


Abstract

Ocean currents and tidal energy are significant renewable energy resources, and new

concepts to extract this untapped energy have been studied in the last decades. Teth-

ered undersea kite (TUSK) systems are an emerging technology which can extract

ocean current energy. TUSK systems consist of a rigid-winged kite, or glider, moving

in an ocean current. One proposed concept uses an extendable tether between the

kite and a generator spool on a fixed or floating platform. As the kite moves across

the current at high speeds, hydrodynamic forces on the kite tension the tether which

extends to turn the generator spool.

Since the TUSK system is a new technology, the process of bringing a TUSK de-

sign to commercial deployment is long and costly, and requires understanding of the

underlying flow physics. The use of computational simulation has proven to be suc-

cessful in reducing development costs for other technologies. Currently, almost all

computational tools for analysis of TUSK systems are based on linearized hydrody-

namic equations in place of the full Navier-Stokes equations. In this dissertation,

the development of a novel computational tool for simulation of TUSK systems is

described. The numerical tool models the flow field in a moving three-dimensional

domain near the rigid undersea kite wing. A two-step projection method along with

Open Multi-Processing (OpenMP) on a regular structured grid is employed to solve

the flow equations. In order to track the rigid kite, which is a rectangular planform

wing with a NACA-0012 airfoil, an immersed boundary method is used. A slip bound-

ary condition is imposed at the kite interface to decrease the computational run-time

while accurately estimating the kite lift and drag forces. A PID control method is

also used to adjust the kite pitch, roll and yaw angles during power (tether reel-out)
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and retraction (reel-in) phases to obtain desired kite trajectories.

A baseline simulation study of a full-scale TUSK wing is conducted. The simulation

captures the expected cross-current, figure-8 motions during a kite reel-out phase

where the tether length increases and power is generated. During the following reel-in

phase the kite motion is along the tether, and kite hydrodynamic forces are reduced so

that net positive power is produced. Kite trajectories, hydrodynamic forces, vorticity

contours near the kite, kite tether tension and output power are determined and

analyzed. The performance and accuracy of the simulations are assessed through

comparison to theoretical estimations for kite power systems. The effect of varying

the tether (and kite) velocity during the retraction phase is studied. The optimum

condition for the tether velocity is observed during reel-in phase to increase the net

power of a cycle. The results match theoretical predictions for tethered wind energy

systems. Moreover, the effect of the tether drag on the kite motion and resulting power

output is investigated and compared with the results of the baseline simulation. The

kite drag coefficient increases by 25% while the effect of the tether drag is included

into the baseline simulation. It affects the trajectory and the velocity of the kite.

However, it has a small effect on the power generation for the proposed concept of

TUSK system.
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Chapter 1

Introduction

Fossil fuels are presently used to satisfy the majority of global energy needs. Due

to climate change concerns, researchers are studying sustainable energy technologies

as alternatives to fossil fuels. One renewable energy resource that has not been

adequately utilized is ocean and tidal currents. International Energy Agency stated

that the potential exploitable ocean current energy resource is 800 TWh per year.

Figure 1.1: Ocean current distribution around the world. © NOAA.

For instance, the energy potential of Agulhas current off the coast of south Africa

has been estimated at about 1913 GWh per year [1], while the Gulf Stream’s energy

potential is about 219 GWh [2]. Tethered undersea kite systems (TUSK) are a pro-

1



2 

 

 

 

1 Generator 6 Kite 
2 Floating Platform 7 Kite Path 
3 Water Surface 8 Sea Bed 
4 Mooring systems 9 Seabed Anchors 
5 Tether 10 Ocean Current 

1

2

3

44

5

6

7

7

99
8

10

Figure 1.2: TUSK system concept.

posed technology which can extract ocean current energy. In TUSK systems, which

were first proposed by Landberg [3], a rigid-winged kite is connected by a tether to a

floating platform at the ocean surface as shown in Fig. 1.2. The rigid-winged kites in

TUSK systems are similar to gliders in airborne kite energy devices [4]. Generated

hydrodynamic forces, which are obtained solely due to the current passing over the

kite, lead the kite moving across the current at high velocity. The exact path of the

kite can be specified by controlling the motion of the kite about its pitch, roll and

yaw axes.

There are two main configurations of extracting power for airborne kite energy sys-

tems, FlyGen and Ground-Gen configurations, and similar ideas can be used for

underwater kite systems. In Fly-Gen devices, a wind turbine and generator on the

kite itself produce on-board electric energy of the glider during its flight [5]. The

obtained energy is transmitted to the ground by a tether which integrates electric ca-
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bles. Fly-Gen systems have different principals such as wing lift, Buoyancy and static

lift, and Rotor thrust (Fig. 1.3) [5]. There is another Fly-Gen concept that aims at

exploiting high altitude wind energy by using a rotating aerostat which exploits the

Magnus effect [6, 7].

(a) (b)

(c) (d)

Figure 1.3: Fly-Gen configuration for airborne wind energy devices. a) A tethered

flight of special gliders, design by Makani Power [8]. b) Flight with multiple wings,

design by Joby Energy [9]. c) Aerodynamically shaped aerostats filled with lighter-

than-air gas, design by Altaeros Energies [10]. d) Rotor thrust flying with the same

turbines used for electrical power generation, design by Sky WindPower [11].

The Fly-Gen configuration is used for underwater kite systems to obtain energy from
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(a) (b)

Figure 1.4: Fly-Gen configuration for underwater kite systems by Minesto UK,

Ltd [12].

ocean currents as shown in Fig. 1.4. In Fly-Gen configuration the length of tethers

do not extend or retract, therefore, simpler controller can be employed. The kite

is controlled to move in a circular or figure-8 shapes motion with a constant tether

length. In this concept, the risk of damage during a kite crash, due to decreasing the

current speed below minimum values required to sustain flight, is high. Moreover, in

order to lower the losses during the transmission, large transformers are required to

increase the voltages which leads to increase the weight and size of TUSK systems.

Since it is not always practical to use large transformers, the voltage of the power

coming down the tethers is lower than the optimal value for the tether length distance

between the kite and a step-up transformer on the ground [4].

In another concept TUSK systems which is studied in this dissertation, a tether at-

tached to the kite is wound around a generator spool on a fixed or floating platform

in an ocean current. The electrical energy is obtained using the hydrodynamic forces

imposed on the kite that are transmitted from the rigid underwater kite to the genera-

tor through the tether shown in Fig. 1.5. It is similar to the Ground-gen configuration
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in airborne wind kite systems.

(a) The power is generated in this phase while the length

of the tether increases.

(b) The power is consumed during the retraction

phase.

Figure 1.5: Ground-Gen configuration of TUSK systems.

Power is obtained with a two-phase cycle, in which electrical energy is produced in

a reel-out (power) phase, and a smaller amount of energy is consumed during reel-in

(retraction) phase. While the kite moves down stream in a circular or figure-8 motion

during a reel-out phase as shown in Fig. 1.5(a), the tether spools out and rotates
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(a) (b)

Figure 1.6: Ocean current velocity around gulf stream.© Delft Institute for Earth

Oriented Space Research

the generator shaft. When a maximum tether length is reached, the kite pitch, roll

and yaw angles are adjusted to reduce the hydrodynamic forces on the kite during

a subsequent reel-in phase. Since the hydrodynamic forces during the reel-out phase

are larger compared to the reel-in phase, a positive net power is obtained during a

power-retraction cycle. The net power is guaranteed by a control system that adjusts

the hydrodynamic forces imposed on the kite [13] and the flight path [14] to enhance

the power production in the power phase and reduce the power consumption in the

retraction phase. Moreover, TUSK systems are preferred to implement near the ocean

surfaces due to higher velocity at the ocean surface (Fig. 1.6) and its effect on the

power generation. Since the generation equipment is placed on the floating platform

in the Ground-Gen configuration, the risk of damage from a kite crash is lower than

the Fly-Gen configuration.

The proposed TUSK system can extract significant power from an ocean current.

Loyd [15] presented the maximum theoretical power from a constant flowing current
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during the power phase of a kite by:

Ptheo. =
2

27
ρAV 3CR(

CR
Cd

)2, (1.1)

where ρ is the water density, V is the current velocity, A is the area of the kite,

CR is the resultant kite coefficient, and Cd is the total drag coefficient including

the kite and the tether. A kite with the area of A = 24 m2, and average mean

aerodynamic coefficients of CR = 0.7 and Cd = 0.1 over the power phase, moving

around the ocean surface with a speed of V = 1 m/s, with a tether unwinding at

an average longitudinal velocity of Vt = 0.33 m/s would theoretically produce power

around 60, 000 Watt (60 KW). System inefficiencies would lower the power, however

the power calculation is also conservative in several aspects, for example larger kite

areas could be achieved. In order to calculate a power coefficient for comparison to

the Betz limit (Cp = 16/27 = 59%), the area swept by the kite (Across−current) during

an assumed cross-current motion through a 15◦ arc at tether length Lt = 100 m, with

a wingspan b = 8 m, would be Across−current = 240 m2 which is then used to find:

CP =
Ptheo.

1
2
ρAcross−currentV 3

c

. (1.2)

Table 1.1 presents typical values for key performance and design parameters for TUSK

and conventional marine hydro-kinetic (MHK) turbine systems. It presents maximum

theoretical power output for both systems. Typical power coefficients for both systems

is also given confirming that they do not violate the Betz limit. The theoretical power

is calculated based on Eq. 1.1 for TUSK systems while for a fixed marine turbine is

obtained by:

P =
1

2
CpρAV

3
c . (1.3)

Here, for the fixed marine turbine, Cp is considered as Betz limit (16/27). It should

be noted that the theoretical power for TUSK systems is considered just during the
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Table 1.1: Comparison of TUSK and fixed marine turbine systems.

Parameter TUSK Systems Fixed Marine Turbine

Area (m2) 24 24

Density (kg/m3) 1000 1000

Velocity (m/s) 1.0 1.0

CR 0.70 −

Cd 0.10 −

Theoretical Power (Watt) ∼ 60, 000 ∼ 7000

Cross-current Area (m2) 240 24

Power Coefficient (CP ) 0.47 < 0.59 0.59

power phase, while the power required to retract the TUSK systems will reduce the

net power output. This reduction can be estimated by noting that the most efficient

AWE systems currently achieve peak power output of about 80%, and average power

output of about 40% of the maximum theoretical power [11].

Another way to consider the increased power output of TUSK systems follows the

observation that the outer portion of a fix turbine blade contributes the majority of

the power produced by the turbine (Fig. 1.7). Therefore, the inner portions of the

blade, hub, and tower which comprise the majority of the weight and complexity of

the turbine, generate a minor part of the power produced by the turbine. In TUSK

systems, the inner portion of the blade, hub and tower of conventional marine turbines

are replaced with a single lightweight tether. This leads to an increased power/weight

ratio for TUSK systems [11]. In the Ground-Gen configuration, a discontinuous power

output, with alternating time-periods is achieved but optimal design and deployment

could significantly reduce the size of electrical storage needed [5].
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Figure 1.7: The outer portion of turbine blades compared to the kite in the TUSK

systems.

