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ABSTRACT
New results in the multiscale analysis on perforated domains

and applications

DANIEL ONOFREI

Multiscale phenomena implicitly appear in every physical model. The under-
standing of the general behavior of a given model at different scales and how one can
correlate the behavior at two different scales is essential and can offer new important
information. This thesis describes a series of new techniques and results in the analy-
sis of multi-scale phenomena arising in PDEs on variable geometries. In the Second
Chapter of the thesis, we present a series of new error estimate results for the peri-
odic homogenization with nonsmooth coefficients. For the case of smooth coefficients,
with the help of boundary layer correctors, error estimates results have been obtained
by several authors (Oleinik, Lions, Vogelius, Allaire, Sarkis). Our results answer an
open problem in the case of nonsmooth coefficients. Chapter 3 is focused on the
homogenization of linear elliptic problems with variable nonsmooth coefficients and
variable domains. Based on the periodic unfolding method proposed by Cioranescu,
Damlamian and Griso in 2002, we propose a new technique for homogenization in
perforated domains. With this new technique classical results are rediscovered in a
new light and a series of new results are obtained. Also, among other advantages,
the method helps one prove better corrector results. Chapter 4 is dedicated to the
study of the limit behavior of a class of Steklov-type spectral problems on the Neu-
mann sieve. This is equivalent with the limit analysis for the DtN-map spectrum on
the sieve and has applications in the stability analysis of the earthquake nucleation
phase model studied in Chapter 5. In Chapter 5, a Γ-convergence result for a class of
contact problems with a slip-weakening friction law, is described. These problems are
associated with the modeling of the nucleation phase in earthquakes. Through the
Γ-limit we obtain an homogenous friction law as a good approximation for the local
friction law and this helps us better understand the global behavior of the model,
making use of the micro-scale information. As to our best knowledge, this is the first
result proposing a homogenous friction law for this earthquake nucleation model.
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Chapter 1

Introduction

In this Chapter we will briefly introduce the main results presented in the thesis. In
each case, we will first describe the problem and its importance for the mathematical
community, commenting on the mathematical impact and the applications of our
results.

In Chapter 2, inspired by the work of Griso [41] and Vogelius and Moskow [59],
using suitable boundary layer correctors, we attempt to answer the open question of
finding error estimates for the homogenization of elliptic problems with nonsmooth
coefficients. We develop a new method which can be generalized to other linear or
nonlinear elliptic problems in a divergence form on fixed or variable geometries.

As an example, we consider the classical problem of homogenization, i.e.,

{
−∇ · (A(

x

ε
)∇uε(x)) = f in Ω

uε = 0 on ∂Ω
(1.0.1)

where A ∈ L∞(Y )N×N is symmetric and Y -periodic, Y =]0, 1[N , Ω ∈ RN , smooth
convex bounded domain, c|ξ|2 ≤ Aij(y)ξiξj ≤ C|ξ|2 ∀ξ ∈ RN . It is well known that
(see [11], [8], [73], [51]),

uε ⇀ u0 in H1(Ω) (1.0.2)

and u0 verifies { −∇ · (Ahom∇u0(x)) = f in Ω
u0 = 0 on ∂Ω

(1.0.3)

with Ahom
ij = MY (Aij(y) + Aik(y)

∂χj

∂yk

) where MY (·) =
1

|Y |
∫

Y

·dy and χj ∈ Wper(Y )

are the solutions of the local problem

−∇y · (A(y)(∇χj + ej)) = 0 (1.0.4)

and
Wper(Y ) = {χ ∈ H1

per(Y )|MY (χ) = 0}.
In fact, heuristically, if one considers the asymptotic expansion of uε, i.e.,
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uε(x) = u0(x) + εu1(x,
x

ε
) + ε2u2(x,

x

ε
) + ... (1.0.5)

with ui(x, y) ∈ L2(Ω, L2
per(Y )) for i ∈ N in problem (1.0.1), and setting equal re-

spective powers of ε we obtain convergence (1.0.2) and that the first order corrector

u1(x,
x

ε
) has the following form

u1(x,
x

ε
) = χj(

x

ε
)
∂u0

∂xj

where the functions χj ∈ Wper(Y ) verify problems (1.0.4). As a simple corollary one
can obtain the limit problem (1.0.3).

One can easily observe that the series (1.0.5) indicates that one can actually
improve the weak convergence result (1.0.2) using a suitable corrector matrix, that
is, a matrix Cε such that,

∇uε − Cε∇u0
ε→ 0 strongly in L1(Ω). (1.0.6)

Indeed for problem (1.0.1), we have that the matrix of correctors Cε has the
following form,

Cε
ij(x) = δij +

∂χj

∂yi

(
x

ε
)

and if one assumes for example that u0 ∈ W 2,∞ or χj ∈ W 1,∞(Y ), one has the
convergence (1.0.6) strongly in L2. As described above, the study of correctors in
homogenization helps one to approximate the solution uε of the initial problem (1.0.1,
which is expensive to compute, with a more computationally efficient series, ((1.0.5)
in our case). The study of the error estimates is very important in multiscale analysis
because it provides the order of accuracy of such an approximation in the norm of
suitable functional spaces. The existence of error estimates results in the case of
nonsmooth coefficients is therefore very important, as this is the situation in many
applied problems (e.g., the case of composite materials).

The following error estimate is classical (see [11], [8], [73], [51]),

||uε(·)− u0(·)− εχj(
.

ε
)
∂u0

∂xj

||H1(Ω) ≤ Cε
1
2 (1.0.7)

Many results tried to improve (1.0.7) (see [41], [54], [59], [1], [82]). In [41], using the
Periodic Unfolding, Griso proved (1.0.7) for general L∞ coefficients and no assumption
on χj or u0. In the rest of the works listed above, the authors tried to improve the order

ε
1
2 in (1.0.7). In order to achieve this, boundary layer terms have been introduced as

solutions to

−∇ · (A(
x

ε
)∇θε) = 0 in Ω , θε = χj(

x

ε
)
∂u0

∂xj

on ∂Ω (1.0.8)
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Assuming A ∈ C∞(Y ), Y -periodic matrix and a sufficiently smooth homogenized
solution u0 it has been proved in [11] (see also [54]) that

||uε(·)− u0(·)− εχj(
.

ε
)
∂u0

∂xj

+ εθε(·)||H1
0 (Ω) ≤ Cε (1.0.9)

||uε(·)− u0(·)− εχj(
.

ε
)
∂u0

∂xj

+ εθε(·)||L2(Ω) ≤ Cε2. (1.0.10)

In [59], the above estimates are proved, assuming A ∈ C∞(Y ), Y -periodic matrix
and u0 ∈ H2(Ω) or u0 ∈ H3(Ω) for (1.0.9) or (1.0.10) respectively.

The estimate (1.0.9) is proved in [1] in the case when u0 ∈ W 2,∞(Ω). Sarkis-
Versieux in [82] improved the results obtained in [1] and showed that the estimates
(1.0.9) and respectively (1.0.10) still hold in a more general setting, when one has
u0 ∈ W 2,p(Ω), χj ∈ W 1,q

per for (1.0.9), and u0 ∈ W 3,p(Ω), χj ∈ W 1,q
per for (1.0.10), where

p > N and q > N satisfy
1

p
+

1

q
≤ 1

2
. Obviously, in [82] the right hand side for (1.0.9)

and (1.0.10) depend on ||u0||W 2,p(Ω) and respectively ||u0||W 3,p(Ω).

All the error estimates results obtained so far, assumed extra regularity for the
u0 or for the solutions of the cell problems χj. In Chapter 2 a new method was
developed to help one obtain error estimates for uε in H1 norm without assuming any
smoothness condition on u0 or on χj. One of the main results, states that, for any
dimension N we have,

||uε(·)− u0(·)− εχj(
.

ε
)Qε(

∂u0

∂xj

) + εβε(·)||H1
0 (Ω) ≤ Cε||u0||H2(Ω) (1.0.11)

where Qε is a certain regularization operator, and βε satisfies

−∇ · (A(
x

ε
)∇βε) = 0 in Ω , βε = χj(

x

ε
)Qε(

∂u0

∂xj

) on ∂Ω (1.0.12)

Let us define the second order boundary layer corrector as the solution of

−∇ · (A(
x

ε
)∇ϕε) = 0 in Ω , ϕε(x) = χij(

x

ε
)

∂2u0

∂xi∂xj

on ∂Ω (1.0.13)

where χij ∈ Wper(Y ) verify,

∇y · (A∇yχij) = bij +Aij
0 (1.0.14)

with Ahom defined at (1.0.3), MY (bij(y)) = −Aij
0 , and bij = −Aij − Aik

∂χj

∂yk

−
∂

∂yk

(Aikχj).

Considering the second order corrector in the asymptotic expansion of uε Allaire
and Amar proved that, for u0 ∈ W 3,∞(Ω) and χij ∈ W 1,∞(Y ), that
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||uε(·)−u0(·)−εχj(
.

ε
)
∂u0

∂xj

+εθε(·)−ε2χij(
.

ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cε
3
2 ||u0||W 3,∞(Ω). (1.0.15)

Following carefully the limit behavior of ϕε we prove that, assuming only that
χj, χij ∈ W 1,p

per with p > N we have

||uε(·)− u0(·)− εχj(
.

ε
)
∂u0

∂xj

+ εθε(·)− ε2χij(
.

ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cεmin{ 3
2
,2−N

p
}||u0||H3(Ω).

(1.0.16)
and this generalizes the result obtained by Allaire and Amar in [1].

In two dimensions, based on a Meyers type regularity result we do have χj, χij ∈
W 1,p

per for some p > 2 and therefore (1.0.16) remains true without any smoothness
assumption whatsoever for this case.

