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Abstract 

Adaptive learning is a crucial part in intelligent tutoring systems. It provides students with 

appropriate tutoring interventions, based on students’ characteristics, status, and other related 

features, in order to optimize their learning outcomes. It is required to determine students’ 

knowledge level or learning progress, based on which it then uses proper techniques to choose the 

optimal interventions. In this dissertation work, I focus on these aspects related to the process in 

adaptive learning: student modeling, k-armed bandits, and contextual bandits. 

Student modeling. The main objective of student modeling is to develop cognitive models of 

students, including modeling content skills and knowledge about learning. Students usually learn 

skills in sequence since preliminary skills need to be learned prior to the complex skills. However, 

few research works have utilized this relation in the student models. In this work, I determined the 

impact of how student performance on prerequisite skills influences ability to learn post-requisite 

skills. I found a strong gradient with respect to knowledge of prerequisites: students in the bottom 

20% of prerequisite knowledge exhibited wheel spinning behavior 50% of the time, while those in 

the top 20% of pre-required knowledge exhibited wheel spinning behavior only 10% of the time. I 

also incorporated the prerequisite performance into the wheel spinning model, and it turned out that 

it was a significant reliable predictor in the model. 

K-armed bandits. A k-armed bandit algorithm focuses on selecting an action, in order to maximize 

total rewards over all time steps. Due to the lack of diverse interventions and small difference of 

intervention effectiveness in educational experiments, do k-armed bandit algorithms improve 

students’ learning outcomes? In this dissertation work, I proposed a simple selection strategy based 

on statistical t-tests, call Strawman, and compared it with several k-armed bandit algorithms. The 

results showed that the Strawman’s performance is competitive and it exhibited different 

exploration/exploitation patterns. 

Contextual bandits. In contextual bandit problem, additional side information, also called context, 

can be used to determine which action to select. We first separated a data set into several groups 

with a student feature, and then apply a bandit algorithm in each group. The results demonstrated 

that being combined with the feature could improve rewards of bandit algorithms. Consequently, 
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another question arose, how to combine multiple context with bandits? A simple solution is to apply 

a k-armed bandit algorithm in every possible combination of context values. However, its 

complexity increases exponentially with respect to the number of available features. In this work, 

I proposed a decision tree algorithm, which is capable of detecting aptitude treatment effect for 

students. By applying a bandit algorithm in each leaf node of the tree, I evaluate effect of the 

algorithm in two different types of data sets, simulated data and real experimental data. In the 

simulated data, the decision tree algorithm finely captured the pre-defined structure, and thus the 

contextual bandits performed reliably better than the bandit without any context. In the 22 

ASSISTments experiments, the effect of context differed, the contextual bandits performed 

significantly better than the bandits without context in some experiments, while the two strategies 

are closed to each other in other experiments. 
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CHAPTER 1 

Introduction 

1.1. Intelligent Tutoring Systems 

Intelligent Tutoring Systems (ITSs) are computer programs that are designed to incorporate 

artificial intelligence techniques to tutor students with customized instructions and feedbacks 

(Nwana, 1990). The goal of all ITSs is to facilitate students’ learning with AI techniques. To 

support a student’s learning, an ITS should know how he/she learns, what to learn, and when to 

learn. According to (Polson & Richardson, 2013), ITSs consists of four parts: 

 The expert module defines the representation of knowledge of the experts in the specific 

domain, and the rules how to convey the knowledge to students. The expert knowledge 

serves as the source of knowledge to be provided to students, and also provides an 

evaluation standard to assess students’ learning progress (Nwana, 1990). 

 The student model module informs systems the dynamic stage of students’ knowledge and 

skill. It provides functions that predict, evaluate, and diagnose the students’ knowledge and 

tutorial actions (Self, 1988). 

 The curriculum instruction module establishes a set of teaching instructions for students. It 

supplies a student appropriate with pedagogic interactions according to the student’s 

knowledge from student model module and the previously set tutorial goal structure, e.g. 

hint, tutorial videos and web pages. 

 The user interface module is a component that enables learners to interact with the systems. 

1.2. ASSISTments 

The ASSISTments is a web-based ITS which assists and assesses students’ learning automatically 

(Feng, Heffernan, & Koedinger, 2009). It has been widely used in studying Math, English, and 

other subjects by thousands of Middle and High school students. It allows teachers or curriculum 

designers to form structure of a problem set with one or more following components: 

 Pre-test: this part usually contains a series of problems that are used to warm up students 

or detect students’ initial knowledge, in order to provide appropriate tutorial strategies to 

students. 

 Skill builder: questions in this set are based on a specific skill, and students are required to 

answer 3 (as default) questions correct in a row to complete the part. 
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 Complete-all: this problem set, unlike skill builder, requires students to answer all 

questions. 

 Post-test: students are tested with this set of questions after they have completed the skill 

builder or complete-all part, in order to check how well they have learned in this assignment.  

The ASSISTments also provides different forms of assistances, and enables teachers to decide 

which is conveyed to students in the problems: 

 Scaffolding questions: this assistance breaks the original question down into several 

fundamental steps. As shown in Figure 1, there are two questions; the bottom one is a 

scaffolding question of the top one. After get all scaffolding questions correctly step by 

step, the student is then back to answer the original question. 

 Hints: a hint provides some clues and suggestions to help students to answer the questions. 

For example, in the bottom question of Figure 1, by clicking the “show hint” button, the 

system presents a multiplication table to students. 

 Videos and web pages: this assistance provides a link to a tutorial video or web page. It 

does not focus on helping students to solve a particular question, but tutors students with 

domain knowledge of related skills. 

Furthermore, the ASSISTments system supports researchers to do controlled experiments. That is 

students are assigned into problem sets with different conditions, e.g. different hints or feedbacks, 

according to particular rules, and their activities and outcomes are compared to obtain the tutorial 

efficacy of conditions in the learning progress. For example, Ostrow and Heffernan assess the 

effects of two different feedback forms, bland texts and videos, in a randomized controlled trial. 

Their results suggest that students prefer video feedback to bland text, and the video feedback 

improves students’ learning outcomes (Ostrow & Heffernan, 2014). 

1.3. Over-tutoring and Under-tutoring 

Example 1.  

A student is learning a skill through a skill builder in ASSISTments, and he is required to answer 

3 questions correctly in a row to master the skill. However, he is lack of prepared knowledge that 

is necessary, and the questions along with the tutorial feedbacks are hard for him to understand. 

Consequently, the student cannot master the skill no matter how many opportunities he has tried. 

 



3 

 

 

Figure 1. Questions in the ASSISTments. The assistance of the top question is to provide 

scaffolding questions, while the assistance of the bottom question is to provide hints. 

Example 2.  

Another student is also learning a skill through a skill builder in ASSISTments. This student has 

some prior knowledge, and he masters the skill in a few trials. But in the later test, he performs 

very poorly. It seems that the tutor strategy does not work on him effectively. 

When teachers are designing didactic schemas for a class of students, they are targeting the 

“average” student, because it is impossible for them to develop different didactic sequences and 

meanwhile investigate which sequence is optimal for each student in a very limit budget of time 
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(Lopes, Clement, Roy, & Oudeyer, 2013). This can lead to that some students are trained with 

inappropriate strategies, and thus their outcomes are not as expected. For example, in Example 1, 

the student is over-tutored with the questions that are far beyond the level of the student’s 

knowledge; while in Example 2; the student is under-tutored with too easy questions. In both of 

those two examples, the pedagogical processes are failed in tutoring the students. 

A variation of didactic schema is to require students to learn a skill by practicing related problems, 

based on the assumption that students will achieve mastery with enough practices, in order to reach 

the teaching goal of treating different students with different strategies, such that top students will 

practice less, while bottom students will practice more. However, Beck and Gong (Beck & Gong, 

2013) found that practicing more indeed helps some students to achieve mastery, but the proportion 

of students having mastered skills does not change remarkably after 10 practices in the 

ASSISTments system and after 15 practices in the Cognitive Algebra system. And eventually there 

are approximately 25% of students in the Cognitive Algebra system and 35% of students in the 

ASSISTments system still at un-mastered state. 

1.4. Adaptive Learning 

Which tutorial sequences are proper for students? Several works were conducted recently to locate 

the activities where the learner is making high learning progress (Gottlieb, Oudeyer, Lopes, & 

Baranes, 2013; Lopes & Oudeyer, 2012; Oudeyer, Kaplan, & Hafner, 2007), based on the concept 

of Intrinsically motivating activities (Berlyne, 1960; Csikszentmihalyi & Csikszentmihalyi, 1992). 

They argue that students will learn at high efficient level when they are assigned with activities that 

are neither too easy nor too hard, but just above students’ current ability, this type of activities is 

described as zone of proximal development (Lee, 2005). Based on this character, Lopes et al. 

propose an adaptive method, called “Right Activity at the Right Time” (RiARiT), in order to 

provide students with optimal learning items at each time (Lopes, Clement, Roy, & Oudeyer, 2013). 

Therefore, to assign appropriate sequences to students, we should follow two steps: student 

knowledge detection and tutorial adaption. 

Student knowledge detection step is to estimate the values of variables that characterize students, 

like performance, knowledge level, score or mark. Detecting and predicting student knowledge is 

one of the most popular tasks in educational data mining, and numerous of different models and 

methods have been applied. Like Bayesian networks in (Baker, Corbett, & Aleven, 2008; Jonsson, 

Johns et al., 2005), logistic regression in (Beck & Gong, 2013; Feng & Beck, 2009; Wan & Beck, 
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2015), and sequential pattern mining in (Andrejko, Barla, Bieliková, & Tvarozek, 2007; Antunes, 

2008). 

The tutorial adaption step is to provide students with the tutorial sequences with respect to their 

current knowledge level detected in the previous step. The choices can be made in the sequences 

include: problems hardness, types of feedback, links to visit, and so on. Different data mining 

techniques have been used for this task. For example, Markellou et al. use association rule mining 

to produce recommendations for learning materials in e-learning system(Markellou, Mousourouli, 

Spiros, & Tsakalidis, 2005); neural networks and decision trees are used to provide personalized 

learning support in (Guo & Zhang, 2009); sequential pattern mining has been developed to 

customize learning content based on learning style and web usage habits (Ting, Ouyang, & Zhu, 

2008).  

In the work (Lopes, Clement, Roy, & Oudeyer, 2013), Lopes et al. use k-armed bandit algorithm 

to generate the next problem according to student’s competences which is updated after every 

response. However, they estimate the competences without any features that describe students, but 

only problem hardness, which overlooks the fact that students are different in gender, prior 

knowledge, or other factors, and thus they need different tutorial style. For example, students with 

less preparation might need more explanatory learning content in the learning process.   

In order to incorporate the students’ characters into k-armed bandits, we could use contextual k-

armed bandit, where the action is selected based on the contextual information about the actions or 

users. Want et al. investigate the effect of an observed variable that provides some information on 

the rewards to be obtained in the k-armed bandits problems (Wang, Kulkarni, & Poor, 2005). They 

find that the additional side information could significantly improve sequential decisions in bandit 

problems. Li et al. also utilize contextual bandits to recommend personalized news articles for each 

user in the work (Li, Chu, Langford, & Schapire, 2010). Nevertheless, rare work has been done to 

apply contextual k-armed bandits in ITSs. 

1.5. Research Questions 

This dissertation work focused on using contextual k-armed bandits to personalize tutorial strategy 

for each student in an ITS, in order to avoid over-tutoring or under-tutoring. Most of my work was 

and will be conducted on the ASSISTments. The main research questions investigated in this work 

include: 

1. What context should be incorporated into the bandits? 
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There are different ways to describe students, are all these useful in contextual bandits? It is 

possible that the feature that enhances student models is useless in contextual bandits, because 

they are two different issues. For example, prior knowledge is an important feature in student 

model, but students with different level of prior knowledge might have the same treatment, 

therefore, it is not a good feature in contextual bandits. Thus, we need to carefully select the 

features for the bandits. More precisely, we should find a mechanism to evaluate the effect of 

a feature in personalizing tutoring strategy, before integrating it with bandits. In this work, I 

also need to consider if a context is too specific to make it meaningless. Moreover, I want to 

explore whether a bandit algorithm with the same context is effective in different data sets. 

Another issue to be considered is the number of features. Too many features could cause 

overfitting in the bandit problems. Moreover, it requires large records to cover every 

possibility, and thus to make reasonable decisions. To overcome the drawbacks, we should 

limit the number of features incorporated into the bandits. Or we would make some 

assumptions, like in Naïve Bayes where features are conditional independent. 

2. How shall we organize the context? 

After answering the first research question, it is very clear whether an individual feature is 

useful in the given data set. Another consequent problem to tackle is how to integrate multiple 

features with bandits. A simple solution is to separate the data into groups according to every 

possible combination of features values, and apply a k-armed bandit algorithm on each group. 

However, its complexity increases exponentially with respect to the number of available 

features. 

Another solution is to use traditional classification model to combine features with bandits, like 

LinUCB (Li, Chu, Langford, & Schapire, 2010) used linear regression combine features with 

UCB. In this work, I plan to use decision tree to handle multiple features. A challenge here is 

that the traditional decision tree algorithm is used in classification, and a trained decision tree 

has the least classification error in a given data. While in this problem, we focus on constructing 

decision trees that can discriminate students who have different treatments. Another challenge 

is how to update decision tree structure in the real sequential choice experiment, since more 

and more students’ records are obtained, and we need to maximize the overall students’ reward.  

3. How much benefit?  
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Since it is time consuming to apply the contextual bandits on the real experiments to do the 

controlled comparison, in this work, we just do the simulation on the data from randomized 

control experiments in the ASSISTments. By compared with the original data set, we want to 

examine if using contextual bandits improves students’ outcomes, and in what circumstances 

the improvements are made.  

In the next chapter, I will introduce the background of adaptive systems. And then I will talk about 

student models that are used to detect students’ status. In Chapter 4, I will discuss why we need k-

armed bandits in ASSISTments, and answer the three research questions in details in the Chapter 

5. Finally, I will point out possible directions of future works in Chapter 6. 
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CHAPTER 2 

Background: Adaptive Systems 

2.1. Introduction 

Adaptive systems are referred to those systems attempt to be different for different students or 

groups of students, by considering information accumulated in the individual or group student 

models. From the perspective in the work (Brusilovsky, 1998), two key components in an adaptive 

system are user model and adaption based on the model. In this chapter, I will discuss the problem 

of “adaption”, and user model in the next chapter. 

Adaptive techniques can be useful to better support tutoring in ITSs for two reasons. First, the 

knowledge of different students can vary greatly. The same feedback can be unclear for a novice 

and at the same time trivial for an advanced learner. Second, the knowledge of a particular student 

can be different at different time. If a student is provided with problems at the same level, he would 

learn quite fast at the beginning, but then would find it uninteresting (Lopes, Clement, Roy, & 

Oudeyer, 2013) and show some off-task behaviors (Baker, 2007). 

Researchers have been working on applying adaptive techniques in tutoring system for decades. 

Adaptive Hypermedia systems build a model of the goals, preferences and knowledge of the 

individual user and use this throughout the interaction for adaption to the needs of that user 

(Brusilovsky, 1998). In the context of educational hypermedia, the topics suggested to the learner 

for subsequent study would be determined by the learner’s existing knowledge (Brusilovsky, 1998). 

AH aim at overcoming these problems by providing adaptive navigation support and adaptive 

navigation support and adaptive content (Kaplan, Fenwick, & Chen, 1993). The strategy termed as 

aptitude-treatment interaction (ATI) proposes different types of instructions or even different media 

types for different students (Burgos, Tattersall, & Koper, 2006). Gaze-reactive is used to evaluate 

student’s aptitude in order to promote engagement and learning by providing dialog move that 

direct the student to reorient his/her attention (D'Mello, Olney, Williams, & Hays, 2012). Muldner 

et al. investigated the interactions between the interventions in the tutoring systems and students’ 

affection (Muldner, Wixon et al., 2015).  

Moreover, reusability of the adaptive learning models has been highly valued in many works. 

Koper pointed out that a designed learning notation “must make it possible to identify, isolate, 

decontextualize and exchange useful parts of a learning design so as to stimulate their reuse in other 
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contexts” (Koper, 2005). Aroyo et al. proposed a method that combined standard adaptive 

hypermedia model with semantic interoperability, which enabled the model to be executable with 

different approaches. 

To analyze the adaption in ITSs, we should consider following questions: adapting to what? What 

can be adapted? What methods we should use? I will briefly explore answers to each question, with 

respect to the ASSISTments system, and talk about several existing methods in the following parts. 

Finally, I will give an example of selecting YouTube videos based on which skills students are 

learning. 

2.2. Adapting to What? 

This question can be expressed in another form: what aspects of students shall we consider in the 

adaptive tutoring systems? Which features can be used to differentiate students? As categorized in 

the work (Brusilovsky, 1998), five common features are considered in the adaptive hypermedia 

systems: user’s goals, knowledge, background, hyperspace experience, and preferences. In this 

dissertation work, we just analyze and use three features that are most related to the ASSISTments 

system: student’s goals, knowledge, and background. 

2.2.1. Goals 

Student’s goals or tasks are a feature related with the context of a student’s work in ITSs, rather 

than with the student as an individual. In some systems, it is reasonable to distinguish the level of 

goals, where low level goals can change quite often and high level goals are more stable. For 

example, in the tutoring systems, learning goal is always a high-level goal, while the problem-

solving goal is a low-level goal which changes from one problem to another. 

According to which aspects we focus on, student’s goals in ITSs could be different, such as mastery 

speed in (Botelho, Wan, & Heffernan, 2015), performance in posttest or retention test (Li, 2013; 

Xiong, Wang, & Beck, 2015), and engagement in (Baker, 2007; D'Mello, Olney, Williams, & Hays, 

2012). In this dissertation work, I mainly consider student’s performance in the posttest and mastery 

speed in the learning process as student’s goals, and analyze how to adapt tutorial strategies with 

respect to different goals. 

2.2.2. Knowledge 

Student’s knowledge appears to be the most important feature of the student in the adaptive tutoring 

systems. There are various student models have been developed in past works, which recognize 

changes of student’s knowledge and update the model accordingly. The student’s knowledge is 
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represented as different concept in the models, like wheel spinning status, skill mastery level, or 

affections. Those concepts can be binary value (known and unknown), a qualitative value (good, 

average, and poor), or a quantitative measure (a probability that a student will be wheel spinning 

on a skill). 

The student’s knowledge can also be expressed as a function of a set of student-related features. 

For example, the probability of wheel spinning is a logistic regression function of several features,  

9 features in (Beck & Gong, 2013) and 10 features in (Wan & Beck, 2015). A challenge of measure 

student’s knowledge in an experiment is to determine which student features are related and proper 

to be used. Fewer feature might not be enough to capture the changes of student’s knowledge, such 

as adding prerequisite factor or general learning ability into the wheel spinning model improves the 

model accuracy (Wan & Beck, 2015); on the other hand, more features requires much more student 

records, otherwise, overfitting would occur. In the Chapter 5 I will discuss which kinds of features 

will be considered to express student’s knowledge in details. 

2.2.3. Background 

Student’s background is referred to the information related to the student’s previous experience 

outside the subject of the tutoring systems. A common used student’s background in the 

ASSISTments is the class feature. Since the students in the same class are taught by the same 

teacher and normally get the same instructions, they might share some patterns in the learning 

process. Therefore, to predict a student’s outcome, his peers’ performance could give a clue. 

Wang and Beck incorporated the parameters at the class level into the Bayesian knowledge tracing 

models (Wang & Beck, 2013), by compared with the parameters at student level and skill level, 

they found a plausible result that the prior knowledge parameter ( 𝑘0 ) derived from class 

information makes better models, this means that the students in the same class have similar initial 

knowledge. Xiong et al. investigated the class effect in the retention model (Xiong, Beck, & Li, 

2013), their result, adding the class features slightly improves the retention model, suggested that 

there seemed to be an overall class effect that differs from average performance on other skills. 

2.3. What Can be Adapted? 

An important issue should be considered in any adaptive systems is: what features of the systems 

can differ for different students? What different tutorial sequences can the systems offer? In this 

dissertation, we mainly focus on assigning students into which conditional problem sets, and the 

problem sets differ in feedback type or problem content. 
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Figure 2. An example of a problem with two versions in the ASSISTments. 