1.1 Literature Review

Underwater kites were first proposed by Landberg [3] in 2007. Minesto UK Ltd,

founded in 2007, is developing a system it calls Deep Green. That system uses an

underwater wing with upturned tips, a kite-mounted turbine, and a tether that runs

to the ocean floor as shown in Fig. 1.4. Moodley et al. [1] conducted a preliminary

economic analysis on the feasibility of the Minesto Deep Green technology, which

uses undersea kites to extract tidal and ocean current energy, for the Agulas Cur-

rent near South Africa. They found Deep Green to be more cost-effective than other

hydro kinetic technologies. Lazakis et al. [16] have also conducted a risk assessment

of installation and maintenance activities for the Minesto Deep Green system, and

Lazakis et al. [16,17] have investigated operational and maintenance parameters that

affect system cost. Minesto has conducted long-term sea trials of quarter-scale kites,

which have been underway off the coast of Northern Ireland since 2010. At the same
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time, researchers at the University of Strathclyde in the United Kingdom, working

with Minesto, have developed a kite motion simulator that includes hydrodynamic

force, tether, buoyancy, and added mass models to aid Deep Green technology de-

velopment [18]. Minesto’s next step is to implement a grid-connected, 500 kW per

device off the coast of Wales in 2017. Minesto UK Ltd. has advanced their research

and development to the sea-trial stage, but to the best of the author’s knowledge have

published limited technical analyses of their system in the archival literature. A Cana-

dian company, HydroRun Technologies Ltd. [19], started developing its Free-stream

Glider technology for use in river currents in 2012. Its underwater wing resembles

a glider, complete with rudders and elevators on tail surfaces behind the wing. The

glider is tethered to a generator on a buoy on the river surface. After successfully

testing a 40 kW pilot plant, HydroRun suspended operations in 2015 due to some

changes in the economics of the energy industry in Canada. Moreover, SeaQurrent

is a start-up created to make electricity generated from tidal currents affordable and

internationally accessible. To achieve this, the company develops an innovative sys-

tem using an underwater kite that is ecologically friendly [20]. They use two kites

(one creates power as the other retracts), to extract the energy which is anchored

to an ocean bottom as shown in Fig. 1.8. Also, Japans New Energy and Industrial

Technology Development Organization (NEDO) with Tokyo - IHI Corporation and

Toshiba Corporation has launched, a research program that will investigate current

power by floating kite turbines in the Kuroshio Current [21]. This system consists of a

power generation device with two turbines whose blades rotate in opposite directions

to each other. Although the kite turbines do not have a cross-current motion, it can

be installed at great depths as it is operated by mooring it to the ocean floor and

allowed to float in the ocean current like a kite [21].

Olinger and Wang have published some of the first technical analysis of TUSK sys-
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(a) (b)

Figure 1.8: Underwater kite systems design by SeaQurrent company [20].

tems in the archived literature [22,23]. Initial design studies including power estimates

have been conducted. A six degree of freedom TUSK model was also used to simu-

late TUSK kite trajectories to verify these power estimates. Wang and Olinger [23]

extended those simulations by incorporating improved hydrodynamic models for the

kite and tether, and adding a detailed cavitation model. Also, Li et al. [24,25] studied

the dynamics of TUSK system and proposed a passivity controller to control the tra-

jectory of the kite. The studies cited above [18,22–25] that develop models for TUSK

systems are differential equation based, and use relatively simple (linear, inviscid)

models to obtain kite lift and drag forces.

While TUSK systems have rarely been investigated, airborne kite systems have been

studied extensively. Using kites to extract wind energy was first studied by Loyd [15].

He investigated the concept of using crosswind kite to harness high altitude wind en-

ergy. He calculated that wind turbines in a crosswind motion could produce more

power than equivalent turbines placed on the ground. He also patented his idea

in 1981 [26]. Airborne wind energy systems (AWE) inspired by Loyd’s work, have
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been extensively studied [13, 14, 27, 28] as an alternative to wind turbines. More-

over [29–32] have established the feasibility of AWE systems and advanced the ability

to model the dynamics and design of tethered kite components such as aerodynamic

kites, high strength tether and control system of the kite. Analysis and design of

autonomous kite trajectory controllers for AWE systems, have been recently studied

in Archer et al. [33], Williams et al. [13], Aragotov and Silvennoinen [32], and Er-

hard and Strauch [30]. In addition, the availability of global wind resources has been

investigated by many research centers and companies:

KiteGen Research: KiteGen Research (KGR) is one of the first companies to test a

Ground-Gen configuration prototype in Italy [34]. They control the kite (aircraft)

based on two power-tethers from a control station on the ground [35, 36]. They

successfully demonstrated the first prototype in 2006 [35, 37]. KiteGen Research fo-

cused on, “KiteGen Stem”, a new generator that can generate 3 MW, and patented in

2008 [38,39]. They retracted the kite with a side-slip maneuver which aims to consume

minimum energy during this phase [40]. KiteGen Research is developing special aero-

dynamic tethers [41] in order to enhance the system performances which is patented

in 2010. Moreover, they are going to use the stem technology for offshore airborne

wind energy devices [42] because offshore AWE devices are very promising [43].

Kitenergy: This is another Italian company where the similar control scheme is used

to control the kite as KiteGen Research have done [44,45]. While they can generate 60

kW of rated power [46], they submitted another patent in Ground-Gen configuration

of AWE devices [47].

SkySails Power: This company was founded in Gemany where they developed a wind

propulsion system based on kites for cargo vessels [48,49]. They control the kite angle
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of attack using a single tether and a control pod [50]. They also submitted a patent

for a recovery system [49] designed for packing the kite in a storage compartment [51].

TwingTec: Twingtec is a Swiss company that is producing a 100 kW Ground-Gen

configuration AWE system. They are developing a glider with embedded rotors which

can take-off and land automatically. They intend to use a generator in a 20-foot

container to target off-grid and remote markets which would supply continuous and

reliable electrical power due to the integration with conventional diesel generators [5,

52].

TU Delft: One of the first research on AWE devices was started at Delft university by

Professor Ockels, in 1996 [27]. They collaborate with Karlsruhe University of Applied

Sciences to develop and test a 20 kW experimental pumping kite generator [53] in

which the wing demonstrated fully automatic operation [54]. Delf University also

tested a new alternative device for controlling the kite in 2013, while the concept was

too complex and too sensitive to deviations from nominal operation [55].

Ampyx Power: The Dutch Ampyx Power was the first company that proposed the

pumping glider generator [56,57]. They currently are developing “PowerPlanes” which

are controlled automatically by state of the art avionics [58]. They can generate 6

kW with peaks of over 15 kW power using a glider flight which is fully autonomous

during normal operations.

EnerKite: This is another German company that test and develop the portable pump-

ing kite generator. They can generate a continuous power of 30 kW in which they use

a Ground-Gen configuration of AWE devices and is controlled by three tethers [5].

Their goal is to achieve 100 kW power using an autonomous launch and landing

system for semi-rigid wings [59]
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Windlift: Windlift was founded in US and have developed the Ground-Gen concept

AWE devices similar to that of Enerkite. They tested a prototype which achieved 12

kW rated of power [60]. They intended to sell their products to the military [5].

KU Leuven: KU started their research and investigation on AWE devices in 2006.

They tested and developed a tether glider with a novel procedure [61]. They are

currently developing a larger experimental test set-up, with a 10 kW rate of power

production.

SwissKitePower: SwissKitePower was founded in Swiss in 2009 which involved four

laboratories from different universities: FHNW, EMPA, ETH, and EPFL. They tested

and developed a new Ground-Gen configuration of AWE device in 2012 [62], but that

project was ended in 2013. Then, one of the involved laboratories (FHNW) started

to collaborate with the company TwingTec [5].

NASA Langley: NASA conducted a study on AWE devices in one of their research

center, Langley, in which they developed a Ground-Gen configuration of the AWE

systems. The kite is controlled by two tethers, a vision system and sensors which are

located on the ground [63].

Makani Power: Makani Power company have developed and tested different proto-

types of AWE devices for 9 years [8]. They tested Ground-Gen configuration with

single and multiple tethers, and with soft and rigid wings [64]. They submitted differ-

ent patents on tether tension sensor [65], aerodynamic cable [66] and a new idea of a

bimodal flight to solve take-off and landing barriers [67]. Makani developed “M600”,

a 600 kW prototype, which is working with 8 turbines and is undergoing testing [5]

Joby Energy: Joby Energy was founded in 2008 in the US and developed the Fly-Gen
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configuration AWE systems. They use a multi-frame structure with embedded airfoil

for airborne vehicle [9] and submitted a patent for aerodynamic tethers [68]. While the

airborne vehicle is different than those of Joby Energy and Makani companies, they

have similar power generation method and take-off and landing maneuvers [69,70].

Altaeros Energies: MIT and Harvard alumni [10, 71, 72] led a Massachusetts-based

business that developed and tested flying wind turbines in a stationary position.

They used ring shaped aerostat with a wind turbine installed inside the ring and due

to the lighter weight of generator than the air, the take-off and landing maneuvers are

simplified. They only need to overcome the stability barrier in which the generator

would be in the right position relative to the wind [73].

Sky Windpower: They proposed a different kind of tethered craft in which three iden-

tical rotors mounted on an airframe that is connected to a ground station by a tether

with inner electrical cables [74–77]. This is the first concept of AWEs that is tested

at at University of Sidney in 1986 [11]. While similar concept of Take-off and landing

maneuvers are used as those of Makani’s, the electric generation operation is different.

Sky Windpower went out of business in 2015.

New companies: There are many companies that have been founded recently [5, 34].

e-Kite was founded in the Netherlands in 2013. They tested a 50 kW Ground-Gen

configuration that fly at the low altitude [78]. Enevate company conducted a study

on TU Delft AWES systems to bring it in commercial product [5]. Kitemill, founded

in Norway, where their focus is on Ground-Gen configuration AWE devices where a

one tether rigid wing system with on-board actuators is used to control the kite [5].

Moreover, eWind is a US company developing the Ground-Gen configuration AWE

systems with rigid wing that fly at low altitude [5].
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There are other different research centers that have been conducting and studying on

AWEs systems, such as University of Grenoble [79], Sussex University [80], Depart-

ment of Mechanical Engineering of Rowan University [81] and Worcester Polytechnic

Institute [82]. The state-of-the-art in AWE systems has been recently summarized in

Ahrens et al. [34].

Due to the similarity of AWE and TUSK systems, lessons could be used from AWE

to guide TUSK development. Although there are some similarities between the two

classes of systems, there are distinct advantages associated with utilizing underwater

kites; such as higher density of the water than air, which leads to increased power

output and the stability of the ocean currents in direction and intensity compared

to air wind. A detailed account of the amount of power that can be obtained with

TUSK, AWE and MHK is presented in [22].

1.2 Modeling of Fluid-Solid Interaction

In order to model the interaction of the solid underwater kite with the surround-

ing fluid current, an immersed boundary (IB) method is used. There are different

methods have been proposed to capture the fluid-solid interaction, such as body con-

formal [83–85], fictitious domain [86], and immersed boundary methods [87–89]. In

the body conformal mesh method, the computational domain includes only the fluid

and the mesh conforms to the solid geometry. Since this method is complex, using an

unstructured grid is inevitable. Also, due to the motion of the solid object, the com-

putational domain is changing in time, and re-meshing is required [90]. Moreover, the

flow quantities, including velocity and pressure, have to be mapped from the previous

to the new time step, and this mapping can be computationally intensive [83]. The
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immersed boundary and the fictitious-domain method are based on relatively similar

ideas, with the immersed boundary term usually used when the underlying fluid solver

is a finite volume method, and the fictitious-domain term used when the flow solver

is based on finite elements [91]. The immersed boundary method was introduced by

Peskin [87] to model cardiac mechanics. In this method, a body force is added to the

Navier-Stokes equations along the solid-fluid interface. The Navier-Stokes equations

are solved on the entire computational domain and interpolated fluid velocities inside

the solid are used to determine the motion of the solid [92]. The computational cost

of this method is very low. The efficiency of the immersed boundary method, used

in this thesis, is well-established [93–95].

