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Abstract

This Ph.D. thesis deals with the price impact in the VIX futures market from a statistical and

mathematical perspective. The CBOE volatility index, VIX, is known by investors as the

fear index. It was introduced to measure the investors’ view on the future expected volatility

of the S&P 500 stock index. Investors cannot trade the VIX index directly; however, one can

trade VIX futures, which gauge the market’s expectation of the 30-day implied volatility.

Market volatility spiked on February 8, 2018, drawing wide attention to volatility-based

products. On that day, the VIX went up more than 100% in intraday trading. The XIV, one

of the VIX-based exchange-traded products (ETPs), dropped more than 80%, triggering an

”acceleration event.” As a consequence, the XIV issuer had to terminate this product. One

of the factors contributing to this event was the architecture of the ETPs written on VIX:

a daily contracts rolling where the short-term (mid-term) ETPs roll every day to maintain

a weighted average of one month (five months) to expiration. Therefore, a large number of

shares is expected to be acquired and liquidated every day before the market closes.

We study the effect of VIX ETPs on the price of VIX futures by investigating the impact

curves at different times of the trading day. We find that the impact curve corresponding to

the time before market close is the lowest. Our empirical results show that impact curves

exhibit a power-law. This is theoretically justified by using dimensional analysis to show

that if the immediate price impact is a function of the trade size, it is given by a power

function.
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ABSTRACT x

We propose a mean-field game framework for the VIX futures market to complement

our empirical study, where traders can trade in a regular limit order book (RLOB) and a

trade-at-settlement order book (TASLOB). We assume that there are many high-frequency

traders (HFTs) in the market, and they trade in both order books. We investigate the

case where the number of HFTs tends to infinity. While transactions in RLOB suffer from

a temporary price impact, transactions in TASLOB do not, but they trade at an unknown

price, the daily settlement price that is only determined at the end of the trading day. We use

a extended mean-field games approach where interactions between agents happen through

controls instead of states, to solve an optimal liquidation problem in two order books. We

solve the optimal liquidation problem for three cases. In the first case, there are only two

types of traders: HFTs and noise traders. We introduce the exchange-traded funds’ issuer

(ETFs) into the market in the second case. They provide a large amount of additional

liquidity on one side of the TAS limit order book (TASLOB). In the third case, we solve

the optimal liquidation problem of HFT, where ETFs buy a limited number of shares in

TASLOB.



Chapter 1

INTRODUCTION

On February 5, 2018, the S&P 500 stock index plunged by roughly 4 percent, and the VIX

index moved up most in a single day in the 25 years of index history. The XIV, the exchange-

traded note that tracks the inverse daily return of the VIX index, had to be terminated before

its actual redemption date due to a greater than 80 percent drop in a single day. Several

factors could have contributed to the development. One of them was the architecture of VIX

Exchange-traded products (ETPs), where constant-maturity rolling and leveraged exposure

needed to be achieved daily. Consequently, a large volume of shares had to be acquired or

liquidated before the market closed.

In this thesis, we will study the effect of the VIX ETPs architecture on VIX futures

by looking at the immediate price impact of VIX futures at different times of the trading

day. Bouchaud (2009) defines price impact as the correlation between an incoming order (to

buy or to sell) and the subsequent price change. Price impact is essential in both practical

and theoretical studies. In the theoretical studies of mean-field games, both temporary and

permanent price impacts are crucial in modeling price formulation. In empirical research, es-

pecially algorithmic trading, price impact is critical for designing algorithmic trade execution

1



INTRODUCTION 2

strategies since their trades also move prices.

Price impact has been studied extensively in the equity market. Mantegna, Lillo and

Farmer (2003) studied the price impact of stocks traded in the New York Stock Exchange

for four different years, Lim and Coggins (2005) examined the immediate price impact of

stocks traded in the Australian Securities Exchange during 2001–2004, and Wilinski, Cui,

Brabazon and Hamill (2015) analyzed the price impact of individual trades of stocks in

the London Stock Exchange during 2011–2012. They have found that the price impact of

individual trades is a concave function of trade size, e.g., I(ω) = α ·ωβ where 0 < β < 1 and

ω is the trade size, and I(ω) is the subsequent change in mid-quote resulting from trade.

Toth, Lemperiere, Deremble, de Lataillade, Kockelkoren and Bouchaud (2001) discovered

by using proprietary data that the price impact of futures contracts follows the square-root

law. That is ∆(Q) = Y σ
√

Q
V
, where Q is the size of metaorder, ∆(Q) is the price change

between and first and last trade of metaorder, and V is the total traded volume.

The first part of the thesis aims to address three issues. First, we want to examine the

immediate price impact of VIX futures using trade and quote data and estimate the possible

price impact models out of the available data. Second, we investigate the VIX futures’ price

impact at different trading times to uncover the effect of the trade from ETFs/ETNs’ issuers

on VIX futures. Third, we show that the price impact model obtained from empirical data

is consistent with the formula obtained theoretically using dimensional analysis with some

critical assumptions on the price process.

To complement our empirical study, the second part of this thesis examines the optimal

trading strategies of high-frequency traders in the VIX futures market. In this market,

traders can trade in two order books, the regular limit order book (RLOB) and the trade-at-

settlement limit order book (TALSOB). While transactions in RLOB suffer from a temporary

price impact, transactions in TASOB do not. However, trades in TASLOB are transacted

at an unknown future price, the daily settlement price that is only determined at the end of

the trading day. We assume that there are infinitely many high-frequency traders (HFTs) in



INTRODUCTION 3

the market, and our work will take place in a mean-field game framework where each trader

interacts via the mean-field. Specifically, we use the extended mean-field games approach

where interactions between agents are through controls instead of states to solve an optimal

trading problem in two order books. We also expand our framework to include ETFs/ETNs

that provide liquidity on one side of TASLOB.

The next chapter reviews the literature on price impact and the optimal execution prob-

lems in both the classical and mean-field game approaches.



Chapter 2

LITERATURE REVIEW

Price impact has been a topic of interest to empirical and theoretical research within the area

of finance. Kraus and Stoll (1972) conducted the earliest empirical study of price impact,

where they found that block trades affect a temporary price change as well as a change

in the underlying value of a stock. Several empirical studies of the aspect of immediate

price deviation related to trade size and market liquidity have examined in various stock

exchanges, including New York Stock Exchange (NYSE), Australian Securities Exchange

(ASX), and London Stock Exchange (LSE).

In this thesis, we want to examine the impact of the transaction size on the price in the

VIX futures market. The most relevant previous empirical works are Mantegna, Lillo and

Farmer (2003), Lim and Coggins (2005), and Wilinski, Cui, Brabazon and Hamill (2015).

Mantegna, Lillo and Farmer (2003) proposed a method to estimate individual price impact

by observing the price change as a response to a single trade and measuring time in units

of transactions rather than seconds. They measured price impact by taking the difference

between the mid-price before and after a single trade on a logarithmic scale. This method is

applied to study the 1000 largest firms on NYSE traded between 1995-1998. They analyzed

4



LITERATURE REVIEW 5

the price impact based on the firm’s size by grouping them into 20 groups based on their

market capitalization. They find that the slope of price impact as function of the normalized

transaction size vary roughly from 0.1–0.5 on a log-log scale. A group with higher transac-

tions and lower market capitalization has a smaller slope than those with lower transactions

and higher market capitalization.

Lim and Coggins (2005) studied the price impact of trades in the Australian market where

they examined four years of data of the top 300 stocks also sorted by market capitalization.

They adapted the idea and methodology from Mantegna, Lillo and Farmer (2003). The

difference is the way they defined the normalized transaction size, which is defined as the

normalized daily-normalized volume to filter out the effects of intraday liquidity variation

where they argue that this filtration makes any comparison between stocks more meaningful.

Lim and Coggins (2005) found that a group of stocks with a lower market capitalization has

a higher impact than a group of stocks with a higher market capitalization, which is similar

to the results found by Mantegna, Lillo and Farmer (2003). However, the impact curves of

NYSE stock are increasing throughout the entire transaction size range for all groups. In

contrast, the ASX’s impact curves show decreasing slightly first and start to grow after a

certain transaction size. Lim and Coggins (2005) argued that this is because NYSE is a

quote-driven market while ASX is a purely order-driven market. Besides, they find that the

relationship between stock market capitalization and its liquidity is non-linear. Wilinski,

Cui, Brabazon and Hamill (2015) studied and analyzed the price impact of six stocks traded

on the London Stock exchange and investigated whether the impact function is invariant in

trading time. They found that the impact curves of the six stocks are consistent with the

findings of Lim and Coggins (2005), namely that the curves decrease for small trade sizes

and start to increase at about ω = 0.1. They also found that price impact is highest in the

first sixty minutes of the trading day and lowest in the last ninety minutes before the market

closes.
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On the theoretical side, Kyle and Obizhaeva (2016) use the dimensional analysis method

commonly used often in physics to obtain scaling laws expressing the general transaction cost

function in terms of trading volume and volatility. They find formulas for special cases of the

transaction cost function based on leverage neutrality and market microstructure invariance

assumptions. They also provide empirical evidence by testing the formula found in one

of the cases using Russian and U.S. stock data. Pohl, Ristig, Schachermayer and Tangpi

(2018) follow the method presented by Kyle and Obizhaeva (2016) to show that up to a

constant, the market impact of a meta-order is proportional to the square root of the size

of the meta-order. This result is the consequence of the assumption on the dimensionallity

of volatility. However, the empirical analysis is challenging since meta-orders are hard to

access. Instead, they apply a similar dimensional analysis method to predict the number

of trades per day from the observable variables, including volume of transactions, price of

shares, volatility, and cost per trade. In our study, we will adapt the method presented by

Pohl, Ristig, Schachermayer and Tangpi (2018) to find the price impact formula in the VIX

futures market.

Price impact is the main component of modeling optimal execution problems; thus, the

natural step is to investigate the optimal execution problem for traders in the VIX futures

market. The optimal execution problem is the problem of finding the best trading strategy

that maximizes or minimizes an objective function over a given trading period. The optimal

execution problem is critical to traders, especially those who have to acquire or liquidate a

large number of shares by a given time in an illiquid market. For instance, a trader who

needs to liquidate a large number of shares needs to find the best trading strategy where she

needs to trade fast enough to be close to her target price and, at the same time, make sure

that her trades do not pressure the price too much as her trading has market impact.

There are many works of literature focusing on optimal execution problems. Bertsimas

and Lo (1988) is among the first to solve the optimal execution problem using the dynamic

programming principle to obtain the optimal strategies that provide the minimum expected
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cost of trading over a given period of execution time. Almgren and Chriss (2000) generalized

the work of Bertsimas and Lo (1988) by including the variance of cost in the equation. Their

objective is to minimize the expected transaction cost arising from the permanent and tem-

porary price impact and volatility risk. Since then, several authors have extended the work

of Almgren and Chriss (2000). For example, Cheng, DiGiacinto and Wang (2017) added

to Almgren and Chriss (2000)’s model the penalty term that captures the risk of orders to

be filled or overfilled at the end of the execution period. They obtained the closed-form

expression for the optimal strategies in linear cases, and the classical Almgren–Chriss strate-

gies were recovered in limiting cases. Vaes and Hauser (2018) extended Almgren and Chriss

(2000)’s model by solving the optimal acquisition problem that accounts for volume uncer-

tainty as in their model, the volume becomes known only at the end of the execution period.

Kyle and Obizhaeva (2016) argued that the usual model of optimal execution problem that

includes temporary and permanent price impact fails to capture the intertemporal nature of

the supply/demand of security. They overcame the issue by having a dynamic model that

captures the supply/demand of security and found that if the trading time is chosen opti-

mally, supply and demand dynamics are the key factor in determining the optimal execution

strategy.

Many of the works on execution problems, including Almgren and Chriss (2000) assume

that trading is limited to one (traditional) venue. Kratz and Schöneborn (2014) added

another trading venue to the optimal liquidation model by including what is known as a dark

pool. In a dark pool, the available liquidity is not displayed to the public for this trading

venue, so the trade execution is uncertain. A trader may have to wait until a matching

order arrives for her order to execute. The problem of optimal liquidation that focuses on

alternative trading venues instead of the traditional one was also investigated by Guéant

and Lehalle (2015). They studied optimal liquidation problems with limit orders instead of

market orders, which had been developed by Bayraktar and Ludkovski (2014). Cartea and

Jaimungal (2015) investigated optimal execution problems involving limit and market orders
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using a target volume schedule strategy proposed by Almgren–Chriss and found that using

both limit and market orders outperforms the Almgren–Chriss classical strategy. Readers

can find more literature reviews on optimal execution problems in Laruelle and Lehalle

(2014), Alfonsi, Fruth and Schied (2010) and Jaimungal and Kinzebulatov (2014) among

others.

Most literature reviews on optimal execution problems study optimal trading in a single

agent setting. There has been some work investigating multiple agent settings. For instance,

Brunnermeier and Pedersen (2005) studied large traders who need to liquidate their position,

and other traders know their need to liquidate, and Moallemi, Park and Roy (2012) who

considered an agent who aims to liquidate a large position while facing an arbitrageur who

tries to profit from her trades. Using standard techniques, the problems that account for

multiple agents are challenging and intractable. To overcome the difficulty of multi-agent

issues, one can consider solving the optimal execution within the mean-field game framework.

A Mean-field game in optimal trading deals with the optimization problem of infinitely

many players, where the interaction between players is via the mean-field. Each player’s

action is only affected by the mean-field of all other players, not by each particular player.

The terminology and ideas of mean-field theory model were developed initially by Huang,

Malhamé and Caines (2006) and Huang, Caines and Malhamé (2007), and around the same

time, similar models were also developed independently by Lasry and Lions (2007). Carmona

and Delarue (2018a) and (2018b) provides a comprehensive discussion of mean-field game

theory and applications from a probabilistic point of view. After the pioneering works of

Huang, Malhamé and Caines (2006) and Lasry and Lions (2007), literature on optimal

execution using a mean-field game framework has been expanding, e.g., Gomes, Patrizi and

Voskanyan (2014), Guéant, Lasry and Lions (2011), Cardaliaguet and Lehalle (2017), and

Huang, Jaimungal and Nourian (2019) among others.



Chapter 3

PRICE IMPACT OF VIX FUTURES

This chapter reviews financial products based on/related to the VIX and the methodology for

estimating the price impact of VIX futures from the actual data set. The chapter is organized

as follows: section 3.1 gives an introduction to the VIX index and related products. Section

3.2 describes the data set used in this study. Section 3.3 presents the methods used to analyze

price impact. Section 3.4 describes the empirical findings. Section 3.5 outlines a method

to obtain a price impact formula using dimensional analysis. Section 3.6 summarizes and

concludes.

3.1 VIX Index, VIX Futures, and VIX ETPs

The CBOE Volatility Index (VIX Index) was first presented in 1993 as a measurement of the

market’s expectation of 30-day implied volatility based on the S&P 100 Index (OEX Index).

In 2003, the Chicago Board Options Exchange (CBOE) and Goldman Sachs introduced a

new method to determine the VIX, which is now based on the S&P 500 index (SPX) to

track the expected volatility based on the SPX put and call options over a range of strikes.

It was not until March 24, 2004, that the CBOE launched volatility as a tradable asset

9
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product, introducing VIX futures as a trading vehicle that allows investors to trade on VIX.

In February 2006, CBOE launched another volatility product, VIX options. VIX options

are European style options, i.e., they can be exercised only on the expiration date. Many

investors trade VIX products as instruments to hedge their portfolios as they generally

correlate negatively with stocks.

Nowadays, several other VIX-related products have been introduced. The primary way

to trade on VIX is to buy VIX exchange-traded funds (ETFs) and VIX exchange-traded

notes (ETNs). However, one has to keep in mind that VIX ETFs and ETNs are not VIX

spot; they are the collections of VIX futures that only roughly approximate the performance

of VIX. VIX ETFs and ETNs have short-term and mid-term types. The construction of

the two types is similar, except for the monthly contracts they hold. The short-term type

holds the first- and second-month VIX futures contracts that roll daily, while the mid-term

type holds positions in fourth- to seventh-month VIX futures that also roll daily. The most

popular VIX exchange-traded product is VXX, the iPath S&P 500 VIX Short-Term Futures

ETN issued by Barclays PLC. This product matured/expired on January 30, 2019, and a

similar product known as VXXB was issued to replace the expired VXX.