Problem content is the way to describe the problem, including problem structure (fill in blank or 

multiple choices or other type), the format of numbers in the problem (such as fraction, percent, or 

decimal), and other information like videos, figures, or links. A student’s performance may vary 

greatly in different versions of problem. For example, considering the two types of problem in the 

Figure 2, it is better to provide the student with low spatial sensitivity with the problem with grids, 

e.g. the left problem. 

As introduced in Chapter 1, there are three main types of feedbacks in ASSISTments: scaffolding 

problems, hints, and extra tutorial material. Feedbacks provide extra explanation about the problem 

or the corresponding skills, which should be adapted according to student’s current knowledge, 

goals, and other characteristics of the student. For example, a qualified student can be provided 

with deeper information while a novice needs additional explanation. Ostrow and Heffernan 

propose a study of a randomized controlled trial that is used to validate the effect of feedback type 

and the effect of student choice within ASSISTments (Ostrow & Heffernan, 2014). Their result 

shows that students have significantly higher correctness if provided choices of feedback, and they 

prefer to choose video feedback. 

2.4. What Method Shall We Use? 

Like the student modeling, some other data mining techniques also aim at describing students’ 

special characteristics or grouping students to customize needs for students, such as clustering, 

association rule mining, and sequential pattern mining in tutoring systems (Koutri, Avouris, & 

Daskalaki, 2005). 

Clustering is an unsupervised classification technique that groups a set of unlabeled objects into 

clusters where the objects in the same cluster are more similar to each other than to those in the 
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other clusters. As stated in (Koutri, Avouris, & Daskalaki, 2005), clustering is useful in three 

different aspects of adaptions in web-based tutoring systems: personal recommendation, dynamic 

adjustment, and static page adjustment. For example, Mobasher et al. propose an effective method, 

which focuses on capturing commonalities in the usage models with the ultimate goal to perform 

adaptive navigation support (Mobasher, Cooley, & Srivastava, 1999). Tang et al. construct a 

clustering method based on the sequence and the content of pages users visited, in order to promote 

group-based collaborative learning and to provide incremental learner diagnosis (Tang, Lau et al., 

2000). 

Association rule mining refers to the identification of all associations among certain data items, 

always expressed as if-then statement, so that the appearance of one subset of items in a transaction 

implies the appearance of other corresponding items (Agrawal, Imieliński, & Swami, 1993). A 

number of techniques discover association rules from different types of student data. Romero et al. 

discover association rules from students’ usage information by using Grammar-Based Genetic 

Programming with multi-objective optimization techniques, in order to provide feedbacks to 

courseware authors (Romero, Ventura, & De Bra, 2004). Freyberger et al. mine association rules 

from a dataset derived from student-tutor interaction logs, in order to guide the search of transfer 

models (which map the questions in an ITS and the necessary skills to answer a question correctly) 

(Freyberger, Heffernan, & Ruiz, 2004). Lu applies a fuzzy association rule mining technique in a 

web-based learning recommendation system, in order to supply suitable materials to best meet each 

student need (Lu, 2004). 

Sequential pattern mining, can be considered as a more restricted from of association rule mining, 

is to find patterns in an ordered list of items, such as presence of a set of items in a particular order 

or with time stamp (Agrawal & Srikant, 1995). The extraction of sequential patterns has been used 

in tutoring systems for discovering and comparison with expected behavioral patterns specified by 

the instructor that describe an ideal learning sequence (Pahl & Donnellan, 2002). Other research 

works use sequential pattern mining to: discover group interaction sequences indicative of problem, 

in order to assist student teams in early recognition of problems (Kay, Maisonneuve, Yacef, & 

Zaïane, 2006); extract frequent learning patterns from sequential learning sequences to group 

learners with good learning performance into several meaning clusters (Wang, Weng, Su, & Tseng, 

2004). 

Another method which is gaining popularity in educational data mining and intelligent tutoring 

system is k-armed bandit algorithm. It is first used in a problem of slot machines in which a gambler 
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at a set of slot machines has to decide which machines to play and how to play at each time. When 

applying the algorithm in tutoring systems, the different tutorial strategies can be regarded as slot 

machines or actions one of which is chosen for a particular student at each time. Based on student’s 

current competence, Lopes et al. use a k-armed bandit algorithm to select the components with 

appropriate difficulty level to generate a problem for the student, and then the student’s response 

to that problem is used to update his/her competence level (Lopes, Clement, Roy, & Oudeyer, 

2013). Students tutored by this strategy is proved to have better performance than by random 

generated problems in their work. Without any information about the problem, Clement et al. 

propose another algorithm, ZPDES, based on the zone of proximal development (Lee, 2005) and 

the empirical estimation of learning progress (Oudeyer & Kaplan, 2007), to choose exercise at each 

step (Clement, Oudeyer, Roy, & Lopes, 2014).  

In this dissertation work, I will use k-armed bandit algorithm in the ASSISTments experiments and 

analyze the effect of different student-based features and skill-based features in the bandit. The 

bandit algorithm and the features will be discussed in the Chapter 4. 

2.5. Example: YouTube Video Selection 

2.5.1. Background 
After many trials on learning a skill in a tutoring system, a student cannot still reach mastery, then 

this student is probably wheel spinning on the skill (Beck & Gong, 2013). Beck and Gong construct 

a wheel spinning model to predict whether a student would be wheel spinning on a skill at early 

learning stage, and they find a strong connection between “gaming” the system and wheel spinning 

(Beck & Gong, 2013). Wan and Beck discover that a student with lower performance on the 

prerequisite skills is more likely to be wheel spinning on the post skill (Wan & Beck, 2015). 

However, they do not provide any approach to prevent the wheel spinning cases. A plausible 

solution to this issue is to provide a student with proper tutorial feedbacks to “cure” the student 

when detecting he is likely to be wheel spinning.  

Feedback plays an important role in tutoring systems that informs students about how they perform 

currently or provides students with helpful hints or tutorial content when they are struggling in 

learning. It does not only enhance students’ learning results (Fossati, 2008; Narciss, 2013; Roscoe, 

Snow, & McNamara, 2013), but also influences students’ affection in the learning process (Heylen, 

Vissers, op den Akker, & Nijholt, 2004; Robison, McQuiggan, & Lester, 2009).  

According to the review of feedback in Kulhavy and Stock’s work (Kulhavy & Stock, 1989), 

effective feedback contains two types of information: verification tells whether an answer is correct 
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or not; elaboration provides more illustrative information about the question or related topics to 

guide student to the correct answer. In the ASSISTments skill builder, of which experiment data 

we use in this work, students can know immediately if get a correct answer. Thus, to prevent wheel 

spinning, verification feedback is not enough, but feedback with more explanatory content is 

necessary for those students who are likely to wheel spinning, to increase their knowledge and 

understanding in the skills. 

There are different types of elaboration feedback, like scaffolding questions, hints, and worked 

examples. Since hypermedia is being more and more popular, many researchers are working on 

applying tutorial hypermedia in the tutoring systems. Kelly et al. study a controlled experiment in 

which a student is provided with either a YouTube or a motivational message to persist with the 

learning session (Kelly, Heffernan, D’Mello, Namais, & Strain, 2013). Their results show that 

students with video feedback have higher homework completion rate. By compared with the blank 

text, Ostrow and Heffernan find that video feedback provides better understanding and thus 

enhances students’ learning outcomes (Ostrow & Heffernan, 2014). 

In ASSISTments, students are provided with several links to tutorial YouTube videos when they 

are struggling in learning. To analyze the tutorial effect of these YouTube videos, we will use the 

wheel-spinning models defined in (Wan & Beck, 2015). In this work, we mainly focus on the 

following questions: 

1. Are the videos really helpful in curing wheel spinning? To answer this question, we will 

compare the students’ performance before and after viewing the videos according to the wheel-

spinning model. 

2. What factors make a video with better tutorial effect? We will use text mining and web mining 

techniques to generate several features from the videos and related contents, and then 

investigate the relation between these features and the students’ outcomes. 

2.5.2. Method 
The predicted value from wheel-spinning model indicates how likely a student would be wheel 

spinning on a skill. If a video really helps a student who had trouble in learning a skill before 

watching the video, then a shift downward of the probability would start at the time viewing the 

video. Therefore, we will use the trend of the probability estimated at each opportunity in the wheel-

spinning model (Wan & Beck, 2015) to measure the tutorial effect of YouTube videos. To 

investigate what factors make a “better” video, the first step is to abstract video features. The 

following sections explain how we generate features from YouTube videos. 
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Resources 

In this work, we generate three kinds of features: YouTube basic features, students related features, 

and text-based features. The first kind of features are collected directly from YouTube and the 

second kind of features are generated from students’ activities. These features are: 

 View count: how many times a video is viewed by YouTube users. 

 Rate count: the number of YouTube video ratings. 

 Rate score: the final rate score of the video. 

 Video duration: how long the video is. 

 Stay time: how long a student stay in the video web page. 

 Viewed proportion: this is calculated as (stay time)/ (video duration). 

 Student’s opinion: after viewing the video, the ASSISTments provide a survey question 

asking students if the video is useful.  

The last one is more complicate. We will use text mining techniques to abstract features from four 

YouTube web contents: video title, video description, closed captions, and YouTube user 

comments. Finding educationally effective webpages is a somewhat different problem. Presumably 

learners are interested in finding pages that are engaging, contain good explanations, and will leave 

the learner understanding the subject he set out to learn. These webpages should contain the 

information related to the topics students are learning. Since the data in this work is collected from 

students’ responses in learning the mathematic skills in the ASSISTments, we will capture the 

relationship between YouTube webpage contents and a set of mathematic terms as features. These 

mathematic terms are taken from ("Mathematics terms,")("Mathematics terms,")("Mathematics 

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics 

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics 

terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics terms,")("Mathematics 

terms,") which are separated into six subjects and cover almost all the topics in our data.  

Pre-processing 

1. Stemming 

An English term can have different inflected words; the stemming is to identify those words 

derived from the same terms. For example, “so” and “sooo” probably have no difference. In this 

work, we will use the snowball stemmer from the NLTK package (Bird, Klein, & Loper, 2009) 

to transform the words in the video-related contents into their root terms. This pre-processing step 

would reduce mismatches in the process of counting occurrences of mathematic words and skill 

names in the video contents. 
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2. Grouping mathematic terms 

This step is to assign each skill in our data set into one of the six subjects in the mathematic terms, 

the terms in the assigned subject is called related terms and others unrelated terms for the skill. 

The objective of this step is to provide a way to validate if the video is talking about the skill a 

student is acquiring or general mathematic topics.  

Generated text-based features 

Since for each video visiting record, the visited video relates to a skill a student is learning. To 

abstract the text-based features as the relationship between skills and videos, we will match the 

skill-based text with the video-based text. The skill-based text contains skill name, skill-related 

mathematic words, and skill-unrelated mathematic words. The video-based text contains video title, 

video description, video closed-captions, and YouTube users’ comments. The matches are used to 

generate the following four types of features: 

1. #Type: it is number of different mathematic terms or skill names occur in the content. If 

more than half of words in a math term or a skill name exist in the content, then we say this 

math term or skill name is in the content. For example, the math term “fraction division” 

is in the string “one fraction is 1/3”. Obviously, the value of this feature for the skill name 

is 1 or 0, because each skill has only one name. 

2. #Token: it is number of words in the video content match the skill-based text. In the 

previous example, the value of this feature in this example is 1, because there is only one 

word in the string, “fraction”, appears in the math term.  

3. Proportion of skill-based text: this is calculated as, #type/ (total terms in the skill-based 

text). If there are five skill-related math terms and only one is matched in the video 

description, then the value of this feature is 0.2. 

4. Proportion of covered video-based text: this is calculated as, #token/ (total words in the 

video-based text). In the previous example, match the math term “fraction division” to the 

string “one fraction is 1/3”. There are four words in the string, and only one word appears 

in the math term, so the value of this feature is 0.25. 

Since there are three different types of skill-based text, four types of video-based text, and four 

types of matching features, there are 36 (3*3*4) features generated in this step. 

2.5.3. Results 

Data 
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The dataset used in this work in collected from students’ activities in learning math skills in 

ASSISTments in 2013. This dataset if from students selecting to see a YouTube video with 2-5 

webpages human-selected for each skill in ASSISTments. Since the web-help functionality was 

available in ASSISTments for a short term, our data contains only 628 YouTube video related 

student-skill pairs.  

Before analyzing the video tutoring effect, we should notice that our sample of viewed webpages 

is not random sampling of students. In our intuition, the tutorial YouTube videos are viewed by 

those students who have trouble in and are also interested in learning the domain knowledge, rather 

than getting through the assignments. To validate this, we compare students’ performance on four 

different student sets: 

 Set 1: all students in ASSISTments in 2013. 

 Set 2: those students who are wheel spinning on at least one skill. 

 Set 3: those students who have view a YouTube video at least once. 

 Set 4: those student-skill pairs such that the student visit a YouTube video in the process 

of studying the skill. 

The result, shown in Table 1, contains three different student-skill pairs, wheel spinning pair, 

master pair, and indeterminate pair. In a wheel spinning student-skill pair, the student is wheel 

spinning on the skill. Respectively, the student masters the skill in the master pair. In an 

indeterminate student-skill pair, the student does not master the skill and he drops out before the 

10th opportunity. This case is considered as wheel spinning in the work (Wan & Beck, 2015). 

As shown in the table, the wheel spinning rate in the set 4 is much higher than in the other student 

sets, which supports our guessing – the videos are viewed by those students who are struggling. 

Another interesting finding that indeterminate rates in the set 3 and set 4, in which students once 

visit a video in while learning a skill, are lower than in the other two sets. This indicates that these 

students are more willing to learn the knowledge, so they are less likely to drop out learning skills. 

Table 1. Distribution of student-skill pairs in each bin. An indeterminate student-skill pair mean the 
student does not master the skill and he drops out before the 10th opportunity. For example, in the 
first row, 7.5% of student-skill pairs in the whole dataset is wheel spinning case, 69.4% is mastery 
case, and 23.1% is indeterminate case. 

 Wheel spinning pairs Master pairs Indeterminate pairs 

Set 1 7.5% 69.4% 23.1% 

Set 2 10.4% 67.5% 22.1% 

Set 3 11.0% 75.4% 13.6% 

Set 4 30.1% 56.4% 13.5% 
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Experiment 1: tutorial efficacy of videos 

As aforementioned, when a student views a video, he is probably struggling, and he is also willing 

to learn the knowledge. To check if the video helps the student, we need to estimate the student’s 

outcome if he did not view the video. A proper way to do this is to select other students who have 

the similar situation before visiting the video but choose to keep practicing without visiting the 

videos, and then use their outcomes as the estimated value.  

In this step, we first use the wheel spinning model to make prediction for each student’s practice, 

and then for each student who visit a video when learning a skill, we select such students whose 

predicted wheel-spinning value is similar with the former student’s value at the opportunity he 

views the video (difference is no more than 0.01). For example, a student S1 visits a video at the 

3rd opportunity, and his predicted wheel-spinning value at that time is 0.3. Then the selected 

students’ predicted values at the 3rd opportunity are in the range 0.29-0.31, and they do not visit the 

video in the learning process. Finally, we use the wheel spinning ratio among those selected 

students as the estimated outcome for the former student if he did not visit the video. 

After filtering the similar students, we then compute the wheel spinning ratio for the video-helped 

students and the similar students. Here we consider the indeterminate cases as wheel spinning like 

the work in (Wan & Beck, 2015). The wheel spinning ratio for the video-helped students is 0.436, 

and 0.428 for the similar students, which shows no much difference between them. One possible 

explanation for this is some students ask for help too late. If a student realizes he need extra video 

for help after many trails in learning a skill, then he has very high probability to wheel spin on the 

skill since we regard the students who do not achieve mastery level in 10 opportunities as wheel 

spinning. 

 

Figure 3. Wheel spinning ratio comparison between the video-helped students and similar students. 
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From the result in Figure 3, the explanation seems to be reasonable, because the wheel spinning 

ratio for the video-helped students is higher than the similar students if the video is viewed at 6-9th 

opportunity. Therefore, this arises another question: does visiting video at the early stage help 

students in learning? When visiting videos at the 1st opportunity, students will get about 10% less 

wheel spinning ratio. However, visiting the tutorial videos at the other times does not implies 

remarkable improvements on wheel spinning. Thus, there might be other factors influencing videos 

tutoring efficacy. 

Experiment 2: feature selection 

To answer the second question: what factors make a video with better tutorial effect? Here we still 

use the predicted value from the wheel spinning model. If a student has learned knowledge from a 

video, then his predicted wheel spinning value should decrease after viewing. Therefore, we define 

a target class, a video is helpful for a student or not, as if the predicted wheel spinning value at the 

last opportunity is less than at the opportunity the student views the video. For example, if a student 

views a video at 3rd opportunity, and the predicted value from wheel spinning model at that time is 

0.4, and 0.2 at the last opportunity, then we say this video is helpful for the student. To simplify 

our problem, we just disregard the cases students visit videos at the last opportunity in this step. 

After constructing target class for each student-skill pair, we then apply feature selection algorithms 

over the 43 features as introduced in the Method Section. In this work, we use three feature selection 

algorithms from WEKA (Hall, Frank et al., 2009): CFS + Best First, CFS + Rank Search, and 

Ranker + Information Gain. The first two algorithms will output a set of features that is most related 

with target class, while the last one will rank the features according to the evaluation function, and 

we will keep the top 10 features in the final feature set for this algorithm. With 10-fold cross 

validation, there are 3 features that appear in the selected feature sets of all three algorithms: 

 The proportion of skill-unrelated math terms that are covered in the video comments (the 

3rd type of feature with matching skill-unrelated math terms with video comments). 

 The number of words in the video comments that match the skill-related math terms (the 

2nd type of feature with matching skill-related math terms with video comments). 

 The number of words in the video description that match the skill-related math terms (the 

2nd type of feature with matching skill-unrelated math terms with video description). 

Experiment 3: effect in the wheel-spinning model 

In the previous experiment, we evaluate the relation between video based features and the wheel 

spinning improvement. In this experiment, we will add the related features into the wheel spinning 
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model, to validate the effect of such features in the wheel-spinning model. If a feature plays an 

important role in evaluating impact the videos are having on student learning, then it improves the 

wheel-spinning model.  

Since less than 1% of student-skill pairs in the whole data are related with YouTube video visiting, 

the effect of web based features would be tiny over the whole data set and the models measurement 

would be almost the same. Thus, we construct models over only the YouTube web visiting related 

student-skill pairs. We construct three different wheel-spinning models: model without video-based 

features, model with all video-based features (43 features generated by our method), and model 

with the selected features (as state in the previous experiment).  

The results in Table 2 indicate that adding video-based features improves wheel-spinning model 

accuracy, which means these features are related with wheel spinning, and we could use them to 

evaluate video tutoring effect. However, from the observation that measurements of the 2nd and the 

3rd model are very close, we can get that the most impact attributed to tutoring efficacy is how many 

proportions of math terms and how frequently they are covered in the video-based contents. 

Moreover, the coefficients of the three features in the model are all negative, which means a better 

video should cover more math terms in the video-related texts. 

Table 2. Measurement of three different wheel-spinning models. 

 Cox and Snell R2 

Model without video-based features 0.354 

Model with all video-based features 0.364 

Model with the three-selected video-based features 0.362 

 

2.5.4. Discussion 
Being increasing popular, obtaining tutoring contents from internet through electronic devices such 

as personal computers, smartphones, and other portable devices, is an important way for students 

to learn knowledge, and these web-based tutoring contents can be necessary complementary of 

school tutoring. The work in (He, Swenson, & Lents, 2012) proves that incorporation of video 

tutorials as a supplement to learning in undergraduate analytical chemistry course increases 

students’ comprehension in difficult concepts. ASSISTments also provides videos as extra tutoring 

material in the learning process. In this work, we analyze how students use the videos and the effect 

of videos in tutoring students. 
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Our data indicates that students view the videos when they are struggling and they hope to learn 

the knowledge through the videos. However, about only half of students eventually master the 

skills. A further analysis suggests that students should ask for the videos to help them at the early 

stage. However, students might not realize they are unable to master the skills very fast. Thus, it 

requires our tutoring systems to detect their wheel-spinning status as sooner as possible and then to 

provide appropriate extra assistances. 

With using feature selection algorithms, the selected video-based features are all related with the 

math terms. By incorporating them into wheel-spinning models, model results imply that a video 

with stronger connection with the math term is more likely to heal students’ wheel spinning. In 

summary, our work provides a guideline of how to evaluate the video effect in tutoring students, 

and can be useful in selecting the proper videos for students in the future.  

