
Deep Learning
for

Reflected Backwards

Stochastic Differential Equations

A Major Qualifying Project Report Submitted to The Faculty of Worcester Polytechnic
Institute In partial fulfillment of the requirements for the Degree of Bachelor of

Science

Written By

Frederick “Forrest” Miller

Approved by:

Stephan Sturm

March 24, 2023
This report represents the work of one WPI undergraduate student submitted to the faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review. For more information about the projects program at WPI, see
http://www.wpi.edu/Academics/Projects

http://www.wpi.edu/Academics/Projects

Abstract

In this work, we in investigate the theory and numerics of reflected backwards stochastic differential equations
(RBSDEs). We review important concepts from stochastic calculus, as well as key theoretical properties of
(R)BSDEs. We provide an overview of feedforward neural networks and their applications to functional
approximation for numerical implementations. We also discuss the key application of RBSDEs to the field
of mathematical finance, in particular indifference pricing of put options. Lastly, we present preliminary
theoretical and numerical results of Risk Indifference pricing of American from both the Buyer’s and Seller’s
perspectives.

i

Acknowledgements

I would like to thank Professor Stephan Sturm for advising me throughout the writing of this report.
Additionally, I would like to thank Professor Rohini Kumar (Wayne State University), as well as Dr. Hussein
Nasralah (University of Michigan Dearborn). Without them, I would not have been able to make nearly as
much progress with the theory and numerics of this report.
I would like to thank my parents and sisters for their endless encouragement through my life. I am extremely
grateful for all their suggestions balancing my courseload with healthy habits.
I would also like to thank all of my friends throughout the years for listening to my talk about whatever
I was excited about at that moment. You are too many to list, but I am going to try anyway: Charlotte
Clark, Noah Ziff, Jakob Misbach, Maggie Munroe, Guillermo Nunez Ponasso, Elisa Negrini, Giulio Farolfi,
Tony Vuolo, Camille Williams, Avery Smith, Ben Gobler, Jessica Wang, Scar Clarke, Ethan Washock, Matt
Dzwill, Dan Quackenbush, Neil Kale, Jackson Sypek, Daniil Volkov, Felix Liu, Antrim Lottick, Grace Tiddei,
Siavash Raissi, and many others who have supported and listened to me about math along the way.
Thank you to Greg Audin for keeping my spirits up during late evenings of work in the Math Lounge.

ii

Contents

Abstract i

Acknowledgements ii

List of Tables v

List of Algorithms vi

List of Figures vii

1 Introduction 1

2 Stochastic Calculus 2
2.1 Probability Spaces . 2
2.2 Stochastic Processes . 3
2.3 Conditional Expectation . 4
2.4 Filtration . 5
2.5 Martingales . 5
2.6 Brownian Motion . 6
2.7 The Itô Integral and Itô’s Lemma . 10
2.8 (Forward) Stochastic Differential Equations . 13
2.9 The Feynman-Kac Formula . 14
2.10 Important Classes of Random Variables . 14
2.11 Further Reading . 14

3 Backwards Stochastic Differential Equations (BSDE) 15
3.1 Introduction . 15
3.2 Theoretical Properties . 15

3.2.1 Existence and Uniqueness With 0 Generator . 15
3.2.2 BSDEs with More Complex Generators . 19

3.3 Dynamic Entropic Risk Measures . 21
3.4 The Nonlinear Feynman-Kac Formula . 22

4 Reflected Backwards Stochastic Differential Equations 24
4.1 BSDEs with Constraints . 24

4.1.1 A BSDE Approximation of the RBSDE . 25

5 Numerical Implementation of (R)BSDEs 27
5.1 Introduction . 27
5.2 Neural Networks as Functional Approximators . 27

5.2.1 Designing Feed Forward Neural Networks . 28
5.3 Deep BSDE Solver . 32
5.4 Dynamic Programming Approach to (R)BSDE Approximation 32
5.5 Gao et al. RBSDE Solver . 33

iii

6 Modeling Stock Options with BSDEs and Neural Networks 34
6.1 Financial Background . 34
6.2 Complete Financial Markets . 34
6.3 Incomplete Financial Markets . 37
6.4 Indifference Pricing . 39

6.4.1 Utility Indifference Pricing . 39
6.4.2 Risk Indifference Pricing . 39

A Python Code 46
A.1 American Option under Black Scholes . 46
A.2 American Put from Buyer’s Perspective under Stochastic Volatility 48
A.3 American Put from the Seller’s Perspective . 53

iv

List of Tables

6.1 Black Scholes American Put Option Numerical Modeling . 37
6.2 Numeric Parameters for Indifference Price Computation . 42

v

List of Algorithms

1 Designing A Feed Forward Neural Network . 29
2 Stochastic Gradient Descent (SGD) Algorithm . 30
3 The Deep BSDE Solver . 32
4 The Hure et al. RBSDE Solver . 33
5 The Gao et al. RBSDE Solver . 33
6 Computing the Buyer’s Price, coded in Appendix A . 41
7 Computing the Seller’s Indifference Price, code in A . 42

vi

List of Figures

2.1 One possible realization of the random walk. 4
2.2 A sample path of a Brownian bridge . 9
2.3 Geometric Brownian Motion (GBM) has an upward drift with high probability as µ > 0, σ > 0,

as we see in these samples. 9

5.1 A feed forward NN with 6 inputs, 2 hidden layers, and 2 outputs from (see Dixon et al., 2020,
Figure 4.1) . 27

5.2 A visualization of the backpropagation algorithm . 31

6.1 American Option Path Under Black Scholes . 37
6.2 Smile curves for the American put option display a bid ask spread 43

vii

Chapter 1

Introduction

Differential equations can often be used to model deterministic systems, where at each time point t from
0 to T , the state of the system can be known with certainty. However, this is not always the case. A major
example of this is the price of an asset, such as an option, in the stock market. Therefore, it is important
to have a strong theoretical underpinning for random (also known as stochastic) systems. In particular,
stochastic differential equations can be used to model options in the stock market. One of the most famous
examples is the Nobel Prize winning Black Scholes model (Black and Scholes, 1973) that uses the following
stochastic differential equation;

dSt = µStdt + σStdWt, (1.1)

where µ is the mean return and σ is the volatility of the asset. The Black Scholes option pricing framework
they developed has formed the underpinnings of modern financial option pricing.

In addition to the Black Scholes model, there has been much work done to expand the model to handle a
wider class of financial options. This has been done by expanding upon the SDE above as well as considering
other pricing frameworks such as indifference pricing.

In this work, we provide the theoretical underpinnings for stochastic differential equations. We prove a
key existence and uniqueness result for backwards stochastic differential equations (BSDEs) and reflected
backwards stochastic differential equations (RBSDEs). While it is often useful to have theoretical results,
analytical solutions to many BSDEs and RBSDEs are currently unknown. As such, it is important to be
able to utilize numerical methods to find numerical solutions. For the case of financial mathematics, this is
crucial as numerical techniques are the primary way that market players implement trading strategies. We
utilize tools from deep learning, in particular feed forward neural networks and gradient descent algorithms,
to find numerical solutions to (R)BSDEs to approximate the price of financial options.

We conclude by extending the work of Sircar and Sturm (2015) and provide preliminary numerical results
to the problem of risk indifference pricing from the buyer’s and seller’s perspective of an American Put option
under a stochastic volatility model. We use a deep learning framework from Gao et al. (2022) for computing
the risk indifference price.

1

Chapter 2

Stochastic Calculus

In this chapter, we provide an overview of the tools from Probability Theory and Stochastic Calculus
that we use to study the Reflected Backwards Stochastic Differential Equations.

2.1 Probability Spaces

In this section, we formalize the notion of what it means for an event to have a certain probability of
occurring.

Definition 2.1 (Sample Space Ω). We call a set Ω the sample space of events ω ∈ Ω. ω is called a (potential)
outcome.

Example 2.1. Consider a fair coin with 2 sides. If we flip the coin once, the sample space Ω = {H,T},
where the coin can be heads (H) or tails (T).

This example can then be expanded to flipping a coin n times. The sample space Ω becomes all
the possible permutations of the resulting n flips. So, if the coin were flipped twice, we have that Ω =
{HH,HT, TH, TT}.

In order to study and quantify probabilities of more complex events, we need to utilize a σ-algebra to
encode sets of possible events.

Definition 2.2 (σ-algebra F). If Ω is a given set, then a σ-algebra F on Ω is a set of subsets of Ω such
that the following properties hold:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F

(iii) F1, F2, ... ∈ F ⇒ F := ∪∞n=1Fn ∈ F

(Øksendal, 2003)

We say that the pair (Ω,F) is called a measurable space. Furthermore, a measure space is a triple
(Ω,F ,P), where P is a measure (defined below) on (Ω,F).

Definition 2.3 (Probability Measure P). A function P : F → [0, 1] ⊂ R is a probability measure if P
satisfies:

(i) P(Ω) = 1

(ii) if the collection {Fi}i∈N ∈ F is disjoint, then

P

(∞⋃
n=0

Fn

)
=

∞∑
n=0

P(Fn)

2

If {Fi}i∈N ∈ F is not disjoint, we have subadditivity, which is that P (
⋃∞

n=0 Fn) ≤
∑∞

n=0 P(Fn) .

Example 2.2. Consider the sample space from Example 2.1. A probability measure P : Ω → [0, 1] can be
defined as P(H) = P(T) = 1

2 . This is known as flipping a “fair” coin.

From the definition of probability measure, we have that the measure in Example 2.2 is a probability
measure.

Definition 2.4 (Probability Space). We call the triple (Ω,F ,P) a probability space, with Ω as in Definition
2.1, F as in Definition 2.2, and P as in Definition 2.3.

Additionally, we call F ⊂ Ω such that F ∈ F an event, and we can then say that P(F) represents the
probability that F occurs. More formally, we say that F is F−measurable.

Definition 2.5 (Random Variable X). A random variable X is an F−measurable function X : Ω→ R

Additionally, it is important to note that every random variable X induces a probability measure PX ,
where PX is the distribution of X. Some popular examples for distributions include the normal distribution,
the exponential distribution, binomial distribution, and many others.

Definition 2.6 (Expectation). The expectation, or expected value, of X is defined as

E[X] :=

∫
Ω

X(ω)dP(ω)

The expectation requires that the integral above is well defined.

In other words, the expectation is the average value for a random variable. For example, X ∼ N(µ, σ2)
has E[X] = µ.

2.2 Stochastic Processes

Using random variables, we can now define one of the central objects for this paper: the stochastic
process.

Definition 2.7 (Stochastic Process Xt). A stochastic process is a collection of random random variables
(Xt, 0 ≤ t ≤ T <∞) defined on (Ω,F ,P), valued in Rn.

T is known as the terminal time, as most applications involve a finite time horizon. Two major types
of stochastic processes are discrete stochastic processes and continuous stochastic processes. For discrete
stochastic processes, the index set between 0 and T is countable. For continuous stochastic processes, the
index set is typically the interval [0, T].

Just as we can use equations to describe deteriminstic functions, we can do the same with stochastic
processes. Below, we provide an example of a stochastic process defined on [0, 10], with discrete time steps.

Example 2.3. Xt+1 = Xt + σXt + tµ,X0 = 0

This is known as a random walk with drift µ. If µ = 1 and σ = .2, and we sample Xt ∼ N (0, 1)
distributions, we can obtain the following plot:

3

Figure 2.1: One possible realization of the random walk.

Stochastic processes are very useful for describing unpredictably phenomena. A particular example,
which we will explore extensively in Chapter 6, is a stock price.

2.3 Conditional Expectation

From basic probability theory, we have that a conditional probability is

P (A|B) =
P (A ∩B)

P (B)
, if P (B) > 0, (2.1)

for two events A and B. This then reads as the probability an event A occurs, given that B has already
occurred. As a basic example, consider the probability of a die being rolled showing a 3 on top given that the
value is odd. In this case, the conditional probability of this event is 1

3 , while the unconditional probability
of this event would be 1

6 , as we have no prior information to work with.
Conditional expectations seek to apply this notion of applying known knowledge when computing an

expected value of a random variable. Therefore, we can define the conditional expectation as follows

Definition 2.8 (Conditional Expectation). Given a random variable X with E[|X|] < ∞, the conditional
expectation of X given an event A has occurred:

E[X|A] =
E[IAX]

P (A)
, if P (A) > 0

Where

IA(ω) =

{
1 if ω ∈ A

0 if ω /∈ A

As a reminder, ω ∈ A means that that a possible realization ω is in the event A. It is important to note
that the conditional expectation is no longer a singular number, but instead is now a random variable. In
fact, it can be thought of as a rough approximation of the random variable X given the knowledge of A.

Before providing some theoretical properties of the conditional expectation, we first define what it means
for events and variables to be independent.

Definition 2.9 (Independent Events and Variables). The events A1, ..., An are independent if for every
choice of indices i1, ..., ik where 1 ≤ k ≤ n, we have that

P (Ai1 ∩ ... ∩Aik) = P (Aik)...P (Aik) (2.2)

The random variables X1, ..., Xn are independent if for every choice of indices i1, ..., ik where 1 ≤ k ≤ n as
well as subsets B1, ..., Bn of F , we have that

P (Xi1 ∈ Bi1 ∩ ... ∩Xik ∈ Bik) = P (Xi1 ∈ Bi1)...P (Xik ∈ Bik) (2.3)

4

Remark 2.1. The following properties can be derived for the conditional expectation:

1. Linearity. For random variables X1, X2, and an event A ∈ F , and constants c1, c2 ∈ R we have

E[(c1X1 + c2X2)|A] = c1E[X1|A] + c2E[X2|A]

2. If X and A are independent, E[X|A] = E[X]. X and A being independent means that the information
contained in A does not restrict the domain of X.

3. E[X|A] only uses the information present in A.

4. E[X] = E[E[X|A]]

More can be found in (see Mikosch, 1998, section 1.4), (see Shreve, 2004, chapter 2.3)

2.4 Filtration

The concept of a filtration is the formalization of a system gaining information over time. Filtrations allow
for the construction of a martingale, which is crucial to the Itô integral, which is a key piece of a stochastic
differential equation. Thus, we provide the definition below for a filtration and a stochastic process that is
adapted to a filtration.

Definition 2.10 (Filtration Ft). Let T an interval as in Definition 2.7. The collection (Ft, 0 ≤ t ≤ T) of
σ−algebra’s on Ω is a continuous time filtration if

Fs ⊂ Ft, ∀ 0 ≤ s ≤ t ≤ T

Alternatively, consider (Ft, t ≤ T), where T is a countable set. This is is a sequence of sets defined in Ω and
Ft ⊂ Ft+1 for all t ∈ T , (Ft, t ≤ T) is a filtration.

A filtration is an increasing stream of information. As t increases, the amount of information present in
the system grows. We can apply this stream of information to our stochastic processes to apply them to
financial systems.

Definition 2.11 (Stochastic Process Xt Adapted to the Filtration Ft). Let T be a set as defined in 2.7.
Then, the stochastic process Xt = (Xt, t ∈ T) is adapted to the filtration (Ft, t ≤ T) if

σ(Xt) ⊂ Ft,∀t ≥ 0

Where σ(Xt) is the σ−field generated by Xt.

It is important to note that a stochastic process (Xt, 0 ≤ t ≤ T) is always adapted to what is known as
the natural filtration. The natural filtration is the filtration associated with the process that records all past
behavior at each time point. More formally, this is of the form

Ft = σ{X−1
s (A)|0 ≤ s ≤ t ≤ T}, A ∈ Ω}

Which is the preimages of the random variable at each timepoint. Here, Ω is the σ−algebra used for this
particular stochastic process.

2.5 Martingales

One of the most important properties that is studied in stochastic calculus is the martingale. Martingale’s
allow us to formalize many notions about the behavior of stochastic processes, and study classes of stochastic
processes together at once. Here, we provide the definitions of a discrete and continuous time Martingale
from (see Mikosch, 1998, 1.5).

5

Definition 2.12 (Discrete Time Martingale). The stochastic process X = (Xn, n = 0, 1, 2, ...) is a discrete
time martingale with respect to the filtration (Fn, n = 0, 1, 2, ...), denoted by (X, (Fn)), if the following
properties hold

(i) E[|Xn|] <∞ for all n = 0, 1, 2, ...

(ii) X is adapted to the filtration Fn as in Definition 2.11

(iii) E[Xn+1|Fn] = Xn, for all n = 0, 1, 2, ...

This last item is often called the Martingale Property. Informally, it states that the best guess for the
value of the stochastic process in the future is the guess at the current time. This also has a continuous time
analogue which we will show below.

Definition 2.13 (Continuous Time Martingale). The stochastic process X = (Xt, 0 ≤ t ≤ T) is a continuous
time martingale with respect to the filtration (Ft, 0 ≤ t ≤ T), denoted by (X, (Ft)), if the following properties
hold

(i) E[|Xt|] <∞ for all 0 ≤ t ≤ T

(ii) X is adapted to the filtration Ft as in Definition 2.11

(iii) E[Xt|Fs] = Xs, for all 0 ≤ s < t ≤ T

With these definitions, we can now define one of the most important objects in stochastic calculus:
Brownian Motion.

