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Abstract

Quantum Bayesianism (QBism) is an alternative approach to quantum mechanics which aims
to understand systems through their probability distributions rather than their wavefunc-
tions. Measuring systems using symmetric informationally complete positive operator value
measures (SIC-POVMs or SICs) allows this approach to be implemented in practice. This
MQP will explore the ways in which QBism differs from traditional quantum mechanics, the
structure of SICs and some of their applications.
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1 Introduction

Quantum Bayesianisn, or QBism, is a new approach to quantum mechanics that replaces
the use of a wavefunction to describe a quantum system by a list of probabilities. These
probabilities, together with a set of rules, allow all the usual properties of the system to
be calculated. In addition to the new calculational approach it takes to quantum mechan-
ics, QBism also suggests an alternative interpretation of many of the features of quantum
mechanics to the one advanced in the usual Copenhagen interpretation.

This MQP focused on a study of the basic features of QBism as laid out in the review ar-
ticle by Fuchs and Schack [1]. QBism itself grew out of an earlier probabilistic approach to
quantum mechanics pioneered by Feynman [2]. Feynman advanced the very unconventional
view that if one was willing to attach negative probabilities to certain events that quantum
mechanics said could never occur, one was then in a position to calculate the correct values
of all actually observed quantities without the use of a wavefunction or even the Born rule.
QBism can be viewed as an elaboration of Feynman’s viewpoint, but with a different defini-
tion of the fundamental probabilities that eliminates the negative values that were present
in Feynman’s scheme.

The main technical tool used in the development of QBism is the notion of a Symmetric In-
formationally Complete Positive Operator Measure (SIC-POVM or SIC). The SICs describe
a special type of measurement that can be made on a quantum system to determine the
defining probabilities on which the entire description of a quantum system depends. A good
discussion of SICs can be found in the papers [1], [3], and [4].

This report is organized as follows. Section 2 provides an account of a quantum two-state
systems, or qubits, based on the traditional formulation quantum mechanics. Section 3
provides an alternative treatment of qubits based on Feynman’s viewpoint, and also indicates
how the approach can be generalized to deal with systems of qubits. Section 4 presents the
QBist account of two-state systems and also indicates how it can be generalized to d-state
systems. Since SICs play a pivotal role in the QBist approach, the notion of a SIC is
introduced and its basic properties are discussed. Although the QBist approach leads to
the description of a quantum system by a probability vector, not all probability vectors
correspond to possible states of quantum systems. A discussion is therefore given of which
probability vectors qualify and how they can be picked out. Section 5 discusses how SICs can
actually be constructed in dimensions 2 through 4 by the use of a group theoretical technique
based on the Heisenberg-Weyl group. This technique actually works in higher dimensions
as well, although that is not pursued here. Finally Section 6 ends with a brief discussion of
some applications of SICs in a few select fields.
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2 Two-State Quantum Systems

We begin by discussing the simplest type of quantum system, the qubit. A qubit is any two
state quantum system whose most general state can be specified in terms of two orthogonal
vectors in a 2-d Hilbert space. This description is applicable to any 2-state system, including
spin states of spin-1

2
particles and the polarization of photons.

2.1 Standard Framework and the Bloch Sphere

Given orthogonal eigenstates |0⟩ and |1⟩, the wavefunction of an arbitrary qubit state is
given as a superposition of these two states as

|ψ⟩ = α |0⟩+ β |1⟩ , |α|2 + |β|2 = 1 (2.1)

where α and β are scalars. They are both allowed to be complex, but because the wavefunc-
tion is defined only up to an overall phase, it is possible to multiply |ψ⟩ by a phase factor
to make α real. Doing this is the typical convention because it removes redundancies and
simplifies the comparison of wavefunctions.

We now introduce the Pauli spin matricies σx, σy, and σz

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
(2.2)

The expectation value for a spin measurement along the x, y, or z axis is given by the
expectation value of σx, σy, or σz in the state |ψ⟩

⟨Sx⟩ = ⟨ψ|σx|ψ⟩ , ⟨Sy⟩ = ⟨ψ|σy|ψ⟩ , ⟨Sx⟩ = ⟨ψ|σy|ψ⟩ (2.3)

For instance, consider the state

|ψ⟩ =
√

1

2
√
2(
√
2− 1)

|0⟩ − i

√√
2− 1

2
√
2

|1⟩ (2.4)

Using (2.4) in (2.3) and doing some algebra shows that the expectation values of the spin
operator in these states is
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⟨ψ|σx|ψ⟩ = 0 ⟨ψ|σy|ψ⟩ = − 1√
2

⟨ψ|σz|ψ⟩ =
1√
2

(2.5)

The spin components turn out to be very simple, but there is no way to anticipate this
from (2.4). An alternative description of the state that makes it easy to anticipate what
the expectation values of the spin components can be obtained as follows. The condition
that α is real and the wavefunction must be normalized means that the wavefunction can
be completely described by just 2 scalar parameters, which we can take to be the polar and
azimuthal angles of a point on the unit sphere

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ ; 0 ≤ θ ≤ π 0 ≤ ϕ ≤ 2π (2.6)

which can be represented graphically as

Figure 1: The Bloch sphere, a geometric representation of all single-qubit systems.

This way of depicting the state is known as the Bloch sphere representation. One can
determine θ and ϕ from the parameters α and β in (2.1) via the equations

θ = 2 cos−1(α); tanϕ =
Im{β}
Re{β}

(2.7)

The vector from the origin of the Bloch sphere to the point |ψ⟩ is called the pseudospin
vector

s⃗ = sin θ cosϕx̂+ sin θ sinϕŷ + cos θẑ (2.8)

This pseudospin vector offers an intuitive explanation for expectation values of spin. The
expectation value of |ψ⟩ along some arbitrary direction n̂ is simply the scalar product s⃗ · n̂.
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This means that the expectation values of spin along x, y, and z are just the x, y, and z
coordinates of s⃗.

For instance, consider the state from (2.4). Using (2.7), we obtain θ = π
4
and ϕ = 3π

2
. Using

(2.8), we obtain the spin components as

s⃗x = 0, s⃗y = − 1√
2
, s⃗z =

1√
2

(2.9)

which agrees with the expectation values from (2.5)

It is clear that the pseudospin vectors that lie on the x,y, or z axis are the eigenvectors of
σx, σy, or σz respectively. Thus, the direction of |ψ⟩ as given by θ and ϕ provides
information about the expectation values of the state’s spin when measured along the
principal axes.