Figure 3.1 and 3.2 demonstrate the daily rolling of VXX shares. Assuming that short-

term ETPs compose the nearest two months of VIX futures, on December 17, 2019, the VXX

portfolio would contain 100% January 2020 VIX futures contracts. There are 22 trading days

before the expiration of January 2020 VIX futures. To shift the portfolio to the next day,

VXX should contain a mix of 21/22 of January 2020 VIX futures and 1/22 of February 2020

VIX futures. Figure 3.1 displays the daily position VXX portfolio containing January and

February VIX futures between December 17, 2019 - January 22, 2020. Figure 3.2 displays

the number of shares of January VIX futures that need to be sold and the number of shares

of February VIX futures that need to be bought. These two figures show how many shares

the issuer has to buy or sell certain contracts by the end of the day, and the number of these

shares is large. Consequently, the trades of these shares should move the price.
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Figure 3.1: VXX portfolio between December 17, 2019 - January 22, 2020.

Figure 3.2: The daily VXX shares allocation between December 17, 2019 - January 22, 2020.
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3.2 Data

3.2.1 Data

This study is based on Trades and Quotes (TAQ) data (TAQ contains the prices for all

transactions as well as the best bid and ask price with timestamp) of June-December 2019

VIX futures contracts obtained from ”Quote Recap (QR)” data from BMC. We use these

data to investigate immediate price impact of trades of VIX futures by applying method

similarly to Mantegna, Lillo and Farmer (2003) used to examine the price impact of stocks

in the NYSE. Since futures have an expiration, we treat each month VIX futures contract

as one individual asset. Each VIX futures contract is available to trade up to 9 months to

expiry. However, the most active trading days are roughly between 2 months to 1-day to

expiration. We can see from figure 3.3 that the total daily traded volume of January 2020

VIX futures is slowly increasing and has become more significant within the last two months

before the contract expires. We presume that VIX exchange-traded products (ETPs) trade

activities contribute to this increase in daily trade volume. Hence we are only interested

in the data between two months to a day before expiration. For example, June 2019 VIX

futures expired on Wednesday, June 19, 2019. We use June VIX futures traded between

April 18, 2019, and June 18, 2019. Besides, investors can trade VIX futures during these

sessions: regular trading hours from 8:30 a.m. to 3:00 p.m. and extended trading hours,

which are before and after the regular trading hours session, specifically from 5:00 p.m. of

the previous day to 8:30 a.m. and from 3:00 p.m. to 4:00 p.m. For our study, we consider

only the regular trading session as this is the session where most activity occurs. Thus, all

records that are not occur during regular trading session are ignored. Trading that happens

on Saturday and Sunday is aso not taken into account. Note that an order by a single party

may be traded with multiple counterparties; therefore, trades that occur in succession with

the same timestamp will be lumped together as a single trade.
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Figure 3.3: January 2020 VIX futures daily total traded volume from April 22, 2019 - January
22, 2020.

3.2.2 Trades Volume Observations

We observe trading volume and transaction size at different times of the trading day before

reviewing the methodology for estimating price impact. Figure 3.4 exhibits the histogram

of the total traded volume of each fifteen minutes time interval. The histogram displays

a U-shape, where a large volume occurs at the beginning and the end of trading hours,

and less volume occurs in the middle of the day. Figure 3.5 displays the frequency of

transactions with a size greater than 100 shares that happen in the last seventy-five minutes

of regular trading hours. Each window corresponds to a fifteen minutes time interval. The

highest traded volume occurs fifteen minutes before the market closes, 4:00 p.m. - 4:15 p.m.
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EST. Moreover, the last fifteen minutes contain more large-size trades than any other time

intervals; some traders have to liquidate/purchase a specified amount of shares before the

market closes, so they have to send larger orders to execute.

Figure 3.4: June 2019 VIX futures total traded volume in different timespan traded between
April 17 - June 18, 2019.

Figure 3.5: The frequency of transactions with size greater than 100 that occur between 3:00
p.m. - 4:15 p.m.
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3.3 Method

In this section, we describe the method used to study price impact. We adopt the approach

proposed by Mantegna, Lillo and Farmer (2003) for calculating price impact.

3.3.1 Estimating Available Variables

Based on the TAQ data, we can obtain the estimates of three variables; price impact (∆p),

transaction size (q), and volatility (σ). We detail the method to calculate each variable next.

Estimate Price Impact (∆p)

Bouchaud (2009) defines price impact as the correlation between an incoming order and the

subsequent price change. In this study, we measure price impact, ∆p, as the consequence of

a trade transaction. That is, for each transaction of volume q trading at time t, if the next

event is a quote revision, we define

∆p(ti+1) = p(ti+1)− p(ti) (3.1)

where p(t) = log

(
BPt + APt

2

)
. BPt is the best bid price, and APt is the best ask price at

time t. ti is the time of pre-trade price, and ti+1 is the time immediately before the next

trade occurs. We calculate the logarithm of the mid-price as we want to obtain the relative

price change resulting from the trade. The intuition is that, if we let Pt =
BPt + APt

2 , then

∆p(ti+1) = logPti+1
− logPti = log

(
Pti+1

Pti

)
= log

(
1 +

Pti+1
− Pti
Pti

)
.
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Daily Normalized Volume (ω)

For each transaction size q, we define the daily normalized volume (ω) as

ω =
q

V
(3.2)

where V is the total daily traded volume. Note that in this paper, V is calculated only from

data recorded during regular trading hours since we exclude data recorded during extended

hours from the analysis.

Daily volatility (σ)

The volatility, σ, is the daily volatility calculated using the method discussed by Kyle and

Obizhaeva (2016): it is calculated as the sum of squared one-minute changes in the mid-quote

of the best bid and best ask at the end of each minute during the trading hours.

3.3.2 Getting the Impact Curve

Before fitting the impact curve, we define the normalized impact, I(ω), as

I(ω) =
∆p

σ
.

We want to take into account that some days are significantly more volatile. Thus we divide

each relative price impact by the volatility from that day.

We sort the data according to ω and bin them into 20 groups so that each group has ap-

proximately the same number of points/transactions. Then we calculate the average value

of normalized price impact and the average ω of each group. We denote them as I(ωi) and

ωi for i = 1, ..., 20 respectively. These 20 points represent the mean impact function for each

VIX futures contract.
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3.4 Results

We first discuss the price impact function of five months VIX futures contracts from June

2019 to October 2019. Then we examine whether the price impact function differs across the

trading day by dividing each day into several time intervals and analyzing the price impact

function during each period. The following sections present the results of analyzing price

impact functions of the five VIX futures contracts investigated in our study.

3.4.1 Analysis of the Price Impact Function of five VIX futures

Contracts

Figure 3.6: The impact curves of June, July, and August 2019 VIX futures traded from 9:30
AM - 4:15 PM EST (left), and the corresponding log-log plot (right).

This section investigates the impact curve of each month VIX futures contract traded two

months to one day to maturity. For instance, June VIX futures 2019 expire on Wednesday,

June 19, 2019; we use the data of these futures traded between April 18, 2019 - June 18, 2019.
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We plot the average price shifts I(ω) in absolute value against the normalized transaction

size (ω). Figure 3.6 shows the impact curves of June, July, and August 2019 VIX futures

(three out of five contracts) traded from 9:30 AM - 4:15 PM EST. One can see that all impact

curves are concave, which is consistent with the findings for US and Australian stocks in

previous studies by Mantegna, Lillo and Farmer (2003); Lim and Coggins (2005); Wilinski,

Cui, Brabazon and Hamill (2015). The other two contracts’ impact curves(September 2019

and October 2019 VIX futures) also illustrate similar results.

Figure 3.7: Impact curve of June 2019 VIX futures. The red dots are the scatter plot of
average absolute price change corresponding to the norm of average normalized volume. The
green line is the fitted line of the function I(ω)

σ
= α · (ω)β. The blue line is the fitted line

of the function I(ω)
σ

= a + b · log(ω). We use the red, blue, and green dots to highlight the
difference price impact value corresponding to the same normalized volume when fitting the
different models to the data.
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2019 VIX α 95 % confident β 95 % confident Goodness H
futures contracts interval of α interval of β of fit value

June 0.0031 (0.0027, 0.0034) 0.4516 (0.4018, 0.5014) 0.9791 0.4491
July 0.0041 (0.0034, 0.0047) 0.3757 (0.3053, 0.4461) 0.9435 0.4528

August 0.0032 (0.0029, 0.0035) 0.4790 (0.4297, 0.5281) 0.9828 0.4582
September 0.0024 (0.0021, 0.0026) 0.4338 (0.3849, 0.4851) 0.9741 0.4514
October 0.0022 (0.0019, 0.0025) 0.3553 (0.2990, 0.4134) 0.9482 0.4843

Table 3.1: Parameter estimates of price impact function G = α·ωβ, where G is the normalized
absolute price change. ω is the normalized trade volume and the corresponding Hurst value
based on 1 minute interval.

We see from the linear interpolation that connects two red dots (the calculated absolute

relative price impact corresponds to the normalized volume) that the impact curve is concave.

Thus, we fit the data using the fractional power and log models, and we find that both models

fit the data well. We fit the model I(ω)
σ

= α · (ω)β (fractional power model) to the June 2019

VIX futures contract data and find that α = 0.0031, β = 0.4516 and the goodness of fit (a

statistical test that determines how well a model fits a given set of data) is 0.9791. When

fitting the fractional power model to other months VIX futures contracts, we obtain a similar

curve with a different value of β′s and slightly different value of α’s as seen in Table 3.1. In

addition to fractional power model, we also fit the log model, I(ω)
σ

= a + b · log(ω), to the

data. The log model also fits the data well with the coefficients a = 0.00244, b = 0.00048,

and the goodness of fit is 0.9749. The blue line in Figure 3.7 illustrates log model fit. Table

3.2 shows the parameter estimates of the log model for the price impact function of the other

month’s VIX futures.

2019 VIX futures a 95 % confident b 95 % confident Goodness
contracts interval of a interval of b of fit
June 0.00244 (0.00223, 0.00264) 0.00048 (0.00043, 0.00053) 0.9749
July 0.00363 (0.00347, 0.00378) 0.00069 (0.00064, 0.00073) 0.9924

August 0.00244 (0.00216, 0.00272) 0.00048 (0.00041, 0.00055) 0.9573
September 0.00193 (0.00180, 0.00206) 0.00038 (0.00034, 0.00041) 0.9833
October 0.00197 (0.00187, 0.00207) 0.00037 (0.00034, 0.00039) 0.9885

Table 3.2: Parameter estimates of price impact function G = a+ b · log (ω), where G is the
normalized absolute price change. ω is the normalized trade volume.
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3.4.2 Analysis of VIX futures price impact at different times of

trading day

We estimate the price impact of trades during the specific trading time interval. We group

the data according to their timestamp, and the transaction volume is normalized the same

way as discussed earlier. We first group the data into eight groups: 9:30 AM - 10:00 AM,

10:00 AM - 11:00 AM, 11:00 AM - 12:00 PM, 12:00 PM - 1:00 PM, 1:00 PM - 2:00 PM, 2:00

PM - 3:00 PM, 3:00 PM - 4:00 PM, and 4:00 PM - 4:15 PM.

Figure 3.8: Impact curves of June 2019 VIX futures traded at different times of the day.
The left plot is the plot of the price impact against the normalized transaction price, and
the right plot is the corresponding log-log plot of the left curves.

Figure 3.8 shows the price impact curves for different trading times of the day of June

2019 VIX futures contracts. The reader can find the impact curve of other months contract

in Appendix A. The results show that trades between 9:30 AM - 4:00 PM EST have a similar

price impact. However, the period after 4:00 PM produces the lowest price impact of all.
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We test the significant difference of each curve from the others using model

y = b0 + b1x+ b21x∈A,

where A is the specific time interval we want to test. Our hypothesis tested are H0 : b2 = 0

and H1 : b2 ̸= 0. If b2 = 0, the average impact of trade occurring during A is different from

trades during the other time.

VIX futures contracts b0 estimate b1 estimate b2 estimate p-value for b2
June 2019 VIX futures -6.6073 0.4138 -0.4772 2.0e-11
July 2019 VIX futures -6.3718 0.5417 -0.7042 4.6e-11
August 2019 VIX futures -6.7585 0.2524 -0.6542 1.9e-11
September 2019 VIX futures -6.5602 0.4227 -0.4564 1.06e-4
October 2019 VIX futures -6.4094 0.4435 -0.7113 8.5e-16

Table 3.3: The estimates of b0, b1, b2 of the last fifteen-minute impact curves of June, July,
and August 2019 VIX futures and the p-value resulting from the significant difference test of
the last fifteen minutes impact curve from the others.

The results in table 3.3 show that our test rejects H0 with p-value almost 0. Thus, the

average impact of trade occurring from 4:00 PM - 4:15 PM is significantly lower than in

other periods. We argue that this is because ETPs’ issuers are actively buying/selling a

large amount of VIX futures shares during the last fifteen minutes, consequently yielding

high liquidity during this period compared to the other times, which results in a lower impact

compared to other trading times.

3.4.3 Price impact of VIX futures vs. stocks

This section compares the immediate price impact of VIX futures and stocks. We select

five stocks from different market capitalization sizes for the comparison analysis, Twitter

Inc (TWTR), American Airlines Group Inc (AAL), Overstock.com Inc (OSTK), Rite Aid

Corporation (RAD), and Vaxart Inc (VXRT). The data of stocks in table 3.4 are extracted

from TAQ data from April 6, 2021 – May 13, 2021, trading during regular trading hours

(9:30 am – 4:00 pm EST), and for the two VIX futures, we use data of two months – a day
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before futures expire. We apply the estimating price impact method discussed of Section 3.3

to the chosen stocks and compare the results with June and July 2019 VIX futures. Figure

3.9 displays the impact curves of the five stocks and two VIX futures.

Stocks/VIX futures Avg. price per share Avg. daily traded volume

Large cap
TWTR $60.83 per shares 18,377,151
AAL $21.86 per shares 33,650,575

Medium cap
OSTK $73.85 per shares 2,257,180

Small cap
RAD $18.43 per shares 1,941,356
VXRT $8.45 per shares 28,302,133

VIX futures
June 2019 VIX futures 17.09 index points 78,730
July 2019 VIX futures 16.25 index points 54,153

Table 3.4: Data of five stocks from April 6, 2021 – May 13, 2021 trading during regular
trading hours (9:30am – 4:00 pm EST).

Figure 3.9 displays the impact curves of the five stocks and two VIX futures. By compar-

ing the impact curves between stocks, we find that stocks with larger market capitalization

exhibit lower impact curves than those with market capitalization, which is consistent with

the result found by Mantegna, Lillo and Farmer (2003). When compared with the impact

curves of these stocks with the impact curves of the VIX futures, we find that the impact

curves of VIX futures are higher than the impact curves of stocks. The results imply that

trades in the VIX futures market have more effect on the price than those in the stock mar-

ket. We argue the difference in the level of the price impact curves of stocks and VIX futures

is the result of the tick size 1. In the stock market, the tick size is $0.01 per share 2, but in

the VIX futures market, the tick size is 0.05 index points or $50 per share. Therefore, it is

more expensive to buy and immediately sell a share of VIX futures than a stock share.

1The minimum price movement of a trading instrument in a market.
2The minimum tick size of $0.01 per share is for stocks over $1.00, while stocks under $1.00 can be

quoted in increments of $0.0001 per share. For some less liquid stocks, the increment can be higher than
$0.01.
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In the next section, we provide the theoretical motivation for why the immediate price

impact formula unveils the form of fractional power.

