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Abstract

This thesis was conducted as part of the efforts related to WPI’s Precision Personnel

Location (PPL) project, the purpose of which is to locate emergency personnel in haz-

ardous indoor environments using radio location techniques. A unique signal processing

algorithm, σART, developed within the PPL project provides means to determine precise

position estimates of a wideband transmitter from multipath corrupted signals captured

by distributed receivers. This algorithm has synchronization requirements that can not be

met without extraordinary expense and complexity by direct means. This thesis develops

digital signal processing that achieves the necessary synchronization to satisfy the σART

algorithm requirements without additional implementation complexity. The mathematical

underpinnings of this solution are introduced and the results are evaluated in the context

of experimental data.
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Chapter 1

Introduction

This thesis was written in support of the Precision Personnel Location (PPL) project

which is being conducted by the Electrical and Computer Engineering Department of

Worcester Polytechnic Institute (WPI). This project is funded by the Department of Jus-

tice’s National Institute of Justice. The goal of the project is to design a precision location

system to locate first responders in indoor environments. This thesis deals specifically with

solving some of the synchronization problems that arose during the development of this

system.

Throughout this document several acronyms are used. Each are defined in the text, but

are also provided in Table 1 as a quick reference.

1.1 Precision Personnel Location Problem

On December 3, 1999 a veritable tragedy occurred in Worcester, Massachusetts. An

aging brick warehouse, the former Worcester Cold Storage and Warehouse Co. building,

became host to a fierce inferno. What at first seemed like a routine response by the Worces-

ter Fire Department turned out to be deadly. Two firefighters entered the building initially,

concerned that people might be inside. The two men soon found themselves in trouble and

called for help over their radios. Four more men were sent in to search for them, but soon

became missing themselves. Several more firefighters searched for their comrades for some

time, but to no avail. The fire was too fierce, and they were forced to evacuate. None of
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ADC Analog to Digital Converter
AK Atwater Kent building
DAC Digital to Analog Converter
DAQ Data Acquisition Unit
DFT Discrete Fourier Transform
DSS Direct State Space
FFT Fast Fourier Transform
GPS Global Positioning System
PPL Precision Personnel Location
RF Radio Frequency
RMS Root Mean Square
SNR Signal to Noise Ratio
σART Singular Value Array Reconciliation Tomography

Table 1.1: Acronyms

the six men made it out of the building alive. [4, 15]

This depressing event left many questions in people’s minds. How could this happen?

What could have been done to prevent such a tragedy? If only the firefighters had better

knowledge of where to look for their fallen companions, they may have been able to all

get out safely. Could this have been possible? Does the technology exist to keep track

of individuals in such an environment? Sadly, it does not. It is for this reason that the

Electrical Engineering Department of Worcester Polytechnic Institute has assembled a team

of researchers, funded by the United States government’s Department of Justice, to create

such a technology.

The goal that our team is trying to achieve is a location system for personnel such as

firefighters that requires no preexisting infrastructure and can perform accurately in haz-

ardous indoor environments. This project has been titled the Precision Personnel Location

project. In our proposed system, an incident commander would be constantly updated with

the knowledge of the location of his/her personnel. The system needs to be able to be put

into effect quickly, without any preexisting knowledge of the site, since it is never known

when or where a fire response (or similar event) is needed. [17]

The desired level of accuracy is that our solution estimates are within 1 foot of the true

position. This is so that there is as little ambiguity as possible as to where the personnel
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are located, whether on one side of a wall or another for example. The system should also

record position estimates over time so that the paths taken by personnel are available in case

they are needed to direct personnel back the way they came or send someone after them.

Other features of the system will include a wireless data channel for sending information

such as atmospheric and physiological conditions. [17]

There are many avenues that may lead to a solution to the indoor location problem.

The existing Global Positioning System (GPS) uses radio frequency electromagnetic waves

to perform positioning, but suffers from poor accuracy indoors in its standard operation

[12]. Other methods include inertial navigation and even ultrasound based systems [11].

1.2 RF-based Indoor Positioning

Our team decided to use radio frequency electromagnetic waves (RF) as our means for

positioning. In the proposed scheme, a person inside a building to be located would wear

a transmitter device with an antenna to generate a signal. Outside the building this signal

would be received by units with antennas on them.

It is known that in air electromagnetic waves at radio frequencies travel at very close to

the speed of light in a vacuum, 299,792,458 meters per second. If the time the signal took

to propagate through the air from the transmit antenna to the receive antennas could be

determined, then the distance between the antennas, called the range, can be deduced.

range =
c

t
, (1.1)

where c is the speed of light in meters per second, and t is the time of propagation from

the transmit antenna to the receive antenna.

If the range from the transmit antenna to several receive antennas outside the building

can be measured, then the position of the transmitter may be determined geometrically.

This assumes that the locations of the receive antennas are known. Thus some sort of

procedure must be taken when the system is put into effect to determine these receive

antenna positions. This may performed manually by surveying with measuring devices,

although in an emergency situation this would not be practical. Thus the locations of the
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receive antennas should be measured automatically by the system using a radio ranging

approach similar to how the transmitter is located. In the firefighter application the receive

antennas would most likely be fixed to firetrucks parked outside the building. This is

illustrated in Figure 1.1.

Figure 1.1: Precision Personnel Location System

The largest challenge with performing indoor location with radio frequency electromag-

netic waves is the complexity of the radio propagation environments involved. Radio waves

are reflected by metal objects, which are plentiful in indoor environments. This results in

the signals received being a combination of the so called direct path signal, and reflected
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signals, called multipath. This behavior is illustrated in Figure 1.2. The direct path is

Figure 1.2: Multipath

always the shortest path, since it travels directly from the transmit antenna to the receive

antenna. But before one could hope to make such a distinction the direct path signal and

multipath signals must be disentangled somehow. This problem contributes strongly to why

current GPS systems do not function accurately indoors. A successful RF indoor position-

ing system must find a way to take the multipath problem into account and mitigate its

effects.

There are different possible RF signal structures that may be used to solve the indoor

positioning problem. One notable approach is known an Impulse Ultra-Wideband (UWB)

which uses a series of pulses that are very narrow in time, and thus very broad in frequency.

This causes the signal to occupy frequencies in use by other services so such sources are

regulated to use low power levels so as to not interfere with these other services. The low

power levels make it difficult to perform location at larger distances. [16]

The Impulse Ultra-Wideband approach attempts to perform one dimensional ranging

between the transmit antenna and each receive antenna. Then from these one dimensional

ranges a position estimate is deduced. In practice it is generally not possible to determine

the absolute distance from the transmitter to receiver. Instead the relative differences

of the ranges is determined, adding an extra degree of freedom that is resolvable with

an additional receive antenna position. This is known as the Time Difference Of Arrival

(TDOA) approach, as opposed to absolute Time Of Arrival (TOA). From these range
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estimates (or relative range estimates) the position can be deduced. One algorithm that

can achieve this is the Bard algorithm [2].

Because of the issues inherent with the Impulse Ultra-Wideband approach, the early

efforts in the WPI Precision Personnel Location project considered alternate positioning

systems and associated ranging signals. The next chapter will introduce the method that

was chosen, which uses a so called multicarrier signal.
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Chapter 2

A Multicarrier Approach to

Precision Indoor Location

The WPI PPL project group decided to use an RF-based positioning system with a

signal structure quite different from GPS and Impulse Ultra-Wideband, a multicarrier ap-

proach [7]. Using this method we interpret received signals to obtain position estimates

by frequency domain analysis where methods have been determined to accept direct path

signals and reject multipath signals. The chosen multicarrier signal consists of several un-

modulated sinusoids evenly spaced in frequency.

2.1 Multicarrier Signal Considerations

In this section we will discuss the behavior of the signal structure we have selected,

tradeoffs to be considered, and some of our decisions regarding the use of the signal.

2.1.1 Mathematical Signal Model

Consider our signal, which is a sum of several sinusoids. For now we will assume that

they are evenly spaced in frequency and have an initial phase angle of zero.

g(t) =
m−1∑

n=0

e−j2π(f0+n∆f)t (2.1)
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where we have m sinusoids spaced ∆f apart in frequency, and the lowest frequency sinusoid

has a frequency f0. Taking the Fourier transform of g(t) we get

G(f) = 2π
m−1∑

n=0

δ(2π(f − (f0 + n∆f)), (2.2)

which is a series of impulses in the frequency domain. Figure 2.1 shows an example of what

the magnitude spectrum of a Multicarrier signal with 10 carriers looks like in the frequency

domain.

f
0

f
0
+(m−1)∆fFrequency

|G
(f

)|

0

1

Figure 2.1: Example Multicarrer Magnitude Spectrum

What happens when we time delay our signal? This effect is of course what we’re

interested in exploiting to perform our positioning. In the time domain a signal g(t) delayed

by t0 seconds becomes g′(t) = g(t − t0). In the frequency domain this translates into the

relationship [13, p. 265]

g(t− t0) ⇐⇒ G(f)e−j2πft0 . (2.3)

We see that when a time delay is introduced the phase spectrum is changed but not the

magnitude spectrum. In the case of our delayed multicarrier signal we have

G′(f) = 2π

(
m−1∑

n=0

δ(2π(f − (f0 + n∆f))

)
e−j2πft0 . (2.4)

The phase angle changes linearly with frequency by a factor determined by t0. In theory

then we should be able to determine time delay using only one carrier and measuring its

received phase angle.