A more general description of a state can be given by what is called a density matrix ρ
defined as the outer product of the statevector with itself

ρ = |ψ⟩⟨ψ| . (2.10)

For a general qubit state, the density matrix can be written as

ρ =
1

2
[I + sxσx + syσy + szσz] (2.11)

=
1

2
[I + s⃗ · σ⃗] (2.12)

where the Pauli vector σ⃗ is defined as:

σ⃗ = σxx̂+ σyŷ + σzẑ. (2.13)

If a system is in a state described by the density matrix ρ, the probability of observing an
eigenstate |ψj⟩ as a result of a measurement is given by

p(j) = tr
(
|ψj⟩⟨ψj| ρ

)
= tr(Πjρ) (2.14)

where we have introduced the projection operator Πj = |ψj⟩⟨ψj|.
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As a check, by using (2.12) in (2.14), we can calculate the probabilities of finding the spin
up along the x, y, and z axes and, from them, recover the expectation values of the spin
componentes sx, sy, and sz along x, y, and z.
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3 Feynman’s Approach

In 1987, Richard Feynman wrote a paper in which he suggested a slight change in the
axioms of classical probability theory that would allow it to be used to describe quantum
states and also make calculations of all their properties [2]. The change consists of
assigning negative probabilities to certain events, but only those that can never be
observed (such as the state of an object having both a definite position and a definite
momentum). At first, this seems very unnatural, but provided that one restricts oneself to
physically observable events, the probabilities are all between 0 and 1 as required. It is
only the probabilities of intermediate (and unobservable) eventes that occur in the middle
of a calculation that are allowed to be negative.

Feynman considers a qubit, but instead of starting from a wavefunction, he pretends that it
is possible to measure the spin of a quantum particle along both the x and z directions
simultaneously. This is of course, impossible, but for the moment Feynman ignores this
difficulty. He introduces the following four basic ”probabilities”

f++: The probability of finding the spin up along both axes

f−−: The probability of finding the spin down along both axes

f+−: The probability of finding the spin up along z and down along x

f−+: The probability of finding the spin down along z and up along x

These can be defined as the expectation values of the 4 operators

F++ =
1

4
[I + σx + σy + σz] F−− =

1

4
[I − σx + σy − σz] (3.1)

F+− =
1

4
[I − σx − σy + σz] F−+ =

1

4
[I + σx − σy − σz] (3.2)

Notice that these can have negative expectation values, so that the probabilities they
generate can be negative. Feynman’s point is that one can use these probabilities to get
answers to all the questions one can ask about qubits if one ignores the negative values
that occur at various points during the calculation and looks only at the probabilities of
the final, physically meaningful results. It is also worth noting that though Feynman drops
the non-negative restriction on the individual probabilities, the four probabilities should
still sum to 1

f++ + f−− + f+− + f−+ = 1 (3.3)

Naturally, the probability of finding the particle spin up along the z-axis is given as the sum
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of the probabilities of the two events in which the particle is spin up along z, f++ and f+−

p(z ↑) = f++ + f+− = ⟨ψ|F++|ψ⟩+ ⟨ψ|F+−|ψ⟩ (3.4)

=
1

4
[ ⟨ψ|I + σx + σy + σz|ψ⟩+ ⟨ψ|I − σx − σy + σz|ψ⟩] (3.5)

=
1

2
[ ⟨ψ|I|ψ⟩+ ⟨ψ|σz|ψ⟩] (3.6)

= ⟨ψ|1
2
[I + σz]|ψ⟩ (3.7)

Thus we obtain an observable Fz =
1
2
[I + σz] which will have an expectation value equal to

the probability for finding the system spin up along z. The same can be done for x and y

p(x ↑) = ⟨ψ|F++ + F−+|ψ⟩ p(y ↑) = ⟨ψ|F++ + F−−|ψ⟩ (3.8)

Using this and the definitions of sx, sy, and sz, we can relate Feynamn’s probabilities to
the pseudospin vector

sx = p(x ↑)− p(x ↓) = 2p(x ↑)− 1 = 2 ⟨ψ|F++ + F−+|ψ⟩ − 1 = 2(f++ + f−+)− 1 (3.9)

sy = p(y ↑)− p(y ↓) = 2p(y ↑)− 1 = 2 ⟨ψ|F++ + F−−|ψ⟩ − 1 = 2(f++ + f−−)− 1 (3.10)

sz = p(z ↑)− p(z ↓) = 2p(z ↑)− 1 = 2 ⟨ψ|F++ + F+−|ψ⟩ − 1 = 2(f++ + f+−)− 1 (3.11)

Now we can set up a system of equations to find the pseudospin vector from the Feynman
probabilities or vice versa. For instance, consider the example qubit from (2.4) and the
spin vector components from (2.9)

|ψ⟩ =
√

1

2
√
2(
√
2− 1)

|0⟩ − i

√√
2− 1

2
√
2

|1⟩ ; s⃗x = 0, s⃗y = − 1√
2
, s⃗z =

1√
2

Using (3.9), (3.10), and (3.11)

f++ =
1

4
, f+− =

1 +
√
2

4
, f−+ =

1

4
, f−− =

1−
√
2

4
(3.12)

Notice that the value of f−− is negative! This is okay becuase f−− is the probability for the
qubit to be measured spin down along the x and z axes simultaneously, which is not
physically possible.
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It is worth noting that one can combine (3.9), (3.10), and (3.11) with the condition |⃗s| ≤ 1
to show that

f 2
++ + f 2

−+ + f 2
+− + f 2

−− ≤ 1

2
(3.13)

Additionally, (3.9), (3.10), and (3.11) can be combined with (2.11) and the normalization
condition (3.3) to cast the density matrix in terms of the Feynman probabilities

ρ =
1

2
[I+(f+++f−+−f+−−f−−)σx+(f+++f−−−f+−−f−+)σy+(f+++f+−−f−+−f−−)σz]

(3.14)

In a similar manner, it is possible to find the probability of measuring the spin up along an
arbitrary direction V⃗ when the system is in the state described by the pseudospin vector
(⃗s) or the Feynman probabilities (f++, etc.)

p(↑) =1

2
[1 + s⃗ · V⃗] =

1

2
[1 + sxVx + syVy + szVz] (3.15)

=
1

2
[1 + (f++ + f−+ − f+− − f−−)Vx + (f++ + f−− − f+− − f−+)Vy...