Figure 3.9: Price impact curves of VIX futures and stocks

3.5 Dimensional Analysis for Impact Formula

In this section, we will use the dimensional analysis technique discussed in Pohl, Ristig,

Schachermayer and Tangpi (2018) and Kyle and Obizhaeva (2016) to find the relationship

between price impact and other variables available from empirical data. Their analysis finds

that the market impact is proportional to the square root of the size of meta-order. Our

empirical research of VIX futures price impact results shows that the price impact of VIX

futures is proportional to the fractional power of the order size, where those fractional power
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are about 0.3 – 0.5.

One assumption in Pohl, Ristig, Schachermayer and Tangpi (2018) analysis is that the

price processes are driven the standard Brownian motion. This assumption leads to the fact

that the dimension of σ2 is 1
T . We suspect that the price process in our case may be driven by

fractional Brownian motion (fBm) instead of standard Brownian motion. Since fBm scales

differently in time compared to standard Brownian motion, it will influence the dimension

of σ2. As a result, we will get a different proportion between price impact and order size.

We follow a similar method discussed in Pohl, Ristig, Schachermayer and Tangpi (2018)

with the main difference in the assumption that the price processes are driven by fBm.

3.5.1 Variables and their dimensions

We are interested in explaining the price impact of a given security. So we start with

identifying variables and their dimensions ([·]) that could influence the size of the market

impact. Let

• Q be the size of the individual order, measured in units of shares, [Q] = S,

• P be the price of security, measured in units of money per shares [P ] = U
S ,

• V be the traded volume of security, measured in units of shares per time [V ] = S
T ,

• σ2 = (σ2)t+Tt = Var

(
log(Pt+T )− log(Pt)

)
be the squared volatility of security, and it

is assumed to have [σ2] = 1
T2H .

The following is why we assume the dimensionality of sigma as above. Consider the

model

Pt = P0e
σWH

t (3.3)

where (WH
t )t≥0 is a fractional Brownian motion with Hurst parameter H, starting atWH

0 = 0,
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and σ is a constant. To estimate σ2, we rearrange (3.3) as

log(Pt)− log(P0) = σ(WH
t −WH

0 )

Var

(
log(Pt)− log(P0)

)
= σ2Var (WH

t −WH
0 )

= σ2E

[(
WH
t −WH

0

)2

− E
[
WH
t −WH

0

]2]

= σ2t2H .

Thus,

σ2 =

Var

(
log(Pt)− log(P0)

)
t2H

.

Since, Var

(
log(Pt)− log(P0)

)
is dimensionless, we have [σ2] = 1

T2H .

Now we have four explanatory variables that could influence price impact and three fun-

damental dimensions; S, T, and U. Next, we provide a formal definition for dimensional

invariance and make a key assumption necessary for further analysis.

Definition 1 (dimensional invariance). A function g : Rn
+ → R+ relating a quantity of

interest Y to the explanatory variables X1, ...Xn, i.e,

Y = g(X1, ..., Xn),

is called dimensionally invariant if it is invariant under rescaling the involved dimensions.

Assumption 1 The market impact G depends only on the above four explanatory variables,

i.e.,

G = g(Q,P, V, σ2),

where the function g : R4
+ → R+ and the quantity G are invariant under change of the units
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chosen to measure the dimensions S, T, and U.

Since we have only three equations resulting from the scaling invariance of the dimensions:

S, T, and U, and four explanatory variables: Q,P, V, and σ2, we need one more equation to

obtain a unique solution. The remedy to this is to introduce leverage neutrality introduced

in this context by Kyle and Obizhaeva (2016). The idea is traced back to Modigliani-Miller

equivalence, which tells us which quantities do or do not affect when leverage is changed,

and we discussed them in detail next.

We identify which quantities change if there is some change in leverage: denote by M,

the Modigliani-Miller dimension. It is a dimension measurement of the leverage L, where

L = total assets
equity . Therefore, [L] = M. Based on the change of leverage, which we make,

following Pohl, Ristig, Schachermayer and Tangpi (2018) the assumption:

Assumption 2 (Leverage neutrality) Scaling the Modigliani-Miller dimension M by a

factor A ∈ R+ implies that

• Q and V remain constant,

• P changes by a factor A−1

• σ2 change by a factor of A2

• G changes by a factor A.

To summarize, suppose we multiply leverage by a factor of A > 1. This corresponds to

paying out a cash dividend of (1− 1
A
)P per share. This change in leverage does not affect the

trading size, Q, and the traded volume, V, of stock. However, after paying the dividend, the

stock price will change to 1
A
P since the value of the share plus dividend has to be conserved,

i.e., (1− 1
A
)P + 1

A
P = P . Each stock share continues to carry the same risk σP . Therefore

the standard deviation σ will change to Aσ. For instance, dPt = σPtdWt = (σA)( 1
A
Pt)dWt.
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Thus, the return variance of σ2 will change to A2σ2. G is measured by the change in price

over size of the order. Only P changes by a factor of A, So, G has to multiply A.

Now we have four scaling relations and four explanatory variables. This leads to four

linear equations in four unknowns, give us a unique solution. We review the dimensional

analysis results, following Bluman and Kumei (1989) Chapter 1.

Assumption 3 (Dimensional Analysis)

(A1) Let u be the quantity that can be determined by nmeasurable quantitiesW1,W2, ...,Wn,

i.e.,

u = f(W1,W2, ...,Wn). (3.4)

for some function f : Rn
+ → R+.

(A2) The quantities u,W1,W2, ...,Wn are measured in terms of m fundamental dimensions

labelled by L1, L2, ..., Lm.

(A3) For any quantities X, the dimension of X is denoted by [X], and

[X] = Lx11 L
x2
2 ...L

xm
m . (3.5)

If [X] = 1, the quantity X is said to be dimensionless. The dimensions of the quantities

u,W1,W2, ...,Wn are known and given in the form of vectors; a, the dimension vector of u;

and bi, the dimension vector of Wi, i = 1, 2, ..., n. So,

a =



a1

a2
...

am


bi =



b1i

b2i
...

bmi


.
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And let

B =



b1i b12 ... b1n

b2i b22 ... b2n
...

...
...

bmi bm2 ... bmn


be the m× n dimension matrix of the given problem.

(A4) For a given set of fundamental dimensions L1, L2, ..., Lm, one can choose the system of

units to measure quantities. Changing from one system of units to another involves scaling

all considered quantities. Scaling does not affect the dimensionless quantity as its value is

invariant under arbitrary scaling of the fundamental dimensions.

Theorem (Pi-Theorem)

Under assumptions (A1) – (A4), let x(i) := (x1i, ..., xni)
T , i = 1, ..., k := n − rank(B) be a

basis of the solutions to the homogeneous system Bx = 0 and y := (y1, ..., yn)
T a solution

to the inhomogeneous system By = a respectively. Then, there is a function Q : Rk
+ → R+

such that

u ·W−y1
1 · · ·W−yn

n = Q(π1, ..., πk), (3.6)

where πi := W x1
1 · · ·W xn

n are dimensionless quantities, for i = 1,...,k.

Corollary 1 Under assumption (A1) – (A4), suppose that rank(B) = n and let y :=

(y2, ..., yn)
T be the unique solution to the linear system By = a. Then there is a constant

c > 0 such that

U = c ·W y1
1 · · ·W yn

n .

Theorem 1 Under assumption 1 and 2, the market impact is of the form

G = cσ(
Q

V
)H (5)
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Q P V σ2 G
S 1 -1 1 0 0
U 0 1 0 0 0
T 0 0 -1 -2H 0
M 0 -1 0 2 1

Table 3.5: The matrix B related to the dimensions of the quantities Q,P,V,and σ2, as well
as the vector a related to the dimensions of G.

for some constant c > 0.

Proof. By assumption 1 and 2 with the dimensions of Q,P, V and σ2, we have table 3.3, and

the corresponding matrix B and the vector a are

B =



1 −1 1 0

0 1 0 0

0 0 −1 −2H

0 −1 0 2



a =



0

0

0

1


Notice that B has full rank, rank(B) = 4. Thus By = a has a unique solution. Solving

the system of equation above yield yT = (H, 0,−H, 1
2
). By corollary 1, we have

G = c ·Qy1 · P y2 · V y3 · (σ2)y4

= c ·QH · P 0 · V −H · (σ2)
1
2

= c · σ ·
(
Q

V

)H
.
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Using dimensional analysis, we obtain the relationship that the normalised impact of

individual trade is proportional to the fractional power of the normalised trade size. That is

G

σ
= c ·

(
Q

V

)H
.

Amazingly, this formula agrees with the price impact model of VIX futures we obtained in

section 3.4.

3.6 Conclusion

In this study, we examined the price impact on the VIX futures market for futures comprising

five months VIX futures contracts. The results show that all impact curves are concave with

points cluster together when normalized volumes are small. The period after 4:00 p.m.

exhibits the lowest price impact compared to all other curves. Each impact curve fits the

model I(ω) = α · ωβ well. We also found that the price impact of VIX futures is the lowest

in the last fifteen minutes of regular trading hours. This time concurs with the period where

VIX ETPs should rebalance their positions, which results in supplying additional liquidity

to the market, making the price impact around this time lower than the other trading time.

We deduce that the lower price impact at the end of regular trading time is the evidence of

the consequences of the architecture of VIX ETPs on VIX futures.

By following a similar argument as discussed by Kyle and Obizhaeva with the different

assumption on the dimension of the σ2, the general formula for price impact obtained the-

oretically agrees with our price impact model obtained from the data when setting c = α,

and β = H, where H is the Hurst exponent.



Chapter 4

MEAN-FIELD GAMES IN THE VIX

FUTURES MARKET

In this chapter, we will discuss the optimal trading of futures by high-frequency traders

in the VIX futures market where a trader can buy and sell in two order books in a given

interval of time (from t = 0 to t = T ) using a mean-field game framework. For most

optimal trading problems, the goal is to optimize a value function of a trader that has three

components: the state of the cash account at terminal time T , a terminal execution for the

remaining inventory, and the terminal penalty in case the execution target is not met. Our

project discusses trading strategies in two limit order books, where traders use both order

books to balance their positions. Traders benefit more if they trade in two order books to

incorporate more information into their trading strategies. For instance, if one order book

becomes illiquid at one point, they have a choice to trade in the other order book. The

two order books in the VIX futures market are the regular limit order book (RLOB) and

the trade-at-settlement limit order book (TASLOB). Trades that occur in the RLOB will

suffer from a temporary price impact. On the other hand, trades in the TASLOB do not

31
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suffer from a temporary price impact; however, they are transacted only at maturity for an

unknown future price. We want to investigate the optimal trading strategies of traders in

this market using the mean-field game framework, where our setup accounts for permanent

price impact stemming from all traders in the market. We assume that there are three types

of traders in the VIX futures market; high-frequency traders (HFTs) who want to liquidate

their positions by the end of the trading day, exchange-traded funds’ issuers (ETFs) who

have to adjust their inventory daily to meet their objective requirements, and noise traders

who buy and sell at random.

This chapter is organized as follows: Section 4.1 gives an overview of VIX futures order

books. Section 4.2 investigates the optimal liquidation problem of HFTs using a mean-field

game approach in two order books, and we assume that there are only two types of traders

in this market, the HFTs, and noise traders. Section 4.3 introduces another type of trader

into the market, the exchange-traded funds’ issuer (ETFs), providing a large amount of

additional liquidity on one side of the TAS limit order book (TASLOB). Section 4.4 uses

the mean-field game framework to solve the optimal liquidation problem of HFT in the VIX

futures market where ETFs sell a limited number of shares in TASLOB.

4.1 VIX Futures Order Books

The CBOE introduced VIX futures in March 2004, and traders can trade them electronically

via a limit order book, which we will call the regular limit order book. In this order book,

investors can trade at any time during the trading hours, and they can trade or quote in the

regular limit order book at a known futures price. Traders can place an order during the

regular trading hours, 8:30 a.m. to 3:15 p.m. CST on Monday to Friday, and during the

extended trading hours, 5:00 p.m. (previous day) to 8:30 a.m. CST, and 3:30 p.m. to 4:00

p.m. CST.

On November 4, 2011, the CFE presented an additional VIX futures trading venue, the
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trade at settlement (TAS) limit order book. In this order book, a trader has an opportunity to

trade VIX futures close to the daily settlement price. The price range investors are allowed to

place for all types of TAS transactions in TASLOB is called the permissible price range, which

is from 0.50 index points below the daily settlement price to 0.50 index points above the daily

settlement price. The minimum price increment for TAS transactions is 0.01 index points.

Investors trade or quote in the TAS limit order book in reference to an unknown futures price

since the daily settlement price is unknown when the trade or quote occurs. Traders can

place an order from 5:00 p.m. (previous day) to 2:58 p.m. on Monday-Friday1. The market

is closed from 2:58 p.m. to 4:45 p.m., and TAS Orders are accepted again from 4:45 p.m. to

5.00 p.m. during Queuing Period2 (Monday – Thursday). Huskaj and Nordén (2015) found

that the TAS transactions account for approximately 10% of the total VIX futures trading

volume. The number of transactions in the TAS limit order books is less than 1% of the total

number of the VIX futures transaction. This finding indicates that traders utilize the TAS

limit order book to execute an order with a large volume. Many institutional investors, such

as VIX futures exchange-traded notes and exchange-traded funds’ issuer, trade in the TAS

limit order book as they have incentives to execute their trades as close to the settlement

price as possible (Bayraktar and Ludkovski, 2014).

Figure 4.1 taken from Huskaj and Nordén (2015) illustrates the bid and ask quotes in the

regular limit order book and the TAS limit order book on June 6, 2013, for the June VIX

futures contract quoted at 3:00 p.m. The regular limit order book displays the liquidity in

terms of volume to offer to buy and sell. The best bid (offer to buy) is $16.65 per contract,

and the best ask (offer to sell) is $16.70 per contract. Thus the (best) bid-ask spread is 0.05,

equal to the minimum futures price increment in the regular limit order book. The TAS limit

order book also displays the liquidity in volume to offer to buy and sell at 3:00 p.m. The

best bid (offer to buy) is 0.02 less than the daily futures settlement price per contract, and

1Before October 7, 2020, the daily settlement price of a VIX futures contract is determined at 3:15 p.m.
CST, and the trading hours for TAS transactions in VIX futures end at 3:13 p.m. on a normal business day.

2The Queuing Period is when the system accepts orders for queuing but not transacting at that time.
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Figure 4.1: The snapshot of the regular limit order book (left), and the TAS limit order
book (right), for the June 2013 contract on June 6, 2013 at 3:00 p.m.

the best ask (offer to sell) is 0.01 less than the daily futures settlement price per contract.

The best bid-ask spread is 0.01, equal to the minimum price increment allowed in the TAS

limit order book.

We are interested in studying the optimal trading strategies of traders in this market,

precisely the high-frequency traders (HFTs), in different settings. We use a mean-field game

approach to solve the problem instead of the classical one, which we will discuss next.

4.2 Optimal Liquidation in the VIX Futures Market

using MFG Approach

In this section, we consider a dynamic system of N high frequency traders (HFTs) in the

VIX futures market where each HFT can trade trade in the regular limit order book (RLOB)

and the TAS limit order book (TASLOB). We study the problem using a mean-field game

approach where we assume that there are two types of traders in the VIX futures market,

that is the HFTs and noise traders. Each HFT is either a buy-side or sell-side trader. We

use the index i to represent an arbitrary HFT agent from N HFTs. We study how the

representative agent i liquidates her initial Qi(0) shares optimally between t = 0, and T in

the VIX futures market using both order books.
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4.2.1 The Model

We work with the following set-up. Let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered proba-

bility space that is rich enough to support all following constructions.