It is also important to note that our carriers initial phase angles may be arbitrary. So
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we can reconsider the definition of our transmitted signal

G(f) = 2π
m−1∑

n=0

δ(2π(f − (f0 + n∆f))ejθn . (2.5)

Where θn are arbitrary initial phase angles. Generally speaking, these phase angles are

known and under our control, and may be removed by division in further processing.

2.1.2 Aliasing Issues

Any signal consisting of a sum of sinusoids must be periodic. Let us consider first the

simplest case, a single sinusoid with period T

f1(t) = cos
(

2πt

T

)
. (2.6)

Since the signal repeats itself every time one period elapses, we have ambiguity when trying

to determine its time delay. We can only determine the time delay modulo T . This problem

is not just true of sinusoids, but any periodic function. Any Multicarrier signal will be

periodic. For example, with a two-carrier signal, if one of our sinusoids repeats itself every

two seconds and the other every three seconds, then their sum will repeat itself every six

seconds, see Figure 2.2. The period or aliasing window of a Multicarrier signal is determined

by the least common multiple of the periods of the individual carriers.

Alternatively we can interpret this aliasing issue in the same way one interprets aliasing

with sampling signals in the time domain. The Nyquist-Shannon sampling theorem states

that from samples of a continuous-time signal, the signal can be exactly reconstructed if the

signal is bandlimited and the sampling frequency is greater than twice the signal highest

frequency in the signal. If this condition is not met, then frequency content above twice the

sampling frequency is aliased back into the lower part of the band. [13, p. 321]

Our situation is exactly the same, except instead of sampling signals in the time domain

we are sampling signals in the frequency domain at each of our carrier frequencies. We are

sampling the complex exponential term e−j2πft0 . If t0 is large relative to our carrier spacing

then we will have aliasing. Thus our carrier spacing is what determines the aliasing window

of our Multicarrier signal.
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Figure 2.2: Sinusoid Periodicity

We need to ensure that this aliasing window is large enough to avoid any ambiguity.

For radio waves, time delays translate into ranges via Equation 1.1. If we assume that

the range from the receive antenna to the transmit antenna is less than a certain amount

(several hundred meters) then we can determine how large our aliasing window needs to be.

2.1.3 Channel Response

In a real situation the channel through which our signal propagates induces effects on

our signal as well. We assume that the channel is passive (there are no active transmitters

other then our own) and linear. The channel is time varying however as the transmitter

and objects in the building may move over time. We’ll denote the transfer function of

the channel as H(f), the effect the channel has on our transmitted signal as a function of

frequency. Thus a received signal

R(f) = G(f) ·H(f). (2.7)

Our carriers effectively sample the channel response at their respective frequencies.
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How do we expect our channel to behave? Even with no multipath, our signal will

be attenuated by some factor α(f). The farther the transmit antenna is from the receive

antenna, the less of the radiated energy is captured. Objects such as walls can attenuate

the signal as well, and this attenuation can even be a function of frequency. Thus a received

signal R(f) with one signal source can be written as

R(f) = G(f)α(f)e−j2πft0 . (2.8)

Now we will introduce the effects of multipath. Our received signal r(t) is a sum of

multiple delayed versions of the original signal.

R(f) =
k∑

i=1

G(f)αi(f)e−j2πfti , (2.9)

where we sum over i, referencing the direct path signal and k−1 additional reflected signals.

Our task is to interpet such signals from several receive antennas and deduce from them a

position estimate. This is performed by our σART algorithm to be described in Section 2.2.

2.1.4 Digital Signal Processing

All of our signal processing is done discretely and in the frequency domain. For this

reason our multicarrier signal was chosen with the Discrete Fourier Transform (DFT) in

mind. We use the Fast Fourier Transform algorithm (FFT) to compute the DFT. The DFT

takes a discrete time signal of some number of samples and converts it into a frequency

domain representation. The spectral energy of the signal is distributed into frequency bins,

where there are the same number of bins as the number of samples.

Consider a sampled signal of n samples at a sampling frequency fs. If the DFT is

performed on this signal then n frequency bins are created. These bins represent frequencies

evenly spaced from −fs

2 to fs

2 , with a spacing of fs

n . The complex values in these bins

represent the magnitude and phase of positive and negative frequencies up to half of the

sampling frequency. [13, p. 319]

If a sinusoid in the time signal has an exact frequency corresponding to one of the

frequency bins, then all of its energy will be present in that bin. If the frequency is not

precisely a bin frequency, then most of the energy will be present in the closest bin but some
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of the energy will reside in neighboring bins. This is known as leakage, and can reduce signal

to noise ratio and also cause sinusoids of different frequencies to interfere with each other,

muddling the underlying information. Figure 2.3 shows this behavior. We can see one case

where the DFT was taken of a signal with the exact frequency of a DFT bin; this contrasts

with another signal with the same amplitude wherein the frequency is in between two bins.

We can see the energy has leaked into neighboring bins.

DFT bin

M
ag

ni
tu

de

 

 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
On bin
Between bins

Figure 2.3: Magnitude of DFT Output for Frequencies on and off DFT bins

Our signal travels through the air at radio frequencies, centered about some center

frequency. After the signal is received at the antennas the signal is downconverted to

baseband frequencies so that it can be sampled. We chose our carrier spacing carefully

such that it is an integer number of DFT bins, and the local oscillator frequency by which

we downconvert, such that our multicarrier signal frequencies are centered on the DFT

bins to minimize leakage. That means that after we take the DFT of our sampled signal

the magnitude and phase of our received signal carriers are directly represented in the

appropriate bins. This reduces our carrier representation effectively to a list. Our analog

received signal is discretized and becomes

R(n∆f) = ejθnH(f0 + n∆f). (2.10)
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As stated, our carriers essentially sample the channel response, which is returned as the

vector we will denote as R(n∆f). To obtain R(n∆f) we index the output of our DFT at

the appropriate bins.

In our system we have decided to use a digital sample clock of 200 MHz. We take our

DFTs on blocks of 8192 samples at a time, which are known as symbols. This means that

our symbols have a time duration of 40.96 µs. We also use the same symbol definition

with our transmitter as we do with our receiver. The transmitter uses a software radio

approach wherein it plays a digitally stored version of the desired multicarrier signal through

a digital to analog converter. Since our signal is periodic with respect to the symbol window,

our transmitter can simply play the same 8192 samples repeatedly to transmit a constant

multicarrier signal.

It is also important to note that since we chose our multicarrier signal to have its carriers

centered on our FFT bins that this means our signal is periodic with respect to the symbol

window. This fact gives us another considerable benefit. Suppose we capture a symbol

of data at one of our receive antennas. What if we capture a second symbol immediately

after it? If we assume that the channel response has not changed, then the second symbol

will be the same as the first (with different noise). This means it may be valid for us to

analyze symbols captured at different times if necessary. We will explore such an analyses

in Chapter 4.

2.2 Singular Value Array Reconciliation Tomography

The precision location algorithm developed in the WPI PPL project that is currently

used in our system was named by this group Singular Value Array Reconciliation Tomogra-

phy (σART). This novel algorithm obtains a position estimate directly with received data

from all of the receive antennas, rather than determining the ranges from the transmit-

ter to each receive antenna independently followed by a multilateralization solution of the

indicated source position.
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2.2.1 Rephasing

σART is an exhaustive algorithm. The entire space that the transmitter may reside in

is discretized as a grid with some spatial resolution. This grid is scanned and a metric is

evaluated at each scan location in the grid. Our metric is chosen such that it should be

maximized at the transmitter location. The sampling density of the grid is chosen based

upon the bandwidth of our multicarrier signal. The spatial resolution may also be increased

using interpolation techniques after the completion of the σART scan.

We start with our frequency domain data Rl(n∆f), the received complex values at

each of our carrier locations from the lth receive antenna, which can be considered a vector.

These vectors form the columns in our raw data matrix R, with one column for each receive

antenna.

R =




R0(0∆f) R1(0∆f) . . . Rp(0∆f)

R0(1∆f) R1(1∆f) . . . Rp(1∆f)
...

...
. . .

...

R0(m∆f) R1(m∆f) . . . Rp(m∆f)




, (2.11)

where we have p receive antennas and m carrier frequencies.

At each point in space that is scanned, the distance from that location to each of the

receive antennas is determined from the known locations of the receive antennas. Figure 2.4

illustrates this procedure. The left side of Figure 2.4 shows the ideal behavior of our

transmitted signal, which simply gets delayed as it propagates from the transmit antenna

to the receive antennas, with a different delay t0, t1, . . . tp determined by the range from

the transmitter to each receiver via Equation 1.1. The space that the transmitter may be

located within is scanned in a grid pattern as depicted on the right side of Figure 2.4. At

each scan location the ranges from the scan location to the receive antennas is computed,

and then the corresponding time offsets are inversely applied to the received data.