+ (f++ + f+− − f−+ − f−−)Vz] (3.16)

=
1

2
[(1 + Vx + Vy + Vz)f++ + (1− Vx − Vy + Vz)f+−...

+ (1 + Vx − Vy − Vz)f−+ + (1− Vx + Vy − Vz)f−−] (3.17)

This matches the result given by Feynman. To make the connection to classical probability
theory more apparent, he introduces the shortened form of (3.17)

p(V⃗ ↑) =
∑
a

fapa(V⃗ ↑) a = (++,+−,−+,−−) (3.18)

p++(V⃗ ↑) = 1

2
(1 + Vx + Vy + Vz), p+−(V⃗ ↑) = 1

2
(1− Vx − Vy + Vz),

p−+(V⃗ ↑) = 1

2
(1 + Vx − Vy − Vz), p−−(V⃗ ↑) = 1

2
(1− Vx + Vy − Vz) (3.19)

In this form, it is clear that one should interpret pa(V⃗ ↑) as the probability to measure the

system’s spin as up along V⃗ while in the state a. These pa(V⃗ ↑) are weighted by the
probability, fa, of the particle being found in state a and then summed over all values for a.
This approach can easily be generalized to a system of two qubits. For an arbitrary state of
two qubits, the joint probability that a measurement of the first qubit along V⃗ and the
second along U⃗ will show them both to be up is given by

p(V⃗ ↑a U⃗ ↑b) =
∑
a,b

Pabpa(V⃗ ↑)pb(U⃗ ↑) (3.20)

Here Pab is the probability of finding the first qubit in state a and the second in state b.
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As an example, consider a 2-qubit Bell state

|ψ⟩ = 1√
2
(|01⟩ − |10⟩) (3.21)

Using Pab = ⟨ψ|Fa ⊗ Fb|ψ⟩ gives

Pab ++ +− −+ −−

++ − 1
8

1
8

1
8

1
8

+− 1
8 − 1

8
1
8

1
8

−+ 1
8

1
8 − 1

8
1
8

−− 1
8

1
8

1
8 − 1

8

Table 1: The ”probability” of finding the state ψ in the configuration fab. The columns represent the state
of the first qubit, fa and the rows represent the state of the second, fb.

Note that the values of Pab are negative for a = b, which would be problematic if they were
meant to be interpreted as true probabilities. Proceeding using (3.19) and Table 1 in (3.20)
gives

p(V⃗ ↑a U⃗ ↑b) =
1

4
(1− VxUx − VyUy − VzUz) =

1

4
(1− V⃗ · U⃗) (3.22)

As expected, the final probability we obtain is a real probabilty between 0 and 1. For
V⃗ = U⃗, the probability of finding both particles spin as up along the shared spin vector is
given by (3.22) as 0. This is consistent with the understood properties of the entangled
Bell state, since a spin measurement on one qubit fixes the second in the opposite
direction. That is to say, if one qubit is measured as spin up along V⃗, the other qubit will,
by the nature of quantum entanglment, be found as spin-down along V⃗. Thus Feynman’s
method remains valid for multi-qubit systems.

The significance of what Feynman has done is in managing to describe the probabilities
and expectation values of quantum systems without defining a wavefunction or using the
Born rule. Instead, he imagines the system as having some probability fa to be in each of
the 4 unobservable states (a =++,+–,–+,– –), and then shows how other, physically
meaningful probabilities can be calculated from (3.18). The negative probabilities are not
an issue so long as the 4 probabilities together obey (3.3) and (3.13).

Also important to mention is the ease with which this approach can be generalized to a
large number of qubits. Extrapolating from (3.18) and (3.20), the probability for n

mutually interacting qubits to be found spin-up with respect to n vectors V⃗i, (i = 0, 1, ...n)
can be written as

9



p(↑1, ↑2, ... ↑n) =
4∑

[x1,...,xn]=1

[
n∏

i=1

fxi
×

n∏
i=1

pxi
(V⃗i)

]
(3.23)

Although calculations with such an expression could prove unweildy, they nevertheless
allow us to obtain results using only the ideas of conventional probability theory (expanded
now to allow the occurence of negative probability).
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4 Quantum Bayesianism and SICs

Expanding on the ideas presented by Feynman and others, Q-Bism was developed as a way
to shift the description of a quantum system based on a wavefunction to a description
based on a set of probabilities. In the Q-Bist view, a quantum state can be described by a
probability vector - a list of probabilities that describe the outcomes of a particular set of
measurements carried out on the system. From a suitable probability vector, it is possible
to find all the observables of the system that one can get using the wavefunction. This
approach expands upon the ideas of Feynman because it is applicable not just to qubits
but qudits (or d-state systems). It also departs from Feynman’s scheme in other ways that
will become clear as we proceed.

This chapter contains a brief account of the Q-Bist description of quantum states, as laid
out in the article by Fuchs and Shack [1]. The treatment is self-contained and detailed
enough to be accessible to someone with no prior knowledge of this topic.

4.1 Introduction of SICs

The density matrix of a d-state quantum system is a dxd Hermitian matrix, and so
characterized by d2 independent parameters. The fact that the density matrix must have
unit trace reduces the number of independent parameters to d2 − 1. From this it follows
that any probability vector describing the system must have d2 components and have the
form

||p⟩⟩ = (p(1), p(2), ...p(d2))T (4.1)

where the component p(i) is the probability of the system being found in the state labeled
by the index i. The fact that the system must be found in one of the states i (where
i = 1, ..., d) implies that the sum of the components of this vector must be unity, and this
again yields a total of d2 − 1 parameters describing the system.

The probability of measuring the system to be in the ith state is given by

p(i) = tr ρEi (4.2)

where Ei is an operator, known as a POVM, that represents one of the SIC measurements
that can be carried out on the system.

