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ABSTRACT 

The purpose of this Interactive Qualifying Project was to investigate the topic of 

transgenic animals, and to determine the impact of this complex new technology on 

society. Information is presented on how such animals are created, examples of which 

ones have been created to date, their importance to society, and the ethics surrounding 

their construction and use. The knowledge gained in this project instilled a pro-transgenic 

perspective in the author, with some cautions regarding rare cases of animal suffering. 
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Executive Summary 

The purpose of this Interactive Qualifying Project was to investigate transgenic 

animals, a new technology within the field of biology, and to examine the complex 

impacts of this new technology on society. Transgenic animals (TA) are animals in which 

a foreign gene(s) has been inserted. They are useful tools for the study of biological 

functions of proteins and secondary gene products synthesized by the action of protein 

catalysts. Technologies for the production of food, nutritional products, and ingredients 

from transgenic animals are maturing and yielding exciting results in experimental and 

farm animals. However, some ethical issues surrounding transgenic animals need to be 

solved and the enormous amounts of resources needed for transgenic livestock 

production cause the costs for making transgenic animals to be extraordinarily high. 

Altogether, transgenic animals are poised to dramatically increase the well-being of 

countries. Farm animals producing complex biopharmaceuticals means that former and more 

expensive methods of harming and sacrificing organisms can be abandoned. Farm animal 

production can be made more efficient and has the potential to produce the same amount of food 

using fewer animals. Disease models such as the PDAPP transgenic mouse model help to create 

cures for diseases such as Alzheimer's which would end the suffering of millions of people and 

billions of dollars in temporary treatments that could be used more beneficially elsewhere, 

including environmental protection. Committees and agencies that deal with the ethical issues and 

any possible problems that may result from transgenic technology need to be set up and 

maintained. The benefits of transgenic animals to society, however, are overwhelming and would 

benefit from additional government and public support. 
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Project Objective 

The purpose of this Interactive Qualifying Project was to investigate transgenic 

animals, a new technology within the field of biology, and to examine the complex 

impacts of this new technology on society. The objective was accomplished by 

researching primary biological literature in order to understand how, and what kinds of, 

transgenic animals have been made to date. The middle chapters explored transgenic 

animals' benefits to society, and ethical issues concerning their use. The final chapter 

presents the author's conclusions about this new beneficial technology. Throughout the 

report, all attempts were made to explain the information in layman's term to facilitate 

public understanding of this complex, but powerful, technology. 
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Introduction 
Transgenic animals (TA) are animals in which a foreign gene(s) has been inserted. They 

are useful tools for the study of biological functions of proteins and secondary gene products 

synthesized by the action of protein catalysts. Research in nutrition and allied fields is benefiting 

from their use as models to contrast normal and altered metabolism. Although food, nutritional 

products, and ingredients from transgenic animals have not yet reached consumers, the 

technologies for their production are maturing and yielding exciting results in experimental and 

farm animals. Transgenic mice, in the form of gene knockouts by the homologous recombination 

technique or random insertion of wildtype or mutant transgenes, are important tools that provide 

insight into the function of a gene in vivo and can provide models of disease states to test 

hypotheses for potential therapeutic intervention. 

Page et al. (1992) define TA as "a result of the incorporation of a foreign gene such that it 

becomes an integral part of the natural chromosomal makeup of the animal." Kopchick et al. 

(1996) propose a definition in which the key elements are the incorporation of exogenous DNA 

into the germ line of animals and the preservation of such genetic material in subsequent 

generations. However, exogenous DNA can also be incorporated transiently into specific tissues, 
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thus producing TA that express heterologous proteins without incorporating foreign DNA into 

their germ lines. For example, Archer et al. (1994) used retroviruses for the direct transfer of the 

human growth hormone (hGH) gene into the mammary glands of goats causing the secretion of 

hGH in their milk. In addition, homologous proteins that are expressed in certain tissues of a 

given species can be transgenically expressed in tissues in which they are not normally found. An 

example of this case is the work of Kelder et al. (1998) in which a murine enzyme (a-

galactosyltransferase), which is normally expressed in liver, is transgenically expressed in 

lactating mammary glands of mice. 

Transgenic animals (TA) express, or may express if properly induced, proteins encoded 

by cDNA or genes usually appended to heterologous promoters or transcription regulatory 

elements (TRE). These fusion genes are commonly referred to as transgenes. It is important to 

note that the expression of proteins, which are primary gene products, may or may not be the only 

acquired features of a given TA. If the transgene-encoded protein is an enzyme and if its 

substrates are present within the cell, then secondary gene products also will be synthesized. TA 

may accumulate these products in tissues or biological fluids in which they are not normally 

present. (Prieto et al., 1999) 

Mice have become the transgenic animals of choice as biomedical models for certain 

diseases and for understanding the roles of different genes. Several factors have contributed to 

this boom, including the mouse's spectacular fecundity and relatively low maintanance costs. 

Some profilic pairs, for instance, can produce more than 250 descendants in just a year on a little 

more than grain and water. But scientists also like mice because they are physiologically and 

genetically similar to humans. Millions of mice are used to screen drugs and potentially 

dangerous compounds for safety. Most human genes appear to have a related mouse version, 

making it possible to gain insight into human diseases using gene-altered mouse models that 

suffer from similar ills but aren't subject to the same ethical concerns as human patients. 

Technologies that have made it easier than ever to tinker with the mouse's genome have only 

enhanced the rodent's value. (Marshall, 2000) 

The relevance of TA to the field of nutrition may be better illustrated by a few examples, 

including pigs and mice that express human proteins in their milk (Archibald et al., 1990; Clark, 

1998) or in their urine (Meade and Ziomek 1998); pigs with unique fat/muscle ratios due to the 

expression of peptide hormones (Wieghart et al., 1990); sheep with altered carcass composition 

due to transgenic expression of hormones (Wise et al., 1988); mice that have altered milk 

oligosaccharides and glycoproteins (Prieto et al., 1995); the production of lactose-free milk or 

milk with reduced lactose content due to elimination of a-lactalbumin (Karatzas and Turner, 
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1997; Stacey et al., 1994; Stacey et al., 1995); and tilapia overexpressing GH (Martinez et al., 

1996). Although transgenic animal products are not as yet available to consumers, products 

obtained from transgenic plants are already in the marketplace, and many vegetables and fruits 

are being targeted for modifications and improvements through the use of transgenic 

technologies. These are not necessarily focused on improving the nutritional quality of food 

products, but often on increasing efficiencies in the production of cultivars, improving resistance 

to insects and pathogens, and changing or enhancing organoleptic characteristics. Because of the 

fast pace at which TA technologies are evolving, it is conceivable that a significant portion of 

food products on supermarket shelves will become targets for functional, compositional, or 

nutritional improvements. 

Economically the enormous amounts of resources needed for transgenic livestock 

production, the costs for one expressing transgenic animal are extraordinary high. It has been 

calculated that one expressing transgenic mouse requires average expenses of US$120 whereas 

one expressing transgenic pig would amount to US$25,000, one transgenic sheep US$60,000 and 

one transgenic cow US$546,000 when in vivo derived zygotes are used (Wall et al., 1992). Thus 

for cattle, transgenic production can only be practical through in vitro production of embryos as it 

reduces costs by 50-60%. (Niemann, 2000) 

Numerous disease models of transgenic animals have been produced in a matter of years 

showing the importance of transgenic animals in research. As an example, below are 61 current 

listings in the Strain Category of 'Breast Cancer' in the Jackson Laboratory Induced Mutant 

Resource of genetically engineered mice search form. This search form is available at the 

following URL: http://www.jax.org/pub-cgi/imrpub.sh?obitype----rptquery.  

Table 1. 
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Chapter 1: 

Methods of Generating Transgenic 
Animals 

Transgene Architecture 

Figure 1 is a schematic representation of transgene architecture. Transgenes contain 

trans-response elements (TRE) (a synonym for 'promoter'), which control the expression of the 

protein-encoding DNA sequences. Some TRE's are tissue specific and thus the expression of the 

adjacent DNA is targeted to certain tissues or organs. Examples of these are the lactogenic TRE, 

which enhance DNA transcription during late pregnancy and lactation, and target gene expression 

to the epithelial cells of the lactating mammary gland (Wall et al.,1991; Mercier and Vilotte, 

1993). Other TRE are inducible; that is, they can be 'activated' by applying external stimuli. One 

example is the metallothionein TRE (Busch et al., 1994), which is induced to promote 

transcription by the addition of heavy metals to the animal's diet. Another is the 

phosphoenolpyruvate carboxykinase TRE, which is not active during fetal development, but is 

turned on after birth and can be regulated by the amount of dietary carbohydrate (McGrane et al., 

1988). Other TRE direct expression to many tissues simultaneously (Wong et al., 1997). Most 

transgenic experiments result in insertion of the transgene into chromosomal DNA. For this 

reason, transgene expression may also be affected by the transcriptional state of surrounding 

genomic DNA. Dominant control sequences known as locus control regions (LCR) are used to 

"shield" the transgene from such effects (Fujiwara et al., 1997). Transgenes can also be protected 

from position effects by other types of boundary elements known as matrix attachment regions 

(MAR) or scaffold attachment regions (McKnight, et al., 1996). (Prieto et al., 1999) 
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Figure 1. Schematic representations of different fusion genes for transgenic expression. (A) Simple 
construct containing a short transcription regulatory element, a cDNA, and polyadenylation encoding 
sequence. (B) More complex construct showing a larger regulatory element including an enhancer and 
strategically placed introns. (C) A construct with "shielding" elements, in this case, locus control regions 
(LCR), which contain a full genomic sequence. On occasion, the full genomic sequence including 
transcriptional regulatory elements have been successfully used. 