Thus, the received data matrix R has a negative time offset applied to all its columns.

This undoes the time delay that would have been applied to the data by propagating through

free space if the transmitter was at that location. So for every point in space we have a
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Figure 2.4: Rephasing Procedure

different rephased version of R we’ll call R′, where

R′ =




R0(0∆f)ej2π0∆ft0 R1(0∆f)ej2π0∆ft1 . . . Rp(0∆f)ej2π0∆ftp

R0(1∆f)ej2π1∆ft0 R1(1∆f)ej2π1∆ft1 . . . Rp(1∆f)ej2π1∆ftp

...
...

. . .
...

R0(m∆f)ej2πm∆ft0 R1(m∆f)ej2πm∆ft1 . . . Rp(m∆f)ej2πm∆ftp




. (2.12)

The time delay terms t0, t1, . . . tp correspond to the RF propagation times from the scan

location to each receive antenna.

An important point to make is that this rephasing does not change the “energy” or

Frobenius Norm of the matrix. The Frobenius Norm of a matrix A with b elements, re-

gardless of shape is defined as [14]

E =

√√√√
b∑

a=1

|Aa|2. (2.13)

Since the rephasing only affects the phase, and not the magnitude of the elements of R, we

can conclude that the energy in the matrix remains constant as R is rephased to create R′.
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2.2.2 The First Singular Value

At each location an operation is performed on R′ to obtain a metric indicating how

strongly that location is judged as a potential position estimate, meaning the consistency

of the rephased data with the ideal signal structure for that location. The metric is the first

singular value of the singular value decomposition of R′. Consider the ideal case where our

transmitted signal is the function

G(f) = 2π

(
m−1∑

n=0

δ(2π(f − (f0 + n∆f))e−jΘn

)
. (2.14)

so all of our carriers have some arbitrary phase angle Θn. After the signal propagates

through space it gets delayed by t0 and becomes

G′(f) = 2π

(
m−1∑

n=0

δ(2π(f − (f0 + n∆f))e−jΘn

)
e−j2πft0 , (2.15)

assuming for now that there is no attenuation to consider. So, for our raw data matrix R,

in this case

G′
l(f) = G(f)e−j2πftl ⇒ G(n∆f)e−j2πn∆ftl , (2.16)

where l is an index of our p receive antennas. Thus

R =




G(0∆f)e−j2π0∆ft0 G(0∆f)e−j2π0∆ft1 . . . G(0∆f)e−j2π0∆ftp

G(1∆f)e−j2π1∆ft0 G(1∆f)e−j2π1∆ft1 . . . G(1∆f)e−j2π1∆ftp

...
...

. . .
...

G(m∆f)e−j2πm∆ft0 G(m∆f)e−j2πm∆ft1 . . . G(m∆f)e−j2πm∆ftp




. (2.17)

When we perform our scan and are at the correct transmitter location the time delay term

is undone, so the phases are again all zeros.

R′ =




G(0∆f)e−j2π0∆f(t0−t0) G(0∆f)e−j2π0∆f(t1−t1) . . . G(0∆f)e−j2π0∆f(tp−tp)

G(1∆f)e−j2π1∆f(t0−t0) G(1∆f)e−j2π1∆f(t1−t1) . . . G(1∆f)e−j2π1∆f(tp−tp)

...
...

. . .
...

G(m∆f)e−j2πm∆f(t0−t0) G(m∆f)e−j2πm∆f(t1−t1) . . . G(m∆f)e−j2πm∆f(tp−tp)




.

(2.18)
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R′ =




G(0∆f) G(0∆f) . . . G(0∆f)

G(1∆f) G(1∆f) . . . G(1∆f)
...

...
. . .

...

G(m∆f) G(m∆f) . . . G(m∆f)




. (2.19)

All of the columns of our matrix are identical, which means they are linearly dependent and

R′ has a rank of 1. This means that all of the energy of the matrix is in the first singular

value.

Even if the columns were scaled by constants because the carriers underwent different

attenuations and phase delays, the rank would still be 1. Another important property of

σART is that it is agnostic of the magnitude and phase angles of G(f), the transmitted

signal. This means that the carrier phase angles θn of our transmitted waveform can be

arbitrary. Now consider the case where we have a global time offset τg applied to each

column of received data. When the data is rephased to the correct location in the ideal

case, we have

R′ =




G(0∆f)e−j2π0∆fτg G(0∆f)e−j2π0∆fτg . . . G(0∆f)e−j2π0∆fτg

G(1∆f)e−j2π1∆fτg G(1∆f)e−j2π1∆fτg . . . G(1∆f)e−j2π1∆fτg

...
...

. . .
...

G(m∆f)e−j2πm∆fτg G(m∆f)e−j2πm∆fτg . . . G(m∆f)e−j2πm∆fτg




. (2.20)

This matrix still has a rank of 1 since all columns are identical. This means that an arbitrary

time offset on G(t) will not affect the results, as long as the time delay is global and applied

uniformly to all columns of the received data matrix. This is an important property that

we will discuss later.

Now suppose that our signals have been rephased to an incorrect location. In this case

the variable τl will be used to represent a rephasing time delay that does not match the

true time delay.

R′ =




G(0∆f)e−j2π0∆f(t0−τ0) G(0∆f)e−j2π0∆f(t1−τ1) . . . G(0∆f)e−j2π0∆f(tp−τp)

G(1∆f)e−j2π1∆f(t0−τ0) G(1∆f)e−j2π1∆f(t1−τ1) . . . G(1∆f)e−j2π1∆f(tp−τp)

...
...

. . .
...

G(m∆f)e−j2πm∆f(t0−τ0) G(m∆f)e−j2πm∆f(t1−τ1) . . . G(m∆f)e−j2πm∆f(tp−τp)




.

(2.21)
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Now each of our columns has a complex exponential term with a different frequency with

respect to row index, thus each of our columns should be linearly independent. So our

matrix R′ now has full rank and the first singular value as a result must be smaller. Only

at the correct location does the metric take on its maximum value.

The performance of σART is limited by bandwidth however. We are dealing with win-

dowed sinusoids since we have finite bandwidth, thus our columns will never be completely

orthogonal. The closer in frequency two columns are the more linearly dependent they will

become. Thus σART like other approaches benefits from having more signal bandwidth.

2.2.3 Ideal Performance

We contrived a basic test based upon a two dimensional scan to simulate the behavior

of the σART algorithm. A symmetric radial geometry was chosen for our receive antenna

configuration with 8 antennas. Pristine synthetic frequency domain data was used, free of

noise and multipath, to simulate received data from a transmitter at an arbitrary location

with a bandwidth of 30 MHz. Thus our data matrix R captures the features of the ideal

case previously discussed. Our spatial scan resolution was 0.5 meters. This resolution was

increased with interpolation by a factor of ten to 0.05 meters. Figure 2.5 shows the outcome

of σART in this case. A contour map is laid over the scan region indicating the strength of

the σART metric. We see that it is maximized at exactly the location of the transmitter.

Hence the position solution, the location where the metric is maximized, is at the correct

location.

The behavior of σART in regards to bandwidth, number of carriers, geometry, presence

of reflectors, etc. is important for us to understand for the implementation of our system,

but is beyond the scope of this thesis. We will focus on the synchronization requirements

of σART.

2.2.4 Synchronization Required

Since the phase angles of G(f) are arbitrary, a global time offset applied to all of the

columns of R does not alter the results obtained with σART. What certainly would not
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Figure 2.5: Basic σART Simulation

be acceptable however would be the condition wherein columns had phase offsets due to

differing additional time offsets.

Such differing offsets can arise, for example, after our signal is received by an antenna,

as the travels down a cable before it can be downconverted and sampled. These cables act

as transmission lines and introduce additional delay to our signal before it is digitized. If all

of the cables induce the same delay, then there is no issue with σART because it would be

a common time offset across all columns of R. If the cables differ in length/delay slightly

however, the solution can be perturbed. For this reason, preparation of our PPL system

requires that procedures be followed to calibrate-out differences in cable delay times. This

has been done in the past by using a network analyzer to measure the transfer function of

the cables and deducing their time delays.

There are other means by which these erroneous time offsets can creep in: errors in

receive antenna position knowledge, retarded signal propagation through walls, and failure

to capture data from different receive antennas at exactly the same time. One issue that
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must be addressed is how much error of this nature is tolerable. A simulation was executed

to determine this.