1.3 Goals and Contributions

This dissertation seeks to develop numerical simulations to model the 3D kite and

tether dynamics of a TUSK system using a moving computational domain method.

Nonlinear effects are captured in the present study since the full Navier-Stokes equa-

tions are solved for the ocean current flow field surrounding the underwater kite. The

computational tool includes a flow solver to solve the flow equations where a two-

step method in the finite-volume context is used coupled with Open Multi-Processing

(OpenMP) [96]. The immersed boundary method [97] is incorporated to simulate

the interaction of the kite with the flow. Since TUSK system kites generally fly in

cross-current paths, a PID controller is used to control the trajectory of the kite dur-

ing the cross current motion of the kite. Although the focus of this dissertation is

numerical modeling of TUSK systems in 3D, 2D simulations have been performed

as a preliminary step in which the kite geometric and effective angles of attack are
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controlled by changing the length of tethers. The numerical power output from a

simple kite moving in two-dimensional motion is verified against theoretical results

from Loyd [15]. Also, the effect of varying different parameters on the power output

of 2D TUSK systems is studied. Computational run time limitations of the numerical

simulation of 3D kite trajectory occur if a fixed computational domain is used. There-

fore, a moving numerical domain is used in the computational methods in this thesis

in order to decrease the computational run-time. In order to capture boundary layer

and viscous drag at the kite interface, a very fine grid resolution is required. This

leads to increase the computational run-time drastically in 3D simulations. There-

fore, the slip condition is applied at the kite interface to accurately estimate the kite

drag prediction using coarse grid resolutions.

A baseline simulation study of a full-scale TUSK wing is conducted. The simulation

captures the cross-current motions during a kite reel-out phase where the tether length

increases and power is generated. During the following reel-in phase the kite motion is

along the tether, and kite hydrodynamic forces are reduced so that net positive power

is produced. Kite trajectories, hydrodynamic forces, vorticity contours near the kite,

kite tether tension and output power are determined and analyzed. The effects of

tether retraction velocity and tether drag on the underwater kite performance are

also investigated.

The main contributions of this research are:

• Development of a computational tool based on the Navier-Stokes equations for

accurate modeling of tethered undersea kites for power generation in ocean

currents. To the best of author’s knowledge, this is one of the first dedicated

codes based on the Navier-Stokes equations for modeling TUSK systems.
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• Baseline simulations for a full-scale TUSK wing have been performed and basic

TUSK performance such as net power, hydrodynamic forces and the kite tra-

jectory are shown. The results in 2D and 3D are compared with the theoretical

data, conducted by Loyd [15] and Ahrens [34], to verify the accuracy of the

numerical model.

• A moving computational domain is incorporated into the computational tool to

reduce the computational run-time.

• A very fine grid resolution is required to capture boundary layer and viscous

drag at the kite interface, and it increases the computational run-time in 3D

simulations drastically. In order to more accurately estimate kite lift and drag

forces at coarser grid resolutions, the slip condition is implemented at the kite

interface.

• Grid refinement and Reynolds number independency have been studied. The ac-

curacy of the moving numerical domain has been investigated by conducting

different simulations and comparing the results with fixed computational do-

main simulations.

• The effect of varying tether drag and tether retraction velocity in 3D simulations,

and tether velocity during the power phase and inlet current velocity in 2D

simulations on the performance of TUSK systems is investigated.

• Different control schemes are implemented to control the desired trajectory and

kite geometric angles. A PID controller in the 3D simulations is utilized to

control the kite to have a cross flow motion while the kite angle of attack is

controlled by the length of tethers in 2D simulations.
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• The computational code is parallelized using Open MP to reduce the computa-

tional run-time.

This thesis is organized as follows: Chapter 2 reviews the governing equations and

the boundary conditions of incompressible flows. Then, the details of the numerical

methods employed in this work are explained. The independency of the numerical

results to grid resolution and Reynold number are studied in chapter 3. Moreover,

in this section different simulations have been conducted to verify the accuracy of

the moving computational domain method. The effect of slip and no-slip conditions

at the kite interface, on the kite lift and drag forces is also studied in this section.

Chapter 4 reports the interaction of the tethered undersea kite systems with the

ocean current. Results from baseline simulations of a full-scale kite-tether wing are

presented in this section including predicted kite hydrodynamic forces, trajectory

of the kite, and power generation values. Moreover, the effects of varying different

parameters, including tether velocity during the power phase, inlet current velocity,

the tether velocity during the retraction phase and the tether drag on the performance

of TUSK systems are presented. Conclusions along with recommendations for future

work are presented in chapter 5.



Chapter 2

Governing Equations and Numerical Methods

In this chapter the governing equations and corresponding boundary conditions for

the interaction of a tethered undersea kite with an ocean current are presented. Then,

it provides details on the numerical model of the flow solver, including the two-step

projection method and corresponding discretization of the pressure Poisson prob-

lem. Also, the numerical models to capture the fluid-solid interaction, kite controller

schemes, tethers modeling, the kite lift and drag calculation, moving numerical do-

main, the slip method implemented on the kite interface and the tether drag modeling

are presented.

2.1 Mathematical Formulation

A numerical method is developed to study the behavior of a rigid underwater kite

which is attached by a tether to a fixed structure. A flow solver in a rectangular

domain with a regular structured grid is implemented. The interaction of the rigid

kite with an ocean current is captured by the immersed boundary method, and Hook’s

law with the effect of the tether damping included, is used to model the tether tension.

Moreover, controller schemes which controls the angles of the kite are utilized to

21
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achieve a desired trajectory. The governing equations for unsteady, incompressible

fluid flow are the Navier-Stokes equations.

∇ · ~V = 0 (2.1)

∂(ρ~V )

∂t
+∇ · (ρ~V ~V ) = −∇p+∇ · τ + ~Fb + ~Ft + ~Fso. (2.2)

Here, ~V denotes the velocity vector, ρ the density, p the pressure. ~Fb represents

any body forces such as gravity, and ~Ft and ~Fso represent the tether tension and

fluid-solid interaction force, respectively. Also τ is the stress tensor expressed as:

τ = µ[(~∇~V ) + (~∇~V )T ], (2.3)

where µ is the dynamic viscosity. The full Navier-Stokes equations are used, instead

of the potential flow or Euler equations to retain rotational effects (such as wake

vortex shedding) and the stabilizing effect of viscosity in numerical simulations.

A NACA-0012 airfoil is used for the cross section shape of the kite using Eq. 2.4.

Zth
c

= 5t({ 0.2969

√
x

c
− 0.1260(

x

c
)− 0.3516(

x

c
)2

+ 0.2843(
x

c
)3 − 0.1015(

x

c
)4}).

(2.4)

where t is the maximum thickness as a fraction of the chord, c is the chord length,

x is the position along the chord and Zth is the airfoil half thickness [98]. The

rectangular wing planform with an aspect ratio (span/chord) of 8/3 is used in the

three dimensional computational simulations. The kite is represented by a scalar

function ψ:

ψ(~x) =


1, ~x ∈ solid

0, ~x /∈ solid

(2.5)

where ψ is defined by the

ψ =
V olume of occupied region by solid

Cell volume
(2.6)
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The marker function transitions smoothly near the kite interface by [99]:

ψ = 0.5 + 0.5
(Z − Zth)3 + 1.5ε2(Z − Zth)

((Z − Zth)2 + ε2)1.5
, (2.7)

where ε can be adjusted to control the thickness of the transition zone. Z − Zth, is

the distance between the local grid position to the kite interface. The effect of ψ can

be seen in the material properties which are defined as:

ρ = ψρso + (1− ψ)ρl. (2.8)

Where, ρso and ρl are solid and liquid density, respectively.

2.2 Boundary Conditions

Boundary conditions for the computational domain are specified as follows. At the

upstream end of the domain, a constant velocity is specified for the current flow and

the fluid is allowed to flow out at the downstream of the domain. The pressure and

velocity gradient at the downstream end of the domain is assumed to be zero [100]:

~∇p · n̂⊥ = 0. (2.9)

~∇~V · n̂⊥ = 0. (2.10)

Therefore, mass conservation is satisfied over the entire numerical domain at every

time step. Full slip boundary conditions are imposed on all other sides of the numer-

ical domain. Free slip and no penetration are satisfied simultaneously by

∂(~V · t̂s)
∂ns

= 0. (2.11)

While in order to implement the no-slip boundary condition we have:

~V · n̂⊥ = 0, ~V · t̂⊥ = 0. (2.12)
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Here, n̂⊥ and t̂⊥ are the normal and tangential vectors on the surface of the bound-

ary condition. Also, a steady uniform velocity is considered as an inlet boundary

condition.

2.3 Two-step Projection Method

For the discretization of the governing equations in our computational method, an

explicit second-order predictor-corrector method on a staggered grid has been used

in which the continuity and momentum equations are solved in two steps as shown

below:

ρn+1~V ∗ − ρn~V n

∆t
= −∇ · (ρ~V ~V )n +∇.(µ(∇~V +∇T ~V ))n + ~F n

B + ~F n
so (2.13)

ρn+1~V n+1 − ρn+1~V ∗

∆t
= −∇pn+1. (2.14)

Here the superscripts n and n+1 denote the current and next time steps, respectively,

and ~V ∗ represents an intermediate velocity. A second-order essentially non-oscillatory

(ENO) method and a simple second order centered difference approximation were used

to discretized the advection and viscous terms, respectively.

By applying the continuity on Eq. 2.14 the Poisson equation is obtained:

−∇2pn+1 =
1

∆t
∇ · (−ρn+1~V ∗). (2.15)

pn+1 is obtained by solving Eq. 2.15 iteratively using Successive Over-relaxation

(SOR) solver. V n+1 is then evaluated via Eq. 2.14.

Solving Poisson’s equation is very computationally intensive. To make our simulation

run faster, OpenMP acceleration is utilized. The OpenMP is explained in detail

in [96].
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2.4 Fluid-solid Interaction

Since the governing equations for fluid flow are discretized in an Eulerian form, then

the immersed boundary method is coupled with the flow solver in the computational

method to simulate the interaction of a rigid kite with a fluid flow. The governing

equations for the fluid are solved in the entire computational domain including in the

region occupied by the kite (solid object). Therefore, it is not needed to solve any

additional equation for the solid object in this step. The numerical algorithm stays

the same irrespective of the nature of fluid flow: laminar, or turbulent, Newtonian,

or non-Newtonian. Since the kite is considered as a fluid and the Navier-Stokes

equations are solved inside it, the velocity field inside the kite obtained from the

flow solver does not satisfy the kite rigidity condition. To enforce rigidity of the

kite and correct the velocity, the kite velocity is decomposed into two components,

translational and rotational, which are calculated by taking an average over the entire

kite domain:

Mso
~Vso =

∫
solid−zone

ρ~V dυ (2.16)

Iso~ωso =

∫
solid−zone

~r × ρ~V dυ (2.17)

where Mso, Iso are the mass and moment of inertia, respectively, of the kite. υ is the

volume and and ~r denotes position vector relative to the center of mass of the kite.