Two immediate applications of the above error estimate results are the rigorous
proof of convergence for the Multiscale Finite Element Method proposed by T. Hou
and X. Wu in [43] and the proof of the first order corrector for the homogenized
eigenvalue associated with the classical problem of homogenization ( see [59]) for the
general case of nonsmooth coefficients.

The results of this chapter are published in [64].

In Chapter 3, we will discuss about the use of the periodic unfolding method
developed in [22] for the homogenization of elliptic problems with nonsmooth coeffi-
cients in variable domains. The results presented in this chapter are the subject of a
joint work with D. Cioranescu, A. Damlamian and G. Griso.

In Sections 3.2 and 3.3, using the unfolding method, new proofs are obtained for
the homogenization of the Laplace operator with variable coefficients in perforated
domains with periodically distributed perforations in volume and along a hyperplane
respectively. Although the method will work for any boundary data, Dirichlet data
on the boundary of the perforations is assumed for the simplicity of the exposition.
Our method extends to more general types of perforated domains were one can si-
multaneously have hyperplane perforations and bulk perforations in the same model,
etc. The homogenization of the Laplace operator with constant coefficients in general
perforated domains was first studied by D. Cioranescu and F. Murat, in [26] (see also
[58]). Some of the results obtained by us are well known, and have been discussed in
many works, including two most recent papers by Calvo Jurado C. and Casado Diaz
J. were monotonicity techniques are used (see [15] and references therein), and by G.
Dal-Maso and F. Murat were H-convergence techniques are used (see [29]).

The advantage of the unfolding method is that, in the periodic setting, it simplifies
the existing proofs and the new formulation of the limit problem allows one to obtain
very interesting error estimates, even for the case with nonsmooth coefficients (see
[41], [64]) The method has four fundamental steps:

1. Definition of one or more suitable unfolding operators depending on the geom-
etry of the problem
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2. Finding the exact Lp-bounds for the unfolding operators

3. Defining the proper test functions in order to capture the contribution of the
particular geometry to the limit problem, ex., potential type test function for the
perforated domains.

4. Passing at the limit to obtain the unfolding formulation for the limit problem.

One of the main properties of the unfolding operator is that it replaces, integrals
on Ω by integrals on the product space Ω × Y and weak convergence by strong
convergence.

For both, the volume perforations case or the hyperplane perforations case, the
problem is formulated as,

(Pε
1)





uε,δ ∈ H1
0 (Dε)∫

Dε

Aε(x)∇xuε,δ∇xφ =

∫

Dε

fφ , f ∈ L2(Ω)

∀φ ∈ H1
0 (Dε)

where Y is the unit cube in R3 centered in the origin, Ω ⊂ RN , A ∈ MN×N is
Y -periodic matrix of coefficients continuous in the origin, Aε .

= A(x
ε
) and Dε is the

perforated domain, i.e., the part of Ω outside the perforations. In our analysis we
considered the case of small perforations, i.e., the perforations are open sets of diam-
eter δε where δ

.
= δ(ε) < 1. In this context, the critical scale for the case of volume

perforations is k1 = lim
ε→0

δ
N−2

2

ε
and the limit analysis is meaningful only when

0 ≤ k1 = lim
ε→0

δ
N−2

2

ε
and < ∞ (1.0.17)

Similarly for the case when the perforations are periodically distributed on the hy-

perplane we have that the critical scale is k2 = lim
ε→0

δ
N−2

2

ε
1
2

and the constraint is

0 ≤ k2 = lim
ε→0

δ
N−2

2

ε
1
2

< ∞. (1.0.18)

Two unfolding operators are defined for each of the above problems, one for the
periodic oscillations in the coefficient matrix A, and another for the presence of the
perforations in the geometry of the problem.

In the limit we obtain the unfolded formulation for the limit problem, i.e., a
weak formulation on Ω × Y for the triplet (u0, û, U) ∈ H1

0 (Ω) × L2(Ω,Wper(Y )) ×
L2(Ω, K2(RN)) or (u0, û, U) ∈ H1

0 (Ω)× L2(Ω,Wper(Y ))× L2(Σ, K2(RN)) depending
whether we are in volume perforations case or the hyperplane perforation case re-
spectively, where u0 is the homogenized limit of uε and K2(RN) is the usual capacity
space defined in [38]. Our formulation of the limit problem is new in the literature
and together with the fact that it provides the limit equation for u0, with the help of

5



û and U offers us the possibility to obtain new corrector results for these models as
well as error estimates for the solutions.

Sections 3.4 and 3.5 describe the multiscale analysis of the Neumann sieve model.
For this, we constructed a new unfolding operator (see [63]), to capture the contribu-
tion of the sieve into the limit problem. The geometry of the model is described by a
domain Ω cut in two parts by a hyperplane Σ which, for the simplicity of the exposi-
tion is assumed to be a subset of the plane Π = {xN = 0}. A periodical 2-dimensional
network of size ε is considered on Σ, and an open set (hole in the sieve) is brought by
homothety of ratio δε, with δ

.
= δ(ε) < 1, from a fixed open set S ⊂⊂]0, 1[2 in each cell

of the network. The reunion of all the holes is denoted by Sε,δ. For the PDE problem
the set Sε,δ is considered part of the domain and Neumann homogenous boundary
condition are imposed on the sieve outside Sε,δ. When the Sieve has a certain thick-
ness h(ε) > 0 we have the thick Neumann sieve model. We only considered the case
when h(ε) ≤ ε the other situations being trivial. Depending on the limit behavior

of the ratio
δN−2

ε
we obtain different limit equations. In order to obtain the limit

problems for these models in [63] we define the bl-Unfolding Operator, which charac-
terizes the geometry of the models, and acts only on a thin layer of size ε around the
hyperplane Σ. A similar approach will work for much more complex boundary layer
problems.

Mathematically, if we define Ω+ to be the part of the domain Ω above Σ and
similarly for Ω−, then our functional space Vε,δ will be the space of functions in
H1(Ω+ ∪ Ω−) which are continues over the holes Sε,δ (see (1.0.21), Section 2). For
f ∈ L2(Ω) the ε-problem is

∫

Dns
ε

A(
x

ε
)∇uε∇ψdx =

∫

Dns
ε

fψ for all ψ ∈ Vε,δ (1.0.19)

with A is Y -periodic matrix continuous in the origin, Dns
ε

.
= Ωbl

ε,δ = Ω+∪Ω−∪Sε,δ for
the case of no thickness and

Dns
ε

.
= Ωns

ε,δ = Ω \ Fεδ

for the thick sieve, where Fεδ is the thick sieve assumed to be symetric and sufficiently
smooth. The sieve is not consider a part of the domain Dns

ε and on it we impose a
zero normal derivative. Due to the fact that we are considering small holes Sε,δ we
will have a critical scale which will dictate the limit behavior of the model, i.e., we
have

0 ≤ k2 = lim
ε→0

δ
N−2

2

ε
1
2

< ∞. (1.0.20)

With the help of boundary layer unfolding operator defined at [63], we are able
to study the limit behaviour of problems (1.0.19 with respect to ε. Although the thin
Neumann sieve has been studied before by many authors (see [30], [60], [61], [73])
we give a formulation of the limit problem in the product space, which is perfectly
taylored to successfully address the question of correctors partially answered in [72].
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The thick Neumann sieve model has been studied in [35] only for the particular case
of an uniform sieve. The multiscale analysis of the nonuniform sieve is new and our
method offers the perspective for the study of error estimates (see[41],[63]).

The results of this chapter are published in [63] and [23].

In Chapter 4 we discuss about the homogenization of a class of Steklov type
spectral problems associated to linear operators on the Neumann Sieve model. Using
G-convergence results we were able to present, in [66], a general technique for the
asymptotic analysis of such problems associated to the Laplace operator. It is shown
in [66] that the limit analysis of the Steklov problems for the Laplace operator on the
Neumann sieve is equivalent with the description of the asymptotic behavior for the
spectra of the DtN map associated to the Neumann Sieve.

Our technique can be generalized to the nonlinear case but it highly depends on
the Hilbertian functional setting; therefore the study of similar problems in general
spaces will require a different approach.

The method developed by us in [66] was later applied in [47], to obtain the limit
problem of a Steklov problem associated to the linear elasticity operator on the Neu-
mann sieve. This problem appeared in the context of an earthquake initiation model,
and the limit analysis of its first eigenvalue provided interesting information about
the stability of the minimum for the associated energy functional.

The geometry of the problem is described by a plane Σ that separates a three
dimensional domain Ω in two subdomains Ω+ and Ω−. On Σ, two dimensional small
sets (holes) of diameter δε where δ

.
= δ(ε) < 1, are ε-periodically distributed. The two

dimensional holes are brought by homothety of ratio δε and translation with integers
multiple of ε from a fixed open set S ⊂⊂]0, 1[2. If we denote by Sε,δ their union and
define

V = {u ∈ H1(Ω+) ∪H1(Ω−) | u = 0 on ∂Ω} and Vε,δ = {u ∈ V | [u] = 0 on Sε,δ}
(1.0.21)

where [u] = u+ − u− with u+ = u on Ω+ and u− = u on Ω−, then our problem is:





−∆uε = 0 in Ω+ ∪ Ω− ∪ Sε,δ

∂(uε)+

∂n
= −∂(uε)−

∂n
= λε[uε] on Σ− Sε,δ

uε = 0 on ∂Ω

(1.0.22)

This problem is in fact the Steklov eigenvalue problem associated to the Neumann
Sieve model first considered in [30], [60] (see also [6]). Problem (1.0.22) can also be
considered as the spectral problem associated to a heat conduction problem where
imperfectly conducting interfaces are present (see Sanchez-Palencia [73], Lipton and
Vernescu [55] and Belyaev et al. [10]). Homogenization of a Stekloff type problem
for perforated domains with three dimensional ε sized holes distributed in the entire
domain has been studied in Vanninathan [59], using multiscale analysis and Tartar’s
method.