2.6 Brownian Motion

Brownian motion is the one of the most important aspects of stochastic calculus. Brownian motion has
allowed for many breakthroughs in physics, biology, and mathematical finance. Brownian motion was first
mathematically studied by Louis Bachelier in his doctoral thesis (Bachelier, 1900), which in English is titled
Theory of Speculation. This was the first work to use Brownian Motion to model asset prices. The problem of
option pricing was later popularized by Black and Scholes (1973), in which the modern option pricing theory
was born. Myron Scholes and Robert Merton were awarded the Nobel Prize in Economic Sciences in 1997
for this work (Fischer Black had passed away in 1995, and the Nobel Prize is not awarded posthumously).
Brownian Motion did not become popularized until Einstein published his work (Einstein, 1956 - 1926).
Brownian Motion is also sometimes referred to as a Wiener Process because of the work of work of Norbert
Wiener in 1918 (Wiener, 1976).

Below, we provide two popular definitions for Brownian motion, from (see Mikosch, 1998, 1.3.1) and (see
Shreve, 2004, 3.3.1) respectively. While they are quite similar, Definition 2.14 comes from a more elementary
text than the other. For completeness, both are included.

Definition 2.14 (Brownian Motion Wt, Mikosch (1998)). A one dimensional stochastic process Wt, t ≥ 0
is called Brownian Motion if:

(i) W0 = 0

(ii) It has stationary, independent increments

(iii) For every t > 0, Wt ∼ N (0, t) distribution

(iv) Every sample path is continuous

Note that N (0, t) is a normal distribution with mean 0 and variance t.

Stationary increments means that Wt −Ws is equal in distribution to Wt+h −Ws+h for all t, s ≥ 0 such
that t + h, s + h ∈ [0, T]. Independent increments means that for every choice ti ∈ [0, T], with t1 < ... < tn
and n ≥ 1, we have that

Wt2 −Wt1 , ...,Wtn −Wtn−1

are independent random variables.

6

Definition 2.15 (Brownian Motion Wt, Shreve (2004)). Let (Ω,F ,P) be a probability space. For each
ω ∈ Ω, suppose there is a continuous function Wt, t ≥ 0 that depends on ω and W0 = 0. Then, Wt, t ≥ 0 is
a Brownian Motion if f for all 0 = t0 < ... < tm the increments

Wt1 −Wt0 , ...,Wtm −Wtm−1

are independent and each is normally distributed with mean 0 and variance ti+1 − ti

Additionally, we can define a filtration that embeds on Brownian Motion.

Definition 2.16 (Filtration for Brownian Motion). Let (Ω,F ,P) be a probability space on which we define
Wt as a Brownian Motion, t ≥ 0. A filtration for Brownian Motion Ft, t ≥ 0 is a collection of σ−algebras
satisfying

(i) For 0 ≤ s < t, Fs ⊂ Ft.

(ii) Wt is Ft-measurable.

(iii) Wu −Wt is independent of Ft, if 0 ≤ t < u.

Brownian Motion produces several powerful results that we highlight we proof below.

Theorem 2.1. Let Wt be a Brownian Motion as outlined in Definition 2.14. Then, Wt is a martingale with
respect to the filtration Ft = σ(Ws, 0 ≤ s ≤ t ≤ T), which is the filtration generated by Brownian motion.

Proof. Fix T > 0 ∈ R, and s < t < T . Note that

E[Wt] = 0

as Wt ∼ N (0, t) comes from a normal distribution of mean 0. Therefore, Wt has finite expectation. Addi-
tionally, since Ft is a filtration defined on the Brownian Motion (the natural filtration), Brownian motion is
adapted to the natural filtration. Lastly, we have

E[Wt|Fs] = E[Wt −Ws + Ws|Fs],

using the fact that Ws −Ws = 0. Applying linearity of expectations, we have

E[Wt|Fs] = E[Wt −Ws|Fs] + E[Ws|Fs]

E[Wt|Fs] = E[Wt −Ws|Fs] + Ws

As the information at Fs is sufficient to evaluate Ws. The first term is 0 as Wt −Ws are independent of
each other, and have mean 0. Therefore, we have

E[Wt|Fs] = 0 + Ws = Ws

Therefore, Brownian Motion satisfies the requirements of Definition 2.13 and is Martingale.

Now, we will show that Brownian Motion satisfies the property of Quadratic Variation, defined below.

Definition 2.17 (Quadratic Variation). Let f : [0, T]→ R. The quadratic variation of f up to T is

[f, f](T) = lim
||Π||→0

n−1∑
j=0

(f(tj+1)− f(tj))
2

Where Π = {t0, ..., tn}, 0 = t0 < ... < tn = T .

The property of quadratic variation is that the series above [f, f](T) is finite.

Theorem 2.2. Let W be a Brownian Motion. Then [W,W](T) = T, ∀ T ≥ 0 almost surely.

7

Proof. Let Π be a partition of T . Let

QΠ =

n−1∑
j=0

(Wtj+1 −Wtj)2

be the sample quadratic variation. We will show that its’ mean converges to T as ||Π||→ 0, and variance
converges to 0. First, we will show that the mean converges.

Note that QΠ is a sum of independent random normal variables, which is then an independent random
normal variable. Additionally, have that for each part of the sum,

Var(Wtj+1
−Wtj) = E[(Wtj+1

−Wtj)2]− E[(Wtj+1
−Wtj)]2

Note that the second term is 0 from the difference being independent, linearity of expectations, and each
having mean 0. Thus, we have that

Var(Wtj+1
−Wtj) = tj+1 − tj

from the definition of the variance of Brownian Motion, and the independence between Wtj+1 and Wtj . Thus,

E[(Wtj+1 −Wtj)2] = tj+1 − tj

Therefore, we have that

E[QΠ] = E[

n−1∑
j=0

(Wtj+1 −Wtj)2]

Linearity of expectations allows us to switch the order of the summation and expectation.

=

n−1∑
j=0

E[(Wtj+1
−Wtj)2] =

n−1∑
j=0

(tj+1 − tj) = T

Now, we will compute the variance. Note that

Var((Wtj+1
−Wtj)2) = E[(Wtj+1

−Wtj)4] + E[(Wtj+1
−Wtj)2]2

= 3(tj+1 − tj)
2 − (tj+1 − tj)

2

As the 4th moment of a random normal variable (which the difference of two independent random normal
variables is) is the Kurtosis, which for a random normal variable is 3σ4, and σ2 = (tj+1 − tj) from above.
Thus we have

Var((Wtj+1
−Wtj)2) = 2(tj+1 − tj)

2

Thus,

Var(QΠ) =

n−1∑
j=1

2(tj+1 − tj)
2

From (see Shreve, 2004, Remark 3.4.2), we can bound this with ||Π|| linearly, which then obtains

n−1∑
j=1

2(tj+1 − tj)
2 ≤

n−1∑
j=1

2||Π||(tj+1 − tj) = 2||Π||T

Thus, as ||Π||→ 0, we have that the variance goes to 0. Therefore,

Var(QΠ) ≤ 2||Π||T → 0, ||Π||→ 0

Thus, we have that Brownian Motion has finite quadratic variation almost surely.

Another important to item to note, which will not be stated with proof, is the following result:

8

Theorem 2.3. Let Wt be a Brownian motion. No sample path of the Brownian Motion is differentiable.

This result is important for defining integration with Brownian Motion. Additionally, it means that sam-
ple paths of Brownian motion are another example of a function that is continuous but nowhere differentiable,
like the Weierstrass function.

Now, we will demonstrate two key examples of Brownian Motion: The Brownian Bridge and Geometric
Brownian Motion.

Example 2.4 (The Brownian Bridge). Let Wt be a Brownian Motion. Then, we have a Brownian bridge
by the process:

Yt = Wt − tW1

This results in Y0 = Y1 = 0 as Y0 = W0 − 0 ·W1 = 0 and Y1 = W1 −W1 = 0. Visually, this can be seen as
below:

Figure 2.2: A sample path of a Brownian bridge

Example 2.5 (Geometric Brownian Motion). Using the same Brownian Motion Wt, we can define Geo-
metric Brownian Motion as described by Black, Scholes, and Merton in the following way:

St = eµt+σWt

Where t ≥ 0, µ, σ ∈ R. This is the exponentiation of Brownian Motion with Drift (S′
t = µt + σWt). Below

is a sample path of Geometric Brownian Motion, with µ = .2, σ = .05 on t ∈ [0, 5] and S0 = 100 with time
steps δt = .02.

Figure 2.3: Geometric Brownian Motion (GBM) has an upward drift with high probability as µ > 0, σ > 0,
as we see in these samples.

Remark 2.2. Geometric Brownian Motion was the key item utilized by Black and Scholes (1973) to create
their Nobel Prize winning option pricing formulae.

9

From this background and Brownian Motion, we can now move onto the stochastic calculus equivalent
to the fundamental theorem of calculus: The Itô Integral and Itô’s Lemma.

2.7 The Itô Integral and Itô’s Lemma

Now, we will present two of the most important results of Stochastic Calculus: The Itô Integral and Itô’s
Lemma. Itô’s Lemma serves as Stochastic Calculus’ version of the fundamental theorem of calculus, which
uses the Itô integral. Before continuing, we make a key distinction about Stochastic Calculus. Stochastic
Calculus is heavily focused on the integration side, due to the lack of differentiability of sample paths of
Brownian Motion. As such, Itô Calculus is sometimes referred to as an “integral” calculus. First, we will
define the Itô integral as a limiting sum, similar to a Riemann Integral:

Definition 2.18 (Itô Integral). Let Π be a partition between [s, t] of the form {s = t0, ..., tn = t}. Let
Wt represent a Brownian Motion. Let ∆(t) represent a function that is constant on [ti, ti+1), but it is a
predictable random variable. Consider the sum below:

I(t) =
n−1∑
i=0

∆(ti)(Wti+1
−Wti) + ∆(tn)(Wt −Wtn) (2.4)

Then, as we allow ||Π||→ 0, we have that

I(t) =

∫ t

s

∆(u)dWu (2.5)

which is known as an Itô integral.

It is possible to define this integral more generally, but the version above is sufficient for our work.

Remark 2.3 (Properties of the Itô Integral). Many other properties can be derived for Itô integrals. Here,
we list a few from (see Shreve, 2004, 4.3.1) The Itô integral I(t) satisfies many of the following properties:

(i) As a function of the upper limit of integration t, I(t) has continuous sample paths

(ii) For each t, I(t) is Ft measurable.

(iii) For I(t), I ′(t) as two Itô integrals with the same Brownian Motion, we have

I(t) + I ′(t) =

∫ t

0

∆(u) + ∆′(u)dWu,

which means that Itô integrals are linear.

(iv) For some constant c, we have

cI(t) =

∫ t

0

c∆(u)dWu

(v) We have Itô isometry, meaning

E[I2(t)] = E[

∫ t

0

∆2(u)du]

(vi) It has quadratic variation [I, I](t) =
∫ t

0
∆2(u)du

Theorem 2.4. The Itô integral has E[I(t)] = 0 and it is a martingale with respect to the natural Brownian
Motion filtration Ft.

10

Proof. We will first prove that I(t) is a martingale, and use this result to show that it’s expectation is 0.
In order to a martingale, we must have that I(t) has finite expectation, it is adapted to the filtration Ft,

and that E[I(t)|Fs] = I(s) for s < t. First, note that

E[|I(t)|] <∞

holds from the Isometry property, given in 2.3. Adaptedness comes from the fact that the integral is defined
on Brownian Motion, and that we are using the filtration Ft adapted to the Brownian Motion. Since these
variables are Ft− measurable, it holds that I(t) must be Ft− measurable as well. Lastly, we will show that
the martingale property holds.

First, consider the case where s < t and s ∈ [tk−1, tk] for some tk’s in the partition Π. In this case, we
have that taking the conditional expectation

E[I(t)|Fs] =E[

n−1∑
i=0

∆(ti)(Wti+1
−Wti) + ∆(tn)(Wt −Wtn)|Fs]

Applying linearity of expectations and breaking the sum into two parts, we have

=E[

k−1∑
i=0

∆(ti)(Wti+1
−Wti) + ∆(tn)(Wt −Wtn)|Fs]

+ E[

n−1∑
i=k

∆(ti)(Wti+1
−Wti) + ∆(tn)(Wt −Wtn)|Fs]

For the first part, we have that we can remove the conditional expectation as these are all the ti’s part of
Fs. For the second summation, we can remove ∆(ti) as it is adapted, and obtain

=

k−1∑
i=0

∆(ti)(Wti+1
−Wti)∆(tn)(Wt −Wtn)+

+ ∆(ti)E[

n−1∑
i=k

(Wt −Wtn)|Fs]

Note as we are only in Fs, the second part of the summation is 0 due to it being the conditional expectation
of Brownian Motion, which has mean 0. Therefore, we have that

E[I(t)|Fs] =

k−1∑
i=0

∆(ti)(Wti+1
−Wti) + ∆(tn)(Wt −Wtn) = I(s)

For the other cases, a similar argument applies when taking the conditional expectations. Thus I(t) is a
martingale.

From this, we have that the expectation function is constant with respect to the filtration Ft, and we
have that I(0) = 0, this means that

E[I(t)] = E[I(0)] = 0

With Itô integrals, we can then define Itô’s Lemma.

Theorem 2.5 (Itô’s Lemma (Simple)). Let f ∈ C∞(R), and Wt a Brownian Motion. Then, we have that

f(Wt)− f(Ws) =

∫ t

s

f ′(Wx) dWx +
1

2

∫ t

s

f ′′(Wx) dx, s < t (2.6)

is a simple form of Itô’s Lemma.

11

Proof. Let Π = {0 = t0, ..., ti, ..., tn = t} be a partition of [s, t], indexed by xi. Recalling the Taylor expansion
for f , we have that

f(xi+1)− f(xi) = f ′(xi)(xi+1 − xi) +
1

2
f ′′(xi)(xi+1 − xi)

2 + stuff,

where the “stuff” are higher order terms of the Taylor expansion. Now, since we are concerned between the
difference f(Wt)− f(Ws), we have that this is equal to

f(Wt)− f(Ws) =

n−1∑
i=0

(f(Wti+1
)− f(Wti))

f(Wt)− f(Ws) =

n−1∑
i=0

(f ′(Wti+1
))((Wti+1

)− (Wti))

+
1

2

n−1∑
i=0

(f ′′(Wti+1))((Wti+1)− (Wti))
2

+ higher order terms

As ||Π||→ 0, the difference f(Wt) − f(Ws) does not change. However, right hand hand side does. Taking
the limit, we obtain:

f(Wt)− f(Ws) = lim
Π→0

n−1∑
i=0

(f ′(Wti+1))((Wti+1)− (Wti))

+ lim
Π→0

1

2

n−1∑
i=0

(f ′′(Wti+1
))((Wti+1

)− (Wti))
2

+ lim
Π→0

higher order terms

Note that due to quadratic variation, the second term becomes an ordinary integral:

f(Wt)− f(Ws) = lim
Π→0

n−1∑
i=0

(f ′(Wti+1
))((Wti+1

)− (Wti))

+
1

2

∫ t

s

f ′′(Wx) dx

+ lim
Π→0

higher order terms

Thus, we must resolve what occurs with the first term, and with the higher order values. For the higher
order values, as the quadratic variation is finite, further powers of the difference of Brownian Motion have
limit 0 as ||Π||→ 0 (Shreve, 2004). Thus, we have

f(Wt)− f(Ws) = lim
Π→0

n−1∑
i=0

(f ′(Wti+1))((Wti+1)− (Wti))

+
1

2

∫ t

s

f ′′(Wx) dx

This first term converges to an Itô Integral, which is an integral with respect to the Brownian Motion.
Therefore, we have

f(Wt)− f(Ws) =

∫ t

s

f ′(Wx)dWx

+
1

2

∫ t

s

f ′′(Wx) dx,

which is what we wanted to show, which concludes the proof.

12

This form of the Itô’s Lemma is considered to be the simple case. There are many other cases where
the function f used has different assumptions on it’s behavior. However, these versions of the Lemma are
primarily for the cases of multiple variables and higher dimensions.

This Lemma now allows us to evaluate Integrals with Brownian Motion indirectly, as we have access to
evaluating the function at a given Brownian Motion variable, as well as a deterministic integral that can be
integrated using more standard analytical techniques.