The core fragment of the transgene is the DNA sequences that encode protein. Sometimes 

the only available DNA is a cDNA, which is generated from mRNA libraries by reverse 

transcription. In contrast, most genomic DNAs contain intervening sequences called introns, 

which are not translated. Introns tend to stabilize and promote protein expression and can be 

engineered into a fusion gene. Alternatively, genomic DNA with all its introns is preferred. On 

the other hand, there are practical limitations to the size of the transgene. In general as the 

transgene becomes larger (i.e., 20 kb) the rate of production of TA is decreased. This is thought to 

be due to fragmentation of DNA during the microinjection procedure. (Prieto et al., 1999) 
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It has been shown that the control of transgene expression can be improved by increasing 

the length of the flanking genomic DNA sequences. Artificial chromosomes are able to carry 

extremely large DNA fragments of more than one megabase (Mb). Artificial chromosomes have 

been derived from yeast; they include centromeres, telomeres, and origins of replication as 

essential components. Microinjection of a 450-kb genomic YAC harbouring the murine 

tyrosinase gene resulted in transgenic mice, which showed a position-independent and copy-

number-dependent expression of the transgene, and caused albinism to be rescued in transgenic 

mice and rabbits (Schedl et al., 1992; Schedl et al., 1993; Brem et al., 1996). A 210-kb YAC 

construct has been microinjected into rat pronuclei and a-lactoglobulin and human growth factor 

were expressed in the mammary gland of transgenic rats (Fujiwara et al., 1997 & 1999). Artificial 

chromosomes can also be constructed in bacteria (BACs), which can easily be genetically 

modified to allow homologous recombination. Transgenic mice were generated via pronuclear 

injection of BACs and germline transmission and proper expression of the transgene was 

achieved (Yang et al., 1997). Recently, also mammalian artificial chromosomes (MAC) have 

been engineered by employing endogenous chromosomal elements from YACs or extra 

chromosomal elements from viruses or BACs and P1 artificial chromosomes (PACs) (Vos, 1997). 

(Niemann, 2000) 

Transgene Delivery 

The most commonly employed technique to introduce transgenes into animals is 

microinjection of the fusion gene into the male pronucleus of embryos as reviewed by Janne et al. 

(1992) and Velander et al. (1997). These embryos are then implanted in pseudopregnant females 

and the resulting offspring are assessed after birth for the presence of the transgene. It is not 

possible to regulate the number of copies or the sites in which the transgene will be inserted into 

the chromosomal DNA of the recipient. Likewise, the influence of the surrounding chromatin 

cannot be predicted. That is the reason why shielding elements such as the LCR and MAR 

described above are used in transgene construction. The number of copies of the transgene may or 

may not affect the final level of transgene-encoded protein produced. 
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Figure 2. CO U. of Virginia Transgenic Mouse Core Facility, Sonia Pearson-White, Director 

Because of their short generation times, mice have been frequently produced using 

embryo microinjection. The use of this technique for the preparation of larger transgenic farm 

animals with significantly longer gestation periods requires long waiting periods before the 

results of an experiment can be evaluated. For this reason, techniques have been developed to 

determine if microinjected embryos at advanced stages of development have incorporated the 

transgene prior to implantation into surrogate mothers (Hyttinen et al., 1994; Jura et al., 1994; 

Saberivand and Outteridge, 1996). 

A second technique currently used in freshwater fish and marine organisms is 

electroporation. Eggs are incubated in the presence of the transgene and electrical pulses are 

applied (Ono et al., 1997). Alternatively, sperm can be electroporated, thus acquiring the 

transgene (Tsai et al., 1997). This sperm is then used to fertilize eggs, which results in transgenic 

organisms. Electroporation is also used to introduce transgenes into somatic mammalian cells and 

promo 
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pluripotent embryonic stem cells (Notarianni et al., 1997). These cells can be cultured and tested 

for transgene incorporation. Cells that carry the transgene can then be introduced into host 

morulae, which are then implanted into recipient mothers. The resulting TA are chimeric; that is, 

the transgene is present in some, but not all, of the cells of the progeny including gametes. 

Homozygous animals for the transgene can be produced by crossbreeding selected animals. 

Embryonic stem cells are frequently used to generate targeted gene mutations. (Prieto et al., 

1999) 

TA can also be generated by infection with retroviruses and retroviral vectors. Embryos 

or pluripotent cells can be transfected using this technique. An interesting application of retroviral 

transfection described by Archer et al. (1994) involved the direct transfection of animals through 

the teat canal using such vectors. In this case, the exogenous DNA was incorporated only into the 

genome of mammary gland cells and was not transmitted through the germ line. Transfection 

takes place during hormone-induced mammary gland differentiation and transgene-encoded 

proteins can be found in the milk. The transgene is transcribed at least for the duration of 

lactation. (Prieto et al., 1999) 

Finally, once cells containing transgenes or targeted mutations are available, it is possible 

to obtain derived TA or TM by nuclear transfection. In this technique nuclei are obtained from 

cell cultures of transfected cell lines such as fibroblasts and are transferred into enucleated 

oocytes. These oocytes are then implanted into pseudopregnant animals. This demonstrates that 

somatic cells can be used to generate TA (in the sense that they still contain a human-made fusion 

gene). This technology can expedite the development of a productive herd that would be 

comprised of clones from an original TA (Schnieke et al., 1997). The recent generation of 

transgenic rats and mice by testis-mediated gene transfer may not only provide a more efficient 

means of TA production but also allow TA production in currently "resistant" species (Chang et 

al., 1999). This method generates transfected sperm by direct injection of DNA-liposome 

complexes into the male testis. These animals are then mated to normal females to generate the 

TA. (Prieto et al., 1999) 
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Chapter 2: 

Breakthroughs in Transgenic Animals 

1976 	 Rudolf Jaenisch uses a virus to transfer DNA to mouse embryos. 

1979 	 Liu et al. used microinjection to insert mRNA into mouse and human cells. (Liu et al., 1979) 

1981 	 G.R. Martin creates the first knock out mouse (Martin, 1981). 

1982 	 Palmiter et al. create the first transgenic animals by inserting rat growth hormone genes into mice 
causing the mice to grow to almost twice their normal size. (Palmiter et al., 1982) 

1983 	 Bosma et al. create the SCID mouse which lack an immune system and later becomes a valuable 
tool for studying human tumors transplanted in mice (Bosma et al., 1983) 

1985 	 Hammer et al. create the first transgenic farm animals (Hammer et al., 1985). 

1985 	 Brian Sauer introduces the Cre-loxP system for temporal control of transgenic gene expression 
(Sauer and Henderson, 1988). 

1988 	 A. Anderson creates `OncoMouse,' the first tumor-prone mouse, which is patented by Harvard the 
same year (Anderson, 1988). 

1995 	 David Adams and coworkers create the first successful Alzheimer's mouse (Games et al., 1995). 

1997 	 Schnieke et al. create Polly and five other lambs bearing the gene for human factor IX (Schnieke 
et al., 1997). 

1998 	 Wakayama et al. clone mice from somatic cells by using nuclear transfer (Wakayama et al., 1998). 

1999 	 McCreath et al. create Cupid and Diana, two sheep clones, one containing a marker gene as a 
control, and one containing both the marker and a gene for a-1 antitrypsin. (McCreath et al., 
2000) 

1999 	 Tang et al. create 'smart mouse' by overexpressing the NR2B subunit postnatally in the mouse 
forebrain (Tang et al., 1999). 

2000 	 Nexia Biotechnologies, Inc. of Montreal, Canada, create Webster and Peter, two goats that carry a 
gene from arachnids that codes for the spider silk protein. 
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Doctors Ron James, left, and Keith Cambell, 
center, of PPL Therapeutics, with Dr. Ian Wilmut 
of the Roslin Institute and Dolly and Polly. 