The moment of inertia tensor components with respect to center of mass,
Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz

 (2.18)

are calculated by integration on the part of the computational domain that includes

the kite.
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After obtaining the translational and angular center of mass velocities, the kite ve-

locity is thus calculated by taking a summation of the two components,

~Vkite = ~Vso + ~ωso × ~r (2.19)

Note that the velocity in the kite proposed by the flow solver was corrected (averaged)

to enforce the kite rigidity.

Since the original velocity field which is obtained by solving Poisson’s equation is

divergence free, the new velocity field given by Eq. 2.19 should be divergence free

everywhere. Sometimes that is not exactly true at the kite interface and a few iteration

are performed to reach the divergence free velocity [99].

The difference between the proposed and averaged velocity fields determines the body

force ~Fso, which is applied only on the kite (solid) body as shown in Eq. 2.20.

~Fso =
ρ

∆t
(~V n+1

kite − ~V n+1) (2.20)

where ~V n+1 and ~V n+1
kite are the velocity of the kite before and after averaging, respec-

tively. For more information about the coupling the Navier-Stokes equations with

fluid-solid interaction force see [86,97,101]

2.5 Tether Modeling

Various support structure and tether attachment concepts are being considered for

TUSK systems, including tether attachment to the ocean floor; floating or fixed struc-

tures at the ocean surface; or submerged buoyant structures. While each of these has

its own advantages and drawbacks, in this work for simplicity we assume a fixed

support structure for tether attachment at the ocean surface. To model the tension
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(a) (b)

Figure 2.1: a) Schematic diagram of the kite-tether system in which the attachment

point is outside of the computational domain. b) zoom-in view.

forces in the elastic tethers that connect the kite to the fixed structure at the ocean

surface, a simple Hooke’s law is used while damping effect is also considered.

~Ft = K(max(Lact., Li)− Li) + Cdamp~V
max(Lact., Li)− Li

Lact. − Li
. (2.21)

Here, K and Cdamp are the tether stiffness and damping coefficient, respectively. Also,

Lact. is the actual length of the tether, and Li is the rest length of the tether. In the

baseline simulation, a single tether is connected from the kite center of mass to a fixed

point far from the kite. The tether can go slack if the tether tension goes to zero,

however, positive tether tension is maintained during a simulation. Then, the forces

from the tethers are added as a body force to Eq. 2.2. The computational cost was

reduced by placing the fixed tether attachment point outside of the computational

domain which leads to reduce the domain size as shown in Fig. 2.1.

2.6 Control Scheme

In order to achieve the desired kite trajectory, a proportional-integral-derivative (PID)

controller is used to control the kites pitch, roll and yaw angles to achieve a desirable

kite trajectory. In the controller, an error is defined based on the difference between
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the actual and trim angles of the kite, and the error is minimized over time by adjust-

ment of control moments applied on the kite. The control moments are calculated

by:

~FM = Kp(αt − αa) +Ki

∫ t

0

(αt − αa)dt+Kd
d(αt − αa)

dt
. (2.22)

where ~FM is the applied moment, α represents pitch, roll and yaw angles. The sub-

scripts t and a denote the trim and actual angles, and Kp, Ki, and Kd, denote the

coefficients for the proportional, integral, and derivative terms of PID controller, re-

spectively. The kite trim angles were varied over multiple simulation runs to identify

a baseline simulation case with the highest achievable net power production. Appli-

cation of more complex kite control schemes [31,102] could be considered as a future

work.

Moreover, as a preliminary step, the unstretched tether lengths of the two straight-

line tethers (between a kite control unit and the kite) are specified as an input control

command in order to control the geometric angle of attack of the kite in 2D simulations

as shown in Fig. 2.2. A periodic triangular wave shape is prescribed on both tether

unstretched lengths for this purpose. Fig. 2.2 shows that the unstretched (input)

which has a small difference with the actual (output) tether lengths due to fairly

large tether spring stiffnesses.

2.7 Numerical Algorithm

The overall numerical algorithm is shown in Fig 2.3. The outer loop is the integration

in time and the second loop is the iteration where the kite is coupled with the Navier-

Stokes solver. Each iteration includes predicting the kite motion with the Navier-
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Figure 2.2: Unstretched and actual tether lengths vs time.

Stokes equations and correction of the prediction by linear and angular momentum

conservation (Eq. 2.16 and Eq. 2.17). At the beginning of each iteration, the values

from the previous time step, such as position, velocity and pressure are assumed as the

initial guess. Then the density and viscosity at every grid point in the computational

domain, including inside the kite, are assigned, based on the scalar function of the kite

(step 2). Momentum equation is solved in step 3, and the velocity and the pressure

in the whole domain at the new time level are found. After that, the kite position

is updated and used in the next step to update the solid scalar function. In step

6, the kite position the linear and angular velocity of the kite are calculated, based

on the conservation of linear and angular momentum. These two values are used

to correct the velocity found by solving the Navier-Stokes equations in step 7 and

then used for tracking the solid interface. Convergence is reached when the values
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calculated in steps 3 to 7 do not change. In fixed numerical domain simulations (i.e.

2D simulations), once the solution has converged, the parameters such as velocity

and location and solid scalar function are assigned as the new guess and start the

procedure again. While in the 3D simulations, the moving computational domain

is used, in which the boundary of the computational tool is updated based on the

movement of the kite in x, y and z directions (h, g, and k), and then we go to the

next time step. The numerical model is solved in a second order in time, but because

of simplicity only the first order version in Figure 2.3 is shown. In order to reach the

convergence a few iteration (one or two) is required for the inner loop after the initial

time steps. While for the initial time steps, we usually require around 10 iterations

for convergence.

The simulations have been conducted on the Linux servers supported by Worcester

Polytechnic Institute Computational Center. Single Intel(R) Xenon(R) Processor

X5690 with 3.47Ghz Clock speed has been used for the simulations.

2.8 Time Step Restriction

Our computational method is constrained by two time step restrictions. The time

step is restricted by viscosity, and velocity which are shown in Eqs. 2.23 and 2.24

respectively.

∆t ≤ ∆tvis =
ρ(∆x)2

2µ
, (2.23)

∆t ≤ ∆tCFL =
1

3

∆x

Umax
. (2.24)

Because the dimensions in underwater kite systems are large enough, the surface

tension effects in these devices are small.
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Figure 2.3: Flow chart of the algorithm for modeling of a tethered undersea kite,

based on the Navier-Stokes equations.
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2.9 Kite Lift and Drag Calculation

The kite lift and drag force directions are calculated using [13]:

L =
1

2
ρACL |Va|2 (t2sinφ+ t3cosφ), (2.25)

D =
1

2
ρACd |Va|2 , (2.26)

where Va is the apparent kite velocity vector (resultant of current and kite velocities),

A is the kite area and φ is defined in such a way that it represents the tilt of the lift

vector relative to the tether direction [13]. The lift force, when φ is zero (which is

considered in this study), is parallel to the vector

t3 =
t2 × Va
|t2 × Va|

, (2.27)

where

t2 =
Va × t1
|Va × t1|

. (2.28)

Here t1 is the tangential identical vector to the tether. Therefore, the kite lift and

drag forces are calculated by solving any two out of three equations as below:

F k
x = (L+D)̂i, F k

y = (L+D)ĵ, F k
z = (L+D)k̂, (2.29)

where F k
x , F k

y , and F k
z are the components of the tether force in three directions. The

acceleration of the kite in each time step is considered negligible in this study. It

should be noted that the tether drag effect is studied in the 3D simulations while the

tether weight effect is not modeled in this study.

CL, Cd and CR are the kite lift, drag and resultant coefficients, respectively which are

calculated as follows:

CL = Lift
1
2
ρV 2A

, Cd = Drag
1
2
ρV 2A

, CR =
√
C2
L + C2

d . (2.30)
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Moving computational
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t = t0t = t1

t = t2

Figure 2.4: Schematic of a moving computational domain which is used in 3D baseline

simulations instead of the fixed numerical domain to decrease the computational run-

time.

Here, V is the magnitude of the current velocity, and A is the area of the kite to

find the kite lift and drag coefficient. Moreover, it is seen in literature [13], that the

apparent velocity, Va, is used to obtain the kite lift and drag coefficients. Therefore, in

this manuscript the kite lift and drag coefficients which are obtained by the apparent

velocity are shown by:

CL,a = Lift
1
2
ρV 2

a A
, Cd,a = Drag

1
2
ρV 2

a A
, CR,a =

√
C2
L,a + C2

d,a. (2.31)

2.10 Moving Computational Domain

In general, a conventional approach to model a flow field around a kite when the kite

travels a long distance in an arbitrary direction would require a huge three dimension

computational domain. To evade this constrain of region size, a moving computational

domain method is applied in this dissertation in which a numerical domain moves

based on the motion of the kite as shown in Fig. 2.4.
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The moving computational domain, including the embedded kite, moves in the fixed,

inertia Cartesian coordinate system, so the governing equations for moving numerical

domain are still Eqs. 2.1 and 2.2. Therefore, the same approach which is discussed

earlier can be used to find the flow variables such as velocity and pressure. It only

needs to find the proper boundary conditions of the moving computational domain.

As is mentioned earlier, since all the properties such as velocity and pressure are

defined with respect to the fixed inertia Cartesian coordinate system, the boundary

conditions which are given in Eqs. 2.9, 2.11 are still valid for outflow, and slip wall,

respectively. In this study, the boundary condition of the surrounding surfaces of the

numerical domain is considered as a slip wall and the boundary condition at the end

of domain is considered as an outflow. Only crucial assumption is the condition in

front of the moving computational domain which has to be known as a boundary

condition of the flow solver [103]. Due to the incompressibility of the ocean current

flow, a constant fluid flow velocity is considered in front of the moving computational

domain at every time steps. Since the motion of the computational domain based on

the movements of the body in the physical space is arbitrary, then any kind of the

motion of the kite can be simulated by this approach.

2.11 Slip Modeling at the Kite Interface

In this section, the effect of slip condition imposed at the kite-fluid interface is studied.

In the free-slip boundaries, the kite interface is considered impermeable. Therefore,

the Dirichlet condition at the kite interface Un = 0 is imposed, but the boundary

conditions in the tangential directions should be Neumann conditions. In order to

achieve the free-slip condition, the tangential components of the stress vector at the

interface are zero, since no fluid force is exerted from the fluid to the interface in these
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directions. Therefore, in three dimensional simulation:

Un = 0,

(τ · n) · s = 0,

(τ · n) · t = 0.

(2.32)

Here, s and t are the tangential directions to the kite interface. Also, n is the normal

direction to the kite interface and is calculated by:

n =
∇ψ
|∇ψ|

. (2.33)

where, ψ is the solid volume fraction.