Example 2.6. With Itô’s lemma, we compute the difference

f(Wt)− f(Ws)

where f(x) = x2, s < t, and Wt is a Brownian Motion. We know that f ′(x) = 2x and f ′′(x) = 2. Applying
Itô’s Lemma, we have

W 2
t −W 2

s =

∫ t

s

2WxdWx +

∫ t

s

dx

From here, we have that

W 2
t −W 2

s = 2

∫ t

s

WxdWx + (t− s)

Therefore, we have
W 2

t −W 2
s − t + s

2
=

∫ t

s

WxdWx

Additionally, if s = 0, we then have
1

2
(W 2

t − t) =

∫ t

0

WxdWx

Itô’s Lemma and its generalizations have immense importance to stochastic calculus, and mathematical
finance as a whole as well. Advanced techniques of stochastic calculus built off of the building blocks above
have allowed for modeling of markets under fewer assumptions than the Black Scholes Model, thus more
accurately modeling reality.

2.8 (Forward) Stochastic Differential Equations

Using Itô Integrals and Itô’s Lemma, we can now construct the primary object of study for this report:
stochastic differential equations (SDEs).

SDEs can be seen as the stochastic analogy to the ordinary differential equation (ODE). Instead, we have
that the entire equation is driven by a stochastic process. Most popularly, we have the Itô SDE, defined
below:

Definition 2.19 (Itô Process Xt). Using a Brownian Motion Wt, we can define the Itô stochastic differential
equation as an integral equation (Mikosch, 1998):

Xt = X0 +

∫ t

0

a(s,Xs)ds +

∫ t

0

b(s,Xs)dWs, 0 ≤ t ≤ T (2.7)

Here, Brownian motion is the driving process of the Itô SDE (2.7). Additionally, it is important to
note that as stochastic calculus is an integral calculus, using the term differential equation is a bit of a
mathematical “slight of hand.” Much like ODEs and PDEs, there are analogous versions of weak and strong
solutions to be found in SDEs. Strong and weak solutions to SDEs are known as diffusions.

Definition 2.20 (Strong Solution). A strong solution to the Itô stochastic differential equation is a stochastic
process X = (Xt, t ∈ [0, T]) such that

(i) X is adapted to the filtration generated by Brownian Motion

(ii) The integrals defined in Equation (2.7)are well defined in the Riemann, Lebesgue, or Itô sense respec-
tively.

13

(iii) X is a function of underlying Brownian sample paths prescribed via coefficient functions a(t, x) and
b(t, x)

Sometimes, the specific path behavior is not of interest, and the goal is to gain knowledge about the
distribution of the process X. This requires finding a Brownian Motion that is sufficient to solve the SDE
with the given initial condition X0 as well as coefficient functions. This is known as a weak solution.

Remark 2.4. Note that if a = 0, b = 1 we have that

Xt = X0 +

∫ t

0

dWs

More generally, if a, b are continuous and Lipsschitz, Equation (2.7) has a unique strong solution on [0, T].

2.9 The Feynman-Kac Formula

Below, we present the Feynman-Kac Formula as a mean to link between SDEs and nonlinear PDEs from
(see Shreve, 2004, chapter 6.4).

Definition 2.21. Consider the SDE of the following form:

dX(u) = β(u,X(u))du + γ(u,X(u))dW (u) (2.8)

Let h(y) be a Borel measurable function, and fix T > 0. Define

g(t, x) = E[h(X(T))|X(t) = x] (2.9)

for a given t ∈ [0, T]. Assume further that E[h(X(T))|X(t) = x] <∞,∀t, x. g satisfies the following PDE:

gt(t, x) + β(t, x)gx(t, x) +
1

2
γ2(t, x)gxx(t, x) = 0 (2.10)

Note that this holds under certain assumptions for β, and γ. Typically, what is important is that β and
γ are known, and that they are Lipschitz continuous. For a proof, we refer the reader to (see Shreve, 2004,
lemma 6.4.2).

2.10 Important Classes of Random Variables

Below, we list three important classes of random variables that we will utilize throughout this work.

1. L2(R) := the space of random variables ξ : ω → R such that E[|ξ|2] <∞

2. S2(R) := space of adapted, left continuous and right limited (cadlag) processes Y : Ω× [0, T]→ R such
that E[sup

t∈[0,T]

|Y (t)|2] <∞

• A function f is Cadlag: ∀t > 0,∀ϵ > 0,∃δ > 0 such that |f(t) − f(t − δ)|< ϵ (right continuous)
and limh↓0 f(t + h) = f(t) (left limited)

3. H2(R) := square intergrable processes Zt such that E[
∫ T

0
|Z(t)|2dt] <∞

These are spaces are vital for the results we provide in the following chapters.

2.11 Further Reading

For further reading on Stochastic Calculus, we refer the reader to (Mikosch, 1998), (see Øksendal, 2003,
chapters 2,3,4, & 5), and (see Shreve, 2004, chapters 1, 2, 3, & 4).

14

Chapter 3

Backwards Stochastic Differential
Equations (BSDE)

3.1 Introduction

Throughout this section, we introduce the general theory of backwards stochastic differential equations.
In particular, we focus on the existence and uniqueness of BSDEs under certain assumptions. Additionally,
we provide an example of a BSDE as well as it’s solution. In particular, we focus on a BSDE of the following
form:

Definition 3.1. Let T ∈ R+, and let ξ ∈ L2(R) (the terminal condition) and f : [0, T] × R × R → R, we
have a backwards stochastic differential equation (BSDE) is of the form

Y (t) = ξ +

∫ T

t

f(s, Y, Z)ds−
∫ T

t

Z(s)dW (s), (3.1)

Note that the solution (Y,Z) ∈ S2(R)×H2(R) exists and is unique for Equation 3.1.

This is adapted from Delong (2013). Below, we provide proof of existence and uniqueness for certain
generator functions f .

3.2 Theoretical Properties

Below, we provide theoretical properties to BSDEs. In particular, we focus on the existence and unique-
ness of solutions to BSDEs with certain generator functions.

3.2.1 Existence and Uniqueness With 0 Generator

To begin, we will first assume that f = 0. Thus, we are concerned with a BSDE of the following form:

Definition 3.2. Let ξ ∈ L2(R). We then have a BSDE with 0 generator

Y (t) = ξ −
∫ T

t

Z(s)dW (s), (3.2)

where W is a Brownian Motion and Z is a stochastic processes adapted to W .

From this definition, we can state the following result:

Theorem 3.1. The BSDE from Definition 3.2 has a unique solution (Y,Z) ∈ S2(R)×H2(R). Furthermore,
we can represent the solution as

Y (t) = E[ξ|Ft], 0 ≤ t ≤ T (3.3)

15

and Z can be derived from the representation:

ξ = E[ξ] +

∫ T

0

Z(s)dW (s). (3.4)

Proof. First, note that E[ξ|Ft] is a martingale. To see this, we will show it satisfies the three requirements.
First, note that since ξ ∈ L2(R), we have that E[|ξ|] <∞. Through the projection property (see Mikosch,

1998, 1.4.5), we have that E[ξ|Ft] is also finite, which is the first property. The second portion of Y (t) is a
stochastic integral, which has expectation 0.

Next, we wish to show that E[ξ|Ft] is adapted to Ft. Note that by definition of conditional expectation
(which exists and is unique for the BSDE above), we have that E[ξ|Ft] is Ft-measurable, which means that
it is adapted to the filtration.

Lastly, we will show that the martingale property holds. To do this, we note that

E[E[ξ|Ft]|Fs] = E[ξ|Fs], 0 ≤ s < t ≤ T

from the tower property.
Thus, E[ξ|Ft] is a martingale.
Since E[ξ|Ft] is a martingale, we can apply the martingale representation theorem (see Shreve, 2004,

5.3.1) on the process Y to obtain:

Y (t) = Y (0) +

∫ t

0

Z(s)dW (s), 0 ≤ t ≤ T

for some process Z. Note then that by substituting T = t, we obtain

Y (T) = Y (0) +

∫ T

0

Z(s)dW (s).

Since ξ is the terminal condition, we have that Y (T) = ξ. Thus, we get

ξ = Y (0) +

∫ T

0

Z(s)dW (s).

Taking the expectation, we have

E[ξ] = E[Y (0) +

∫ T

0

Z(s)dW (s)].

Applying linearity of expectations and the fact that E[Y (0)] = Y (0), as well as the fact that the expectation
of an Itô integral is 0 (as it is a martingale), we get that Y (0) = E[ξ]. Substituting this, we obtain:

ξ = E[ξ] +

∫ T

0

Z(s)dW (s).

From the martingale representation theorem and splitting the integral into 2 parts, we can express the
process as below:

Y (T) = ξ = Y (0) +

∫ t

0

Z(s)dW (s) +

∫ T

t

Z(s)dW (s).

From here, we can take the conditional expectation with respect to Ft to obtain:

Y (t) = E[ξ|Ft] = E[Y (0)|Ft] + E[

∫ t

0

Z(s)dW (s)|Ft] + E[

∫ T

t

Z(s)dW (s)|Ft].

Since Y (0) is known at t, we have

E[ξ|Ft] = Y (0) + E[

∫ t

0

Z(s)dW (s)|Ft] + E[

∫ T

t

Z(s)dW (s)|Ft].

16

The first integral is only up to time t, and as ∫ t

0

Z(s)dW (s)

is adapted to the filtration Ft, the conditional expectation is just the original integral. Therefore, we have
that

E[ξ|Ft] = Y (0) +

∫ t

0

Z(s)dW (s) + E[

∫ T

t

Z(s)dW (s)|Ft].

Note for the second integral, it is no longer adapted as we are going from t to T . Note, note that the Itô
integral is independent of the filtration at this time. This is is because we consider the integral as a sum,
and consider the series

lim
||Π||→0

n∑
i=0

Zti(Wti+1
−Wti).

Note that the Brownian increments are always independent of Zti throughout the time period, and thus
each term is independent. Since each term is independent from the filtration, the Itô Integral (the limit) is
independent. Therefore, the conditional expectation of the integral here is 0. As we have that

Y (t) = Y (0) +

∫ t

0

Z(s)dW (s)

from the Martingale Representation Theorem. And at time T ,

Y (T) = Y (0) +

∫ t

0

Z(s)dW (s) +

∫ T

t

Z(s)dW (s).

Substituting the first part for Y (t), we have

ξ = Y (T) = Y (t) +

∫ T

t

Z(s)dW (s).

Therefore,

Y (t) = E[ξ|Ft] = ξ −
∫ T

t

Z(s)dW (s).

Thus, we have the existence of a solution (Y, Z), as in the form described in the theorem. Now, we will show
that this solution is unique.

Assume by contradiction that there exists a solution (Y ′, Z ′ where Y ′ ̸= Y and Z ′ ̸= Z) and it is a
solution to

Y (t) = ξ −
∫ T

t

Z(s)dW (s).

From here, we can express the solution at time t in terms of each solution:

Y (t) = ξ −
∫ T

t

Z(s)dW (s)

Y ′(t) = ξ −
∫ T

t

Z ′(s)dW (s)

Then, we can take the expectation of both of them. This results in:

E[Y (t)] = E[ξ −
∫ T

t

Z(s)dW (s)]

E[Y ′(t)] = E[ξ −
∫ T

t

Z ′(s)dW (s)]

17

As Y (t) is known at t (meaning that Y (t) is Ft measurable with respect to the filtration Ft), we can drop
the expectation on the left. This results in

Y (t) = E[ξ −
∫ T

t

Z(s)dW (s)]

Y ′(t) = E[ξ −
∫ T

t

Z ′(s)dW (s)]

Now, we can apply linearity of expectations on each to obtain:

Y (t) = E[ξ]− E[

∫ T

t

Z(s)dW (s)]

Y ′(t) = E[ξ]− E[

∫ T

t

Z ′(s)dW (s)]

Note we are taking expectations of two Itô stochastic integrals, which are known to have expectation 0 as
Z,Z ′ are square integrable, which was discussed in Theorem 2.4. Thus, we have

Y (t) = E[ξ] = Y ′(t),∀t ∈ [0, T]

This holds almost (surely/everywhere) with respect to dP
⊗

ds.
From here, we wish to show that Z = Z ′ in the same manner as above. Note that since Y (t) = Y ′(t), we

have that
0 = Y (t)− Y ′(t).

This also holds if we square both sides
0 = (Y (t)− Y ′(t))2.

And additionally, it holds if we take the expectation

0 = E[(Y (t)− Y ′(t))2].

Now, we can apply the martingale representation theorem to Y and Y ′ to obtain

0 = E[((Y (0) +

∫ t

0

Z(s)dW (s))− (Y ′(0) +

∫ t

0

Z ′(s)dW (s)))2].

Note that from above, we have that Y (0) = Y ′(0), so we can cancel those terms. Therefore, we have

0 = E[(

∫ t

0

Z(s)dW (s)−
∫ t

0

Z ′(s)dW (s))2].

And now, by linearity of integration, we have

0 = E[(

∫ t

0

Z(s)− Z ′(s)dW (s))2].

Here, we can apply Itô’s lemma since Z and Z ′ are both square integrable to obtain:

0 = E[

∫ t

0

(Z(s)− Z ′(s))2ds].

Now, note that this integral is 0, and that the integrand is always greater than or equal to 0 as it is squared.
Therefore, a classical result from Measure Theory implies that

Z(s)− Z ′(s) = 0

In other words, we have that Z = Z ′ almost everywhere with respect to dP
⊗

ds.
Therefore, we have a contradiction, which means that the assumption that the solutions were the same

is incorrect, and the solution to the BSDE is infact unique.

18

Remark 3.1. Note that if f only depended on t, the results above do not change. This is due to the fact
that any conditional expectations taken will simply allow f(t) to be added where necessary. In particular,

anywhere ξ is written, a +
∫ T

t
f(s)ds is added. This is because f(s) has no stochastic element with it, and

is adapted where necessary. Thus, Y becomes:

Y (t) = E

[
ξ +

∫ T

t

f(s)|Ft

]
, 0 ≤ t ≤ T (3.5)

Furthermore, the solution would not change if f depended on other random variables that were not related
to Y or Z.

3.2.2 BSDEs with More Complex Generators

Now, we can assume that f is of the form f(s, Y, Z), where Y and Z are defined as above in Definition
3.1. Now, we can provide existence and uniqueness for this class of BSDE.

Theorem 3.2. Suppose that a BSDE of Equation 3.1 is given. Then, there exists a unique solution pair
(Y,Z).

Proof. We begin by construct a sequence {(Y n, Zn)}n∈N such that each (Y n, Zn) is a unique solution to the
BSDE below

Y n+1(t) = ξ +

∫ T

t

f(s, Y n(s), Zn(s)) ds−
∫ T

t

Zn+1(s)dW (s).

Then, we will show that the sequence we construct will converge to (Y, Z), being the unique solution to the
original BSDE.

Let (Y 0(t), Z0(t)) = (0, 0) for t ∈ R, Z, Y ∈ S2(R)×H2(R). Now, define the recursive sequence of BSDEs

Y n+1(t) = ξ +

∫ T

t

f(s, Y n(s), Zn(s))ds−
∫ T

t

Zn+1(s)dW (s),

where (Y n, Zn) ∈ S2(R)×H2(R). therefore, we have

E[

∫ T

0

|f(t, Y n(t), Zn(t))|2dt] ≤ 2E[

∫ T

0

|f(t, 0, 0)2|dt] + 2K(T ||Y n||2+||Zn||2H2) <∞.

For the first part of the inequality, recall that we have

E[

∫ T

0

|f(t, Y n(t), Zn(t))|2dt] = E[

∫ T

0

|f(t, Y n(t), Zn(t))− f(t, 0, 0) + f(t, 0, 0)|2dt]

by adding in a form of 0. We can then break this into two terms and recall that (x+ y)2 ≤ 2x2 + 2y2 for all
x, y ∈ R as follows to obtain:

≤ 2E[

∫ T

0

|f(t, 0, 0)2|] + 2E[

∫ T

0

|f(t, Y n(s), Zn(s))− f(t, 0, 0)2|dt]

Further, we have that the second part of the right hand side is Lipschitz with a constant K, and thus we
obtain:

≤ K(||Y n||2+||Zn||2)

For the second half of the first inequality, we have the first part is finite by assumption, and the second
part is finite due to the spaces that we defined for the Y n, Zn processes, as they are square intergrable.

From earlier, we know that there exists a unique solution (Y n+1, Zn+1) ∈ S2(R)×H2(R) independent of
f(t, Y n, Zn) that solves the iterative BSDE.

We will show that this sequence (Y n, Zn) is Cauchy, and thus converges to a unique limit, and as S2(R)
and H2(R) are complete spaces, we have that the sequences each converge in their respective space and have
unique limits.