Dynamics in the regular limit order book

We consider a large number of HFTs, indexed by i ∈ {1, ..., N}. We will use superscript

v to represent action that occurs in the RLOB. In this order book, we assume that the

representative agent i trades at rate vi(t), which can be positive or negative depending on

whether the agent is buying or selling, respectively, at time t. Thus the inventory process of

representative agent i is

dQv
i (t) = vi(t)dt, Qv(0) = qv0 .

where i ∈ {1, ..., N} and t ∈ [0, T ], and the set of initial inventories of HFTs in the regular

order book is {Qv
i (0)}i∈{1,...,N}. We denote the fundamental price process as F vvv(t) for t ∈

[0, T ], where vvv = {v1, ..., vN , w1, ...wN} is a vector representing the trading rate of the N

agents in the market. Here {v1, ..., vN} are trading rates of the N agents in the RLOB, and

{w1, ..., wN} are trading rates of the N agents in the TASLOB, which we will discuss later.

Thus, the notation F vvv denotes the dependence of this fundamental price on the trading rates

of all agents in the market. We assume that the representative agent i’s own trades do not

affect the mid-price of the asset. However, the agent’s trades have temporary impact on her

own execution price, the price at which the agent i trades the asset for at time t. When

trading at a rate vi(t) at time t in RLOB, the execution price of agent i reads

Svi (t) = F vvv(t) + avi(t), t ∈ [0, T ].

Here a > 0 is the (linear) temporary price impact that the agent i has on the execution price.

In general, the execution price process has a bid-ask spread. For simplicity, we assume for
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the bid-ask spread to be zero, that is, F vvv(t) represent the best bid price (ask price) if the

strategy vi(t) is to sell (buy). The cash process at time t of agent i reads

dXv
i (t) = −Svi (t)vi(t)dt = −

(
F vvv(t) + avi(t)

)
vi(t)dt, t ∈ [0, T ],

with initial cash {Xi(0)}i∈1,..,N , which usually is assumed zero for each agent. From the

cash process above, if the strategy of agent i at time t is to sell the asset, then vi(t) is

negative. Consequently, there will be positive change in cash process. On the other hand,

if the strategy of agent i at time t is to buy the asset, then vi(t) is positive. Therefore, the

change in cash process is negative at time t.

Dynamics in the trade at settlement limit order book

In this section, we describe the state processes in the TASLOB. The superscript w is used

to represent action occurs in this limit order book. The inventory process of representation

agent i in the TASLOB is

dQw
i (t) = wi(t)dt,

where wi(t) is the trading speed of the representation agent at time 0 ≤ t ≤ T . The set

of initial inventories of HFTs in the TAS order book is {Qw
i (0)}i∈{1,...,N}. A trader in the

TASLOB can place the order at the permissible price range around an unknown price, the

daily settlement price, with the permissible minimum increment 0.01 index points. Thus,

we assume that if a trader wants to buy in the TASLOB, she will buy at δ above the daily

settlement price, and if she wants to sell in the TASLOB, she will sell at δ below the daily

settlement price. Note that traders in TASLOB do not suffer from temporary price impacts.
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Noise Traders

We assume that the average inventory process of noise traders satisfies the SDE

dU(t) = µ(t)dt+ σµdW
µ
t , t ∈ [0, T ].

with the given initial inventory of all noise traders U(0) = U0, µ is the overall trading speed

of noise traders, and W µ is assumed to be a Brownian motion independent of WP, which

will be introduced next.

Fundamental Price Dynamics

Since there are two types of traders in the market, HFTs and noise traders, the fundamental

price process is assumed to be driven by the actions of these traders. Let P-Brownian motion

W P
t be background noise other than noise traders. The price process is of the form

dF vvv(t) = λ

(
1

N

N∑
i=1

dQi(t)

)
+ λµdU(t) + σ̃dW P

t , t ∈ [0, T ]

= λv(N)(t)dt+ λµ

(
µ(t)dt+ σµdW

µ
t

)
+ σ̃dW P

t ,

=
(
λv(N)(t) + λµµ(t)

)
dt+ σdWt. (4.1)

Wt is a Brownian motion, where σ =
√
λ2µσ

2
µ + σ̃2, since W P

t and W µ
t are two independent

Brownian motions. F vvv(0) = f0 is the initial condition for the mid-price process, λ > 0 is

HFTs’ permanent impact, and v(N) is the average trading speed of N HFTs, µ is the overall

trading speed of noise traders, λµ > 0 is the price impact the noise traders have on the

fundamental price process.

We assume

EP

[
exp

1

2

∫ T

0

(
λvN(t) + λµµ

σ

)
dt

]
<∞,
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then by Carmeron-Martin-Girsanov theorem, there exist an equivalent measure Q, and the

corresponding Q-Brownian motion W̃t such that

dF vvv(t) = σ

(
λvN(t) + λµµ

σ
dt+ dWt

)
= σdW̃t.

Thus, under the Q-measure, the daily settlement price at time t can be written as

EQ[F vvv(T )|Ft] = F vvv(t). (4.2)

Note that traders can buy and sell in TASLOB. If they choose to buy, they must buy at δ

above the daily settlement price, and they must sell at δ below the daily settlement price if

they sell. Since we consider the optimal liquidation problem; thus, the representative agent

i is a sell trader. Then the corresponding execution price at the TASLOB reads

Swi (t) = EQ[F vvv(T )|Ft]− δ1{wi(t)<0}

The corresponding cash process in the TASLOB then reads

dXw
i (t) = −

(
EQ[F vvv(T )|Ft]− δ1{wi(t)<0}

)
wi(t)dt.

By (4.2), the execution price process in the TASLOB is

Swi (t) = F vvv(t)− δ1{wi(t)<0},

and the corresponding cash process in the TASLOB then reads

dXw
i (t) = −

(
F vvv(t)− δ1{wi(t)<0}

)
wi(t)dt.

Here F vvv(t)− δ1{wi(t)<0} represents a sell price at time t. That is the agent has to sell δ less
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than the mid-price per share in the TASLOB.

As v(N) is the average trading speed of N HFTs, we have

v(N)(t) =
1

N

N∑
i=1

(vi(t) + wi(t)).

That is, the average trading of HFTs is the average trading rate of actions from both order

books as traders can observe both order books from the exchange as discussed in section 4.1.

We will use the mean-field game approach to solve the optimal trading problem for HFTs in

the VIX futures market. That is in the large N population limit of HFTs, each HFT has an

asymptotically negligible impact on the fundamental price. However, the aggregated effect

of the trades of all HFTs on the fundamental price is non-negligible.

The Value Function

The aim of agent i is to optimize her wealth on finite-time horizon T , subject to an inventory

penalty and trading activity in two order books.

Ji(vi, wi; v−i, w−i) := E

[
Xi(T ) +Qi(T )

(
F vvv(T )− βQi(T )

)
− ψ

∫ T

t

(
vi(u) + wi(u)

)2

du

]
(4.3)

where v−i := (v1, ..., vi−1, vi+1, ..., vN) and w−i := (w1, ..., wi−1, wi+1, ..., wN) is the collection

of trading rates in RLOB and TASLOB excluding agent i. Qi(T )
(
F vvv(T ) − βQi(T )

)
is the

value of closing her position at the end of the trading horizon, and β > 0 is the terminal

liquidation penalty parameter. The penalty parameter ψ > 0 is used to penalize in case

agent i does not trade synchronously in two order books. The agent’s aim is to maximize

the performance criterion over a class of admissible trading strategies A defined as

A :=

{
ν

∣∣∣∣ ν is G − adapted & E
[ ∫ T

0

ν2t dt <∞
]}
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Here G = (Gt)t∈[0,T ] and Gt = Ft ∨ σ((Qi(0)){1,...,N}). That is the filtration G is the filtration

F enlarged by the inventories of all HFTs.

A Mean-Field Game Approach

As mentioned before, the aim of each agent i (i ∈ {1, ..., N}) is to optimize the value

function (4.3), and this problem can be seen as the stochastic game where the interaction

between agents is via controls in which their aggregated control will have an influence on the

fundamental asset price dynamics. Therefore, the problem falls within a class of stochastic

dynamic games with mean-field couplings in the fundamental asset price dynamics. However,

the N -players game is very difficult to solve as each agent need to track the other agents’

information, which is usually infeasible. Thus we develop the mean-field game framework to

solve this problem. We are interested in large games, where N → ∞. Here we define the

mean trading speed of HFTs as v̄ = (v̄(t))t∈[0,T ]

v̄(t) := lim
N→∞

1

N

N∑
i=1

(vi(t) + wi(t)), (4.4)

and assume this limit exists, and the mean inventory of HFT agents corresponding to this

mean trading speed is Qv̄ = (Qv̄(t))t∈[0,T ] where

Q(t)v̄ = lim
N→∞

1

N

N∑
i=1

(Qv
i (t) +Qw

i (t)). (4.5)
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Infinite Number of HFTs

Problem: Next we will reformulate the N players game problem into the mean-field game

problem by replacing v(N) with v̄. Therefore, we obtain the following system:

dQi(t) := dQv
i (t) + dQw

i (t)

= (vi(t) + wi(t))dt, with Q(0) = qv0 + qw0 . (4.6)

dF̄ (t) =
(
λν̄(t) + λµµ(t)

)
dt+ σdWt, with F̄ (0) = f0 (4.7)

dX̄i(t) := dX̄v
i (t) + dX̄w

i (t)

= −
(
(F̄ (t) + avi(t))vi(t)− (F̄ (t)− δ1{wi(t)<0})wi(t)

)
dt

with X̄(0) = x̄0. (4.8)

The aim of agent i is to optimize her finite-time horizon wealth, subject to an inventory

penalty and trading activity in two order books, in the mean-field game frame work reads.

J̄i(vi, wi; v̄) := E
[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
− ψ

∫ T

t

(
vi(u) + wi(u)

)2

du

]
(4.9)

Thus the HFT-i’s control problem is to obtain

J̄i(v̄) = sup
vi,wi∈A

J̄i(vi, wi; v̄).

If the supremum is attained in A, then we denote the optimal strategy by (v∗i , w
∗
i ).

Solution to Limiting Stochastic Control Problem for HFTs

Solution to Problem: This problem falls within the class of optimal execution problems for

a single agent with a time-dependent fundamental price with drift, and permanent impact.

For xi, f, qi, y, u ∈ R and t ∈ [0, T ], we define the performance criterion for a generic HFT
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agent i = 1, ..., N under the arbitrary trading strategy (vi, wi) ∈ A as

Hvi,wi,v̄
i (t, xi, f, qi, y, u) =

Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
− ψ

∫ T

t

(
vi(s) + wi(s)

)2

ds

]

= Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
+

∫ T

t

Ki(s, vi, wi)ds

]
(4.10)

where Et,xi,f,qi,y
[
·
]

= Et,y
[
· |X̄i(t) = xi, F̄ (t) = f,Qi(t) = qi, U(t) = u

]
.

We define the value function as:

H v̄
i (t, xi, f, qi, y, u) := sup

vi,wi∈A
Hvi,wi,v̄
i (t, xi, f, qi, y, u) (4.11)

Note that H v̄
i (t, xi, f, qi, y, u) is equivalent to J̄i(v̄) in the previouse section. We use the

notation H to denote the value function instead of J to highlight the explicit dependence on

the state variables. The value function J depends on control variables.
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4.2.2 Heuristic solution

This section derives a solution to the problem (4.11) by following the similar arguments

to the ones in Huang, Jaimungal and Nourian (2019) and Cartea, Jaimungal and Penalva

(2015), Chapter 5. By employing a standard dynamic programming principle and the use of

Ito’s formula, we obtain the following HJB equation with terminal condition


∂tHi(t, xi, f, qi, y, u) + supvi,wi∈A(L

vi,wiHi(t, xi, f, qi, y, u) +Ki(vi, wi)) = 0

Hi(T, xi, f, qi, y, u) = xi + qif − βq2i

(4.12)

whereKi(vi, wi) = −ψ(vi+wi)2, and Lvi,wi is the infinitesimal generator of

(
Xi(t), F (t), Qi(t),

y(t), U(t)

)
and acts as follow:

Lvi,wiHi =

[
− (f + avi)vi∂xi − (f − δ1{wi<0} + δ1{wi≥0})wi∂xi

+ (λν̄ + λµµ)∂f + (vi + wi)∂qi + ν̄∂y + µ∂u + ς

]
Hi

where ς is the operator that encompasses the higher moments of the fundamental price

dynamic f in the HJB equation. Note that we obtain the terminal condition directly from

(4.10) when t = T .

Let

Lvi,wi = Lvi,wiHi +Ki(vi, wi).

Next, we calculate the optimal control in the feedback form, vi and wi.

Since,

Lvi,wi =

[
− (f + avi)vi∂x − (f − δ1{wi<0} + δ1{wi≥0})wi∂x

+ (λν̄ + λµµ)∂f + (vi + wi)∂qi + ν̄∂y + µ∂u + ς

]
Hi − ψ(vi + wi)

2, (4.13)
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for a fixed wi, the optimal control in the feedback form of vi is

v∗i := arg sup
vi∈A

Lvi,wi =
∂qiHi − f∂xHi − 2ψwi

2a∂xHi + 2ψ
, (4.14)

and for a fixed v∗i the optimal control in the feedback form, wi

w∗
i := arg sup

vi∈A
Lvi,wi =

1

2ψ

(
−
(
f − δ1{w∗

i<0} + δ1{w∗
i≥0}

)
∂xiH + ∂qiH

)
− v∗i . (4.15)

Substitute (4.15) for wi in (4.14) yields

v∗i = −
δ1{wi<0} − δ1{wi≥0}

2a∂xHi

. (4.16)

Next, substitute v∗ in (4.16) into (4.15) yields

w∗
i =

1

2ψ

(
−
(
f − δ1{w∗

i<0} + δ1{wi≥0}

)
∂xiH + ∂qiH

)
+
δ1{w∗

i<0}

2a∂xHi

. (4.17)

Substitution of (4.16) and (4.17) into (4.13) gives

Lv
∗
i ,w

∗
i =

[
− (f + av∗i )v

∗
i ∂x −

(
f − δ1{w∗

i<0} + δ1{w∗
i≥0}

)
w∗
i ∂x

+ (λν̄ + λµµ)∂f + (v∗i + w∗
i )∂qi + ν̄∂y + µ∂u + ς

]
Hi − ψ(v∗i + w∗

i )
2.

Finally, the HJB equation in equation (4.12) becomes

∂tHi(t, xi, f, y, qi, u)− (f + av∗i )v
∗
i ∂xiHi −

(
f − δ1{w∗

i<0} + δ1{w∗
i≥0}

)
w∗
i ∂xiHi

+ (λν̄ + λµµ)∂fHi + (v∗i + w∗
i )∂qiHi + ν̄∂yHi + µ∂uHi + ςHi − ψ(v∗i + w∗

i )
2 = 0 (4.18)

subject to the terminal condition Hi(T, xi, f, y, qi) = xi+ qif − βq2i . This terminal condition
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suggests an ansatz of the form

Hi(t, xi, f, y, qi, u) = xi + qif + h(t, qi, y, u), (4.19)

subject to the terminal condition h(T, qi, y, u) = −βq2i . As qi appears polynomial of quadratic

order, we next try the ansatz

h(t, qi, y, u) = h0(t, y, u) + h1(t, y, u)qi + h2(t)q
2
i , (4.20)

subject to the following terminal conditions h0(T, y, u) = 0, h1(T, y, u) = 0, and h2(T ) = −β.