The purpose of this simulation was to determine the general behavior of σART faced

with these timing errors. We used the symmetric radial receive antenna geometry with 4, 8

and 16 antennas. A transmitter location was chosen at a location uniformly random within

the circle enclosed by the receive antennas. Then each antenna’s pristine synthetic data

had a random time offset applied to it with some standard deviation. The σART algorithm

was executed, and the position error was determined. Our position error is defined as

the Euclidean distance from the true transmitter position to the estimated transmitter

position. We performed this analysis with 50 random transmitter positions for several

different standard deviations of timing errors. The root-mean-square (RMS) position errors

is plotted versus the standard deviation of the timing errors in Figure 2.6.
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Figure 2.6: RMS Position Errors vs. Standard Deviation of Timing Errors

We observe that as the timing errors get larger, so does the σART position error. We

also observe that with more receive antennas the position errors are smaller as well. We

wish to ensure the degree to which our position errors are perturbed by these timing errors

are small enough. Assuming the use of approximately 16 receive antennas, we have decided
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that timing accuracy with a 0.5 ns standard deviation (or smaller) is generally acceptable

for our system. Thus the position errors due to timing errors are generally less than 0.1

meters.

The RMS position error, σp, can be expressed as an approximate function of the standard

deviation of the timing error, σt.

σp =
a · σt√

p
, (2.22)

where a is a proportionality constant and p is again the number of antennas. This relation-

ship coincides with previous analytic work conducted for this project [8].

2.3 Single Pole Frequency Estimation

For reasons to be discussed in Chapter 4, a tool used in our signal processing is direct

state space (DSS) single pole frequency estimation. This is a model-based estimation tech-

nique that can determine the frequency of a discrete signal with a single complex sinusoid

in noise more accurately than traditional methods such as the discrete Fourier transform.

The operation basis for state-space estimation can be grasped via a much simpler method

than the full DSS frequency estimation algorithm by considering only the case of a single

sinusoid. We shall examine this simplification in the following section.

Suppose we have a discrete signal that is a complex sinusoid of frequency f0

f(n∆t) = e−j2πf0n∆t. (2.23)

Consider the product of a sample’s conjugate and the subsequent sample

f(n∆t)∗ · f((n + 1)∆t) = ej2πf0n∆t · e−j2πf0(n+1)∆t. (2.24)

pole = f(n∆t)∗ · f((n + 1)∆t) = e−j2πf0∆t. (2.25)

The result is a complex number with an angle that corresponds to the difference in angle

f0∆t of the original two samples. This complex number is known as the pole. Since ∆t is

known we can find the desired frequency

f0 =
∠(f(n∆t)∗ · f((n + 1)∆t))

−2π∆t
. (2.26)
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This is valid in the ideal case, but what if our signal is in noise? Instead of basing our

frequency estimate on only two samples we can use many more to get the most accurate

answer possible.

Say we have m total samples of f(n∆t). We can form from this two vectors

H0 =




f(0∆t)

f(1∆t)
...

f((m− 1)∆t)




H1 =




f(1∆t)

f(2∆t)
...

f((m)∆t)




. (2.27)

If we take the dot product

〈H0
∗,H1〉 =

∑




e−j2πf0∆t

e−j2πf0∆t

...

e−j2πf0∆t




= m · e−j2πf0∆t. (2.28)

Each element in the sum ideally the same, with the desired phase angle. After the sum we

normalize by the magnitudes of the elements of H0.

pole =
〈H0

∗,H1〉∑m−1
n=1 |H0(n)|2 . (2.29)

This sum and normalization effectively takes the mean of the poles yielded by the different

samples. This averaging improves accuracy in the presence of noise, since any zero-mean

errors should tend to average themselves out over many samples.

2.3.1 Direct State Space Pole Estimation: Observability Method

A more elaborate approach to pole estimation exists that uses a state-space model

based approach. We will focus on one implementation of this approach that exists known

as the observability method. Unlike the simpler version discussed, this method can actually

determine the values of multiple poles (frequencies). While for the purposes of this thesis

we only need to determine a single pole, this enhancement yields improved pole estimation

in the presence of interference and noise.
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Consider our signal as a sum of several sinusoids;

f(n∆t) =
k∑

i=1

αie
−j2πfin∆t, (2.30)

where i is an index of k sinusoids with amplitudes αi and frequencies fi. We can remodel

this as a state-space matrix equation:

f(n∆t) =
[

α1 α2 . . . αk

]

︸ ︷︷ ︸
C




e−j2πf1∆t 0 . . . 0

0 e−j2πf2∆t . . . 0
...

...
. . .

...

0 0 . . . e−j2πfk∆t




︸ ︷︷ ︸
A

n 


1

1
...

1




︸ ︷︷ ︸
B

. (2.31)

Thus we define the matrices C, A, and B as the three matrices in the above expression,

allowing us to simplify the equation as

f(n∆t) = CAnB. (2.32)

What we wish to determine ultimately are the poles from the matrix A. To do this we first

construct a Hankel matrix, H.

H =




f(0∆t) f(1∆t) . . . f(b∆t)

f(1∆t) f(2∆t) . . . f((b + 1)∆t)
...

...
. . .

...

f(a∆t) f((a + 1)∆t) . . . f(m∆t)




. (2.33)

where a + b = m. The values of a and b can be arbitrary, however it has been determined

that the optimum Hankel size for performance occurs when

a ≈ 2
3
m, (2.34)

b ≈ 1
3
m. (2.35)

for this Observability method of DSS pole estimation [18]. Our matrix H can be rewritten

as

H =




CA0B CA1B . . . CAbB

CA1B CA2B . . . CAb+1B
...

...
. . .

...

CAaB CAa+1B . . . CAmB




. (2.36)
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This matrix can be factored

H =




CA0

CA1

...

CAa




︸ ︷︷ ︸
O

[
A0B A1B . . . AbB

]

︸ ︷︷ ︸
C

. (2.37)

We’ll label these two resultant matrices O and C, which fit the definitions of the Observability

and Controllability matrices of a state-space system [5, pp. 145,156]. So we have

H = OC. (2.38)

We can obtain these two matrices by factoring H. Deducing them directly from H is not

possible. Whatever method of factorization is chosen however, we know that the resultant

matrices Õ, C̃ can be related to the original matrices O, C by a similarity transformation.

H = OC = ÕC̃. (2.39)

For some arbitrary transformation matrix T

OC = ÕT−1TC̃. (2.40)

To within an allowed degree of freedom we can identify [18]

O = ÕT−1. (2.41)

Thus Õ corresponds to the Observability matrix of an equivalent state-space system with

parameters Ã, B̃, and C̃ where [5, p. 95]

Ã = TAT−1,

B̃ = TB,

C̃ = CT−1. (2.42)

There are many methods of factorization possible. In our implementation we use the sin-

gular value decomposition for its numerical stability. With the singular value decomposition

[9, p. 109]

H = UΣVH = U
√

Σ︸ ︷︷ ︸
eO

√
ΣVH

︸ ︷︷ ︸
eC

= ÕC̃. (2.43)
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So we have

Õ = U
√

Σ. (2.44)

At this point another step is performed called rank truncation, which we will not discuss in

detail here. See Reference [18].

From our matrix Õ we construct two smaller matrices:

Õ− =




C̃Ã0

C̃Ã1

...

C̃Ãa−1




, (2.45)

Õ+ =




C̃Ã1

C̃Ã2

...

C̃Ãa




. (2.46)

Thus we have the relationship

Õ−Ã = Õ+. (2.47)

We can solve this equation for Ã

Ã = Õ
†
−Õ+. (2.48)

Note that † denotes the Moore-Penrose pseudo-inverse [10, p. 257]. We know that Ã is

related to A by the similarity transformation T, and also that A is diagonal. Thus we can

find the original A by taking the eigenvalue decomposition,

A = TÃT−1. (2.49)

Thus we have our matrix of poles from which we can deduce the frequencies of the sinusoidal

components of the signal.
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Chapter 3

System Hardware

Our system consists of two major hardware sub-systems, the transmitter unit that is to

be worn by personnel being located, and the receiver units outside the building receiving

the transmitted signals.

3.1 Transmitter Unit

Our transmitter units are standalone devices to be worn by personnel, thus they must

be completely wireless and battery powered. Figure 3.1 shows general functionality of the

transmitter units.

Figure 3.1: Transmitter Block Diagram

We use a software defined radio approach for signal flexibility. Our signal is stored

digitally and is played through an digital to analog converter (DAC). This way we can

reprogram the digital transmit waveform to change our signal without any hardware mod-

ifications. Our signal is output from the DAC one sample at a time at a rate of 200
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Megasamples per second. This rate is determined by a local 200 MHz sampling clock.

Based on the Nyquist sampling theorem a 200 MHz sampling rate can support signals with

frequencies only as high as 100 MHz. This lets us generate a baseband signal with content

from 0 to 100 MHz.

The baseband signal is then upconverted with a mixer. This raises the frequency content

from baseband up to our desired radio frequencies over the air, which is generally centered

about 440 MHz. This signal is then driven into our transmit antenna, which converts the

electrical signal into an electromagnetic wave that propagates through space to our receive

antennas.

The center frequency of 440 MHz and power level of -12 dBm per carrier were chosen for

our transmitted signal based on an allotment from the Federal Communications Commis-

sion. Previously we were allotted 30 MHz of bandwidth (420-450 MHz) but more recently

we have been allotted 60 MHz (410-470 MHz). System tests using the 30 MHz allottment

used 103 carriers, providing a range aliasing window of 1,023 meters. More recent tests

using a 60 MHz bandwidth also use 103 carriers, halving our range aliasing window to 512

meters. This is sufficient as our current testing scale is no more than 30 meters between

our farthest separated antennas.