19

Consider Lemma 3.3.1 (Delong, 2013) and Y n+1, Zn+1, Y n, Zn. We are able to bound following differences
which hold for all ρ > 0, T > 0.

||Y n+1 − Y n||2S2+||Zn+1 − Zn||2H2

≤ K(E[

∫ T

0

|f(t, Y n, Zn)− f(t, Y n−1, Zn−1)|2dt])

+K ′(E[

∫ T

0

|f(t, Y n, Zn)− f(t, Y n−1, Zn−1)|2dt])

Let m,n ∈ N such that n ̸= m be given. Without loss of generality, let n < m. Then, consider the equation

||Y n − Y m||+||Zn − Zm||= ||Y n + Y n+1 − Y n+1 + Y n+2 − Y n+2 + ... + Y m−1 + Y m||

+||Zn + Zn+1 − Zn+1 + Zn+2 − Zn+2 + ... + Zm−1 + Zm||

Applying the triangle inequality yields:

||Y n − Y m||+||Zn − Zm||≤
m∑
i=n

||Y i+1 − Y i||+||Zi+1 − Zi||.

Now, on each term, we can equation 3.11 from Delong to obtain:

≤ 1

ρ

m∑
i=n

E[

∫ T

0

eρt|f(t, Y i, Zi)− f(t, Y i+1, Zi+1)|2dt]

Which then creates a geometric series with ρ, and therefore this converges. Thus, we have that (Y n, Zn) ∈
S2(R)×H2(R) is Cauchy in H2.

Recall that (Y n, Zn) ∈ S2(R)×H2(R) converges to (Y, Z) ∈ S2(R)×H2(R). Therefore, we want to show
that

Y n(t) = ξT +

∫ T

t

f(s, Y n(s), Zn(s))ds−
∫ T

t

Zn(s)dW (s)

converges in H2 × S2 to

Y (t) = ξT +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s)

Subtracting, we have that

|Y (t)− Yn(t)|= |
∫ T

t

f(s, Y n(s), Zn(s))ds−
∫ T

t

f(s, Y (s), Z(s))ds

−(

∫ T

t

Z(s)dW (s)−
∫ T

t

Zn(s)dW (s))|

Thus, we can apply the triangle inequality to obtain that

≤ |
∫ T

t

f(s, Y n(s), Zn(s))ds−
∫ T

t

f(s, Y (s), Z(s))ds|+|(
∫ T

t

Z(s)dW (s)−
∫ T

t

Zn(s)dW (s))|

If these two terms both converge in H2, then we have that the solution exists and is unique to the general
BSDE.

For the first term, from Theorem 2.2.1 of Delong and the BDG inequality (see Theorem Protter, 2005,

IV.48), we have that Let M :=
∫ T

t
f(s, Y n(s), Zn(s))ds−

∫ T

t
f(s, Y (s), Z(s))ds

E[sup
t∈[0,T]

(|
∫ T

t

f(s, Y n(s), Zn(s))ds−
∫ T

t

f(s, Y (s), Z(s))ds|)2]

20

≤ K1E[[M,M](t)]

which is the quadratic variation of a deterministic integral, which has value 0. Therefore, we have that the
first difference converges in H2.

For the second term. We have that

E[sup
t∈[0,T]

∫ T

t

Z(s)dW (s)−
∫ T

t

Zn(s)dW (s)] ≤

≤ K1E[[

∫
Zn(s)− Z(s)dW (s),

∫
Zn(s)− Z(s)dW (s)](T)

−[

∫
Zn(s)− Z(s)dW (s),

∫
Zn(s)− Z(s)dW (s)](t)]

= K1E[

∫ T

t

(Zn(s)− Z(s))2ds]

Again by the BDG inequality and quadratic variation. Then, the last item goes to 0 as Zn → Z in S2.

3.3 Dynamic Entropic Risk Measures

A common example of a BSDE is known as dynamic entropic risk measure. Risk measures can be
developed axiomatically, and then we can apply these properties to solve certain BSDEs. Below, we present
an example from Proposition 3.12 in Carmona (2009).

Example 3.1 (BSDE Example). Let γ > 0, γ ∈ R be given. Suppose we are given a BSDE of the form:

dYt = ZtdWt −
1

2γ
||Zt||2dt, YT = ξT (3.6)

Then, we have that Yt = γ ln(Mt) is the solution, where

Mt(ξT) = E[exp(− 1

γ
ξT)|Ft] (3.7)

Lemma 3.1. With Mt as defined above, we have that

dMt =
1

γ
MtZtdWt

Where dWt is a Brownian Motion, and Zt is a square intergrable stochastic process bounded away from 0.

Proof. From the Martingale Representation Theorem, we have that

Mt = M0 +

∫ t

0

ΓudWu.

In differential form, this is
dMt = ΓudWu.

We can rewrite this using a form of 1 as follows:

dMt =
1

γ
Muγ

1

Mu
ΓudWu.

Define Zu := γ
Mu

Γu. We will show that Zu is square intergrable and bounded away from 0. Note that ξT is

bounded, and thus − 1
γ ξT is bounded. Therefore, we have that

e−
1
γ ξT

21

is bounded away from 0 and bounded above, and therefore we have that

E[e−
1
γ ξT |Ft]

preserves these properties. Due to the Martingale Representation Theorem, we have that multiplying this
expectation by γΓu will preserve the square intergrability and bounds, proving the lemma.

Now, we will prove that Yt is a solution to (3.6).

Proof. Let Yt = γ ln(Mt), with Mt defined as in (3.7).
Then, note that Itô’s Lemma on γ ln(Mt) yields:

dYt =
γ

Mt
dMt +

1

2
· − −γ

M2
t

d[M,M](t)

Where d[M,M](t) is the differential of the quadratic variation of M . Applying the identity above, the first
term becomes

γ

Mt
· (1

γ
MtZtdWt) = ZtdWt,

and therefore we obtain
dYt = ZtdWt −

γ

2M2
t

d[M,M](t).

For the second term, we apply that

[M,M](t) =

∫ t

0

(
1

γ
MtZt)

2dt

and thus

d[M,M](t) = (
1

γ
MtZt)

2dt.

Applying this to the equation, we obtain

dYt = ZtdWt −
γ

2M2
t

(
1

γ
MtZt)

2dt

Simplying this becomes

dYt = ZtdWt −
1

2γ
Z2
t dt

Which shows that Yt is a solution to equation (3.6). From the results of existence and uniqueness, this is
the only solution to this equation, completing the proof.

3.4 The Nonlinear Feynman-Kac Formula

Similar to the Feynman Kac Formula, there has been work into developing nonlinear formulae analogous
to the Feynman-Kacs formula for BSDEs. In particular, we will show a version from (E et al., 2017).

Theorem 3.3. Let ξ ∈ R, Y : [0, T] × Ω → R and Z : [0, T] × Ω → Rd be F adapted stochastic processes
with continuous sample paths which satisfy the following BSDE:

Yt = g(ξ + WT) +

∫ T

t

f(Ys, Zs)ds−
∫ T

t

⟨Zs, dWs⟩Rd

Under assumptions of regularity on the behavior of f we have that the following PDE is related to the BSDE
such that for all t ∈ [0, T] it holds P-a.s. (almost surely) that

Yt = u(t, ξ + Wt) ∈ R

and
Zt = (∇xu)(t, ξ + Wt) ∈ Rd

22

One primary application that utilizes a nonlinear version of the Feynman-Kac formula is found in the
seminal work of the Deep BSDE solver (E et al., 2017). Here, they utilize the formula to have neural networks
that approximate solution to BSDEs also approximate the solution to a certain class of PDE. This has been
expanded on immensely, such as in the work by (Huré et al., 2019) and (Gao et al., 2022).

23

Chapter 4

Reflected Backwards Stochastic
Differential Equations

As a BSDE propagates backward from the terminal time T to time 0, the path is relatively unrestricted,
outside of the requirements for the processes Y and Z. Sometimes it is necessary to restrict this path to
be above a barrier. This occurs in certain option pricing problems in mathematical finance, which we will
discuss in Chapter 6. Below, we provide a general overview for outlining the reflected BSDE (RBSDE).

4.1 BSDEs with Constraints

To apply BSDEs to other classes of problems (such as American option pricing in mathematical finance),
we need to add constraints to the Y process such that it will remain above the boundary condition St. This
is done through the following modification to a BSDE. We introduce a process St to serve as a constraint on
the Yt process.

Definition 4.1 (RBSDE). A reflected BSDE (RBSDE) is a BSDE of the following form:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds + KT −Kt −
∫ T

t

ZsdWs (4.1a)

Where for all 0 ≤ t ≤ T
Yt ≥ St, (ST ≤ ξ almost surely) (4.1b)

and Kt is a continuous, increasing process such that

K0 = 0,

∫ T

0

(Yt − St)dKt = 0 (4.1c)

As a RBSDE is a BSDE with a constraint, we know that RBSDEs will have a unique solution. Below,
we state the key assumptions for existence and uniqueness of a RBSDE.

Theorem 4.1 (RBSDE Approximation). Under the follow assumptions (El Karoui et al., 1997)

(i) ξ ∈ L2(R)

(ii) For all (Y,Z) ∈ R× R, t ∈ [0, T], we have that f(t, Y, Z) ∈ H2(R)

(iii) For some K > 0 and for all Y, Y ′ ∈ R, Z, Z ′ ∈ R, we have almost surely that

|f(t, Y, Z)− f(t, Y ′, Z ′)|≤ K(|Y − Y ′|+|Z − Z ′|),

which can be viewed as a Lipschitz condition.

24

(iv) E[sup
t∈[0,T]

(S+
t)2] <∞, where {St, t ∈ [0, T]} is a continuous progressively measurable real valued process

(Here, progressively measurable is similar to being adapted, but slightly stronger as it allows the stopped
process to be measurable). Furthermore, we assume that ST ≤ ξ almost surely as defined above.

(v) Z ∈ H2(R)

(vi) Yt is defined as in Definition 4.1.

the RBSDE has a unique solution (Yt, Zt)

A similar iteration style approach can be taken for proving existence and uniqueness for the RBSDE.
Additionally, there is another approach that could be taken, approximating the RBSDE object from a well
constructed BSDE.

4.1.1 A BSDE Approximation of the RBSDE

Utilizing a BSDE with an extra term, we are able to approximate a BSDE. This is done through the
following equation (see El Karoui et al., 1997, Section 6):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds + M

∫ T

t

(Ys − St)
−ds−

∫ T

t

ZsdWs (4.2)

Where M is a sufficiently large constant given the desired level of accuracy. Intuitively, we have that
(Ys − St)

− acts as a “punishment” term, forcing the BSDE (4.2) to remain above the terminal condition
g throughout the path [0, T]. For proof that this produces a unique solution of the RBSDE, we refer the
reader to Section 6 of El Karoui et al. (1997). We provide an outline of the main ideas.

Definition 4.2 (Progressively Measurable). Let (Ω,F ,P) be a probability space, and {Ft|t ≥ 0} be a filtration
on F . Let Yt : [0, T]× Ω→ R be a stochastic process. We say that Yt is progressively measurable if, for
every t ∈ [0, T], we have that the mapping (s, ω) 7→ Ys(ω) is B([0, t])

⊗
Ft − measurable, where 0 ≤ s ≤ t.

Here, B([0, t]) denotes the Borel σ− algebra. Progressively measurable processes are the largest process
needed for stochastic integration. It can be thought of a similar concept to an adapt process on Ω, but with
an added time element for the process.

Now, we will provide a proof sketch of Theorem 4.1 (see El Karoui et al., 1997, Section 6 for full proof).

Proof. For each n ∈ N, let {(Y n
t , Zn

t)|t ∈ [0, T]} denote the pair of progressively measurable processes valued
in R× R such that

E

 T∫
0

|Zn
t |2dt

 <∞

and satisfy the following BSDE:

Y n
t = ξ +

T∫
t

f(s, Y n
s , Zn

s)ds + n

T∫
t

(Y n
s − Ss)

−ds−
T∫
t

Zn
s dWs

where (·)− denotes the negative part of a function. As n→∞, we have that this term in the BSDE acts as
a “punishment” term, forcing the solution (Y n

t , Zn
t) to remain above the boundary condition g. Thus, if we

define

Kn
t = n

t∫
0

(Y n
s − Ss)

−ds,

then from unconstrained BSDEs, we know that for each n, we have that

E[sup
t∈[0,T]

|Y n
t |2] <∞

25

Now, El Karoui et al. (1997) generates a priori estimates for the solution triple (Y n, ZmKn) to show that
each item is finite. Then, we can define

fn(t, y, z) = f(t, y, z) + n(y − St)
−.

Therefore, we have that
fn(t, y, z) ≤ fn+1(t, y, z).

Additionally, the comparison principles allow us to establish that for all t ∈ [0, T], we have that, almost
surely,

Y n
t ≤ Y n+1

t .

Therefore, we can conclude that Y n
t ↗ Yt for all t ∈ [0, T] almost surely. This, along with Fatou’s Lemma,

allows us to apply dominated convergence to conclude that

E

 T∫
0

(Yt − Y n
t)2dt

→ 0

as n→∞.
Other estimates then allow us to show that the sequence (Y n

t , Zn
t) is Cauchy, and thus convergent in this

space. Additionally, we have that

E

[
sup

0∈[0,T]

|(Y n
t − St)

−|2
]
→ 0

as n→∞. These properties then imply that the sequence of BSDEs we created above satisfy the properties
of being an RBSDE in the limit. Therefore, we have that the solution exists and is unique in the limit.

Remark 4.1 (Connection to Optimal Stopping). RBSDEs are of particular use to a class of problems
known as optimal stopping problems. These problems focus on the behavior of a given process, and finding
the optimal point along the path of the RBSDE to take an action such that some value function is maximized.
In Chapter 6, we will demonstrate this on the example of American Option pricing.

26

Chapter 5

Numerical Implementation of
(R)BSDEs

5.1 Introduction

In this section, we describe modern approaches that can numerically approximate the solutions to
(R)BSDEs through Deep Learning. This is done through using feed forward neural networks as approx-
imators for the Y and Z processes.

5.2 Neural Networks as Functional Approximators

In recent years, Neural Networks (NNs) have exploded in popularity. Feed forward neural networks have
been shown to be very accurate approximators of wide classes of functions. Because of this, they are able
to be utilized for many regression and classification problems. Throughout this work, we focus on a special
type of neural network, known as a feed forward neural network.

A feed forward neural work structure is shown in Figure 5.1.

Figure 5.1: A feed forward NN with 6 inputs, 2 hidden layers, and 2 outputs from (see Dixon et al., 2020,
Figure 4.1)

27

The first layer, known as the input layer, takes input data from the problem. Then, a number of hidden
layers transform the datapoints, and feed into the output layer. Between each layer, there are parameters
known as weights and biases that scale and transform the data. The process of determining these weights
and biases is known as training the neural network.

This particular class of NN has been shown to be a very accurate approximator of many functions. This
is due to a class of theorems known as universal approximation theorems. One of the first theorems in the
field is from Cybenko (1989), who developed a universal approximation theorem for one layer feed forward
NNs. To give a brief introduction to this universal approximation theorem, we first give some necessary
definitions.

Definition 5.1 (Sigmoidal Functions). σ : R→ R is sigmoidal if

σ(t) =

{
1 t→∞
0 t→ −∞

(5.1)

Definition 5.2 (Discriminatory Functions). Let In be the n-dimensional unit cube and M(In) be finite,
signed regular Borel measures on In. σ is discriminatory if for a measure µ ∈M(In), we have∫

In

σ(yTx + θ)dµ(x) = 0 (5.2)

for all y ∈ Rn and θ ∈ R implies that µ = 0.

Theorem 5.1 (Universal Approximation Theorem (Cybenko, 1989)). If σ is a continuous discriminatory
function, then a sum of the form

G(x) =

N∑
j=1

αjσ(yTj x + θj) (5.3)

where αj , θj ∈ R is dense in C(In) (continuous functions on In). Given ε > 0, f ∈ C(In), there exists values
of αj and θj, j = 1, ..., N such that

|G(x)− f(x)|< ε, ∀ x ∈ In (5.4)

It is worth noting is that this is just an existence proof for the values αj and θj . In deep learning, αj

and θj are called weights and biases. The universal approximation theorem does not provide insights on
how to compute the “correct” weights and biases to approximate a given function of concern. Therefore,
algorithms have been developed to approximate the values of the weights and biases. It is quite common
is to minimize a loss function (such as mean squared error (MSE)) utilizing a stochastic gradient descent
(SGD) type algorithm to find sufficient parameters.

5.2.1 Designing Feed Forward Neural Networks

For this work, we have created a multilayer feed forward neural network for approximating solutions to
(R)BSDEs. Here, we provide a general overview for designing these neural networks for these problems. The
following overview of the training process is adapted from (Negrini, 2022, section 2.1).

28

Algorithm 1 Designing A Feed Forward Neural Network

1. Choose a programming library for the neural network, such as TensorFlow or PyTorch.

2. Obtain a training dataset for the (R)BSDE

3. Determine the input and output dimensions, and decide on the number of neurons and hidden layers.

4. Choose the loss function, such as mean squared error.

5. Choose the Optimizer algorithm, such as SGD.

6. Train the network using the training data and the optimizer algorithm to find the desired weights and
biases.

(a) Iteratively update hyperparameters through observing the results on the training set to obtain
the best possible results.