With the ansatz (4.20), v∗i in (4.16) and w∗
i in (4.17) become

v∗i = −
δ1{w∗

i<0}

2a
+
δ1{w∗

i≥0}

2a
, (4.21)

and

w∗
i =

1

2ψ
(δ1{w∗

i<0} − δ1{w∗
i≥0} + h1 + 2h2qi) +

δ1{w∗
i<0}

2a
−
δ1{w∗

i≥0}

2a
. (4.22)

We see that the optimal trading strategy in RLOB depends only on δ and the temporary

price impact in that limit order book. However, the optimal strategy in TASLOB depends

also on h1, and h2 functions. By substituting v∗i , w
∗
i , and h(t, qi, y, u) into (4.18) and grouping

them in terms of q0i , q
1
i , q

2
i yields

∂th0 + ν̄∂yh0 + µ∂µh0 +
h1δ

2ψ

(
1{w∗

i (t)<0} − 1{w∗
i (t)≥0}

)
+
h21
4ψ

+ δ2
( 1

4ψ
+

1

4a

)
+

{
∂th1 +

h1h2
ψ

+
δh2
ψ

(
1{w∗

i (t)<0} − 1{w∗
i (t)≥0}

)
+ v̄∂yh1 + µ∂µh1 + λν̄ + λµµ

}
qi

+

{
∂th2 +

1

ψ
h22

}
q2i = 0.
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Therefore, we obtain the following system of of ODEs to solve:

∂th0 + ν̄∂yh0 + µ∂µh0 +
h1δ

2ψ

(
1{w∗

i (t)<0} − 1{w∗
i (t)≥0}

)
+
h21
4ψ

+ δ2
( 1

4ψ
+

1

4a

)
= 0

with h0(T, y, u) = 0, (4.23)

∂th1 +
h1h2
ψ

+
δh2
ψ

(
1{w∗

i (t)<0} − 1{w∗
i (t)≥0}

)
+ v̄∂yh1 + µ∂µh1 + λν̄ + λµµ = 0

with h1(T, y, u) = 0, (4.24)

∂th2 +
1

ψ
h22 = 0

with h2(T ) = −β. (4.25)

Since h1 depends on the average inventory and the inventory of noise traders, we assume

further that it has the form

h1(t, y, u) = h01(t) + h11(t)y + h21(t)u, (4.26)

subject to the terminal conditions h01(T ) = h11(T ) = h21(T ) = 0.

Therefore, the value function (4.19) reads

Hi(t, xi, f, qi, y, u) = xi+qif +h0(t, y, u)+
(
h01(t)+h

1
1(t) ·y+h21(t) ·u

)
·qi+h2(t) ·q2i . (4.27)

and the optimal controls (4.21) and (4.22) become

v∗i = −
δ1{wi<0}

2a
+
δ1{wi≥0}

2a
, (4.28)

and

w∗
i =

1

2ψ

(
δ1{wi<0}−δ1{wi≥0}+h

0
1(t)+h

1
1(t)y+h

2
1(t)u+2h2qi

)
+
δ1{wi<0}

2a
−
δ1{wi≥0}

2a
. (4.29)
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Mean Field Game (MFG) Consistency condition

We define the difference in the percentage of sellers and buyers in the VIX futures market

as

η := lim
N→∞

1

N

N∑
i=1

1{wi<0} − 1{wi≥0}. (4.30)

We assume in this project that the limit exists, and each trader is on only one side of the

market. That is if she is a buy-side in the market, she will not change to be a sell-side. Thus

η does not depend on t, as the number of buyers or sellers in this market are already decided

at time t = 0. Note that η ranges between -1 and 1. If η takes -1, then all HFTs are buyers,

and if η takes 1, then all HFTs are sellers. If η = 0, this implies that the percentage of HFT

buyers is the same as HFT sellers. By (4.4) and (4.5), we have

ν̄(t) = lim
N→∞

N∑
i=1

(
v∗i (t) + w∗

i (t)

)
=

1

2ψ

(
δη + h01(t) + h21(t)u(t)

)
+

1

2ψ

(
h11(t) + 2h2(t)

)
y(t).

(4.31)

Since w∗
i (t) depends on h1 and h2, we have to solve for h1 in equation (4.24). To do that we

plug in ν̄(t) and (4.26) into (4.24) and then group them in term of y, and u we have

∂th
0
1+
((λ− λµ)

2ψ
+
h11
2ψ

− h21
2ψ

+
h2
ψ

)
h01+

δ

2ψ

(
1{wi(t)<0}−1{wi(t)≥0}

)
+
δη

2ψ

(
λ−λµ+h11−h21

)
+

{
∂th

1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
1

ψ

(
λh2 − λµh2 − h2h

2
1

)}
y

+

{
∂th

2
1 +

((λ− λµ)

2ψ
+
h2
ψ

+
h11
2ψ

)
h21 −

1

2ψ
(h21)

2

}
u = 0, (4.32)

which, by the comparison of coefficients, yields the following system of ODEs

∂th
0
1 +

((λ− λµ)

2ψ
+
h11
2ψ

− h21
2ψ

+
h2
ψ

)
h01 +

δ

2ψ

(
1{wi(t)<0} − 1{wi(t)≥0}

)
+
δη

2ψ

(
λ− λµ + h11 − h21

)
= 0,

∂th
1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
1

ψ

(
λh2 − λµh2 − h2h

2
1

)
= 0,

∂th
2
1 +

((λ− λµ)

2ψ
+
h2
ψ

+
h11
2ψ

)
h21 −

1

2ψ
(h21)

2 = 0,
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with h01(T ) = h11(T ) = h21(T ) = 0. We are interested in the optimal liquidation problem

where agent i aims to liquidate her inventory; thus, we are only interested in the region

where wi(t) < 0. Therefore, we have the following ODEs.

∂th
0
1 +

((λ− λµ)

2ψ
+
h11
2ψ

− h21
2ψ

+
h2
ψ

)
h01 +

δ

2ψ
+
δη

2ψ

(
λ− λµ + h11 − h21

)
= 0, h01(T ) = 0, (4.33)

∂th
1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
1

ψ

(
λh2 − λµh2 − h2h

2
1

)
= 0, h11(T ) = 0, (4.34)

∂th
2
1 +

((λ− λµ)

2ψ
+
h2
ψ

+
h11
2ψ

)
h21 −

1

2ψ
(h21)

2 = 0, h21(T ) = 0 (4.35)

The system (4.33) – (4.35) is a system of coupled Riccati equations, which is difficult to solve

in general. However, (4.35) is a homogeneous differential equation subject to the terminal

condition h21(T ) = 0, thus

h21(t) = 0 for 0 ≤ t ≤ T. (4.36)

Solving the ODE (4.25) for h2(t), we obtain

h2(t) = − ψ

T − t+ ψ
β

for 0 ≤ t ≤ T. (4.37)

Substitution (4.36) and (4.37) into (4.34) yields the following Riccati equation

∂th
1
1 +

((λ− λµ)

2ψ
− 2

T − t+ ψ
β

)
h11 +

1

2ψ
(h11)

2 − (λ− λµ)

T − t+ ψ
β

= 0 (4.38)

subject to terminal condition h11(T ) = 0. The solution to (4.38) obtained using the Mathe-

matica reads

h11(t) =


− (λ−λµ)

2
+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2

tanh(At+B1), for β ≤ (λ−λµ)
2

− (λ−λµ)
2

+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2 tanh(At+B2)

, for β > (λ−λµ)
2

(4.39)
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where

A :=
(λ− λµ)

4ψ
,

B1 := −(λ− λµ)

4ψ
T + tanh−1(1− 4β

(λ− λµ)
),

B2 := −(λ− λµ)

4ψ
T +

1

2
log(1− (λ− λµ)

2β
).

Once h11 is determined, we can inject it (4.39) into the ODE (4.33) which yields:

∂th
0
1(t) =


A(1 + tanh(At+B1))h

0
1(t) + δAη(1 + tanh(At+B1)) +

δ(1−η)
T−t+ψ

β

, for β ≤ (λ−λµ)
2

A(1 + 1
tanh(At+B2)

)h01(t) + δAη(1 + 1
tanh(At+B2)

) + δ(1−η)
T−t+ψ

β

, for β > (λ−λµ)
2

.

(4.40)

By substitution of h1 and h2, we obtain the following optimal controls for agent i who wants

to liquidate Qi(0) shares by time T as

v∗i (t) = − δ

2a
(4.41)

w∗
i (t) =

1

2ψ

(
δ + h01(t) + h11(t)y(t)−

2qi(t)

T − t+ ψ
β

)
+

δ

2a
. (4.42)

Finally, for wi(t) < 0, we get the lemma below.

Lemma 4.2.1. Assume that the value function h0 and h1 for equation (4.20) are C1 func-

tions of the variables t, y and u. If wi(t) < 0, then the HFTs’ value functions (4.23) and

(4.24) can be written as

h1(t, y, u) = h11(t) + h11(t)y + h21(t)u

h0(t, y, u) = h00(t) + h10(t)y + h20(t)u+ h30(t)yu+ h40(t)y
2 + h50(t)u

2,



MEAN-FIELD GAMES IN THE VIX FUTURES MARKET 50

with h01, h
1
1, h

2
1, h

0
0, h

1
0, h

2
0, h

3
0, h

4
0 and h50 being solutions to the following system of ODEs,

∂th
0
1 +

((λ− λµ)

2ψ
+
h11
2ψ

− h21
2ψ

+
h2
ψ

)
h01 +

δ

2ψ
+
δη

2ψ

(
λ− λµ + h11 − h21

)
= 0, h01(T ) = 0,

∂th
1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
1

ψ

(
λh2 − λµh2 − h2h

2
1

)
= 0, h11(T ) = 0,

∂th
2
1 +

((λ− λµ)

2ψ
+
h2
ψ

+
h11
2ψ

)
h21 −

1

2ψ
(h21)

2 = 0, h21(T ) = 0,

∂th
0
0 +

(h01)
2

4ψ
+ µh20 + h10

(
δη

2ψ
+
h01
2ψ

)
+
δh01
2ψ

= 0, h00(T ) = 0,

∂th
1
0 +

(
h11
2ψ

+
h2
ψ

)
h10 +

(
δ

2ψ
+
h01
2ψ

)
h11 +

(
h01
ψ

+
δη

ψ

)
h40 = 0, h10(T ) = 0,

∂th
2
0 +

(
h01
2ψ

+
δη

2ψ
+ µ

)
h30 +

(
δ

2ψ
+
h01
2ψ

+
h21
2ψ

)
h21 + 2h50µ = 0, h20(T ) = 0,

∂th
3
0 +

(
h11
2ψ

+
h2
ψ

)
h30 +

(
h40
ψ

+
h11
2ψ

)
h21 = 0, h30(T ) = 0,

∂th
4
0 +

(
h11
ψ

+
2h2
ψ

)
h40 +

(h11)
2

4ψ
= 0, h40(T ) = 0,

∂th
5
0 +

h21h
3
0

2ψ
+

(h21)
2

4ψ
= 0, h50(T ) = 0.

(4.43)

We have derived the solution to the optimal liquidation problem under the mean-field

game approach using the heuristic arguments. Theorem 4.2.2 below states the main result

of the optimal liquidation problem we obtained from the heuristic derivation.
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Theorem 4.2.2. The solution to the stochastic control problems (4.6) – (4.9) is

H v̄
i (t, xi, f, qi, y, u) = x+ fqi + h0(t, y, u) + h1(t, y, u)qi + h2(t)q

2
i , (4.44)

where the functions h0, h1, and h2 are

h0(t, y, u) = h00(t) + h10(t)y + h20(t)u+ h30(t)yu+ h40(t)y
2 + h50(t)u

2,

h1(t, y, u) = h01(t) + h11(t)y + h21(t)u,

h2(t) = − ψ

T − t+ β
ψ

.

and where h10, h
2
0, h

3
0, h

4
0, h

5
0, h

0
1, h

1
1, and h

2
1 satisfy the system of coupled ODEs given by (4.43),

and the optimal trading rate {v∗i }i∈{1,...,N} and {w∗
i }i∈{1,...,N} are as the following:

v∗i (t) = − δ

2a
, (4.45)

w∗
i (t) =

1

2ψ

(
δ + h1(t, y, u) + 2h2(t)qi(t)

)
+

δ

2a
. (4.46)

for wi < 0,

Proof. By employing a standard dynamic programming principle and the use of Ito’s formula,

we obtain HJB equation for the problem (4.6) – (4.9) as in (4.12). By substituting Hi in

(4.44) into (4.12) in case where wi < 0, we see that (4.44) is the solution to that HJB

equation. We have Hi ∈ C12([0, T ) × R5) ∩ C([0, T ] × R5), and Hi is at most quadratic in

state variables. Moreover, as the HFTs’ strategies are (F)t-predictable, and v̄ is linear in

the state variables, the model’s assumptions are satisfied, and the verification theorem then

holds by applying the Theorem 2.6 in Nisio (2015) or Theorem 3.1 in Fleming and Soner

(2016). Therefore, Hi is the optimal solution and the optimal controls are given by (4.45)

and (4.46).
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4.2.3 Numerical results

This section shows numerical results of agent i who wants to liquidate 1000 shares by the

end of the day in the VIX futures order books, with the initial mean inventory at 200 shares.

Figure 4.2: Left: plot of h2 function, right: plot of h
0
1, h

1
1, and h

2
1 functions for the following

set of parameters: T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

Figure 4.2 shows the dynamics of h2(t) (left panel), h
0
1(t), h

1
1(t) and h

2
1(t) (right panel)

for typical values of the parameters. From our optimal control

w∗
i (t) =

1

2ψ

(
δ + h01(t) + h11(t)y + 2h2(t)qi(t)

)
+

δ

2a
,

gwe observe that h2(t) is the coefficient of qi(t). The larger the number of remaining shares

to sell qi(t), the faster one has to trade, namely proportionally to h2(t). Notice that the
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influence of the mean field to the optimal control of agent i is via h11(t), and this influence

varies with λ − λµ. The reason is that all traders are connected via (λ − λµ)v̄ which is the

drift term of the fundamental price process. Thus the smaller the magnitude of λ− λµ, the

more disconnected agent i from the mean field. In our simulation, λ − λµ = 0.01, and we

have h11(t) very close to zero as displayed in Figure 4.2 (right panel).

Figure 4.3: Optimal trading rate in RLOB (top left) and TASOB (bottom left), and the
Inventory left of agent i and mean inventory left at time 0 ≤ t ≤ T (right) using the set of
parameters: T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

Figure 4.3 (right panel) shows the dynamics of inventory of agent i who wants to liquidate

1000 shares using RLOB and TASOB by time T = 1, with the initial mean inventory starting

at 200 shares. Note that we use the same set of parameters as the one we simulate functions

in figure 4.2. The optimal trading rate in the RLOB is constant at rate δ
2a
. The optimal

trading rate in the TASLOB is proportional to h01(t)+h
1
1(t)y(t)+2h2(t)qi(t). As Qi(0) > y(0)

and h01(t), h
1
1(t), and h2(t) are all negative with h2(t) dominates h01(t) and h

1
1(t) in absolute
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values, thus 2h2(t)qi(t) is large compared to h01(t) + h11(t)y(t). Therefore, the trading rate

wi(t) has the similar shape as h2 function. As expected, the inventories go toward 0 as t

approaches T .

Figure 4.4: Inventory paths of agent i when varying β and other parameters are fixed:
T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

Note that β is the penalty for non-zero terminal inventory. Figure 4.4 shows the inventory

paths (left) when we vary β. We see clearly that as β increases the terminal inventory is

closer to zero. In addition, the right panel of figure 4.4 shows that agent i trades faster as

t is closer to T , especially when β is large. Thus, we can say that the larger the terminal

penalization, the faster one has to trade when time is close to terminal for a given remaining

number of shares to sell.
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4.3 Optimal Liquidation of HFTs in the VIX Futures

Market with the Existence of ETFs

Recall that traders can place an order in two order books in the VIX futures market, the

RLOB and the TASLOB. Let us assume another type of trader in the VIX futures market

other than HFTs and noise traders: the exchange-traded fund’s issuers, which we call ETFs.

Recall from the first part of the thesis that the VIX ETF issuers have to roll their position

daily to meet their constant-maturity requirement and achieve their daily leveraged exposure.

Thus, a large volume of shares has to be acquired or liquidated before the market closes.

This circumstance implies that the ETF issuers are major buyers or sellers in the VIX futures

market.

In this section, we further assume that the ETFs place orders only in the TASLOB, and

they are the buy-side of the TASLOB. That is, they provide liquidity on that side of the

order book. HFTs can place orders in both order books. They can place an order at any

time during the regular trading hour in the TASLOB, and the order is always filled. Assume

that there are N HFTs in the VIX futures market. We want to discuss the optimal strategies

of the representative agent i to liquidate Qi(0) shares by the terminal time T provided that

ETFs are on the buy-side in TASLOB.

