8216–8223.

IEEE, 2020.

[48] Tim Y Tang, Daniele De Martini, and Paul Newman. Get to the point: Learn-

ing lidar place recognition and metric localisation using overhead imagery.

Proceedings of Robotics: Science and Systems, 2021., 2021.

[49] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein,

and Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm

Transactions On Graphics (tog), 38(5):1–12, 2019.

[50] Younghun Cho, Giseop Kim, Sangmin Lee, and Jee-Hwan Ryu.

Openstreetmap-based lidar global localization in urban environment without

a prior lidar map. IEEE Robotics and Automation Letters, 7(2):4999–5006,

2022.

[51] Marcus A Brubaker, Andreas Geiger, and Raquel Urtasun. Map-based prob-

abilistic visual self-localization. IEEE transactions on pattern analysis and

machine intelligence, 38(4):652–665, 2015.

[52] Augusto Luis Ballardini, Daniele Cattaneo, Simone Fontana, and

Domenico Giorgio Sorrenti. Leveraging the osm building data to enhance

the localization of an urban vehicle. In 2016 IEEE 19th International Con-

ference on Intelligent Transportation Systems (ITSC), pages 622–628. IEEE,

2016.

111

[53] Ryan W Wolcott and Ryan M Eustice. Fast lidar localization using multires-

olution gaussian mixture maps. In 2015 IEEE international conference on

robotics and automation (ICRA), pages 2814–2821. IEEE, 2015.

[54] Dong-Ki Kim and Matthew R Walter. Satellite image-based localization via

learned embeddings. In 2017 IEEE International Conference on Robotics and

Automation (ICRA), pages 2073–2080. IEEE, 2017.

[55] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,

45(3):52–57, 2002.

[56] Robert Spangenberg, Daniel Goehring, and Raúl Rojas. Pole-based localiza-

tion for autonomous vehicles in urban scenarios. In 2016 IEEE/RSJ interna-

tional conference on intelligent robots and systems (IROS), pages 2161–2166.

IEEE, 2016.

[57] Zimin Xia, Olaf Booij, Marco Manfredi, and Julian FP Kooij. Cross-view

matching for vehicle localization by learning geographically local representa-

tions. IEEE Robotics and Automation Letters, 6(3):5921–5928, 2021.

[58] Yujiao Shi, Xin Yu, Liu Liu, Dylan Campbell, Piotr Koniusz, and Hong-

dong Li. Accurate 3-dof camera geo-localization via ground-to-satellite image

matching. arXiv preprint arXiv:2203.14148, 2022.

[59] Pratik Agarwal, Wolfram Burgard, and Luciano Spinello. Metric localization

using google street view. In 2015 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3111–3118. IEEE, 2015.

[60] Jesse Levinson, Michael Montemerlo, and Sebastian Thrun. Map-based pre-

cision vehicle localization in urban environments. In Robotics: science and

systems, volume 4, page 1. Citeseer, 2007.

112

[61] Keisuke Yoneda, Hossein Tehrani, Takashi Ogawa, Naohisa Hukuyama, and

Seiichi Mita. Lidar scan feature for localization with highly precise 3-d map.

In 2014 IEEE Intelligent Vehicles Symposium Proceedings, pages 1345–1350.

IEEE, 2014.

[62] Juan Castorena and Siddharth Agarwal. Ground-edge-based lidar localization

without a reflectivity calibration for autonomous driving. IEEE Robotics and

Automation Letters, 3(1):344–351, 2017.

[63] Chen Zhang, Marcelo H Ang, and Daniela Rus. Robust lidar localization for

autonomous driving in rain. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3409–3415. IEEE, 2018.

[64] Martin Magnusson. The three-dimensional normal-distributions transform: an

efficient representation for registration, surface analysis, and loop detection.

PhD thesis, Örebro universitet, 2009.

[65] Ehsan Javanmardi, Mahdi Javanmardi, Yanlei Gu, and Shunsuke Kamijo.

Autonomous vehicle self-localization based on multilayer 2d vector map and

multi-channel lidar. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages

437–442. IEEE, 2017.

[66] Farouk Ghallabi, Fawzi Nashashibi, Ghayath El-Haj-Shhade, and Marie-Anne

Mittet. Lidar-based lane marking detection for vehicle positioning in an hd

map. In 2018 21st International Conference on Intelligent Transportation

Systems (ITSC), pages 2209–2214. IEEE, 2018.