Below, we expand on the steps outlined above.

Choosing A Programming Architecture

A popular programming language for programming neural networks is python 3 (Van Rossum and Drake,
2009). Within python, there are two dominate libraries to choose from: TensorFlow (Abadi et al., 2015)
and PyTorch (Paszke et al., 2019). For this work, we utilized PyTorch. Both have the ability to create feed
forward neural networks, and it is primarily a matter of preference for the user.

Generating Training Data

In order to find optimal neural network parameters with the optimization algorithm, the network needs
a training dataset. A training dataset contains datapoints that the neural network can be tested against for
the loss function.

For our work in Chapter 6, we will be utilizing sample paths for a stock under a Black Scholes and
stochastic volatility model. For other problems, this can be sales data, survey results, or biomedical data.
For more on types of training data and thus application areas, we refer the reader to (see Alzubaidi et al.,
2021, Applications of Deep Learning). For more on the financial applications of Deep Learning, we refer the
reader to (Dixon et al., 2020).

Designing the Neural Network

From Figure 5.1, we have that the feedforward network takes on the following form:

Linear Input Layer L1 → · · · Hidden Layers · · · → Output Linear Layer Lm+1

The input layer L1 maps the input data of dimension n to an intermediary dimension p. p is considered to
be the number of neurons of the NN. After m hidden layers is the output layer Lm+1. The output layer
Lm+1 maps data from p dimensions down to the number of dimensions for the output n′. Much like single
layer NNs, multilayer NNs also have powerful approximation abilities, as well as other benefits.

Another popular initialization layer before the hidden layers is to have a normalization layer. This
typically takes the form of:

X − E[X]√
Var(X)

(5.5)

which is a transformation with respect to the mean and variance of the data vector X.
For the hidden layers, it is common to utilize sigmoidal functions, due to their use in the universal

approximation theorem. Below are three common hidden layer functions:

1. tanh : Hyperbolic tangent

29

2. max{x, 0} : Rectified Linear Unit (ReLU)

3. max{x, 0} − αmin{0, x}, 0, α,< 1 : “Leaky” ReLU. α is typically chosen to be .01.

For other hidden layer functions, see https://pytorch.org/docs/stable/nn.html#non-linear-activat

ions-weighted-sum-nonlinearity.

Choosing the Loss Function

In order to find effective weights and biases, a loss function is employed for the model to be trained
against before applying the optimizer. If there is known output data, a popular loss function is the mean
squared error (MSE), which utilizes the L2 norm, or mean absolute error (MAE), with the L1 norm. The
MSE takes the form of:

1

n

n∑
i=1

(xi − x̂i)
2 (5.6)

Where xi is the known value, and x̂i is the prediction from the neural network. For more loss functions, we
refer the reader to https://pytorch.org/docs/stable/nn.html#loss-functions.

Choosing the Optimizer

Utilizing the training data, it is common for deep learning algorithms to break it up to some number of
batches, and to train the network on one batch of data at a time. This then updates the weights and biases
of the neural network using a value known as the learning rate ℓ. This is done through algorithms such as
stochastic gradient descent (SGD), as well as the Adam Optimizer (see https://pytorch.org/docs/stabl

e/optim.html#algorithms). Below is an outline of the algorithm adapted from Goodfellow et al. (2016):

Algorithm 2 Stochastic Gradient Descent (SGD) Algorithm

Require: Learning rates ℓk
Require: Initial Parameters θ
k ← 1
while Stopping criterion not met do

Sample a batch of training data X and target data Y
Compute Gradient Estimate: ĝ ← 1

m∇θ

∑
i L(f(X; θ), Y)

Update: θ ← θ − ℓkĝ
k ← k + 1

end while

The L function is the loss function, and f represents the neural network. This is the gradient descent
portion of the stochastic gradient descent. The randomness comes from how the data is sampled and
the initial conditions. Additionally, the stopping criteria can be set to continue until the loss function is
sufficiently close to 0, or until a certain number of iterations have been completed. The conditions necessary
for convergence are:

∞∑
k=1

ℓk =∞ (5.7)

and
∞∑
k=1

ℓ2k <∞ (5.8)

In practice, it is not uncommon for there to be a single learning rate, and only using a finite number
of iterations for the stopping criteria. Alternatively, the learning rate can decay linearly up until a certain
point, and then it is left constant. This will often lead to suboptimal weights and biases with respect to that
loss function, but will be sufficient for practical purposes.

Lastly, one major difficulty in finding global minima for gradient descent algorithms is finding local
minima. Local minima occur as loss surfaces for the neural network parameters are often not convex, and

30

https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#non-linear-activations-weighted-sum-nonlinearity
https://pytorch.org/docs/stable/nn.html#loss-functions
https://pytorch.org/docs/stable/optim.html#algorithms
https://pytorch.org/docs/stable/optim.html#algorithms

thus there is no global minima for the gradient descent algorithm to discover. Therefore, the SGD algorithm
can be generalized to try to prevent the algorithm terminating in these minima. One way to attempt
to circumnavigate these problems is to test multiple learning rates, and see which produce better results.
Other techniques include changing the size of the minibatch, changing the number of iterations, or refining
the dataset further before training.

Another popular algorithm is known as the Adam optimizer (Kingma and Ba, 2014). The Adam optimizer
works in a similar way to the SGD algorithm above, but also utilizes the second moment estimate in addition
to the first moment estimate when using the gradient. This typically results in faster convergence to the
minima of the loss surface as well.

For more on gradient descent algorithms, we refer the reader to Calin 2020, Section 14.3 and Goodfellow
et al. 2016, Chapter 8.

Training the Network

In order to train the neural network, we utilize the training data, the loss function, and the network
architecture to find effective weights and biases for the problem at hand. This is commonly done through
the backpropagation algorithm (see Dixon et al., 2020, 5.1). A visualization of this algorithm is provided in
Figure 5.2, from https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/.

Figure 5.2: A visualization of the backpropagation algorithm

When designing the neural network, it is important to decide on the hyper parameters. Hyper parameters
is a value used to control the learning process. The number of iterations to preform in the optimizer algorithm,
learning rates, the size of data batches, and the number of neurons are all examples of hyper parameters.
Other parameters include the design of the neural network itself, such as how many layers to utilize. These
can be tuned as needed when testing to find the most accurate results for the problem at hand. One way to
verify this accuracy is to use a subset of the data for testing the results, that is completely untouched aside

31

https://pytorch.org/blog/how-computational-graphs-are-executed-in-pytorch/

from this accuracy test.

5.3 Deep BSDE Solver

In this section, we discuss deep learning approaches to numerically solving (R)BSDEs.
The seminal work of (E et al., 2017) utilizes deep learning to find numeric solutions to BSDEs. At a high

level, they discretize the BSDE and at each step and then utilize a neural network to predict the value of
the Y process.

First, consider a BSDE as in Definition 3.1. This is of the form:

Y (t) = ξ +

∫ T

t

f(s, Y (s), Z(s))ds−
∫ T

t

Z(s)dW (s) (5.9)

This can be discretized (E et al., 2017, Section 2.4) into Equation 5.10. Let Π be a partition of [0, T], T > 0
of size n. Then, we have that

Y (tn+1) = Y (tn)− f(tn, Y (tn), Z(tn)))(tn+1 − tn) + ⟨Z(tn),W (tn+1)−W (tn)⟩ (5.10)

Where W is a Brownian Motion. Now, we can apply the Deep BSDE solver, as outlined below:

Algorithm 3 The Deep BSDE Solver

Sample X, dW from the stochastic process and distribution for Brownian Motion.
for i = 0, ..., n do

Let Ûi be a NN approximation of Zi

Compute Y (ti+1) using Equation 5.10.
end for
Compute The Loss L := E[|Y (T)− g(XT)|2]

Update the weights and biases of Ûi for i = 0, ..., n using L via SGD

This then provides a numerical approximation of Y (0), which is the initial value of the BSDE. Intuitively,
this value should be deterministic for the problem at hand, and thus this scheme will converge to the correct
value under the loss function above. For proof, we refer the reader to E et al. 2017, Section 3.

5.4 Dynamic Programming Approach to (R)BSDE Approxima-
tion

In Huré et al. 2019, the authors utilize a dynamic programming approach to approximate both BSDEs
and RBSDEs. Additionally, their approach utilizes multiple neural networks for both the Y and Z processes,
instead of just using the Z process. The loss function is to minimize the difference between the terminal
condition and each time step, as compared to just at the terminal time T as in the Deep BSDE solver. Also,
the scheme has the ability to incorporate a reflection term by changing the value of Ûi after training that
timestep, which allows this technique to approximate RBSDEs as well. This process also goes backwards
instead of forwards, which is more in lined with the fact that BSDEs run backwards in time.

Consider a reflected BSDE of the form outlined in Definition 4.1. Then, we can apply Algorithm 4,
outlined below.

32

Algorithm 4 The Hure et al. RBSDE Solver

Let Π := 0 = t0 < · · · < tN = T be a partition of the interval [0, T]
Sample X, dW from the stochastic process and distribution for Brownian Motion
Let ÛN = g(XT), the terminal condition be the approximation of the RBSDE at time T .
for i = N − 1, · · · , 0 : do

Given Ûi+1, use two neural networks Ui,Zi to approximate the Y and Z processes. Train the network
to minimize:
E|Ûi+1(Xti+1)− F (ti, Xti ,Ui(Xti),Zi(Xti),∆ti,∆Wti)|2

After training, set Ûi = max{Uti , g(Xti)}
end for

In the dynamic programming step, F is the (R)BSDE approximation. When discretized, this of the form

F (ti+1Y (ti+1), Z(ti+1)) = Y (ti)− f(ti, Y (ti), Zi)h + Z(ti)
⊤∆W (ti) (5.11)

which is quite similar to equation 5.10.
This technique is able to directly handle an (R)BSDE due to the incorporation of the reflection step of

taking the maximum between the approximation and the terminal condition. This step can be omitted to
approximate a standard BSDE instead.

5.5 Gao et al. RBSDE Solver

Lastly, another similar technique has been developed to numerically approximate (R)BSDEs. Again,
consider an RSBDE of the form 4.1. This algorithm seeks to minimize the variance of the Y (0) value.
Intuitively, this works as Y (0) should have a deterministic value, as it is at the present time. Therefore, the
variance around Y (0) will converge to 0 when optimizing the weights and biases via an SGD type algorithm.
For a more detailed proof, see Gao et al. 2022, Section 2.

This solver is also able to handle RBSDEs, as the maximum between Y (ti) and g(X(ti)) is taken. This
ensures that the approximation remains above the boundary condition g.

Algorithm 5 The Gao et al. RBSDE Solver

Let ÛN−1, ..., Û0 be N neural networks to approximate Zti

Sample X, dW from the stochastic process and distribution for Brownian Motion
Let Y (T) = g(XT)
for i = {N − 1, ..., 0} do

Let Ẑ(ti) be the approximations from Ûi
Let Y (ti) = Y (ti+1) + f(ti, X(ti), Y (ti+1), Z(ti))∆t− Z(ti)

⊤∆W (ti)
Let Yti = max{g(X(ti)), Y (ti+1) + f(ti, X(ti), Y (ti+1), Z(ti))∆t− Z(ti)

⊤∆W (ti)}
end for
Update the weights and biases of Ûi by setting the loss L := var(Y0) with SGD

In (Gao et al., 2022), the authors provide a proof of convergence for this algorithm to the original RBSDE.

33

Chapter 6

Modeling Stock Options with BSDEs
and Neural Networks

One of the key areas of application of BSDEs and stochastic calculus is in the field of financial mathe-
matics. Financial mathematics is using mathematical principles and styles of thinking about problems and
applying to them to problems arising from financial markets.

6.1 Financial Background

Generally speaking, a financial market is a place where people go to buy and sell financial assets. The
example we focus on is stock options in a company. A stock is a share of ownership of a certain company,
such as Apple (Hayes, 2023). An option is a contract which gives the buyer the right, but not requirement
to buy or sell stocks at an agreed upon price K at (or up to) a time T . Stocks and options are traded at
exchanges, where investors are able to buy and sell assets from other investors.

The mathematical theory of finance was developed by many different economists working on different
areas, such as Harry Markowitz, William Sharpe, Merton Miller, Fischer Black, and Myron Scholes (wik,
2022).

Now, we provide a more technical explanation of financial markets to demonstrate a key application of
deep learning to approximate the solution to models.

6.2 Complete Financial Markets

A financial market is where agents have the ability to buy and sell items from each other. As a guiding
example through some of the technical definitions, we consider the following financial market that consists of
one time period and two assets, a bond that carries no interest rate and a stock St. This can be represented
in the figure below:

B0 = 1 B1 = 1 S0 = 2

S1(u) = 4

S1(d) = 1

Here, u is the event that the stock will go up, and d is the event that the stock will go down.

34

Within this market, it is possible for financial agents to purchase a option on stock St. The two types of
options are a call and put option. They both rely upon a strike price K. Mathematically, these options can
be represented by the following functions, known as payoff functions. For a call:

Ct = (St −K)+ = max{St −K, 0} (6.1)

And for a put:
Pt = (K − St)

+ = max{K − St, 0} (6.2)

Remark 6.1 (American and European Options). In more complex financial markets, such as those present
in the real world, there are multiple flavors of option contracts that can be purchased. The primary two,
offered referred as a vanilla are the American and European option. A European option gives the buyer the
right, but not obligation to exercise the contract at the expiration date 0 < T <∞. For an American option,
the buyer has the opportunity to exercise early. Early exercising cannot be seen in our one period model, but
can be seen in a multiperiod or continuous time model.

Example 6.1 (Computing the put payoff). For a strike price of K = 3, the put payoff function at T = 1
becomes

(3− St)
+ =

{
0 S1(u) = 4

2 S1(d) = 1
(6.3)

A key question is to determine what the fair price for the option at time 0. In this context, a fair price
is one that does not allow for an arbitrage opportunity.

Definition 6.1 (Arbitrage, intuitively). Intuitively speaking, arbitrage is the ability to make money with no
risk. This can be viewed through the following joke (adapted from Delbaen and Schachermayer (2006)):

Professor Sturm and Forrest go on a walk and Forrest finds a $100 bill lying on the street. Forrest wants
to pick it up, and Professor Sturm says “do not try to do that. It is impossible that there is a $100 bill on
the street. Assume by contradiction there is a $100 bill on the street. Then, somebody else would have picked
it up before you.”

The “somebody else” Professor Sturm is referring to here is a market agent eliminating arbitrage by
exploiting the free money on the ground by picking up bills until it is gone.

For a more thorough treatment of arbitrage, we refer the reader to Delbaen and Schachermayer (2006).
For our example, the fair price for the put option is one that allows replication the behavior of the option
using just stock and bonds.

Example 6.2 (Computing the arbitrage free price). To find the arbitrage free price of the put option, we
construct a portfolio V such that it will have the same value as the option at time T , no matter the result.
This known as a replicating portfolio. This takes the form of the equation

VT = αST + βBT = (3− ST)+.

Therefore, we have the equations
α4 + β = 0,

α + β = 2.

This leads to the solution α = − 2
3 and β = 8

3 . This means that VT = PT , and as we do not want an arbitrage
opportunity, we require that V0 = P0. Thus, using the same α and β, we obtain that

V0 = αS0 + βB0 = −2

3
2 +

8

3
1 =

4

3
.

Therefore, the fair option price that is arbitrage free is 4
3 .

Note that this technique made no assumptions on the probability of u or d occurring, aside from the
fact that they are both greater than 0. We can now apply an alternative method from Theorem 1.6.1 from
Delbaen and Schachermayer (2006) and find a probability q such that St is a Martingale under q. We call
this probability we have found to be the measure Q, known as the risk neutral measure.

35

Example 6.3 (Martingale calculation of the arbitrage free price). To find the appropriate probability q to
use, we require that St becomes a martingale under q. This means that the expected value at time T is the
same as the expected value at time 0. This leads to the equation

4q + (1− q)2 = 2

which leads to the solution that q = 1
3 . Thus, under the risk neutral measure Q, we have that

EQ[(K − St)
+] = V0 = 0

1

3
+ 2

2

3
=

4

3
,

This is the same arbitrage free price as before.

Remark 6.2 (Model independence). As seen in the example computation above, we see that arbitrage free
prices are model independent in the sense that it does not depending on the probability of events occuring.
This is useful for verifying prices of more complicated models by testing them against a more simple binomial
model.

A key result in the area of asset pricing are known as the fundamental theorems of asset pricing, stated
below. First, we provide the definition of a complete market.

Definition 6.2 (Complete Market (Föllmer and Schied, 2016)). A arbitrage free market model is complete
if every contingent claim is attainable.

Theorem 6.1 (The first and second fundamental theorems of asset pricing). For a complete market, we
have that (adapted from Föllmer and Schied (2016)):

1. A market model is arbitrage free if and only if there exists a probability measure Q such that risk neutral
measure for the assets.