4.3.1 The Model

We work with the following set-up. Let (Ω,F , {Ft}0≤t≤T ,P) be a complete filtered proba-

bility space that is rich enough to support all following constructions.

Dynamics in the regular limit order book

For the setting in this section, the dynamics of the state variables in the regular limit order

book are the same as in the previous section. We consider a large number of HFTs, indexed
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by i ∈ {1, ..., N}. We will use superscript v to represent action in the regular limit order

book. In this order book, the representative HFT agent i trades at a rate vi(t) at time t,

which can be positive or negative depending on whether the agent is buying or selling. Thus

the inventory process of representation agent i is

dQv
i (t) = vi(t)dt, Qv(0) = qv0 ,

where i ∈ {1, ..., N} and t ∈ [0, T ], and the set of initial inventories of HFTs in the regular

order book is given by {Qv
i (0)}i∈{1,...,N}. The execution price of agent i reads

Svi (t) = F vvv(t) + avi(t), t ∈ [0, T ].

where F vvv(t) for t ∈ [0, T ] denote the fundamental price process discussed in the previous

section, and a > 0 is the (linear) temporary price impact that the agent i trading has on the

mid-price of the asset, and vvv = {v1, ..., vN , w1, ...wN} is, as mentioned in previous section, a

vector representing the trading rate of the N agents in the market. The cash process at time

t of agent i reads

dXv
i (t) = −Svi (t)vi(t)dt = −(F vvv(t) + avi(t))vi(t)dt, t ∈ [0, T ],

with given initial cash {Xi(0)}i∈1,..,N .

Dynamics in the trade at settlement limit order book

We use superscript w to represent action occurs in the TASLOB. Thus, the inventory process

of representation agent i in the TAS limit order book is

dQw
i (t) = wi(t)dt,
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where wi(t) is the trading speed of the representative agent i at time 0 ≤ t ≤ T . The set of

initial inventories of HFTs in the TAS order book is {Qw
i (0)}i∈{1,...,N}.

As in the previous section, we let F vvv(T ) be the price at settlement at time T. As (4.1), the

fundamental price process has the form:

dF vvv(t) =
(
λv(N)(t) + λµµ(t)

)
dt+ σdWt, t ∈ [0, T ], (4.47)

with the P−Brownian motion Wt. If we assume

EP

[
exp

1

2

∫ T

0

(
λvN(t) + λµµ

σ

)
dt

]
<∞,

then by Carmeron-Martin-Girsanov theorem, there exist an equivalent measure Q, and the

corresponding Q-Brownian motion W̃t such that

dF vvv(t) = σ

(
λvN(t) + λµµ

σ
dt+ dWt

)
= σdW̃t.

Thus, under the Q-measure, the daily settlement price at time t can be written as

EQ[F vvv(T )|Ft] = F vvv(t).

Note that in this section, the ETF issuers provide the liquidity on the buy-side of TASLOB.

Therefore, they will buy at δ > 0 above the mid-price. Thus, the HFTs can sell to the ETFs

at δ > 0 above the mid-price. The corresponding risk neutral execution price at the TAS

limit order book reads

Swi (t) = F vvv(t) + δ1{wi(t)<0}.
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The corresponding risk neutral cash process in the TASLOB then reads

dXw
i (t) = −(F (t) + δ1{wi(t)<0})wi(t)dt.

Again, in the mean-field game setting, a trade of one HFT does not affect the mid-price

process, but the overall trading of all HFTs affects the mid-price process. Thus, the average

trading speed of N HFTs, v(N), in (4.47) is

v(N)(t) =
1

N

N∑
i=1

(vi(t) + wi(t)).

We will again solve the optimal trading problem of HFTs in the VIX futures market using

the mean-field game approach. In the large N population limit of HFTs, each individual

agent has an asymptotically negligible impact on the fundamental price. However, the ag-

gregated effect of the trades of all individuals on the fundamental price is non-negligible.

The Value Function

The aim of agent i is to optimize her wealth, on a finite-time horizon T subject to an

inventory penalty and trading activity in two order books.

Ji(vi, wi; v−i, w−i) := E
[
Xi(T ) +Qi(T )

(
F vvv(T )− βQi(T )

)
− ψ

∫ T

t

(
vi(u) + wi(u)

)2

du

]
(4.48)

where v−i := (v1, ..., vi−1, vi+1, ..., vN) and w−i := (w1, ..., wi−1, wi+1, ..., wN) is the collection

of trading rates excluding agent i. Qi(T )(F
vvv(T ) − β(Qi(T ))

2) is the value of closing her

position at the end of the trading horizon, with the penalty parameter β > 0. The penalty

parameter ψ > 0 is used to penalize in case agent i does not trade synchronously in two order

books. The agent’s aim is to maximize the performance criterion over a class of admissible
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trading strategies A defined as

A :=

{
ν

∣∣∣∣ ν is G − adapted & E
[ ∫ T

0

ν2t dt <∞
]}

.

Here G = (Gt)t∈[0,T ] and Gt = Ft ∨ σ((Qi(0)){1,...,N}), that is the filtration G is the filtration

F expanded by the initial inventories of all HFTs.

A Mean-Field Game Approach

As mentioned before, the aim of each agent i (i ∈ {1, ..., N}) is to optimize the value

function (4.48), and this problem can be seen as the stochastic game where the interaction

between agent is via controls in which their aggregated control will have an influence on the

fundamental asset price dynamics. We are interested in large games, where N → ∞. Here

we define the mean trading speed of HFTs as v̄ = (v̄(t))t∈[0,T ]

v̄(t) := lim
N→∞

1

N

N∑
i=1

(vi(t) + wi(t)),

and assume this limit exists, and the mean inventory of HFT agents corresponding to this

mean trading speed is Qv̄ = (Qv̄(t))t∈[0,T ] where

Q(t)v̄ = lim
N→∞

1

N

N∑
i=1

(Qv
i (t) +Qw

i (t)).
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Infinite Number of HFTs

Problem: Similar to the previous section, we reformulate the N players game problem into

the mean-field game problem by replacing v(N) with v̄. Therefore, we obtain the following

system:

dQi(t) := dQv
i (t) + dQw

i (t)

= (vi(t) + wi(t))dt, with Q(0) = qv0 + qw0 , (4.49)

dF̄ (t) =
(
λv̄(t) + λµµ(t)

)
dt+ σdWt, with F̄ (0) = f0, (4.50)

dX̄i(t) := dX̄v
i (t) + dX̄w

i (t)

= −
(
(F̄ (t) + avi(t))vi(t)− (F̄ (t) + δ1{wi(t)<0})wi(t)

)
dt

with X̄(0) = x̄0. (4.51)

The aim of agent i is to optimize her wealth, at finite-time horizon subject to an inventory

penalty and trading activities in two order books. In the mean-field game frame work, her

finite-time wealth reads

J̄i(vi, wi; v̄) := E [X̄i(T ) +Qi(T )(F̄ (T )− β(Qi(T ))
2)− ψ

∫ T

t

(vi(u) + wi(u))
2du] . (4.52)

Thus the HFT-i’s control problem is the obtain

J̄i(v̄) = sup
vi,wi∈A

J̄i(vi, wi; v̄). (4.53)

If the supremum is attained in A, then we denote the optimal strategy by (v∗i , w
∗
i ).
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Solution to Limiting Stochastic Control Problem for HFTs

Solution to Problem: This problem falls within the class of optimal execution problems for

a single agent with a time-dependent fundamental price process with drift, and permanent

impact. For xi, f, qi, y, u ∈ R and t ∈ [0, T ], we define the performance criterion for a generic

HFT agent i = 1, ..., N under the arbitrary trading strategy (vi, wi) ∈ A as

Hvi,wi,v̄
i (t, xi, f, qi, y, u) =

Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
− ψ

∫ T

t

(
vi(s) + wi(s)

)2

ds

]

= Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
+

∫ T

t

Ki(vi, wi)ds

]
(4.54)

where Et,xi,f,qi,y,u [·] = Et,y,u
[
· |X̄i(t) = xi, F̄ (t) = f,Qi(t) = qi

]
.

We define a value function as:

H v̄
i (t, xi, f, qi, y, u) := sup

vi,wi∈A
Hvi,wi,v̄
i (t, xi, f, qi, y, u). (4.55)

Note that H v̄
i (t, xi, f, qi, y, u) is equivalent to J̄i(v̄) in the previouse section. We use the

notation H to denote the value function instead of J to highlight the explicit dependence on

the state variables. The value function J depends on control variables.
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4.3.2 Heuristic solution

This section derives a solution to the problem (4.55) by following the similar arguments

to the ones in Huang, Jaimungal and Nourian (2019) and Cartea, Jaimungal and Penalva

(2015), Chapter 5. By employing a standard dynamic programming principle and the use of

Ito’s formula, we obtain the following HJB equation with terminal condition


∂tHi(t, xi, f, qi, y, u) + supvi,wi∈A(L

vi,wiHi(t, xi, f, qi, y, u) +Ki(vi, wi)) = 0

Hi(T, xi, f, qi, y, u) = xi + qif − βq2i

(4.56)

whereKi(vi, wi) = −ψ(vi+wi)2, and Lvi,wi is the infinitesimal generator of (Xi(t), F (t), Qi(t),

y(t), U(t)) and acts as follow:

Lvi,wiHi =

[
− (f + avi)vi∂xi − (f + δ1{wi<0})wi∂xi

+ (λν̄ + λµµ)∂f + (vi + wi)∂qi + ν̄∂y + µ∂u + ς

]
Hi

where ς is the operator that encompasses the higher moments of the fundamental price

dynamic f in the HJB equation. Note that we obtain the terminal condition directly from

(4.54) when t = T .

The optimal control in the feedback form, vi, is

v∗i = arg sup
vi∈A

(
Lvi,wiHi +Ki(vi, wi)

)
=
∂qiH − f∂xH − 2ψwi

2a∂xH + 2ψ
, (4.57)

and the optimal control in the feedback form, wi

w∗
i = arg sup

wi∈A

(
Lvi,wiHi+Ki(vi, wi)

)
=

1

2ψ

(
−
(
f+δ1{wi<0}

)
∂xiH+∂qiH

)
−vi. (4.58)



MEAN-FIELD GAMES IN THE VIX FUTURES MARKET 63

Finally, the HJB equation in equation (4.56) becomes



∂tHi(t, xi, f, y, qi, u)− (f + av∗i )v
∗
i ∂xiHi

−(f + δ1{w∗
i<0})w

∗
i ∂xiHi + (λν̄ + λµµ)∂fHi

+(v∗i + w∗
i )∂qiHi + ν̄∂yHi + µ∂u + ς − ψ(v∗i + w∗

i )
2 = 0

Hi(T, xi, f, y, qi, u) = xi + qif − βq2i .

(4.59)

Again, by looking at the terminal condition in equation (4.59) we assume that

Hi(t, xi, f, y, qi, u) = xi + qif + h(t, qi, y, u),

where we assume as the previous section that

h(t, qi, y, u) = h0(t, y, u) + h1(t, y, u)qi + h2(t)q
2
i , (4.60)

subject to the following terminal conditions h0(T, y, u) = 0, h1(T, y, u) = 0, and h2(T ) = −β.

With the ansatz (4.60), v∗ in (4.57) and w∗ in (4.58) become

v∗i (t) =
δ1{w∗

i<0}

2a
, (4.61)

and

w∗
i (t) =

1

2ψ

(
− δ1{w∗

i<0} + h1(t, y) + 2h2(t)qi(t)

)
−
δ1{w∗

i<0}

2a
. (4.62)

By substituting of v∗i , w
∗
i , h(t, qi, y, u) in (4.60) into (4.59) with w∗

i < 0 and grouping them
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in terms of q0i , qi, q
2
i yields

∂th0 + ν̄∂yh0 + µ∂µh0 −
h1δ

2ψ
+

1

4ψ

(
δ2 + h21

)
+

δ

2a
− 1

4a

+

{
∂th1 +

h1h2
ψ

− δh2
ψ

+ v̄∂yh1 + µ∂µh1 + λν̄ + λµµ

}
qi

+

{
∂th2 +

1

ψ
h22

}
q2i = 0.

Therefore, we obtain the following system of of ODEs to solve:

∂th0 + ν̄∂yh0 + µ∂µh0 −
h1δ

2ψ
+

1

4ψ

(
δ2 + h21

)
+

δ

2a
− 1

4a
= 0

with h0(T, y, u) = 0, (4.63)

∂th1 +
h1h2
ψ

− δh2
ψ

+ v̄∂yh1 + µ∂µh1 + λν̄ + λµµ = 0

with h1(T, y, u) = 0, (4.64)

∂th2 +
1

ψ
h22 = 0

with h2(T ) = −β. (4.65)

Again, since h1 depends on the average inventory and the inventory of noise traders, we

assume further that it has the form

h1(t, y, u) = h01(t) + h11(t)y + h21(t)u, (4.66)

subject to the terminal conditions h01(T ) = h11(T ) = h21(T ) = 0. With the above ansatz for

h1(t, y, u), the optimal controls (4.61) and (4.62) becomes

v∗i =
δ

2a
, (4.67)



MEAN-FIELD GAMES IN THE VIX FUTURES MARKET 65

and

w∗
i (t) =

1

2ψ

(
− δ + h01(t) + h11(t)y + h21(t)u+ 2h2(t)qi(t)

)
− δ

2a
. (4.68)

Mean Field Game (MFG) Consistency condition

Recall that the mean trading rate is the average trading rate of all agent i for i ∈ {1, 2, ..., N}.

By (4.67) and (4.68), we have

ν̄(t) = lim
N→∞

1

N

N∑
i=1

(
v∗i (t) + w∗

i (t)

)
=

1

2ψ

(
− δ + h01(t)

)
+

1

2ψ

(
h11(t) + 2h2(t)

)
y(t) +

h21(t)

2ψ
U(t).

Again w∗
i (t) depends on h1 and h2, we have to solve for h1 in equation (4.64). To solve that,

we plug in ν̄(t) and (4.66) into (4.64) and then group them in term of y, and u, we have

{
∂th

0
1 +

((λ− λµ)

2ψ
+

(h11 − h21)

2ψ
+
h2
ψ

)
h01 − δ

((λ− λµ)

2ψ
+

(h11 − h21)

2ψ
+
h2
ψ

)}
+

{
∂th

1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
h2
ψ

(
λ− λµ − h21

)}
y

+

{
∂th

2
1 +

((λ− λµ)

2ψ
+
h11
2ψ

+
h2
ψ

)
h21 −

1

2ψ
(h21)

2

}
u = 0.