Using G-convergence techniques together with the homogenization result obtained

7



by Damlamian in [30] we prove in [66] that the limit problem for (1.0.22),




−∆u = 0 in Ω+ ∪ Ω−
∂u+

∂n
= −∂u−

∂n
=

(
λ− C

4

)
[u] on Σ

u = 0 on ∂Ω

where C = 0 if δ(ε) ¿ ε, C is the capacity in R3 of the holes if δ(ε) ≈ ε or C = ∞ if
δ(ε) À ε and λ is a limit point of a sequence of eigenvalues {λε}ε>0 of (1.0.22).

This type of behavior was first observed in the work of Cioranescu and Murat [26]
where the same problem but with three dimensional holes periodically distributed in
the entire domain or on a hyperplane was studied.

We show that for a (eigenvalue, eigenvector) pair of the ε-problem (λε
n, u

ε
n) we

have λε
n

ε→ λn and uε
n

ε→ un where (λn, un) is an (eigenvalue, eigenvector) pair of
(1.0.23) and the later converge is up to a subsequence in general. More precisely, for
λi eigenvalue of the limit problem with multiplicity mi, we show that the sequence
of subspaces generated by {uε

i , ..., u
ε
i+mi−1} Mosco-converge (see [6] for definition and

properties) in L2(Ω) to the eigenspace {ui, ..., ui+mi−1}, associated to λi.

The case lim
ε→0

δ(ε)

ε
= 0 is particularly interesting because it is the only case when

the problem (1.0.22) fits into the general class of spectral problems analyzed be
Oleinik, Jikov and Kozlov in [51], Chapter 11.

The results presented in this chapter have been published in [?] and [65].

Chapter 5 is dedicated to the study of the limit behaviour of an earthquake
initiation model. In a joint work with Bogdan Vernescu, and Ioan Ionescu we consid-
ered the three dimensional shearing of an elastic domain which contains an internal
boundary (the fault) located on a plane (the fault plane). The contact on the fault is
described through a slip weakening friction (i.e. the friction force decreases with the
slip). This friction law is used in the geophysical context of earthquakes modeling;
experimental studies [67] pointed out the good agreement of this model with exper-
imental data. The Geometry of the physical model is represented by an open and
bounded domain Ω ⊂ R3 cut in two by the hyperplane Π = {x3 = 0}. Ω+ will denote
the part of Ω above the plane Π. and Γd we denote the exterior boundary of Ω+. On
each square of an ε-lattice constructed on the plane Π we consider a 2-dimensional set
(barrier) of diameter δε where δ

.
= δ(ε) < 1. The term barrier denotes here a patch

on the fault plane where no slip occurs. Let Σ = Π ∩ Ω and denote by Γε
t the union

of all the barriers inside Ω. On the fault outside the barriers, i.e., on Γε
f = Σ \ Γε

t, we
consider a friction law. The mathematical description of the above physical model is:

find the displacement field uε : Ω+ → R3 solution of

σ(uε) = Aε(uε), div(Aε(uε)) = 0 in Ω+, (1.0.23)

uε = 0 on Γd, σ33(u
ε) = 0, uε

τ = 0 on Γε
t, (1.0.24)

σ33(u
ε) = 0,





στ (u
ε) = −S⊥µ(|uε

τ |)
uε

τ

|uε
τ |
− τ∞ if uε

τ 6= 0

|στ (u
ε) + τ∞| ≤ Sµ(0) if uε

τ = 0.
on Γε

f , (1.0.25)
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where A is the fourth order elastic tensor, σ(uε) is the over stress tensor , ε(uε) =
1

2
(∇uε +∇T uε) is the small strain tensor, στ (u

ε) = −(σ13(u
ε), σ23(u

ε), 0) is the tan-

gential over-stress, σ33(u
ε) is the normal over-stress, uε

τ = (uε
1, u

ε
2, 0) is the tangential

displacement, and τ∞ =: −(σ∞13, σ
∞
23, 0) and −S⊥ =: σ∞33 are the tangential and the

normal pre-stress acting on Γε
f . The friction coefficient µ : R+ → R+ in (1.0.25) is

a Lipschitz function with respect to the slip as pointed out in [67]. The symmetry
of the displacement field with respect to the fault plane (see for instance [39] for the
geophysical meaning) gives an important simplification of the problem: the normal
over stress on the fault vanishes. The fact that the normal stress has a weak variation
during the dynamic rupture was already observed in direct computations [5, 57] as
well as in the inversion of seismological data [27].

The main problem of the existing local model is that due to the small parameter
ε, problem (1.0.23), (1.0.24), (1.0.25) becomes computationally inefficient. In this
section, using Γ-convergence techniques, (see [6] for definition and properties of Γ-
convergence) for the sequence of the associated energy functionals, Wε, we obtain a
homogeneous friction law as a good approximation of the existing local law.

An important consequence of the symmetry assumption is the fact that we can
associate to the physical problem a nonconvex minimization problem for the energy
function. Solutions of (1.0.23), (1.0.24), (1.0.25) are local minimum points for

Wε(v) =
1

2
‖v‖2

V +

∫

Σ0

S⊥H(|vτ |)− f(v), ∀v ∈ Vε,δ, (1.0.26)

where f(v) = −
∫

Σ

τ∞ · vτ and

Vε := {v ∈ [H1(Ω+)]3/v = 0 on Γd, vτ = 0 on Γε
t}. (1.0.27)

and H is the antiderivative of the friction coefficient.

The macroscopic behavior of a fault with small-scale heterogeneity of rupture
resistance (small scale barriers) is difficult to relate to the local properties of the fault.
A formal measure of the friction on the fault itself would just be a local particular
law, that is varying with the position along the fault. The problem is then to find a
homogeneous friction law as a good replacement of the local friction law.

Mathematically the problem is related to the homogenization of the Neumann
Sieve problem for the Laplacian studied by several authors [30, 26, 6, 21]. In the
geophysical context the problem was studied (see [18, 17, 71]) in two dimensions
(anti-plane geometry) to obtain the rescaling of the weakening rate through a spectral
analysis.

The Neumann Sieve problem associated to the linear elasticity operator was stud-
ied by Lobo and Perez [56, ?]. An extension to the non-linear case of the Neumann
Sieve has been studied by Ansini in [3]. We use Γ-convergence to obtain the limit
functional of the sequence Wε. Our approach is based on the adaptation of a very
interesting separation lemma due to Braides and Ansini (see [4]) which is designed to
isolate the contribution of the perforations in the limit process. This lemma helps one
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to prove Γ-liminf inequality and offers an ingenuous way to construct the necessary
recovery sequence for the Γ-limsup inequality. Through the Γ-limit of the sequence
Wε defined at (1.0.26) we propose an equivalent friction law used on a homogeneous
fault as a good replacement for the local friction law on the heterogeneous fault. The

main result states that for 0 ≤ c = lim
ε→0

δ(ε)

ε
< ∞, the sequence of functionals

Wε : Vε,δ ⊂ V → R, with Wε(v) =
1

2
‖ v ‖V +

∫

Σ

S⊥H(|vτ |)− f(v)

Γ-converge with respect to the weak topology of V to, W : V → R with

W(v) =
1

2
‖ v ‖2

V +

∫

Σ

S⊥H(|vτ |)− f(v) +
1

2
c

3∑
i,j=1

∫

Σ

Cijvivj

where V is the limit functional space, i.e., V = {v ∈ [H1(Ω+)]3/v = 0 on Γd} and
C is a constant matrix computed in [47] with the help of a class of cell problems.

A brief physical interpretations of this result leads us to the following conclusions:
i) if the barriers are too large (i.e. c = ∞) then the fault is locked (no slip)
ii) if c > 0 then the fault behaves as a fault under a slip-dependent friction. The slip
weakening rate of the equivalent fault is smaller then undisturbed fault. Since the
limit slip weakening rate may be negative a slip-hardening effect can also be expected.
iii) if the barriers are too small (i.e. c = 0) then the presence of the barriers does not
affect the friction law on the limit fault.

In the second part of this chapter we study the homogenization of the Steklov spec-
tral problem associated to 1.0.23),(1.0.24), (1.0.25). The study of the firast eigenvalue
of (1.0.28), (1.0.29), (1.0.30) provides information about the stability of the minimum
points of Wε defined at (1.0.26). On the same functional setting as in Section 1 we
considered the following Steklov type eigenvalue problem associated with (1.0.23),
(1.0.24), (1.0.25),

Find uε : Ω+ −→ R3, uε 6= 0 and λε ∈ R such that

σ(uε) = Aε(uε), div σ(uε) = 0, in Ω+, (1.0.28)

uε = 0 on Γd, σ33(u
ε) = 0, uε

τ = 0 on Γε
t, (1.0.29)

σ33(u
ε) = 0, στ (u

ε) = λεuε
τ on Γε

f , (1.0.30)

which has the following variational formulation:

uε ∈ Vε,δ, < uε, v >V = λε

∫

Γε
f

uε
τ · vτ , ∀v ∈ Vε,δ. (1.0.31)

where Vε,δ is the functional space defined at (1.0.27) in the Section ??.