2. An arbitrage free market model is complete if and only if Q is unique.

Example 6.4 (The Black Scholes Complete Market). The Black Scholes market is the classical example of
a complete market. In their seminal work (Black and Scholes, 1973), they assume:

1. There exists a risk free rate r

2. The stock price follows the following geometric Brownian motion:

dSt = µStdt + σStdW

where µ is the mean return, σ is the standard deviation of the returns of the asset (known as the
volatility), and dW is an infinitesimal increment of Brownian motion. µ and σ are constant in this
model.

3. The stock does not pay a dividend

4. There is no arbitrage opportunity

5. It is possible to borrow and lend any amount of cash at the rate r

6. It is possible to buy and sell any fraction of the stock S

7. There are not transaction fees or costs (this is known as a frictionless market).

Utilizing Algorithm 5, we can approximate the option price for calls and puts under these assumptions.
We demonstrate this below with an American Put Option.

Code can be found in Appendix A.
For a European put option, we have that the driver and terminal condition functions are:

f(t,Xt, Yt, Zt) = −rYt

36

and
g(t,Xt) = (K −Xt)

+.

Thus, the BSDE is

Yt = (K −XT)+ +

T∫
t

−rYsds−
T∫
t

ZsdWs

The condition below then allows the BSDE to become an (R)BSDE to represent the American put option.

Yt ≥ g(t,Xt)

Here, Xt is the stock process, represented by

dXt = µXtdt + σXtdW

Discretized, this is
Xti+1 = Xti + µXti∆t + σXti∆Wti

For the network structure, we use a input layer of normalization, a linear input layer, two ReLU layers,
followed by a linear output layer. For an optimizer, we utilize the Adam optimizer. We follow Algorithm 5.
For numeric parameters, we refer the reader to Table 6.1.

Neural Network Parameters Black Scholes Parameters

Time Steps = 10 µ = .08
Learning Rate .008 r = .02
Batch Size = 1000 σ = .20
Number of epochs = 6000 T = 1

12
Predicted Price = 3.949 Analytical Price $= 3.97

Absolute Relative Error: 0.05%

Table 6.1: Black Scholes American Put Option Numerical Modeling

In Figure , a visual of a sample path is displayed:

Figure 6.1: American Option Path Under Black Scholes

6.3 Incomplete Financial Markets

Above, we have assumed that we are working a complete market. Now, we introduce the notion of an
incomplete market.

37

Definition 6.3 (Incomplete Market). An incomplete market is one where there are multiple risk neutral
measures.

In reality, most markets are incomplete. This is due to the fact that many of the assumptions, such as
the ones used in the Black Scholes market model, are incorrect. Consider the following simplified trinomial
model.

B0 = 1 B1 = 1 S0 = 2

S1(u) = 4

S1(d) = 1

S1(m) = 2

Note that this market is incomplete, but there can still be an arbitrage free price. This price now becomes
an interval, as there are three variables (the probabilities q1, q2, q3) and one equation for the time period.

Example 6.5 (Computing the arbitrage free interval). From the martingale condition, we have two equa-
tions:

q1 + q2 + q3 = 1

and
4q1 + 2q2 + q3 = 2.

Note that probabilities are positive, so we have the extra constraint that q1, q2, q3 ≥ 0. Thus, we can solve
the system to obtain the following solution

q1 =
q3
2
,

q2 =
2− 3q3

2
,

q3 ∈ (0,
2

3
).

Now, under the risk neutral measure, we can compute

EQ[(K − ST)+] = 0q1 + q2 + 2q3

=
2− 3q3

2
+

4q3
2

=
2 + q3

2

Therefore, the price interval is (1, 4
3).

Even in these markets, the arbitrage free prices are model independent of probability of q1, q2, and q3.

Remark 6.3. For all of the examples above, the price of the option was symmetric, which means it was
independent of the buyer or the seller. This is due to two primary reasons. The first relates to the replicating
claim technique when pricing options. With this technique, there is no assumption on whether the agent is
buying (being “long”) or selling the option (going “short”). This implies that buying an option is the same
as selling negative one of an option. The second reason is that we assume that the risk free rate r is the
same for both buying and selling the option. This is incredibly idealistic, as one can see when considering the
interest rate on their bank account compared to the interest rate with their credit card bill. When considering
a different interest rate for buying and selling options, this breaks the linearity in the market, resulting in
different option prices for buying and selling (see Bonner and Campanelli, 2016, Section 3).

38

6.4 Indifference Pricing

Indifference pricing is a technique of valuing an option in a way that the value to a buyer is the same
regardless if they purchase them for this price or do not purchase them. Indifference pricing removes some of
the idealistic assumptions made by the Black Scholes and other models. In particular, this method allows for
“inevitable intrinsic risk that cannot be completely hedged away but remains with the holder” (Encyclopedia
of Quantitative Finance, 2010). This thus produces different results for the buyer and seller prospective as
a nonlinear function is used when pricing the option on the buyer and seller side. Here, we will focus on the
buyer. When a utility function is used, this is known as utility indifference pricing.

6.4.1 Utility Indifference Pricing

In order to use a utility function when pricing assets, the notion of a utility function must be formalized.
A utility function measures the value of something (here, money) through the utility it gives the user. A
utility function is an increasing, concave function U that represent the preferences of the investor. Some
popular examples include:

1. xp

p , p ∈ (−∞, 0) or p ∈ (0, 1). This is known as a power utility function.

2. log x. This is the log utility function.

3. −e−αx, α > 0. This is the exponential utility function.

Below is an example of indifference pricing with utility functions using the complete market model from
earlier.

Example 6.6 (Indifference Pricing with Utility Function). Using the complete market model from before,
we can formulate the arbitrage free price as the following optimization problem

max
θ∈R

E[U(x + (K − St)
+ − P0 + θ(ST − 2BT))] = max

θ∈R
E[U(x− P0 + θ(ST − 2BT))]

where U is the utility function. As the model is complete and arbitrage free prices are model independent, we
have that the arbitrage free price remains the same as before. Note that this is from the buyer’s perspective
as we are adding the the value of the payoff function. If we were considering the seller, we would add P0 and
subtract (K − St)

+.

6.4.2 Risk Indifference Pricing

Another indifference pricing technique is known as risk indifference pricing. Instead of a utility function,
a risk measure is used instead. A risk measure is a function that has quantifies the risk of a random variable.
There are two dominant classes of risk measures, which we will outline axiomatically below:

Definition 6.4 (Coherent Risk Measure). A coherent risk measure ρ : L∞(Ω,F ,P)→ R is a function that
obeys the following properties:

(i) Monotonicity: If X ≥ Y almost surely, then ρ(X) ≤ ρ(Y)

(ii) Cash Invariance: If m is a deterministic process (like cash), then ρ(X + m) = ρ(X)−m

(iii) Subadditivity: For two variables X,Y , we have that ρ(X + Y) ≤ ρ(X) + ρ(Y)

(iv) Positive Homogentiy: For λ ≥ 0, we have that ρ(λX) = λρ(X)

Intuitively, normalization means that we have that an holding 0 assets involves 0 risk. Monotonicity
means that if one asset provides better returns than another, then the better performing asset results in less
risk. Cash invariance means that holding cash in an account does not contribute to the risk. Subadditivity
means that holding a diverse portfolio of multiple assets is less risky than a single asset. And positive
homogenity means that risk scales linearly with the holdings of that asset.

39

Example 6.7 (Expected Shortfall (Tangpi, 2022)). The expected shortfall of a random variable is a coherent
risk measure. In finance, this known as the average value at risk. For 0 < α < 1, we have that the expected
shortfall (ES) at α is

ESα(X) = − 1

α

α∫
0

V aRγ(X)dγ.

Where V aR is the value at risk.

Sometimes, using a coherent risk measure is too tight of a definition. Therefore, we relax these definitions
and use convex risk measures instead. Essentially, subadditivity and positive homoegentiy is replaced with
convexity, as done below.

Definition 6.5 (Convex Risk Measure). A convex risk measure ρ : L∞(Ω,F ,P) → R is a function that
obeys the following properties:

(i) Monotonicity: If X ≥ Y almost surely, then ρ(X) ≤ ρ(Y)

(ii) Cash Invariance: If m is a deterministic process (like cash), then ρ(X + m) = ρ(X)−m

(iii) Convexity: For λ ∈ [0, 1], we have that ρ(λX + (1− λ)Y) ≤ λρ(X) + (1− λ)ρ(Y)

Remark 6.4 (Coherent Risk Measures are Convex). Note that convexity is a weaker definition than subad-
ditivity and positive homogenity. Therefore, all coherent risk measures are convex. However, not all convex
risk measures are coherent. For example, the expected maximum drawdown of random variable is a convex
risk measure.

To tie everything together, we will now show that (R)BSDEs are (time consistent) convex risk measures.
But first, we will define another property of time consistency:

Definition 6.6. A risk measure ρt is said to be time consistent if for all s ≤ t ≤ T , we have that if
ρt(X) ≥ ρt(Y) implies that ρs(X) ≥ ρs(Y). Another formulation is that

ρs(ξT) = ρs(−ρt(ξT))

where ξT is the terminal condition of the (R)BSDE.

Theorem 6.2 ((R)BSDEs and risk measures). As a function of the terminal condition, the solution to a
(R)BSDE is a time consistent convex risk measure if f is convex, does not depend on Y , and grows at most
quadratically.

Proof. Let Yt be a BSDE as below

Yt(ξ) = ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

describe a risk measure ρt(ξ) = Yt(ξ). First, note that the zero BSDE is 0, and thus our risk measure ρt is
normalized.

By the comparison principles (see Delong, 2013, Proposition 13.1.2), we have that if ξ ≥ ξ′ almost surely,
we have that Yt(ξ) ≥ Yt(ξ

′), which means that our risk measure ρt(ξ) is monotonic.
For cash invariance, consider the following two BSDEs

Yt(ξ) = ξ +

∫ T

t

f(s, , Zs)ds−
∫ T

t

ZsdWs

and

Y ′
t (ξ′) = ξ′ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

40

We will show that Y ′ = Y −m, where m is deteriminstic. Note that if we set ξ′ = ξ +m, then we have that

Y ′
t (ξ′) = m + ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

Subtracting results in
Y ′
t (ξ′)− Yt(ξ) = −m

which thus means that
Y ′
t (ξ′) = Yt(ξ)−m

Thus, we have that Yt is cash invariant.
The convexity of Yt follows from linearity of integration and the fact that f itself is convex.
To show time consistency, note that

Yt(ξ) = ξ +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

Now, consider another BSDE with terminal condition −Yt

Y ′
t (−Yt(ξ)) = −Yt(ξ) +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

Let s ≤ t. Note that Y ′
s = Ys, as

Y ′
s (ξ) = Ys(ξ)− (+

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs) +

∫ T

t

f(s, Zs)ds−
∫ T

t

ZsdWs

so we have that Y ′
s (ξ) = Ys(ξ) for s ≤ t, which yields time consistency. Therefore, we have that the BSDE

is a convex risk measure.

For a concrete example, we extend the work of Sircar and Sturm (2015) to price American Put Options
under stochastic volatility from the buyer’s and seller’s perspective.
Buyer’s Price First, we will discuss the buyer’s perspective. Under the risk measure ρ that obeys the
properties highlighted above, we have that the risk indifference price is:

ess inf
h∈Ct,τ∗

ρt,τ∗(h)− ess inf
τ∈Tt,T

ess inf
h∈Ct,τ

ρt,τ (h + ξτ) (6.4a)

τ∗ = arg min
τ∈Tt,T

ess inf
h∈Ct,τ

ρt,τ (h + ξτ) (6.4b)

To unpack this formula, note that the second component is represented with a (R)BSDE, while the first
term is a BSDE. The second RBSDE term concerns taking two essential infima: one for the stopping time,
and one for the trading strategy. The inner inf requires that the optimal trading strategy h ∈ Ct,τ is taken.
This strategy involves holding the option from t to τ . The second infimum involves finding the stopping time
τ of the asset. This is when the option should be exercised. Therefore, this is the part of the indifference
price that involves considers buying the option.

The first BSDE concerns never acting on the option, which means that ξ = 0. In the first BSDE term,
τ⋆ is used for the stopping times, as this represents the option being exercised on the second term.

Algorithm 6 Computing the Buyer’s Price, coded in Appendix A

Determine a driver function for the risk measure and stock process dynamics
Train an RBSDE using Algorithm 5 with ξ = (Ke−rt−St)

+ as the boundary and −f(t,Xt, Yt,−Z1,−Z2)
as the driver
Using the same sample paths, determine τ⋆, the first time the trained RBSDE goes below the boundary
Train a BSDE with ξ = 0 using the same sample paths and stopping at τ⋆ on each sample path
Computing the indifference price with Equation (6.4)

41

Seller’s Price The seller’s indifference price is computed through similar means. The equation is given by

ess inf
h∈Cτ

t

ess sup
τ∈Tt,T

ρt,T (h− ξτ)− ess inf
h∈Ct

ρt,T (h) (6.5)

The first term is a RBSDE, while the second term is a BSDE. The set Cτt represents permissible trading
strategies that depend on the realization τ(ω) of the stopping time τ as opposed to the stopping time τ itself.
This differs from Ct, which is the permissible trading strategies over all paths, independent of realization of
τ . The RBSDE term is now reflected against a boundary Lt = ξt + Y0(t), where Y0(t) is the value of the
BSDE term (with ξ = 0) at time 0. Below is an algorithmic outline

Algorithm 7 Computing the Seller’s Indifference Price, code in A

Determine a driver function for the risk measure and stock process dynamics
Train a BSDE using Algorithm 5 with ξ = 0, calling the solution Y0(t)
Compute Lt = (Ke−rt − St)

+ + Y0(t)
Train a RBSDE using Algorithm 5 with ξ = (Ke−rt − St)

+ and the boundary Lt and the driver
f(t,Xt, Yt, Z1, Z2)
Computing the indifference price using Equation 6.5

Numerical Example For a particular example, we utilize the following stochastic volatility model:

dSt = µ(Yt)Stdt + σ(Yt)StdW
1
t (6.6)

Where µ(Yt) = µ, σ(Yt) = .7
π (arctan(Yt − 1) + π

2) + .03. The volatility is

dYt = b(Yt)dt + a(Yt)(ρdW
1
t +

√
1− ρ2dW 2

t) (6.7)

Where b(Yt) = α(m−Yt), a(Yt) = ν
√

2α. The terminal condition of this function is the put payoff (K−St)
+

and the driver is

f(t,Xt, Yt, Z1, Z2) = −Z1

(
µ− r

σ(Yt)

)
− 1

2γ

(
µ− r

σ(Yt)

)2

+
γ

2
Z2
2 + η

(
−(µ− r)

σ(Yt)

)
Z2 (6.8)

There are two Zi processes as this is a two dimensional problem. The first dimension is the stock process and
the second is the volatility process. Numerically, we utilize values found in Table 6.2. Values in parantheses
were used for the seller’s price due to memory constraints of this technique.

Parameter Value Role Parameter Value Role
Batch Size 1000 (500)

Deep Learning

T .25

Stock Model

Epochs 6000 (4000) µ .08
Learning Rate .01 α 5
Time Steps 25 m 0
Initial Price 100 $

Stock Model
ν 1

Initial Volatility 14.97% ρ -0.2
Strikes [70, 115] r 0.02

Table 6.2: Numeric Parameters for Indifference Price Computation

This produces the following smile curve in Figure 6.2.

42

Figure 6.2: Smile curves for the American put option display a bid ask spread

Note that the strike price is given in log moneyness, which is ln(S0

K). We plot against implied volatility,
which measures the volatility implied by the option at that log moneyness value. This is analogous to a log
plot. In Figure 6.2, we have that the seller’s price is always above the buyer’s price. This creates a type of
bid ask spread for the option, as the seller’s implied volatility is above the buyer’s.

43

Bibliography

Mathematical finance, Dec 2022. URL https://en.wikipedia.org/wiki/Mathematical_finance.

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https://www.tensorfl

ow.org/. Software available from tensorflow.org.

Laith Alzubaidi, Jinglan Zhang, Amjad J. Humaidi, Ayad Al-dujaili, Ye Duan, Omran Al-Shamma, Jesus
Santamaŕıa, Mohammed Abdulraheem Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
learning: concepts, cnn architectures, challenges, applications, future directions. Journal of Big Data, 8,
2021.

Louis Bachelier. Théorie de la spéculation. Annales scientifiques de l’École Normale Supérieure, 3e série,
17:21–86, 1900. doi: 10.24033/asens.476.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. J. Polit. Econ., 81(3):
637–654, 1973. ISSN 0022-3808. doi: 10.1086/260062.

Catherine Jean Bonner and Jeremiah Campanelli. Arbitrage-free pricing of xva for options in discrete time,
2016.

Ovidiu Calin. Deep learning architectures—a mathematical approach. Springer Series in the Data Sciences.
Springer, Cham, 2020. doi: 10.1007/978-3-030-36721-3.