[67] Farouk Ghallabi, Ghayath El-Haj-Shhade, Marie-Anne Mittet, and Fawzi

Nashashibi. Lidar-based road signs detection for vehicle localization in an hd

113

map. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1484–1490.

IEEE, 2019.

[68] Guang Chen, Fan Lu, Zhijun Li, Yinlong Liu, Jinhu Dong, Junqiao Zhao,

Junwei Yu, and Alois Knoll. Pole-curb fusion based robust and efficient au-

tonomous vehicle localization system with branch-and-bound global optimiza-

tion and local grid map method. IEEE Transactions on Vehicular Technology,

70(11):11283–11294, 2021.

[69] Dávid Rozenberszki and András L Majdik. Lol: Lidar-only odometry and

localization in 3d point cloud maps. In 2020 IEEE International Conference

on Robotics and Automation (ICRA), pages 4379–4385. IEEE, 2020.

[70] Yufeng Yue, Chunyang Zhao, Mingxing Wen, Zhenyu Wu, and Danwei Wang.

Collaborative semantic perception and relative localization based on map

matching. In 2020 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 6188–6193. IEEE, 2020.

[71] Xieyuanli Chen, Thomas Läbe, Andres Milioto, Timo Röhling, Jens Behley,

and Cyrill Stachniss. Overlapnet: a siamese network for computing lidar

scan similarity with applications to loop closing and localization. Autonomous

Robots, pages 1–21, 2021.

[72] Weixin Lu, Yao Zhou, Guowei Wan, Shenhua Hou, and Shiyu Song. L3-

net: Towards learning based lidar localization for autonomous driving. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6389–6398, 2019.

[73] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings of

114

the IEEE conference on computer vision and pattern recognition, pages 652–

660, 2017.

[74] Nico Engel, Vasileios Belagiannis, and Klaus Dietmayer. Attention-based ve-

hicle self-localization with hd feature maps. In 2021 IEEE International Intel-

ligent Transportation Systems Conference (ITSC), pages 76–83. IEEE, 2021.

[75] Fan Yan, Olga Vysotska, and Cyrill Stachniss. Global localization on open-

streetmap using 4-bit semantic descriptors. In 2019 European Conference on

Mobile Robots (ECMR), pages 1–7. IEEE, 2019.

[76] Ian D Miller, Anthony Cowley, Ravi Konkimalla, Shreyas S Shivakumar,

Ty Nguyen, Trey Smith, Camillo Jose Taylor, and Vijay Kumar. Any way

you look at it: Semantic crossview localization and mapping with lidar. IEEE

Robotics and Automation Letters, 6(2):2397–2404, 2021.

[77] Tim Yuqing Tang, Daniele De Martini, Dan Barnes, and Paul Newman. Rsl-

net: Localising in satellite images from a radar on the ground. IEEE Robotics

and Automation Letters, 5(2):1087–1094, 2020.

[78] Tim Y Tang, Daniele De Martini, Shangzhe Wu, and Paul Newman. Self-

supervised localisation between range sensors and overhead imagery. arXiv

preprint arXiv:2006.02108, 2020.

[79] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa

Sengupta, and Anil A Bharath. Generative adversarial networks: An overview.

IEEE Signal Processing Magazine, 35(1):53–65, 2018.

[80] Youngji Kim, Jinyong Jeong, and Ayoung Kim. Stereo camera localization

in 3d lidar maps. In 2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 1–9. IEEE, 2018.

115

[81] Ryan W Wolcott and Ryan M Eustice. Visual localization within lidar maps

for automated urban driving. In 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 176–183. IEEE, 2014.

[82] Daniele Cattaneo, Matteo Vaghi, Augusto Luis Ballardini, Simone Fontana,

Domenico G Sorrenti, and Wolfram Burgard. Cmrnet: Camera to lidar-map

registration. In 2019 IEEE Intelligent Transportation Systems Conference

(ITSC), pages 1283–1289. IEEE, 2019.

[83] Daniele Cattaneo, Domenico Giorgio Sorrenti, and Abhinav Valada. Cmr-

net++: Map and camera agnostic monocular visual localization in lidar maps.

arXiv preprint arXiv:2004.13795, 2020.

[84] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for

optical flow using pyramid, warping, and cost volume. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 8934–8943,

2018.

[85] Kaiqiang Chen, Kun Fu, Menglong Yan, Xin Gao, Xian Sun, and Xin Wei.