It is proved in [50] that the (eigenvalue, eigenvector) pairs for the above problem
formes the spectrum of some suitable defined compact operators. In [50] the authors
prove that if

λε
1 > cuε =: ess sup

x∈Γε
f

S(x)γ(|uε
τ (x)|), (1.0.32)
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where uε ∈ Vε,δ is the solution of (1.0.23), (1.0.24), (1.0.25) λε
1 is the first eigenvalue

of (1.0.31), γ (described in [47]) is a function depending on the friction coefficient µ,
and −S is the normal stress on Σ, then uε is an isolated local minimum for Wε, i.e.
there exists µ > 0 such that

Wε(u
ε) < Wε(v) ∀ v ∈ Vε,δ, v 6= uε, ‖v − uε‖V < µ. (1.0.33)

The result in Proposition (??) shows that the first eigenvalue of (1.0.31) provides
information about the stability of the solution of the contact problem defined at
(1.0.23), (1.0.24), (1.0.25). Therefore the limit analysis for the problem (1.0.31) is
very important. Using the method developed by us in [66] we can pass to the limit
in (1.0.31) and obtain the limit problem. We have that in the case when 0 ≤ c =

lim
ε→0

δ(ε)

ε
< ∞ then there is a decreasing sequence {εj}j∈N with εj → 0 such that

uεj
n ⇀un, λε

n → λn where (λn, un) solves the limit problem, λn ∈ R and un ∈ W such
that:

σ(un) = Aε(un), div σ(un) = 0, in Ω+, (1.0.34)

un = 0 on Γd σ33(un) = 0 on Σ (1.0.35)

στ (un) = unτ (λnI3 − cC) on Σ, (1.0.36)

where W is the limit functional space defined in [47], I3 is the unity matrix in M3×3

and C is a constant matrix computed in [47] with the help of a class of cell problems.

Similarly as in the case of the Laplace operator, for the case of multiple eigenvalues
a precise characterization of the limit behavior of the (1.0.31) is obtained using Mosco-
convergence techniques.

The results obtained in this chapter have been published in [47].
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Chapter 2

Boundary layer error estimates in
homogenization

This chapter is dedicated to studying the error estimates for the classical problem
in homogenization using suitable boundary layer correctors.

Let Ω ∈ RN , denote a bounded convex polyhedron or a convex bounded do-
main with a sufficiently smooth boundary. Consider also the unit cube Y = (0, 1)N .
It is well known that for A ∈ L∞(Y )N×N , Y -periodic with m|ξ|2 ≤ aij(y)ξiξj ≤
M |ξ|2 , ∀ξ ∈ RN the solutions of

{
−∇ · (A(

x

ε
)∇uε(x)) = f in Ω

uε = 0 on ∂Ω
(2.0.1)

have the property that (see [73], [51], [8],[11]),

uε ⇀ u0 in H1
0 (Ω)

where u0 verifies { −∇ · (Ahom∇u0(x)) = f in Ω
u0 = 0 on ∂Ω

(2.0.2)

with Ahom
ij = MY (Aij(y) + Aik(y)

∂χj

∂yk

) where MY (·) =
1

|Y |
∫

Y

·dy and χj ∈ Wper(Y )

are the solutions of the local problem

−∇y · (A(y)(∇χj + ej)) = 0 (2.0.3)

and
Wper(Y ) = {χ ∈ H1

per(Y )|MY (χ) = 0}.
where ej for the canonical basis in RN .

We mention that, further in this chapter, ∇ and (∇·) will denote the full gradi-
ent and divergence operators respectively, and with ∇x, (∇x·) and ∇y, (∇x·) we will
denote the gradient and the divergence in the slow and fast variable respectively.
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Remark 2.0.1. In the remainder of the chapter, we will denote by Φ the continuous
extension of a given function Φ ∈ W p,m(Ω) with p,m ∈ Z, to the space W p,m(RN).
With minimal assumption on the smoothness of Ω this extension can be chosen inde-
pendent of the domain, (see [77], Ch. VI, 3.1).

The formal asymptotic expansion corresponding to the above results can be writ-
ten as

uε(x) = u0(x) + εw1(x,
x

ε
) + ...

where

w1(x,
x

ε
) = χj(

x

ε
)
∂u0

∂xj

(2.0.4)

We make the observation that Einstein summation convention will be used in the
remainder of the chapter and that the letter C will denote a constant independent of
any other parameter, otherwise specified.

A classical result (see [73], [51], [54],[8]), states that with additional regularity
assumption on the local problem solutions χj or on u0 one has

||uε(·)− u0(·)− εw1(·, .

ε
)||H1(Ω) ≤ Cε

1
2 (2.0.5)

Without any additional assumptions a similar result has been recently proved by
G. Griso in [41], using the Periodic Unfolding method developed in [22], i.e.,

||uε(·)− u0(·)− εχj(
.

ε
)Qε(

∂u0

∂xj

)||H1(Ω) ≤ Cε
1
2 ||u0||H2(Ω) (2.0.6)

with
x ∈ Ω̃ε, Qε(φ)(x) =

∑
i1,..,iN

M ε
Y (φ)(εξ + εi)x̄i1

1,ξ · ...x̄iN
N,ξ, ξ =

[x

ε

]

for φ ∈ L2(Ω), i = (i1, ..., iN) ∈ {0, 1}N and

x̄ik
k,ξ =





xk − εξk

ε
if ik = 1

1− xk − εξk

ε
if ik = 0

x ∈ ε(ξ + Y )

where M ε
Y (φ) =

1

εN

∫

εξ+εY

φ(y)dy and Ω̃ε =
⋃

ξ

{εξ + εY, with (εξ + εY ) ∩ Ω 6= ∅}

In order to improve the error estimates in (2.0.5) boundary layer terms have been
introduced as solutions to

−∇ · (A(
x

ε
)∇θε) = 0 in Ω , θε = w1(x,

x

ε
) on ∂Ω (2.0.7)
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Assuming A ∈ C∞(Y ), Y -periodic matrix and a sufficiently smooth homogenized
solution u0 it has been proved in [11] (see also [54]) have shown that

||uε(·)− u0(·)− εw1(·, .

ε
) + εθε(·)||H1

0 (Ω) ≤ Cε (2.0.8)

||uε(·)− u0(·)− εw1(·, .

ε
) + εθε(·)||L2(Ω) ≤ Cε2. (2.0.9)

In [59], Moskow and Vogelius proved the above estimates assuming A ∈ C∞(Y ),
Y -periodic matrix and u0 ∈ H2(Ω) or u0 ∈ H3(Ω) for (2.0.8) or (2.0.9) respectively.

Inequality (2.0.8) is proved in [1] for the case when A ∈ L∞(Y ) and u0 ∈ W 2,∞(Ω).

In [82], Sarkis and Versieux showed that the estimates (2.0.8) and respectively
(2.0.9) still holds in a more general setting, when one has u0 ∈ W 2,p(Ω), χj ∈ W 1,q

per(Y )
for (2.0.8), and u0 ∈ W 3,p(Ω), χj ∈ W 1,q

per(Y ) for (2.0.9), where, in both cases, p > N

and q > N satisfy
1

p
+

1

q
≤ 1

2
. In [82] the constants in the right hand side of (2.0.8)

and (2.0.9) are proportional to ||u0||W 2,p(Ω) and ||u0||W 3,p(Ω) respectively.

In order to improve the error estimate in (2.0.8) and (2.0.9) one needs to consider
the second order boundary layer corrector, ϕε defined as the solution of,

−∇ · (A(
x

ε
)∇ϕε) = 0 in Ω , ϕε(x) = χij(

x

ε
)

∂2u0

∂xi∂xj

on ∂Ω (2.0.10)

where χij ∈ Wper(Y ) are solution of the following local problems,

∇y · (A∇yχij) = bij +Ahom
ij (2.0.11)

with Ahom defined by (2.0.2), MY (bij(y)) = −Ahom
ij , and bij = −Aij − Aik

∂χj

∂yk

−
∂

∂yk

(Aikχj).

For the case when u0 ∈ W 3,∞(Ω) and χij ∈ W 1,∞(Y ), with the help of ϕε defined
in (2.0.10), Allaire and Amar proved in [1] the following result

||uε(·)−u0(·)− εw1(·, .

ε
)+ εθε(·)− ε2χij(

·
ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cε
3
2 ||u0||W 3,∞(Ω) (2.0.12)

This result shows that with the help of the second order correctors one can es-
sentialy improve the order of the estimate (2.0.8). In this chapter we will generalize
the existing results and prove several error estimates results for (2.0.1), in the gen-
eral case of bounded coefficients, i.e. A ∈ L∞per(Y ). This is important as one can
immediately see that regularity assumptions on the cell solutions χj, χij imply extra
smoothness of the coefficients matrix A and this is not the case in general (e.g., the
case of composite materials), and on the other hand the homogenized solution u0 is
in general not smooth, for example in the case when Ω is neither convex nor smooth
enough (see, [42]).
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First, inspired by Griso’s idea presented in [41], we use the periodic unfolding
method developed in [22] and a general smoothing argument to replace w1(x, x

ε
) de-

fined at (2.0.4), by

u1(x,
x

ε
) = χj(

x

ε
)Qε(

∂u0

∂xj

) (2.0.13)

in (2.0.8) and (2.0.9). For u0 ∈ H2(Ω) we prove

||uε(·)− u0(·)− εχj(
·
ε
)Qε(

∂u0

∂xj

) + εβε(·)||H1
0 (Ω) ≤ Cε||u0||H2(Ω) (2.0.14)

where βε is defined by

−∇ · (A(
x

ε
)∇βε) = 0 in Ω , βε = u1(x,

x

ε
) on ∂Ω (2.0.15)