Goats Peter and Webster will sire a herd of 
which the females will produce the spider silk 
protein, BioSteel, in their milk. Scientists will 
extract the protein to make BioSteel fibers for 
bulletproof vests, aerospace and medical 
supplies. (©2000 Discovery Communications 
Inc., July 30, 2000) 

Table 2. Examples of mouse models produced through transgenic or targeted mutagenesis technologies. 
(Prieto et al., 1999) 

Primary gene product 
Brown adipocyte uncoupling protein 
Expression of human triglyceride lipase 
Mutant thyroid hormone receptor 
Apoliprotein E 
Bovine growth hormone 
A2 Adenosine receptor 
Alpha 1B adrenergic receptor 
Cholesteryl ester transfer protein and apolipoprotein 
Breast cancer oncogenes 
Human renin and angiotensinogen 
a 1 -3/4 Fucosyltransferase 
a-Galactosidase 

Application 
Source of transfected brown fat tumors 
Lowering HDL cholesterol levels 
Resistance to thyroid hormone 
Diet sensitive atherosclerosis 
Diet (carbohydrate) sensitive growth hormone in plasma 
Thyroid hyperplasia, hyperthyroidism 
Growth stimulation, malignancy induction, other 

B Cholesterol feedback regulation, LDL induction 
Effect of diet in cancer onset 
Atherosclerosis 
Proliferative state of epithelial small intestine cells 
Fabry's disease 

Reference (year)  
Ross et al. (1992)57 
Busch et al. (1994)29 
Wong et al. (1997)31 
Plump et al. (1992)58 
McGrane (1988)30 
Ledent et al.(1992)59 
Ledent et al. (1997)60 
Liu et aL (1997)61 
Rao et al. (1997)62 
Sugiyama et al. (1997)63 
Bry et al. (1996)56 
Ohshima et al. (1997)64 

HDL-high density lipoprotein. LDL-low density lipoprotein. 

Table 3. Transgenic expression of growth hormone (GH) and related proteins. (Prieto et al., 1999) 
Primary gene product 
Bovine GH 
Human GH 
Porcine GH 
Human IGF-I 
Ovine GH 
Human GH 
Bovine GH 
Human IGF-I 
Bovine GH 
Tilapia GH 

Transgemc animal 
Mice 
Mice 
Pig 

Mice 
Lamb 

Pig 
Pig 
Pig 
Pig 

Tilapia 

Promoter 
hMTA-IIA 
hMTA-IIA 
hMT-IIA 
MT-I 
oMT-IA 
MT-I 
MT-I 
MT-I 
PEPCK 
hCMV 

Highlight 
Increase in growth rate 
Increase in growth rate 
Increased weight gain 
Somatic growth gain 
Body fat as low as 1/5 of controls 
Decrease in carcass fat 
Decrease in carcass fat 
Elevated IGF-I 
41% reduction in backfat depth 
F1 82% larger than control 

Reference (year) 
Palmiter et al. (1982)75 
Palmiter et al. (1983)41 
Vize et al. (1988)76 
Mathews et al. (1988)77 
Ward et al. (1989)78 
Pursel et al. (1989)67 
Purse! et al. (1989)67 
Purse! et al. (1989)67 
Wieghart et al. (1990)8 
Martinez et al. (1986)13 

Rainbow trout  GH 	 Carp 	 RSV 	 20-40% faster growth 	 Chen et al. (1993)79  
hMT-IIA-human metallothionein IIA. oMT-IA-ovine metallothionein IA. MT-I-mouse metallothionein IA. PEPCK-rat 
phosphoenolpynivate carboxykinase. hCMV-human cytomegalovirus enhancer-promoter. RSV-rous sarcoma virus. 
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Table 4. Examples of human milk proteins expressed in transgenic animals. (Prieto et al., 1999) 

Human mlii. protein 
Lactoferrin 
Lactoferrin 
Bile salt stimulated lipase 
Lysozyme 	 Mouse 
Fucosyltransferase al-3/4 FT Mouse 
Fucosyltransferase al -2FT I* Mouse, rabbit 

Re erence (year) 
 Krimpenfort (1993)99 

Krimpenfort (1993)99 
Stromqvist et al. (1996)100 
Naga et al. (1994)101 
Prieto et al. unpublished data 
Prieto et al. (1995)1 

A  
Cow 
Mouse 
Mouse 

al-2FT I Is not round in human milk. The isozyme al -2FT Ills expressed in Inman 
milk 
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Chapter 3: 

Transgenic Animals as Disease Models 

Alzheimer's Mouse Models 

Alzheimer's disease (AD) was named after the physician Alois Alzheimer who in 1907 

reported the case of an elderly female patient who had severe cognitive impairments and a 

characteristic pathology within the brain. Currently, AD and associated dementias affect 

approximately 10% of over 65 year olds and 30% of over 80 year olds and are the fourth leading 

cause of death among the elderly. Morphologically AD is characterised by the deposition of 

amyloid plaques and neurofibrillary tangles in the cortex and hippocampus followed by neuronal 

and synaptic loss. The neuritic plaques are extracellular lesions that are composed of the 40 to 

42/3 amino acid long peptide AP fragments derived from amyloid precursor protein (APP), 

whereas the neurofibrillary tangles are intracellular lesions composed of twisted filaments of tau 

protein. Two to three percent of early onset cases are linked to single point mutations in the gene 

which encodes amyloid precursor protein (Goate et al., 1991). These include the Swedish 

(APP670/671) and London (APP717) familial mutations. A larger proportion of early onset AD 

cases (70-80%) are linked to loci on chromosome 14, which correspond to presenilin-1 (PS-1; 

Sherrington et al., 1995). A structurally related protein, presenilin-2 (PS-2), encoded on 

chromosome 1, has also recently been identified and linked to AD (Rogaev et al., 1995). The 

precise function of these proteins is not known, however, it has been hypothesised that presenilins 

regulate APP processing and that the missense mutations in PS-1 (25 to date) affect the formation 

of amyloid-r3 (A(3). (Seabrook and Rosahl, 1999) 
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Fig. 4. (Top) Schematic diagram of amyloid 
precursor protein and sites at which it is 
preferentially cleaved by proteases, including that of 
the Ali 1-40 and A131-42/43 fragments (in red). 
(Bottom) Proposed metabolism of APP under normal 
conditions compared to that in early-onset 
Alzheimer's disease. In Alzheimer's disease it has 
been hypothesised that APP is preferentially 
metabolised via 13 secretase activity leading to the 
generation of soluble C99 peptide fragments. 
However, it remains to be determined whether it is 
the generation of the C99 fragment or the subsequent 
production of Ar31-42 by y-secretase activity that is 
the primary factor leading to the common pathology 
seen in early-onset and sporadic late-onset AD. A 
disruption of the normal function of APP may also 
contribute to the cognitive deficits. (Seabrook and 
Rosahl, 1999) 

I. 2 

Conventional gene targeting by the homologous recombination technique in embryonic 

stem cells has also been successfully applied to investigate the physiological role of genes 

involved in the predisposition to AD. A complete inactivation of the mouse APP gene was 

achieved by deleting a DNA sequence encoding the APP promoter and its first exon including the 

AUG translation initiation codon and the signal peptide of APP (Zheng et al., 1995). Similar 

approaches to either interrupt or delete an exon(s) were chosen to generate gene knockouts of the 

presenilin 1 gene resulting in complete ablation of the PS-1 protein (Wong et al., 1997; Shen et 

al., 1997; De Strooper et al., 1998). Transgenic mice harboring mutant forms of the APP and/or 

PS-1 gene associated with AD in humans are a valid tool to study the pathophysiological role of 

those genes in AD. Due to the relatively short life span of mice, of just 1-2 years, a high 
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overexpression of the transgene is considered to be necessary to achieve the development of AD- 

like symptoms in these animals. Therefore, a strong, brain specific promoter is typically chosen to 

drive the transgene(s) of interest. Currently, those transgenic lines which are most successful 

were established using the platelet-derived growth factor (PDGF)-13 promoter (Games et al., 

1995), the promoter and regulatory regions of the PrP gene (Hsiao et aL, 1996), and the murine 

Thy-1 promoter and exons (Sturchler-Pierrat et al., 1997). In all three lines a 7-10-fold 

overexpression of the transgenes was needed to develop features of AD-like pathology. 

Transgenic lines overexpressing human PS-1 transgenes carrying FAD mutations were 

established by using the PDGF promoter (Duff et al., 1996), the mouse PrP promoter (Borchelt et 

al., 1996) the hamster PrP promoter (Citron et al., 1997) and the human Thy-1 promoter (Qian et 

al., 1998). 

Table 5. Genetic parameters of TgAPP mice with amyloid deposits. (Janus et al., 2000) 
41= APP cDNA Mutation Transgene promoter Strain background APP overexpressi 
PDAPP, South SanFlancisco 128,311 695+751+770 (see teat) V717F PDGF-13 Swiss Webster, C57B1,6, D13A/2 10x 
Tg2576, Minnesota [36,37] 695 Swedish Hamster PrP C57BL6xSJL 5-6x 
TgAPP22, Basel [39] 751 with optimized Kozak sequence Swedish plus V71717  Human Thy-1 C57 2x 
TgAPP23, Basel [39] 751 with optimized Kozak sequence Swedish Murine Thy-1 C57 7x 
TgAPP1L4/2, Leuven [40] 695 V7171 Murine Thy-1 FVB/N and FVBNxC57BL6 25x (RNA) 
TgAPP/Sw11, Leuven. [40] 695 Swedish Wine Thy-1 FVB/N 7x (RNA) 
Tg2576 plus mutant presenilin I 154] 695 Swedish Hamster PrP C57BL6xSJL 5-6x (protein) 
Tg Hu/MoAPP phis presenilin 1 [55] 695 (mouse/human hybdd) Swedish Mouse Pr? [1 111 C57BI6J plus Cllifflel.  niihrre -2x (protein) 

APP ovempression refers to protein unless noted otherwise. 