3.2 Antennas

The antennas currently in use in our system are vertical dipole antennas optimized for

response in about 440 MHz. These antennas emit vertically polarized radiation. Figure 3.2

is a picture of the vertical dipole currently used as our transmit antenna. This antenna

is also omnidirectional in the horizontal plane. In a final system a different antenna more

suitable to be worn by personnel would likely be chosen.

Our receive antennas are also vertical dipoles but with ground planes attached shown

in 3.3. The ground planes stop signals from being picked up by the antenna that come from

behind. The antennas are faced towards the building in which we are doing location, with

the ground planes on the back of the antennas to block any reflections from the back which

we know can not be the direct path.
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Figure 3.2: Transmit Antenna

Figure 3.3: Receive Antenna with Ground Plane
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3.3 Receiver Units

Receiving and processing our radio signals are our receiver units. Figure 3.4 shows

general functionality of the receiver units in an example configuration. Our signal is received

Figure 3.4: Receiver Block Diagram

by our receive antennas and then propagates down a cable at its radio frequencies still

centered at 440 MHz. We call these cables our RF cables. Each antenna has its own RF

cable. As mentioned previously, it is very important for σART to work that there are no

differences in time delay in the different cables. Thus we need to undo any differences in

cable delays in software. These differences were captured during special calibration testing

and should remain constant.

Next the RF cables may connect to an RF switch. The switches enable us to time

multiplex the captures from the different antennas, so we do not need a complete receive

hardware chain for every antenna. These switches can support up to four antennas.

Next our signal is downconverted from radio frequencies centered at 440 MHZ to base-

band frequencies by a mixer and amplified, which we’ll call an RF front-end. This brings

all of our frequency content down below 100 MHz so it can be then sampled by a 200 MHz

analog to digital converter (ADC). Before the ADCs however, the signal propagates over a

signal at baseband. We call these cables Baseband Cables, and it is also important for us

to calibrate out any delay differences in these cables. Figure 3.4 shows two main receiver
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chains ending with the two ADCs. Our current system supports up to five of these chains.

These chains are commonly called “arrays”. The antennas on each array are called “ele-

ments” and labeled by which port they are connected to on their respective switch. This

scheme will be discussed further in Section 4.1.1.

The ADCs are controlled by customized Field Programmable Gate Arrays (FPGAs),

which organize the data and prepare it for transmission over Ethernet to our Base Station

Computer. Collectively the ADC and FPGA pairs are called data acquisition units, or

DAQs. Once the data is received at the Base Station Computer, our signal processing is

applied. Our signal is converted into the frequency domain and analyzed with σART. Once

a position estimate is determined it is displayed in a real-time graphical user interface. An

example image of this graphical user interface is shown in Figure 3.5, which displays the

multicarrier spectrum from the receive antennas, the σART metric image, position error

and other information useful for our system testing. Figure 3.5 shows the graphical user

interface running in a simulation mode, though it also is the interface used when collecting

real data during our system tests.
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Figure 3.5: Graphical User Interface
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Chapter 4

Synchronization Problems

The σART algorithm that was introduced earlier was described with the simplifying

assumption of perfect synchronization. More specifically this introduction assumed that

the transmit DAC and receive ADCs have sampling clocks at exactly the same frequency,

and that the signals at the receive antennas are recorded at exactly the same time. For

practical reasons neither of these conditions is true.

4.1 Sample Clock Drift

For the precision location problem our transmitter needs to be wireless, so it can not

be connected directly to the sampling clock that drives the receive ADCs. That is not the

only way to share a common frequency reference however; a master frequency beacon could

be transmitted over the air for the transmitter to use. Multipath causes problems with this

approach however, as it is possible for the transmitter to be at a location where the direct

path and a reflected path happen to superimpose destructively resulting in signal loss. This

is unacceptable for our application. Transmitting a single frequency over the air has the

problem just discussed, but it may be possible to transmit a more complicated signal, such

as a multicarrier signal, and assure that there will always be frequency content for the

transmitter to lock onto. Such approaches require that our transmitter has the capability

of receiving such a signal and processing it, which would add to the hardware requirements.

In this section we will discuss why the lack of a common frequency reference is a problem,
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and the solution that we found which required relatively little modification of our hardware

requirements.

4.1.1 Sample Clock Drift Problem

We must first more fully understand the problem that unsynchronized sample clocks

causes. In the current hardware configuration that our system uses, we have our software

radio transmitter using one sample clock and our receiving ADCs running on another inde-

pendent sample clock. The ideal sample clock frequency chosen for our system is 200 MHz.

The transmitter’s sample clock comes from a crystal oscillator (CSX750ACB200.000) with

50 ppm of frequency drift [6]. The receive ADCs have a sampling clock from an Agilent

E4426B signal generator with less than 5 ppm of frequency drift [1]. The relative drift

between the two clocks is therefore 55 ppm in the worst case.

Consider what happens when we generate our waveform with a different sampling fre-

quency than with which we receive it. If our transmitter’s sample clock frequency f ′ is

faster or slower than the desired frequency f , then the signal generated will be accordingly

compressed or stretched in time. Similarly on the receiving end, if the ADCs’ sample clock

is faster or slower than desired then the recorded signal will appear stretched or compressed

accordingly. What ultimately determines the stretch/compression of the received signal is

the difference in frequency between the transmit sample clock and the receive sample clock.

Since our concern is with the relative frequency drift between the two clocks, we will

treat the receive sample clock as the reference frequency about which the transmit sample

clock drifts. Our worst case difference in frequency leads to a ratio of

f ′

f
= 1± 55 · 10−6. (4.1)

This means that the duration of the symbols transmitted and recorded by the ADCs will

be slightly different. The reference symbol duration of the receive ADCs

T =
a

f
, (4.2)

where a is a proportionality constant. The period of the symbols from the transmitter DAC
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is

T ′ =
a

f ′
. (4.3)

Hence in the worst case we have

f ′

f
=

T

T ′
= 1± 55 · 10−6. (4.4)

For each symbol of data we use 8192 samples at 200 MHz so T = 40.960µs. The transmitted

symbol duration is then at most

T ′ = T (1 + 55 · 10−6) = 40.962µs, (4.5)

and at least

T ′ = T (1− 55 · 10−6) = 40.958µs. (4.6)

The difference in symbol duration is at most 2 ns. This difference is small enough not to

affect the output of our FFT and thus can be ignored. This was proven in a previous thesis

conducted and written in support of this project [3].

Assuming a transmit symbol and receive symbol start at the same time, the drift between

the two sample clocks does not cause a problem since they end at the same time within 2

ns which we have accepted as negligible. The next pair of symbols however will not start

at exactly the same time. These errors build up after several symbol periods. Figure 4.1

illustrates this behavior, though in a more extreme case where T
T ′ = 1.2, so the symbols

become misaligned after just a few symbol periods. In our case the symbols can become
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Figure 4.1: Temporal Symbol Alignment

misaligned by at most 2 ns every symbol period, so that our symbols can be completely
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misaligned (offset by T
2 ) after as few as 10,240 symbol periods, which is 0.4194 seconds.

The drift in the relative sample clock differences is caused by unpredictable factors such as

temperature fluctuations. In Chapter 5 we will observe how long it takes for considerable

drift to occur in our system.

Since the drift is unknown, we record symbols at our receive ADCs with unknown time

offsets, while our hope for determining our position estimates is based upon the relative

time of arrival of our signals. Is this really a problem? As explained in Section 2.2.4, σART

is not affected by an arbitrary time offset applied to its input data as long as the same offset

is applied to every antenna’s recorded data. So our algorithm will still work in spite of our

symbols being uniformly misaligned. However, this is only true when all of our receive

ADCs capture symbols at the same time.

Consider again Figure 4.1. Suppose several receive ADCs (with a common sample clock)

capture symbols during the second receive symbol window. They will not be aligned with

a transmit receive symbol window, thus the received symbols will have some unknown time

offset, but it will be uniform for all of the receive ADCs since it was captured at the same

time. If the receive ADCs then capture symbols during the third receive symbol slot, there

would be a new unknown time offset thus making it invalid to use symbols from receive

capture 2 and receive capture 3 together in the same σART scan without correcting that

time offset first somehow.

This imposes some undesirable restrictions on our system. If the symbols must all

be captured simultaneously, then we must have a separate ADC for every antenna. The

principle that σART exploits is direct path presence across several antennas, so generally

speaking the more antennas the better. Our current system uses as many as 17 antennas.

It would be very costly for us to implement a dedicated RF front-end and ADC for each

antenna, not only monetarily, but also with respect to the time commitment for our team

to assemble this hardware and in terms of the complexity of the system. A far more

elegant solution would involve multiplexing our antennas in time using electronically driven

RF switches and only a few ADCs and RF front-ends. This is the idea of using several

“elements” on a few “arrays” discussed in Section 3.3 and shown in Figure 3.4. A solution

to the problem imposed by the sample clock drift, and its implications in a time multiplexed
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symbol acquisition based system, needed to be found for us to get around these undesirable

hardware requirements.