Assuming u0 ∈ W 3,p(Ω) with p > N we obtain

||uε(·)− u0(·)− εχj(
·
ε
)
∂u0

∂xj

+ εθε(·)||L2(Ω) ≤ Cε2||u0||W 3,p(Ω). (2.0.16)

Next, we present a refinement of (2.0.12) for the case of nonsmooth coefficients
and general data. To do this we start by describing the asymptotic behavior of ϕε

with respect to ε. The key difference between the case of smooth coefficients, and the
nonsmooth case discussed in the present chapter is that in the former, by means of
the maximum principle or Avellaneda’s compactness results (see [7]), it can be proved
that the second order boundary layer corrector ϕε is bounded in L2(Ω) and is of order

O(
1√
ε
) in H1(Ω), while in the latter one cannot use the aforementioned techniques to

describe the asymptotic behavior of ϕε in L2(Ω) or H1(Ω). Moreover one can see that
ϕε is not bounded in L2(Ω) in general ( see [7]), and therefore one needs to address
carrefuly the question of the asymptotic behavior of ϕε with respect to ε. First, we
can easily observe that εϕε can be interpreted as the solution of an elliptic problem
with variable periodic coefficients and with weakly convergent data in H−1(Ω). For
this class of problems a result of Tartar, [79](see also [24]) implies

εϕε
ε

⇀ 0 in H1(Ω)

As a consequence of Lemma 2.2.4 we obtain that for u0 ∈ H3(Ω) and χj, χij ∈
W 1,p

per(Y ), for some p > N , we have

||εϕε||H1(Ω) ≤ Cεmin{ 1
2
,1−N

p
}||u0||H3(Ω) (2.0.17)

Using (2.0.17) we are able to prove that for u0 ∈ H3(Ω) and χj, χij ∈ W 1,p
per with

p > N we have

||uε(·)− u0(·)− εχj(
.

ε
)
∂u0

∂xj

+ εθε(·)− ε2χij(
.

ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cεmin{ 3
2
,2−N

p
}||u0||H3(Ω).

(2.0.18)
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In Section 2.4 we use (2.0.18) to extend the results in [59] to the case of nonsmooth
coefficients. Namely, in two dimensions Moskow and Vogelius (see [59]) considered
the Dirichlet spectral problem associated to (2.0.1)

{
−∇ · (A(

x

ε
)∇uε(x)) = λεuε in Ω

uε = 0 on ∂Ω
(2.0.19)

The eigenvalues of (2.0.19) form an increasing sequence of positive numbers, i.e,

0 < λε
1 ≤ λε

2 ≤ ... ≤ λε
j ≤ ...

and it is well known that we have λε
j ⇀ λj as ε → 0 for any j ≥ 0 where

0 < λ1 ≤ λ2 ≤ ... ≤ λj ≤ ...

are the Dirichlet eigenvalues of the homogenized operator, i.e.,

{ −∇ · (Ahom∇u(x)) = λu in Ω
u = 0 on ∂Ω

(2.0.20)

For A ∈ C∞(Y ), Y -periodic, and assuming that the eigenfunctions of (2.0.20)
belong to H2+r(Ω), with r > 0, Moskow and Vogelius analyzed in [59], the first
corrector of the homogenized eigenvalue of (2.0.20) and proved that (See Thm. 3.6),
up to a subsequence,

λε − λ

ε
→ λ

∫

Ω

θ∗udx (2.0.21)

where θ∗ is a weak limit of θε in L2(Ω), and u is the normal eigenvector associated to
the eigenvalue λ.

Using (2.0.18) we show that the result obtained in [59] for the first corrector of
the homogenized eigenvalue holds true in the general case of nonsmooth coefficients.

2.1 First order error estimates

The main result of this section is

Theorem 2.1.1. Let uε, u0, u1, and βε be defined as in Section 1. Then we have

||uε(·)− u0(·)− εu1(·, .

ε
) + εβε(·)||H1

0 (Ω) ≤ Cε||u0||H2(Ω)

Proof. The first step is to consider the mollified coefficient matrix (An
ij)

N
i,j=1, defined in

the Appendix, with the properties ||An
ij||L∞ ≤ ||Aij||L∞ , (An

ij) is a Y -periodic matrix,
and

An
ij → Aij in Lp(Y ) for 1 ≤ p < ∞ (2.1.1)
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For these coefficients the corresponding functions un
ε , χn

j , un
1 , and βn

ε defined simi-
larly as in Section 1 , (2.0.1), (2.0.3), (2.0.13), and (2.0.15), respectively, satisfy (see
Appendix):

χn
j ⇀ χj in H1

per(Y )

un
ε

n
⇀ uε in H1

0 (Ω)

un
1 ⇀ u1 in H1(Ω)

βn
ε

n
⇀ βε in H1(Ω)

(2.1.2)

We define

vn
0 (x, y) = An(y)Qε(∇xu0) + An(y)∇yu

n
1 (x, y) (2.1.3)

therefore

(vn
0 (x, y))i =

(
An

ij(y) + An
ik(y)

∂χn
j

∂yk

)
Qε(

∂u0

∂xj

) (2.1.4)

By using the definition of χn
j we have ∇y · vn

0 = 0. Let us denote by

(Cn(y))ij = An
ij(y) + An

ik(y)
∂χn

j

∂yk

and Ahom
n = MY (Cn(y)). It can be seen that

∇y · (vn
0 −Ahom

n Qε(∇xu0)) = 0 (2.1.5)

Lemma 2.1.2. There exists qn(x, ·) ∈ [Wper(Y )]N such that curlyq
n = vn

0−Ahom
n Qε(∇xu0).

Proof. Let Bn(y) = Cn(y)−Ahom
n . We then have

vn
0 −Ahom

n Qε(∇xu0) = Bn(y)Qε(∇xu0) (2.1.6)

We look for qn of the form

qn(x, y) = φn(y)Qε(∇xu0)

where φn(y) = (φn
ij(y))ij with φn

ij(y) ∈ Wper(Y ).

If we denote by Bn
l the vector Bn

l = (Bn
il)i ∈ [L2

per(Y )]N we observe that ∇y ·Bn
l =

0. Hence from the Theorem 3.4 in Girault-Raviart [40] adapted to the periodic case,
the vectors φn

l = (φn
il)i ∈ [Wper(Y )]N are determined as the solutions to

curlyφ
n
l = Bn

l and divyφ
n
l = 0; (2.1.7)

Obviously we have

curlyq
n(x, y) = vn

0 −Ahom
n Qε(∇xu0) (2.1.8)
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Remark 2.1.3. From (2.1.2) it can be immediately seen that Bn is bounded indepen-
dently of n in [L2(Y )]N×N and using the Appendix we have

Bn ⇀ B in [L2(Y )]N×N

where, B has an identical form as Bn and it can be easily determined from the above
limit. This together with (2.1.7) and Theorem 3.9 in [40] adapted for the periodic
case implies that φn is bounded independently of n in (Wper(Y ))N×N and we have

φn
l ⇀ φl in [Wper(Y )]N where

curlyφl = Bl and divyφl = 0; for every l ∈ {1, .., N} (2.1.9)

Next we define
vn

1 (x, y) = curlxq
n(x, y)

and using Lemma 2.1.2 we have

∇y · vn
1 = −∇x · curlyq

n = −∇x · vn
0 − fn

ε (2.1.10)

where
fn

ε = −∇x · (Ahom
n Qε(∇xu0)).

We define
zn

ε (x) = un
ε (x)− u0(x)− εun

1 (x,
x

ε
) (2.1.11)

µn
ε (x) = An(

x

ε
)∇un

ε (x)− vn
0 (x,

x

ε
)− εvn

1 (x,
x

ε
) (2.1.12)

From the above definitions, similarly as in [59] we obtain

An(
x

ε
)∇zn

ε (x)− µn
ε (x) = ε(vn

1 (x,
x

ε
)−An(

x

ε
)∇xu

n
1 (x,

x

ε
)) + An(

x

ε
)(Qε(∇xu0)−∇xu0)

(2.1.13)
Next, we will prove that the L2 norm of (2.1.13) is of order ε. In order to do this we
will show that vn

1 (x, x
ε
) and An(x

ε
)∇xu1(x, x

ε
) are bounded in L2 independently of n

and ε. We have the following estimate

Lemma 2.1.4. Let Ω ⊂ RN as before. For any ψ ∈ L2(Y ), Y -periodic, we have

||∇xQε(
∂u0

∂xj

)ψ(
x

ε
)||L2(Ω) ≤ C||u0||H2(Ω)||ψ||L2(Y )

Proof. We recall the definition of Qε

Qε(φ)(x) =
∑

i1,..,iN

M ε
Y (φ)(εξ + εi)x̄i1

1,ξ · ...x̄iN
N,ξ, ξ =

[x

ε

]

for any x ∈ Ω̃ε, with Ω̃ε defined in the Appendix, and any φ ∈ L2(Ω̃ε,2) with Ω̃ε,2 =
{x ∈ Ω; dist(x, Ω) < 2ε}, where i = (i1, ..., iN) ∈ {0, 1}N and

18



x̄ik
k,ξ =





xk − εξk

ε
if ik = 1

1− xk − εξk

ε
if ik = 0

x ∈ ε(ξ + Y ).