Overall the most successful of the above transgenic lines, the PDAPP transgenic mouse, 

was developed at David Adams laboratory at Worcester Polytechnic Institute (Games et al., 

1995) and consists of a mutant minigene containing all exons plus some essential introns covering 

all three alternative splice forms of APP. Human APP exhibits a number of splice variants of 695, 

751 and 775 amino acid residues, reflecting the presence or absence of exons 7 and 8 

encompassing the so-called Kunitz inhibitor domain. These mice were cleverly constructed so as 

to encompass all of these spliced forms. They contain an APP cDNA interposed with a genomic 

DNA fragment encompassing introns 6-8, and driven by the platelet-derived growth factor 13- 

chain (PDGFI3) promoter, hence the PDAPP nomenclature. The APP cDNA contains the 

'Indiana' mutation, V717F, which is associated with enhanced cleavage at the y-secretase site to 

generate a preponderance of AP1 -42 (Suzuki et al, 1994). These mice exhibit florid amyloid 

deposition commencing at ca. 6-9 months. Neuroanatomic distribution of the plaques, whose 

major component is A13 1 -42, is detailed in Table 6. Very detailed neuropathological analysis has 

defined thioflavin-S positive AP deposits, neuritic plaques, synaptic loss, astrocytosis, and 

microgliosis. Overt NFTs are absent, as they are for other APP mice, though hyperphosphorylated 
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forms of tau are detectable. Neuronal loss is not evident (Irizarry et al., 1997). Unlike some APP 

overexpressed mice, premature death is not reported to be associated with this Tg line. (Janus et 

al., 2000) 

Table 6. Neuropathology in APP Tg mice. (Janus et al., 2000) 
Tg line' 	 Age at onset of 	 Plaque morphology 	 Plaque 	 As- 	 Mi. 	 Neuronal loss 

amyloid 	 location 	 trocy- 	 ta-oglio- 
deposition 	 tosis 	 sis 

NIT elements?   

PDAPP 	 from 6 months 	 diffuse and compacted hippocampus, 	 yes 	 yes 	 not significant at 	 AT8 positive 
onwards 	 plaques 	 Corp Call, CC 	 18 months 

Tg2576 	 at 9.12 months 	 deposits stain with 	 hippocampus, 	 yes 	 yes 	 none at 16 months 	 AT8 positive 
Congo Red 	 CC, amygdala 

Tg2576 plus 6 months 	 as above 	 as above 	 yes 	 yes 	 N.D. 	 (as above) 
mutant PSI 
TgAPP22 	 18 months 	 mostly diffuse 	 hippocampus 	 yes 	 yes 	 'N.D. 	 AT8 staining around Congo 

Red staining plaques, no 
NFTs 

T8APP23 	 6 months 	 congophilic and 	 hippocampus, yes 	 yes 	 up to 25% in CAI 	 as above 
diffuse 	 neccortex 	 at 14-18 months 

13-18 months 	 diffuse, composed in 	 hippocampus, 	 yes 	 yea 	 no overt neuronal 	 AT8 staining 
TgAPP/Ld/2 	 major part of Afii_a: 	 CC 	 loss or 

degeneration 
18-25 months 	 diffuse, composed in 	 hippocampus, 	 yes 	 yes 	 as above 	 AT8 staining 

TgAPP/Sw/I 	 major part of MI, 	 CC 
Tg 	 10 months 	 plaques composed of 	 hippocampus, 	 yes 	 yes 	 N.D. 	 N.D. 
11u/MoAPP 	 both Ati, and 	 CC 
plus PSI 	 AP 1.4:1 

N.D.. not done; CC, cerebral cortex. 

Since amyloid-I3 peptide (A13) seems to have a central role in the neuropathology of AD 

and familial forms of the disease have been linked to mutations in the amyloid precursor protein 

(APP), the PDAPP transgenic mouse model has been used to screen possible drugs and methods 

for curing AD. Recent research has shown that immunization with amyloid-13 works like a 

vaccine in the PDAPP transgenic mouse by preventing the development of (3-amyloid-plaque 

formation in young mice as well as reducing the extent and progression of these AD-like 

neuropathologies in older mice where the amyloid-13 deposition is already well established (see 

figs 5&6)(Schenk et al., 1999). Recent human clinical trials of this vaccine has not only been 

shown to be safe but also not to cause any side effects in the patients. 
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Figure 5. Reduction of AP burden in the hippocampus at 13 months of age in PDAPP mice immunized 
with AP42. PDAPP mice were immunized beginning at 6 weeks of age. The percentage of the area of the 
hippocampal region occupied by AP deposits was determined by quantitative image analysis. Values for 
individual mice are shown sorted by treatment group. Horizontal lines represent the median values. The 
A(342-immunized group had significantly fewer AP deposits than any of the other three groups (P = 0.001), 
which are not significantly different from each other (P 0.05). UTC, untreated controls; SAP, mice 
immunized with serum amyloid P. (Schenk et al., 1999) 

UTC PBS A1342  PBS A[342 
12 months 15 months 	 18 months 

Figure 6. Quantitative image analysis of the cortical AP burden in older PBS- and AP-treated mice. 
Immunization of PDAPP mice was begun at 11 months of age. Amyloid burden was significantly reduced 
in the A1342  group compared with the PBS controls at both 15 (P = 0.003) and 18 (P = 0.0002) months of 
age. The median value of the amyloid burden for each group is shown by the horizontal lines. (Schenk et 
al., 1999) 
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The recent advances in genome sciences and the development of transgenic technology 

have provided a unique opportunity to study how genes associated with human cognitive 

dysfunction alter synaptic transmission between neurons in the mammalian brain. However, one 

of the difficult issues surrounding knockout and transgenic studies is the relevance of the animal 

phenotype to the disease state. In the case of models of Alzheimer's disease, mice have a short life 

span and therefore one can realistically question the relevance of changes seen over the space of a 

few years to a disease which, in humans, takes several decades to occur. It is similarly difficult to 

eliminate the influence that the disruption of the genotype of an animal may have upon 

developmental processes. However, the creation of inducible transgenics and knockout 

techniques will, to some extent, help to address these concerns. Clearly, both issues will remain a 

significant philosophical challenge for the interpretation of transgenic studies and must be 

considered carefully when extrapolating to human disease states. Nonetheless it is clear that 

transgenic studies have already provided, and will continue to provide valuable information 

regarding the significant role that APP and PS-1 mutations have in early-onset familial AD. 

(Seabrook and Rosahl, 1999) 

The SCID Mouse 

Severe combined immunodeficient (SCID) mice were created by Bosma et al. (1983). 

The SCID mouse has helped to create many scientific breakthroughs and is one of the most 

widely used transgenic animals in research. This is due to its almost nonexistent immune system 

which allows cells from other animals and humans to be engrafted onto the mouse for real life 

study. Although the SCID mouse does not always seem to be affected by these foreign cells, 

research involving the SCID mouse has given rise to many ethical concerns. For example, the 

long-term engraftment, proliferation and differentiation of human hematopoietic cells has been 

observed in SCID mice by exogenous compensation of human specific cytokines (Lapidot et al., 

1992) and by transplantation of human fetal organs (McCune et al., 1988; Kyoizumi et al., 1992; 

Chen et al., 1994) and human adult bone (Heike et al., 1995; Sandhu et al., 1996). These 

methods are clearly not always appropriate with respect to cost or ethics. Recently, however, 

alternative attempts to maintain long-term circulation of human cells in mouse blood by the stable 
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supply of human specific cytokines have been reported (Nolta et al., 1997; Goan et al., 1995; 

Bock et al., 1995). One was the transplantation of both human stem/progenitor cells and human 

IL-3 expressing stroma cells into SCID mice. Another was the use of transgenic SCID (Tg-SCID) 

mice integrated with human cytokine genes, human IL-3, GM-CSF and stem cell factor. 

Of all the general transgenic mouse models, the SCID mouse is probably the most widely 

used and it certainly has the widest number of applications. It is used to monitor patient immune 

response to tumors (Bankert et al., 2000). It is used as a model for human skin and the nature of 

an acute inflammatory response, which has recently been used to study the feasibility of an 

adenoviral vector as a means of therapeutic protein delivery for the treatment of impaired wound 

healing (Sylvester et al., 2000). It is even used as a model for human lung cancer (Miyoshi et al., 

2000), and as a model for human head and neck tumors. The latter model was recently used to 

develop a novel method for suppressing human head and neck squamous cell carcinoma 

(I-INSCC) by human peripheral blood lymphocytes (HuPBL) following local, sustained delivery 

of interleukin-12 (IL-12) by biodegradable microspheres to tumors (Kuriakose et al., 2000). 