René Carmona, editor. Indifference pricing. Princeton Series in Financial Engineering. Princeton University
Press, Princeton, NJ, 2009. Theory and applications.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems, 2
(4):303–314, 1989. ISSN 0932-4194. doi: 10.1007/BF02551274.

Freddy Delbaen and Walter Schachermayer. The mathematics of arbitrage. Springer Finance. Springer-
Verlag, Berlin, 2006.

 Lukasz Delong. Backward stochastic differential equations with jumps and their actuarial and financial
applications. European Actuarial Academy (EAA) Series. Springer, London, 2013. doi: 10.1007/978-1-4
471-5331-3. BSDEs with jumps.

Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine learning in finance—from theory to practice.
Springer, Cham, 2020. doi: 10.1007/978-3-030-41068-1.

Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communications
in Mathematics and Statistics, 5(4):349–380, nov 2017. doi: 10.1007/s40304-017-0117-6.

44

https://en.wikipedia.org/wiki/Mathematical_finance
https://www.tensorflow.org/
https://www.tensorflow.org/

Albert Einstein. Investigations on the theory of the Brownian movement. Dover Publications, New York,
1956 - 1926.

N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng, and M. C. Quenez. Reflected solutions of backward
SDEs, and related obstacle problems for PDEs. The Annals of Probability, 25(2):702–737, 1997. ISSN
00911798.

Encyclopedia of Quantitative Finance. Encyclopedia of Quantitative Finance. John Wiley & Sons Ltd, 2010.

Hans Föllmer and Alexander Schied. Stochastic finance. De Gruyter Graduate. De Gruyter, Berlin, 2016.
doi: 10.1515/9783110463453. An introduction in discrete time, Fourth revised and extended edition of [
MR1925197].

Chengfan Gao, Siping Gao, Ruimeng Hu, and Zimu Zhu. Convergence of the backward deep bsde method
with applications to optimal stopping problems, 2022.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http://www.deep

learningbook.org.

Adam Hayes. Stocks: What they are, main types, how they differ from bonds, Jan 2023. URL https:

//www.investopedia.com/terms/s/stock.asp.

Côme Huré, Huyên Pham, and Xavier Warin. Some machine learning schemes for high-dimensional nonlinear
pdes. arXiv preprint arXiv:1902.01599, 33, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Thomas Mikosch. Elementary stochastic calculus—with finance in view, volume 6 of Advanced Series on
Statistical Science & Applied Probability. World Scientific Publishing Co., Inc., River Edge, NJ, 1998. doi:
10.1142/9789812386335.

Elisa Negrini. Robust Deep Learning Algorithms for System Identification. PhD thesis, Worcester Polytechnic
Institute, April 2022. URL https://digital.wpi.edu/concern/etds/pv63g3374.

Bernt Øksendal. Stochastic differential equations. Universitext. Springer-Verlag, Berlin, sixth edition, 2003.
doi: 10.1007/978-3-642-14394-6. An introduction with applications.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. URL
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-dee

p-learning-library.pdf.

Philip E. Protter. Stochastic integration and differential equations, volume 21 of Stochastic Modelling and
Applied Probability. Springer-Verlag, Berlin, 2005. doi: 10.1007/978-3-662-10061-5. Second edition.
Version 2.1, Corrected third printing.

Steven E. Shreve. Stochastic calculus for finance. II. Springer Finance. Springer-Verlag, New York, 2004.
Continuous-time models.

Ronnie Sircar and Stephan Sturm. From smile asymptotics to market risk measures. Mathematical Finance,
25(2):400–425, 2015. doi: https://doi.org/10.1111/mafi.12015.

Ludovic Tangpi. Lecture notes on quantitative risk management, August 2022.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA, 2009.

Norbert Wiener. Norbert Wiener: Collected works. MIT Press, 1976.

45

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.investopedia.com/terms/s/stock.asp
https://www.investopedia.com/terms/s/stock.asp
https://digital.wpi.edu/concern/etds/pv63g3374
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Appendix A

Python Code

A.1 American Option under Black Scholes

necessary import statements for the solver

import torch

import torch.nn as nn

import numpy as np

import torch.nn.functional as F

import matplotlib.pyplot as plt

from torch.autograd import Variable

import numpy as np

parameters

batchSize = 1000

numEpochs = 6001

learningRate = .008

timeSteps = 10 # number of discretized time steps of the forward process

T = 1/12 # total time period in years

dt = T / timeSteps # distance

print(’dt = ’, dt, ’sqrt dt = ’, dt ** .5)

initialPrice = 95 # initial stock price

r = .02 # risk free rate

mu = .08 # mean of the stock process

sigma = .20 # volatility

K = 98 # strike price

Functions

forward path to get sample data

def getSample(seed):

torch.manual_seed(seed)

X = torch.ones(batchSize , timeSteps) * initialPrice

dW = torch.normal(0, torch.sqrt(torch.tensor(dt)), size = (batchSize , timeSteps))

for i in range(timeSteps -1):

X[:, i+1] = X[:,i] + mu * X[:,i]*dt + sigma * X[:,i]*dW[:,i]

return X.clone().detach (), dW.clone().detach ()

payoff function / terminal / boundary condition

def fun_g(t, X, K):

return torch.maximum(K - X, torch.tensor(0))

driver function

def fun_f(y):

return -1 * r * y

46

model initialization

models = {}

params = list()

torch.manual_seed(0)

for i in range(timeSteps -1, -1, -1):

models[i] = nn.Sequential(nn.LayerNorm(batchSize), nn.Linear(batchSize , 11) ,nn.ReLU(),

nn.ReLU(), nn.Linear(11 , batchSize)) # ,

nn. LayerNorm(batchSize)

print(models[i])

params += list(models[i].parameters ())

optimizer = torch.optim.Adam(params , lr=learningRate)

network training

for epoch in range(0, numEpochs):

print(’epoch = ’, epoch , ’\n--------’)

optimizer.zero_grad ()

X, dW = getSample(epoch) #

previousNetworkResults = fun_g(timeSteps , X[:,timeSteps - 1], K)

print(previousNetworkResults)

for timeStep in range(timeSteps -1, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(previousNetworkResults) *

torch.tensor(dt) - modelResults * dW[:

,timeStep]

currentNetworkResults = torch.maximum(fun_g(timeStep , X[:,timeStep], K),

currentNetworkResults)

previousNetworkResults = currentNetworkResults

if epoch % 500 == 0:

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(

currentNetworkResults).item(),3))

’| currentResults = ’,

currentNetworkResults [:3],

mean = torch.mean(currentNetworkResults) * torch.ones(batchSize)

loss = torch.var(currentNetworkResults)

loss.backward ()

clip_value = 5

torch.nn.utils.clip_grad_norm_(params , clip_value)

optimizer.step()

if epoch % 500 == 0:

print(’epoch = ’,epoch , ’| loss: ’, round(loss.item(),4))

print(’================================== ’)

network testing

testSize = 500

testResults = torch.empty(testSize , timeSteps)

for i in range(testSize):

X, dW = getSample(-1 * i) #

previousNetworkResults = fun_g(timeSteps , X[:,timeSteps - 1], K)

print(previousNetworkResults)

pathMean = torch.empty(timeSteps)

pathMean[timeSteps -1] = torch.mean(previousNetworkResults)

for timeStep in range(timeSteps -1, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(previousNetworkResults) -

modelResults * dW[:,timeStep]

currentNetworkResults = torch.maximum(fun_g(timeStep , X[:,timeStep], K),

currentNetworkResults)

previousNetworkResults = currentNetworkResults

47

pathMean[timeStep] = torch.mean(currentNetworkResults)

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(currentNetworkResults

).item (),3))

testResults[i, :] = pathMean

test results

for timeStep in range(timeSteps):

print(’time = ’, timeStep , ’| price = ’,torch.mean(testResults[:, timeStep]).item())

A.2 American Put from Buyer’s Perspective under Stochastic Volatil-
ity

import torch

import torch.nn as nn

import numpy as np

import torch.nn.functional as F

import matplotlib.pyplot as plt

from torch.autograd import Variable

import numpy as np

from scipy.stats import norm

import inspect

print(’American Put , Buyer , less detailed , trying SGD’)

batchSize = 1000# 1000

numEpochs = 6001 # 4001

learningRate = .01 # .04

print(’batchSize = ’, batchSize)

print(’NumEpochs = ’, numEpochs)

print(’Learning Rate = ’, learningRate)

[0,1,2,3,4,5,6,7,8,9]

initialPrice = 100

print(’initial price = ’, initialPrice)

initialVol = .149793 # .3

print(’initial Vol = ’, initialVol)

mu = 0.08 #.4

print(’mu = ’, mu)

alpha = 5

print(’alpha = ’, alpha)

m = 0

print(’m = ’, m)

nu = 1

print(’nu = ’, nu)

a = nu * torch.sqrt(torch.tensor(2 * alpha))

print(’nu * sqrt(2 alpha) = ’, a)

rho = -.2

print(’rho = ’, rho)

gamma = 1

print(’gamma = ’, gamma)

eta = .2

print(’eta = ’, eta)

timeSteps = 25 # 10

print(’Total number of time steps = ’, timeSteps)

r = .02 # 0.05

print(’risk free rate r = ’, r)

T = 1/4

print(’T = ’, T)

dt = T / timeSteps

print(’dt = ’, dt)

strikes = [70 ,75,80 ,85,90,95 ,100 ,105 ,110 ,115]

strikes = [i for i in range(70 ,116 ,2)]

print(’strikes = ’, strikes)

print(’logMoney = ’, np.array(strikes) / initialPrice)

for loop here

ivValues = []

48

print(’-------------Beginning computation -----------------’)

def getSample(seed):

torch.manual_seed(seed)

dW = torch.randn(batchSize ,2,timeSteps) * torch.sqrt(torch.tensor(dt))

X = torch.ones(batchSize ,2, timeSteps)

X[:,:,0] = X[:,:,0] * torch.tensor([initialPrice , initialVol])

for i in range(timeSteps -1):

stockTerm1 = mu * X[:,0,i] * dt

stockTerm2 = (.7 / (np.pi) * (torch.atan(X[:,1,i] - 1) + np.pi/2) + .03) * X[:,0, i]

* dW[:,0,i] # sigma(Y_t)

stockTerm3 = -r * X[:,0,i] * dt

X[:,0, i+1] = X[:,0, i] + stockTerm1 + stockTerm2 + stockTerm3

volTerm1 = alpha * (m - X[:,1,i]) * dt

volTerm2 = a * (rho *dW[:,0,i] + np.sqrt(1 - rho ** 2)* dW[:,1,i])

X[:,1, i+1] = X[:,1, i] + volTerm1 + volTerm2

return X.clone().detach (), dW.clone().detach ()

lines = inspect.getsource(getSample)

print(’getSample Function ’)

print(lines)

X, dW = getSample(0)

print(’sample path = ’, X[0,:,:])

print(’sample brownian motion = ’, dW[0 ,: ,:])

print(’sample BM mean: ’, torch.mean(dW), ’| variance: ’, torch.var(dW))

def fun_g(t,X, return0 , K):

print(X.shape)

if return0 == True:

return torch.tensor(0)

elif return0 == False:

return torch.maximum(K * torch.exp(torch.tensor(-r * (t/timeSteps) * T)) - X[:,0,t],

torch.tensor(0))

print(’terminal condition: ’)

lines = inspect.getsource(fun_g)

print(lines)

def fun_f(X, t, z1, z2):

sigma = (.7 / (np.pi) * (torch.atan(X[:,1,t] - 1) + np.pi/2) + .03)

term1 = -1 * z1 * ((mu - r) / sigma)

term2 = -1 * (1/(2 * gamma) * ((mu - r) / sigma) **2)

term3 = (gamma / 2) * z2 ** 2

term4 = -1 * eta * ((mu - r) / sigma) * z2

regular = term1 + term2 + term3 + term4

return regular

print(’driver function g hat’)

lines = inspect.getsource(fun_f)

print(lines)

def d1(sigma , t, T, S, K, r):

frac = 1 / (sigma * np.sqrt(T - t))

secondfactor = np.log(S / K) + (r + ((sigma ** 2) / 2)) * (T - t)

return frac * secondfactor

def d2(sigma , t, T, S, K, r):

return d1(sigma , t, T, S, K, r) - (sigma * np.sqrt(T - t))

def put_price(sigma , t, T, S, K, r):

return (norm.cdf(-d2(sigma , t, T, S, K, r)) * K * np.exp(-r * (T - t))) - (norm.cdf(-d1(

sigma , t, T, S, K, r)) * S)

def call_price(sigma , t, T, S, K, r):

return S*norm.cdf(d1(sigma , t, T, S, K,r)) - K*np.exp(-r*(T - t)*norm.cdf(d2(sigma , t, T

, S, K, r)))

def implied_vol(price , t, T, S, K, r):

sigma1 = 0.1

sigma2 = 0.7

value1 = put_price(sigma1 , t, T, S, K, r) - price

49

value2 = put_price(sigma2 , t, T, S, K, r) - price

while value1 * value2 > 0:

sigma1 = sigma1 - 0.01

sigma2 = sigma2 + 0.01

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

i = 0

while True:

i = i + 1

if value1 * value2 == 0:

if value1 == 0:

imp_vol = sigma1 #print(’implied volatility =’, sigma1)

elif value2 == 0:

imp_vol = sigma2 #print(’implied volatility =’, sigma2)

break

elif value1 * value2 < 0:

midpoint = (sigma1 + sigma2) / 2

if (put_price(midpoint , t, T, S, K, r) - price) * value1 < 0:

sigma1 = sigma1

sigma2 = midpoint

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

elif (put_price(midpoint , t, T, S, K, r) - price) * value2 < 0:

sigma1 = midpoint

sigma2 = sigma2

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

if abs(sigma1 - sigma2) < 0.000001:

imp_vol = sigma2

break

return imp_vol

def trainWithPayoff ():

models = {}

params = list()

torch.manual_seed(0)

for i in range(timeSteps -1, -1, -1): # nn. LayerNorm(batchSize),

models[i] = nn.Sequential(nn.LayerNorm ((batchSize , 2)), nn.Linear(2, 12) ,nn.ReLU(),

nn.ReLU(), nn.Linear(12 , 2))

params += list(models[i].parameters ())

optimizer = torch.optim.SGD(params , lr=learningRate)

criterion = nn.MSELoss ()

return0Condition = False

for epoch in range(0, numEpochs):

optimizer.zero_grad ()

X, dW = getSample(epoch)

previousNetworkResults = fun_g(timeSteps-1, X, return0Condition , K)

if epoch % 500 == 0:

print(’timestep = ’, timeSteps-1, ’| mean = ’, round(torch.mean(

previousNetworkResults).item()

,3))

for timeStep in range(timeSteps -2, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults - fun_f(X, timeStep , -1 *

modelResults[:,0], -1 *

modelResults[:,1])* torch.tensor(

dt) - torch.diag(torch.inner(

modelResults , dW[:,:,timeStep]))

50

currentNetworkResults = torch.maximum(fun_g(timeStep , X, return0Condition , K),

currentNetworkResults)

previousNetworkResults = currentNetworkResults

if epoch % 500 == 0:

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(

currentNetworkResults).item(),

3)) # ’| currentResults = ’,

currentNetworkResults [:3],

loss = torch.var(currentNetworkResults)

loss.backward ()

clip_value = 5

torch.nn.utils.clip_grad_norm_(params , clip_value)

optimizer.step()

if epoch % 500 == 0:

print(’epoch = ’,epoch , ’| loss: ’, round(loss.item(),4))

print(’================================== ’)

return currentNetworkResults , models

lines = inspect.getsource(trainWithPayoff)

print(’train with payoff ’)

print(lines)

def computeBoundary(models):

boundaries = torch.empty((numEpochs , batchSize , timeSteps)) # boundary is only concerned

with the stock process

paths = torch.empty((numEpochs , batchSize , timeSteps))

tauStars = torch.ones((numEpochs , batchSize)) # just need the tau value

return0Condition = False

for epoch in range(0, numEpochs):

X, dW = getSample(epoch)

stockPath = X[:,0,:]

boundary = torch.maximum(K* torch.exp(torch.tensor ((-r / timeSteps)*T) * torch.