However, there are still challenges in future works. The first is lack of data. Current webpage 

visiting data contains 5638 students’ records, this is very rare comparing to the whole data with 

over 2 million records, and 628 student-skill pairs compare to 340 thousand pairs. Thus, models 

constructed on this sparse data is unstable in generalization, and is not reliable in evaluating 

webpage efficacy in the future. Moreover, the webpage visiting data contains 52 different skills 

and 58 skill-webpage pairs, which means most of skills are associated with only one YouTube 

page, and it prevents us from analyzing if different webpages have different tutoring efficacies for 

a specific skill. 

The second is how to construct a model to directly evaluate videos tutoring effect. From the results, 

we can see that some web based features have high coefficients, which means they are important 

in WS models. However, there is no clear evidence that these features are also useful in evaluating 

webpage tutoring efficacy. In additional, if we want to compare different webpages’ effect, other 

questions arise: If we use the web based features to construct webpage evaluation model, what does 

the model look like? Is the feature with higher coefficient in WS model more important in the 

evaluation model? 



22 

 

CHAPTER 3 

Student Modeling 

3.1. Introduction 

Student models generally represent inferences about users, relevant characteristics of users, and 

users’ records, particularly past interactions with system. The main objective of student modeling 

is to develop cognitive models of human users or students, including a modeling of content skills, 

knowledge about learning, and affective characteristics. Various algorithms have been applied to 

consider different students’ characteristics (like learning styles, affections, and motivations) and 

other factors, to automatically model their knowledge. In this section, I will discuss several student 

models and the factors used in the models.  

3.1.1. Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) is an approach that relies on Bayesian theory. BKT uses two 

states to in the model: learned state and unlearned state, which indicates whether a student has 

mastered a skill or not. And the student’s performance is made based on which state he is currently 

in, as illustrated in Figure 4. BKT assumes that students can transit from unlearned state to learned 

state through practicing, but cannot in the opposite way. Their transition and emission diagram is 

shown in Figure 5. The four parameters in Figure 5 are: 

 𝑃 (𝐿0): Probability of the skill is already mastered before the first practice of the skill; 

 𝑃 (𝑇): Probability of the skill will be learned at each practice; 

 𝑃 (𝑔): Probability of the student will guess correctly if the skill is not mastered; 

 𝑃 (𝑠): Probability of the student will fail even if the skill is mastered, called slip. 

 

Figure 4. Illustration of Bayesian Knowledge Tracing. 
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Figure 5. BKT transition and emission diagram. 

The key factor in this model is the student’s performance – right or wrong in each question. The 

main benefit of the BKT model is to monitor changes in student knowledge state during practices. 

However, since the BKY model is always trained on a set of students’ practices on one skill, it 

lacks the ability to handle multi-skills simultaneously and the ability to regulate students’ 

personalities. Therefore, some variants of BKT use different factors, such as student-specific 

parameters (Lee & Brunskill, 2012; Pardos & Heffernan, 2010; Yudelson, Koedinger, & Gordon, 

2013), class feature (Wang & Beck, 2013), and partial credit (Wang & Heffernan, 2013). 

Advantages and Disadvantages 

The main benefit of the BKT model is that it monitors changes in student knowledge state during 

practice. Each time a student answers a question, the model updates its estimate of whether the 

student knows the skill based on the student’s answer. Other works with BKT introduce a number 

of advances, for example, estimates of guessing and slipping in contextual models (Baker, Corbet, 

& Aleven, 2008), estimates of probability of transition from use of help features (Beck, Chang, 

Mostow, & Corbett, 2008), and estimates of the initial probability that the student knows the skill 

(Pardos & Heffernan, 2010). 

BKT suffers two major problems with parameter estimates (Beck & Chang, 2007): local maxima 

and multiple global maxima. The first one could be solved by multiple restart. The second one 

refers to different sets of parameters that could fit the same data equally well. The other major 

problem of BKT is its lack of ability to handle multi-skills simultaneously, because BKT works by 

looking at historical observations on a skill. 

3.1.2. LFA & PFA 
Learning Factor Analysis model is used to modeling students’ knowledge in multiple skills with a 

Q-matrix (representation of the KC, knowledge component, to item assignment) (Cen, Koedinger, 

& Junker, 2006). This model captures three important factors influencing the learning and 
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performance of KCs, as depicted in the following form, 𝛼𝑖  – each student’s preparation, 𝛽𝑗  – 

hardness of each KC, and 𝑛𝑖,𝑗 – each student’s learning rate on each KC. The form is:  

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑛) = 𝛼𝑖 + ∑  (𝛽𝑗 + 𝛾𝑗𝑛𝑖,𝑗)

𝑗∈𝐾𝐶𝑠

 

𝑝(𝑚) =
1

1 + 𝑒−𝑚
 

PFA is considered as an extension of LFA, which was presented by Pavlik et al. (Pavlik, Cen, & 

Koedinger, 2009). Different from LFA, the parameter representing student’s ability is removed in 

PFA. The other difference is that instead of using only one parameter to capture student’s prior 

practice, the author uses two parameters to track student’s prior successes and prior failures. 

Because correct responses may lead to more learning than incorrect responses. The PFA form is: 

𝑚(𝑖, 𝑗 ∈ 𝐾𝐶𝑠, 𝑠, 𝑓) = ∑  (𝛽𝑗 + 𝛾𝑗𝑠𝑖,𝑗 + 𝜌𝑗𝑓𝑖,𝑗)

𝑗∈𝐾𝐶𝑠

 

𝑝(𝑚) =
1

1 + 𝑒−𝑚
 

In the equation, 𝑚 is a logit value representing the accumulated learning for student 𝑖 using one or 

more knowledge components (KCs) 𝑗. The easiness of these KCs is captured by the 𝛽 parameters 

for each KC, 𝑠 tracks the prior successes for each KC, and 𝑓 tracks the prior failures, and 𝛾 and 𝜌 

scale the effect of these observation counts.  

Advantages and Disadvantages 

As discussed in previous section, BKT suffers the problem of multi-skill performances. PFA and 

LFA) can be used to tackle this problem. As we can see in the PFA formula, the skill effects of and 

student’s performances on all related skills are combined to predict student’s outcome for current 

item. Another benefit of PFA is that it produces a real valued estimate of strength for each skill. 

One drawback of LFA (or PFA) is it would produce negative learning rate due to overfitting. The 

solution of this is to set 0 as lower bound. This model counts the numbers of prior successful and 

failed practices; however, it doesn’t consider the order in which these practices occurred. Suppose 

we have two students working on the same question set. The outcome of first student is: incorrect, 

incorrect, correct, correct, and correct. While the outcome of second student is: correct, incorrect, 

correct, incorrect, and correct. In our intuition, the first student should have higher mastery level 

than the second student. But in PFA, they are counted as the same. 

3.1.3. Wheel Spinning Model 
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In ITSs, wheel spinning refers to that a student cannot master a skill no matter how many practices 

he tries. In the real experiments, it is inappropriate and impossible to force students to keep 

practicing until they achieve mastery. Therefore, we need to quantify the practices that if a student 

cannot achieve mastery in the number of practices, then he is wheel spinning on that skill.  

Beck and Gong found that if a student cannot master a skill in 10 questions, then he has very low 

probability to get mastery later (Beck & Gong, 2013). So they used 10 questions as the threshold. 

They also found that about 25% of students in the Cognitive Algebra system and 35% of students 

in the ASSISTments system are wheel spinning on the corresponding skills. And they constructed 

a wheel spinning model, a logistic regression model, to predict the wheel spinning cases based on 

following factors: 

a) The number of prior correct responses by the student on this skill. This feature is proved useful 

in the Performance Factors Analysis model (Pavlik, Cen, & Koedinger, 2009). 

b) The number of problems in a row correctly responded by the on the skill prior to the current 

problem. In the ASSISTments, mastery is defined as 3 correct responses in a row. Thus, the 

number of consecutive correct responses is an important factor.  The value of this feature is 

from 0 to 2. 

c) The exponential mean Z-score of response times on this skill. The response time for each item 

is transferred into a Z-score, and then exponential mean is calculated for each student by: γ ∗

prior_average + (1 − γ) ∗ new_observation, with γ = 0.7. 

d) The exponential mean count of rapid guessing. This measures how often the student was 

rapidly guessing. 

e) The exponential mean count of rapid response. This measures how often the student took a 

rapid response. This feature as well as the feature (d) reflects how serious the student is 

learning the skill through the tutoring system. Similar features related with “gaming” the 

system were used in gaming detectors as in (Arroyo & Woolf, 2005; Baker, Corbett, Roll, & 

Koedinger, 2008; Gong, Beck, Heffernan, & Forbes-Summers, 2010) 

f) Count of bottom-out hint. The number of times the student reached a bottom-out hint on this 

skill prior to the current problem. 

g) The exponential mean count of 3 consecutive bottom-out-hints. This measures how often the 

student reached bottom out hints on 3 consecutive problems. 

h) Skill identification. 

i) Prior response count. 
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In additional to wheel spinning prediction, they found a positive correlation between wheel 

spinning and gaming – students with higher gaming score are more likely to exhibit wheel spinning. 

This relationship is also hold for a particular student that a student is gaming more in the skills he 

would wheel spin than in the skills he would master.  

BKT, LFA and PFA are used to model students’ knowledge level in skills, but they failed to 

determine if a student needs help when he/she is struggling in learning a skill. The main benefit of 

wheel spinning model is to detect if a student needs help in the early learning stage, therefore, 

proper interventions can be provided to the students.  

3.1.4. Big Drawbacks 
The models talked in the previous section are all based on the factors in the learning progress of 

current skills. These models can be used to predict how well or how bad a student is learning skills. 

They can also be used in estimating how likely a student could guess and slip (Baker, Corbett, & 

Aleven, 2008) and how student’s actions (successes or failures) affect the mastery of skills (Pavlik, 

Cen, & Koedinger, 2009). However, these models have two main drawbacks. First, they overlook 

the effect of skill relationships. Second, they don’t know what else to do if students are sick. 

1) Overlook the effect of skill relationships 

In pedagogical design, students usually learn skills in sequence since preliminary skills need 

to be learned prior to the complex skills. For example, students should know how to do 

squaring and square root before learning Pythagorean Theorem, as in Figure 6. The 

prerequisite-post relations underlie the design of learning sequences and adaption strategies in 

ITSs, and give an insight to estimate the knowledge in current skills from the prerequisite 

skills. 

 

 

Figure 6. An example of prerequisite structure. 
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Many educational data mining techniques have been applied to discover and refine the 

prerequisite structures. The Partial Order Knowledge Structures (POKS) learning algorithm is 

used to learn the prerequisite structure at the item level in the work (Desmarais, Meshkinfam, 

& Gagnon, 2006); dynamic Bayesian networks are used to describe the hierarchy and 

relationships between different skills in (Käser, Klingler, Schwing, & Gross, 2014); Chen et 

al. build prerequisite relations between skills from the probabilistic knowledge states of 

students with association rule mining (Chen, Wuillemin, & Labat).  

2) Don’t know what else to do if students are sick 

These models provide information about students’ knowledge status at each step, but nothing 

about what to do if students are struggling in learning skills. To improve this, Rollinson and 

Brunskill propose a policy that suggests to stop tutoring students in ITSs when the estimations 

of students’ knowledge from the models do not changes any more (Rollinson & Brunskill, 

2015).  

To overcome the first drawback, the skill-relation structure can be combined into the models. In 

previous works, I have used prerequisite performance to predict students’ initial knowledge in the 

post skills, and I will talk two models in the next sections.  

In this dissertation work, I will focus on providing students with the appropriate tutorial strategies 

according to their current knowledge status, especially when they are in trouble, and I will talk in 

detail in Chapter 4 and Chapter 5. To be clear, I do not generate or create the strategies (like hints, 

feedbacks, and problems) in this dissertation work, but select the optimal one for each student from 

the options. 

3.2. Prerequisite Effect in Predicting Initial Knowledge 

3.2.1. Introduction 
Since in the KT model, initial knowledge is represented by a parameter 𝑃 (𝐿0), the probability of 

mastering the skill (Corbett & Anderson, 1994). As such, KT is often used to estimate each 

student’s initial knowledge (Pardos & Heffernan, 2010). In the standard KT model, the parameter 

𝑃 (𝐿0) is trained on all students’ records in a training set, and assumes that all students have the 

same initial state of knowledge. However, this assumption is too strong to use the model to predict 

each individual student’s first response. To overcome this drawback, Pardos and Heffernan use 

three heuristic functions to model individualization in KT (Pardos & Heffernan, 2010), and find 

that the method, setting initial individualized knowledge based on individual students’ performance 

over all skills, yields superior results. This approach, however, overestimates the relationships 
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between skills. If learning a skill does not promote, or even hinder (Cree & Macaulay, 2002), 

learning another skill, then it is not appropriate to use knowledge in one skill to estimate another. 

In the work (Botelho, Wan, & Heffernan, 2015), we utilize prerequisite structure, defined by 

domain experts, to predict student initial knowledge on subsequent skills, and we compare our 

method with the Knowledge Tracing (KT) model. Due to human effect, some skill relationships 

might be overestimated, or they may not exist in other applications. As such, we are seeking to 

answer the following two questions in this paper: 1. Does prerequisite information really help to 

improve the estimation of initial knowledge on subsequent skills? 2. Are all prerequisite 

relationships reliable? 

3.2.2. Methodology 
The method of prediction here utilizes a categorization of students based on the number of attempts 

taken to master each prerequisite skill. This type of methodology, often referred to as binning, as it 

places students into a set of finite bins or categories for which a prediction or inference could be 

made. Using information drawn from prerequisite skills, a prediction table can be constructed to 

model the initial knowledge of different types of students defined by separate bins.  

As a measure of performance, we chose to use the number of attempts, or responses, made before 

mastering a prerequisite skill to categorize the students in our dataset; this number of attempts is 

often also referred to as mastery speed. This concept of a mastery status is common in intelligent 

tutor systems and is, in the case of ASSISTments, gained through three consecutive correct 

answers. Using the number of attempts to gain mastery status, our method calculates the overall 

performance history for each student observed, consisting of the average of mastery speed, 

measured in attempts, across all prerequisite skills. 

 

Figure 7. An example to explain how to generate the five bins of students for a post skill. 
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Our method creates a table of probabilities for each of five bins, or categories of students, each bin 

contains the students whose average mastery speeds across all prerequisite skills are in 

corresponding range, as exemplified in Figure 7. The prediction of each bin is calculated using a 

training set and represents the number of students of each category that answered the first problem 

of a subsequent skill correctly. The first bin includes those students that averaged 3 to 4 attempts, 

inclusively, to master each prerequisite skill; the second bin are students that averaged 4 to 8 

attempts exclusively; the third bin, averaged 8 or more attempts; the other two bins contain the 

students who did not reach mastery status on any prerequisite skills, and are marked as “Did Not 

Finish (DNF)” category. Since there is a large amount of students following in these categories, so 

we separate them into two bins according to their percent of correctness across all prerequisite 

skills: the fourth bin, “DNF High”, contains students who have high percent of correctness (greater 

than or equal to 66.67%); the fifth bin, “DNF Low”, with low percent of correctness (less than 

66.67%). Thus, bin four represents students that failed to complete the prerequisite skills for reasons 

other than lack of knowledge, while students in bin five were struggling and perhaps experiencing 

wheel spinning (Beck & Gong, 2013); 

In the example presented in Figure 7, Joe averages 3 attempts to master each prerequisite skill and 

answers the first problem of the subsequent skill correctly. As such, he is categorized under the 

first bin, and contributes to the probability of 1.0 due to all students in that bin answer the first 

question correctly (even there is only one student here). Respectively, since the Tom falls the 

second bin and answers first question correctly while Bill also in the second bin but has incorrect 

first response, the prediction of the second bin is 0.5; Sue falls in the fifth bin, according to her 

response, the prediction of the fifth bin is 0; 

3.2.3. Results 
Our dataset was comprised of real-world student data from the 2009-2010 academic year taken 

from the ASSISTments tutoring system. Our method focuses entirely on predicting the first 

response of each student attempting a new skill. As our dataset was built in a real classroom 

environment, teachers were responsible for determining which skills to assign, as well as the order 

to do so. Many such factors could influence the accuracy of our results, so only those skills that fit 

strict criteria are considered. A skill is only considered if it has one or more existing prerequisite 

skills; if no data exists for a particular skill, it cannot be viewed as a prerequisite for any skill. 

Furthermore, only students that exist in all prerequisite skills as well as the subsequent skill are 

used for our trials. 
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Table 3. The overall percent of correctness on the first response of five bins.. 

Bin #students 
%correct on 

First Response 

1 806 61.79% 

2 1170 60.00% 

3 172 54.65% 

4 732 52.59% 

5 586 50.51% 

Table 4. Result of three approaches. 

 RMSE AUC 

Majority Class 0.467 0.673 

KT 0.467 0.687 

Prerequisite Binning 0.407 0.763 

Table 3 shows the distribution of knowledge within each bin across all skills in the observed dataset. 

The values show a distribution of higher knowledge students in the lower bins and lower knowledge 

students in the higher bins. This result supports the claim that our method is properly representing 

the intended level of knowledge. 

Comparison of Overall Performance 

The results of our method, entitled “Prerequisite Binning” in Table 4, was compared to knowledge 

tracing as well as a majority class prediction to act as a control in our experiment. The majority 

class is a prediction made for all students using the average correctness of the dataset. Knowledge 

tracing was run using Kevin Murphy’s Bayes Net Toolbox for MATLAB (Murphy) with initial 

parameters of 0.30, 0.14, 0.20, and 0.08 for prior, learn, guess, and slip respectively. For our 

experiment, we ran a five-fold cross validation on our dataset, using 80% of the data from each 

skill as a training set to predict the remaining 20%.  

Each of the three prediction methods are compared using RMSE and AUC two common 

measurements of error. The results in Table 3 represent the averages of all folds for each method. 

From this result, the prerequisite binning method outperforms the majority class in both metrics 

indicating that it is a successful prediction method. When compared to knowledge tracing, however, 

the results show nearly the same RMSE value, but a superior AUC value. While the binning method 

may not outperform knowledge tracing in all metrics, the predictive accuracy is comparable.  
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The purpose of this work is not to provide a method that outperforms KT, but rather to construct a 

modeling method that can provide teachers with more meaningful information regarding student 

knowledge. Unlike KT, where the learned parameters such as prior/initial knowledge are unusable 

metrics in describing true student knowledge due to the identifiability problem, our binning method 

provides an initial knowledge estimate based on previously observed performance; this initial 

knowledge estimate, represented as the probabilistic prediction calculated for each bin, is shown to 

be just as reliable as KT in predictive accuracy, while also providing a more definitive metric to 

describe a bin-wide initial knowledge that avoids problems of identifiability. 

Comparison over Individual Skill 

We also compare our method with KT on each individual skill. Figure 8 shows the difference of 

RMSE for these two models, that is: RMSE (KT) - RMSE (Bin); each positive difference value, 

therefore, indicates that our binning method outperforms KT in that skill, while negative difference 

values indicate KT outperforms binning in that particular skill. Each bar in the figure has an 

accompanying p-value above. This p-value is computed by applying a statistical T-test on the five-

fold cross validation results. From this figure, we observe that our method has remarkable 

improvement on 14 out of 28 total skills. Looking at the T-test results, our method outperforms KT 

at a statistically significant level (p-value < 0.05) on 3 skills. 

 

Figure 8. The difference of RMSE per skill when comparing prerequisite binning to standard 

knowledge tracing. The value above each bar indicates the p-value of the difference. 
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This result answers the second question in introduction, asking “are all prerequisite relationships 

reliable?” In accordance with our initial thoughts, the stronger the relationship between a 

prerequisite and subsequent skill, the better we can predict the performance of the subsequent skill 

from the knowledge of the prerequisite skill. Therefore, at least on skills 97 and 40, the skills with 

statistically significant better results, we have strong confidence that the prerequisite relationships 

are reliable. For those skills with significantly lower results, skills 54, 298, and 46, the causal 

relation of the prerequisite skills may not be strong as expected by domain experts. All other skills, 

however, do not illustrate results significant enough to make a claim.  

These particular inconclusive results may be explained by inspecting our dataset. Many students, 

as indicated by our dataset, attempt less than three problems, preventing mastery and also making 

it more difficult to properly estimate knowledge. There may be two reasons for this occurrence. 