4.1.2 Reference Array Solution

The solution to this problem that was found allows us to use antenna switching at the

cost of having one unswitched antenna with its own dedicated array that we will call the

reference array. We can use this single array, which captures data at the same time as the

other array, to track the sample clock drift so that its effect can be undone in software.

Consider a single antenna connected to an array which is sampled by an ADC without

any other antennas or switching. Recall that the signal we wish to record is ideally

R(f) =
k∑

i=1

G(f)αi(f)e−j2πfti , (4.7)

where we have i as an index of k signal sources. But we have an unknown time delay τ(t)

applied to the signal that varies over time due to the drift between the sample clock of the

transmitter and receiver. This means that the signal received at the antenna is actually

R′(f) = R(f)e−j2πfτ(t). (4.8)

If we made successive data captures from this array, how would the recorded symbols differ?

If we assume the data captures were taken over a short enough period of time, then we can

assume R(f) does not change. This is because R(f) is determined by the channel itself.

If we assume the channel has not changed in a small period of time (our transmitter, any

reflectors, or anything else that can affect our signal has not moved) then R(f) remains the

same. The only way our signal does change is due to the undesirable time delay term.

Suppose we have two captured data symbols at times t0 and t1 that have been processed

with the FFT such that we now have vectors of the complex amplitudes of each of our

carriers

R′
0(n∆f) = R(n∆f)e−j2πn∆fτ(t0), (4.9)

R′
1(n∆f) = R(n∆f)e−j2πn∆fτ(t1). (4.10)
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If we divide the first symbol’s data by the second we get

R′
0(n∆f)

R′
1(n∆f)

=
R(n∆f)e−j2πn∆fτ(t0)

R(n∆f)e−j2πn∆fτ(t1)
. (4.11)

Canceling R(n∆f) then
R′

0(n∆f)
R′

1(n∆f)
=

e−j2πn∆fτ(t0)

e−j2πn∆fτ(t1)
. (4.12)

We can invert the denominator and multiply it by the numerator;

R′
0(n∆f)

R′
1(n∆f)

= e−j2πn∆fτ(t0)e−(−j2πn∆fτ(t1)) = e−j2πn∆f(τ(t0)−τ(t1)). (4.13)

We obtain a complex exponential whose frequency is solely dependent on the difference

between the two time delays. If this frequency is determined then we can solve for τ(t0)−
τ(t1). This is a perfect application for the single pole DSS frequency estimator described

in Section 2.3.1, since we are guaranteed the presence of only one complex exponential

component.

Once τ(t0)− τ(t1) is determined, we can correct the undesired time delays on our input

data. We do not need to correct the first symbol’s data since we are using that as the

reference, but for the second symbol let

R̃′
1(n∆f) = R′

1(n∆f)e−j2πn∆f(−τ(t0)+τ(t1)), (4.14)

R̃′
1(n∆f) = R′

0(n∆f). (4.15)

making the second symbol equivalent to the first, undoing the effects of sample clock drift.

So far we have assumed that there is no noise in our received signal, which would

certainly not be true of real data. What we need is for our noise to be small enough relative

to our signal whose frequency we need to estimate, based on the performance of the DSS

single pole frequency estimator.

To determine the performance of the DSS single pole frequency estimator more precisely,

a simulation was conducted. The data analyzed was a synthetic multicarrier signal with

103 carriers and some time delay trend on it, that is a phase shift e−j2πn∆ft0 , plus white

Gaussian noise. For varying amounts of bandwidth and signal to noise ratio, the time

delays were chosen at random and then estimated. For each combination of bandwidth
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Figure 4.2: Time Estimate Error from DSS Single Pole Estimator vs. Signal to Noise Ratio

and singal to noise ration, solutions were estimated 1000 times. The accuracy of these

estimates are shown in Figure 4.2. We can see that for better signal to noise ratios that the

performance improves as expected. Furthermore at 60 MHz bandwidth the time estimate

error is approximately one half than that at 30 MHz. This coincides with analyses previously

conducted in this project.

We are now able to determine the value of the random function τ(t) at any time that

our unswitched reference array captures a symbol. If another antenna on another array

(whether being switched or not) captures a symbol at the same time as the reference array,

it also is subjected to a delay of τ(t), but since we have estimated that time delay with the

reference array, we can undo it and generate valid data to use with our σART algorithm.

So, assuming our signal to noise ratio is large enough, we now have a means of tracking

the values of τ(t) relative to some arbitrary initial value τ(t0). This accomplishes our goal,

since the σART algorithm can have an arbitrary global time offset applied to its input data

without affecting its operation.

This technique solves the problem of sample clock drift with minimal hardware require-

ments. In Chapter 5 we will explore the practical implementation and performance of this

technique.
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4.2 Constant Time Offset Between Arrays

There is another significant synchronization issue that exists due to the behavior of our

digital sampling hardware. In our system we have several DAQs running in parallel, each

with an ADC sampling a signal for a different array. Our DAQs are currently co-located and

run off of a common sample clock, so sample clock drift between them is not an issue. When

the DAQs are first powered on, a signal is sent from one of the DAQs, the master, to indicate

to the others the beginning of the symbol window. Unfortunately this alignment is only

guaranteed to an accuracy of about 20 ns, due to hardware constraints. This means that

if the same signal was sampled by the ADCs on two different DAQs, one may have a time

offset relative to the other by as much as 20 ns. This behavior is illustrated in Figure 4.3

These time offsets are guaranteed to be fixed however, until the DAQs are powered on and

Figure 4.3: Inaccurate Synchronization Between ADCs

off again.

This is unacceptable for σART processing. Signals received by antennas from one array

would have different time offset from another array. With σART it is acceptable to have a

global time offset on the data for all receive antennas, not different time offsets for different

antennas. Thus a solution to this problem was needed.

The solution that we implemented involved a synchronization procedure during system

start-up, in which the different ADCs sample a reference signal. We have the different ADCs

sample the reference signal during the same symbol cycle, then analyze the recorded data

to determine the amount of unwanted time delay for each ADC so it can be later undone

on all subsequent symbols.
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The reference signal is another multicarrier signal. We use the baseband components of

a second transmitter unit, creating a baseband signal that can be sampled by each of the

ADCs after being passed through a splitter. These signals are then analyzed to determine

the time offsets between them by converting them into the frequency domain and using

the DSS single pole estimator, like in the sample clock drift solution. Again, since σART

is agnostic to a global time offset we only need to undo the relative time offsets from the

different ADCs.

So, our reference multicarrier G(f) is generated, passed through a splitter, and received

by the different ADCs. We’ll show two in this example.

R(f)0 = G(f)αe−j2πfτ0 (4.16)

R(f)1 = G(f)αe−j2πfτ1 (4.17)

Any attenuation α in the path should be the same for all ADCs since the paths are sym-

metrical. Each ADC has a different undesired time delay τ on its received signal. When we

divide the second signal by the first

R(f)1
R(f)0

=
G(f)αe−j2πfτ1

G(f)αe−j2πfτ0
= e−j2πf(τ1−τ0). (4.18)

We obtain an complex exponential with a periodicity determined by the time difference

τ1 − τ0. We can analyze this signal using the DSS Single Pole Frequency Estimator to

determine τ1 − τ0. The time offset for each ADC can be determined relative to the first.

These values are recorded and used throughout the session that the system is active to

repair incoming data. Since this is a completely cabled solution, the signal to noise ratio

of the received data will be much larger than the signals received from over the air, so the

time estimates should be much more accurate than in the sample clock drift solution.

So our system must be able to operate in two modes, a synchronization mode in which

the ADCs sample the reference signal to determine time offsets, and the normal mode

in which the ADCs sample data from the receive antennas. In order to be able to switch

modes easily we use a multiplexer to switch which signals are passed to the analog to digital

converters. The configuration for this scheme is shown in Figure 4.4. In this example five
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Figure 4.4: Configuration for Synchronization Scheme

data acquisition units are used so we have a five channel 2 to 1 multiplexer. The current

mode is selected by a control signal from the Base Station Computer.



42

Chapter 5

Performance

5.1 Performance of Sample Clock Drift Tracking

In this section we will discuss the performance of the reference array solution to the

sample clock drift problem. Initially the basis for the proposed technique of drift tracking

was verified, then the drift compensated data was tested in σART processing.

5.1.1 Drift Tracking Proof of Concept

On June 16, 2006 a test of the Precision Personnel Location system was conducted.

This test took place on the third floor of the Worcester Polytechnic Institute Electrical and

Computer Engineering building, Atwater Kent (AK). Specifically this test was conducted

in and around the laboratory AK317a, shown in Figure 5.1. This location was chosen as

a high multipath indoor environment. The most challenging feature of this environment

are the steel studs in the walls which are space 16 inches apart, shown in Figure 5.2. Also

contributing to the difficulty there is: metal equipment and cabinetry, metal shelving, and

a corrugated metal roof in testing area. These walls limit the penetration of our signal as

well as reflect it.