The basic idea to apply a free-slip boundary at the kite interface is to modify the

velocity components tangential (U t, and U s) to the kite surface which the shear stress

in tangential directions vanishes. This can only be obtained by using the flow field

information outside the kite. The computation of the velocity gradients at the kite

interface is obtained by using the velocity at the kite interface and the vicinity cells

outside of the kite as shown in Fig. 2.5. Here, T is the vicinity test-grid which

is located at a distance of h normal to the kite interface. Two coordinate system,

body-fixed coordinate system (x′, y′) and space-fixed coordinate system (X, Y ), are

considered to determine the tangential flow field at the kite interface and transfer it

to the space-fixed coordinate system to continue solution procedure as:

~U b
T = AT (~UT − ~Uk). (2.34)

Where, ~U b
T is the body-reference velocity vectors at the test-grid T, while ~UT , and

~Uk are the velocity vectors of the test-grid T and the kite interface velocity of the

grid w, respectively. It should be noted that ~UT , and ~Uk are considered in the space-

fixed coordinate system, and AT is the transpose of transformation matrix. Then
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Figure 2.5: Schematic of a kite (solid object) interface and a neighbor cell with a

distance h normal to the kite interface.

the desired velocity at the kite interface in tangential directions are function of the

velocity at the test point to satisfy the free-slip condition.

U s
w = f(U s

T ),

U t
w = f(U t

T ).
(2.35)

Here, U s and U t are the tangential velocity at the kite interface in three dimensional

case while the normal velocity is set to zero to satisfy the impermeable condition.

Since, U s and U t are the velocities in the body-reference frame, the desired velocity

at the kite interface should be transfered into space-fixed coordinate system by:

~Uw = A(~U b
w + ~U b

k). (2.36)

Here, ~Uw is the space-fixed velocity vector at the kite interface and A is the matrix

transformation. After the computation of Eq. 2.36, the solution procedure continues

to find the fluid-solid interaction force (Eq. 2.20) and the solution of the fluid equations
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in the space-fixed coordinate system i.e. two step projection method for computation

of pressure.

In order to impose the free-slip condition at the kite interface, the tangential fluid

forces and shear stresses should vanish. The shear stress is computed by the derivative

of the tangential velocity at the kite interface in the body Cartesian coordinate system

as:

τx′y′ = µ
∂ux′

∂y′
, (2.37)

where τx′y′ is the tangential shear stress which is discretized by:

τx′y′ |y′=0 = µ
U s
T − U s

w

h
. (2.38)

Here, U s
T is the tangential velocity at the test-grid near the kite interface and U s

w

is the tangential velocity at the kite interface. Both U s
T and U s

w are considered in

the body-reference coordinate system. Therefore, in order to impose the free-slip

condition at the kite interface we have:

UT
s = Uw

s ,

UT
t = Uw

t .
(2.39)

This is the standard approach to impose the free-slip at the wall interface with a

curvature [104].

2.12 Tether Drag Modeling

In this work, the tether is considered as a long, rigid cylinder where one ends is con-

nected to the fixed structure and the other end moves with the kite velocity. In order

to consider the effect of the tether on the kite movement, the tether drag is added to
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Figure 2.6: Schematic of modeling of the tether drag.

the momentum equation as a body force. The drag forces on the tether are derived

by assuming that the drag tangential to the tether is negligible. Since the apparent

velocity along the tether is not constant and each part of the tether is moving at a

different speed, the tether is discretized into a series of element as shown in Fig. 2.6.

Therefore, the contribution of the drag force of each element can be summed to find

the total tether drag force [13]. Then, the total drag force applied as a body force

into Eq. 2.13 to consider the effect of the tether drag on TUSK performance. Because

of the contribution of tether drag force to the normal velocity, the normal velocity of

each segment is calculated by:

Vn,1 = Vk − (Vk · t1)t1, (2.40)

where Vn,1 is the normal velocity of the kite, Vk is the kite velocity and t1 is the tether

direction.

Since the velocity of the tether attachment is zero, and the velocity of the kite is

known (Vn,1), then the velocity of each segment is calculated by:
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Vseg =
S(j)

Ltet
Vn,1. (2.41)

Here, Vseg is the normal velocity of each segment and S(j), Ltet are the distance of

each segment from the attachment of the tether and the length of tether, respectively.

Therefore, the drag force of each segment would be:

Dtether,seg = 0.5Cd,segρtV
2
segAseg. (2.42)

Here, Cd,seg is the drag coefficient of each segment, ρt is the tether density, Aseg is the

area of each element, which is obtain by multiplying of the diameter of the tether by

the length of the each segment. Finally, the drag force of each segment is summed

up and added as a body force to the governing equations. In this study the drag

coefficient of each segment, Cd,seg, is taken to be 1.2 [23].



Chapter 3

Verification of the Computational Method

In this chapter a number of comparisons with existing results, Reynold independency,

and grid refinement studies have been conducted in order to verify the moving com-

putational method, and to assess the grid resolution requirements for the problems

considered in the chapter 4. Note that the computational method was initially devel-

oped by extending and modifying a code used to model tethered floating structures

in [99]. The accuracy of that computational method was also validated in [99] by

comparing simulation results with various analytical, numerical and experimental

predictions for floating bodies exposed to unsteady wave loadings. Since 2D simula-

tions have been conducted as a preliminary step of modeling TUSK system, Reynold

independency and grid refinement studies of 2D numerical tool is also investigated.

3.1 Grid and Reynolds Number Independency of the Com-

putational Method

A uniform, regularly structured grid that encompasses a 6 m× 5 m× 10 m domain

size is used for mesh in-dependency study in 3D simulations as shown in Fig. 3.1.

40
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(a) (b)

Figure 3.1: a) Schematic diagram of the kite-tether system, and b) computational

grid in 3D simulations. Not to scale.

The kite is controlled to have a figure-8 shape motion in a moving numerical domain.

Figure 3.2 shows the tether force, power output and the cross-current velocity for

three different mesh resolutions. The results have converged for the 1.6× 106 grid in

a moving numerical domain, which is then used for the 3D simulations.

A grid refinement study has been carried out to ensure the independency of the 2D

baseline simulation with grid mesh resolution in which a uniform grid that encom-

passes a 11 m×9 m domain size is used as shown in Fig. 3.3(b). Figure 3.4 shows the

vertical position and velocity of the kite’s center of mass vs time for three different

mesh resolutions. The results converged for an 880× 720 mesh.

In addition, the independency of the 3D computational results with Reynolds number

is studied through three simulations at Reynolds number (based on kite chord) of 103,

104, and 105. A schematic of the numerical domain is shown in Fig. 3.5. The length

of the tether is constant in these simulations. The Reynold number is calculated by
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Figure 3.2: Grid resolution effect in 3D simulations on: a) cross-current motion of

the kite, b) power generation, c) tether force.
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(a) (b)

Figure 3.3: a) Schematic diagram of the kite-tether system and computational domain

in 2D simulations. Not to scale. b) Numerical grid.

(a) Vertical position of the kite vs time (b) Vertical velocity of the kite vs time

Figure 3.4: Grid refinement study in 2D simulations showing the effect of different

grid resolutions on the kite position and velocity.
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Figure 3.5: Schematic of the tethered kite in a fixed numerical domain to study Re

independency for 3D simulations.

Eq. 3.1.

Re =
ρuc

µ
. (3.1)

Here, ρ is the water density, u is the inlet current velocity, and c is the chord length of

the kite. It is shown in Fig 3.6 that the 3D simulation results are largely independent

of Reynolds number.

Also, four simulations with Reynolds number equal to 3000, 6000, 12000 and 20000

have been performed in 2D numerical domain. It is shown in Fig. 3.7 that the effect

of viscous forces is small in the 2D baseline simulation.

3.2 Moving Domain Verification

As mentioned earlier, the moving computational domain is used to reduce the com-

putational cost. Therefore, two test cases are studied to assess the accuracy and
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(a) (b) (c)

Figure 3.6: The effect of Reynolds number on the displacement of the kite center of

mass in: a) x, b) y, and c) z directions, for 3D simulations.

(a) Vertical position of the kite vs time (b) Vertical velocity of the kite vs time

Figure 3.7: The effect of varying Reynolds number in 2D simulations on the kite

position and velocity.
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Stationary Computational domain

Moving Computational

domain

Figure 3.8: Initial position of the airfoil wing in computational domains.

performance of the approach in moving computational domain. The results from

moving numerical domain simulations are compared and verified with the fixed com-

putational domain results. The accuracy of a fixed numerical domain was validated

with various analytical, numerical and experimental predictions for floating bodies

exposed to unsteady wave loadings [99].

3.2.1 Free Fall of an Airfoil Wing in a 3D Fluid Container

Two simulations have been carried out in which a rigid 3D airfoil wing is made to fall

under the influence of gravity in a stationary and a moving domain as illustrated in

Fig. 3.8.

A NACA 0021 airfoil wing with the span/chord ratio of 1.33 falls from 4.5 m above
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(a) Trajectory of the center of mass of the air-

foil wing in x direction.

(b) Trajectory of the center of mass of the air-

foil wing in z direction.

Figure 3.9: Displacement of the center of mass of the airfoil-wing free-falling in a fluid

container in fixed and moving numerical domains.

the stationary domain bottom. The solid to fluid density ratio ( ρs
ρf

) is 1.5 and the

fluid dynamic viscosity is 10−5 kg/ms. The height of moving numerical domain is

the half of the height of the fixed computational domain and it can move freely in x

and z directions based on the motion of the wing. Fig. 3.9 presents center of mass

trajectories in the x-z plane and shows a very good agreement between moving and

stationary domain results.

3.2.2 A Moving Tethered Underwater Kite for Power Gen-

eration

Two other simulations were performed using fixed and moving numerical domains in

which a tethered kite is placed in a uniform current flow, as shown in Fig. 3.10. The
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Figure 3.10: Schematics of the moving and fixed computational domains for tethered

kite which is placed across the uniform flow. Not to scale.
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Figure 3.11: The comparison of the center of mass trajectory of a tethered kite placed

in a uniform flow in moving and fixed computational domains.

kite is controlled to generate net power output during a power-retraction cycle by a

PID controller in which the actual kite angle in pitch, roll and yaw are controlled to

reach a desired trajectory. The input parameters for both fixed and moving numerical

domain simulations are presented in Table 3.1. Since it is computationally intensive

for the simulation with a fixed numerical domain, the cross-current movement of the

kite center of gravity is restricted to 2 m. The trajectory of the kite center of mass is

illustrated in Fig. 3.11 which demonstrates that the results of the moving numerical

domain simulation match well with the data of the fixed numerical domain.

3.3 The Effects of Slip and No-slip Boundary Conditions

In this section, the effect of slip and no-slip boundary condition at the wing (solid)

interface is investigated. The numerical domain size is 6 m × 4 m, in which a 2D

stationary airfoil wing is located across the uniform current flow as shown in Fig. 3.12.
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Table 3.1: Input parameters for the tethered kite in the moving and fixed numerical

domains.

Fixed domain Moving domain

Domain Size 10× 5 m× 6 3× 4 m× 4

Kite Chord Length c = 0.75 m c = 0.75 m

Kite Span Length b = 1.5 m b = 1.5 m

Tether Spring Stiffness k = 1.2× 104 N/m k = 1.2× 104 N/m

Reynolds Number Re = 7.5× 104 Re = 7.5× 104

Power Cycle Time Period T = 37 s T = 37 s

Retraction Cycle Time Period T = 23 s T = 23 s

Tether Velocity Vt = 0.15 m/s Vt = 0.15 m/s

Ocean Current Velocity Vc = 1 m/s Vc = 1 m/s

Number of Tether Springs 1 1

Water Viscosity µ = 10−5 Pa.s µ = 10−5 Pa.s

Water Density ρw = 1000 kg/m3 ρw = 1000 kg/m3

Kite Density ρk = 1350 kg/m3 ρk = 1350 kg/m3

Time Step Size ∆t = 2× 10−3 s ∆t = 2× 10−3 s

Initial Length of Tether 7 m 7 m

Temperature 20◦ 20◦
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Figure 3.12: Schematic of a 2D airfoil wing with zero angle of attack which is placed

across the uniform current flow.