It follows from (4.2) that the mapping ρ→ ||p⟩⟩ is injective, meaning that it is one to one
and has an inverse. However, the mapping is not surjective, so not all probability vectors
represent valid physical states.
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To define a probability vector via the relation (4.2), one can choose the operators Ei to be
the elements of a SIC-POVM or SIC (Symmetric, Informationally Complete Positive
Operator Value Measure) in dimension d. A SIC in d-dimensions is a set of operators
{Ei}, i = 1, ..., d2 defined as

Ei =
1

d
|ψi⟩⟨ψi| =

1

d
Πi, TrΠiΠj =

∣∣ ⟨ψi|ψj⟩
∣∣2 = dδij + 1

d+ 1
,

d2∑
i=1

Ei = 1 (4.3)

For the moment, we set aside the problem of how one finds d2 vectors |ψi⟩ that form the
members of a SIC. It is widely believed that SICs exist in all dimensions, although this still
remains to be proven.

We will proceed simply by assuming that we can construct a SIC in any dimension and see
how we can use it to achieve two goals: constructing an injective (or one-to-one) mapping
from the density matrix into a probability vector and then determining what constraints
the probability vector must satisfy if it is to represent a valid density matrix.

The probabiliy vector can be constructed from the density operator ρ by using the SIC
operators Ei introduced earlier in (4.3). The i-th component of the probability operator is
obtained as

p(i) = tr ρEi =
1

d
Tr ρΠi (4.4)

This gives a mapping from an arbitrary density matrix ρ to the probability vector ||p⟩⟩.
One can arrive at the reverse mapping by expressing the density matrix as an expansion in
the components of the SIC

ρ =
d2∑
i=1

ciEi =
1

d

d2∑
i=1

ciΠi (4.5)

Putting this into (4.4) gives
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p(i) =
1

d2

∑
j

ciTr(ΠjΠi) =
1

d2

[
ci +

1

d+ 1

∑
j ̸=i

cj

]
=

1

d2

[
ci +

1

d+ 1
(N − ci)

]

=
1

d(d+ 1)
(ci + 1). (4.6)

The second step uses the second part of (4.3), the third step uses N = ci +
∑

j ̸=i cj, and the

final step uses the fact that N = d, which is obtained by taking the trace of (4.5)

Tr ρ =
1

d

d2∑
i=1

ciTr(Πi) =
N

d
. (4.7)

Since Tr ρ = Tr(Πi) = 1, N = d. Rearranging (4.6) gives

ci = d(d+ 1)p(i)− 1 (4.8)

which can be inserted into (4.5) to obtain

ρ =
d2∑
i=1

(
(d+ 1)p(i)− 1

d

)
Πi (4.9)

With this we have sucessfully found a mapping ||p⟩⟩ → ρ. Now all that remains is to
determine the constraints on ||p⟩⟩ that determine whether a given probability vector
actually represents a physical state.

To begin, we introduce structure coefficients αijk

ΠiΠj =
∑
k

αijkΠk (4.10)

Taking the trace of both sides and using (4.3) gives∑
k

αijk =
dδij + 1

d+ 1
(4.11)
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Multiplying (4.10) on the right by Πk and taking the trace gives

Tr(ΠiΠjΠk) =
∑
m

αijmTr(ΠmΠk) =
∑
m

αijm
dδkm + 1

d+ 1
= αijk +

1

d+ 1

∑
m̸=k

αijm

= αijk(1−
1

d+ 1
) +

1

d+ 1

∑
m

αijm = αijk(1−
1

d+ 1
) +

1

d+ 1

dδij + 1

d+ 1

=
1

d+ 1

[
dαijk +

dδij + 1

d+ 1

]
(4.12)

where in the second step I use the second part of (4.3), and in the last step of the second
line I use (4.11).

Now (4.12) can be rearranged into

αijk =
1

d

(
(d+ 1)Tr(ΠiΠjΠk)−

dδij + 1

d+ 1

)
(4.13)

Summing this over i gives

∑
i

αijk =
1

d

(
(d+1)Tr

(∑
i

Πi(ΠjΠk)

)
−d+ d2

d+ 1

)
= (d+1)Tr(ΠjΠk)−1 = (dδjk+1)−1 = dδjk

(4.14)
Proceeding in the same manner with the summation over j∑

j

αijk = dδik (4.15)

We now investigate the conditions a probability vector must satisfy if it is to represent a a
pure state, for which the density matrix satsfies the idempotency condtion ρ = ρ2. Writing
ρ =

∑
ciΠi, with ci given by (4.8), and using this in ρ =

∑
ciΠi gives∑

k

ckΠk =
∑
ij

cicjΠiΠj =
∑
ijk

cicjαijkΠk

⇒ ck =
∑
ij

cicjαijk (4.16)
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Now replacing ci, cj and ck using (4.8) and doing the summation

(d+ 1)p(k)− 1

d
=
∑
ij

[(
(d+ 1)p(k)− 1

d

)(
(d+ 1)p(k)− 1

d

)
αijk

]

= (d+ 1)2
[∑

ij

p(i)p(j)αijk

]
− 2(d+ 1)p(k) +

1

d

⇒ p(k) =
1

3
(d+ 1)

∑
ij

αijkp(i)p(j) +
2

3d(d+ 1)
(4.17)

This is the condition that the components of the probability vector must satisfy if it is to
represent a pure state of a d-state system. However, this single condition can be broken up
into two much simpler conditions if one uses the fact that a pure state in dimension 3 or
larger obeys the conditions Tr(ρ2) = 1 and Tr(ρ3) = 1.