First, the prerequisite skills may too hard for the students to master. This may result from the 

teacher’s decision not to assign particular prerequisite skills, or the skill relationship graph is 

incomplete. A second possibility may allude to a case where a teacher does not assign enough 

questions for students to master the prerequisite skills. As a teacher has control over the 

administering of skill problems, a number of such scenarios could lead to such results. In summary, 

these findings potentially indicate a need to further inspect the causal relationships defined by 

domain experts as they appear in the observed systems. 

3.3. Prerequisite Effect in Wheel Spinning Models 

3.3.1. Background 
Many Intelligence Tutoring Systems (ITS) make use of a mastery learning framework where 

students continue practicing a skill until they master it.  However, some students are unable to 

achieve mastery despite having numerous opportunities to practice the skill.  As a result, these 

students are stuck in the mastery learning cycle of the ITS and are given additional problems on a 

topic they are unable to master.  These students are referred as “wheel spinning” on the skill (Beck 

& Gong, 2013). As defined in (Beck & Gong, 2013), a student who takes 10 practice opportunities 

without mastering a skill is considered to be wheel spinning on this skill. 

Beck and Gong (Beck & Gong, 2013) developed a model, consisting of 8 features, to predict which 

students will wheel spin on a skill.  They found that there is a relationship between wheel spinning 

and gaming the system (Baker, Corbett, Roll, & Koedinger, 2008).  Beck and Rodrigo (Beck & 

Rodrigo, 2014) constructed a causal model (using non-Western students) that situated wheel 

spinning in the face of affective factors. They found that wheel spinning and gaming were strongly 
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related.  This work also presented a path model that found gaming was not causal of wheel spinning, 

but rather, wheel spinning was related to a lack of prior knowledge, which in turn led to gaming.  

A more concrete wheel spinning model is developed in (Gong & Beck, 2015), in which three 

aspects of features are considered: student in-tutor performance, the seriousness of the learner, and 

general factors. However, these models do not provide actionable results for how to make a student 

less likely to wheel spin on a skill, or how to get an already wheel spinning student unstuck.   

A natural question is why are some students able to learn a skill and achieve mastery, while other 

students fail to do so?  One plausible hypothesis of what makes wheel-spinning students different 

from their peers is a difference in ability to learn the skill.  Students certainly differ in cognitive 

abilities, but addressing such would be beyond the scope of most interventions ITS developers can 

develop.  Another plausible difference in ability to learn the skill is due to differences in student 

preparation.  For example, if students do not understand the concept of equivalent fractions, they 

will have great difficulty mastering the later skill of addition of fractions, which requires them to 

solve problems such as 1/3 + 1/4. 

We define a skill S’s prerequisite skills as those skills necessary to be mastered before studying 

skill S., in We incorporate the prerequisite structure into wheel spinning model, in order to check 

if prerequisite performance has impact in wheel spinning of post-skills. Although prior research 

has proposed automatic algorithms of adapting prerequisite structures (Brunskill, 2011; Philip Jr., 

Cen, Wu, & Koedinger, 2008; Vuong, Nixon, & Towle, 2011), we instead use a prerequisite 

structure developed by a domain expert.   

As an overview, we abstract students’ prerequisite performance as a feature, and then add this 

feature into the wheel-spinning model (Beck & Gong, 2013). Our main points include: 1) determine 

if there is connection between the prerequisite performance and the wheel spinning of post-skill; 

2) explore how prerequisite factor would affect wheel spinning model; 3) compare the prerequisite 

factor with another possible effect that could cause wheel spinning – students’ general learning 

ability. 

3.3.2. Method 
The model in our experiments is different from the Beck and Gong’s model (Beck & Gong, 2013) 

in two places: one is that we use one more feature in the model, the prerequisite feature, I will 

introduce how to compute it in the next few parts; the other is that in some experiments, we treat 

the feature – prior response count – as a covariate, not a factor like in their model. We found this 

parameter’s affect was approximately linear, and thus treating it as a covariate made more sense.  
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We call the model based on these 9 features the baseline model, and compare it with a model that 

includes the prerequisite performance. 

Compute Students’ Performance on Skills 

In this work, our goal is to find the influence of students’ prerequisite performance on wheel 

spinning. So the first step is to choose which measure to represent students’ performance on each 

skill. In this work, we regard a student’s percentage of correct responses to questions involving a 

skill to be his performance on that skill.  

However, a student could answer correctly, by chance, even though this student does not understand 

the skill at all.  Similarly, a student could give the wrong answer through a careless mistake, as in 

the guess and slip parameters in the Knowledge Tracing model (Corbett & Anderson, 1994). These 

two cases will deviate the student’s performance from his/her “true understanding” on the skill, 

especially if the student has very few practices. To deal with these cases, we balance the “accidental 

performance” with student’s overall performance on all skill. The formula for calculating a 

student’s performance on a skill 𝑖 is: 

Pi =
1

2x
∗ R̅ ∗ Si + (1 −

1

2x
) ∗ Ci 

 x: The number of practices on this skill; 

 Si : The percent correctness of skill i , Si =
#correct practices

#overall practices
 (over all students). This also 

reflects the hardness of skill Si. 

 Ci: The student’s percent correctness on skill i, Ci =
#correct practices

#overall practices
 (over the student st1). 

 Ri =
Ci

Si
: This represents how well the student st1 does on skill i comparing with the other 

students. 

 R̅ =
∑ Ri

m
i=1

m
: m is the number of the student’s started skills. 

Notice in the formula, the more practices on a skill, the more weight is assigned to the performance 

on this skill. Take the data in Table 5 as an example. There are in total 4 trials for skill s1, of which 

3 are answered correctly, so its correctness is 0.75.  The correctness of the other two skills is: s2, 

1.0; s3, 0.5. The student, st1, answered two problems of s1, getting one correct and the other 

incorrect. So this student’s correctness of s1 is 0.5, and R1(st1) =
0.5

0.75
= 0.67. We can also get 

that R2(st1) = 1.0, R3(st1) = 0 , then R̅(st1) = 0.56 . Hence, the student st1’s estimated 
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understanding on the skill s1 is: 
1

22 ∗ 0.56 ∗ 0.75 + (1 −
1

22) ∗ 0.5 = 0.48. All the performance 

results are shown in Table 6.  Sometimes, a student’s adjusted performance is larger than 1, as the 

student st2’s performances on skill s1 and s2. This effect can occur by a student doing very well on 

a very difficult skill.  In this paper, we normalize the values to bring them in the range from 0 to 1. 

Table 5. A small sample of students’ practices. 

Student Skill Problem Correct? 

st1 s1 p1 1 

st1 s1 p2 0 

st1 s2 p3 1 

st1 s3 p4 0 

st2 s1 p1 1 

st2 s1 p2 1 

st2 s3 p5 1 

Table 6. Calculated skills’ hardness and students’ performance according to the data in Table 5. 

Skill Correctness 

Student 

performance 

Normalized 

performance 

st1 st2 st1 st2 

s1 0.75 0.48 1.06 0.45 1 

s2 1.0 0.78 1.67 0.47 1 

s3 0.5 0.28 0.92 0.3 1 

Compute Prerequisite Performance 

Once the normalized students’ performances have been computed, the next step is to think about 

how to represent prerequisite performances, and then incorporate it into the wheel-spinning model.  

If a skill has only one pre-required skill, such a representation is straightforward:  the student’s 

adjusted performance on that pre-required skill. But what if a skill has multiple prerequisites? In 

our data set, 39 out of 128 skills have multiple prerequisites. There are a variety of approaches for 

handling multiple prerequisites.  We chose two different methods to compute the prerequisite 

performance: weakest link and weighted by hardness. 

1) Weakest link 

This method regards the prerequisite skill with the worst performance, called weakest link, to have 

strongest connection with post-skill’s wheel spinning. Thus, it uses the lowest performance value 

in all prerequisite skills as the wheel-spinning model’s input for prerequisite performance. For 

example, in Table 5, if skill s1’s prerequisite skills are s2 and s3, then the prerequisite performance 

for student st1 on skill s1 is estimated as 0.3 (normalized).  
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2) Weighted by hardness 

In this method, we sum up a student’s prerequisite performances by assigning a corresponding 

weight to each prerequisite skill, according to the skill hardness. We assume that the harder a 

prerequisite skill is, the more importance it has. Here we define a skill’s hardness to be 

1/𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠. Thus, for a skill, the representation for its prerequisites is calculated as: 

Pri =
∑ wjPj

n
j=1

∑ wj
n
j=1

 

 n: Number of prerequisites. 

 Pj: A student’s performance on the jth prerequisite. 

 wj =
1

Sj
: The weight assigned into the j th prerequisite. Sj  is the correctness of this 

prerequisite. 

We also suppose that the skill s1’s prerequisites are s2 and s3, then using the data from Table 6, 

the student st1’s prerequisite performance on skill s1 is 0.36; respectively, the student st2’s 

prerequisite representation value for s1 is 1.  

Define General Learning Ability 

Our approach is to construct a variable, which we refer to as General Learning Ability (GLA) that 

encapsulates some of the constructs like diligence, home support, raw ability, and so on.  GLA 

refers to a student’s latent ability that affects his ability to learn new skill, similar in spirit to the 

one dimensional trait in Item Response Theory (IRT) (Embretson & Reise, 2013). In IRT, a 

student’s trait is assumed measurable; it is measured through a series of adaptive questions given 

by a tutoring system. 

To simplify our work, we measure student’s general learning ability as following steps: 

a) For each student-skill pair, randomly select the other two started skills. Here a started skill 

means the student has practiced at least one problem on it; 

b) Compute the performance values for the two skills, as described in the Method part; 

c) Take the average of those two performance values as the general learning ability for this 

student-skill pair. 

Our intuition in defining GLA in this manner is that if the reason for WH’s strong gradient with 

wheel spinning is due to the knowledge of the prerequisite being important, we would expect GLA 
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to perform poorly.  However, if the power of WH comes not from estimating a particular aspect of 

student knowledge, but rather than providing a proxy measurement for a student’s general ability 

and willingness to learn, we would expect estimating the student’s knowledge of two random skills 

would work as well.  We chose to use two random skills since that was the average number of 

prerequisites, and we wanted to avoid issues with one measure having lower variability (and hence 

higher reliability) simply by being an aggregate of more skills. One potential drawback of our 

approach is that two skills is a small number, and in some cases will certainly provide an over- or 

under-estimate of knowledge for a particular student.  However, since our sample size is large 

enough, 48256 student-skill pairs in total, this approach is unlikely to produce skewed results.   

3.3.3. Results 

Data Set 

The data in this work is from ASSISTments. We tracked all ASSISTments students when they used 

the system to practice Math problems for almost a full year from September 2010 to July 2011. 

This data set contains 7591 different students, and we randomly select 4976 of the students (about 

2/3 of students) to form our training data set, while the other students comprise the testing data. 

There are 31301 student-skill pairs in the training set and 16955 in the testing set. In this work, we 

consider students who fail to achieve mastery within 10 practice opportunities for a skill (including 

indeterminate cases (Beck & Gong, 2013) as wheel spinning, which results in 20.6% instances in 

the training set as wheel spinning and 19.2% in the testing set. 

In the training data, there are 177713 problems solved by the students, while 97768 problems in 

testing data. These problems cover 128 different skills. In the training and testing set, students learn 

different skills. The maximum number of learned skills by a student is 61, and the average is 6.4. 

As aforementioned, the prerequisite-to-post skill structure is defined by domain expert as a 

recommended sequence of topics for instructors. Among the skills in our data set, 66 skills have at 

least one prerequisite. Some skills have multiple prerequisites, the max number of prerequisites is 

8, and the average is 2.4. 

However, it is the teacher’s choice which skills and in which order to assign to students. 

Consequently, the majority of student-skill pairs do not have any started prerequisite skills in our 

data set, as shown in Figure 9. Apparently (and understandably), teachers are less likely to assign 

review material than to focus on new topics. The maximum number of started prerequisites is 4, 

and the average is only 0.37. Thus, our experiments will run over three different data sets: 



38 

 

 

Figure 9. Distribution of number of started prerequisite skills in training set and testing set. 

a) D1: the whole data set, as depicted in Figure 9, which is split into training and testing set. 

b) D2: the prerequisite data set. This data set excludes the skills that have no prerequisite skills, 

as identified by the domain expert, from D1. Thus, it is comprised of the points on the x-axis 

in  Figure 9 corresponding to 0, 1, 2, 3 and 4. It is also split into training and testing set, and 

its training set is constructed from the training set in D1 by removing the non-prerequisite 

skills, while its testing set from testing set in D1 respectively. 

c) D3: the started prerequisite data set, and includes only student-skill pairs where the student 

has at least begun one of the prerequisites.  This data set excludes the skills that have no started 

prerequisite skills from D2.  Thus, it is comprised of the points on the x-axis in  Figure 9 

corresponding to 1, 2, 3 and 4.  Similarly, its training (testing) set is generated from training 

(testing) set in D2 by removing non-started-prerequisite skills. 

The reason for these three datasets is that they answer different research questions.  D1 enables us 

to investigate the impact of prerequisite performance on wheel spinning in an already-existing 

system in a real-world deployment.  That is, how much benefit would we see in the current usage 

context of the tutor. Unfortunately, that real-world deployment involves teachers assigning no work 

on most prerequisites, and thus no information about student prerequisite knowledge is available 

to the model.  D2 enables us to examine where there is at least potential benefit.  D3 enables us to 

answer questions about whether a system that had fuller information about prerequisite would 

perform better at detecting wheel spinning.  D3 lets us consider possible changes to policy where 

teachers are more willing to assign review work, or a system is better able to access past student 

performance to assess prior knowledge.   
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Figure 10. Wheel spinning ratio with respect to prerequisite knowledge and general 

learning ability on the data set D3. 

The Gradient of Wheel Spinning Ratio 

In order to determine how likely a student will be to wheel spin on a skill based on his 

corresponding prerequisite performance value, we focus on the training set of D3.  We separate D3 

into 5 bins according to the prerequisite performance value, calculated by the method weighted by 

hardness. The wheel spinning ratio in each bin is shown in Figure 10, named WS Ratio - WH.  

As observed in the figure, there is a strong gradient with respect to the prerequisite performance: 

students in the bottom 20% of pre-required knowledge exhibited wheel spinning behavior 50% of 

the time, while those in the top 20% of pre-required knowledge exhibited wheel spinning behavior 

only 10% of the time. This expresses strong evidence supporting our hypothesis that student’s 

wheel spinning on post-skill results from poor preparation for future learning in terms of 

prerequisite knowledge. 

Changes in Models 

To test the impact of prerequisite features, we integrated them into the wheel-spinning model 

described previously.  We compare the effects of different factors in the wheel spinning model, 

Weakest Link (WL), Weighted by Hardness (WH), and General Learning Ability (GLA).  Table 7 

shows the results of training each model on the training test, and evaluating it on the test set.  

In this experiment, we use the Cox and Snell R square (Hosmer Jr & Lemeshow, 2004) and AUC 

(area under curve) to measure model fit. As we can see, the model does not appreciably change in 

the data set D1, because the part of the data containing started prerequisite skills is such a small 

component of the data.  In D2 and D3, the model is improved slightly by integrating the prerequisite 

feature, WH or WL. This result supports that prerequisite performance is useful in determining 

students’ wheel spinning status in post-skills. We can also notice that the model with GLA has the 

similar results with the ones with WH and WL. 
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Table 7. Measurements of different models. 

Model 
R Square AUC 

D1 D2 D3 D1 D2 D3 

Baseline 0.285 0.301 0.264 0.879 0.888 0.884 

Baseline 

+WL 
0.285 0.302 0.268 0.879 0.889 0.887 

Baseline 

+WH 
0.285 0.302 0.268 0.879 0.889 0.888 

Baseline 

+GLA 
0.291 0.306 0.268 0.883 0.891 0.887 

Table 8. P-values of paired t-test. For each pair of models, the t-test is applied on the test 

results of each data set (D1, D2, D3). 

 Baseline Baseline + WL Baseline + WH 

Baseline + WL <0.01,<0.01, <0.01   

Baseline + WH <0.01,<0.01, <0.01 0.42, 0.40, 0.74  

Baseline + GLA <0.01,<0.01, <0.01 <0.01,<0.01, 0.52 <0.01,<0.01, 0.49 

Furthermore, to compare the difference between models, a paired t-test is applied on the results of 

each pair of models, as shown in Table 8. The result shows that adding a factor - WH, WL, or GLA 

– into the baseline model makes it performing significantly differently in all data sets, D1, D2, and 

D3. On the other hand, the model “Baseline+WH” and “Baseline+WL” have the similar results in 

those three data sets, which also implies these two prerequisite features have similar effect in the 

wheel spinning model. More interesting, the p-values indicate that the model with GLA and the 

model with WH (or WL respectively) are significantly different in D1 and D2, but not in D3. Since 

the GLA factor is defined as the average performance of two randomly selected skills. In the data 

set D3, every student-skill pair is linked with at least one prerequisite skill. Thus, it is very likely 

some GLA values are constructed from prerequisite skills, which makes the two models similar in 

D3. 

Impact of Prerequisite Effect on Predictive Models 

We now move to determining the impact of the prerequisite feature on the predictive model. In our 

intuition, the prerequisite factor might have strong effect in predicting wheel spinning when a 

student just starts learning a post-skill, and the effect weakens with time as the student solves 

problems on the post skill. 
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In the logistic regression algorithm, researchers typically use the odds ratio, exponential the 

coefficient, to represent effect of the corresponding feature (Hosmer Jr & Lemeshow, 2004). Then 

the coefficient could be also used to represent the effect on the model. Therefore, in this work, we 

use the coefficient of prerequisite feature to reflect its effect in predicting students’ wheel spinning 

on post-skill. 

In this experiment, we group the D3 of training set by amount of practice on the skill, and construct 

a wheel spinning model for each group. The coefficients of prerequisite feature (for the WH model) 

in the corresponding models are shown in Figure 11. As we can see, the coefficient representing 

the impact of prerequisite knowledge has the highest value at the beginning, and it decreases in 

influence as students obtain more practice on the skill.  This result support our intuition that the 

prerequisite factor is a good predictor for wheel spinning only at the beginning stage of learning 

post-skill.  Thus, prerequisite knowledge is useful for overcoming the cold start problem in student 

modeling.  When a student first starts working on a skill, his performance on that skill provides 

little basis with whether to classify him as likely to wheel spin or not.  In this situation, knowing 

how he performed on the prerequisite skills provides some information in his ability to master the 

current material.  As the system observes more and more performances on the skill, those 

performance provide a much more pertinent source of information about the student’s likely 

trajectory, and the relative importance of prerequisite skills diminishes.   

The decrease in in predictive performance for the WH coefficient is monotonic and roughly linear. 

From a standpoint of statistical significance, the WH coefficient is reliably different than 0 for 

practice opportunities 1 through 7 (p=0.026 at the 7th opportunity).  At the 8th opportunity, the 

impact of the WH coefficient has p=0.51. 

 

Figure 11. The changes of coefficient with respect to number of practice opportunities on 

the data set D3. 
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Understanding What Prerequisite Performance Really Represents 

The performance of the WH feature raises an interesting question:  to what does it owe its predictive 

power.  Although we refer to this feature as representing student’s prerequisite knowledge, it 

captures much more than just knowledge.  For example, if one student demonstrates strong 

performance on prerequisite skills and the other does not, those students probably differ in many 

dimensions beyond knowledge of the skill:  diligence in doing math homework, support at home, 

raw ability at learning new concepts, and perseverance when stuck.  Wrapping this bundle of 

constructs together and calling it “prerequisite knowledge” certainly simplifies discussion, but does 

a disservice to accuracy. Therefore, we perform a baseline experiment to investigate what 

prerequisite knowledge represents.   

Since the effects of two prerequisite features, WL and WH, are pretty much the same in the wheel 

spinning model. Therefore, we will compare only the WH with the GLA. These two features are 

compared though three different experiments. 

The first experiment is to construct wheel spinning ratio gradient for GLA. As we can see in Figure 

10, there is the same broad trend for both GLA and WH.  For both measures, students with lower 

general learning ability are more likely to be wheel spinning, which is in accord with our common 

sense. By comparing the two wheel spinning ratio gradients, we notice that the ratio is the same 

when the WH and GLA values are high; that is, if a student’s performance is relative high (> 0.6) 

for WH and GLA, then there is a similar chance the student will wheel spin.  However, in the lower 

range of 0 to 0.6, students are more likely to be wheel spinning according to WH value than the 

students having the same GLA value. This result suggests that prerequisite factor has stronger 

correlation with wheel spinning than general learning ability, although general learning ability has 

strong overlap. 