Simulations with different grid resolutions have been carried out in which the chord

length and Reynolds number are 1.5 m and 1.5×106, respectively for the simulations.

The effect of no-slip condition at different grid resolutions is shown in Fig. 3.13.

Since the symmetry airfoil wing (NACA 0012) is used in these simulations, the lift

coefficient is almost zero (Fig 3.13(a)), and the wing drag coefficient has converged

for the 1440× 960 grid in x and y directions (240 grids per unit length) as shown in

Fig. 3.13(b). Three dimension simulations using this grid resolution would be very

computationally intensive and are not feasible.

The effect of viscous drag is considered in no-slip boundary condition. Since the

direct numerical simulation (DNS) scheme is used in this study, the drag estimation

is highly dependent to the grid resolution. In order to capture the precise viscous

drag, adequate grid resolution should be used in the boundary layer which increases

the computational run-time drastically. The coarser grid resolution demonstrated
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(a) The airfoil wing lift coefficient at different grid resolutions.
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(b) The airfoil wing drag coefficient at different grid resolutions.

Figure 3.13: Lift and drag coefficients of a NACA-0012 airfoil wing at different grid

resolutions for zero angle of attack (AOA = 0). The no-slip condition is imposed at

the wing interface.
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Figure 3.14: Drag coefficient of a NACA-0012 airfoil wing for different grid resolutions

at zero angle of attack (AOA = 0). The slip condition is imposed at the wing interface.

the higher wing drag compared to the theoretical value as shown in Fig. 3.13(b)

which leads to lowered accuracy of estimation of the lift to drag ratio for TUSK

systems. Therefore, the slip boundary condition is implemented at the kite interface

to accurately predict of the the kite drag, in lower grid resolutions. So, 3D baseline

simulations would be feasible to perform and study in a resealable time. In summary,

the inability to accurately resolve the boundary layer due to run time limitations in

3D simulations, allows us to relax the no-slip condition, and use a slip condition to

accurately model wing pressure drag.

The effect of the grid resolution for the slip boundary condition at the wing interface

for AOA=0 is considered in Fig 3.14. It shows that the drag coefficient matches well

with the analytical result at the coarser grid resolutions. Also, the drag coefficient

of the wing is converged for 480 × 320 grids in x and y directions (80 grids per unit

length). It should be noted that the drag coefficient is not zero in slip condition

due to the presence of the flow separation (pressure drag) at the wing trailing edge
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(a) Streamline around the airfoil wing. (b) Streamline around the airfoil wing. Zoom-in

Figure 3.15: Streamline around the airfoil wing at zero angle of attack (AOA = 0).

The slip condition is imposed at the wing interface.
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Figure 3.16: Drag, lift, and lift to drag ratio of the airfoil wing at three different angle

of attack (AOA = 0). The slip condition at the wing interface is imposed.

as shown in Fig. 3.15. The separation is captured by solving the full Navier-Stokes

equations, while this effect cannot be caught by linear potential flow theory.
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(a) (b) (c)

Figure 3.17: a) The location of airfoil wing far from the inlet and far from the outlet.

b) The location of the airfoil wing close to the outlet. c) The location of the an airfoil

wing in the numerical domain in the baseline simulation that is tested in section 3.3.

Moreover, the effect of variation of the angle of attack with the slip condition around

the airfoil wing is considered. Three different simulations with the AOA=0, AOA=5

and AOA=10 have been carried out and it is shown that the lift to drag ratio is

maximized at an angle of attack around 6 ◦ - 7 ◦, as shown in Fig. 3.16.

3.4 The Effects of Domain Size on Numerical Results

In this section, the effect of boundary condition and domain size on the numerical

results is studied. Three different simulations in 2D have been performed with the

numerical domain sizes are 12 m × 4 m, 6 m × 5 m, and 6 m × 4 m, in which a

2D stationary airfoil wing is located across the uniform current flow as shown in

Figures 3.17. The slip boundary condition is imposed at the wing interface and the

effective angle of attack of the wing is zero.

The effect of domain size on the wing drag coefficient is shown in Fig. 3.18. It shows
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Figure 3.18: Drag coefficient of the airfoil wing at three different domain sizes. The

slip condition at the wing interface is imposed.

that the domain size and boundary conditions have a small effect on numerical results

(wing drag coefficients) when there is a reasonable distance between boundaries and

the airfoil wing.



Chapter 4

Results

In this section the results for simulations of the a tethered undersea kite, are exam-

ined in detail. The effects of key design parameters on TUSK systems performance

are explored. The power output is compared with established theoretical results by

Loyd [15]. The performance of the controller schemes to control the kite angles to

have a desired trajectory is studied. As mentioned earlier, a 2D computational tool is

developed as a preliminarily step for studying TUSK systems. Therefore, a baseline

simulation and the effect of varying different parameters on the power output of 2D

TUSK systems is studied first in this section. Then, a baseline simulation in a three

dimensional domain, where a high net power output is achieved during a power and

retraction cycle, is investigated. Finally, the effect of the tether velocity during the

retraction phase and the tether drag on TUSK performance have been studied.

4.1 Two-dimensional Baseline Simulation

The input parameters for the 2D simulation are listed in Table 4.1.

The tether spring stiffness is set to match the elasticity of Nylon 6, a potential

TUSK tether material. The phase shift for unstretched tether length (see Fig. 2.2) was

57
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Table 4.1: Input parameters for 2D baseline simulation

Domain Size 11× 9 m

Kite Chord Length c = 1.5 m

Tether Spring Stiffness k = 105 N/m

Reynolds Number Re = 12× 103

Power-Retraction Cycle Time Period T = 30 s

Phase Shift (unstretched tether length) Td = 2.3 s

Tether Velocity Vt = 0.3 m/s

Ocean Current Velocity Vc = 1 m/s

Number of Tether Springs 2

Water Viscosity µ = 0.5 Pa.s

Water Density ρw = 1000 kg/m3

Kite Density ρk = 2000 kg/m3

Time Step Size ∆t = 10−3 s

Tether Attachment Point Coordinates (2.25,−5) m

adjusted to achieve the maximum achievable power output for the baseline simulation.

Also, Fig. 2.2 shows that the tether could be consider as a rigid body since the

difference between the actual and unstretched lengths of the tether is very small.

Input values in Table 4.1 are set to model typical TUSK system parameters. The

computational domain size and the resultant kite motion amplitudes are kept small

in this study to limit computational run time. Instantaneous snapshots (in time)

from an animation of the kite motion during a power-retraction cycle are shown in

Fig. 4.1.

In Fig. 4.2, time records of the kite geometric (αG) and effective (αeff ) angles of



59

(a) Initial position of the kite. (b) Power phase.

(c) Transition phase between power and retrac-

tion phases.

(d) Retraction phase.

Figure 4.1: Snapshots of the kite position during a power-retraction cycle showing

vorticity contours. The tethers are attached 5 m above the top of the computational

domain.
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Figure 4.2: Angle of attack of the kite vs time.

attack are presented. The velocity diagrams in Figs. 4.1(b) and 4.1(d) define the kite

effective angle of attack. All velocity vectors are with respect to an observer on the

kite. The effective angle of attack is defined based on the kite chord line and local

current vectors, and thus accounts for the effect of the kite motion on the angle of

attack. Positive geometric and effective angles of attack are required during the power

phase to obtain larger hydrodynamic forces. Effective angles of attack near 0◦ during

the retraction phase yields low kite hydrodynamic forces and less power consumed.

By adjusting the rest length of the tethers as in Fig. 2.2, appropriate geometric and

effective angles of attack can be achieved to maximize net power production. The

effective angle of attack values during power phase approach 40◦ which is above the

stall angle of NACA 0012 airfoil in steady flow.

The trajectory of the kite center of mass for three power-retraction cycles is presented

in Fig. 4.3. It is shown that after the first cycle, the kite travels along a fairly stable

periodic path.
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Figure 4.3: Trajectory of the kite vs

time. The direction of the kite motion

is shown by the arrows

Figure 4.4: Hydrodynamic lift and drag

coefficient of the kite vs time.

Hydrodynamic lift and drag coefficients are shown in Fig 4.4. Lift and drag forces in

the 2D baseline simulation were obtained by determining the resultant force of tethers

in the vertical and horizontal directions, respectively. Kite weight and buoyancy forces

were subtracted from the resultant force on the tethers to isolate the hydrodynamic

lift. The lower L/D ratios observed in Fig 4.4 are due to the higher effective angle

(αeff = 40◦) above stall and the lower Reynolds number.

The tether tensions during the power and retraction cycle are shown in Fig 4.5.

Tether tensions can help determine required tether materials for TUSK systems. The

reel-in and reel-out velocity of the tethers and the instantaneous power are shown in

Fig. 4.6 and Fig. 4.7, respectively. Power is calculated from multiplying the tether

tension by the reel-out or reel-in velocity of the tethers. Fig. 4.7 demonstrates that

the average power that is produced during power phase is almost twice that of the
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Figure 4.5: Tethers tension vs

time. Figure 4.6: Tether velocity vs time.

Figure 4.7: Power obtained for successive cycles for a 2D tether kite system vs time.

power consumed during retraction phase, yielding a positive net power production.
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Figure 4.8: Effect of the ratio of tether to current velocity on power output. Enlarged

views show details of the power output during the power and retraction phases.

4.1.1 Parametric Study

Effect of Tether to Current Velocity Ratio

In order to validate our power estimates and numerical scheme, a parametric study on

input tether velocity was undertaken to allow us to compare with earlier theoretical

results of Loyd [15]. Six different simulations with different Vt/Vc ratios have been

conducted. In these six simulations other input values are adjusted to keep the average

lift-to-drag ratio L/D of the kite at L/D = 0.6. By carefully studying the close-up

views in Fig. 4.8, it is observed that the average power output during the power phase

peaks for 0.4 ≤ Vt/Vc ≤ 0.6. However, during retraction there is increasing consumed

power as Vt/Vc increases from 0.4 to 0.6.
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Therefore the optimal ratio should be near Vt/Vc = 0.4. The results are compared

with a theoretical power prediction for a simple moving kite in two dimensional motion

during the power phase from Loyd [15]. The normalized power coefficient, Fs, for

the current 2D numerical simulations is obtained by:

Fs =
P

0.5ρcV 3CL
, (4.1)

which is used to non-dimensionlize the average power phase output, P , from the

simulations (after subtracting the power created by the net buoyancy force). c is the

chord length of the kite and the average lift coefficient CL in Eq. (4.1) is output from

the simulations and varies between 0.5 ≤ CL ≤ 1.8 for different simulations. The

theoretical power coefficient from Loyd [15] is given in Eq. (4.2).

FsL =

Vt
Vc

{√
1 + 1

(L/D)2
− (Vt

Vc
)2 −

Vt
Vc

(L/D)

}2

√
1 + 1

(L/D)2

. (4.2)

There is good agreement between our normalized power output and Loyd’s results

as shown in Fig. 4.9, which also confirms that the maximum power is obtained at

Vt/Vc ∼= 0.4.