Using the fact that Tr ρ2 = 1 and (4.5) leads to the result

Tr ρ2 =
∑
ijk

cicjαijk Tr(Πk) =
∑
ij

cicj

[dδij + 1

d+ 1

]
=
∑
i

c2i +
1

d+ 1

∑
i,j ̸=i

cicj (4.18)

Now Tr ρ = 1 implies that

∑
i

ciTr(Πi) = 1 ⇒
∑
i

ci = 1 (4.19)

so

∑
i,j ̸=i

cicj =
∑
i

ci(1− ci) =
∑
i

ci −
∑
i

c2i = 1−
∑
i

c2i . (4.20)

Using (4.20) in (4.18) gives

Tr ρ2 =
1

d+ 1
+
(
1− 1

d+ 1

)∑
i

c2i =
1

d+ 1
+

d

d+ 1

∑
i

[
(d+ 1)2p(i)2 − 2(d+ 1)

d
p(i) +

1

d2

]
=

1

d+ 1
+ d(d+ 1)

∑
i

p(i)2 − 2 +
d

d+ 1
= d(d+ 1)

∑
i

p(i)2 − 1 (4.21)
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Setting the final expression equal to 1 leads to

∑
i

p(i)2 =
2

d(d+ 1)
(4.22)

In a similar manner as (4.18 - 4.22), we can use Tr ρ3 = 1 to get

ρ3 = ρ2ρ =
∑
ijk

cicjαijkΠk

∑
l

clΠl =
∑
ijkl

cicjclαijkΠkΠl =
∑
ijklm

cicjclαijkαklmΠm = 1 (4.23)

So

1 =
∑
ijkl

cicjclαijk

[dδkl + 1

d+ 1

]
or

∑
ijk

cicjckαijk +
1

d+ 1

∑
ijk,l ̸=k

cicjclαijk = 1 (4.24)

The second term on the left of (4.24) can be simplified as follows

∑
ijk,l ̸=k

cicjclαijk =
∑
ijk

cicj(1− ck)αijk =
∑
ij

cicj
∑
k

αijk −
∑
ijk

cicjckαijk

=
∑
ij

cicj
dδij + 1

d+ 1
−
∑
ijk

cicjckαijk =
∑
i

c2i +
1

d+ 1

∑
i

ci(1− ci)−
∑
ijk

cicjckαijk

=
d

d+ 1

∑
i

ci +
d

d+ 1
−
∑
ijk

cicjckαijk (4.25)

Putting (4.25) into (4.24) gives

d

d+ 1

∑
ijk

cicjckαijk +
d

(d+ 1)2

∑
i

c2i +
1

(d+ 1)2
= 1 (4.26)

Now
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∑
i

c2i =
∑
i

[
(d+1)2p(i)2− 2(d+ 1)

d
p(i)+

1

d2

]
= (d+1)2

2

d(d+ 1)
− 2(d+ 1)

d
+1 = 1 (4.27)

where (4.22) is used to simplify the first term at the second step. Putting (4.27) in (4.26)
and simplifying gives

∑
ijk

cicjckαijk = 1 (4.28)

Using ci = (d+ 1)p(i)− 1
d
allows to rewrite (4.28) as

(d+ 1)3
∑
ijk

αijkp(i)p(j)p(k)−
(d+ 1)2

d

∑
ijk

αijkp(i)p(j)−
2(d+ 1)2

d

∑
ijk

αijkp(j)p(k)

...+
d+ 1

d2

∑
ijk

αijk[p(i) + p(j) + p(k)]− 1

d3

∑
ijk

αijk = 1 (4.29)

The various sums on the left can be evaluated as follows∑
ijk

αijkp(i)p(j) =
∑
ij

p(i)p(j)
dδij + 1

d+ 1
=
∑
i

[
p(i)2 +

1

d+ 1
p(i)[1− p(i)]

]
=

d

d+ 1

∑
i

p(i)2 +
1

d+ 1
=

2

(d+ 1)2
+

1

d+ 1
+

d+ 3

(d+ 1)2

(4.30)

∑
ijk

αijkp(j)p(k) =
∑
jk

p(j)p(k)dδjk = d
∑
j

p(j)2 =
2

d+ 1 (4.31)

∑
ijk

αijkp(i) =
∑
ijk

αijkp(j) =
∑
ijk

αijkp(k)

= d
∑
ik

δikp(i) = d
∑
k

p(k) = d
(4.32)

Using (4.30), (4.31), and (4.32) in (4.29) allows it to be simplified to
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(d+ 1)3
∑
ijk

αijkp(i)p(j)p(k)− 3− 4

d
= 1 (4.33)

from which we finally obtain

∑
ijk

αijkp(i)p(j)p(k) =
4

d(d+ 1)2
(4.34)

.

Thus, we have acheived our final goal of obtaining the constraints on the probability vector
if it is to represent a pure state. The constraints are the two equations (4.22) and (4.34).
The discussion could conclude here, but there remains the complexity of αijk in (4.17) and
(4.34). There are advantages to working with real numbers, and real forms of these
equations can be obtained by replacing αijk with a real, symmetric tensor cijk with
elements defined by

cijk = ReTr(ΠiΠjΠk) (4.35)

.

It can be seen that the elments are symmetric by writing cijk as

cijk = ReTr(ΠiΠjΠk) = ⟨ψi|ψj⟩ ⟨ψj|ψk⟩ ⟨ψk|ψi⟩+ ⟨ψj|ψi⟩ ⟨ψk|ψj⟩ ⟨ψi|ψk⟩ (4.36)

and noting that an exchange of any two indicies sends each term into the other.

Since p(k) is purely real, only the real part of αijk is relevant in (4.17), so it can be written
as

p(k) =
1

3
(d+ 1)

∑
ij

Re(αijk)p(i)p(j) +
2

3d(d+ 1)
(4.37)

From (4.13), we find that

∑
ij

Re(αijk)p(i)p(j) =
d+ 1

d

∑
ij

cijkp(i)p(j)−
1

d(d+ 1)

∑
ij

(dδij + 1)p(i)p(j) (4.38)
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The last term can be solved explicitly

∑
ij

(dδij + 1)p(i)p(j) = d
∑
i

p(i)2 + 1 =
2

d+ 1
+ 1 =

d+ 3

d+ 1
(4.39)

so (4.38) becomes

∑
ij

Re(αijk)p(i)p(j) =
d+ 1

d

∑
ij

cijkp(i)p(j)−
d+ 3

d(d+ 1)2
(4.40)

Putting (4.40) in (4.37) gives

p(k) =
(d+ 1)2

3d

∑
ij

cijkp(i)p(j)−
d+ 3

3d(d+ 1)
+

2

3d(d+ 1)
=

(d+ 1)2

3d

∑
ij

cijkp(i)p(j)−
1

3d

(4.41)

as a purely real form of (4.17).