Cancer Mouse Models 

Transgenic animal technology has resulted in a plethora of murine models for cancer 

research providing insight into the complex oncogenic events contributing to the loss of cell cycle 

control and tumourigenesis. Besides studies designed to understand the disease process, these 

mouse strains provide controlled experimental systems to study gene-environment interactions 

and enable us also to study chemoprevention strategies. Cancer chemopreventive agents are 

chemical or dietary compounds, which reduce the risk of developing cancer in individuals 

carrying a higher risk of developing the disease. Non-transgenic experimental systems commonly 

used are based on treatments with a carcinogen and using tumour development or various 

preneoplastic biomarkers, e.g. aberrant crypt foci (ACF) in the colon, as end points. According to 

these protocols chemopreventive agents have been classified as blocking agents working in the 

initiation stage or suppressive or regressive agents working at later stages in the carcinogenic 

process. The SCID mouse, described earlier, has been one of the most widely used transgenic 

mouse models in human cancer research. Up to now only few mouse strains with genetically 

altered cancer related genes have been used in the study of chemopreventive strategies, including 
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the tumor-prone 'oncomouse,' the first patented transgenic mouse. In most of the models the 

treatment with a strong carcinogenic agent is avoided. Instead the animals develop tumours 

spontaneously because they carry highly penetrable disease genes analogous to those found in 

humans. 

The p53 knockout mouse is a model analogous to the human Li-Fraumeni syndrome 

where the tumour suppressor gene p53 has been mutated. The mouse develops tumours at several 

sites with lymphomas, hemangiosarcomas, osteosarcoma and soft tissue sarcomas being the most 

important. The homozygous knockout, p53-/- develops such tumours early, at 4.5 months, in life 

whereas the p53+/- has a delayed onset, at 18 months. The latter genotype, created by Harvey et 

al. (1993), is highly susceptible to genotoxic carcinogens and is a candidate-screening assay for 

carcinogens (Harvey et al., 1993). Studies in this model have confirmed the strong effect of 

calorie restriction on cancer development. Spontaneous tumour development in p53 null mouse 

was delayed by dehydroepisandrosterone (DHEA) and its analogue 16-ccfluoro-5-androsten-17- 

one (Hursting et al., 1997; Perkins et al., 1997). These compounds cause a reduced food intake, 

but the effect is still present when the animals are pair fed and is more likely to be due to 

inhibition of glucose-6-phosphate dehydrogenase and reduced DNA synthesis, or steroid induced 

thymic atrophy and suppression of T cell lymphoma (Perkins et al., 1997). Quercetin, d-limonene 

and all-trans-retinoic acid has no effect in this model (Hursting, et al., 1995). (Alexander, 2000) 

The Tg.Ac mouse model has four copies of the v-Ha-ras oncogene are located in tandem 

on chromosome 11 of strain FVB/N mice. There are hemizygous and homozygous versions, but 

the latter appears to respond more consistently. This model is good at detecting mutagenic and 

non-mutagenic carcinogens, including tumour promoters, but fails to detect ethyl acrylate and N-

methyl-o-acrylamide. Ethyl acrylate requires cell proliferation to function as a stomach 

carcinogen. With dermal dosing as the current routine in this model, it might, therefore, fail to 

detect certain tissue-specific carcinogens of this type. There is also concern that the model may be 

oversensitive in other ways, in that it gives positive results with two out of five non-mutagenic 

non-carcinogens (resorcinol and rotenone). (Kirkland, 1998) 

The Eµ-PIM- 1 transgenic mouse model overexpressed the pim-1 oncogene in the T- and 

B-cells of the mouse. Less than 10% of the mice develop lymphomas, but they are strongly 

susceptible to N-ethyl-N-nitrosurea (ENU). T-cell lymphomas develop in more than 90% of mice 

treated with 200 mg ENU (Breuer et al., 1991). The mouse is also highly susceptible to 

benzo(a)pyrene (Kroese et al., 1997) and 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine 

(PhIP; Sorensen et al., 1996). This transgenic mouse model is thus excellent in studying the 

effectiveness and safety of different chemopreventive agents against T- and B-cell lymphomas. 
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The TgHras2 mouse model carries five or six copies per cell of the human c-Ha-ras 

oncogene with its own promoter. This model is good at detecting mutagenic carcinogens, and also 

trans-species non-mutagenic carcinogens. However, it does not detect the mouse-only non-

mutagenic carcinogen 1,1,2-trichloroethane, nor three out of three non-mutagenic non- 

carcinogens. (Kirkland, 1998) 

The murine FAP models are by far the most frequently employed transgenic models in 

chemoprevention studies. These mice models all have germline mutations in the murine Apc gene 

analogous to the human APC gene, which is mutated in the inherited human syndrome of multiple 

adenomas in the large intestine. Unlike the human FAP syndrome, most of the tumours develop 

in the small intestine of the murine models. The Min mouse model is the most widely used and 

has an induced germline mutation in codon 850 of the Apc-gene giving rise to a truncated protein. 

Tumour formation starts at a very early stage in life, and thus this transgenic model is the most 

frequently studied regarding chemoprevention. The FAP transgenic mouse models have already 

given useful insights into colon cancer. First, APC-driven tumourigenesis in both the FAP 

syndrome as well as in sporadic colon cancer appears to be dependent on the inactivation of both 

APC alleles by mutations or loss of heterozygosity (Jen et al., 1994; Levy et al., 1994; Luongo et 

al., 1994). This loss of APC function leads to loss of control of13-catenin, which acts as an 

oncogene when overexpressed (Polakis, P., 1999). Second, the effect of different NSAIDs 

(sulindac, piroxicam, aspirin, nimesulfide, etc.), which inhibit COX-2, causes the tumour number 

to be reduced by 80-95% (Beazer-Barclay et al., 1996; Jacoby et al., 1996; Mahmoud et al., 

1998; Nakatsugi et al., 1997). Third, the n-3 polyunsaturated fatty acids, DHA and EPA, 

effectively reduce the tumour number and tumour growth particularly in the small intestine, but 

also in the colon. A plausible mechanisms could be that DHA inhibits COX-2 and EPA competes 

with arachidonic acid giving rise to accumulation of arachidonic acid, which may stimulate 

apoptosis (Chan et al., 1998) and less active leukotriens and prostaglandins (Paulsen et al., 1998). 

Fourth, soy isoflavones and vegetable fruit mixtures do not influence the tumour number 

(Sorensen et al., 1998; van Kranen et al., 1998), but a diet low in fat and high in fiber helps to 

suppress tumor development. (Alexander, 2000) 
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Chapter 4: 

Transgenic Animals used for Research 

The NGF Transgenic Mouse 

A transgenic model overexpressing nerve growth factor (NGF) under control of the 

GFAP promoter in the brains of post-natal and adult mice was created by Kawaja and Crutcher 

(1997). These transgenic mice display elevated levels of NGF mRNA expression and markedly 

increased levels of NGF protein production in the cerebellum, in comparison with wild-type 

mice. Although the levels of NGF protein are highest during post-natal development and decrease 

with maturation, these levels remain relatively higher than those in the wild-type animals at the 

same ages (i.e. 100-fold and 50-fold higher NGF levels at post-natal day 14 and adulthood, 

respectively) (Kawaja and Crutcher, 1997). In response to these elevated levels of NGF, 

sympathetic axons arising from the superior cervical ganglia are seen invading the transgenic 

cerebellum. Sensory axons, like sympathetic axons, have also been found to aberrantly sprout 

into the transgenic cerebellum in response to local increases in NGF production. 

Studies on this transgenic model by Kawaja et al. (1997) has given other exciting results. 

First, the temporal onset of peripheral axons entering the transgenic cerebellum reveals that the 

initial appearance of sensory axons precedes that for the sympathetic axons by at least 1 week. 

Furthermore, it has been revealed that sensory and sympathetic neurons require target-derived 

NGF for survival during embryonic and neonatal development. Second, sensory axons have been 

found to extend along blood vessels that pass through the gray matter layers, as well as extending 

a small number of new fibers within the granular cell layer. Sympathetic axons, on the other 

hand, are rarely seen in any of the three gray matter layers of the transgenic cerebellum. One 

possible reason for this differential distribution may be that sensory axons sprout from the blood 

vessels of the dura surrounding the cerebellum, along the blood vessels that pass through the gray 

matter and continue into the white matter. The route taken by sympathetic axons invading the 

transgenic cerebellum, on the other hand, remains uncertain. Third, it has been observed that 

NGF-immunoreactivities are co-localized to sympathetic axons which sprout into the transgenic 
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cerebellum. But the functional significance as to why sympathetic, and not sensory, axons 

preferentially sequester NGF at aberrant axonal branches still remains unclear. Fourth, it has been 

found that NGF-induced collateral sprouting of peripheral axons can occur under two conditions: 

(1) following transection of a spinal nerve, adjacent intact sympathetic and sensory axons extend 

new branches and provide functionally-relevant patterns of reinnervation to the denervated skin 

(Diamond et al., 1987; Gloster and Diamond, 1995), which possesses elevated levels of 

endogenous NGF (Mearow et al., 1993); and (2) increased production of NGF in peripheral 

tissues following damage or disease causes sympathetic and sensory axons to extend new 

branches and to inappropriately hyperinnervate the target tissue (Byers et al., 1992; Constantinou 

et al., 1994; Woolf et al., 1994; Spitsbergen et al., 1995). Studies on the NGF transgenic mice by 

Kawaja et al. (1997) has revealed that NGF-induced growth of aberrant sensory and sympathetic 

axons can occur in the absence of glial support (i.e., Schwann cells do not migrate into the 

cerebellum with these two populations of NGF-sensitive peripheral axons), and only the 

sympathetic axons sequester NGF at terminal branches. 