The first order derivative Qε takes the form

∂

∂x1

Qε(φ)(x) =
∑

i1,...,iN

M ε
Y (φ)(εξ + ε(1, i2, ..., in))−M ε

Y (φ)(εξ + ε(0, i2, ..., in))

ε
x̄i2

2,ξ·...·x̄iN
N,ξ

and therefore

∫

εξ+εY

∣∣∣∣
∂

∂x1

Qε(φ)(x)

∣∣∣∣
2 ∣∣∣ψ(

x

ε
)
∣∣∣
2

≤ 2N−1

∣∣∣∣
M ε

Y (φ)(εξ + ε(1, i2, ..., in))−M ε
Y (φ)(εξ + ε(0, i2, ..., in))

ε

∣∣∣∣
2

·

·
∫

εξ+εY

∣∣∣ψ(
x

ε
)
∣∣∣
2

dx =

= 2N−1

∣∣∣∣
M ε

Y (φ)(εξ + ε(1, i2, ..., in))−M ε
Y (φ)(εξ + ε(0, i2, ..., in))

ε

∣∣∣∣
2

εN ||ψ||2L2(Y ).

Using the definition of the mean M ε
Y and the Schwartz inequality we get

∫

εξ+εY

∣∣∣∣
∂

∂x1

Qε(φ)(x)

∣∣∣∣
2 ∣∣∣ψ(

x

ε
)
∣∣∣
2

≤

≤ C||ψ||2L2(Y )

∑
i1,...,iN

∫

εξ+εY

∣∣∣∣
φ(x + ε(1, i2, ..., in))− φ(x + ε(0, i2, ..., in))

ε

∣∣∣∣
2

dx ≤

≤ C||ψ||2L2(Y )

∑
i1,...,iN

∫

εξ+εY

(∣∣∣∣
φ(x + ε(1, i2, ..., in))− φ(x)

ε

∣∣∣∣
2

+

∣∣∣∣
φ(x + ε(0, i2, ..., in))− φ(x)

ε

∣∣∣∣
2
)

dx

After summing the above inequalities over ξ ∈ {ξ ∈ ZN ; (εξ + εY ) ∩ Ω 6= ∅}, and
using the inequality between the differential quontiens and the gradient we obtain

∫

Ω

∣∣∣∣
∂

∂x1

Qε(φ)(x)

∣∣∣∣
2 ∣∣∣ψ(

x

ε
)
∣∣∣
2

≤ C||ψ||2L2(Y )||∇φ||2
L2(Ω̃ε,2)

This yields ∫

Ω

|∇xQε(φ)|2
∣∣∣ψ(

x

ε
)
∣∣∣
2

≤ C||ψ||2L2(Y )||∇φ||2
L2(Ω̃ε,2)

.

Choosing φ to be the partial derivative of u0 the conclusion of the Lemma follows.
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Applying Lemma 2.1.4 we can see that

||An(
x

ε
)∇xu

n
1 (x,

x

ε
)||L2(Ω) ≤ C||χn

j ||2L2(Y )||u0||H2(Ω) ≤ C||u0||H2(Ω) (2.1.14)

and using Remark 2.1.3 we obtain

||vn
1 (x,

x

ε
)||L2(Ω) ≤ C

(∑
i,j

||φn
ij||2L2(Y )

) 1
2

||u0||H2(Ω) ≤ C||u0||H2(Ω) (2.1.15)

Using (2.1.14), (2.1.15) and the properties of Qε we obtain the following estimate
for the left hand side of (2.1.13):

||An(
x

ε
)∇zn

ε (x)− µn
ε (x)||L2(Ω) ≤ Cε||u0||H2(Ω) (2.1.16)

For g ∈ L2(Ω) we define wn
ε ∈ H1

0 (Ω) solution of the following problem

−∇ · (An(
x

ε
)∇wn

ε ) = g in Ω , wn
ε = 0 on ∂Ω (2.1.17)

Obviously we have
||wn

ε ||H1
0 (Ω) ≤ ||g||H−1(Ω) (2.1.18)

Using zn
ε + εβn

ε as a test function in (2.1.17), with βε defined by (2.0.15) we obtain

∫

Ω

(zn
ε + εβn

ε )gdx =

∫

Ω

An(
x

ε
)∇zn

ε · ∇wn
ε dx (2.1.19)

The right hand side can be estimated as follows
∫

Ω

An(
x

ε
)∇zn

ε · ∇wn
ε dx =

∫

Ω

(
An(

x

ε
)∇zn

ε − µn
ε

)
· ∇wn

ε dx−
∫

Ω

(∇ · µn
ε ) wn

ε dx ≤

≤ ||An(
x

ε
)∇zn

ε − µn
ε ||L2(Ω)||wn

ε ||H1
0 (Ω) + ||∇ · µn

ε ||H−1(Ω)||wn
ε ||H1

0 (Ω) (2.1.20)

We note here that ∇ · µn
ε ∈ L2(Ω). Indeed:

∇ · µn
ε (x) = ∇ · (An(

x

ε
)∇un

ε (x))−∇x · vn
0 (x,

x

ε
)− 1

ε
∇y · vn

0 (x,
x

ε
)−

−∇x · vn
1 (x,

x

ε
)−∇y · vn

1 (x,
x

ε
) = −f(x)−∇x · (Ahom

n Qε(∇xu0))

To estimate the H−1 norm of ∇ · µn
ε we consider φ ∈ H1

0 (Ω) and

∫

Ω

(∇·µn
ε )φ(x)dx =

∫

Ω

(AhomQε(∇u0)−Ahom∇u0)∇φdx+

∫

Ω

(Ahom
n −Ahom)Qε(∇u0)∇φdx ≤

≤ C||∇u0 −Qε(∇u0)||L2(Ω)||φ||H1
0 (Ω) + ||φ||H1

0 (Ω)||(Ahom
n −Ahom)Qε(∇u0)||L2(Ω) ≤
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≤ Cε||u0||H2(Ω)||φ||H1
0 (Ω) + Kn||φ||H1

0 (Ω)||u0||H1(Ω) (2.1.21)

where we used the properties of Qε and Kn
.
= |Ahom −Ahom

n |.
Therefore we proved that

||∇ · µn
ε ||H−1(Ω) ≤ Cε||u0||H2(Ω) + Kn||u0||H1(Ω) (2.1.22)

Thus (2.1.16) and (2.1.22) used in (2.1.21) imply

∣∣∣∣
∫

Ω

(zn
ε + εβn

ε )gdx

∣∣∣∣ ≤ Cε||u0||H2(Ω)||wn
ε ||H1

0 (Ω) + CKn||wn
ε ||H1

0 (Ω) ≤

≤ Cε||u0||H2(Ω)||g||H−1(Ω) + CKn||g||H−1(Ω)

where we used (2.1.18). From the above inequality we have

||zn
ε + εβn

ε ||H1
0 (Ω) ≤ Cε||u0||H2(Ω) + CKn (2.1.23)

From (2.1.1) and (2.1.2) we have that Kn → 0 as n → ∞. Using the Appendix
we can pass to the limit when n →∞ in (2.1.23) and from (2.1.2) we get

||zε + εβε||H1
0 (Ω) ≤ Cε||u0||H2(Ω)

which is exactly what needs to be proved.

2.2 Second order error estimate

The L2-norm of
uε(·)− u0(·)− εw1(·, .

ε
) + εθε(·) (2.2.1)

can be estimated with additional assumptions. Moscow and Vogelius obtain in [59],
the ε1+r, estimate for (2.2.1), for some r > 0, assuming that u0 ∈ H2+r(Ω) and
A ∈ C∞(Y ). In this section we will improve this estimate and analyze the case of
nonsmooth coefficents. Let χn

ij ∈ Wper(Y ) solutions of

∇y · (An∇yχ
n
ij) = bn

ij −MY (bn
ij) (2.2.2)

where

bn
ij = −An

ij − An
ik

∂χn
j

∂yk

− ∂

∂yk

(An
ikχ

n
j )

and MY (.) is the average on Y . From Appendix, Corollary 6.2.8

|∇yχ
n
ij|L2(Y ) < C and χn

ij ⇀ χij in Wper(Y ), ∀i, j ∈ {1, ..., N}

where ∫

Y

A(y)∇yχij∇yψdy = (bij −MY (bij), ψ)(Wper(Y ),(Wper(Y ))′)
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for any ψ ∈ Wper(Y ) and with

bij = −Aij − Aik
∂χj

∂yk

− ∂

∂yk

(Aikχj).

In [82], an estimate of order ε2 is proved, under the assumptions that u0 ∈ W 3,p(Ω)

and χj, χij ∈ W 1,q
per(Y ) for p, q > N where

1

p
+

1

q
≤ 1

2
.

Next, we will only assume that u0 ∈ W 3,p(Ω) with N < p ≤ ∞ to prove the
estimate of order ε2 for (2.2.1). Indeed we have,

Theorem 2.2.1. Let uε, u0, u1 and θε defined as in Section 2. If u0 ∈ W 3,p(Ω),
N < p ≤ ∞ we have

||uε(·)− u0(·)− εw1(·, .

ε
) + εθε(·)||L2(Ω) ≤ Cε2||u0||W 3,p(Ω) (2.2.3)

Proof. For the sake of simplicity we will consider only the case when N = 3, the two
dimensional case being similar. As in the previous section we can assume the smooth
coefficients An (see (6.2.1)), and follow the same ideas as in [59] to define

un
2 (x, y) = χn

ij(y)
∂2u0

∂xj∂xi

(x)

For p > N we have that

||∇xu
n
2 (.,

.

ε
)||L2(Ω) ≤ ||χn

ij(
.

ε
)||

L
2p

p−2 (Ω)
||∇x

∂2u0

∂xj∂xi

||Lp(Ω)

and using a change in variables and the inequality (6.2.10) in the Appendix, we obtain

||∇xu
n
2 (.,

.