For this test we used one transmitter which was completely free running with its own

sample clock and which was placed in various location inside the room. We also used three

arrays, each with one unswitched antenna and one ADC. Figure 5.3 shows the layout for
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Figure 5.1: AK317a Laboratory

Figure 5.2: Steel Studded walls in Atwater Kent
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Figure 5.3: AK317a Test Layout 6/16/2006

this test, displaying the floor plan as well as the locations of the receive antennas and

the locations of the transmit antenna at which we recorded data. All transmit and receive

antenna locations for this test, and all of our test are surveyed manually. Automated receive

antenna positioning is currently not a capability of our system. The multicarrier signal used

for this test consisted of 103 carriers from 420-450 MHz (30 MHz span) at a power of -12

dBm for each of the carriers.

As discussed in Chapter 4, the reference array approach for using σART involves using

one unswitched reference array and several other switched arrays. In this test we had

three arrays that could have been reference arrays since they were all unswitched, and no

switched arrays. This was a convenient configuration for the purposes of testing our ability

to perform drift tracking. In theory we should have been able to track the drift at any one

of the three arrays, and the function τ(t) that we measured should have been the same for

all three.

For each transmitter location we captured 128 symbols of data at each array simul-

taneously. It is noteworthy that the symbols that were captured were not contiguous in
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time. The sampling hardware keeps a count of how many symbol times have elapsed since

the device was powered on. This is known as the global symbol index. Due to hardware

constraints, the actual recording of symbols was quite sparse, capturing one symbol ap-

proximately every 2000-3000 symbol times. This means the actual data capture spanned

almost 20 seconds. This was acceptable because the channel remained constant during the

capture; we were not attempting to perform any real-time tracking for this test.

For each array we attempted to track the time offsets due to sample clock drift, τ(t).

The first symbol from each array was used as a reference where we assumed there was no

offset, τ(t0) = 0. Then for each subsequent symbol the single pole DSS estimator was used

in order to compute τ(t) − τ(t0) for each symbol. Figure 5.4 shows the outcome of this
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Figure 5.4: Tracking τ(t) at Transmitter Location 2 6/16/2006

analysis for transmitter location 2. As desired, the function τ(t) estimated at each of the

three arrays was approximately equal. This implies that if we calculate the drift using one

unswitched reference array, we can use those values to undo the effects of sample clock drift

at other arrays. It was also an interesting that the curves found were continuous. The drift

of the sample clocks were therefore relatively slow. On the other hand, after a few seconds

we can see that the time offsets due to sample clock drift have already climbed to hundreds
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of nanoseconds, whereas our tolerance for these time offsets is a standard deviation of 0.5

ns. Leaving these effects uncorrected is therefore clearly unacceptable.

We do not have direct access to the true τ(t) of course, but we can get an idea of how

accurately we are tracking it by considering how close the three tracking curves are to each

other. We’ll consider the mean of the three curves as the true τ(t) and the difference between

the curves from the mean to be the error, shown in Figure 5.5. In this case the standard
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Figure 5.5: τ(t) Error at Transmitter Location 2 6/16/2006

deviation of the three error curves was 0.3461 ns. This is smaller than the maximum desired

standard deviation of 0.5 ns, established in Section 2.2.4. Also note that for transmitter

location 2 the estimated signal to noise ratio of the three arrays were respectively 33 dB,

33 dB and 39 dB.

These results are worse than predicted by Figure 4.2. According to the figure, for 30 MHz

and signal to noise ratios of 30-40 dB the standard deviation of our time offset estimates

should have been less than 0.1 ns. This is most likely due to the simulation being ideal, in the

sense that the noise was uniform across the band. Also there was no multipath introduced

and no attenuation as a function of frequency (to simulate hardware magnitude responses).

With the real signals received on the third floor of Atwater Kent, there is high multipath.
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At some frequencies the signals from the different sources may add constructively, and at

others they may add destructively. This coupled with real hardware responses results in

varying signal to noise ratios for the different carriers. For this reason, the simulation is

considered a general guide of the DSS algorithm’s performance trends with bandwidth and

signal to noise ratio, but not necessarily an expected measure of performance in our real

system.

The above referenced transmitter location 2 yielded one example of the drift tracking

performance for this test. The standard deviation for the rest of the transmitter locations is

shown in Figure 5.6. In most cases the standard deviation is under 2 ns. There is one case
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Figure 5.6: τ(t) Estimate Standard Deviation for 20 Transmitter Locations 6/16/2006

in particular, that of transmitter location 4, where the standard deviation is quite large.

We look more closely at what happened in this case in Figure 5.7. Clearly Array 2 had

large errors in this case for much of the capture time. The estimated signal to noise ratio

of the three arrays for this location were respectively 34 dB, 31 dB and 41 dB. The 31 dB

signal to noise ratio that Array 2 experienced at this location was relatively low. It was the

lowest that Array 2 had for the entire test.

The 6/16/2006 test was considered an overall success for proving the concept of our
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Figure 5.7: Tracking τ(t) at Transmitter Location 4 6/16/2006

sample clock drift tracking approach. However, the overall standard deviation of the drift

tracking was 1.69 ns, which is significantly larger than our desired 0.5 ns. As expected from

the theory, the threat to our ability to track the sample clock drift is noise. For this reason,

during subsequent tests attempts were made to place the antenna for the reference array in

a location that would have the best signal to noise ratio possible. The other way to improve

our drift tracking performance however, is to increase our signal bandwidth.

5.1.2 Drift Tracking Performance in a 60 MHz System

We continued to use our 30 MHz location system for several months after the introduc-

tion of the drift tracking approach. In the fall of 2006 we were allotted more bandwidth

by the Federal Communications Commission, 60 MHz from 410-470 MHz. As mentioned in

Section 2.2, the more bandwidth we have the better we expect σART to perform.

Once our system was modified to use 60 MHz, we performed another test on the third

floor of Atwater Kent on 3/6/2007. Figure 5.8 shows the layout for this test. For this test we

attempted to locate the transmitter at 20 locations inside of AK317a. We used five arrays:

one reference array with one antenna, a second array with three antennas, and three more
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Figure 5.8: AK317a Test Layout 3/6/2007

arrays with four antennas each. The antennas in Figure 5.8 are labeled by array number

and element number. The label 1-R indicates the antenna on the reference array. We used

the same signal power level for this test as the 6/16/2006 test, -12 dBm per carrier.

Now that we had twice as much bandwidth as the 6/16/2006 test, we expected our drift

tracking to be more accurate, since a DSS single pole frequency estimator performs better

with more bandwidth. In the 6/16/2006 test we were able to observe the performance of

our drift tracking because we had three unswitched arrays, any one of which was qualified

to be a reference array. For this test however we only had one reference array, so we could

not simply track the drift on multiple arrays and observe how close the τ(t) curves were as

was done previously.

Consider our antenna switching scheme used during this test. Each switched array has

up to four switched antennas connected to it, referred to as elements 1-4. We cycle through

the various antenna elements capturing symbols for each. So when we are capturing symbols

for element 1, symbols will be captured simultaneously at the reference array’s antenna as

well as element 1 antennas on each of the other arrays.
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Figure 5.9 shows how symbols were captured from the four elements for the first trans-

mitter location from this test. For this data capture we recorded 64 symbols from each

Symbol Captures Transmitter Location 1 3/6/2007
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Figure 5.9: Symbol Captures on 4 Elements 3/6/2007

element. Our switching scheme cycles through the different elements for durations of ap-

proximately 10 ms, during which time we capture 2-3 symbols. After several cycles (not

all shown in Figure 5.9) our quota of 64 symbols was met in this case. We also captured

symbols at a faster rate during this test than the previous 6/16/2006 test. We captured

symbols approximately every 96 symbol times. A full capture of 64 symbols from all four

elements took approximately 1 second in this case.

The reference array, as it is not switched, is qualified to track sample clock drift for

every element, unlike the other arrays. This is not true for the other antennas, so we can

not directly perform the same analysis as we did in the 6/16/2006 test where we compare

the tracking of τ(t) on the independent unswitched antennas. Instead we must make an

abstraction. Suppose we can throw away all symbols from all elements but element 1, as

shown in Figure 5.10. This means that the remaining data consists of only symbols captured

simultaneously on all antennas, effectively making them act as unswitched antennas. Now

the data can be analyzed in the same way that we analyzed the data from the 6/16/2006
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Figure 5.10: AK317a Test Layout 3/6/2007 First Element Only

test, and allows us to establish how well the independent antennas track τ(t). This same

analysis can also be repeated keeping only data from elements 2,3 and 4.

So, we’ll consider first only symbols captured from the first elements at the first transmit-

ter location. Using each antenna to track the drift independently we generate Figure 5.11.

At this scale any differences between the drift tracking from the five different arrays is not

visible. Figure 5.12 shows the test result wherein we plot the error of the different arrays

where the error is again defined as the difference from the mean of the five curves. The error

is generally less than 0.1 ns, which is very good. The standard deviation was calculated as

0.066 ns.