The ccMUPA Mouse 

aMUPA is a line of transgenic mice created by Miskin and Masos (1997) and are used as 

a model for increased life span since, compared with their wild type (WT) counterparts, aMUPA 

transgenic mice spontaneously eat less (-20%) and live longer (average —20%). aMUPA mice 

carry the entire cDNA of the murine urokinase-type plasminogen activator (uPA), including the 

coding sequence and —1 kb 3'UTR, linked downstream from the promoter of the lens-specific 

aA-crystallin gene. aMUPA mice produce uPA mRNA in neuronal cells in multiple brain 

regions, most of which are devoid of endogenous uPA mRNA, including the hypothalamus, 

which plays a central role in the control of feeding and energy homeostasis. uPA is an —48 kDa, 

secreted serine protease that specifically converts the abundant inactive zymogen plasminogen 

into plasm in, the ultimate blood clot-dissolving enzyme (Blasi et al., 1987). Plasmin is a 

nonspecific, trypsin-like protease that can also directly degrade diverse extracellular components 

and can activate proenzymes of matrix degrading metalloproteases, thereby mediating 

extracellular proteolysis and cell adhesion and migration. Although plasminogen is the primary 
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physiological substrate for uPA, the enzyme can also directly cleave fibronectin (Quigley et al., 

1987) or activate growth factors from their inactive precursors through extracellular proteolytic 

cleavage (Mars et al., 1993; Plouet et al., 1997). 

Table 7. Plasma corticosterone and food intake in young and old aMUPA and WT mice (Miskina et al., 
1999). 

Parameter 
	

Age rno s) 	 aMUP  r  a 
	 WTa 

Corticosterone (ng/mL)b 3 168.5 ± 24.2* 114.3 ± 24.2** 
15 65.5 ± 9.9** 100.2 ± 20.9** 

Food intake (gimouseiday) 3 2.03 ± 0.04*** 2.74 ± 0.07** 
15 2.20 ± 0.05*** 3.36 ± 0.15* 

'Mean ± SE. Within parameters, mean values with different superscripts are signifi-
cantly different (p 0,.01, n = 10). 
b  At 0800 h. 
`Last 13 days. 

Fig. 7. uPA mRNA hybridization signals in brain sections of WT, aMUPA, and new line aMUPA/54. 
Coronal brain sections (12 rim) through the anterior (a&macr;d)  or posterior (e,f) hippocampus were prepared 
from WT (a), aMUPA (b, c, and e) or a new transgenic line aMUPA/54 (d and f). a&macr ;b, C&macr ;d, and 
e&macr;f are parallel or close sections. Microphotography was in dark field illumination. Symbols: short 
arrows, hippocampus; long arrows, neocortex; full arrowheads, presubiculum; empty arrowheads, 
retrosplenial cortex. SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus; IP, interpeduncular 
nucleus. Bar = 0.9 mm. (Miskina et al., 1999) 

So far studies involving the differences between aMUPA transgenic mice and wild type 

(WT) mice have given interesting results. First, in aMUPA transgenic mice, the spontaneously 
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reduced food consumption coincides with a significant reduction of body temperature compared 

with WT mice. This temperature reduction seems to contribute to the anti-aging effect; 

possibilities, such as decreased DNA damage and protooncogene expression, have been discussed 

(Lane et al., 1996; and Nakamura et al., 1989). Second, plasma corticosterone levels differ 

between aMUPA and WT in two respects: first, at the young age it is higher in ccMUPA than in 

WT; second, within aMUPA the level declines in aged mice, whereas it remains unchanged 

within WT. These studies have shown that corticosterone reduction with age could be beneficial 

since normal aging seems to increases the susceptability to corticosterone-mediated neurotoxicity, 

which may be caused by dysregulation of neuronal calcium homeostasis (Landfield and Eldridge, 

1994). Third, the increased aMUPA life span is not supported by maintaining the youthful state 

of the thymus; thus maintaining the youthful state of the thymus through old age does not 

significantly increase life span as previously thought (Weindruch and Suffin, 1980). (Miskina et 

al., 1999) 

Transgenic Mouse Models in Learning 

Animals can learn because of changes in the brain which allow new information to be 

acquired, stored and later recalled. At the cellular level, these changes probably occur at synapses 

— the junctions between nerve cells. This idea is formalized in the Hebb rule, which states that a 

synapse between cell A and cell B will be strengthened if the two cells are active at the same time 

(Hebb, 1949). Neuroscientists have explored the properties and behavioural implications of the 

Hebb synapse by studying an experimental model of synaptic plasticity known as long-term 

potentiation (LTP) (Bliss and Collingridge, 1993). Synapses that show LTP are found in several 

parts of the brain, notably in the hippocampus (a cortical structure which, in humans, is required 

for the formation of autobiographical memories). If drugs are used to block the induction of LTP, 

rats have trouble finding their way around a maze, suggesting that LTP is necessary for spatial 

learning (Morris et al., 1986). Thus by using transgenic mice, researchers are able to explore what 

happens to LTP and learning when specific proteins are overexpressed or deleted. (Bliss, 1999) 
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Doogie, a new 'smart mouse' strain. 
(Genetic engineering boosts intelligenece. BBC News, September 1, 1999.) 

In 1999, Tang et al. (Tang et al., 1999) created 'smart mouse' and showed that LTP is 

considerably enhanced in transgenic mice with improved learning performance. They actually 

made two different transgenic mouse lines that overexpress the NR2B subunit of the NMDA 

receptor postnatally in the forebrain. The NMDA (N-methyl-D-aspartate) receptor binds to the 

excitatory neurotransmitter glutamate and controls the initiation of LTP in most hippocampal 

pathways. The receptor forms a channel that does not open unless two conditions are satisfied 

simultaneously — glutamate must bind to the receptor, and the membrane in which the receptor is 

embedded must be strongly depolarized. Once the channel opens a flux of calcium ions enters the 

cell, triggering the induction of LTP. The N M DA receptor is made up of an NR 1 subunit, which 

is obligatory for channel function, and a selection of developmentally and regionally regulated 

NR2 subunits (A to D). The functional properties of the receptor depend on its subunit 

composition. For example, the glutamate-evoked current (which is important in determining the 

amount of Ca2+ that enters the cell) has a longer duration in receptors containing NR2B subunits 

than in those containing NR2A subunits. It has been found that the proportion of NR2B subunits 

is higher in young animals than in adults (Monyer et al., 1994), and this may account for the 

greater degree of LTP seen in young animals (Harris and Teyler, 1984). (Bliss, 1999) 

Both mouse lines turned out to have similar physiological and behavioural effects. As 

adults, these transgenic mice show an increase in NMDA-receptor-mediated current, and an 

enhanced level of LTP normally seen only in young animals. And this seems to make a smarter 

mouse. Glutamate-evoked NMDA-receptor-mediated currents are larger and of a longer duration 

in cultured neurons from these transgenic animals than from normal animals. The transgenic mice 

showed improved learning scores compared with normal mice in three different tests of their 

ability to acquire and retain information. In one of these tests, fear conditioning, a tone was paired 

with a mild foot-shock in a particular box. The mouse would freeze, indicating memory of the 
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shock, when it was replaced in the box some time later. This 'context specificity' is thought to 

depend on the hippocampus. They found that associative learning was enhanced in the transgenic 

mice. Furthermore, when the animals were repeatedly given the tone alone or repeatedly returned 

to the box in which they had been trained, without being given further shocks, the conditioned 

response was extinguished more rapidly in the transgenic animals than in normal mice (Fig. 4). 

Tang et al. regard this as further evidence for improved learning — an interpretation that requires 

extinction of the response to be seen as active relearning, rather than a passive forgetting of the 

previously learned association. In two other tasks (object recognition, shown in Fig. 9, and the 

water maze, in which animals have to locate a submerged platform in a pool of opaque water), the 

transgenic animals again scored higher than normal mice.            
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111 Transgenic        **                          
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Extinction trial 
Figure 8. Transgenic mice exhibit faster learning in fear extinction. a, Faster fear extinction to contextual 
environment in transgenic mice. Either wild-type (n = 8) or transgenic (Tg-1, n= 7; Tg-2, n= 8; data 
plotted together) mice were subjected to five extinction trials 24 h after enhancement of both contextual 
and cued fear memory. b, Faster fear extinction to the tone in transgenic mice. The value in each column 
represents percentage of freezing rate; data are expressed as mean q s.e.m. Asterisk, P < 0.05; double 
asterisk, P < 0.01; triple asterisk, P < 0.001, post hoc analysis. (Tang et al., 1999) 
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Figure 9. Object-recognition task. a, In an initial training session the mouse explores two objects in a box, 
devoting roughly equal time to each. b, When the mouse is then reexposed to one of these objects, together 
with a new object, it spends more time exploring the new object. Tang et al. found that this bias is 
enhanced in transgenic mice overexpressing the NR2B subunit of the NMDA receptor, indicating improved 
recognition memory. (Bliss, 1999) 