Taking the real part of (4.34) and using (4.13) gives

∑
ijk

Re(αijk)p(i)p(j)p(k) =
d+ 1

d

∑
ijk

cijkp(i)p(j)p(k)−
1

d(d+ 1)

∑
ijk

[dδij + 1]p(i)p(j)p(k)

(4.42)

But

∑
ijk

[dδij + 1]p(i)p(j)p(k) = d
∑
i

p(i)2 + 1 =
2

d+ 1
+ 1 =

d+ 3

d+ 1
(4.43)

So (4.42) becomes

∑
ijk

Re(αijk)p(i)p(j)p(k) =
d+ 1

d

∑
ijk

cijkp(i)p(j)p(k)−
d+ 3

d(d+ 1)2
(4.44)
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Putting the right side of 4.44 equal to 4
d(d+1)2

and simplifying leads to

∑
ijk

cijkp(i)p(j)p(k) =
d+ 7

(d+ 1)3
(4.45)

With this, we have accomplished all our goals. To reiterate, we have shown how a SIC can
be used to map the density matrix of a d-state system into a d2-component probability
vector (see (4.4)) and, conversely, how the probability vector can be mapped back into the
density matrix to which it corresponds (see (4.9)). Further, we have shown what conditions
the probability vector must satisfy if it is to represent the density matrix of a pure state of
d-state system; these are given by (4.22) and either (4.34) or (4.45). Some illustrations of
these results will be discussed for two-state systems in the next chapter.
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5 SICs in 2 and 3 Dimensions

With an understanding of how SICs can be used to represent quantum systems in any
dimension, we see how the formalism works out for the lowest values of d. We first discuss
some features of the SIC description in d = 2 and then do the same in d = 3.

5.1 d=2

The SIC basis for a two-state system is defined by the four operators [1]

Π1 = |ψ1⟩ ⟨ψ1| =
1

2

(
I +

1√
3
(σx + σy + σz)

)
Π2 = |ψ2⟩ ⟨ψ2| =

1

2

(
I +

1√
3
(σx − σy − σz)

)
Π3 = |ψ3⟩ ⟨ψ3| =

1

2

(
I +

1√
3
(−σx − σy + σz)

)
Π4 = |ψ4⟩ ⟨ψ4| =

1

2

(
I +

1√
3
(−σx + σy − σz)

)
(5.1)

Although it remains to be explained where this set of operators comes from, it can be
verified that they constitute a SIC by checking that they satisfy (4.3) with d = 2, i.e.

Tr(ΠiΠj) =

{
1
3
, if i ̸= j

1, if i = j.
(5.2)

The wavevectors |ψ1⟩-|ψ4⟩ which generate (5.1) and their respective pseudospin vectors
s⃗1-s⃗4 are

|ψ1⟩ =
1√
2
√
3

[√√
3 + 1 |0⟩+ e

iπ
4

√√
3− 1 |1⟩

]
, s⃗1 =

1√
3
(x̂+ ŷ + ẑ)

|ψ2⟩ =
1√
2
√
3

[√√
3− 1 |0⟩+ e

7iπ
4

√√
3 + 1 |1⟩

]
, s⃗2 =

1√
3
(x̂− ŷ − ẑ)

|ψ3⟩ =
1√
2
√
3

[√√
3 + 1 |0⟩+ e

5iπ
4

√√
3− 1 |1⟩

]
, s⃗3 =

1√
3
(−x̂− ŷ + ẑ)

|ψ4⟩ =
1√
2
√
3

[√√
3− 1 |0⟩+ e

3iπ
4

√√
3 + 1 |1⟩

]
, s⃗4 =

1√
3
(−x̂+ ŷ − ẑ)

(5.3)

In the Bloch sphere picture, these vectors form a regular tetrahedron
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Figure 2: The Bloch sphere with the pseudospin vectors that generate the SICs in 2 dimensions. Notice that
the sphere has been rotated to make the tetrahedron more obvious.

The density matrix with the pseudospin vector s⃗ = (sx, sy, sz) is represented by the
probability vector with the components

p(1) =
1

4

[
1 +

1√
3

(
sx + sy + sz

)]
p(2) =

1

4

[
1 +

1√
3

(
sx − sy − sz

)]
p(3) =

1

4

[
1 +

1√
3

(
− sx − sy + sz

)]
p(4) =

1

4

[
1 +

1√
3

(
− sx + sy − sz

)] (5.4)

The four probabilites sum to 1, so this represents a valid probability distribution. It is also
possible to verify (4.22)

∑
i

p(i)2 =
2

d(d+ 1)
=

1

3
(5.5)

We now verify (4.45), which requires calculating the cijk tensor. Putting (5.1) into (4.35)
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allows us to calculate cijk, which is written here as 4 4x4 Ck matricies ((Ck)ij = cijk)

C1 =


1 1

3
1
3

1
3

1
3

1
3

0 0
1
3

0 1
3

0
1
3

0 0 1
3

C2 =


1
3

1
3

0 0
1
3

1 1
3

1
3

0 1
3

1
3

0
0 1

3
0 1

3

C3 =


1
3

0 1
3

0
0 1

3
1
3

0
1
3

1
3

1 1
3

0 0 1
3

1
3

C4 =


1
3

0 0 1
3

0 1
3

0 1
3

0 0 1
3

1
3

1
3

1
3

1
3

1

 (5.6)

By inspection, we observe properties of the cijk tensor specific to the qubit

1. If i = j = k, then cijk = 1

2. If i ̸= j, j ̸= k, i ̸= k, then cijk = 0

3. Otherwise, cijk = 1
3

These rules can be used in (4.45)∑
ijk

cijkp(i)p(j)p(k) =
d+ 7

(d+ 1)3
(5.7)

to give the simpler expression∑
i

p(i)3 +
∑
i

∑
j ̸=i

p(i)2p(j) =
d+ 7

(d+ 1)3
(5.8)

The first term comes from rule 1, and the second comes from rule 3, noting that the set of
indicies that fit rule 3 come in triplets, so the factor of 1

3
cancels. The two terms on the left

of (5.8) can be combined into a single term to give∑
i

p(i)2 ·
∑
i

p(i) =
d+ 7

(d+ 1)3
(5.9)

or

2

d(d+ 1)
=

d+ 7

(d+ 1)3
(5.10)

Which is always satisfied for d = 2.
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5.2 d=3

The SIC basis for a three-state system (qutrit) is defined by the nine operators [1]

|ψ0⟩ =
1√
2

 0
1
−1

, |ψ1⟩ =
1√
2

−1
0
1

, |ψ2⟩ =
1√
2

 1
−1
0

,
|ψ3⟩ =

1√
2

 0
ω
−ω̄

, |ψ4⟩ =
1√
2

−1
0
ω̄

, |ψ5⟩ =
1√
2

 1
−ω
0

,
|ψ6⟩ =

1√
2

 0
ω̄
−ω

, |ψ7⟩ =
1√
2

−1
0
ω

, |ψ8⟩ =
1√
2

 1
−ω̄
0


(5.11)

where ω is the cube root of unity e
2πi
3 and ω̄ is its complex conjugate.