This analysis was also performed with elements 2,3 and 4 for this transmitter location,

and the standard deviations were 0.052 ns, 0.224 ns and 0.110 ns respectively. On an even

larger scale, all four elements at all twenty transmitter locations were analyzed in the same

manner. The performance was very good, with an average standard deviation overall of

0.232 ns. Figure 5.13 shows the performance for each transmitter location and each element.

Generally speaking the performance was very good, and much improved over the 6/16/2006
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Figure 5.11: Tracking τ(t) at Transmitter Location 1 on Element 1 3/6/2007
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Figure 5.13: τ(t) Estimate Standard Deviation 60 MHz 3/6/2007

test.

The data from this test was also analyzed in the same manner using only the lower 30

MHz. This yielded a larger overall standard deviation of 0.458 ns. Figure 5.14 shows the

performance for each transmitter location and each element in the 30 MHz case. We can

see that the performance is better with 60 MHz than with 30 MHz as predicted. This also

shows us that we are able to undo the effects of sample clock drift more and more accurately

as we increase our bandwidth.

Recalling our general rule of thumb from Section 2.2.4, we determined that the standard

deviation of our timing errors should be less than 0.5 ns. We can conclude from this analysis

that this condition has been met. Even the 30 MHz case generally performs better than

this constraint; the 60 MHz case performing well beyond this. Thus we conclude that we

have solved the synchronization problem imposed by sample clock drift with the reference

array solution.
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Figure 5.14: τ(t) Estimate Standard Deviation 30 MHz 3/6/2007

5.2 Array Synchronization Performance

In Section 4.2 we discussed our proposed scheme for determining the time offset between

ADCs by using a reference transmitter. This transmitter’s output is sent through a splitter

and then connected directly to the ADCs (through a multiplexer).

We conducted a test where we used this approach in practice. The transmitted signal

was a baseband multicarrier signal with 27 carriers spread between 10 MHZ and 52 MHz.

We captured the signal on five different ADCs simultaneously, and estimated the time offsets

with the previously described method. The relative the the first ADC the remaining four

had time offsets 10.2 ns, 15.1 ns, 15.2 ns and 15.2 ns.

What would the effects of these time offsets had been if we attempted to use this data

in σART processing? We analyzed this data in a pseudo-simulation, where we pretend the

data from the five ADCs came from five antennas symmetrically spaced in a circle 10 meters

from the origin. If the data from the five ADCs was the same then the maximum of the

σART metric should have been at the origin, since that is the one location equidistant from

the antennas. Since we did not compensate for the time offsets between the ADCs, this was

not the case, as shown in Figure 5.15 We see that there is an error of 1.90 meters, which
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Figure 5.15: σART with ADC Time Offsets

is unacceptable. Since we were able to determine these time offsets however, we can undo

them in software. Figure 5.16 shows the σART result for the same case after these time

offsets are undone. We can see that the error goes down to approximately zero meters.

This particular scan had a resolution of 10 cm, and the error is undetectable in this case. If

we zoom in and scan a tighter region, we can see how large our error really is. Figure 5.17

shows the same case with a resolution of 1 mm. Our actual error is 7 mm, which is much

better than our desired level of accuracy.

These tests let us observe the amount of error that σART is subject to when the ADCs

are not synchronized properly. We also observed that the proposed method of determining

the time offsets and undoing them works very accurately, meeting our needs.
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5.3 Positioning Performance

With our synchronization solutions in place, can we finally use σART to do positioning?

Lets consider the results from the 3/6/2007 test with 60 MHz. Figure 5.18 shows the

outcome of σART for the first transmitter location. For this analysis all analyses to follow
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Figure 5.18: σART Result Transmitter Location 1 3/6/2007

a two dimensional scan in the horizontal plane was performed, where the spatial resolution

of the σART scan was 1 meter, subsequently increased to 0.1 meters with interpolation. We

can see that the maximum of the σART metric is 0.88 meters away from the true position.

This result is not as accurate as we would like, but it does seem to indicate that our system

is working overall.

Figure 5.19 shows the outcomes for all 20 transmitter locations in this test. The vectors



58

0 5 10
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

 

 

X [m]

X
 [m

]

Average Position Error: 1.91 [m]

Rx Locations
Tx Locations
σART Error
Walls

Figure 5.19: Position Error Vector Plot 3/6/2007

in the plot show where the algorithm concluded the solution was, relative to the true

position. The average error was 1.91 meters. These solutions are not as accurate as they

need to be ultimately, but actually were the best we had seen in that location to date. As

we have discussed, the third floor of Atwater Kent is a very high multipath environment,

which has always been extremely challenging. In some cases we have even been able to

discern the contribution of large specular reflectors (such as metal-backed blackboards) by

analyzing σART metric images.

Again, Figure 5.19 shows that the average error for this test was 1.91 meters using σART.

These errors are on the same order as the error shown in Figure 5.15 of 1.90 meters, when the

synchronization between arrays was not compensated. Thus the improvements from array

synchronization are not obvious in this context. In the next section we will discuss improved

positioning algorithms that will clearly reveal the improvement from array synchronization.
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5.3.1 Improved Algorithms

In the course of the PPL project, effort is always being made to improve the performance

of our algorithms. As of writing of this thesis, newer algorithms exist that improve upon

σART. We will not discuss any details regarding these newer algorithms here, as they are

beyond the scope of this thesis. It is important to note however, that like σART these

newer algorithms use an exhaustive scanning approach. Also, these newer algorithms have

the same synchronization requirements as σART, so the synchronization solutions discussed

in this thesis are applicable with them as well. Using these newer algorithms, as well as

varying some parameters associated with them, we have seen for this same 3/6/2007 test

average errors as low as 0.72 meters, which is shown in Figure 5.20.
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Figure 5.20: Position Error Vector Plot 3/6/2007 with Advanced Algorithm

5.3.2 Effects of Array Synchronization

With this improved result the effect of the constant time offsets between arrays can

be shown here. Using the same case of the 3/6/2007 test, with the improved algorithm
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that yielded 0.72 meters average error, the data was analyzed again. This time however

the constant time offsets between arrays was not compensated for. This result is shown in

Figure 5.21. We can see that the average error gets significantly larger, now 2.07 meters.

This punctuates the need for the solution to this problem that has been discussed.
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Figure 5.21: Position Error Vector Plot 3/6/2007 with Advanced Algorithm and No Array
Synchronization
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Chapter 6

Conclusion

This thesis explores solutions to synchronization issues that arise in the implementation

of a precision indoor location system with a target goal of resolving the location of a radio

transmitter to within 1 foot. By understanding the particular synchronization requirements

of the σART algorithm we observed two problems impeding its usability.

The first was the issue caused by sample clock drift, which would have required us to have

unreasonable hardware requirements had we not found a way to undo its effects. An elegant

solution was found using a reference antenna to track the effects of the sample clock drift,

that enabled us to use time multiplexed antennas to reduce our hardware complexity. The

precision of the DSS single pole periodicity estimator allowed us to track the sample clock

drift effects so they could then be removed from the data. This was a perfect application

of this super-resolution spectral estimation technology since our theory guaranteed the

presence of a single sinusoidally varying phase component in our frequency domain data.

We also solved the problem of constant time offsets between ADCs by introducing a

synchronization procedure on the startup of our system. The constant time offsets between

ADCs are estimated with the DSS single pole periodicity estimator. These offsets are

recorded and then used to repair incoming data.

The σART algorithm was simulated to determine how synchronization errors affected

its position estimates. We established that both of these synchronization solutions could

be performed accurately enough for our desired specifications. Also since the DSS single
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pole estimator solution was shown to improve with additional bandwidth, we know that if

we move to a higher bandwidth system our synchronization techniques should become even

more accurate.

6.1 Future Implications

The synchronization solutions described in this thesis were implemented to bring our

current system to full functionality with σART processing. The fundamental question we

are trying to answer first and foremost is whether we are able to perform indoor positioning

to the desired degree of accuracy. Our current hardware configuration was chosen to let

us answer that question without all of the requirements of a final system. One example of

this is the fact that our ADCs are currently co-located and running from the same sample

clock. In a final system, several fire trucks may arrive at a scene, each with several antennas

mounted to it. There must then be at least one ADC on each truck to sample the data on

its antennas.

This separation of ADCs would cause problems with the current scheme. If the ADCs

do not all run from the same sample clock, then they will drift relative to each other. This

takes the problem of sample clock drift correction to another level of difficulty. This problem

has not yet been considered in depth. It may be possible to distribute a master frequency

reference wirelessly so that the sample clocks for the different ADCs drift together. The

signal for this frequency reference would need to be chosen appropriately so it does not

succumb to problems from multipath.

The problem of constant time offsets between ADCs is also worsened in this new case.

Since the ADCs are not co-located it is not possible to ensure they start their symbol

aquisition windows at the same time. This issue has been temporarily bypassed in the

current system by directly wiring a common signal to each of the ADCs so we could measure

and correct the time offset. It would be undesirable and possibly impractical to have to

connect cables between different trucks in an emergency situation. This is another significant

synchronization issue that needs to be overcome in order to avoid additional burdens on

the users.
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