Semantic segmentation of aerial images with shuffling convolutional neural

networks. IEEE Geoscience and Remote Sensing Letters, 15(2):173–177, 2018.

[86] Dimitrios Marmanis, Jan D Wegner, Silvano Galliani, Konrad Schindler, Mi-

hai Datcu, and Uwe Stilla. Semantic segmentation of aerial images with an

ensemble of cnss. ISPRS Annals of the Photogrammetry, Remote Sensing and

Spatial Information Sciences, 2016, 3:473–480, 2016.

[87] Jian Ding, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. Learning roi

transformer for oriented object detection in aerial images. In Proceedings of

116

the IEEE Conference on Computer Vision and Pattern Recognition, pages

2849–2858, 2019.

[88] Igor Ševo and Aleksej Avramović. Convolutional neural network based auto-

matic object detection on aerial images. IEEE geoscience and remote sensing

letters, 13(5):740–744, 2016.

[89] Bertrand Le Saux, Naoto Yokoya, Ronny Hansch, and Saurabh Prasad. 2018

ieee grss data fusion contest: Multimodal land use classification [technical

committees]. IEEE geoscience and remote sensing magazine, 6(1):52–54, 2018.

[90] Bertrand Le Saux, Naoto Yokoya, Ronny Hansch, Myron Brown, and Greg

Hager. 2019 data fusion contest [technical committees]. IEEE Geoscience and

Remote Sensing Magazine, 7(1):103–105, 2019.

[91] Naoto Yokoya, Pedram Ghamisi, Ronny Hänsch, and Michael Schmitt. 2020

ieee grss data fusion contest: Global land cover mapping with weak supervi-

sion [technical committees]. IEEE Geoscience and Remote Sensing Magazine

(GRSM), 8(1):154–157, 2020.

[92] Pierre Moulon, Pascal Monasse, and Renaud Marlet. Adaptive structure from

motion with a contrario model estimation. In Asian Conference on Computer

Vision, pages 257–270. Springer, 2012.

[93] Pierre Moulon and Pascal Monasse. Global fusion of relative motions for

robust, accurate and scalable structure from motion. In Proceedings of the

IEEE International Conference on Computer Vision, pages 3248–3255, 2013.

[94] Marcela Carvalho, Bertrand Le Saux, Pauline Trouvé-Peloux, Frédéric Cham-

pagnat, and Andrés Almansa. Multitask learning of height and semantics from

aerial images. IEEE, 2019.

117

[95] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[96] Marvin Teichmann, Michael Weber, Marius Zoellner, Roberto Cipolla, and

Raquel Urtasun. Multinet: Real-time joint semantic reasoning for autonomous

driving. In 2018 IEEE intelligent vehicles symposium (IV), pages 1013–1020.

IEEE, 2018.

[97] Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin, Yuchao Dai, Hong-

dong Li, and Ruigang Yang. Joint 3d instance segmentation and object de-

tection for autonomous driving. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June 2020.

[98] Pedram Ghamisi and Naoto Yokoya. Img2dsm: Height simulation from single

imagery using conditional generative adversarial net. volume 15, pages 794–

798. IEEE, 2018.

[99] Chao-Jung Liu, Vladimir A Krylov, Paul Kane, Geraldine Kavanagh, and

Rozenn Dahyot. Im2elevation: Building height estimation from single-view

aerial imagery. Remote Sensing, 12(17):2719, 2020.

[100] Shivangi Srivastava, Michele Volpi, and Devis Tuia. Joint height estimation

and semantic labeling of monocular aerial images with cnns. In 2017 IEEE

International Geoscience and Remote Sensing Symposium (IGARSS), pages

5173–5176. IEEE, 2017.

[101] Thanuja Dharmasiri, Andrew Spek, and Tom Drummond. Joint prediction

of depths, normals and surface curvature from rgb images using cnns. In

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 1505–1512. IEEE, 2017.

118

[102] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic

labels with a common multi-scale convolutional architecture. In Proceedings

of the IEEE international conference on computer vision, pages 2650–2658,

2015.

[103] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface re-

construction.

[104] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and

Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE

transactions on visualization and computer graphics, 5(4):349–359, 1999.

[105] Linwei Fan, Fan Zhang, Hui Fan, and Caiming Zhang. Brief review of image

denoising techniques. Visual Computing for Industry, Biomedicine, and Art,

2(1):7, 2019.