The second experiment is to add the GLA into wheel spinning model and compare the model 

measurements. According to the results in Table 7, adding the GLA into the baseline model makes 

more improvement than adding the WH on the data set D1 and D2. This is because the student-

skill pairs with pre-required knowledge are very rare in those data sets, while every student-skill 

pair is assigned with a computed GLA value based on that student’s performance on a pair of 

random skills. The model with GLA and the model with WH on the data set D3 have nearly 

identical performance. 

The third experiment is to compare the effect in the learning procedure. As seen in , the GLA 

coefficient also decreases with respect to the number of practice. But in the first 5 practices, the 
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slope of GLA coefficient is more moderate than the slope of WH coefficient, which defends the 

statement that the prerequisite factor is useful in predicting wheel spinning at early learning stage. 

By examine the GLA coefficient Wald statistic p-value, it is also statistically reliable (p<0.05) 

before the 7th practice. 

3.3.4. Discussion 

Prerequisite Structure 

As aforementioned, the prerequisite structure used in this work is defined by domain experts. 

Through this structure, the experts suggest a general curriculum over all grades, not specified in a 

single year or a single class.  It is certainly possible that our structure is in error either by missing 

some links and incorrectly creating others.  Such errors would impact the results.   

Moreover, in the method of computing prerequisite performance for a post-skill, we assume that 

the prerequisite skill with the worst performance (or the hardest prerequisite skill) has the strongest 

influence in learning post-skill. However, this assumption might be inappropriate here. Botelho et 

al. also illustrate in their experiments that the prerequisite relation in some post-skills are not as 

stable as expected by domain experts (Botelho, Wan, & Heffernan, 2015). 

Therefore, there are two possible ways of improving our experiments. The first one is to construct 

a prerequisite structure specifically for the data. Previous works have been focused on this area. 

For example, Vuong et al. introduce a method for finding prerequisite structure within a curriculum 

(Vuong, Nixon, & Towle, 2011). Their method calculates the overall graduation rate for each unit, 

and regards Unit A as prerequisite knowledge for Unit B if the experience in Unit A promotes 

graduation rate in Unit B. 

The other possible way is to measure the correlation between each prerequisite skill and a post-

skill, and then we can obtain which prerequisite skill is most effective in affecting learning post-

skill. Vuong et al. also distinguish the prerequisite relationship between significant and non-

significant in their work (Vuong, Nixon, & Towle, 2011). 

Prerequisite-post Relation 

Obviously, students’ general learning ability influences their performance in both prerequisites and 

post-skills. Therefore, one might argue that there is no direct causal prerequisite-post relationship. 

The student who is wheel spun on learning post-skill as well as lack of pre-required knowledge is 

mainly because he/she has weak learning ability, as shown in Figure 12.  In this view, GLA is the 

primary driver of both prerequisite and post-performance. 
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According to this argument, a consequent case would be: a student who is wheel spun on a skill, 

he/she will be wheel spun on every skill, due to the weak learning ability. However, in our data set, 

the wheel spinning ratio of the students who have at least one wheel spinning case is about 23%. 

Thus, the GLA is an effective factor in wheel spinning, but not a unique or crucial one.  Another 

drawback of this model is that, for low levels of performance, prerequisite knowledge is more 

strongly related to wheel spinning than GLA.  Therefore, even if GLA is the primary driver, there 

is apparently some impact of prerequisite knowledge on post-performance, represented by the 

dotted line in Figure 12. 

In order to validate the structure in Figure 12, a subtler model should be constructed, in which 

students’ GLA is finely measured. A proper way is to utilize the IRT model to estimate a student’s 

trait; this trait is regarded as the GLA value. And then it is used in predicting if the student will be 

wheel spinning or not. Meanwhile this trait is updated for each item practiced or for each skill 

learned. The similar work is in (Huang, González-Brenes, & Brusilovsky, 2014), the authors 

integrate temporal IRT into Knowledge Tracing model, in order to track students’ knowledge stage 

and predict next problem correctness. 

 

Figure 12. A structure to explain indirect prerequisite-post relationship. 
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CHAPTER 4 

K-armed Bandits 

4.1. Introduction 

In the k-armed bandit problem (Robbins, 1985), an agent has to select an action from n possible 

options, at each time step. After performing the selected action, the agent receives a reward derived 

from an unknown and action-specific distribution. Its objective is to maximize the sum of (possibly 

discounted) rewards over time. Since the reward distributions are initially unknown, the agent 

should explore different actions to learn each action’s distribution.  However, an agent cannot 

explore and gather information indefinitely, as it is also trying to maximize its total performance 

as indicated by the reward function.  This tradeoff of exploration vs. exploitation is well known in 

machine learning (Audibert, Munos, & Szepesvári, 2009). 

As aforementioned, this dissertation work is aiming at using k-armed bandit strategies to provide 

students with optimal tutoring interventions in ASSISTments. In more details, the problem is 

defined as: each student is assigned, one by one, with an appropriate intervention, based on previous 

students’ choices and corresponding received rewards. The objective is to maximized the total 

rewards over all students. But why do we need k-armed bandits in ASSISTments? 

Table 9. Example of students’ performances in different conditions. 

Condition Mean (correct) 

1 0.70 

2 0.75 

Take a real experiment in ASSISTments as an example. In this randomized controlled experiment, 

students are randomly assigned into two different conditional problem sets to learn mathematic 

skills, one in which the problem presentation and hints suggest a spatial approach and one in which 

the problem with an analytic approach. After learning in the problem sets, students face the same 

posttest. Students’ performances in the posttest are shown in Table 9. As we can see in this table, 

with random assignments, the average correctness in the posttest over all students is about 

(0.70+0.75)/2 = 0.725. However, if we use k-armed bandits in this experiment, since students in 

the analytic problem set perform better than in the spatial problem set, students are more likely to 

be assigned into the analytic problem set. Then the average percent of correctness is approaching 

0.75, because we have to explore to collect performance in spatial condition. Therefore, applying 

the k-armed bandits in the ASSISTments could bring better students performances.  
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In this chapter, I will talk several related works and their weakness, and then discuss whether it is 

worthwhile to apply fancy or complicate algorithms in the system, by comparing them with a single 

selection strategy based on statistical t-test. Finally, I will analyze the results of data sets from two 

ASSISTments experiments. 

4.2. Related Works 

K-armed bandit algorithms have been widely applied in various areas, such as web search (Feng, 

Heffernan, & Koedinger, 2009; Radlinski, Kleinberg, & Joachims, 2008), internet advertising 

(Babaioff, Sharma, & Slivkins, 2009; Li, Chu, Langford, & Schapire, 2010), queuing and 

scheduling (Liu & Zhao, 2010), and education  (Clement, Oudeyer, Roy, & Lopes, 2014; Clement, 

Roy, Oudeyer, & Lopes, 2015; Liu, Mandel, Brunskill, & Popovic, 2014; Silva, Direne et al., 2015).  

A crucial issue in the applications is to demonstrate usefulness of algorithms. A common approach 

is to compare the k-armed bandit algorithms with a random selection strategy or predefined 

sequences of actions (Silva, Direne et al., 2015; Wang, Wang, Hsu, & Wang, 2014). Typically, the 

bandits give stronger performance than the baseline algorithms, which is expected as the bandit 

algorithms are using more information.  The baseline approaches are just designed to show how 

much better the bandit is doing than a simple approach. Other works use some simple k-armed 

bandit algorithms as a baseline, such as ε-greedy (Pavlidis, Tasoulis, & Hand, 2008; Vermorel & 

Mohri, 2005; Wang, Wang, Hsu, & Wang, 2014). 

In this work, we propose another selection strategy that is based on statistical t-test called Strawman 

and we deploy it in educational experiments. As our work involves deciding which experimental 

condition to assign a student, when a particular experimental condition is less effective, we chose 

t-tests as our mechanism for excluding actions.  We named this technique “Strawman” as t-tests 

were developed in 1908, and are hardly cutting-edge methodology.  Our intention was to create a 

plausible lower-bound on performance.  The Strawman strategy randomly chooses one of the 

possible actions at each time step.  After it observes a reward, it then compares each action against 

all of the other actions; any action that is statistically reliably worse (p < 0.05) than any other action 

is dropped from future consideration.  Once a single action remains, it considers that action as the 

unique option. Therefore, there are two phases in this strategy. In the first phase, it employs random 

selection and in the second phase it uses a greedy selection. Langford and Zhang propose a similar 

method, epoch-greedy, in which a random selection step is followed by absolute exploitation steps 

in each epoch (Langford & Zhang, 2008). The difference is that the Strawman would never do 
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exploration again once it detects the reliably “best” action, but the epoch-greedy method would 

select an action randomly in other epochs.  

Another issue in evaluation of the k-armed bandit algorithms is about cost. Since deploying the 

evaluations in real environments is time consuming and sometimes money consuming. To resolve 

this issue, Li et al. deploy the evaluation on the collected offline records (Li, Chu, Langford, & 

Schapire, 2010), in other works, like in (Clement, Oudeyer, Roy, & Lopes, 2014; Pavlidis, Tasoulis, 

& Hand, 2008), the algorithms are evaluated on the simulated instances. In this work, we will 

evaluate the Strawman algorithm and other k-armed bandit algorithms on the data sets that contain 

students’ responses in two ASSISTments experiments, through simulating applying them in real 

environment based on random sampling with replacement. 

4.3. K-armed Bandit Algorithms 

We will compare three k-armed bandit algorithms  𝜀 -greedy, simulated annealing, and UCB1, 

against Strawman, based on statistical t-tests. the probability of selection each action at each step 

based on an action-value function, called Q function; while UCB1 selects an action with the largest 

estimated upper confidence bound. 

Given the action set: 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛}, the Q function, 𝑄(𝑎), which denotes the expected reward 

by choosing the action 𝑎 at current step. A commonly used method to compute the Q function is 

exponential average. At the beginning, the value 𝑄0(𝑎) is set as a default value. After each time 

choosing an action 𝑎 and receiving a corresponding reward 𝑟𝑎,𝑡, the value is updated as: 

𝑄𝑡(𝑎) = 𝑄𝑡−1(𝑎) + 𝛼(𝑟𝑎,𝑡 − 𝑄𝑡−1(𝑎)) 

The constant 𝛼  is called the stepsize parameter, and represents how quickly the Q-values are 

updated.  This parameter is bounded 0 < 𝛼 < 1, where values close to 1 indicate rapid updating, 

but possible instability and non-convergence.  Values near 0 converge slowly, but are much more 

predictable in their behavior.  A value of 𝛼 = 0.1 is reasonably common.  

1. The 𝜀 -greedy algorithm selects a random action from the action set 𝐴  with a fixed 

probability,0 ≤ 𝜀 ≤ 1, and selects the best action, according to the Q function, with the 

probability 1 − 𝜀. 

𝜋 = {
𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑐𝑡𝑖𝑜𝑛;        𝑖𝑓 𝜉 < 𝜀

𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴 𝑄𝑡(𝑎);     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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2. In the simulated annealing algorithm, also called decreasing softmax (Cesa-Bianchi & 

Fischer, 1998), the probability of selecting an action is ranked and weighted according to 

the estimated value with Gibbs distribution: 

𝜋(𝑎) =  
𝑒

𝑄𝑡(𝑎)
𝜏𝑡

∑ 𝑒
𝑄𝑡(𝑏)

𝜏𝑡𝑏∈𝐴

;        𝜏𝑡 =
1

𝑡
 

Where 𝜏𝑡  is a positive parameter, called temperature, and decreases step by step. This 

algorithm tends to choose explorative actions at early stage, and since the temperature is 

decreasing, it becomes more and more exploitative as keep playing actions. 

3. UCB1, as a member of UCB family proposed by Auer et. al (Auer, Cesa-Bianchi, & Fischer, 

2002), plays each action once initially. Afterward, at time 𝑡, it selects an action with the 

largest value as follows: 

arg max
𝑖=1…𝑛

(𝑟𝑖̅ + √
2 ln 𝑡

𝑠𝑖
)  

Where 𝑟𝑖̅ is average of past rewards by playing action 𝑎𝑖, and 𝑠𝑖 is number of times playing 

𝑎𝑖. 

4.4. Methodology 

4.4.1. Strawman 
In this work, we construct a simple selection algorithm based on the statistical t-test, called 

Strawman. This algorithm can be considered as a baseline for other k-armed bandit algorithms. We 

also compare it with the three aforementioned k-armed bandit algorithms by simulating them on 

two ASSISTments experiments. The Strawman algorithm works as followings: 

1. Initially, the action set 𝐴 contains all possible actions.  

2. At the time 𝑡 , all remaining actions in the action set have the same chance, and the 

Strawman just randomly selects one from them. 

3. When obtaining a reward by playing an action 𝑎, record the reward in the 𝑎’s reward 

history, e.g. (𝑟𝑎,1, 𝑟𝑎,2, … , 𝑟𝑎,𝑘𝑎
). 

4. Compare the action 𝑎 with every other remaining action in the set by conducting a t-test 

on their past rewards, e.g. on (𝑟𝑎,1, 𝑟𝑎,2, … , 𝑟𝑎,𝑘𝑎
) and (𝑟𝑏,1, 𝑟𝑏,2, … , 𝑟𝑏,𝑘𝑏

) (for every 𝑏 ∈

𝐴 𝑎𝑛𝑑 𝑏 ≠ 𝑎). 
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5. If there is an action 𝑑 is significantly worse than any other action according to the t-test – 

that is, p-value from the t-test is less than a threshold, then remove 𝑑 from A. Loop to step 

2. In this work, the significant level is set to be 𝑝 < 0.05. 

For example, in the data set as shown in Table 9, the initial action set is {Condition 1, Condition 

2}, if we detect that the action “Condition 1” is significantly worse than “Condition 2” at time 𝑡𝑖, 

then we drop the former action, and the remaining set is {Condition 2}, and students will be always 

assigned into Condition 2 afterwards. 

4.4.2. Simulation 
Evaluating k-armed bandit or other action selection algorithms in real time is costly, it might take 

a few days, or weeks, or even months to obtain the results. In the meantime, students are being 

assigned to experimental conditions inefficiently. Consequently, student learning is lower than it 

could be if a more efficient experimental strategy were used. This issue of inefficient allocation of 

students raises ethical issues, and we should strive for more benign ways to evaluate competing 

approaches. An alternative approach is to run the algorithms on a faked data set in which the 

received rewards are generated from certain distributions, such as normal distributions (Vermorel 

& Mohri, 2005). However, through this evaluation approach, which algorithm does better depends 

on specific distributions of the various bandit levers. Besides, this approach does not reveal how 

selection algorithms perform in the real environment. 

Instead of conducting the evaluation on simulated reward distributions, Li et al. (Li, Chu, Langford, 

& Schapire, 2010) construct a policy evaluator that utilizes the available offline data that was 

collected at a previous time. But in evaluation process, the historical records with action different 

from the one selected by a policy are abandoned, which makes the approach improper when the 

offline data is not large. 

In this work, we also evaluate the action selection algorithms on the collected offline data based on 

random sampling method. Our goal is to measure the performance of a selection strategy, 𝜋, at each 

step of choosing action based on previous activities. The reward corresponds to the selected action 

at each step is simulated by randomly picking a record from the whole data set that has the same 

action. The evaluation process is described in Figure 13. Essentially, this simulation process uses 

bootstrapping (sampling with replacement).  Whenever an action is tried, the approach randomly 

selects a prior student who was given that action, and that student’s performance is used as an 

estimate. 
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Simulation of a strategy π on a set of students D 
 do 
  randomly pick a student s1 from D 
  obtain the action 𝑎 according to π: π(s1)->c 
  randomly pick another student s2 from D with the same action 𝑎 
  treat s2's reward, r2, as s1's 
  update π with r2 
 until meet end condition  

Figure 13. Process of simulating selection strategy on an offline data set. 

4.4.3. Metrics 
The first metric used in measuring the performance of selection algorithms in this work is the 

average reward. This metric is commonly used in the k-armed bandit problems, and it represents 

how a selection algorithm perform at each time. At the time 𝑡, the average reward is calculated as: 

1

𝑡
∑ 𝑟𝑖

𝑡
𝑖=1 , where 𝑟𝑖 is the reward received in the time 𝑖. 

The second metric indicates whether or not a selection policy is making an explorative choice at 

each step in the simulation process.  To be consistent in the three algorithms in this work, 𝜀-greedy, 

simulated annealing, and UCB1, we define a policy is making an explorative choice if it selects an 

action that does not have the best Q value at current step. While the Strawman algorithm is 

exploring when there are more than one possible actions at each step, since it just randomly selects 

one from all the remaining actions. 

4.5. Experiments 

4.5.1. Data 
ASSISTments supports researchers to design randomized controlled experiments to validate the 

effect of one or more factors in tutoring students. The first data set in this work is collected from 

the experiment in which students are randomly assigned into one of two skill builders to learn a 

skill. These two skill builders are different in the condition of problem description, marked as 

condition 1 and condition 2. With completing the skill builder, students are faced with the same 

posttest. 

In the second data set, the experiments conditions are not Skill Builders but instead students are 

given a set number of items to answer. What distinguishes the three conditions is the type of 

feedback provided when the student makes an error.  In the first condition called “Correctness 

Only” the students would see a hint button labeled with “Show Answer” that if clicked would tell 

the student the answer with no explanation at all. The two other conditions were implemented with 

what ASSISTments called “scaffolding questions.”  Scaffolding questions are invoked as soon as 

the student makes a wrong attempt or if they click on the help button (instead of being labeled as 
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“Show Answer” as in the first condition, is labeled “Break this problem into Steps”) that indicates 

to the student that if they ask for help they will be given a series of (at least one) questions to help 

them through the problems. The two conditions labeled “with image” and “no image” both present 

the student with the scaffolding question that is meant to help them complete the problem. The two 

conditions differ from each other only by the fact that one condition has an image that was designed 

to help the student understand. These two conditions differed from the “Correctness Only” in that 

the correctness only was “help on demand” as opposed to “help given on first error.”  The details 

of this study are not actually relevant to this paper, and this paper’s method can be applied to any 

experiment, but if you want you can see details this study was published in (McGuire, Logue et al., 

2016).  

Table 10. Students’ posttest scores in each conditional problem set in the first data set. 

Students with the bolded condition have higher mean posttest. 
 #Students Mean Std. 

Condition 1 232 0.695 0.332 

Condition 2 237 0.746 0.320 

Table 11. Students’ posttest scores in each conditional problem set in the second data set. 

Students with the bolded condition have the highest mean posttest 
 #Students Mean Std. 

Correctness only 74 0.518 0.214 

With image 63 0.544 0.229 

No image 69 0.542 0.201 

When applying action selection strategies over the data sets, conditions connect to the problem sets 

can be considered as actions. Therefore, action set is {Condition 1, Condition 2} in the first data 

set, and {Correctness only, No image, With image} in the second data set. In this work, we regard 

students’ posttest score as the rewards. According to the students’ posttest scores shown in Table 

10, the better condition in the first data set is “Condition 2”, from Table 11, the best condition is 

“With image” in the second data set. The purpose in our experiments is to determine how many 

simulated students each bandit algorithm would have to see to draw those conclusions.  In this way, 

we can experiment and see how differentiable the conditions are after (for example) 500 students’ 

performances have been observed. 

4.5.2. Comparison of Mean Rewards 
A perfect selection strategy chooses the best action at each time step, so the upper bound of reward 

is the reward corresponding to the best actions. For example, the upper bound of average reward is 

0.746 (Condition 2) in the first data set, and 0.544 (condition “No image”) in the second data set. 
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Respectively, the lower bound is the reward with choosing the worst action. However, if a selection 

strategy is effective, it should perform better than, at least as well as, the random selection strategy. 

Therefore, in this work, we consider the reward output from random selection strategy as the lower 

bound. Regardless of number of students in each conditional problem set, the lower bound of 

reward in the first data set is: (0.746 + 0.695)/2 = 0.721, and 0.535 in the second data set. 

In this work, the parameters set for the algorithms are: 𝜀 = 0.1 for 𝜀-greedy; the significant level 

is set to be 0.05 in Strawman; the initial estimation: 𝑄0(𝑎) = 1, and 𝛼 = 0.1 for each condition. 

As we can observe from the figures, the rewards of those algorithms are close to each other after 

200 students, and the UCB1 algorithm performs a little bit worse than others. These results are all 

better than the lower bound, but do not reach the upper bound. This might be contributed to two 

reasons: some bandit algorithms continue to explore and so select suboptimal actions, and some 

algorithms incorrectly converge on the wrong best action.  