Effect of Kite Weight on Power Output

Another study was performed where kite to water density ratios (ρk/ρf = 2.0, 3.0

and 4.0) were varied with other parameters set as in Table 4.1. The instantaneous

power output during reel-out and reel-in cycles is presented in Fig 4.10 which shows

that when increasing the kite’s density, although more power is obtained during the

power phase, more power is consumed during retraction phase. Figure 4.11 shows the
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Figure 4.9: Comparison of power coefficients from the simulations with Loyd [15]

prediction at L/D = 0.6.

variation of normalized power coefficient which is defined by:

Cp =
P

0.5ρkV 3c
, (4.3)

where ρk is the kite density and c is the chord length of the kite. Figure 4.11 shows

that the net generated power is independent of the kite’s density in our simulation.

This is expected since the generated power due to the falling kite weight (power

phase) must be consumed to reel-in the kite weight to a higher elevation during the

retraction phase.

The Effect of Ocean Current Velocity

The ocean current velocity effect is studied by carrying out three simulations in which

Vc = 0.5 m/s, 1 m/s and 1.5 m/s, with other input values matching the baseline
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Figure 4.10: Effect of the kite density

on power.

Figure 4.11: Effect of the kite to wa-

ter density ratio on normalized power

coefficient.

Figure 4.12: Power generated in different ocean current velocity.

simulation. The power output during reel-out and reel-in cycles and the net output
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Figure 4.13: Comparison of power generated in different ocean currents with V 3 curve

fit.

power are presented in Fig. 4.12 and Fig. 4.13, respectively, and it is observed that

the power output is proportional to V 3
c , as expected.

Effect of Tether Length

The effect of tether length (Lt) on power output was also studied. For this study

the computational domain is 25 m × 9 m, and the ratios of the tether to kite chord

length are Lt/c = 4.5, 15 and 30, with other input values matching the baseline

simulation. Figure 4.14 shows the instantaneous power output during the power and

retraction phases for different ratios of tether to chord length. Since the geometric and

effective angle of attack are controlled to have equal values in all three simulations, the

hydrodynamic forces and consequently the power are the same for all the cases. Also,

the trajectory of the kite center of gravity is plotted in Fig. 4.15 during the time. The

kite requires four cycles to reach a near periodic motion for a larger tether to chord

length ratio, while in the baseline simulation, where Lt/c = 4.5, the kite obtained
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Figure 4.14: Output power vs time for different ratios of tether to chord length.

Figure 4.15: Trajectory of the kite center of gravity with Lt/c = 30.

the near-periodic path after the first cycle. Figure 4.16 shows vorticity contours at

various times for a simulation performed with Lt/c = 30. The attachment point of

the tethers is placed outside of the computational domain as shown in Fig. 4.16(a).
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(a) initial position of the kite (b) Initial position (expand view)

(c) Kite position at 78 s during power phase (d) Kite position at 78 s (expand view)

(e) Kite position at 91 s during reel-in phase (f) Kite position at 91 s (expand view)

Figure 4.16: Kite position and vorticity contours with Lt/c = 30 at various times.
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4.2 Three-dimensional Baseline Simulation

In this section, a baseline simulation for a full-scale three dimensional tethered un-

dersea kite shown in Fig. 4.17 is studied in detail. In order to accurately estimate

the kite lift and drag forces in a coarse grid resolution, a free-slip boundary condition

is imposed at the kite interface. The simulation assumes a uniform current velocity

with ocean depth.

The input parameters for the baseline simulation are presented in Table 4.2. The

tether spring stiffness is set to match the elasticity of Nylon 6, a potential TUSK

tether materials. The logarithmic decrement of the tether is considered as 0.1 in

the baseline simulation, then the damping coefficient of the tether is obtained by the

tether stiffness and the mass of the kite.

The trajectory of the kite center of mass for a power-retraction cycle is presented in

Fig. 4.18. During the reel-out phase the kite moves in successive cross-current motion

in a figure-8 pattern, the tether length increases and power is generated. During reel-

in the kite motion is along the tether, and kite hydrodynamic forces are reduced so

that net positive power is produced.

Top view of instantaneous snapshots (in time) from an animation of the kite motion

during a power-retraction cycle are shown in Fig. 4.19. The contours of flow vorticity

(λ2) around the kite from an animation of the kite motion during a power-retraction

cycle is shown. λ2 is defined as the second (in magnitude) eigenvalue of the matrix:

SikSkj + ΩikΩkj
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Outlet

Ocean current

Moving computational domain

Tether Spring

Damper

Kite control unit

(a) Moving domain and embedded kite which is attached to the fixed structure.

Outlet Ocean current

Moving computational domain

Slip wall

Slip wall

Tether

Kite

(b) Expand view of the moving computational domain

and boundary conditions.

Figure 4.17: Schematic diagram of the tethered underwater kite system and compu-

tational domain for the 3D baseline simulation. Not to scale.
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Table 4.2: Input parameters for the 3D baseline simulation using the moving numer-

ical domain.

Domain Size 6 m× 5 m× 10 m

Kite Chord Length c = 3.0 m

Kite Span Length b = 8.0 m

Tether Spring Stiffness k = 1.0× 104 N/m

Tether Damping Coefficient Cdamp. = 4.0× 103 N · s/m

Damping Ratio ξ = 0.2

Reynolds Number Re = 3.0× 105

Power Cycle Time Period T = 74 s

Retraction Cycle Time Period T = 74 s

Start Time of Tether Length Changes Ts = 7 s

Tether Velocity in Power Phase Vt = 0.3 m/s

Tether Velocity in Retraction Phase Vt = 0.3 m/s

Ocean Current Velocity Vc = 1 m/s

Number of Tether Springs 1

Water Viscosity µ = 10−5 Pa.s

Water Density ρw = 1000 kg/m3

Kite Density ρk = 1000 kg/m3

Time Step Size ∆t = 4× 10−3 s

Initial Length of Tether 100 m

Temperature 20◦
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(a) Top view of kite center of mass trajectory. (b) Kite center of mass trajectory in 3D.

Figure 4.18: Trajectory of kite center of mass vs time.

where:

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

), (4.4)

Ωij =
1

2
(
∂ui
∂xj
− ∂uj
∂xi

). (4.5)

Larger vortices are observed during the power phase (Fig. 4.19(a) and Fig. 4.19(b))

compared to the retraction phase (Fig. 4.19(e)), since the kite has a lower angle of

attack in the retraction phase due to reel-in along the tether direction.

Kite orientation angles in pitch, roll and yaw for the baseline simulation are presented

in Fig. 4.20. Both the desired (trim) and actual kites angles are shown. The actual

kite angles are driven to the trim values which confirms the effectiveness of the PID

controller. While the kite roll angle maintains a negative constant value, the kite

pitch and yaw angles vary during the reel-out phase to generate cross-current motion.

During the reel-in phase, the kite is trimmed to obtain net positive power.

The effective angle of attack is defined based on the kite chord line and the kite
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(a) Kite position at 28 s - Power phase.

(b) Kite’s position at 44 s - Power phase.

(c) Kite’s position at 57 s - Power phase.

(d) Kite’s position at 84 s - Beginning of retraction phase.

(e) Kite’s position at 135 s - Retraction phase.

Figure 4.19: Top view of the kite position with flow vorticity (λ2) contours.
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Figure 4.20: Comparison of the actual and trim kite angles vs time. a) Pitch angle

b) Roll angle, c) Yaw angle.
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Figure 4.21: Effective and side-slip angles of attack of the kite vs time.

apparent velocity vector. The side-slip angle is obtained as follows:

θside−slip = Arcsin(
Uapp.,y
Vapp.

). (4.6)

Here, Uapp.,y and Vapp. are the kite apparent velocity component in cross-current di-

rection (Fig. 4.17(a)), and the magnitude of kite apparent velocity, respectively.

Hydrodynamic lift, drag and resultant coefficients (CL, Cd, CR) on the kite are shown

in Fig. 4.22. The lift to drag ratio (CL

Cd
) in the 3D baseline simulation is around 3.0

as shown in Fig. 4.23.

It should be noted, a baseline simulation with no-slip condition at the kite interface

was performed. Hydrodynamic lift, drag and resultant coefficients (CL, Cd, CR) on

the kite for no-slip simulation are shown in Fig. 4.24. The observed CR/Cd ratio in

Fig. 4.24 is around 1.5, which is due to low grid resolution as explained in section 3.3.

The lower CR/Cd affects on the generated power as presented in Fig. 4.25. The power

consumption during the retraction phase is high due to the large value of the kite
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Figure 4.22: Lift, drag and resultant coefficients for the kite vs time .
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Figure 4.23: The ratio CR/Cd for the kite.
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Figure 4.24: Lift, drag, and resultant coefficients of the kite using a no-slip boundary

condition at the kite interface.
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Figure 4.25: Power output using a no-slip boundary condition at the kite interface.

drag during this phase. It leads to decrease the net power output of TUSK system

in a power-retraction cycle.

The tether tension for the 3D baseline simulation during the power and retraction

cycle is shown in Fig. 4.26(a). Predicted tether tension can help to determine required

tether materials for TUSK systems. The rest length of the tether is changed with a
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Figure 4.26: Tether parameters in the 3D baseline simulation using slip condition at

the kite interface.

constant rate during reel-in and reel-out phases while the actual length is determined

from the hydrodynamic forces applied on the kite.

Power is calculated by multiplying the tether tension (Fig. 4.26(a)) by the reel-out

or reel-in velocity of the tether (Fig. 4.26(b)) which is 30 % of the ocean current

velocity in the power and retraction phases. As is demonstrated in Fig. 4.27 the

average power that is generated during reel-out is around seven times higher than the

consumed power in the reel-in phase.

The value of the analytical maximum power based on the parameters of this simu-

lation, which is calculated by Eq. 1.1, is also shown in Fig. 4.27. It shows that the

efficiency of the TUSK system which is studied in the baseline simulation is around

42%. The efficiency is defined by:

ηp =
P̄act.
Pmax.

, (4.7)

where, P̄act. and Pmax., are the average power output from the numerical simulation

and the maximum analytical power proposed by Loyd [15], respectively. Moreover,
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Figure 4.27: Power output of 3D baseline simulation vs time.

the power coefficient of the baseline simulation is calculated by

CP =
P

1
2
ρAcross−currentV 3

c

, (4.8)

where, P is the net power obtained in a power-retraction cycle, Vc is the current

velocity, and Across−current is the area swept by kite during cross-current motion. It

shows that Cp = 0.035 for the baseline simulation which does not violate Betz limit.

4.2.1 Tether Retraction Velocity

The effect of tether velocity during the retraction phase, on power output of TUSK

systems is also studied, where four different simulations have been performed. While

the tether velocity is kept to Vt = 0.3 m/s during the power phase, the tether retrac-

tion velocity is set to 0.3 m/s, 0.6 m/s, 0.9 m/s and 1.2 m/s for the four different

simulations. The other input values are given in Table 4.2.

The tether force and the tether velocity for the simulations are shown in Fig. 4.28. It

can be seen by increasing the tether retraction velocity during the retraction phase,
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from 0.3 m/s to 0.6 m/s, the tether force increases by the ratio of (1.6
1.3

)2 (the ratio

of square of the apparent velocities for the two simulations). Note that the current

velocity is 1 m/s. Also, the tether force approximately increases by the ratio of (1.9
1.3

)2

and (2.1
1.3

)2 compared to the baseline simulation, when the kite retracts with 0.9 m/s

and 1.2 m/s, respectively as illustrated in Fig. 4.28(b).