[106] Rafael C Gonzalez, Richard Eugene Woods, and Steven L Eddins. Digital

image processing using MATLAB. Pearson Education India, 2004.

[107] Anil K Jain. Fundamentals of digital image processing. Prentice-Hall, Inc.,

1989.

[108] Jacob Benesty, Jingdong Chen, and Yiteng Huang. Study of the widely linear

wiener filter for noise reduction. In 2010 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 205–208. IEEE, 2010.

[109] Ioannis Pitas and Anastasios N Venetsanopoulos. Nonlinear digital filters:

principles and applications, volume 84. Springer Science & Business Media,

2013.

119

[110] Sylvain Paris, Pierre Kornprobst, Jack Tumblin, and Frédo Durand. Bilateral

filtering: Theory and applications. Now Publishers Inc, 2009.

[111] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total varia-

tion based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-

4):259–268, 1992.

[112] Guy Gilboa and Stanley Osher. Nonlocal operators with applications to image

processing. Multiscale Modeling & Simulation, 7(3):1005–1028, 2009.

[113] Ivan Markovsky and KONSTANTIN Usevich. Low rank approximation, vol-

ume 139. Springer, 2012.

[114] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on

Medical image computing and computer-assisted intervention, pages 234–241.

Springer, 2015.

[115] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Au-

toencoder for words. volume 139, pages 84–96. Elsevier, 2014.

[116] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-

encoders. In International conference on artificial neural networks, pages 44–

51. Springer, 2011.

[117] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-

Antoine Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learn-

ing useful representations in a deep network with a local denoising criterion.

volume 11, 2010.

120

[118] Yonghao. Xu et al. Advanced multi-sensor optical remote sensing for urban

land use and land cover classification: Outcome of the 2018 ieee grss data

fusion contest. IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 12(6):1709–1724, 2019.

[119] Michael Cramer. The dgpf-test on digital airborne camera evaluation–

overview and test design. Photogrammetrie-Fernerkundung-Geoinformation,

2010(2):73–82, 2010.

[120] Markus Gerke. Use of the stair vision library within the isprs 2d semantic

labeling benchmark. 2014.

[121] Irwin Sobel. An isotropic 3x3 image gradient operator. Presentation at Stan-

ford A.I. Project 1968, 02 2014.

[122] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

et al. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016.

[123] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980, 2014.

[124] Daniele Cerra, Miguel Pato, Emiliano Carmona, Seyed Majid Azimi, Jiaojiao

Tian, Reza Bahmanyar, Franz Kurz, Eleonora Vig, Ksenia Bittner, Corentin

Henry, et al. Combining deep and shallow neural networks with ad hoc detec-

tors for the classification of complex multi-modal urban scenes. In IGARSS

2018-2018 IEEE International Geoscience and Remote Sensing Symposium,

pages 3856–3859. IEEE, 2018.

121

[125] Yonghao Xu, Bo Du, and Liangpei Zhang. Multi-source remote sensing data

classification via fully convolutional networks and post-classification process-

ing. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sens-

ing Symposium, pages 3852–3855. IEEE, 2018.

[126] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770–778, 2016.

[127] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[128] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages 4700–4708, 2017.

[129] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian seg-

net: Model uncertainty in deep convolutional encoder-decoder architectures

for scene understanding. arXiv preprint arXiv:1511.02680, 2015.

[130] National Highway Traffic Safety Administration et al. Automated driving

systems 2.0: A vision for safety. Washington, DC: US Department of Trans-

portation, DOT HS, 812:442, 2017.

[131] Ze Wang, Weiqiang Ren, and Qiang Qiu. Lanenet: Real-time lane detection

networks for autonomous driving. arXiv preprint arXiv:1807.01726, 2018.

[132] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 3431–3440, 2015.

122

[133] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep

convolutional encoder-decoder architecture for image segmentation. IEEE

transactions on pattern analysis and machine intelligence, 39(12):2481–2495,

2017.

[134] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 7263–7271, 2017.

[135] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.

In European conference on computer vision, pages 21–37. Springer, 2016.

[136] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya

Takeda, and Tsuyoshi Hamada. An open approach to autonomous vehicles.

IEEE Micro, 35(6):60–68, 2015.

[137] Thomas Moore and Daniel Stouch. A generalized extended kalman filter imple-

mentation for the robot operating system. In Intelligent autonomous systems

13, pages 335–348. Springer, 2016.