 

Figure 14. The mean rewards from simulating running the four algorithms on the 1st data set. 

The dotted lines represent the upper bound (0.746) and lower bound (0.721) in this experiment. 

 

Figure 15. The mean rewards from simulating running the four algorithms on the 2nd data set.  

The dotted lines represent the upper bound (0.544) and lower bound (0.535) in this experiment. 
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4.5.3. Comparison of Exploration Rate 
With the definition of explorative choice described in Section 4.4.3, the exploration rate at time 𝑡 

is the proportion of 100 runs that is considered as explorative choice. The results of exploration 

rate are shown in Figure 16 and Figure 17. The first observation from these figures is that every 

algorithm has higher exploration rate in the second data set, that is because there are more actions 

in the second data set, which requires the algorithms to explore more to gain information about 

actions.  

Second, the exploration rate differs in the four algorithms. The exploration rate in the 𝜀-greedy 

algorithm does not change much but stays at very low level, since its probability to explore is 0.1 −

0.1

|𝐴|
. While in the Strawman and simulated annealing algorithms, the exploration rate decreases as 

seeing more and more students, but it drops much faster in the simulated annealing algorithm, 

which indicates the latter algorithm is more willing to select what it thinks the best. However, 

according to the fact that they have the closed mean rewards in the two data sets, the simulated 

algorithm falls into selecting suboptimal action. In the last algorithm, UCB1, the exploration rate 

stays very high, about 0.3 in the first data set and 0.5 in the second, and it even increases at 

beginning. It reveals that the UCB1 algorithm still has high probability to explore even it knows 

the actions well in the long term. 

The results for UCB1 surprised us, as the algorithm has optimal asymptotic performance.  Two 

reasons come to mind:  first UCB1 is optima--within a constant factor.  For proving theorems about 

computational learning, constant factors can be ignored.  For real-world science challenges, they 

cannot.  If UCB1 is within a very large constant factor of the optimal loss for this task, that may be 

less effective than a technique that does not have a provable loss but does better in real-world 

experimentation.  

 

Figure 16. The exploration rate of the four algorithms from the simulation in the first data set. 
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Figure 17. The exploration rate of the four algorithms from the simulation in the second data set. 

The second reason is related:  UCB1 has a free parameter that can be set by the 

experimenter.  Namely, the base of the logarithm used to weight the number of times this action 

has been selected.  Larger bases in the logarithm give more certainty in the distribution of the 

rewards across actions and the certainty in the estimate of an action’s reward on the basis of its 

observed reward.  We started with a default value of a natural logarithm as other paper reported the 

formula in using ln rather than log (Auer, Cesa-Bianchi, & Fischer, 2002).  However, as the 

following sections will make clear, the exact value chosen for the logarithm greatly impacts the 

results.  

4.5.4. Algorithms with Different Parameters 

UCB1 

As discussed in the previous section, UCB1 with natural logarithm is not confident in its 

estimations based on past observed rewards, and its exploration rate keeps in a high level in the 

experiments, which causes that it performs worse than other three algorithms in the first data set.  

To investigate the effect of logarithm base in UCB1, we experiment the algorithm with three 

different logarithm bases in the first data set, e, 10, and 100, and the exploration rate after seeing 

200 students stays around 0.3, 0.2, and 0.1 respectively. This result is consistent with what we 

expected, larger logarithm bases bring the UCB1 algorithm more certainty in the estimation of 

rewards. Moreover, as observed in Figure 18, the UCB1 algorithms with logarithm base 10 and 100 

perform slightly better than the algorithm with natural logarithm after seeing 250 students.  

Strawman 

There is also a parameter that controls the exploration/exploitation tradeoff in Strawman, the 

significant level in the t-test. Higher significant level results in the algorithm to be more likely to 
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drop actions, and thus to be more exploitive; while the Strawman with lower significant level is 

more cautious, and explores more to make drop decisions.  

 

Figure 18. Mean rewards of running the UCB1 algorithm with different logarithm base in the 

formula, e, 10, and 100, in the 1st data set. The algorithm with lower logarithm base would 

be more explorative. 

 

Figure 19. Mean rewards of running the Strawman algorithm with different parameters, 

0.01, 0.05, and 0.1, in the 1st data set. The parameter is the significant level in the t-test of 

comparing pairs of actions. Lower value makes the algorithm to be more explorative.  

In this experiment, we run the Strawman with three different significant level, 0.01, 0.05, and 0.1, 

in the first data set, and the exploration rate is 0.63, 0.3, and 0.2 respectively. As observed in Figure 

19, the Strawman with significant level 0.05 outperforms the Strawman with 0.1 after seeing 300 

students, because the latter one is more likely to make Type I error – to drop the optimal actions. 

Moreover, the Strawman with 0.01 has the lowest performance after seeing a couple of students, 

the reason is that it is still struggling to determine which action is significantly better. But we could 

image it would have the highest performance in the longer runs. 
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4.6. Discussion 

4.6.1. Performance of Strawman 
To put it mildly, we were not expecting Strawman’s naïve approach of using t-tests to do very well 

at this task; therefore, we were surprised at its strong performance. Looking at the data, several 

possible explanations emerged. First, relative to other bandit problems, educational interventions 

tend to not very much in their impact. For example, in many board games there are positions where 

one action will lead to a certain win (maximum possible reward), while another action will lead to 

a certain defeat (minimum possible reward). Educational interventions, at least those actually 

tested, tend to have far more moderate impacts. While many interventions we could propose are 

likely to be harmful, those are unlikely to be proposed by experimenters, let alone survive the IRB 

process. Second, classic bandit problems are posed in terms of having many levers to select from, 

and the advantages of clever selection algorithms increases with more potential options. Most 

human-designed studies have a relatively small number of conditions, thus blunting the benefit of 

advanced bandit algorithms. 

This combination of not having large differences in intervention effectiveness and a relatively small 

number of interventions affects the performance of bandit algorithms differently. Algorithms such 

as UCB1 will probably stay high exploration rate, due to the chance of selecting an action being 

reduced by the times the action has been selected. Relatively smaller variation compared to other 

bandit tasks means less difference from random actions.  In contrast, the approach using t-tests is 

sensitive to both differences in effectiveness and the confidence in the estimate. Similarly, 

techniques such as SRT that decreases the temperature as additional data accumulate will do 

relatively better for this task. 

4.6.2. Exploration and Exploitation 
A key difference between selection strategies is how they balance the exploration and exploitation 

in the process of playing actions, and this is measured in this work by exploration rate. A strategy 

with high exploration rate tends to select actions with equal chance, and thus it has general 

knowledge about the payoff associated with each action. In the opposite way, the strategy with low 

exploration rate prefers to stick with selecting the “best” action according to what the strategy has 

learned currently. However, once it recognizes a suboptimal action as the “best”, it is hard to correct 

the mistake. 

A selection strategy exhibits different exploration rate in different environment, and there are two 

factors might affect the result. The first is the size of action space. With more possible actions, the 

strategy should explore more to learn the reward distribution for each action. For example, all the 
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algorithms, introduced in this work, except the 𝜀-greedy, have higher exploration rates at the same 

time step in the second data set than in the first data set. The second factor is the differences between 

rewards correspond to the actions. A strategy should explore more to gain enough certainty in 

estimation of rewards when actions produce similar rewards.  

4.7. Conclusion 

In this chapter, we analyzed the benefit from replacing random assignment with k-armed bandit 

algorithms in ASSISTments – students’ overall performance could be improved significantly. We 

also introduce a new selection strategy, Strawman, that is based on statistical t-test, and we compare 

it with other k-armed bandit algorithms in real ASSISTments experiments. This strategy is more 

reasonable to be a baseline for the k-armed bandit algorithms than the random selection strategy. 

To be honest, we were surprised that we have not seen other bandit comparisons using what seems 

to be the obvious method -- essentially the method taught to all psychology undergraduate students 

on how to evaluate experiments (with a small caveat that they are not taught to keep testing for 

effects all the time, the way this method does).  

We also introduce a metric, exploration rate, to measure how likely a selection strategy would make 

an explorative choice at each step. The results reveals that the algorithms exhibit different tradeoff 

between exploration and exploitation in the process of choosing actions. General speaking, an agent 

would explore more when it knows little about the whole environment, and thus has high 

exploration rate. Therefore, the metric reveals, in some aspects, how confident an agent estimates 

the rewards from choosing possible actions. 

Can we do better? Can we make more personalized choice for each student? In the next chapter, I 

will discuss the effect of contextual bandits in ASSISTments, and I will also investigate different 

aspect of related features in the educational experiments, such as if a feature has aptitude treatment 

effect in an experiment, or if a feature has the same effect in multiple experiments. 
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CHAPTER 5 

Contextual Bandits 

5.1. Introduction 

In normal k-armed bandit problems, we determine which arm to pick based on the history of 

previous choices and observed rewards. While in contextual bandit problems, we have access to a 

side information, 𝑋, called context. Both bandits share the same goal of picking actions that gives 

largest total rewards. There are two important issues in contextual bandit problems, how to use the 

context to estimate rewards, and how to use the estimation to make decisions. 

Previous works used various ways to tackle those two issues. For example, Li et al. applied LinUCB 

(Li, Chu, Langford, & Schapire, 2010), which combined linear regression model with upper 

confidence bound (UCB), to personalize news articles for each user, with the goal of maximizing 

the probability of clicking the recommended articles. Lu et al. proposed an algorithm that clustered 

the context into similar regions and then ran a k-armed bandit algorithm in each region (Lu, Pál, & 

Pál, 2010). Wang et al. discussed a two-armed bandit problem with different connection between 

context and reward (Wang, Kulkarni, & Poor, 2005): direct information, the best arm is a function 

of context, the best arm is not a function of context, and mixed case. Langford and Zhang introduced 

an ensemble-learning-like contextual bandit algorithm, based on epoch-greedy algorithm, which 

combined different hypotheses to make decision (Langford & Zhang, 2008). In each epoch, it made 

one step exploration that selected an arm uniformly at random, and then used the best hypothesis 

based on the context and historical records to pick the arms in the next exploitation steps (pre-

defined in the algorithm).  

Recently, bandit problems have attracted much attention in educational area, such as applying k-

armed bandits for online optimization of teaching sequences in (Clement, Oudeyer, Roy, & Lopes, 

2014), and using contextual bandits framework for personalized learning action selection that aims 

to maximize students’ success on the follow-up assessment in (Lan & Baraniuk, 2016). However, 

very few works use contextual bandits in the educational area. In this dissertation work, I focus on 

investigating the effect of contextual bandits in real ASSISTments experiments. 

 In the rest of this chapter, I will illustrate why we need contextual bandits in ASSISTments, and 

then I will answer the three research questions related to this problem: 1). What context should be 

incorporated into the bandits? 2). How to organize the context? 3). How much benefit? 
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5.2. Context Makes Better Personalization 

Bandit algorithms are able to make use of context in order to make better decisions.  For example, 

perhaps a certain intervention works well for highly-motivated students, but is ineffective for 

unmotivated students.  It would be useful if we were able to provide our bandit algorithm with 

some context about the learner to improve its decision making.  Therefore, we set out to capture 

that bit of context to potentially aid decision making. Take the second data set in Section 4.5.1 as 

an example. Students’ performance in each condition is shown in Table 12, according to this table, 

the best performance we can achieve is 0.544 by assigning all students into “With image”.  

To illustrate the effect of contextual bandits, we disaggregate the original data sets with a student 

feature, called “performance in previous 3 days”. This feature represents the percent of correctness 

of all items a student practiced in ASSISTments in the three days just before the experiment. For 

example, suppose a student starts the ASSISTments experiment at time 𝑡𝑠, then we search all items 

from the student’s records in the system with the corresponding time, 𝑡, having: 0 𝑑𝑎𝑦 < 𝑡𝑠 − 𝑡 ≤

3 𝑑𝑎𝑦𝑠. 

We separate the data set into three groups according to the feature 𝑥, proportion of correctness over 

previous 3 days: high (0.85 ≤ 𝑥 ≤ 1), moderate (0.7 ≤ 𝑥 < 0.85), and low (0 ≤ 𝑥 < 0.7). We 

chose those cutpoints to split the students into roughly 3 equal-sized groups. Students’ performance 

in each group of the first data set is in Table 13. By picking the optimal condition for each group, 

“No image” for students in low and high level, and “With image” for students in moderate level, 

the upper bound is: (0.562 ∗ 75 + 0.54 ∗ 66 + 0.586 ∗ 65)/206 = 0.563, which is higher than 

the one without being disaggregated by this feature. However, this could be resulted from 

overfitting or cherry-picking, the feature that is useful here might not be effective in the other data 

sets. Therefore, a feature should be evaluated across different experiments. 

In summary, proper context brings aptitude treatment effect in students’ learning process, and thus 

results in better upper bound for the bandit algorithms. But which context could bring such effect? 

Moreover, we disaggregated the data set with only one feature in this experiment, how to make the 

disaggregation with multiple features, in order to obtain the best aptitude treatment effect? Finally, 

we just computed the estimated upper bound of applying k-armed bandits on the data set, what are 

the real results of running the bandits without context and the contextual bandits on the data set? 

Could context still bring better results? These questions will be answered in the next sections one 

by one. 
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Table 12. Students’ posttest scores in each conditional problem set in the original data set. 

Students with the bolded condition have higher mean posttest. 

Condition #Students Mean Std. 

Correctness only 74 0.518 0.214 

With image 63 0.544 0.229 

No image 69 0.542 0.201 

 

Table 13. Students’ posttest scores in the data set with disaggregated by students’ 

performance in previous 3 days.  

Performance Condition #Students Mean Std. 

Low 

Correctness only 29 0.473 0.221 

With image 25 0.544 0.227 

No image 21 0.562 0.203 

Moderate 

Correctness only 22 0.513 0.209 

With image 18 0.54 0.263 

No image 26 0.489 0.218 

High 

Correctness only 23 0.58 0.206 

With image 20 0.547 0.21 

No image 22 0.586 0.172 

 

Figure 20. Different effectiveness of interventions in two groups of students. In the cases (a) and (b), 

the interventions have no effect because the optimal intervention is intervention 1 for both groups. In 

the cases (c) and (d), the interventions have treatment effect in the groups, intervention 1 is optimal 

for the group A, while intervention 2 for group B. According to the difference between interventions in 

each group, the interventions have small effect in the case (c), and large effect in the case (d). 
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5.3. Feature Evaluation 

5.3.1. Mechanism 

1. Cross effect 

According to work in (Pashler, McDaniel, Rohrer, & Bjork, 2008), a learning-style hypothesis 

is accepted if the optimal learning method of one kind of learner is different from the optimal 

learning method of the other kind of learner, and two crossed lines are shown in the plot of 

learning outcomes with respect to learning methods and learner styles, as illustrated in Figure 

20. In this work, we also regard a feature is useful if and only if the feature has such “cross 

effect”: the optimal option differs in the groups which are disaggregated by the feature.  

We define the cross effect as the improvement of target value from picking the overall best 

action to picking the best action for each group. If there is no cross effect, then there is no 

difference with disaggregated by the feature, and thus the improvement is 0. For example, in 

Figure 20, there is no cross effect in the cases (a) and (b), and positive cross effect in (c) and 

(d). The metric to evaluate a feature, 𝑥, in a data set, 𝐷, is defined as: 

𝐺𝑎𝑖𝑛(𝑥, 𝐷) = ∑

𝑚𝑒𝑎𝑛 (𝐷
𝑔𝑖,𝑎=𝑎̂(𝐷𝑔𝑖

)
) ∗ |𝐷𝑔𝑖

|

|𝐷|
𝑔𝑖∈𝐺

− 𝑚𝑒𝑎𝑛(𝐷𝑎=𝑎̂(𝐷)) 

𝑎̂(𝐷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑗∈𝐴 (𝑚𝑒𝑎𝑛 (𝐷𝑎=𝑎𝑗
)) 

Where 𝐺 is the set of all groups disaggregated by the feature, 𝐷𝑔𝑖
 is the data in the group 𝑔𝑖, 

𝐴 is the set of all possible actions, 𝐷𝑎=𝑎𝑗
 is the instances in 𝐷 of which action is 𝑎𝑗, 𝑚𝑒𝑎𝑛(𝐷) 

is the mean reward of all instances in 𝐷, and 𝑎̂(𝐷) represents the best action in the data set 𝐷. 

Taking the data set in 5.2 as an example, the feature “student’s performance in previous 3 

days” separates the original data set into three groups, as shown in Table 12 and Table 13, and 

the corresponding cross effect is: (0.562 ∗ 75 + 0.54 ∗ 66 + 0.586 ∗ 65)/206 − 0.544 =

0.019. 

In the rest of this dissertation work, we only consider binary disaggregation. If a feature 𝑥 is 

continuous, given a split value 𝑥𝑖, it separates the data into two groups, one with the feature 

value 𝑥 ≤ 𝑥𝑖, and the other with 𝑥 > 𝑥𝑖; if 𝑥 is discrete, given one of its possible value 𝑥𝑖, it 

separates the data into two groups, one with 𝑥 = 𝑥𝑖 and the other with 𝑥 ≠ 𝑥𝑖. 

2. Factorial Analysis of Variance (ANOVA) 
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Factorial ANOVA measures whether a combination of independent variables predict the value 

of a dependent variable (Devore, Farnum, & Doi, 2013). In this work, we consider the feature 

to be evaluated as one independent variable, the tutorial condition in ASSISTments as the 

other independent variable, and the reward as dependent variable. P-value outputted from 

factorial ANOVA is used to measure significance of the combination. 

To evaluate a feature in an experiment, we will use its every possible value as a cut point, and 

compute the corresponding cross effect and p-value, output from factorial ANOVA. If there are 

positive cross effect in at least one splits, then we consider the feature is useful in that experiment. 

With a pre-defined p-value threshold, we can screen out the features that cannot bring a significant 

cross effect.  

5.3.2. Experiments 

Data 

This data set is collected from 22 ASSISTments  experiments (Heffernan & Heffernan, 2014). In 

each experiment, a student is randomly assign into one of two groups, and the two groups are 

associated with different tutoring conditions, such as video feedback and text feedback. And each 

experiment has a unique pair of conditions. After removing the missing values, the experiment with 

minimum size has 121 students, 1640 for the maximum, and there are 10690 students in total. In 

the rest of this dissertation work, the experiments of contextual bandits are executed on this data 

set. 

Features and Reward Function 

In each experiment, students are learning a specific skill by practicing related problems, and they 

are required to obtain 3 correct in a row to complete the experiment. In this dissertation work, we 

will investigate which condition is optimal for each student, we defined the reward function as:  

𝑟𝑒𝑤𝑎𝑟𝑑 = {𝑖𝑓 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒: (3/#𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑠)0.7

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:   0                              
 

Where “#practices”, also called mastery speed, is the number of problems a student takes to 

complete the experiment. The range of reward value is from 0 to 1, and the larger the better. Thus, 

there are exactly two different conditions in each experiment. In this work, we will evaluate 8 

features in the experiments: 

1. Prior completion rate: student’s completion rate in all prior participated experiments; 

2. Prior percent of correctness: student’s percent of correctness in all prior practiced problems; 
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3. Prior mastery speed: student’s average mastery speed in all prior participated experiments, 

and computed as z-score over all students; 

4. Imputed gender: student’s gender that is imputed according to the student’s name. This 

feature has three values, female, male, and unknown;  

5. Location: this is where student live, categorized as urban, suburban and rural; 

6. Prerequisite performance: student’s percent of correctness in the problems of which related 

skills are prerequisite to the skill he/she is learning; 

7. Percent of correctness in previous 3 days: student’s percent of correctness in the problems 

that were practiced within 3 days;  

8. Learning rate in previous 3 days: the average learning rate in the experiments a student 

participated within 3 days. Learning rate represents how fast a student learns a skill. It first 

computes the percent of correctness in each item, and then construct a linear regression 

model on those values with respect to number of practices items. The slope in the linear 

regression model is considered as student’s learning rate in this skill. For example, if a 

student’s responses in a skill are: wrong, wrong, wrong, right, and right, then the series of 

percent of correctness is: 0, 0, 0, 25%, and 40%. And the corresponding linear regression 

model is shown in Figure 21, thus, his learning rate is 0.105.  

 
Figure 21. A linear regression model constructed on a student’s %correctness with respect 
to number of practiced items. In this sample, the student’s responses is wrong, wrong, wrong, 
right, and right, so the series of %correctness is 0, 0, 0, 25%, and 40%. The slope in the model, 
0.105, is this student’s learning rate. 