By the comparison of coefficients, we have the following ODEs to solve

∂th
0
1 +

((λ− λµ)

2ψ
+

(h11 − h21)

2ψ
+
h2
ψ

)
h01 − δ

((λ− λµ)

2ψ
+

(h11 − h21)

2ψ
+
h2
ψ

)
= 0

with h01(T ) = 0, . (4.69)

∂th
1
1 +

((λ− λµ)

2ψ
+

2h2
ψ

− h21
2ψ

)
h11 +

1

2ψ
(h11)

2 +
h2
ψ

(
λ− λµ − h21

)
= 0

with h11(T ) = 0, (4.70)

∂th
2
1 +

((λ− λµ)

2ψ
+
h2
ψ

+
h11
2ψ

)
h21 −

1

2ψ
(h21)

2 = 0

with h21(T ) = 0. (4.71)
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Observe that the ODE (4.70) and ODE (4.71) are exactly the same as ODE (4.34) and

(4.35), respectively. Since we have found the closed-form expressions for the two ODEs as

well as h2(t), we substitute these closed-form expressions into (4.69) yields

∂th
0
1 =


−A(1 + tanh(At+B1)) + δA(1 + tanh(At+B1)), for β ≤ (λ−λµ)

2

−A(1 + 1
tanh(At+B1)

) + δA(1 + 1
tanh(At+B1)

), for β > (λ−λµ)
2

The closed-form solution to h01(t) above is obtained using the Mathematica reads

h01(t) =


k1e

At cosh(At+B1)− δe2(At+B1), for β ≤ (λ−λµ)
2

k1e
At sinh(At+B2) + δe2(At+B2), , for β > (λ−λµ)

2

where

A :=
(λ− λµ)

4ψ
,

B1 := −(λ− λµ)

4ψ
T + tanh−1(1− 4β

(λ− λµ)
),

B2 := −(λ− λµ)

4ψ
T +

1

2
log(1− (λ− λµ)

2β
),

k1 =
δe(AT+2B1)

cosh(AT +B1)
,

k2 = − δe(AT+2B2)

sinh(AT +B2)
.
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Lemma 4.3.1. Assume that the value function h0 and h1 for equation (4.60) are C1 func-

tions of the variables t, y and u. If wi(t) < 0, then the HFTs’ value functions (4.63) and

(4.64) can be written as

h1(t, y, u) = h11(t) + h11(t)y + h21(t)u

h0(t, y, u) = h00(t) + h10(t)y + h20(t)u+ h30(t)yu+ h40(t)y
2 + h50(t)u

2,

with h01, h
1
1, h

2
1, h

0
0, h

1
0, h

2
0, h

3
0, h

4
0 and h50 being solutions to the following system of ODEs,

∂th
0
0 +

(h01)
2

4ψ
+ µh20 + h10

(
− δ

2ψ
+
h01
2ψ

)
− δh10

2ψ
− 1

4a
+

δ

2a
+
δ2

4ψ
= 0, h00(T ) = 0,

∂th
1
0 +

(
h11
2ψ

+
h2
ψ

)
h10 +

(
− δ

2ψ
+
h01
2ψ

)
h11 +

(
h01
ψ

− δ

ψ

)
h40 + h30µ = 0, h10(T ) = 0,

∂th
2
0 +

(
h01
2ψ

− δ

2ψ

)
h30 +

(
− δ

2ψ
+
h01
2ψ

+
h10
2ψ

)
h21 + 2h50µ = 0, h20(T ) = 0,

∂th
3
0 +

(
h11
2ψ

+
h2
ψ

)
h30 +

(
h40
ψ

+
h11
2ψ

)
h21 = 0, h30(T ) = 0,

∂th
4
0 +

(
h11
ψ

+
2h2
ψ

)
h40 +

(h11)
2

4ψ
= 0, h40(T ) = 0,

∂th
5
0 +

h21h
3
0

2ψ
+

(h21)
2

4ψ
= 0, h50(T ) = 0.

(4.72)

We have derived the solution to the optimal liquidation problem under the mean-field

game approach using the heuristic arguments. Theorem 4.3.2 below states the main result

of the optimal liquidation problem we obtained from the heuristic derivation.
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Theorem 4.3.2. The solution to the stochastic control problems (4.49) – (4.52) is

H v̄
i (t, xi, f, qi, y, u) = x+ fqi + h0(t, y, u) + h1(t, y, u)qi + h2(t)q

2
i ,

where the functions h0, h1, and h2 are

h0(t, y, u) = h00(t) + h10(t)y + h20(t)u+ h30(t)yu+ h40(t)y
2 + h50(t)u

2,

h1(t, y, u) = h01(t) + h11(t)y + h21(t)u,

h2(t) = − ψ

T − t+ β
ψ

.

and where h10, h
2
0, h

3
0, h

4
0, h

5
0, h

0
1, h

1
1, and h

2
1 satisfy the system of coupled ODEs given by (4.72),

and the optimal trading rate {v∗i }i∈{1,...,N} and {w∗
i }i∈{1,...,N} are as the following:

v∗i (t) =
δ

2a
,

w∗
i (t) =

1

2ψ

(
− δ + h1(t, y, u) + 2h2(t)qi(t)

)
− δ

2a
.

for wi < 0,

Proof. The proof is similar to previous section that the verification theorem then holds by

applying the Theorem 2.6 in Nisio (2015) or Theorem 3.1 in Fleming and Soner (2016).
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4.3.3 Numerical results

This section shows numerical results for agent i who wants to liquidate 1000 shares by the

end of the day in the VIX futures order books, with the initial mean inventory at 200 shares,

and the ETFs is buying in TASLOB.

Figure 4.5: Left: plot of h2(t) function, right: plot of h
0
1, h

1
1, and h

2
1 functions for the following

set of parameters: T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

Figure 4.5 shows the dynamics of h2(t) (left panel), h
0
1(t), h

1
1(t) and h

2
1(t) (right panel)

for the set of the parameters: T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5 when

ETFs provides liquidity on the buy-side on TASLOB. Compared to figure 4.2, the only h

function that is different is h01(t). Without ETFs in the market, h01(t) is negative. On the

other hand, with ETFs in the market, h01(t) takes positive values. However, the influence of

h2 on the optimal trading in the TASLOB is still large compared to h01(t). Figure 4.6 shows

the optimal trading rate of agent i in both order books (left panel), and the inventory path
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of agent i resulting from the trading activities from both order book (right panel, blue line)

when ETFs provides liquidity on the buy-side of TASLOB.

Figure 4.6: Optimal trading rate in RLOB (top left) and TASOB (bottom left), and the
Inventory left of agent i and mean inventory left at time 0 ≤ t ≤ T (right) using the set of
parameters: T = 1, β = 100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

Figure 4.7 (left) compares optimal trading rates in RLOB and TASLOB of agent i with

and without having ETFs in the market. One can see that if there are ETFs acquiring

shares in TASLOB, agent i will buy in RLOB and sell in TASLOB. We argue that this is

because HFTs know that ETFs will buy δ above mid-price in TASLOB, thus they can take

advantage of this information by buying some shares in RLOB and sell them δ more than

the mid-price in TASLOB to pocket some profit while liquidating their original inventory in

TASLOB. Consequently, there will be more shares for agent i to liquidate in TASLOB. That

is why the trading rate in TASLOB is faster when there is ETFs in the market.
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Figure 4.7: Optimal trading with and without ETFs using the set of parameters: T = 1, β =
100, ψ = 10, λ = 0.2, λµ = 0.19, and δ = 0.5.

4.4 Optimal Liquidation of HFTs in the VIX Futures

Market with Limited Supply in the Trade-at-Settlement

Order Book by ETFs

In this section, we investigate the optimal trading strategies of a representative agent i who

wants to liquidate Qi(0) shares by the end of the trading day in the VIX futures market,

where ETFs are acquiring shares in the TASLOB. However, the number of shares ETFs are

acquiring in the TASLOB is limited. In other words, the ETFs want to acquire Π0 shares

in the TASLOB by the end of the day, says at time t ≤ T , and we assume that each agent

i can sell their inventory to ETFs up to Π0

N
shares in the TASLOB. We further assume that

the ETFs have priority over other traders in the TASLOB; that is, when ETFs acquire their
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shares, the HFTs can only place an order on one side of this order book, which is to sell in

the TASLOB. In this setting, HFTs can place an order on both sides of the TAS limit order

book only after Π0 shares of ETFs are eaten up.

4.4.1 The Model

Dynamics in the regular limit order book

Again will use superscript v to represent action that occurs in the regular limit order book.

The inventory process of representation agent i is

dQv
i (t) = vi(t)dt with Qv

i (0) = qv0 ,

where vi(t) is the trading speed of the representation agent i at time t.

The execution price is

Svi (t) = F vvv(t) + avi(t)

where F vvv(t) is the mid-price process at time t and a is the temporary price impact in the

regular limit order book. The corresponding cash process is

dXv
i (t) = −Svi (t)νidt = −(F vvv(t) + avi(t))vi(t)dt, t ∈ [0, T ],

with initial cash {Xi(0)}i∈1,...,N .

Dynamics in the trade at settlement limit order book

We assume that the number of shares the ETFs want to sell in the TASLOB is Π0. If

there are N HFTs in the VIX futures market, each can buy approximately Π0

N
shares in the

TASLOB before ETFs liquidate all of their shares in that order book. Thus, the inventory
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process of representation agent i in the TAS limit order book is

dQw
i (t) = wi(t)dt with Qw

i (0) = qw0

where wi(t) is the trading speed of the representation agent at time 0 ≤ t ≤ T . Let∫ t
0
wi(s)

−ds be the accumulated shares agent i sold in the TAS limit order book up to time

t. For convenience, set

S :=

{
t > 0 :

∫ t

0

wi(s)
−ds ≤ Π0

N

}
.

Similar to the previous section, we let F vvv(T ) be the price at the settlement at time T. The

corresponding execution price reads

Swi (t) = F vvv(t) + δ1{wi(t)<0}1S +
(
δ1{wi(t)≥0} − δ1{wi(t)<0}

)
1Sc

Here F vvv(t) + δ1{wi(t)<0}1S represents the execution price at time t of agent i when her

accumulated shares is less than or equal to Π0/N . That is the HFTs benefit from ETFs’

acquisition by selling δ per share more than the mid-price in this region. F vvv(t)+δ1{wi(t)≥0}−

δ1{wi(t)<0} represents whether the order is a buy or a sell order at time t when the accumulated

shares of agent i is greater than Π0/N . In other words, the HFTs no longer benefit from

ETF’s acquisition in region Sc. Specifically in Sc, if agent i wants to buy shares, she has to

buy at δ more than the mid-price per share, and if she wants to sell, she has to sell at δ less

than the mid-price per share.

The corresponding cash process in the TASLOB then reads

dXw
i (t) = −

(
F vvv(t) + δ1{wi(t)<0}1S +

(
δ1{wi(t)≥0} − δ1{wi(t)<0}

)
1Sc

)
wi(t)dt.

We assume the same fundamental price dynamics as (4.47) in previous section:

dF vvv(t) =
(
λv(N)(t) + λµµ(t)

)
dt+ σdWt, t ∈ [0, T ],
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where F vvv(0) = f0 and

v(N)(t) =
1

N

N∑
i=1

(vi(t) + wi(t)).

For each representative agent i, we have the combined inventory process at time t as

dQi(t) = vi(t)dt+ wi(t)dt.

The cash process of the representative agent i in the VIX futures market is

dXi(t) = −(F vvv(t) + avi(t))vi(t)dt

−

(
F vvv(t) + δ1{wi(t)<0}1S +

(
δ1{wi(t)≥0} − δ1{wi(t)<0}

)
1Sc

)
wi(t)dt.

A Mean-Field Game Approach

As mentioned, we are interested in large games, where N → ∞. Here we define the mean

trading speed of HFTs as

v̄(t) := lim
N→∞

1

N

N∑
i=1

(
vi(t) + wi(t)

)
,

and assume this limit exists. The mean inventory of HFT agents corresponding to this mean

trading speed is Qv̄ = (Qv̄(t))t∈[0,T ] where

Qv̄(t) = lim
N→∞

1

N

N∑
i=1

(
Qv
i (t) +Qw

i (t)

)
.



MEAN-FIELD GAMES IN THE VIX FUTURES MARKET 75

Infinite Number of HFTs

Next we will reformulate the N players game problem into the mean-field game problem by

replacing v(N) with v̄. Therefore, we obtain the following system:

dQi(t) = dQv
i (t) + dQw

i (t)

= (vi(t) + wi(t))dt with Q(0) = qv0 + qw0 , (4.73)

dF̄ (t) =
(
λv̄(t) + λµµ(t)

)
dt+ σdWt with F̄ (0) = f0, (4.74)

dX̄i(t) = dX̄v
i (t) + dX̄w

i (t)

= −
((

F̄ (t) + avi(t)
)
vi(t)

+
(
F̄ (t) + δ1{wi(t)<0}1S + (δ1{wi(t)≥0} − δ1{wi(t)<0})1Sc

)
wi(t)

)
dt,

with X̄(0) = x̄0. (4.75)

The aim of agent i is to optimize her finite-time horizon wealth, subject to an inventory

penalty and trading activities in two order books, in the mean-field game frame work reads,

J̄i(vi, wi; v̄) := E
[
X̄i(T ) +Qi(T )

(
F̄ (T )− βQi(T )

)
− ψ

∫ T

t

(
vi(u) + wi(u)

)2

du

]
. (4.76)

Thus the HFT-i’s control problem is to maximize

J̄i(v̄) = sup
vi,wi∈A

J̄i(vi, wi; v̄). (4.77)

If the supremum is attained in A, then we denote the optimal strategy by (v∗i , w
∗
i ).
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Solution to Limiting Stochastic Control Problem for HFTs

Solution to Problem: This problem falls within the class of optimal execution problems for

a single agent with a time-dependent fundamental price with drift, and permanent impact.

For xi, f, qi, y, u ∈ R and t ∈ [0, T ], we define the performance criterion for a generic HFT

agent i = 1, ..., N under the arbitrary trading strategy (vi, wi) ∈ A as

Hvi,wi,v̄
i (t, xi, f, qi, y, u) =

Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )(F̄ (T )− β(Qi(T ))

2 − ψ

∫ T

t

(vi(s) + wi(s))
2ds

]

= Et,xi,f,qi,y,u

[
X̄i(T ) +Qi(T )(F̄ (T )− β(Qi(T ))

2 +

∫ T

t

Ki(s, vi, wi)ds

]
(4.78)

where Et,xi,f,qi,y
[
·
]

= Et,y
[
· |X̄i(t) = xi, F̄ (t) = f,Qi(t) = qi, U(t) = u

]
.

We define the value function as:

H v̄
i (t, xi, f, qi, y, u) := sup

vi,wi∈A
Hvi,wi,v̄
i (t, xi, f, qi, y, u) (4.79)

Note that H v̄
i (t, xi, f, qi, y, u) is equivalent to J̄i(v̄) in the previouse section. We use the

notation H to denote the value function instead of J to highlight the explicit dependence on

the state variables. The value function J depends on control variables.
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4.4.2 Heuristic solution

By employing a standard dynamic programming principle and the use of Ito’s formula, we

obtain the following HJB equation with terminal condition


∂tHi(t, x, f, qi, y, u) + supvi,wi∈A(L

vi,wiHi(t, x, f, qi, y, u) +Ki(vi, wi)) = 0

Hi(T, x, f, qi, y, u) = x+ qif − βq2
(4.80)

where Ki(vi, wi) = −ψ(vi + wi)
2 and Lvi,wi is the infinitesimal generator of(

X(t), F̄ (t), Q(t), y(t), U(t)

)
and acts as follow:

Lvi,wiHi =

[
− (f + avi)vi∂x −

(
f + δ1{wi<0}1S + (δ1{wi≥0} − δ1{wi<0})1Sc

)
wi(t)∂x

(λν̄ + λµµ)∂f + (vi + wi)∂qi + ν̄∂y + µ∂u + ς

]
Hi

where ς is the operator that encompasses the higher moments of the fundamental price

dynamic f in the HJB equation.