As before with the d = 2 case, although it remains to be explained where this set of
operators comes from, it can be verified that they constitute a SIC by checking that they
satisfy (4.3) with d = 3, i.e.

Tr(ΠiΠj) =

{
1
4
, if i ̸= j

1, if i = j.
(5.12)

Unlike the qubit, the phase space of a qutrit cannot be expressed as the set of points on a
Bloch sphere. However, it is possible to represent a qutrit as a symmetric outer product of
2 qubit states. At this point, it is convenient to use stereographic projection to map the
points on the unit sphere to the points on the complex plane. Imagine the Bloch sphere to
be bisected by the x-y plane, with the x- and y- axes being taken to be real and imaginary
and imaginary axes for complex numbers in the plane. The line drawn from the south pole
of the sphere to the tip of the pseudospin vector a⃗ will intersect this complex plane at the
unique point α

a⃗(θ, ϕ) → α = cos
θ

2
cosϕ+ i sin

θ

2
sinϕ. (5.13)

It was shown in the early decades of Quantum Mechanics by Majorana [5] [6] that any pure
state of a qutrit can be expressed in terms of two pseudospin vectors. If these vectors a⃗

and b⃗ go into the complex numbers α and β under stereographic projection, then the qubit
state can be expressed in terms of them as

|α, β⟩ =

√
1

8

1

(1 + |α|2)(1 + |β|2) + |α + β|2
[
|0⟩+ α + β√

2
|1⟩+ αβ |2⟩

]
(5.14)
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Using (4.4), it is possible to compute the 9 entries of the probabilty vector pi. Each term
begins with an identical constant F

F =
1

24

1

(1 + |α|2)(1 + |β|2) + |α + β|2
; (5.15)

p1 = F [|α|2 + |β|2 + 2|α|2|β|2 + αβ + αβ −
√
2(|α|2β + α|β|2 + |α|2β) + α|β|2]

p2 = F [2 + 2|α|2|β|2 − 2(αβ + αβ)]

p3 = F [2 + |α|2 + |β|2 + αβ + αβ −
√
2(α + α + β + β)]

p4 = F [|α|2 + |β|2 + 2|α|2|β|2 + αβ + αβ −
√
2(ω|α|2β + ωα|β|2 + ω|α|2β) + ωα|β|2]

p5 = F [2 + 2|α|2|β|2 − 2(ωαβ + ωαβ)]

p6 = F [2 + |α|2 + |β|2 + αβ + αβ −
√
2(ωα + ωα + ωβ + ωβ)]

p7 = F [|α|2 + |β|2 + 2|α|2|β|2 + αβ + αβ −
√
2(ω|α|2β + ωα|β|2 + ω|α|2β) + ωα|β|2]

p8 = F [2 + 2|α|2|β|2 − 2(ωαβ + ωαβ)]

p9 = F [2 + |α|2 + |β|2 + αβ + αβ −
√
2(ωα + ωα + ωβ + ωβ)]

(5.16)

Doing a bit of algebra and using the identity 1 + ω + ω = 0, it can be shown that the pi
values sum to 1, so this clearly works as a probability distribution. It is also possible to
verify (both numerically and algebraically) (4.22)

∑
i

p(i)2 =
2

d(d+ 1)
=

1

6
(5.17)
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6 Group Theory of SICs

Despite a general belief in those who use and study SICs that they exist in every
dimension, a proof of this has yet to be demonstrated. Despite this, work has been done to
find ways to generate SICs. All known SICs share the property of being group covariant.
This means that the basis kets |ψi⟩ can be generated from the orbit of a fiducial vector
under a particular group. In this section we discuss this group, following the presentation
in Fuchs et al [3] and show how SICs can be generated for d = 2, 3, 4.

6.1 Weyl-Heisenberg Group

Consider a d-dimensional Hilbert space with an orthonormal basis given by
{|0⟩ , |1⟩ , ... |d− 1⟩}. Define a shift operator X and a phase operator Z such that

X |j⟩ = |j + 1⟩ Z |j⟩ = ωj |j⟩ (6.1)

where ω = e2πi/d.

These operators satisfy the commutation relation

X lZα = ω−lαZαX l (6.2)

From this we can construct the displacement operators

Dlα = (−eiπ/d)lαX lZα (6.3)

The product of two displacement operators is another displacement operator up to a phase
factor

DlαDmβ = (−eiπ/d)αm−βlDl+m,α+β (6.4)

By allowing the multiplication of the group elements by a phase factor, X and Z become
the generators of a group known as the Weyl-Heisenberg group. Assuming one is able to
determine a suitable fiducial vector |ψ0⟩, the displacement operators can be applied to |ψ0⟩
to generate SICs. The only challenge that remains to would-be SIC finders is producing a
valid fiducial vector in the given dimension d.

6.2 Generation of SICs

6.2.1 d=2

For d = 2, the operators X and Z are given as

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
(6.5)

which are simply the Pauli matricies σx and σz.
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Using the fiducial vector given as

|ψ0⟩ =
1√
6

( √
3 +

√
3

eiπ/4
√

3−
√
3

)
(6.6)

we can apply all the distinct elements of the Weyl-Heisenberg group to get the remaining
members of the SIC as

|ψ1⟩ =
1√
6

( √
3 +

√
3

−eiπ/4
√

3−
√
3

)
, |ψ2⟩ =

1√
6

( √
3−

√
3

e−iπ/4
√

3 +
√
3

)
, (6.7)

|ψ3⟩ =
1√
6

( √
3−

√
3

−e−iπ/4
√

3 +
√
3

)

Under (4.3), this meets the criteria for a 2-d SIC. It is not the same as the basis given in
(5.1), however there exists a unitary transformation that rotates the Bloch sphere onto
itself such that the two basis are equivalent.