Results 

1. Location 

In the data set, 10% of students live in Urban settings, 13% in rural, and 77% in suburban. In each 

experiment, the location values are almost the same, since most of students who participated in the 

experiment are from the same school. Therefore, personalizing based on this feature could not help 
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many students, and the corresponding cross effect would be very small. For those reasons, I will 

disregard this feature. 

2. Imputed gender 

To compute the cross effect of imputed gender for a data set, first, we use each value to separate 

the data set into two groups, for example, “female” and “not female”. Then we compute the cross 

effect on the separated groups. Finally, we pick the best one as the cross effect of imputed gender 

in the data set, and the corresponding p-value for the best cross effect is computed.  

In the 15 out of 22 ASSISTments experimental data sets, imputed gender results in a positive cross 

effect, which means the feature is useful in personalization in those experiments. Of those positive 

cross effects, only 1 with 𝑝 ≤ 0.05, 2 with 𝑝 ≤ 0.1, 5 with 𝑝 ≤ 0.2, and 9 with 𝑝 ≤ 0.3. So most 

of the effects are not statistically reliable. 

3. Prerequisite performance 

Because students did not learn the prerequisite skills, or teachers thought those skills were not 

important, or other reasons, we obtained a very sparse prerequisite performance in the data sets. As 

shown in Table 14, there are only 5 experimental data sets containing at least one student who 

started learning the related prerequisite skills. In the other 17 experiments, no one started learning 

the pre-required skills. Therefore, we will consider using this feature in the first two experiments, 

so as not to lose too much data. 

To evaluate prerequisite performance in a data set, we will consider every value in {𝑥1, 𝑥2, … 𝑥100} 

as a cut point, where 𝑥1 is the lowest value in the data set, 𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒, and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 =

(ℎ𝑣 − 𝑙𝑣)/100 (ℎ𝑣 – highest value in the data set, 𝑙𝑣 – lowest value in the data set). For a given 

value, say 𝑥𝑖, which separates the data set into two groups, 𝑥 ≤ 𝑥𝑖 and 𝑥 > 𝑥𝑖, and then compute 

the cross effect and p-value on the separated groups. The computed cross effect and p-value with 

respect to cut point are shown in Figure 22 and Figure 23 respectively. In both data sets, prerequisite 

performance results in positive cross effect, and the result is more reliable when cut point is less 

than 0.3 in the data set 293151, while the result is more reliable when cut point is more than 0.5 in 

the data set 226210. 

Table 14. The proportion of data having prerequisite performance in each experiment. 

Experiment Has prerequisite performance available 

293151 88% 

226210 80% 

243393 50% 

263109 40% 

303899 2% 
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Figure 22. The cross effect of prerequisite performance in two data sets. 

 

Figure 23. The p-value of prerequisite performance in two data sets. 

 

4. Other five features 

For each other feature, since they are all continuous features, similar to as prerequisite performance, 

they are also evaluated with 100 possible cut point in each experiment. The results show that those 

features are useful at least one of in the 22 experiments, because each of them can produce positive 

cross effect in the experiments. To investigate the generalizability of a feature, for each cut point, 

we count in what proportion of the 22 experiments, this feature produces the cross effect, and the 

corresponding p-value with 𝑝 ≤ 0.05, 𝑝 ≤ 0.1, 𝑝 ≤ 0.2, and 𝑝 ≤ 0.3. To reduce the effect of noise, 

we smooth the result by replacing the cross effect of each value with the average of its 5 neighbors, 

including itself. The results of those features are shown in Figure 24 to Figure 28 respectively.  

As shown in the figures, the effectiveness of prior percent of completion and percent of correctness 

in 3 previous days does not vary too much with respect to their cut points; while the feature, prior 

mastery speed, is more effective in the experiments between -1.0 and 1.0, and the feature, learning 
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rate in 3 previous days are more effective between -0.1 and 0.1; in general, the effectiveness of 

prior percent of correctness increases with cut point, but it drops afterwards, and the largest 

proportion is approximately 83% when the cut point is 0.72. 

5.3.3. Conclusion 
In summary, we analyzed the effect of 7 features in making better personalized treatment in the 22 

ASSISTments experiments. The results show that those features, except prerequisite performance, 

are useful in all 22 experiments. There are only two experiments that have enough students with 

prerequisite performance, but this feature can significantly improve students’ learning outcomes in 

the two experiments. Therefore, in the next step, modeling multiple features together, I will use 

prerequisite performance in the experiments, 293151 and 226210, and the other 6 features in all 22 

experiments. 

 

Figure 24. The percentage of positive cross effect of prior %completion and statistically 

reliable effect in the 22 experiments. 

 

Figure 25. The percentage of positive cross effect of prior %correct and statistically reliable 

effect in the 22 experiments. 
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Figure 26. The percentage of positive cross effect of prior mastery speed and statistically 

reliable effect in the 22 experiments. 

 

Figure 27. The percentage of positive cross effect of %correctness in 3 previous days and 

statistically reliable effect in the 22 experiments. 

 
Figure 28. The percentage of positive cross effect of learning rate in 3 previous days and the 

statistically reliable effect in the 22 experiments. 
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5.4. Modeling Multiple Features 

5.4.1. Introduction 
The ability to customize instruction to individuals is a great potential for adaptive educational 

software.  Unfortunately, beyond mastery learning and learner control, there has not been much 

work with adapting instruction to individuals. In this work, we focused on constructing a decision 

tree that produced treatment effect for different groups of students, and thus to make customization 

for each student.  

There are many research works that utilize student’s feature to personalize. Even since Bloom’s 

paper showing a 2 standard deviation effect size of individual tutoring (Bloom, 1984), the 

computer’s ability to adapt instruction has been pitched as a solution. However, most educational 

software does little adaption to the individual beyond mastery learning and learner control. Each 

student (largely) sees the same help messages and the same instruction. Mastery learning enables 

students to keep practicing a skill until they have mastered it. Learners maintain a degree of control, 

such as selecting which story to read next or which type of help to receive (e.g., (Mostow & Beck, 

2006)). In another example, Dagger et al. introduces a e-learning system which composes adaptive 

courses according to the concept space, the pedagogical strategy, the learning activities, and the 

adaptive mechanisms, as well as user’s status and preferences (Dagger, Wade, & Conlan, 2005).  

We define “option” as the choices a tutoring system has for teaching at a particular moment.  For 

example, the system could have the options of showing a video on Pythagorean theorem, or going 

back on working on a prerequisite skill. The reason to implement customization service is that 

students’ learning outcomes might differ in tutoring options, because they have different learning 

styles (Cha, Kim et al., 2006; Pashler, McDaniel, Rohrer, & Bjork, 2008), prior knowledge 

(Botelho, Wan, & Heffernan, 2015; Wan & Beck, 2015), or other factors that  affect which type of 

instruction is most effective for this learner. Therefore, estimating the student’s potential outcomes 

for each option is the key for customization.  

In this dissertation work, we explore identifying the groups of students such that the interventions 

have treatments effect in these groups. We use decision trees to estimate students’ learning 

outcomes, and thus to make customization. There are four reasons to use the decision tree 

technique.  First, it implicitly performs feature selection as at each step it selects the feature that 

provides maximum information.  Second, it is easy to either manually or automatically perform a 

rule extraction from a tree.  Third, as a consequent of the first two points, a decision tree’s structure 

is easy to understand and explain to human practitioners. If teachers have a say in what software is 



69 

 

used in their classrooms, using a technique that is (relatively) easy to explain is essential. Fourth, 

it is easy to combine decision tree structure with k-armed bandit algorithms. As discussed in 

previous sections, it is very hard and time consuming to apply a k-armed bandit algorithm for each 

combination values of multiple features. In this dissertation work, we will apply a bandit algorithm 

for each leaf node in the decision tree, while we can control the complexity of the decision tree by 

setting with appropriate parameters. 

Unlike traditional classification problem, such as in (Cha, Kim et al., 2006), where every student 

is marked with which option is optimal for him/her, we focus the problem where we do not know 

a priori how each student best learns. Even worse, we only know how a student would perform 

with one of the possible options. Therefore, we must find commonalities in what types of students 

learn better from one intervention vs. another. Consequently, we need to employ the decision tree 

to determine difference of outcome between options for each student, based on the corresponding 

features, and then output the best option for this student. 

One possible approach to solve the problem is to build a model to estimate the effect of each 

possible option, and then select the one with the best estimated outcome for this student (Cha, Kim 

et al., 2006; Kim, Lee, Shaw, Chang, & Nelson, 2001). However, it has three disadvantages. 

1. The mechanism would be very complicated if the size of possible options is large, like in 

course recommendation systems (Weber, Kuhl, & Weibelzahl, 2001; Williams, Li et al., 

2014), each course could be considered as an option, and there might be tens of different 

options. 

2. It would be hard to extract rules from the decision trees if they are constructed on different 

set of features or nodes are split with different values. 

3. The constructed models might be meaningless, and learn about what is termed “unacceptable 

evidence” (Pashler, McDaniel, Rohrer, & Bjork, 2008) of a meaningful interaction. For 

example, Figure 29 shows that students, no matter with high or low knowledge level, would 

always perform better with option 1. This conclusion does not need a decision tree. The reason 

for the overly complex model is that traditional decision tree algorithms use criteria such as 

information gain, Gini index, impurity, and so on, to construct a tree with the least error in 

prediction (Blockeel & De Raedt, 1998; Breiman, Friedman, Stone, & Olshen, 1984; Quinlan, 

2014). However, in this problem, we should focus on building decision trees to find splits 

that would alter which option works best. As a result, the decision tree is “acceptable 

evidence”, i.e., the best option differs for different types of students. 
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Figure 29. Example of decision trees based on Pashler et al.’s framework of “unacceptable 

evidence” (Pashler, McDaniel, Rohrer, & Bjork, 2008). These two decision trees are useless, 

because students would always have a better outcome with option 1.  

To overcome those disadvantages, we will introduce a new decision tree algorithm in this work that 

constructs only one decision tree for all possible tutoring options. In this manner, we address our 

research question: which option is optimal for a particular type of student? Moreover, many studies 

focus on investigating the effect of an intervention. However, this work explores a set of 22 

experiments to find a mechanism for customizing instruction to an individual student.  

5.4.2. Background 
Decision trees are a machine learning method for constructing prediction models. Starting at the 

whole data space, it selects an appropriate feature, according to a certain criterion, to split the data 

space into several sub-groups, and each sub-group is recursively deployed the split process. The 

tree keeps growing until stopping criteria are met, such as the maximum tree depth have reached, 

or all instances in the data space belong to a single value of target variable, or some rules else 

(Blockeel & De Raedt, 1998). As a result, each internal node represents a feature that splits the tree, 

and each leaf node is marked with a target value or a probability distribution over the target values. 

Common criteria that are used in split when the target variable is discrete include information gain 

(Quinlan, 1987), gain ratio (Quinlan, 2014), Gini index (Breiman, Friedman, Stone, & Olshen, 

1984), distance measure (De Mántaras, 1991), and twoing criteria (Breiman, Friedman, Stone, & 

Olshen, 1984). Taking Gini index as an example to illustrate the split process. 

Gini index is defined as: 𝐺𝑖𝑛𝑖(𝐷) =  ∑
|𝐷𝑦=𝑦𝑖

|

|𝐷|𝑦𝑖∈𝑌 , where 𝐷 is current data space to be split, 𝑌 is 

the set of possible target values, and 𝐷𝑦=𝑦𝑖
 is the data set where every instance has the target value 

𝑦𝑖. The Gini gain, which is used to evaluate the features at each split step, is defined as: 

𝐺𝑖𝑛𝑖 𝐺𝑎𝑖𝑛(𝑥, 𝐷) = 𝐺𝑖𝑛𝑖(𝐷) − ∑
|𝐷𝑥=𝑥𝑖

|

|𝐷|
𝑥𝑖∈𝑋

∗ 𝐺𝑖𝑛𝑖(𝐷𝑥=𝑥𝑖
) 
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Where 𝑥 is the feature to be evaluated, and 𝑋 is the set of its possible values. The algorithm tends 

to pick the feature with the largest Gini gain in the split process. 

If the target variable is continuous, the tree is referred as regression tree, and each leaf node 

represents the mean target value of all training instances that follow into this node. A common used 

criterion in the split process is sum of squared error (SSE): 

𝑆𝑆𝐸(𝐷) = ∑(𝑦𝑑 − 𝑦̅)2

𝑑∈𝐷

 

Where 𝑦̅ is the mean of target variable in the data space 𝐷. And the criterion in selecting feature to 

split is: 

𝑔𝑎𝑖𝑛(𝑥, 𝐷) = 𝑆𝑆𝐸(𝐷) − ∑ 𝑆𝑆𝐸(𝐷𝑥=𝑥𝑖
)

𝑥𝑖∈𝑋

 

Another important step in decision tree induction is discretization, this is deployed on the 

continuous features. A simple discretization technique is bin method, which uses a continuous 

feature to separate the data into groups with equal-width or equal frequency. Other sophisticated 

methods, as summarized in (Liu, Hussain, Tan, & Dash, 2002), are categorized as  entropy -based 

methods, dependency-based methods, accuracy-based methods, and merging methods. 

In this work, our discretization method makes a binary split, like in ID3 (Quinlan, 1986) and C4.5 

(Quinlan, 2014), and it tends to find a cut point that outputs two groups with the most 

“discriminability” on the options. More details are discussed in the next section. 

5.4.3. Methodology 

Split Criterion 

Here we also use cross effect, as defined in Section 5.3, as split criterion to evaluate features in 

decision tree construction. The metric is defined as: 

𝐺𝑎𝑖𝑛(𝑥, 𝐷) = ∑

𝑚𝑒𝑎𝑛 (𝐷
𝑔𝑖,𝑎=𝑎̂(𝐷𝑔𝑖

)
) ∗ |𝐷𝑔𝑖

|

|𝐷|
𝑔𝑖∈𝐺

− 𝑚𝑒𝑎𝑛(𝐷𝑎=𝑎̂(𝐷)) 

𝑎̂(𝐷) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑗∈𝐴 (𝑚𝑒𝑎𝑛 (𝐷𝑎=𝑎𝑗
)) 

Where 𝐺 is the set of all groups disaggregated by the feature, 𝐷𝑔𝑖
 is the data in the group 𝑔𝑖, 𝐴 is 

the set of all possible actions, 𝐷𝑎=𝑎𝑗
 is the instances in 𝐷 of which action is 𝑎𝑗, 𝑚𝑒𝑎𝑛(𝐷) is the 

mean reward of all instances in 𝐷, and 𝑎̂(𝐷) represents the best action in the data set 𝐷. 

Taking the data in Table 15 as an example to illustrate how to compute the cross effect. Overall 

speaking, the option 0 is better than the option 1, since the mean target value of all students with 
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option 0 is 0.74, larger than the mean target value of option 1, 0.72. Suppose the cut point for the 

feature A is 0.5, then the data is split into two groups: group 1 – “𝐴 ≤ 0.5” and group 2 – “𝐴 >

0.5”. In the group 1, there are two students with option 0, the 6th and 9th student, and their mean 

target value is (0.9+0.9)/2=0.9. Consequently, the mean target value for the students in group 1 

with option 1 is 0.63, group 2 with option 0 is 0.63, and group 2 with option 1 is 0.85. By picking 

the optimal option for each group, which is option 0 for group 1 and option 1 for group 2, the cross 

effect is: 
0.9∗|𝐷𝑔𝑟𝑜𝑢𝑝 1|+0.85∗|𝐷𝑔𝑟𝑜𝑢𝑝 2|

|𝐷|
− 0.74 =

0.9∗5+0.85∗5

10
− 0.74 = 0.135. 

Discretization 

In this work, we deploy binary split in decision tree induction. To evaluate a discrete feature 𝑥, for 

each possible value 𝑥𝑖, we consider the data space is divided into two groups, the one with “𝑥 =

𝑥𝑖” and the other with “𝑥 ≠ 𝑥𝑖”, and then we compute cross effect according to this division. 

Finally, the best one is marked as the cross effect of 𝑥.  

To use a continuous feature to split the decision tree, we need to set a cut point. To discretize a 

continuous feature 𝑓 , as its values are denoted in order as {𝑥1, 𝑥2, … , 𝑥𝑚}, each value will be 

considered as a cut point, so that a value, 𝑥𝑖, will divide the data into two groups, one containing 

the instances with 𝑥 ≤ 𝑥𝑖, and the other with 𝑥 > 𝑥𝑖. The cross effect according to this division 

will be computed. Therefore, we need to examine 𝑚 − 1 possible values. Figure 30.a shows all 

computed cross effect of the feature A in Table 15. 

Table 15. A sample data set, which contains a continuous feature, A, a discrete feature, B, an 

option variable with possible value 0 and 1, and a continuous target variable. 

student A B Option Target 

1 0.4 0 1 0.7 

2 0.8 0 0 0.6 

3 0.7 1 0 0.8 

4 0.1 0 1 0.6 

5 0.2 1 1 0.6 

6 0.4 0 0 0.9 

7 0.6 0 0 0.5 

8 0.9 1 1 0.8 

9 0.2 1 0 0.9 

10 0.8 1 1 0.9 
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Figure 30. (a) the cross effect with respect to each value of feature A in Table 15; (b) the 

smoothed effect calculated by taking the average cross effect of 5 neighbors for each cut point. 

After computing the cross effect for all possible values of a continuous feature, we are not going to 

pick the value with the best cross effect as the cut point for this feature. The reason is that there 

might be noise in the data, which is very possible in real experimental data. And the noise would 

cause high-frequency oscillations, so the best cross effect might be obtained by chance. To reduce 

the effect of noise, we smooth the result by replacing the cross effect of each value with the average 

of its 5 neighbors, including itself. That is, for each feature value, 𝑓𝑖, with the corresponding cross 

effect 𝑐𝑒𝑖 , we will compute a smoothed effect, 𝑠𝑒𝑖 = (𝑐𝑒𝑖−2 + 𝑐𝑒𝑖−1 + 𝑐𝑒𝑖 + 𝑐𝑒𝑖+1 + 𝑐𝑒𝑖+2)/5. 

Figure 30.b is the smoothed effect of feature A in Table 15. 

Finally, we pick the value with the best smoothed effect as the cut point for a continuous feature. 

We also use factorial ANOVA(Devore, Farnum, & Doi, 2013) on the resulted disaggregation to 

compute p-value for both continuous feature and discrete feature. This p-value will be used in 

decision tree induction. 

Decision Tree Induction 

Our method is a top-down induction method, starting with the whole data set, it keeps splitting the 

data set into two sub data sets, until every possible split meet stop criterion 1 or 2:  

Stop criterion 1: in one of the two sub data sets, there is an option, such that the number of 

instances with the option is less than 𝑛, a parameter of minimum size used in the induction. 

Stop criterion 2: the resulted p-value > 𝑙, where 𝑙 is another parameter in the induction, which 

indicates the significant level of splitting. 

The split procedure is shown in Figure 33, line 1-3 is initialization; line 4-12 is used to pick the 

feature alone with its corresponding cut point that produces the most significant split. A significant 

split means the p-value, computed from apply factorial ANOVA on the split groups, is less than or 
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equal to a pre-defined significant level 𝑙; line 13-18 constructs an internal node with the feature and 

cut point, and then recursively runs the split procedure on the two split sub data sets; if such feature 

does not exist, which means the stop criterion 2 has been reached, then the tree stop growing, so 

line 20 creates a leaf node. Finally, this procedure outputs either an internal node or leaf node. 

Another two important procedures of our method, the procedure of picking the cut point with the 

best valid partition and the procedure of dividing a data set into two sub sets, are shown in Figure 

31 and Figure 32 respectively. The former procedure takes a data set, a feature and minimum size 

as input, and it examines all valid partitions that do not meet the stop criterion 1. Thus, it outputs 

the best smoothed effect and the associated cut point. Input of the later procedure includes a data 

set, a feature, and a value of that feature. The procedure divides the input data set into two sub data 

sets, according to whether the feature is discrete or not, and it outputs the two sub data sets. 