Let

Lvi,wi = Lvi,wiHi +Ki(vi, wi)

Note that S and Sc are disjoint, thus we split the problem into two cases and solve them

separately. The two cases are (i) t ∈ S, and (ii) t ̸∈ S.We let t∗ be the point where t switches

from S to Sc. For t ∈ S, then 0 ≤ t ≤ t∗, and for t ∈ Sc, then t∗ < t ≤ T . Assuming that

t∗ < T exists, we find the solution as follows.
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For t ∈ Sc

In this case, we obtain the following HJB equation

∂tHi(t, xi, f, y, qi, u)− (f + av∗i )v
∗
i ∂xiHi −

(
f − δ1{w∗

i<0}

)
w∗
i ∂xiHi

+ (λν̄ + λµµ)∂f + (v∗i + w∗
i )∂qi + ν̄∂y + µ∂u + ς]Hi − ψ(v∗i + w∗

i )
2 = 0

subject to the terminal condition Hi(T, xi, f, y, qi) = xi+ qif −βq2i . This is exactly the same

HJB equation in (4.18) for the case w < 0, previously solved in case where HFTs trade in

both order books without ETFs. The following are optimal trading strategies for agent i

who is liquidating initial shares Qi(t
∗) > 0:

For wi(t) < 0 and t∗ ≤ t ≤ T

v∗i (t) = − δ

2a
,

w∗
i (t) =

1

2ψ

(
δ + h01(t) + h11(t)y + 2h2(t)qi(t)

)
+

δ

2a
,

where

h2(t) = − ψ

T − t+ ψ
β

,

h11(t) =


− (λ−λµ)

2
+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2

tanh(At+B1) for β ≤ λ−λµ
2

− (λ−λµ)
2

+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2 tanh(At+B2)

for β > λ−λµ
2
,

and h01(t) solves

∂th
0
1(t) =


A

(
1 + tanh(At+B1)

)
h01(t) + δAη

(
1 + tanh(At+B1)

)
+ δ(1−η)

T−t+ψ
β

for β ≤ (λ−λµ)
2

,

A

(
1 + 1

tanh(At+B2)

)
h01(t) + δAη

(
1 + 1

tanh(At+B2)

)
+ δ(1−η)

T−t+ψ
β

for β > (λ−λµ)
2

,
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A :=
(λ− λµ)

4ψ
,

B1 := −(λ− λµ)

4ψ
T + tanh−1

(
1− 4β

(λ− λµ
)

)
,

B2 := −(λ− λµ)

4ψ
T +

1

2
log

(
1− (λ− λµ)

2β

)
.

Moreover, the mean trading speed is

v̄(t) =
1

2ψ

(
δη + h01(t) +

(
h11(t) + 2h2(t)

)
y(t)

)
.

For wi(t) ≥ 0 and t∗ ≤ t ≤ T

v∗i (t) = 0,

w∗
i (t) = 0.

For t ∈ S

In this case, the ETFs is buying shares. Since buying larges share will push the price up, we

assume that they will buy at δ more than the daily settlement price. As previously assumed,

the execution price in the TASLOB at time t is F (t) + δ no matter the transaction on the

TASLOB is a sell or a buy order. In this case, we obtain the following HJB equation



∂tHi(t, xi, f, y, qi, u)− (f + av∗i )v
∗
i ∂xiHi

−(f + δ1{w∗
i<0})w

∗
i ∂xiHi + (λν̄ + λµµ)∂fHi

+(v∗i + w∗
i )∂qiHi + ν̄∂yHi + µ∂u + ς − ψ(v∗i + w∗

i )
2 = 0,

Hi(T, xi, f, y, qi, u) = xi + qif − βq2i .

In this case, we recover the same HJB equation (4.59), previously solved in case where

the HFTs can place an order in only the opposite side of the ETFs in the TASLOB. The

following are optimal trading strategies for agent i who is liquidating initial shares Qi(0) > 0:
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For wi(t) < 0 and 0 ≤ t ≤ t∗

v∗i (t) =
δ

2a
,

w∗
i (t) =

1

2ψ

(
− δ + h01(t) + h11(t)y + 2h2(t)qi(t)

)
− δ

2a
,

where

h11(t) =


− (λ−λµ)

2
+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2

tanh(At+B1) for β ≤ (λ−λµ)
2

,

− (λ−λµ)
2

+ 2ψ

T−t+ψ
β

+ (λ−λµ)
2 tanh(At+B2)

for β > (λ−λµ)
2

,

and

h01(t) =


k1e

At cosh(At+B1)− δe2(At+B1) for β ≤ (λ−λµ)
2

k1e
At sinh(At+B2) + δe2(At+B2) for β > (λ−λµ)

2
,

A :=
(λ− λµ)

4ψ
,

B1 := −(λ− λµ)

4ψ
T + tanh−1

(
1− 4β

(λ− λµ)

)
,

B2 := −(λ− λµ)

4ψ
T +

1

2
log

(
1− (λ− λµ)

2β

)
,

k1 =
δe(AT+2B1)

cosh(AT +B1)
,

k2 = − δe(AT+2B2)

sinh(AT +B2)
.

Moreover, the mean trading speed is

v̄(t) =
1

2ψ

(
− δ + h01(t) +

(
h11(t) + 2h2(t)

)
y(t)

)
.
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For wi(t) ≥ 0 and 0 ≤ t ≤ t∗

v∗i (t) = 0,

w∗
i (t) = 0.

Note that we want to find the optimal control for time 0 ≤ t ≤ T ; thus, we want to find

t∗ to switch the trading strategies from region S to region Sc. If we have the closed-form

expression for the optimal trading strategies for both regions, it is possible to solve for t∗

explicitly. However, the optimal strategy w∗
i (t) for t∗ < t ≤ T is not in the closed-form

expression as we do not have the closed-form solution for h01(t). Therefore, we propose the

algorithm in the next section to numerically search for t∗.

4.4.3 Searching for t∗

Since we do not have the closed-form solution, we present the following algorithm to find t∗.

The idea is that we generate the sequence of times that we treat them as our candidates for

t∗, say 0 < τ1 < τ2 < ... < τi < ... < τn−1 < τn = T . Then, we approximate the solution by

testing each τi as t
∗, and compare the value function of τi to find t∗.

Given the set of parameters {a, δ, β, ψ, T, λ, λµ}, and form < n ∈ N with n is evenly divisible

by m.

• Initialize Qi(t0), y(t0),
Π0

N

• Set ∆1 := T
m
, and ∆2 := T

n
. m is the number of candidates for t∗; thus, ∆1 is the

distance between the two nearest candidates. ∆2 is the time step size. Next, generate

the Brownian motion from a normal distribution with a mean of 0 and a standard

deviation of
√
∆2. We generate the Brownian motion in this step to make sure that

we fix the randomization procedure as we have to compare the results later.

• Let τi+1 = τi +∆1. For each τi ∈ {τ1 = 0, τ2, ..., τm = T},
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1. Let tj+1 = tj +∆2.

2. For tj ∈ [0, τi], set Qi(t0) = Π0

N
, and do the following step using the solutions

obtained when t ∈ S

– Calculate h01(tj), h
1
1(tj), and h2(tj)

– Calculate v∗i (tj), w
∗
i (tj), and v̄(tj) to obtain X̄(tj), F̄ (tj), y(tj), and Qi(tj).

This step we obtain X̄(τi), F̄ (τi), y(τi), and Qi(τi)

3. For tj ∈ [τi, T ], set Qi(τi) := Qi(0) − Qi(τi), and do the following step using the

solutions obtained when t ∈ Sc

– Calculate h01(tj), h
1
1(tj), and h2(tj)

– Calculate v∗i (tj), w
∗
i (tj), and v̄(tj) to obtain X̄(tj), F̄ (tj), y(tj), and Qi(tj).

This step we obtain X̄(T ), F̄ (T ), y(T ), and Qi(T )

• Calculate the value function for each τi and obtain τi to give the maximum value

function. This τi is our t
∗.

4.4.4 Numerical results

This section shows numerical results of agent i who wants to liquidate 1000 shares of VIX

futures by the end of the day using RLOB and TASLOB, with the initial mean inventory at

200 shares, and the ETFs is buying in TASLOB. However, the maximum inventory agent i

can sell in TASLOB is up to 900 shares during the time ETFs are still in the market.

Since the number of shares agent i can sell in TASLOB at the price ETFs are buying is less

than the number of shares she plans to sell, her optimal strategy is that she will sell up to the

number of shares available to sell at the price ETFs are buying in TASLOB using the strategy

when t ∈ S. She then switches to the strategy when t ∈ Sc to liquidate the remaining shares.

The optimal time t∗ to switch the strategies can be found using the algorithm discussed in

searching for t∗. Figure 4.8 is a plot of terminal value against the time t∗i when the agent i

chooses to switch the strategy from optimal strategies in 0 ≤ t ≤ t∗i to optimal strategies in
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Figure 4.8: The terminal value function when we switch strategies at different time t∗

t∗i < t ≤ T when liquidating 1000 shares by time T = 1. The plot shows that the optimal t∗i

that yields the maximum terminal value is when t∗i = 0.38. Figure 4.9 displays the terminal

Figure 4.9: The terminal inventory when we switch strategies at different time t∗

inventory agent i has at terminal time T = 1 when switching strategies at time t∗i . We

find that the terminal inventory of agent i is minimum if she switches the strategies at time
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t∗i = 0.38. Thus, we conclude that the optimal time to switch strategies is when t∗ = 0.38.

Figure 4.10 illustrates the inventory paths of agent i when she chooses the optimal switching

time t∗ (blue curve) compared to times if she chooses to switches them before (red line) or

after (yellow curve) t∗.

Figure 4.10: Inventory path of agent i when we switch strategy at different time
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4.5 Conclusion

In this chapter, we solved the optimal liquidation problem in the VIX futures market using

the framework of mean-field games, where traders can place an order in not only one but

two order books. In our mean-field game setting, the interaction between traders is through

v̄, the price impact of all traders have on the drift of the fundamental price process. The

impact each trader has on the fundamental price process is negligible, but the overall actions

of all traders are not.

In section 4.2, we solved the optimal liquidation problem of a representative HFT agent

i when there are only two types of traders in the VIX futures market, the HFTs, and noise

traders. The optimal strategy for the representative agent i is liquidating her shares using

both order books. The optimal trading rate in RLOB is constant, whereas the optimal

trading rate in TASLOB is not. Although trades in TASLOB do not suffer from temporary

price impact, they do suffer from the permanent price impact. As the trading time is far

from the terminal time, the representative agent i will avoid the effect of price uncertainty by

liquidating her positions slowly to ensure that she gets the best price possible. As the trading

time is close to terminal time, she will trade faster to ensure that her terminal inventory is

close to zero, and also, there is a lower risk of price uncertainty at that time.

In section 4.3, we solved the optimal liquidation problem of a representative agent i

with ETFs in the market that provide liquidity on the buy-side in the TASLOB. We found

that with the existence of the ETFs, the representative agent i will liquidate her shares

using TASLOB while acquiring shares in RLOB. We argue that HFTs knew the information

about acquiring a large number of shares in TASLOB by ETFs, where the transaction price

is usually above mid-price. They benefited from this information by buying shares in RLOB

at a constant rate and selling their positions to the ETFs in TASLOB.

In section 4.4, we solved the optimal liquidation problem of same representative agent i

in a similar setting as the previous section, but where the liquidity provided by the ETFs
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is limited. We found that the representative agent i will use the optimal strategy found in

section 4.3 to liquidate her positions, then switch to the optimal strategy found in section

4.2. The critical part of this problem is finding the optimal time to switch the strategy. We

define the optimal switching time as the switching time that maximizes the value function at

terminal time T , where we found the optimal time to switch the strategy using the proposed

algorithm in 4.4.3.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This dissertation consists of two parts. In the first part, we conduct an empirical study

investigating the price impact of individual trades in the VIX futures market. In the second

part, we develop the mean-field game model for optimal liquidation in the VIX futures

market, where traders can trade in two order books, RLOB and TASLOB.

In Chapter 3, we examined the price impact on the VIX futures market for futures

comprising five months VIX futures contracts. The results show that all impact curves are

concave, with points clustered together when normalized volumes are small. The period after

4:00 p.m. exhibits the lowest price impact compared to all other curves. Besides, each impact

curve fits the model I(ω) = α · ωβ well. We also found that the price impact of VIX futures

is the lowest in the last fifteen minutes of regular trading hours. This time concurs with the

period where VIX ETPs should rebalance their positions, which supplies additional liquidity

to the market, making the price impact around this time lower than the other trading time.

We deduce that the lower price impact at the end of regular trading time is evidence of

the consequences of the architecture of VIX ETPs on VIX futures. Besides, by following a

similar argument discussed by Kyle and Obizhaeva (2016) with the different assumption on

87
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the dimension of the σ2, the general formula for price impact obtained theoretically agrees

with our price impact model obtained from the data when setting c = α, and β = H, where

H is the Hurst exponent.

In chapter 4, we solved the optimal liquidation problem in the VIX futures market using

the framework of the mean-field game, where traders can place an order in not only one

but two order books. In our mean-field game setting, the interaction of traders is via v̄, the

price impact of all traders have on the drift of the fundamental price process. In section

4.2, we solved the optimal liquidation of representative HFT agent i when there are only

two types of traders in the VIX futures market, the HFTs, and noise traders. The optimal

strategy for the representative agent i is liquidating her shares using both order books. She

trades more in TASLOB as there is no temporary price impact in this order book compared

to the RLOB. In section 4.3, we solved the optimal liquidation of representative agent i

when we introduced ETFs into the market, and they provide the liquidity on the buy-side

in the TASLOB. We found that with the existence of the ETFs, the representative agent

i will liquidate her shares using TASLOB while acquiring shares in RLOB. We argue that

HFTs knew the information about acquiring a large number of shares in TASLOB by ETFs,

where the transaction price is usually above mid-price. They benefited from this information

by buying shares in RLOB and selling them to the ETFs in TASLOB. In section 4.4, we

solved the optimal liquidation of representative agent i in a similar setting as in 4.3, but

the liquidity provided by the ETFs is limited. We found that the representative agent i will

use the optimal strategy found in section 4.3 to liquidate her positions, then switch to the

optimal strategy found in section 4.2. The critical part of this problem is when to switch the

strategy, and we found the optimal time to switch the strategy using the proposed algorithm

in 4.4.3.
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5.2 Future Work

The temporary price impact we used to model the execution price process in Chapter 4

is constant. However, in Chapter 3, we found that the temporary price impact in the VIX

futures market is not constant. One can extend the optimal execution problem to incorporate

the non-linear price impact into the model.

As mentioned in section 4.1, the permissible price range investors are allowed to place is

± 0.50 index point of the daily settlement price with a minimum price increment for TAS

transactions is 0.01 index points. One can relax the assumption of modeling execution price

in TASLOB to incorporate this increment into the model and introduce the probability of

the order being filled depending on the order book depth. One could also consider modeling

trades in TASLOB as dark pools trading. This trading venue does not display the bid and

ask prices, but the trades may occur continuously as soon as there is a matching order.

We introduced the ETFs to the model as the liquidity providers in TASLOB. We can

extend their role as a major agent in the VIX futures market, where they can also trade

in both RLOB and TASLOB and solve the optimal execution problem for both ETFs and

HFTs via the mean-field game framework.



Appendix A

The Impact Curves of June-October

2019 VIX Futures

Figure A.1: Impact curves of July 2019 VIX futures traded at different times of the day.
The left plot is the plot of the price impact against the normalized transaction price, and
the right plot is the corresponding log-log plot of the left curves.
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Trading times b0 estimate b1 estimate b2 estimate p-value for b2
09:00 AM - 10:00 AM -6.5122 0.5422 0.4320 0.0001
10:00 AM - 11:00 AM -6.4646 0.5461 0.1572 0.1681
11:00 AM - 12:00 PM -6.4635 0.5468 0.1670 0.1430
12:00 PM - 01:00 PM -6.4426 0.5470 0.0073 0.9492
01:00 PM - 02:00 PM -6.4342 0.5467 -0.0671 0.5573
02:00 PM - 03:00 PM -6.4736 0.5473 0.2628 0.0205
03:00 PM - 04:00 PM -6.4144 0.5457 -0.2548 0.0248
04:00 PM - 04:15 PM -6.3718 0.5417 -0.7042 4.56E-11

Table A.1: The estimates of b0, b1, b2 of using model y = b0 + b1x+ b21x∈A to July 2019 VIX
futures price impact data at different trading times.

Figure A.2: Impact curves of August 2019 VIX futures traded at different times of the day.
The left plot is the plot of the price impact against the normalized transaction price, and
the right plot is the corresponding log-log plot of the left curves.
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Figure A.3: Impact curves of September 2019 VIX futures traded at different times of the
day. The left plot is the plot of the price impact against the normalized transaction price,
and the right plot is the corresponding log-log plot of the left curves.

Figure A.4: Impact curves of October 2019 VIX futures traded at different times of the day.
The left plot is the plot of the price impact against the normalized transaction price, and
the right plot is the corresponding log-log plot of the left curves.
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