[138] Ji Zhang and Sanjiv Singh. Low-drift and real-time lidar odometry and map-

ping. Autonomous Robots, 41(2):401–416, 2017.

[139] Tixiao Shan and Brendan Englot. Lego-loam: Lightweight and ground-

optimized lidar odometry and mapping on variable terrain. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

4758–4765. IEEE, 2018.

[140] Zhengyou Zhang. Iterative point matching for registration of free-form curves

and surfaces. International journal of computer vision, 13(2):119–152, 1994.

123

[141] Martin Magnusson, Achim Lilienthal, and Tom Duckett. Scan registration

for autonomous mining vehicles using 3d-ndt. Journal of Field Robotics,

24(10):803–827, 2007.

[142] Peter Biber and Wolfgang Straßer. The normal distributions transform: A

new approach to laser scan matching. In Proceedings 2003 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No.

03CH37453), volume 3, pages 2743–2748. IEEE, 2003.

[143] Yecheng Lyu, Lin Bai, Mahdi Elhousni, and Xinming Huang. An interac-

tive lidar to camera calibration. In 2019 IEEE High Performance Extreme

Computing Conference (HPEC), pages 1–6. IEEE, 2019.

[144] Nobuyuki Otsu. A threshold selection method from gray-level histograms.

IEEE transactions on systems, man, and cybernetics, 9(1):62–66, 1979.

[145] Adriano Moreira and Maribel Yasmina Santos. Concave hull: A k-nearest

neighbours approach for the computation of the region occupied by a set of

points. 2007.

[146] Radu Bogdan Rusu. Semantic 3d object maps for everyday manipulation in

human living environments. KI-Künstliche Intelligenz, 24(4):345–348, 2010.

[147] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time.

In Robotics: Science and Systems, volume 2, 2014.

[148] Xieyuanli Chen, Andres Milioto, Emanuele Palazzolo, Philippe Giguere, Jens

Behley, and Cyrill Stachniss. Suma++: Efficient lidar-based semantic slam. In

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 4530–4537. IEEE, 2019.

124

[149] Younggun Cho, Giseop Kim, and Ayoung Kim. Deeplo: Geometry-aware deep

lidar odometry. arXiv preprint arXiv:1902.10562, 2019.

[150] Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, and Cyrill Stach-

niss. Range image-based lidar localization for autonomous vehicles. arXiv

preprint arXiv:2105.12121, 2021.

[151] Mahdi Elhousni, Yecheng Lyu, Ziming Zhang, and Xinming Huang. Auto-

matic building and labeling of hd maps with deep learning. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 34, pages 13255–13260,

2020.

[152] OpenStreetMap contributors. Planet dump retrieved from

https://planet.osm.org . https://www.openstreetmap.org , 2017.

[153] Krista Merry and Pete Bettinger. Smartphone gps accuracy study in an urban

environment. PloS one, 14(7):e0219890, 2019.

[154] Michael G Wing, Aaron Eklund, and Loren D Kellogg. Consumer-grade

global positioning system (gps) accuracy and reliability. Journal of forestry,

103(4):169–173, 2005.

[155] Mahdi Elhousni and Xinming Huang. A survey on 3d lidar localization for

autonomous vehicles. In 2020 IEEE Intelligent Vehicles Symposium (IV),

pages 1879–1884, 2020.

[156] Philipp Ruchti, Bastian Steder, Michael Ruhnke, and Wolfram Burgard. Lo-

calization on openstreetmap data using a 3d laser scanner. In 2015 IEEE

International Conference on Robotics and Automation (ICRA), pages 5260–

5265. IEEE, 2015.

125

[157] Christian Landsiedel and Dirk Wollherr. Global localization of 3d point clouds

in building outline maps of urban outdoor environments. International journal

of intelligent robotics and applications, 1(4):429–441, 2017.

[158] Augusto Luis Ballardini, Simone Fontana, Axel Furlan, Dario Limongi, and

Domenico Giorgio Sorrenti. A framework for outdoor urban environment es-

timation. In 2015 IEEE 18th International Conference on Intelligent Trans-

portation Systems, pages 2721–2727. IEEE, 2015.

[159] Augusto Luis Ballardini, Simone Fontana, Daniele Cattaneo, Matteo Mat-

teucci, and Domenico Giorgio Sorrenti. Vehicle localization using 3d building

models and point cloud matching. Sensors, 21(16):5356, 2021.