PROCEDURE pickBestCutpoint(𝐷, 𝑓, 𝑛): 
1: best_cut ← −∞ 
2: best_effect ← −∞ 
3: FOR each possible value 𝑓𝑖 of 𝑓: 
4:    (𝐷1 , 𝐷2) ← divide(𝐷, 𝑓, 𝑓𝑖) 
5:    IF meet stop criterion 1: 
6:       CONTINUE 
7:    END IF 
8:    se ← computeSmoothedEffect(𝐷, 𝑓, 𝑓𝑖 ) 
9:    IF se > best_effect: 
10:       best_effect ← se 
11:       best_cut ← 𝑓𝑖 
12:    END IF 
13: RETURN (best_cut, best_effect)  

Figure 31. The process of picking the cut point for a given feature, 𝒇, in a data set, 𝑫, that 

produces the best smoothed effect, with a parameter, 𝒏, that is used in the stop criterion 1, 

according to the method described in Section “Discretization”. 

 

PROCEDURE divide(𝐷, 𝑓, 𝑓𝑖): 
1: IF 𝑓 is discrete: 
2:    𝐷1 ← 𝐷𝑓=𝑓𝑖

 
3:    𝐷2 ← 𝐷𝑓≠𝑓𝑖

 
4: ELSE 
5:    𝐷1 ← 𝐷𝑓≤𝑓𝑖

 
6:    𝐷2 ← 𝐷𝑓>𝑓𝑖

 
7: END IF 
8: RETURN (𝐷1 , 𝐷2)  

Figure 32. The process of dividing a data set into two sub sets, given a feature and a value. 
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PROCEDURE split(𝐷, 𝑅, 𝑛, 𝑙): 
1: best_feature ← ‘’ 
2: cut ← −∞ 
3: best_effect ← −∞ 
4: FOR each feature 𝑓 in 𝑅: 
5:    (𝑓𝑖 , 𝑒) ← pickBestCutpoint(𝐷, 𝑓, 𝑛) 
6:    𝑝 ← computePValue(𝐷, 𝑓, 𝑓𝑖) 
7:    IF 𝑝 ≤ 𝑙 AND 𝑒 > best_effect: 
8:       best_effect ← 𝑒 
9:       best_feature ← 𝑓 
10:       cut ← 𝑓𝑖 
11:    END IF 
12: END FOR 
13: IF best_feature ≠ ‘’: 
14:    root ← createInternalNode(𝐷,best_feature,cut) 
15:    𝑅 ← 𝑅 − 𝑓 
16:    (𝐷1 , 𝐷2) ← divide(𝐷,best_feature,cut) 
17:    root.left = split(𝐷1 , 𝑅, 𝑛, 𝑙) 
18:    root.right = split(𝐷2 , 𝑅, 𝑛, 𝑙) 
19: ELSE 
20:    root ← createLeafNode(𝐷) 
21: END IF 
22: RETURN root 

 

Figure 33. The split process in decision tree induction. It takes current data set, a set of 

features, and other two parameters that are used in the stop criteria as input, and it outputs 

the root node of the tree constructed based on the input data set. 

5.4.4. Experiments and Results 

Experiment Setup 

We use 5-fold cross validation to evaluate our method on two types of data sets, one is the simulated 

data set that is generated with pre-defined distributions, and the other is collected from 22 

ASSISTments experiments.  

The process of evaluating trained model in this work is different from in the traditional 

classification problems, since we going to evaluate how well students would have done by given 

the customized options, not how well the model predicts. After a model is trained by the training 

set, each separated group, according to the model, is marked with an option which brings the best 

mean target values. For example, in the decision tree constructed by our method, each leaf node 

can be considered as a group.  

To evaluate the trained model in the testing set, first, the testing set is also assigned into 

corresponding groups based on the model structure. And then for each group, the mean target value 

of the instances in the testing group with the marked option is the estimated value. Finally, how 

well a model is making customization is computed by taking the average target value of all groups. 
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Simulated Data 

1. Data Generation 

This simulated data set contains 6 features, 1 option feature with 2 possible values (0 and 1), and 1 

continuous target variable. The 6 features are generated with uniform distribution, and the target 

variable with normal distribution. Parameters of the distributions for first two features, f1 and f2, 

and the target variable are defined in the Table 16. For example, in the group 1, f1 is generated with 

a uniform distribution 𝑈(0,0.5) , and f2 with 𝑈(0,0.8); the target value with the option 0 is 

generated with a normal distribution 𝑁(0.5,0.2), the target value with option 1 is generated with 

𝑁(0.4,0.2). The other four parameters are generated with 𝑈(0,1) for all groups. We generated 200 

instances for each group, 100 with option 0 and 100 with option 1. Therefore, according to these 

distributions, the optimal option for group 1 and group 4 is option 0, while option 1 for group 2 and 

group 3. 

2. Results 

The mean target value of the generated data in each group is shown in Table 17. The best 

customization method is to assign each user with the right option, so the upper bound of this data 

set that the best method can achieve is: (0.482 + 0.799 + 0.633 + 0.918)/4 = 0.708.  

We use the method described in previous section to construct decision trees on this simulated data 

with different significant levels, 0.05, 0.1, 0.2, 0.3, 0.5, and 0.9, the other parameter, minimum size, 

is set to be 20 in all trees. We also compared the constructed decision trees with two methods, 

random selection and always pick the option that has the best overall mean target value in the 

training set. As shown in Figure 34, the results of decision trees are very closed to the upper bound, 

and they are much better than random selection and method of picking the best. Moreover, the 

decision tree with parameter 0.05 is better than the other models, and it is significantly (𝛼 < 0.001) 

better than the method of picking the overall best, the reason could be that it is less overfitting to 

the training set. 

Table 16. Parameters of the distributions used to generate simulated data set. 

   option 0 option 1 

 f1 f2 𝜇 𝜎 𝜇 𝜎 

group 1 
≤0.5 

≤0.8 0.5 0.2 0.4 0.2 

group 2 >0.8 0.3 0.2 0.8 0.2 

group 3 
>0.5 

≤0.8 0.4 0.2 0.6 0.2 

group 4 >0.8 0.9 0.2 0.2 0.2 
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Table 17. The mean target values of the generated data. 

 option 0 option 1 

group 1 0.482 0.371 

group 2 0.278 0.799 

group 3 0.443 0.633 

group 4 0.918 0.208 

 

 
Figure 34. Results of running our decision tree algorithm with different significant levels on 
the simulated data, compared with random selection method and the method of picking the 
overall best option. 

 
Figure 35. Results of running our decision tree algorithm on 7 features with different 
significant levels on real ASSISTments experimental data sets, compared with the decision 
tree constructed with only one feature, prior master speed, and another two methods, 
random selection and picking the overall best option. 

Another issue we want to focus on is the structure of the decision trees. In all constructed trees, the 

maximum depth is 5 and the minimum depth is 2. These trees have the same structure on the top 2 

levels: the feature f1 is used in the root node, and f2 is used in both of nodes in the 2nd level. The 

mean of all cut points of f1 is 0.491, the mean of cut points of f2 in the left node is 0.665, and 0.685 

in the right node. The trees have the structure that is similar with the pre-defined one, except that 
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they have more levels since we impute the data with some noise – the other four features generated 

with uniform distribution. 

Real Data 

1. Results 

The second experiment is deployed on the data set collected from 22 real ASSISTments 

experiments, as described in Section 5.3. In this work, we used 7 features, prior completion rate, 

prior percent of correctness, prior master speed, imputed gender, learning rate in previous 3 days, 

percent of correctness in previous 3 days, and prerequisite performance. As illustrated in Section 

5.3, we used these 7 features in only 2 experimental data sets, experiment 293151 and 226210, and 

the first 6 features in other 20 data sets, because too many missing values of prerequisite 

performance in the other 20 data sets.  

In this experiment, we run our decision tree algorithm with different significant levels, 0.05, 0.1, 

0.2, 0.3, 0.5, and 0.9. We also use only one feature, prior mastery speed, to build decision trees 

with significant level 0.9 on this data. The parameter of minimum size is also set to 20 in the 

decision tree induction. These methods are also compared with random selection and picking the 

overall best option. 

Each method is evaluated with 5-fold cross validation in each experimental data set, and the average 

of the 22 results is shown in Figure 35. In the training set, the decision tree with larger significant 

level performs better, but this also could result in more likely to be overfitting. Such as in the testing 

set, the decision tree with parameter of significant level 0.05 is better than the other decision trees 

that are constructed on the same set of features. More interesting, the decision tree based on only 

one feature, prior master speed, is even better than the ones built with more features, but it is not 

statistical-significantly (𝛼 = 0.9) better than picking the overall best. Finally, we can conclude that 

even though some decision trees might be overfitting, if we use appropriate features and 

parameters, we could get a better result, at least as well as, than just picking the overall best option 

for all students.  

2. Extracted Rules 

As aforementioned, it is easy to extract rules from a decision tree that are used to make 

personalization for students. Here we will show a decision tree built on one of the ASSISTments 

experimental data sets.  
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Figure 36. A decision tree constructed on an ASSISTments experimental data. 

In this ASSISTments experiment, students were randomly assigned into control group or 

experiment group. The control group received problems where students had the option to click on 

a hint button which gave the answer. While the experiment group received problems that did not 

have the option to click on a hint button, but received help in the form of video buggy messages 

(Selent & Heffernan, 2015). Students received a short 20-30 second video when they entered a 

predicted incorrect answer. This video explained what process the student used to arrive at their 

incorrect answer and how to start on the correct solution path. If a student entered an incorrect 

answer that was not predicted, a generic message stating that the student’s answer was incorrect 

was shown.  

A constructed decision tree on this data set in shown in Figure 36. It is easy to estimate a student’s 

learning outcome, from this tree, in the control group or experiment group by given student’s 

features. To make customization, we can extract following 4 rules from this tree: 

1. If a student’s percent of correctness in previous 3 days is no larger than 0.5, then assign the 

student into experiment group; 

2. If a student’s percent of correctness in previous 3 days is larger than 0.5 and z-score of prior 

mastery speed is no larger than 0.39, then assign the student into control group; 

3. If a student’s percent of correctness in previous 3 days is larger than 0.5, z-score of prior 

mastery speed is larger than 0.39, and unknown guessed gender, then assign the student into 

experiment group; 
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4. If a student’s percent of correctness in previous 3 days is larger than 0.5, z-score of prior 

mastery speed is larger than 0.39, and guessed gender is female or male, then assign the 

student into control group. 

5.4.5. Conclusion 
We make several contributions in this work. First, with respect to algorithms, we introduce a new 

discretization algorithm that produces a split value for a continuous feature with the best “cross 

effect.”  Furthermore, we implemented a decision tree induction algorithm that can estimate a 

student’s learning outcomes with different choices, and thus make a customization for the student.  

Second, with respect to evaluating our algorithm, we tested the decision tree algorithm with both 

simulated and real data, and generate several useful rules.  We applied our approach in the context 

of actual experiments with data generated by real students in a diverse set of middle-school 

classrooms.  While such data are noisy and messy, they provide a much better estimate of the effect 

of personalization and the impact of algorithm choices than synthetic students generating fake data.   

In this section, we have demonstrated the usefulness of our decision tree algorithm in making 

personalization, and ability of capturing the pre-defined customization structure in a simulated data 

set. In the next section, I will explain how to combine this decision tree algorithm with bandit 

algorithms to make decision in the bandit problems. 

5.5. Bandits in Decision Tree 

To utilize multiple features in bandit problems, we will combine the decision tree algorithm, 

described in previous section, with bandit algorithms. At each time 𝑡𝑖, we first construct a decision 

tree on the previous context, {𝑥1, 𝑥2, … , 𝑥𝑖−1}, and observed rewards, {𝑟1, 𝑟2, … , 𝑟𝑖−1}. Then we 

apply a bandit algorithm for each leaf node in the tree, as illustrated in Figure 37. For current student 

with context, 𝑥𝑖, we first determine which leaf node it belongs to, and then use the corresponding 

bandit algorithm to make selection. For example, a student with prior mastery speed 0.3 will be 

assigned with the Bandit 2 in the Figure 37 to make selection for him/her.  

 
Figure 37. Apply a bandit algorithm for each leaf node of decision tree. 



81 

 

In additional, there are two crucial problems we need resolve in this approach. The first problem 

is: how to maintain the decision tree structure? The decision tree constructed at current time might 

produce positive cross effect in the next few time steps, but probably be useless after seeing several 

new students whose optimal treatments are different from the ones outputted from the decision tree. 

Therefore, we need to reconstruct the decision tree every few time steps. However, another problem 

arises here. If we make the reconstruction too frequently, like every round, then it would slow down 

the process of deciding a selection for a student. In the opposite way, if reconstruct decision tree 

too infrequently, then the tree might not be reliable. To deal with this dilemma, our approach is to 

reconstruct the tree frequently at the early time, and increase the frequency when seeing more and 

more students. The frequency is set to be: reconstruct the tree every student when #students<50; 

every 10 students when #students<100; every 50 students when #students<500; otherwise, every 

100 students. 

The second problem is: how to evaluate the contextual bandits? That is, how to estimate the reward 

for student with a specific condition, especially when the student’s real condition is different with 

the one outputted by the bandit algorithm? In this work, we will use an evaluation process like the 

one described in Figure 13. For a student 𝑠𝑖 at current time with condition 𝑐𝑖 assigned by the bandits 

with decision tree, we first determine which leaf node the student belongs to, and then filter out the 

set of students, say 𝑆𝑖, in the data falling in the same leaf node. Finally, we pick a random student, 

𝑟𝑠𝑖, with the same condition 𝑐𝑖 from 𝑆𝑖, and consider the reward of 𝑟𝑠𝑖 in the data as the estimated 

reward of 𝑠𝑖. For example, if a student with prior mastery speed 0.3 is assigned with condition C2 

by the bandit with decision tree in  Figure 37, then we first locate all students in the data set with 

prior mastery speed > 0.1, and condition C2, and then pick a random one from those students. The 

picked student’s real reward is assigned to the first student. 

5.5.1. Experiments Setup 

Bandits to Use 

To investigate the effect of context in bandits, we compare the contextual bandits, based on our 

decision tree algorithm, with UCB1 (Auer, Cesa-Bianchi, Freund, & Schapire, 2002). To be 

consistent, we will also use UCB1 in the leaf nodes of decision tree. The parameters in the process 

of decision tree construction are set to be: significant level – 0.3, and minimum size – 20. 

Simulation  

For each data set, we will simulate running 10 iterations with the two algorithms, UCB1 and 

DTBandit (bandits with decision tree). At each iteration, the whole data set is defined as an epoch; 
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while at each epoch, each student in the data set will be inputted into the algorithms one by one, 

until a certain number of students are tested.  

There are two metrics are used in this experiment, average reward and exploration rate. The average 

reward at each iteration at the time 𝑡𝑖 is computed by summing up all previous rewards and then 

divided by number of students, 
∑ 𝑟𝑗

𝑖
𝑗=0

𝑡𝑖
. The overall average reward is taking the average of values 

in the 10 iterations at each time step. To compute the exploration rate, we define if a bandit 

algorithm picks the condition that is not one with the best average reward at current step, then this 

bandit makes an explorative selection. Then the exploration rate at each time is the proportion of 

an explorative selection in the 10 iterations. 

5.5.2. Simulated Data 
As described in Section 5.4.4, this data set contains 800 instances, 2 different options, option 0 and 

option 1, and 6 features, 2 of which are used to define distributions that generate the data. The 

overall better option is option 0, with mean reward 0.53, so the upper bound of bandits without 

context is 0.53. As shown in Figure 34, the test result of decision tree model with significant level 

0.3 is 0.682, since we also set the significant level to be 0.3 in this experiment, so the upper bound 

of bandits with decision tree is 0.682.  

The results of running two algorithms on this data set are shown in Figure 38. We can observe that 

the performance of UCB1 is approaching its upper bound, and the bandits with decision tree 

performs better than the UCB1 after about 400 students. However, there is a large gap between the 

performance of bandits with decision tree and its upper bound. This might be resulted from two 

reasons: the algorithm still has high exploration rate after seeing many students; the constructed 

decision tree does not capture the true structure, which results in the optimal treatment outputted 

from the decision tree is suboptimal in the real data. 

Figure 39 shows the smoothed exploration rate of bandits with decision tree on this data. It is 

computed by taking average of values in 20 neighbor for each data point. From this figure, we can 

get that the exploration rate after 1000 students is about 0.2 in average, which mean this algorithm 

has about 20% probability to make explorative selection. This value is not as high as we expected, 

thus it is not the major reason. 

As defined in Table 16, we can regard the structure that defines how to generate the data as a 

decision tree, in which the root node is feature f1, and its left child and right child at the next level 

are both f2. Figure 40 shows the proportion of different features, over 10 iterations, used in the 
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constructed decision tree at each time step. As observed, the decision tree has high probability to 

use the same feature in the root node after seeing enough students. However, at the next level, it is 

more likely to use other features than the one, f2, used in the pre-defined structure. This might 

because the noisy features are effective in some cases. Moreover, as the bandit algorithms would 

generate options for students that are different with the real options in the original data, and thus 

results in bias in the reward estimation, which deviates the constructed decision tree from the true 

structure. Therefore, given that the constructed decision tree cannot capture the true pattern in this 

experiment, it might be the major reason that causes the performance of bandits with decision tree 

is much lower than upper bound. 

 

Figure 38. Average reward at each time step of running two algorithms, UCB1 and Bandit 

with Decision Tree, on the simulated data. Upper bound 1 is the upper bound of bandit 

without context, and upper bound 2 is the upper bound of bandit with decision tree. 

 

Figure 39. Smoothed exploration rate of bandits with decision tree on simulated data.  
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Figure 40. Over the 10 iterations in simulated data, the proportion of different features used 

in the constructed decision tree at each time step. (a) feature usage in the root node of 

decision trees; (b) feature usage in the left node at the 2nd level of decision trees; (c) feature 

usage in the right node at the 2nd level of decision trees. 
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Figure 41. The average reward over 22 experiments at each time step. 

 

Figure 42. The average reward in the experiment 263057 at each time step. 

5.5.1. Real Experimental Data 
As described in Section 5.3, this data is collected from 22 real ASSISTments experiments. The 

experiment with minimum size has 121 students, 1640 of maximum, and there are 10690 students 

in total. We ran DTBandit with 7 features on the data sets, and then compared it with UCB1 in all 

experiments. Since the results of decision tree in these data sets, as discussed in Section 5.4.4, did 

not get significantly better performance than the method of always picking the best, we did not 

expect the DTBandit would outperform than UCB1 over all experiments.  

After running the bandit algorithms on the 22 experiments, we took the average of reward value 

over all the experiment at each time step for each algorithm. As shown in Figure 41, the 

performances of DTBandit and UCB1 were very closed to each other, as expected. However, in 

some individual experiments, DTBandit could obtain better results, like in the experiment 263057, 

as shown in Figure 42. This might because in some experiments, students’ aptitude treatment effect 

could not be captured by the features, or the decision trees were too overfitted.  
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CHAPTER 6 

Future Works 

Future works may focus on different aspects of adaptive learning, like refining student models with 

skill connections, providing students with diverse types of interventions, and applying k-armed 

bandit algorithms at problem level. 

In this dissertation work, I investigated the effect of prerequisite performance in student models. 

However, the performance in other skills, not just the pre-required skills, could be reliable factors 

in student models, especially the skills have strong connections. For example, the skill square root 

and squaring are related with each other. Therefore, one future work would be to form a mechanism 

to compute the connection between skills and incorporate such connections into student models. 

Moreover, we can use such mechanism to evaluate a pre-defined skill structure or the one from 

other works (Chen, Wuillemin, & Labat; Scheines, Silver, & Goldin, 2014). 

To provide students with diverse types of interventions, a possible future work is to build 

expandable resources with crowdsourcing techniques. For example, implement a function in the 

intelligent tutoring system that enables teachers or domain experts, or even students, to write 

illustrative text, add tutoring videos or web pages for learning specific skills. Another possible 

future work is to enable students to assess or score the interventions. The assessment results are 

useful to evaluate educational efficacy of interventions. Therefore, we could use text mining and 

sentiment mining technology to generate important features from the interventions, and thus use 

the features to pick the appropriate interventions for students to improve their learning progress. 

In this work, we applied bandit algorithms at the problem set level – at each time step, pick the 

optimal conditional problem set for a student, in order to maximize the overall learning outcomes 

of a group of students. An alternative approach is to apply the bandit algorithms at the problem 

level, that is, at each time step, pick the proper related problem, or pick the optimal interventions 

along with the problem for a student, to speed up learning process, or reduce wheel spinning 

probability, or enhance score in retention test. Furthermore, it is interesting to use the method to 

explore other tutoring systems, such as Reading Tutor (Mostow & Beck, 2006). The challenge is 

to obtain a good data set that are large with a lot of interventions.  Are we able to find interesting 

patterns, and what are the potential gains for customization? 
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