6.2.2 d=3

For d = 3, the operators X and Z are given as

X =

0 0 1
1 0 0
0 1 0

, Z =

1 0 0
0 ω 0
0 0 ω2

 (6.8)

where ω = e2πi/3

Using the fiducial vector given as

|ψ0⟩ =
1√
2

 0
1
−1

 (6.9)

we can apply all the distinct elements of the Weyl-Heisenberg group to get the remaining
members of the SIC as
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|ψ1⟩ =
1√
2

−1
0
1

, |ψ2⟩ =
1√
2

 1
−1
0

,
|ψ3⟩ =

1√
2

 0
ω
−ω̄

, |ψ4⟩ =
1√
2

−1
0
ω̄

, |ψ5⟩ =
1√
2

 1
−ω
0

,
|ψ6⟩ =

1√
2

 0
ω̄
−ω

, |ψ7⟩ =
1√
2

−1
0
ω

, |ψ8⟩ =
1√
2

 1
−ω̄
0


(6.10)

This matches (5.11) therefore meeting the criteria for a 3-d SIC.

6.2.3 d=4

For d = 4, the operators X and Z are given as

X =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

, Z =


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

 (6.11)

a particular fiducial vector is given as

|ψ0⟩ =

√
5−

√
5

40


2 cos π

8

i(e
−iπ
8 + e

iπ
8 (2 +

√
5)

1
2 )

2i sin π
8

i(e
−iπ
8 − e

iπ
8 (2 +

√
5)

1
2 )

 (6.12)

The set of 16 |ψi⟩ vectors generated by the action of the Weyl-Heisenberg group on this
fiducial vector can be verified to satisfy the conditions for a SIC. We do not list the SIC
vectors explicitly here as we will not use them.
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7 Applications

Quantum State Tomography

Quantum state tomography describes the set of approaches one may use to recover the
state of a quantum system. This is a core problem in quantum mechanics, dating back to
1933 when Pauli asked if it were possible to determine a particle’s wavefunction from the
probability densities of its position and momentum. Since measuring a quantum system
destroys it, an ensemble of identical states must be prepared and measured in order to
recover any useful information about the system. For the problem of quantum computation,
minimizing the size of this ensemble is of paramount importance. The fewer measurements
required to asses the configuration of a quantum computer bit, the less redundant bits are
required to make quantum computer chips. By their definition, SICs are a perfect option as
a minimum-measurement basis for any d-dimensional quantum system. Extensive work has
been done demonstrating the supreme efficiency of SICs as a basis [7], as well as expanding
on their utility in quantum state tomography. One recent example is given by Czerwinski
where it is possible to use existing understanding of the time evolution of a qubit or qutrit
to reconstruct a quantum state even with limited measurement potential [8].

Quantum Key Distribution

Beyond just quantum computing, SICs also have potential applications in quantum
cryptography. Quantum communication offers an additional level of security over classical
methods. Because quantum systems are affected by measurement, careful choice of a
communication protocol makes it possible to detect eavesdropping. One example is
quantum key distribution (QKD), where both parties cooperate to create a shared secret
key, the true secrecy of which can be verified via quantum mechanics and standard
techniques from classical cryptography.

Tavakoli et al. have used SICs to develop a quantum key distribution method which
outperforms conventional methods [9]. In order to achieve this, they first define a structure
called a SIC-compound. This is a set of d3 quantum states, each denoted |ψjk⟩ for j ∈ [d2]
and k ∈ [d], where each set of d2 states {|ψjk⟩}k form a SIC and each set of d states
{|ψjk⟩}j form an orthonormal basis. For the d = 2 case, a SIC-compound can be
constructed from the 4 states in any 2d SIC and the 4 states orthogonal to the first 4. In
the Bloch sphere picture, this is represented as the tetrahdron from Figure 2 and 4 more
vectors pointing in the opposite direction. It is shown that no such SIC-compund can be
constructed for d = {3, 5, 6, 7, 8}, however such a construction is possible for d = 4. It is
further demonstrated that a QKD protocol using the 16 orthonormal bases formed by this
4d SIC-compound outperformes other competing schemes.

Signal Analysis

Although we have developed SICs here as an aid in our approach to quantum mechanics,
the mathematical properties of SICs have enabled them to be utilized by those working in
areas outside of Quantum Information Theory. Particularly, the symmetric properties of
the Heisenberg-Weyl group present a convenient basis to explore concepts in signal
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analysis. In one instance, the Heisenberg-Weyl group has been used in the development of
adaptive radar, specifically spreading sequeneces and error-correcting codes [10]. Through
the lens of group theory, Howard et al. make the observation that a host of error correcting
codes are associated with abelian decomposition of the Heisienberg-Weyl group. As such,
this group makes it possible to greatly simplify and unify many ideas in the area of radar
and communications. In another case, the SIC framework has been applied to signal
reconstruction, specifically voice recognition. The problem of signal reconstruction involves
reconstructing a vector in a Hilbert space when only the outcomes of non-complete
measurements of that vector are known. Interestingly, this is just the problem of quantum
state tomography, however, as demonstrated in [11], there are applications of this problem
to speech analysis and recogntion.
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8 Conclusion

This MQP has given a basic introduction to SICs and the role they play in the QBist
interpretation of quantum mechanics, following the treatment given in the review article by
Fuchs and Schack [1]. Nevertheless, there remains plenty more to be discussed with respect
to SICs, both with respect to their mathematical properties and their broad applications in
science. For future MQPs, there are plenty of areas that could be explored in addition to
what we have presented here. For instance, the unsolved problem of finding SICs in all
dimensions (should they even exist in the first place) has been an area of intense study that
seems worth exploring in greater detail. The applications of SICs and the Weyl-Heisenberg
group to quantum cryptography protocols also seems worth studying in view of its
important practical applications.
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