Tensor([i for i in range(timeSteps)]))

- stockPath , torch.tensor(0))

boundaries[epoch ,:,:] = boundary.clone().detach () # store the boundary

path = torch.empty((batchSize , timeSteps))

path[:,timeSteps - 1] = boundary[:,timeSteps - 1]

previousNetworkResults = boundary[:,timeSteps - 1]

for timeStep in range(timeSteps -2, -1, -1):

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults - fun_f(X, timeStep , -1 *

modelResults[:,0], -1 *

modelResults[:,1])* torch.tensor(

dt) - torch.diag(torch.inner(

modelResults , dW[:,:,timeStep]))

currentNetworkResults = torch.maximum(fun_g(timeStep , X, return0Condition , K),

currentNetworkResults)

previousNetworkResults = currentNetworkResults

path[:, timeStep] = currentNetworkResults

paths[epoch ,:,:] = path.clone().detach ()

belowBoundary = (path <= boundary).clone().detach ()

belowBoundary = belowBoundary.long().clone ().detach ()

tauStar = torch.where(belowBoundary.any(axis=1), belowBoundary.argmax(axis=1),

timeSteps-1).long() # was argmax

tauStars[epoch ,:] = tauStar.long().clone ().detach ()

if epoch % 500 == 0:

print(’epoch = ’, epoch)

return tauStars

lines = inspect.getsource(computeBoundary)

51

print(’compute boundary function ’)

print(lines)

def trainWithZero(tauStars):

models = {}

params = list()

torch.manual_seed(0)

for i in range(timeSteps -1, -1, -1): # nn. LayerNorm(batchSize),

models[i] = nn. Sequential (nn.Flatten(0),nn.LayerNorm (batchSize * 2) , nn.Linear(

batchSize * 2, 11) ,nn.ReLU (), nn.

ReLU (), nn.Linear(11 , batchSize * 2),

nn. Unflatten(0, (batchSize , 2))) # ,

nn. LayerNorm(batchSize)

models[i] = nn.Sequential(nn.LayerNorm ((batchSize , 2)), nn.Linear(2, 12) ,nn.ReLU(),

nn.ReLU(),nn.ReLU(), nn.Linear(12 , 2

))

params += list(models[i].parameters ())

optimizer = torch.optim.SGD(params , lr=learningRate)

criterion = nn.MSELoss ()

return0Condition = True

for epoch in range(0, numEpochs):

optimizer.zero_grad ()

X, dW = getSample(epoch)

previousNetworkResults = fun_g(timeSteps-1, X, return0Condition , K)

print(previousNetworkResults)

if epoch % 500 == 0:

print(’timestep = ’, timeSteps-1, ’| mean = ’, 0)

path = torch.empty((batchSize , timeSteps))

path[:,timeSteps - 1] = torch.tensor(0)

for timeStep in range(timeSteps -2, -1, -1):

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(X, timeStep , modelResults

[:,0], modelResults[:,1])* torch.

tensor(dt) - torch.diag(torch.

inner(modelResults , dW[:,:,

timeStep]))

previousNetworkResults = currentNetworkResults

path[:, timeStep] = currentNetworkResults

if epoch % 500 == 0:

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(

currentNetworkResults).item(),

8)) # ’| currentResults = ’,

currentNetworkResults [:3],

currentNetworkResults = path[:,tauStars[epoch ,:].long()]

from # https :// discuss.pytorch.org/t/get -the -value -at -a-specific -index -in -pytorch/

134097

loss = torch.var(currentNetworkResults)

loss.backward ()

clip_value = 5

torch.nn.utils.clip_grad_norm_(params , clip_value)

optimizer.step()

if epoch % 500 == 0:

print(’epoch = ’,epoch , ’| loss: ’, round(loss.item(),4))

print(’================================== ’)

return currentNetworkResults

lines = inspect.getsource(trainWithZero)

print(’train with zero function ’)

print(lines)

print(’============== COMPUTATION ============== ’)

52

for K in strikes:

print(’strike = ’, K)

payoffPrice , models = trainWithPayoff ()

payoffPrice = torch.mean(payoffPrice).item()

print(’payoffPrice = ’, payoffPrice)

print(’Computing TauStar ’)

tauStars = computeBoundary(models)

zeroConditionPrice = trainWithZero(tauStars)

zeroConditionPrice = torch.mean(zeroConditionPrice).item()

print(’return 0 bsde value = ’, zeroConditionPrice)

ivVal = implied_vol(payoffPrice + zeroConditionPrice , 0, T, 100 ,K, r)

print(’indifference price: ’, payoffPrice + zeroConditionPrice)

print(’ivVal = ’, ivVal)

ivValues.append(ivVal)

print(’-- \n \n \n’)

print(’all the Ivs: ’, ivValues)

A.3 American Put from the Seller’s Perspective

import torch

import torch.nn as nn

import numpy as np

import torch.nn.functional as F

import matplotlib.pyplot as plt

from torch.autograd import Variable

import numpy as np

from scipy.stats import norm

import inspect

print(’American Put: Sellers , SGD optimizer ’)

batchSize = 500# 1000

numEpochs = 4001 # 4001

learningRate = .01 # .01

print(’batchSize = ’, batchSize)

print(’NumEpochs = ’, numEpochs)

print(’Learning Rate = ’, learningRate)

initialPrice = 100

print(’initial price = ’, initialPrice)

initialVol = .149793 # .3

print(’initial Vol = ’, initialVol)

mu = .08 # .04

print(’mu = ’, mu)

alpha = 5

print(’alpha = ’, alpha)

m = 0

print(’m = ’, m)

nu = 1

print(’nu = ’, nu)

a = nu * torch.sqrt(torch.tensor(2 * alpha))

print(’nu * sqrt(2 alpha) = ’, a)

rho = -.2

print(’rho = ’, rho)

gamma = 1

print(’gamma = ’, gamma)

eta = .2

print(’eta = ’, eta)

timeSteps = 25 # 10

print(’Total number of time steps = ’, timeSteps)

r = 0.02 # 0.05

print(’risk free rate r = ’, r)

T = 1/4

print(’T = ’, T)

dt = T / timeSteps

print(’dt = ’, dt)

strikes = [70 ,75,80 ,85,90,95 ,100 ,105 ,110 ,115]

53

strikes = [i for i in range(70 ,116 ,2)]

print(’strikes = ’, strikes)

print(’logMoney = ’, np.array(strikes) / initialPrice)

for loop here

ivValues = []

print(’-------------Beginning computation -----------------’)

def getSample(seed):

torch.manual_seed(seed)

dW = torch.randn(batchSize ,2,timeSteps) * torch.sqrt(torch.tensor(dt))

X = torch.ones(batchSize ,2, timeSteps)

X[:,:,0] = X[:,:,0] * torch.tensor([initialPrice , initialVol])

for i in range(timeSteps -1):

stockTerm1 = mu * X[:,0,i] * dt

stockTerm2 = (.7 / (np.pi) * (torch.atan(X[:,1,i] - 1) + np.pi/2) + .03) * X[:,0, i]

* dW[:,0,i] # sigma(Y_t)

stockTerm3 = -r * X[:,0,i] * dt

X[:,0, i+1] = X[:,0, i] + stockTerm1 + stockTerm2 + stockTerm3

volTerm1 = alpha * (m - X[:,1,i]) * dt

volTerm2 = a * (rho *dW[:,0,i] + np.sqrt(1 - rho ** 2)* dW[:,1,i])

X[:,1, i+1] = X[:,1, i] + volTerm1 + volTerm2

return X.clone().detach (), dW.clone().detach ()

lines = inspect.getsource(getSample)

print(’getSample Function ’)

print(lines)

X, dW = getSample(0)

print(’sample path = ’, X[0,:,:])

print(’sample brownian motion = ’, dW[0 ,: ,:])

print(’sample BM mean: ’, torch.mean(dW), ’| variance: ’, torch.var(dW))

def fun_g(t,X, return0 , K):

print(X.shape)

if return0 == True:

return torch.tensor(0,dtype=torch.float64)

elif return0 == False:

return torch.maximum(K * torch.exp(torch.tensor(-r * (t/timeSteps) * T)) - X[:,0,t],

torch.tensor(0))

print(’terminal condition: ’)

lines = inspect.getsource(fun_g)

print(lines)

def fun_f(X, t, z1, z2):

sigma = (.7 / (np.pi) * (torch.atan(X[:,1,t] - 1) + np.pi/2) + .03)

term1 = -1 * z1 * ((mu - r) / sigma)

term2 = -1 * (1/(2 * gamma) * ((mu - r) / sigma) **2)

term3 = (gamma / 2) * z2 ** 2

term4 = -1 * eta * ((mu - r) / sigma) * z2

regular = term1 + term2 + term3 + term4

return regular

print(’driver function g hat’)

lines = inspect.getsource(fun_f)

print(lines)

def d1(sigma , t, T, S, K, r):

frac = 1 / (sigma * np.sqrt(T - t))

secondfactor = np.log(S / K) + (r + ((sigma ** 2) / 2)) * (T - t)

return frac * secondfactor

def d2(sigma , t, T, S, K, r):

return d1(sigma , t, T, S, K, r) - (sigma * np.sqrt(T - t))

def put_price(sigma , t, T, S, K, r):

return (norm.cdf(-d2(sigma , t, T, S, K, r)) * K * np.exp(-r * (T - t))) - (norm.cdf(-d1(

sigma , t, T, S, K, r)) * S)

def call_price(sigma , t, T, S, K, r):

return S*norm.cdf(d1(sigma , t, T, S, K,r)) - K*np.exp(-r*(T - t)*norm.cdf(d2(sigma , t, T

, S, K, r)))

54

def implied_vol(price , t, T, S, K, r):

sigma1 = 0.1

sigma2 = 0.7

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

while value1 * value2 > 0:

sigma1 = sigma1 - 0.01

sigma2 = sigma2 + 0.01

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

i = 0

while True:

i = i + 1

if value1 * value2 == 0:

if value1 == 0:

imp_vol = sigma1 #print(’implied volatility =’, sigma1)

elif value2 == 0:

imp_vol = sigma2 #print(’implied volatility =’, sigma2)

break

elif value1 * value2 < 0:

midpoint = (sigma1 + sigma2) / 2

if (put_price(midpoint , t, T, S, K, r) - price) * value1 < 0:

sigma1 = sigma1

sigma2 = midpoint

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

elif (put_price(midpoint , t, T, S, K, r) - price) * value2 < 0:

sigma1 = midpoint

sigma2 = sigma2

value1 = put_price(sigma1 , t, T, S, K, r) - price

value2 = put_price(sigma2 , t, T, S, K, r) - price

if abs(sigma1 - sigma2) < 0.000001:

imp_vol = sigma2

break

return imp_vol

def trainWithZero ():

models = {}

params = list()

torch.manual_seed(0)

for i in range(timeSteps -1, -1, -1): # nn. LayerNorm(batchSize),

models[i] = nn.Sequential(nn.LayerNorm ((batchSize , 2)), nn.Linear(2, 12) ,nn.ReLU(),

nn.ReLU(), nn.Linear(12 , 2))

params += list(models[i].parameters ())

optimizer = torch.optim.SGD(params , lr=learningRate)

return0Condition = True

for epoch in range(0, numEpochs):

optimizer.zero_grad ()

X, dW = getSample(epoch)

previousNetworkResults = fun_g(timeSteps-1, X, return0Condition , K)

if epoch % 500 == 0:

print(’timestep = ’, timeSteps-1, ’| mean = ’, round(torch.mean(

previousNetworkResults).item()

,3))

for timeStep in range(timeSteps -2, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(X, timeStep , modelResults

[:,0], modelResults[:,1])* torch.

tensor(dt) - torch.diag(torch.

inner(modelResults , dW[:,:,

55

timeStep]))

previousNetworkResults = currentNetworkResults

if epoch % 500 == 0:

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(

currentNetworkResults).item(),

3))

loss = torch.var(currentNetworkResults)

loss.backward ()

clip_value = 5

torch.nn.utils.clip_grad_norm_(params , clip_value)

optimizer.step()

if epoch % 500 == 0:

print(’epoch = ’,epoch , ’| loss: ’, round(loss.item(),4))

print(’================================== ’)

return currentNetworkResults , models

lines = inspect.getsource(trainWithZero)

print(’train with 0 terminal condition ’)

print(lines)

def computeBoundary(models):

L = torch.empty([numEpochs , batchSize , timeSteps])

for epoch in range(numEpochs):

X, dW = getSample(epoch)

previousNetworkResults = fun_g(timeSteps-1, X, True , K)

for timeStep in range(timeSteps -2, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(X, timeStep , modelResults

[:,0], modelResults[:,1])* torch.

tensor(dt) - torch.diag(torch.

inner(modelResults , dW[:,:,

timeStep]))

previousNetworkResults = currentNetworkResults

L[epoch ,:,timeStep] = currentNetworkResults + fun_g(timeStep , X, False , K)

if epoch % 500 == 0:

print(’epoch = ’, epoch)

L = L.clone ().detach ()

return L

lines = inspect.getsource(computeBoundary)

print(’compute boundary function ’)

print(lines)

def trainWithPayoff(L):

models = {}

params = list()

torch.manual_seed(0)

for i in range(timeSteps -1, -1, -1): # nn. LayerNorm(batchSize),

models[i] = nn.Sequential(nn.LayerNorm ((batchSize , 2)), nn.Linear(2, 12) ,nn.ReLU(),

nn.ReLU(), nn.Linear(12 , 2))

params += list(models[i].parameters ())

optimizer = torch.optim.SGD(params , lr=learningRate)

return0Condition = False

for epoch in range(0, numEpochs):

optimizer.zero_grad ()

X, dW = getSample(epoch)

previousNetworkResults = fun_g(timeSteps-1, X, return0Condition , K)

if epoch % 500 == 0:

print(’timestep = ’, timeSteps-1, ’| mean = ’, round(torch.mean(

previousNetworkResults).item()

,3))

56

for timeStep in range(timeSteps -2, -1, -1):

print(’timeStep =’, timeStep)

modelResults = models[timeStep](X[:,:,timeStep])

currentNetworkResults = previousNetworkResults + fun_f(X, timeStep , modelResults

[:,0], modelResults[:,1])* torch.

tensor(dt) - torch.diag(torch.

inner(modelResults , dW[:,:,

timeStep]))

currentNetworkResults = torch.maximum(L[epoch ,:,timeStep], currentNetworkResults

)

previousNetworkResults = currentNetworkResults

if epoch % 500 == 0:

print(’timestep = ’, timeStep , ’| mean = ’, round(torch.mean(

currentNetworkResults).item(),

3)) # ’| currentResults = ’,

currentNetworkResults [:3],

loss = torch.var(currentNetworkResults)

loss.backward ()

clip_value = 5

torch.nn.utils.clip_grad_norm_(params , clip_value)

optimizer.step()

if epoch % 500 == 0:

print(’epoch = ’,epoch , ’| loss: ’, round(loss.item(),4))

print(’================================== ’)

return currentNetworkResults

lines = inspect.getsource(trainWithPayoff)

print(’train with payoff ’)

print(lines)

print(’============== COMPUTATION ============== ’)

for K in strikes:

print(’Strike = ’, K)

print(’Computing the Return 0 BSDE’)

zeroConditionPrice , models = trainWithZero ()

zeroConditionPrice = torch.mean(zeroConditionPrice).item()

print(’zeroConditionPrice = ’, zeroConditionPrice)

L = computeBoundary(models)

print(’Computing the Boundary ’)

print(’Boundary Computed ’)

print(’============ Computing the RBSDE ============ ’)

payoffPrice = trainWithPayoff(L)

payoffPrice = torch.mean(payoffPrice).item()

print(’rbsde done’)

print(’payoffPrice = ’, payoffPrice)

print(’Indifference Price , Seller: ’, payoffPrice - zeroConditionPrice)

print(’implied vol: ’, implied_vol(payoffPrice - zeroConditionPrice , 0, T, 100 , K, r))

ivValues.append(implied_vol(payoffPrice - zeroConditionPrice , 0, T, 100 , K, r))

print(’iv Values = ’, ivValues)

57

	Abstract
	Acknowledgements
	List of Tables
	List of Algorithms
	List of Figures
	Introduction
	Stochastic Calculus
	Probability Spaces
	Stochastic Processes
	Conditional Expectation
	Filtration
	Martingales
	Brownian Motion
	The Itô Integral and Itô's Lemma
	(Forward) Stochastic Differential Equations
	The Feynman-Kac Formula
	Important Classes of Random Variables
	Further Reading

	Backwards Stochastic Differential Equations (BSDE)
	Introduction
	Theoretical Properties
	Existence and Uniqueness With 0 Generator
	BSDEs with More Complex Generators

	Dynamic Entropic Risk Measures
	The Nonlinear Feynman-Kac Formula

	Reflected Backwards Stochastic Differential Equations
	BSDEs with Constraints
	A BSDE Approximation of the RBSDE

	Numerical Implementation of (R)BSDEs
	Introduction
	Neural Networks as Functional Approximators
	Designing Feed Forward Neural Networks

	Deep BSDE Solver
	Dynamic Programming Approach to (R)BSDE Approximation
	Gao et al. RBSDE Solver

	Modeling Stock Options with BSDEs and Neural Networks
	Financial Background
	Complete Financial Markets
	Incomplete Financial Markets
	Indifference Pricing
	Utility Indifference Pricing
	Risk Indifference Pricing

	Python Code
	American Option under Black Scholes
	American Put from Buyer's Perspective under Stochastic Volatility
	American Put from the Seller's Perspective