An improvement in LTP has also been reported in other transgenic mice. When the genes 

encoding postsynaptic density-95 (PSD-95; a cytoplasmic protein that binds the NMDA receptor) 

(Jia et al., 1996) and G1uR2 (a subunit of the AMPA subtype of glutamate receptor) (Jiaet al., 

1996) were deleted, both showed enhanced LTP. However, their performance in the water maze 

was impaired. The PSD-95 knockout mice were also found to be defective in a form of activity- 

dependent synaptic plasticity, long-term depression (LTD). By contrast, LTD appeared normal in 

Tang and colleagues' mice. This may explain the different responses in the water maze — 

bidirectional changes in synaptic efficacy are thought to be important for efficient storage in 

neural nets (Willshaw and Dayan, 1990), another hypothesis that could be tested with the help of 

future transgenic animal models. (Bliss, 1999) 

36 



6 5 

20 

10 

3 	 4 

Session 
2 

60 
l WT 
n  Transgenic so 

40 

30 

0  
Targeted 

I 
Right Opposite 	 Left 

El WT 
n Transgenic 

T  • 
60 

50 

40 

30 

20 

1 0 

0 

Targeted Right Opposite 	 Left 

Figure 10. Enhanced performance in the hidden-platform water maze task by transgenic mice. a, Escape 
latency (mean q s.e.m.) in water maze training (Tg-1, n = 13; wild-type, n = 15). b, Place preference in the 
first transfer test conducted at the end of the third training session. Transgenic mice spent more time in the 
target quadrant than other quadrants, whereas control mice did not show any preference for the target 
quadrant at this stage. c, Place preference in the second transfer test carried out at the end of the sixth 
training session. Both transgenic and wild-type mice exhibited strong preference for the target quadrant 
where the hidden platform was previously located. Asterisk, P < 0.05, post hoc analysis in a, and Student's 
t-test in b, between transgenic mice and controls. (Tang et al., 1999) 
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Chapter 5: 

Transgenic Farm Animals 

Transgenic Livestock 

Microinjection of foreign DNA into pronuclei of fertilized oocytes has been the only 

successful method for the generation of transgenic livestock (Table 8). Although this procedure 

works reliably, it is inefficient (1-4% transgenic offspring/transferred microinjected zygotes), 

results in random integration into the host genome and variable expression due to position effects 

(Pursel and Rexroad, 1993; Wall, 1996). In addition, it is time consuming and requires substantial 

intellectual, financial and material resources. Recent reports on the generation of transgenic sheep 

and cattle (Schnieke et al., 1997; Cibelli et al., 1998) via somatic nuclear transfer inspired great 

expectations about this elegant approach to improve the generation of transgenic livestock. Fetal 

fibroblasts were transfected in vitro, screened for transgene integration and then transferred into 

enucleated oocytes. After fusion of both components and activation of the reconstituted nuclear 

transfer complexes, blastocysts were transfered to synchronized recipients and gave rise to 

transgenic offspring (Figure below). Compared with the microinjection procedure in which 

screening for transgenesis and optimal expression of the transgene takes place at the level of the 

offspring, cloning by nuclear transfer can accelerate the time-consuming transgenic production by 

prescreening of donor cells for the optimal expression of the desired trait in vitro and 100% 

transgenic offspring. As of today a variety of cell types has been successfully employed as donors 

in nuclear transfer (Fulka et al., 1998). However, the overall efficiency of nuclear transfer is low. 

Factors affecting the success of nuclear transfer are poorly defined and the percentage of live 

offspring does not exceed 1-3% of the transferred reconstituted embryos (Cibelli et al., 1998; 

Wilmut et al., 1997; Wakayama et al., 1998). (Niemann, 2000) 
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Culture up to b astocyst stage 
Embryo transfer 

Methodology  
Gain-of -function 
Microinjection 
minigenc constructs 
with regulatable promoter 
artificial chromosomes 

Retroviral infection 
Sperm (atogonia) mediated 
Targeted chromosomal integration (Fp, Cre/lox) 
Nuclear transfer with transgenic donor cells 

Integration 

random 
random 
random 
random/site specific 
random 
defined 
random/defined 

Expression 	 Mouse Livestock 

variable 
inducible (Mt/TED 
	

+1+ 
integration site independent (YAC, BAC) 
variable? 

controlled 
variablen 

Loss-o f -function 
ES celLs+gene knockout 	 defined 

	
abolished in all cells 	 - 

Cell-type-specific knockout 	 defined 
	

abolished in specific cells 
Inducible knockout 	 defined 

	
abolished upon induction 	 - 

Somatic nuclear transfer with knockout cells 	 defined 	 abolished 	 -? 	 -? 
`Pharmaceutical Proteins Limited (PPL) has recently announced the birth of transgenic lambs produced by the gene targeting method and 
nuclear transfer. 

Table 8. Methodological repertoire for the production of genetically modified mice and large farm 
animals. +=shown; -=not shown; ?=questionable; approaches were validated according to germline 
transmission and expression data. (Niemann, 2000) 

Figure 11. 

Fibroblasts 

DNA transfection 

	  Fibroblasts 

Matured oocyte 

Enucleabon 

Verification of 
transgene integration 
(selection) 

Enucleated oocyte 

Transfer of ransgenic 
fibroblast and fusion 

1 

Transgen i c Animal 

Despite all the setbacks in creating transgenic farm animals, some successful transgenic 

lines have been developed. An Australian group has generated transgenic pigs bearing a modified 
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porcine growth hormone (hMt-pGH) construct that can tightly be regulated by zinc feeding. The 

transgenic animals show significant improvements in economically important traits such as 

growth rate, feed conversion and body fat muscle ratio. These animals are close to being released 

to the market (Nottle et al., 1999). Transgenic sheep carrying a keratin-IGF-I construct show 

expression in the skin and the clear fleece is about 6.2% greater in transgenic vs. nontransgenic 

animals. These animals are also being prepared for commercial application (Damak et al., 1996a; 

1996b). In both projects, no adverse effects of the transgene on health or reproduction are 

observed. 

In the area of biomedicine, numerous transgenic farm animal lines have been developed 

in a matter of years, some of which are already in advanced clinical trials. Several recombinant 

proteins have been produced in large amounts in the mammary gland of transgenic sheep and 

goats, purified from milk and biologically characterized (Houdebine, 1994; Meade et al., 1999). 

Several products such as human antithrombin III (ATIII), a rantitrypsin, tissue plasminogen 

activator (tPA), a-glucosidase and lactoferrin are currently in advanced clinical trials and the first 

products are expected to be soon on the market (Ziomek, 1998; Meade et al., 1999). 

Xenotransplant Providers 

Xenotransplantation is also a promising area in which transgenic pigs are close to 

clinical application. To overcome the growing shortage of human organs, transgenic pigs have 

been generated that express human complement regulatory genes. This approach enables 

overcoming the hyperacute rejection response of patients. Recenty all the four known causes of 

xenograft rejection (diagrams 1-4) have been devised and shown to work in cell-based 

experiments. On March 5, 2000, PPL Therapeutics announced that it had overcome the major 

cause of xenograft rejection (diagram 1) by producing five pigs (picture below) which should 

become the industry standard for xenotransplantation — a pig lacking the alpha 1-3 gal transferase 

gene. Another promising area of application for transgenic animals will be tissue engineering. 

Recently, neuronal cells were collected from bovine transgenic fetuses, transplanted into the brain 

of a rat model for Parkinson disease and resulted in significant improvements of the neurological 
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PPL Therapeutics' five healthy female piglets, Millie, Christa, 

Alexis, Carrel and Dotcom, born on 5 March 2000, as 

a result of nuclear transfer (cloning) using adult cells. 

symptoms (Zawada et al., 1998). This indicates that genetically modified livestock cells may 

serve as a suitable source for xenogenous tissue in certain diseases. 

©PPL Therapeutics. 

©PPL Therapeutics.  

©PPL Therapeutic 

©PPL Therapeutics. 

©PPL Therapeutics. 
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Chapter 6: 

Ethical & Personal Views on 
Transgenic Animals 

As a starting point for a dialogue about the acceptability of a particular breeding goal or 

biotechnology, one may consider the implications for all the parties involved — i.e. for the 

animals, humans and the environment. Next, those implications — potential risks and benefits — 

must be weighed against each other. In moral decision making, one seeks a balance between 

intuitions, principles and relevant facts, notwithstanding the fact that our intuitions may change 

with new information (Boer et al., 1995). To enable the detection and identification of the issues, 

and the weighing of the concerns, different models have been developed. The general view in our 

society is that it is acceptable to use animals in, e.g. farming and research if this is done 

humanely. This view is reflected in principles of humane use of animals, such as animal 

protection laws, which state, e.g. that no harm must be done unless necessary, that the harm must 

be outweighed by benefits, and that some types of harm should be prohibited (MAFF, 1995). 