[160] Mengyin Fu, Minzhao Zhu, Yi Yang, Wenjie Song, and Meiling Wang. Lidar-

based vehicle localization on the satellite image via a neural network. Robotics

and Autonomous Systems, 129:103519, 2020.

[161] Ankit Vora, Siddharth Agarwal, Gaurav Pandey, and James McBride. Aerial

imagery based lidar localization for autonomous vehicles. arXiv preprint

arXiv:2003.11192, 2020.

[162] Frederik Maes, Andre Collignon, Dirk Vandermeulen, Guy Marchal, and Paul

Suetens. Multimodality image registration by maximization of mutual infor-

mation. IEEE transactions on Medical Imaging, 16(2):187–198, 1997.

[163] Mykhail Uss, Benoit Vozel, Vladimir Lukin, and Kacem Chehdi. Efficient

discrimination and localization of multimodal remote sensing images using

cnn-based prediction of localization uncertainty. Remote Sensing, 12(4):703,

2020.

126

[164] Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank Dellaert. Robust

monte carlo localization for mobile robots. Artificial intelligence, 128(1-2):99–

141, 2001.

[165] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebastian Thrun. Monte

carlo localization for mobile robots. In Proceedings 1999 IEEE International

Conference on Robotics and Automation (Cat. No. 99CH36288C), volume 2,

pages 1322–1328. IEEE, 1999.

[166] Henri Nurminen, Anssi Ristimäki, Simo Ali-Löytty, and Robert Piché. Particle

filter and smoother for indoor localization. In International Conference on

Indoor Positioning and Indoor Navigation, pages 1–10. IEEE, 2013.

[167] Martin Adams, Sen Zhang, and Lihua Xie. Particle filter based outdoor

robot localization using natural features extracted from laser scanners. In

IEEE International Conference on Robotics and Automation, 2004. Proceed-

ings. ICRA’04. 2004, volume 2, pages 1493–1498. IEEE, 2004.

[168] Bradley Ebinger, Nidhal Bouaynaya, Robi Polikar, and Roman Shterenberg.

Constrained state estimation in particle filters. In 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4050–

4054, 2015.

[169] Lixin Lang, Wen-shiang Chen, Bhavik R Bakshi, Prem K Goel, and

Sridhar Ungarala. Bayesian estimation via sequential monte carlo sam-

pling—constrained dynamic systems. Automatica, 43(9):1615–1622, 2007.

[170] Hyondong Oh and Seungkeun Kim. Persistent standoff tracking guidance using

constrained particle filter for multiple uavs. Aerospace Science and Technology,

84:257–264, 2019.

127

[171] Zhonggai Zhao, Biao Huang, and Fei Liu. Constrained particle filtering meth-

ods for state estimation of nonlinear process. AIChE Journal, 60(6):2072–2082,

2014.

[172] Nesrine Amor, Nidhal Bouaynaya, Petia Georgieva, Roman Shterenberg, and

Souad Chebbi. Eeg dynamic source localization using constrained particle

filtering. In 2016 IEEE Symposium Series on Computational Intelligence

(SSCI), pages 1–8. IEEE, 2016.

[173] N Amor, G Rasool, N Bouaynaya, and R Shterenberg. Hand movement dis-

crimination using particle filters. In 2018 IEEE Signal Processing in Medicine

and Biology Symposium (SPMB), pages 1–5. IEEE, 2018.

[174] Orazio Gallo, Roberto Manduchi, and Abbas Rafii. Cc-ransac: Fitting planes

in the presence of multiple surfaces in range data. Pattern Recognition Letters,

32(3):403–410, 2011.

[175] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and

Vladlen Koltun. Carla: An open urban driving simulator. In Conference

on robot learning, pages 1–16. PMLR, 2017.

[176] Simon Parsons. Probabilistic robotics by sebastian thrun, wolfram burgard

and dieter fox, mit press, isbn 0-262-20162-3. The Knowledge Engineering

Review, 21(3):287–289, 2006.

[177] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques

for grid mapping with rao-blackwellized particle filters. IEEE transactions on

Robotics, 23(1):34–46, 2007.

128

[178] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision

meets robotics: The kitti dataset. The International Journal of Robotics Re-

search, 32(11):1231–1237, 2013.

[179] Shuai Yang, Rui Jiang, Han Wang, and Shuzhi Sam Ge. Road constrained

monocular visual localization using gaussian-gaussian cloud model. IEEE

Transactions on Intelligent Transportation Systems, 18(12):3449–3456, 2017.

129