Figure 4.29 shows the instantaneous power output during the power-retraction cycle

for the different tether retraction velocities. Although increasing Vt during reel-in

phase leads to increase the power consumption, it reduces the kite retraction time.

The net power output during a power-retraction cycle, Pcycle, is calculated by:

Pcycle =
PP × tP − PR × tR

tP + tR
, (4.9)

where, PP , PR, tP , and tR, are the average power obtained during power phase,

average power consumed during retraction phase, duration of the power phase and

duration of the retraction phase, respectively. The net power output at different

ratios of the tether velocity during the power phase to the tether velocity during the

retraction phase (γout/γin) is shown in Fig. 4.30(a). It illustrates that the maximum

net power output during a power-retraction cycle occurs at γout
γin

= 0.33. Moreover, the

effect of the ratio of tether force during the retraction phase over the tether tension

during the power phase (Tin/Tout) on net power output is shown in Fig. 4.30(b). It

shows that Tin/Tout would be around 0.2 to reach the maximum net power output for

a power-retraction cycle. Also, Fig. 4.30(c) shows the net power output versus the

four ratios of power input which is consumed during the retraction phase over the

power output obtained during the power phase (Pin/Pout). The maximum net power

output occurs at Pin/Pout = 0.7. The ratios of Tin/Tout and Pin/Pout are obtained

from the output of the simulations while the γout/γin is an input ratio.
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Figure 4.28: The tether parameters at four different tether retraction velocities.
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Figure 4.29: Power output vs time at four different tether retraction velocities.

In AWE systems Ahrens et al. [34] found the optimum net power at different ratios of

γout/γin, Tin/Tout, and Pin/Pout versus the cube of lift to drag ratio (L/D)3 as shown

in Fig. 4.31. It shows that for the (L/D)3 = 27 (the lift to drag ratio for the 3D

baseline simulation) the maximum power for a power-retraction cycle is obtained at

γout
γin

= 0.3, Tin/Tout = 0.2, and Pin/Pout = 0.7 . Figures 4.30 and 4.31 illustrate that

the current numerical results for TUSK systems match well with the theory in AWE

systems done by Ahrens et al. [34].

4.2.2 Tether Drag Effect

In this section, the influence of the tether drag on the performance of TUSK systems

is investigated. The method for implementation of the tether drag effect is explained

in section 2.12 [13]. The effect of tether drag on kite performance has been considered

in AWE systems. The effect of tether drag can usually not be neglected, and can be

a significant portion of overall drag on the kite. The tether drag can become the



84

γout/γin

0 0.2 0.4 0.6 0.8 1

N
et

p
ow

er
(W

a
tt
)

2300

2500

2700

2900

3100

Fastest
retraction
velocity

Slowest retraction
velocity

(a)

Tin/Tout

0 0.1 0.2 0.3 0.4 0.5

N
et

p
ow

er
(W

a
tt
)

2300

2500

2700

2900

3100

Fastest retraction velocity

Slowest retraction velocity

(b)

Pin/Pout

0 0.3 0.6 0.9 1.2 1.5

N
et

p
ow

er
(W

a
tt
)

2300

2500

2700

2900

3100

Fastest retraction velocity

Slowest retraction velocity

(c)

Figure 4.30: a) The net power output at four different ratios of tether velocity during

the reel-out phase to tether velocity during the reel-in phase (γout/γin). b) The net

power output at four different ratios of tether tension during the reel-in phase to

tether tension during the reel-out phase (Tin/Tout). c) The net power output at four

different ratios of power output during the reel-in phase to power output during the

reel-out phase (Pin/Pout).
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Figure 4.31: Optimum power output at different ratios of tether reel-out to tether

reel-in speed (γout/γin), tether force ratio (Tin/Tout), and power ratio of reel-in to

reel-out (Pin/Pout) vs the cube of lift to drag ratio (Fout/Fin = (Cl/Cd)
3) [34].

dominant drag contribution for very efficient airfoils [105].

Hydrodynamic lift, drag and resultant coefficients (CL, Cd, CR) of the kite are shown

in Fig. 4.32. As mentioned earlier, it is seen in literature [13], that the apparent

velocity, Va, is used to calculate non-dimensional lift and drag forces of the kite which

are shown in Fig. 4.32(b).

The total drag on the kite system is now calculated based on:

Cd = Ck
d + Ctet.

d (4.10)

Here, Cd is the total kite drag coefficient, and Ck
d , and Ctet.

d are the kite drag and the

tether drag coefficients, respectively. Figure 4.33 demonstrates that the drag of the

TUSK system increases by about 25% during the power phase when the tether drag

is included as shown in Fig. 4.33(b). It also demonstrates that the tether drag has a

small effect on kite drag during the retraction phase, since the kite is retracted along
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Figure 4.32: Hydrodynamic coefficients of the kite vs time .
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Figure 4.33: Comparison of kite drag coefficient with and without the tether drag

effect.

the tether direction.

Houska and Diehl [106] claimed that for AWE systems the effective tether drag force

with respect to the perpendicular component of the wind can be calculated by:

Ff =
1

8
CtDρdlV

2
a . (4.11)
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Figure 4.34: The effect of the tether drag on the kite drag force.

Here, d and l are the diameter and length of the tether. Va is the apparent kite velocity,

and CtD the drag coefficient of the tether with respect to the perpendicular component

of the wind. In this simulation d, and l are 0.025 m and 100 m, respectively and CtD

is 1.2 [23]. Therefore, based on the input parameters of the simulation and Eq. 4.11,

the theoretical value of the tether drag force is around 1200 N . The kite drag force

with and without considering the effect of the tether drag, and the difference between

two drag forces are shown in Fig 4.34(a) and Fig. 4.34(b), respectively. It shows that

the net drag force found by the simulation is in a reasonably good agreement with

the theoretical result by Houska and Diehl [106].

The effect of the tether drag on the trajectory and the velocity of the kite is also

shown in fig. 4.35. Figure 4.35(a) shows that the kite velocity in the cross-current

direction decreases around 10− 15% when the effect of tether drag is included.

Moreover, the effect of the tether drag on the tether tension force is studied. Fig-

ure 4.36 and Fig. 4.37 illustrate that the effect of the tether drag on the tether tension
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Figure 4.35: The effect of the tether drag on the kite trajectory and velocity in the
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Figure 4.36: The effect of tether drag on the tether force.

and the power generation for the proposed concept of TUSK systems is small.

Since the tether force Ft can be obtained by:

Ft =
√
L2 +D2, (4.12)
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Figure 4.37: The effect of tether drag on the power generation.

It shows that at a larger value of lift to drag ratio (L/D ≥ 3), the tether tension

would be approximately equal to the kite lift force. Therefore, the increase in the

kite drag due to the tether drag would have a small effect on the tether tension, and

consequently on the power generation for the proposed TUSK concept. However,

the effect of the tether drag on the other concept of the TUSK systems should be

considered in future.



Chapter 5

Conclusion

This chapter presents a summary and a discussion of the results, and concludes by

recommending future steps that can enhance this work.

5.1 Discussion and Conclusion

A computational method has been developed to predict the response of an underwa-

ter wing to an ocean current. In TUSK systems, the kite forces are transmitted via

extendable tethers to produce power from the ocean current. The method is based

on solving the unsteady Navier-Stokes equations with a two-step projection method

coupled with OpenMP acceleration. Fluid-kite interaction is captured by the im-

mersed boundary method, which initially considers the kite as a fluid. Therefore, the

governing equations for the fluid are solved in the entire computational domain, in-

cluding the kite domain, and then the kite rigidity condition is imposed. The tethers

are modeled using reduced order model in which a simple Hooke’s law is used and

the effect of tether damping is included. Ocean current is modeled as a constant and

uniform thrust force.

As a preliminary step, a numerical model is developed to test a 2D baseline simulation

90
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in which the kite geometric angle of attack is controlled by altering the unstretched

length of the tethers to obtain periodic power and retraction phases. A baseline

simulation and the effect of varying key parameters in 2D TUSK systems are investi-

gated in this study. The power generated for the two-dimensional baseline simulation

matches well with theoretical results from Loyd [15].

A moving numerical domain method is then developed to allow computations of

higher amplitude of cross-current motions in a reasonable time. The accuracy of the

moving numerical domain method is verified by performing two different test cases.

Moreover, the effect of slip and no-slip boundary condition at the kite interface is

studied. The grid resolution and Reynolds number independency of the results have

also been established. A PID controller is used to adjust the kite pitch, roll and yaw

angles during a power-retraction cycle to achieve cross-current kite motion during the

power phase, and kite motion along the tether direction during the retraction phase.

It has been demonstrated that using slip condition at the kite interface leads to more

accurately estimates of kite lift and drag forces in coarse grid resolutions. A baseline

simulation study of a full-scale TUSK system is conducted. Vorticity flow fields and

effective kite angle of attack are determined for a baseline simulation which shows

the formation of larger vortices behind the kite during the power phase compared to

the retraction phase, due to higher kite angle of attack. Tether parameters such as

tension, reel-in and reel-out velocities are resolved for a baseline simulation to deter-

mine required tether materials for TUSK systems. The kite trajectory, hydrodynamic

coefficients for the kite and the power generated are also captured. Also, the effect

of tether retraction velocity is studied. The optimum condition for tether velocity is

observed during reel-in phase to increase the net power of a cycle. The results are

verified with theoretical results from Ahrens et al. [34]. Moreover, the effect of the
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tether drag is investigated and compared with the results of the 3D baseline simu-

lation. It shows that the kite drag coefficient increases by 25% with including the

effect of the tether drag into the baseline simulation. It affects the trajectory and the

velocity of the kite. However, it has a small effect on the power generation for the

proposed concept of TUSK system.

5.2 Recommendations for Future Work

The goal of this work was the development of a nonlinear model to fully capture the

nonlinear response of tethered underwater kite system to ocean currents. Therefore,

the developed computational method focuses on modeling of 3D tethered underwater

wing in a uniform ocean current in which rather simple models are used for the kite

shape and the tether modeling. It is highly desirable to integrate the wing shape and

developed hydrodynamic model with more robust models in future.

Considering the effect of ocean current velocity profile near the ocean surface would

be an interesting step as a future goal. The variation of the current velocity in time

could also be considered.

Although the computational method is parallelized with OpenMP, it would be inter-

esting to parallel the computational tool with more advance parallelization scheme

such as Graphic Process Unit (GPU) acceleration to reduce the computational time

and increase the robustness of the model to capture smaller scale physics, specially

on the solid-fluid interface.

In the current code, a turbulence model is not included. LES turbulence model can

be added to the developed approach to increase the performance of the model in order
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to be able the cover broader range of the simulations.

Simple control methods are used to control the kite geometric angle of attack in the

simulations. Application of more complex kite control schemes to control the effective

angle of attack should be considered as a future work.

The straight-line geometry of the tether is considered in this study. It would be

interesting to consider the effect of complex shapes of the tether such as non-straight

cable with different tether materials on the TUSK performance.

The developed model could also be extended to simulate other systems in marine

environments, especially for renewable energy technologies. Fly-Gen configuration of

underwater kite systems could be studied in future where the effect of the turbine

blades and cavitation should be considered.
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