(Christiansen and Sandoe, 2000) 

I personally agree with the above utilitarian point of view. Harm has been done to 

animals during transgenic research and development either through ignorance or by mistake. For 

example, a major case exposing welfare problems associated with the use of biotechnology is the 

case of the "Beltsville pigs". The "Beltsville pigs" contained human growth hormone genes to 

accelerate growth, but suffered from health problems such as lameness, ulcers, cardiac diseases 

and reproductive problems (King, 1996; Rollin, 1997). Some transgenic calves have also been 

found to be behaviourally retarded and to have difficulties surviving (Mepham, 1995; Rollin, 

1997). Attempts to create transgenic sheep with increased growth have resulted in unhealthy 

animals (Rollin, 1996); and equally, an attempt to produce transgenic cattle with double-muscling 

resulted in a calf, which within one month was unable to stand up on its own (Rollin, 1996). 

Furthermore, our current understanding of physiology is not always complete — e.g. the relation 

between growth hormone genes and diabetes, kidney diseases and bone malformations is unclear 
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(Mepham, 1994) — and this makes it hard to foresee what the consequences for animal welfare 

would be of the selected traits. Finally, there is a risk of unrelated, harmful mutations. When 

creating transgenic animals, foreign DNA is inserted into the hosts' DNA. The foreign DNA may, 

however, be integrated in the genome in a way, which causes mutations. Such unpredictable 

responses from totally unrelated genes have been reported in mice showing lethal or deforming 

mutations (van Reenen and Blokhuis, 1997). 

Table 9. Examples of unexpected effects in transgenic animals. (Prieto et al., 1999) 

Transgenen 
MTE-FOne Ifpig 
mWAP/pig, 
baLac-bbcasein/mifx 
rWAP-EPO/rabbit  

Effect  
Gastric ulcer, cardiomegaly, arthritis 
Failure to lactate (agalactia; characteristic mammary gland phenotype) 
Short lactation 
Infertility, agalactia, premature death 

Reference (year)  
Pursel et al. (1989)67 
Sharnay et al. (1992)112 
Bleck et al. (1995)110 
Massoud et al. (1996)111    

MTh-/3-Gal-transferase/mice Impaired mammary gland development 	 Hathaway and Shur (1996)109 
mWAP-al -2FUTI/rabbit 	 Lactose free  milk (changes in milk protein quality and content) 	 Prieto, =published results  

MTh-Molise metallothioncin promoter, mWAP-mouse whey acidic protein promoter. rWAP-rabbit whey acidic protein promoter. EPO- 
human erythropoietin. baLac-bbcasein-bovine cdactalburnin promoter-bovine /3-casein. al -PUT-human ed-2 fucosyltransferase "H." 

Transgenic technology has also had many benefits for animals. The administration of 

natural or recombinant somatotropin (ST), or growth hormone-releasing hormone (GHRH) and 

its analogs, accelerates muscle growth and reduces fat deposition in most farm animals, and these 

exogenous agents are in widespread commercial use in a number of countries. ST is very 

effective in pigs (Etherton et al., 1986) and the administration of recombinant bovine ST (bST) 

increases milk production in dairy cows (Bauman and Vernon, 1993). The long-term delivery of 

these exogenous agents is accomplished through injectable slow-release formulations and can 

cause many discomforts in the animals. Administration of high doses of ST to growing pigs or 

steers may have adverse consequences on some aspects of health, including increased incidence 

of osteochondrosis, cartilage soundness and stomach ulcers (Sejrsen et al., 1996). In dairy cows, 

fecundity and fertility are negatively affected when bST is administered before breeding (Burton 

et al., 1994), in relation with the negative energy balance of the animal. Administration of 

exogenous pST to lactating sows results in severe energy deficience and difficulties in adjusting 

internal temperature, which usually results in high mortality rates (Cromwell et al., 1989). 

However, transgenic technology has allowed the creation of transgenic animals with GH or IGF-I 

genes coupled to promoters that enable lower production of GH through time control or tissue 

specificity of gene expression. This has, for example, caused no apparent physiological trouble in 

transgenic pigs (Nottle et al., 1997). Transfer of the salmon GH gene in salmon or trout, as 

opposed to exogenous administration of hormones, results in a few symptoms of acromegaly in 
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the fish (Devlin et al., 1997). The transfer of disease-resistance genes into animals can also treat 

diseases that might be otherwise untreatable, provide a more natural way for animals to combat 

disease, and replace chemical or antibiotic therapies that may be costly, harmful to the consumer 

of animal products or induce antibiotic resistance in germs threatening human health. (Bonneau 

and Laarveld, 1999) 

There are a number of religious groups opposing the creation of transgenic animals, 

partially because they feel that it is an effort of trying to play God. Others believe that human 

beings should leave animal genomes intact since animal integrity, or the intrinsic value of animals 

that is naturally evolved, should be respected (Vorstenbosch, 1993; Thompson, 1997). However, 

man has already engaged in genome manipulation for thousands of years through selective 

breeding of animals. For example, the dairy cow now produces 10 times more milk than her calf 

would traditionally suckle from her (D'Silva, 1998). Current transgenic technology can also be 

used to redress welfare problems created through selective breeding (Irrgang, 1992). It is also 

hard to see why transgenic technology is dismissed on the basis that it is unnatural if it is 

acceptable to, e.g. dam rivers and build cities (Rollin, 1996). 

One of the major concerns relating to humans is the "slippery slope" argument, i.e. the 

fear that what can be done with animals will also be done with humans (Schroten, 1997). Thus, 

the "slippery slope" argument is concerned not only with a potential technological development, 

but also a potential change in attitudes regarding what is considered acceptable. However, if at 

some stage it does become possible to genetically engineer humans, it still does not follow that 

we have to do so (Sandoe and Holtug, 1993). Transgenic technology will probably be used to 

treat serious illnesses and hereditary diseases in humans, though, but this is just a change from an 

"unnatural state" to a natural or normal state. 

There is some concern about the risk of loosing genetic diversity through biotechnology. 

Although this would allow a standardisation of, e.g. dairy products, the loss of genetic diversity 

makes the animals more vulnerable to diseases and other challenges (Boer et al., 1995). However, 

some see a potential increase in genetic diversity, as genes are more often added to a species than 

removed. This gives rise to another concern, however, since distinctions between species may 

become less distinct, or blurred (Sandoe and Holtug, 1993). The loss of genetic diversity may be 

considered irreversible (Boer et al., 1995), although the potential exists to preserve genetic 

material (MAFF, 1995), which could prove useful in the preservation of endangered species. 

Some also argue that an extensive gene pool may still be available from hobby breeders (Rollin, 

1997). (Christiansen and Sandoe, 2000) 
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There is also concern that if transgenic animals should escape or be released in the wild, 

the consequences could upset the ecological balance. There is a potential for these animals to 

replace existing animals in nature, e.g. if they manage better in that habitat or pass on infections 

to other species. Such infections may develop due to an introduced disease resistance or 

unpredictable pathogens (Sandoe and Holtug, 1993; Rollin, 1997). Precautions against escape and 

genetic disadvantages of the transgenic animals, however, make this scenario unlikely (Sandoe 

and Holtug, 1993), although some aquaculture animals have been known to escape into natural 

aquatic ecosystems (Kohler et al., 1992). (Christiansen and Sandoe, 2000) 

So far there are a countless number of successful transgenic animals that have been made 

to date. Economics puts a lot of pressure for success in creating transgenic animals due to the 

high costs, amounts of time, and intellectual capacity that goes into creating just one transgenic 

animal. And due to the economic worth of transgenic animals, they are the best treated animals in 

any laboratory or farm. Every mistake that does occur during creation of transgenic animals 

generally does not go in vain; scientists generally communicate with each other very well about 

these problems so as to be able to solve them, and thus the success rates of generating perfectly 

healthy animals is steadily rising. After all, we did not fly to the moon on our first try. 

©NASA. Picture taken by the Apollo 17 astronauts on Dec. 7, 1972. 
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Chapter 7: 

Conclusions & Recommendations 

Transgenic animals are poised to dramatically increase the well-being of countries. Farm 

animals producing complex biopharmaceuticals means that former and more expensive methods 

of harming and sacrificing organisms can be abandoned. Farm animal production can be made 

more efficient and has the potential to produce the same amount of food using fewer animals. 

This could reduce problems of pollution and would be of great benefit to the environment 

(Mepham, 1994). Disease models such as the PDAPP transgenic mouse model help to create 

cures for diseases such as Alzheimer's which would end the suffering of millions of people and 

billions of dollars in temporary treatments that could be used more beneficially elsewhere, 

including environmental protection. In other words, a fraction of the money saved due to 

permanent treatments and products developed with the help of transgenic animals could be put 

back into the environment. In this way even plants and animals in the environment will benefit 

from transgenic animals as long as the governments of countries will uphold these rules or 

benefits. The ever smaller number of problems that occurs making transgenic animals is thus a 

small price to pay in the grander scale. There, however, needs to be regulatory agencies to 

monitor that there is no needless suffering on the part of the animals. If there are other feasible 

methods in the research and production of medicine and food, these should be used instead. 

Committees and agencies that deal with the ethical issues and any possible problems that may 

result from transgenic technology need to be set up and maintained. The benefits of transgenic 

animals to society, however, are so overwhelming that it would surely be unwise to abandon 

them. 
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