ε
)||2L2(Ω) ≤ C

∑
i,j

||∇x
∂2u0

∂xj∂xi

||2Lp(Ω) ≤ C||u0||2W 3,p(Ω) (2.2.4)

As in [59] we will define

(vn
∗ (x, y))k = An

ki(y)χn
j (y)

∂2u0

∂xj∂xi

(x) + An
kl(y)

∂χn
ij

∂yl

∂2u0

∂xj∂xi

(2.2.5)

Following similar arguments we can observe that ∇x ·MY (vn
∗ ) = 0. By introducing

Rj
ki = MY (An

kiχ
n
j + An

kl

∂χn
ij

∂yl

).

Consider αn
ij ∈ [L2(Y )]3 defined by,

αn
ij =




An
1iχ

n
j + An

1l

∂χn
ij

∂yl
−Rj

1i

An
2iχ

n
j + An

2l

∂χn
ij

∂yl
−Rj

2i

An
3iχ

n
j + An

3l

∂χn
ij

∂yl
−Rj

3i




+ βn
ij

22



with
βn

1j = (0,−φn
3j, φ

n
2j)

T

βn
2j = (φn

3j, 0,−φn
1j)

T for j ∈ {1, 2, 3}
βn

3j = (−φn
2j, φ

n
1j, 0)T

where T designates the transposition operation and φn
ij are defined at (2.1.7). Using

the symmetry of the matrix A we observe that the vectors αn
ij defined above, are di-

vergence free with zero average over Y . This imply that there exists ψn
ij ∈ [Wper(Y )]3,

(see Theorem 3.4, [40] adapted for the periodic case) so that

curlyψ
n
ij = αn

ij and divψn
ij = 0 for any i, j ∈ {1, 2, 3} (2.2.6)

From Corollary 6.2.10 in Appendix and we observe that

αn
ij ⇀ αij in [L2(Y )]3 (2.2.7)

where the form of αij is identical with that of αn
ij and can be obviously obtain from

(2.2.7). Using the above convergence result and Theorem 3.9 from [40] adapted to
the periodic case, we obtain that

ψn
ij ⇀ ψij , in Wper(Y ) for any i, j ∈ {1, 2, 3}

and ψij satisfy

curlyψij = αij and divyψij = 0 for i, j ∈ {1, 2, 3} (2.2.8)

Next define pn(x, y) = ψn
ij(y)

∂2u0

∂xj∂xi

(x) and vn
2 (x, y) = curlxp

n(x, y). Obviously

we have that ∇x · vn
2 = 0. It is also easy to check, that ∇y · vn

2 = −∇x · vn
∗ , (see [59]

for example). We set

wn
1 (x, y) = χn

j (y)
∂u0

∂xj

(x)

rn
0 (x, y) = An(y)∇xu0 + An(y)∇yw

n
1 (x, y)

ψn
ε (x) = un

ε (x)− u0(x)− εwn
1 (x,

x

ε
)− ε2un

2 (x,
x

ε
) (2.2.9)

ξn
ε (x) = An(

x

ε
)∇un

ε − rn
0 (x,

x

ε
)− εvn

∗ (x,
x

ε
)− ε2vn

2 (x,
x

ε
) (2.2.10)

As in [59] we can write

An(
x

ε
)∇ψn

ε (x)− ξn
ε (x) = ε2(vn

2 (x,
x

ε
)− An(

x

ε
)∇xu

n
2 (x,

x

ε
)) (2.2.11)

We use next, as in (2.2.4), the inequality (6.2.10) to obtain

||vn
2 (.,

.

ε
)||L2(Ω) ≤ C||u0||W 3,p(Ω) (2.2.12)
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Using (2.2.4), (2.2.11) and (2.2.12) we get

||An(
x

ε
)∇ψn

ε (x)− ξn
ε (x)||L2(Ω) ≤ Cε2||u0||W 3,p(Ω) (2.2.13)

Similarly as in [59] we have that ∇ · ξn
ε (x) = 0. Let us define ϕn

ε as solution of

∇ · (An(
x

ε
)∇ϕn

ε ) = 0 in Ω , ϕn
ε = un

2 (x,
x

ε
) on ∂Ω (2.2.14)

Using again Corollary 6.2.10 in Appendix, we have that ϕn
ε ⇀ ϕε in H1(Ω) where

ϕε is the solution of

∇ · (A(
x

ε
)∇ϕε) = 0 in Ω , ϕε = u2(x,

x

ε
) on ∂Ω (2.2.15)

Then,

||ϕε||L2(Ω) ≤ C||u2(.,
.

ε
)||L∞(∂Ω) ≤ C||χij||L∞(Y )||u0||W 3,p(Ω) ≤ C||u0||W 3,p(Ω) (2.2.16)

where we used [53] for the L∞ bound on χij. Next, similarly as in [59] we have

||un
ε (·)− u0(·)− εwn

1 (·, .

ε
) + εθn

ε (·)− ε2un
2 (·, .

ε
) + ε2ϕn

ε ||L2(Ω) ≤ Cε2||u0||W 3,p(Ω)

and passing to the limit when n → ∞ using triangle inequality, (2.2.4) and (2.2.16)
we get (2.2.3).

Remark that the assumption that u0 ∈ W 3,p, with p > N was necessary for the
estimate (2.2.16)

In the case of L∞ coefficients, with the only assumptions that χj, χij ∈ W 1,p
per(Y )

for some p > N and u0 ∈ H3(Ω) the left hand side of (2.0.12) can be shown to be of

order εmin{ 3
2
,2−N

p
}. Indeed we have,

Theorem 2.2.2. Let u0 ∈ H3(Ω). If there exists p > N such that χj, χij ∈ W 1,p
per(Y )

then we have

||uε(.)− u0(.)− εw1(.,
.

ε
) + εθε(.)− ε2χij(

·
ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cεmin{ 3
2
,2−N

p
}||u0||H3(Ω)

Proof. As we did before, for the sake of simplicity, we will assume N = 3 the two
dimensional case beeing similar. For any i, j ∈ {1, 2, 3} let ψij ∈ [Wper(Y )]3 be defined
as in (2.2.8). The hypothesis on χj and χij implies that αij defined at (2.2.7) belongs
to the space [Lp(Y )]3 and we have

||αij||[Lp(Y )]3 ≤ C(||βij||[Lp(Y )]3 + ||χj||Lp(Y ) + ||χij||W 1,p(Y ) ≤ C for i, j ∈ {1, 2, 3}
(2.2.17)

Relation (2.2.17) and Remark 3.11 in [40] imply that

||ψij||[W 1,p(Y )]3 ≤ C for i, j ∈ {1, 2, 3} (2.2.18)
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Define p(x, y) = ψij(y)
∂2u0

∂xi∂xj

(x) and v2(x, y) = curlxp(x, y). We can see that p ∈
H1(Ω, H1

per(Y )) and v2 ∈ L2(Ω, H1
per(Y )). Obviously we have that ∇x · v2 = 0 in the

sense of distributions (see [59]). Next, using (2.2.5) we observe that ∇x ·MY (v∗) = 0
where v∗ is such that

vn
∗ ⇀ v∗ weakly in L2(Ω, L2

per(Y ))

We have that

(v∗(x, y))k = Aki(y)χj(y)
∂2u0

∂xj∂xi

(x) + Akl(y)
∂χij

∂yl

∂2u0

∂xj∂xi

Using this and the fact that

∫

Ω×Y

(∇y · v2)Φ(x, y)dxdy =

∫

Ω×Y

(∇y · curlxp(x, y))Φ(x, y)dxdy =

= −
∫

Ω×Y

(∇x · curlyp(x, y))Φ(x, y)dxdy

for any smooth function Φ ∈ D(Ω;D(Y )), one can immediately see that

∇y · v2 = −∇x · v∗ (2.2.19)

in the sense of distributions. Consider ψn
ε and ξn

ε defined at (2.2.9) and (2.2.10). We
have

Lemma 2.2.3.
(i) ||ψn

ε ||W 1,1(Ω) < C and ||ξn
ε ||L1(Ω) < C

and there exists ψε ∈ W 1,1(Ω) and ξε ∈ L1(Ω) such that

ψn
ε

n
⇀ ψε , ∇ψn

ε
n
⇀ ∇ψε , ξn

ε
n
⇀ ξε , weakly-* in the sense of measures.

Also we have
ψε(x) = uε(x)− u0(x)− εw1(x,

x

ε
)− ε2u2(x,

x

ε
)

ξε(x) = A(
x

ε
)∇uε − r0(x,

x

ε
)− εv∗(x,

x

ε
)− ε2v2(x,

x

ε
)

(ii) Moreover, ξε ∈ L2(Ω), ψε ∈ H1(Ω) and we have

A(
x

ε
)∇ψε(x)− ξε(x) = ε2(v2(x,

x

ε
)− A(

x

ε
)∇xu2(x,

x

ε
)) (2.2.20)

with
∇ · ξε(x) = 0 (2.2.21)

in the sense of distributions.
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Proof. Using the fact that, for any i, j ∈ {1, 2, 3}, χn
j , χn

ij ∈ Wper(Y ) and ψn
ij ∈

[Wper(Y )]3 are bounded functions in this spaces, from the definition one can immedi-
ately see that

||ψn
ε ||W 1,1(Ω) < C and ||ξn

ε ||L1(Ω) < C.

Recall that

χn
j ⇀ χj , χn

ij ⇀ χij in Wper(Y ) and ψn
ij ⇀ ψij in [Wper(Y )]3.

Using the above convergence results and the Appendix the statement (i) in Lemma
2.2.3 follows immediately. Observe that χj, χij ∈ W 1,p

per(Y ), with p > 3 imply

ψε ∈ H1(Ω) (2.2.22)

To prove (2.2.22) it is enough to see that

||u2(·, ·
ε
)||H1(Ω) ≤ ε2||χij||L∞(Y )||u0||H2(Ω)+ε||χij||W 1,p(Y )||u0||H3(Ω)+ε2||χij||L∞(Y )||u0||H3(Ω)

the rest of the necessary estimates being trivial. Similarly, from the definition of r0,
v∗ and v2 and the hypothesis χj, χij ∈ W 1,p

per(Y ), with p > 3 we see that ξε ∈ L2(Ω).
Next note that we immediately have

An(
x

ε
)∇ψn

ε
n
⇀ −A(

x

ε
)∇ψε weakly-* in the sense of measures . (2.2.23)

Relation (2.2.20) follows immediately from (2.2.11), (2.2.23) the relations (6.2.1) in
Appendix and a limit argument based on the convergence results obtained at (i).
Recall that in the smooth case it is known from [59] that

∇ · ξn
ε = 0

This is equivalent to

∫

Ω

ξn
ε ∇Φ(x)dx = 0 for any Φ ∈ D(Ω)

Using the fact that ξε ∈ L2(Ω), and that we have

ξn
ε

n
⇀ ξε weakly-* in the sense of measures

we obtain (2.2.21). We make the remark that a different proof for (2.2.21) can be
found in [82]

Following the steps in the proof of Lemma 2.2.1 we observe that χj, χij ∈ W 1,p
per(Y ),

with p > 3, implies ψij ∈ W 1,p
per(Y ). using this we obtain,

||∇xu2(·, ·
ε
)||L2(Ω) ≤ ||χij||L∞(Y )||∇x

∂2u0

∂xj∂xi

||L2(Ω) ≤ ||χij||W 1,p(Y )||u0||H3(Ω) ≤ C||u0||H3(Ω)

(2.2.24)
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||v2(·, ·
ε
)||L2(Ω) ≤ C||ψij||L∞(Y )||∇x

∂2u0

∂xi∂xj

||L2(Ω) ≤ C
∑
i,j

||ψij||W 1,p(Y )||u0||H3(Ω) ≤ C||u0||H3(Ω)

(2.2.25)
where in (2.2.25) above we used (2.2.18). Similarly as in [59] using (2.2.24), (2.2.25)
in (2.2.19), we arrive at

||A(
x

ε
)∇ψε(x)− ξε(x)||L2(Ω) ≤ Cε2||u0||H3(Ω)

In the general case when A ∈ L∞(Y ) and u0 ∈ H3(Ω), if we consider the second
boundary layer ϕε defined as in (2.2.14), using (2.2.22) and similar arguments as in
[59] we obtain that

||uε(.)− u0(.)− εw1(.,
.

ε
) + εθε(.)− ε2u2(x,

x

ε
) + ε2ϕε||H1

0 (Ω) ≤ Cε2||u0||H3(Ω) (2.2.26)

Next we make the observation that without any further regularity assumption
on u0 or on the matrix of coefficients A one cannot make use of neither Avellaneda
compactness result nor the maximum principle to obtain a bound and for ϕε similar
to (2.2.16). In fact in [7] it is presented an example where a solution of (2.2.14) would
blow up in the L2 norm. Although the unboundedness of ϕε in L2 we can still make
the observation that using a result due to Luc Tartar [79] (see also [24], Section 8.5)
concerning the limit analysis of the classical homogenization problem in the case of
weakly convergent data in H−1(Ω) together with a few elementary computations we
can obtain that

εϕε
ε

⇀ 0 in H1(Ω)

Using the Periodic Unfolding Method in the spirit of Griso [41] we will be able to
prove a very interesting Lemma, which would imply that, for N ∈ {2, 3}, there exists
p > N , such that

||εϕε||H1(Ω) ≤ εmin{ 1
2
,1−N

p
} (2.2.27)

Lemma 2.2.4. Let Ω ⊂ RN be C1,1 or convex. Consider the following problem,
{ −∇ · (A(x

ε
)∇yε) = h in Ω

yε = gε on ∂Ω
(2.2.28)

where h ∈ L2(Ω), the coefficient matrix a satisfies the hypothesis of the first sec-
tion, and we have that there exists φ∗ ∈ W 1,p

per(Y ) with p > N , and zε ∈ H1(Ω) such
that

gε(x) = εφ∗(
x

ε
)zε(x) a.e. Ω. (2.2.29)

Then if there exists z ∈ H1(Ω) such that

zε ⇀ z in H1(Ω) (2.2.30)

we have that there exists y∗ ∈ H1
0 (Ω) such that
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yε ⇀ y∗ in H1(Ω) (2.2.31)

and y∗ satisfies { ∇ · (Ahom∇y∗) = h in Ω
y∗ = 0 on ∂Ω

(2.2.32)

and Ahom is the classical homogenized matrix defined at (2.0.2) in Section 1. Moreover
if there exists α > 0 such that

||zε − z||L2(Ω) ≤ Cεα||z||L2(Ω) (2.2.33)

then we have

||yε − y∗ − εχj(
x

ε
)Qε(

∂y∗
∂xj

)||H1(Ω) ≤ Cεmin{m,β(1−N
p

)} (||y∗||H2(Ω) + ||z||H1(Ω)

)
(2.2.34)

where β
.
= min{1, α}, m

.
= min{α,

1

2
}, χj ∈ Wper(Y ) are defined in (6.2.3) and Qε is

defined at (2.0.6).

Proof. We could use Tartar’s result concerning problems with weakly converging data
in H−1 to prove (2.2.31) and (2.2.32), but we prefer to present here a different proof
based on the Periodic unfolding Method developed in [22]. The method will give us
the unfolded formulation for the limit problem and this in turn will help us, inspired
by an idea of Griso (see [41]), to obtain the error estimate (2.2.34) for the solution
yε. Homogenizing the data in problem (2.2.28) we obtain

{ −∇ · (A(x
ε
)∇(yε − gε)

)
= h +∇ · (A(x

ε
)∇gε) in Ω

yε − gε = 0 on ∂Ω

If we denote by rε = yε − gε we have

{ −∇ · (A(x
ε
)∇rε

)
= h +∇ · (A(x

ε
)∇gε) in Ω

rε = 0 on ∂Ω
(2.2.35)

Using rε as test function in (2.2.35) we obtain

||rε||H1
0 (Ω) ≤ ||h||L2(Ω) + ||A(

x

ε
)∇gε||L2(Ω) ≤ ||h||L2(Ω) + ||∇gε||L2(Ω) ≤

≤ ||h||L2(Ω) + ε||φ∗( .

ε
)∇zε(.)||L2(Ω) + ||∇yφ∗(

.

ε
)zε(.)||L2(Ω) ≤

≤ ||h||L2(Ω) + C(||φ∗||W 1,p(Y ) + 1)||zε||H1(Ω) ≤ C (2.2.36)

where for the last inequality above we used the assumptions on the matrix A and
φ∗, Holder Inequality and (6.2.10) in the Appendix.

From (2.2.36) we have that there exists y∗ ∈ H1
0 (Ω) such that on a subsequence

still denoted by ε we have

rε ⇀ y∗ weakly in H1
0 (Ω) (2.2.37)
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In fact we can see that
yε ⇀ y∗ weakly in H1(Ω) (2.2.38)

Indeed we notice that

||gε||L2(Ω) = ε||φ∗( .

ε
)zε(.)||L2(Ω) ≤ ε||zε||L2(Ω) (2.2.39)

and
||∇gε||L2(Ω) ≤ ||∇yφ∗(

.

ε
)zε(.)||L2(Ω) + ε||φ∗( .

ε
)∇zε(.)||L2(Ω) ≤

≤ C||φ∗||W 1,p(Y )||zε||H1(Ω) + ε||∇zε(.)||L2(Ω) ≤ C (2.2.40)

From (2.2.37), (2.2.39) and (2.2.40) we obtain (2.2.38). In order to prove that y∗
is the solution of (2.2.32) we will consider first vε(x) = ψ(x), with ψ ∈ D(Ω), as test
functions in problem (2.2.35). We have,

∫

Ω

A(
.

ε
)∇rε∇ψdx =

∫

Ω

hψdx−
∫

Ω

A(
.

ε
)∇gε∇ψdx (2.2.41)

We unfold (2.2.41) using Theorem 6.1.1 and we have

1

|Y |
∫

Ω̃ε×Y

A(y)Tε(∇rε)Tε(∇ψ)dxdy =

∫

Ω

hψdx− 1

|Y |
∫

Ω̃ε×Y

A(y)Tε(∇gε)Tε(∇ψ)dxdy =

=

∫

Ω

hψdx− 1

|Y |
∫

Ω̃ε×Y

A(y)∇yφ∗(y)Tε(zε)Tε(∇ψ)dxdy− ε

|Y |
∫

Ω̃ε×Y

A(y)φ∗(y)Tε(∇zε)Tε(∇ψ)dxdy

(2.2.42)

Remark 2.2.5. Using that A ∈ L∞(Y ), φ∗ ∈ W 1,p(Y ) and (2.2.30), it can be seen
that the last term in the right hand side of (2.2.42) converges to zero when ε → 0.

For the second integral in the right hand side of (2.2.42), Theorem 6.1.1 implies,

1

|Y |
∫

Ω̃ε×Y

A(y)∇yφ∗(y)Tε(zε)Tε(∇ψ)dxdy
ε−→ 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)∇ψdxdy

(2.2.43)
From (2.2.37), Remark 2.2.5), (2.2.43) and Theorem 6.1.1, we can pass at the limit
when ε → 0 in (2.2.42), and obtain that there exists ŷ∗ ∈ L2(Ω, H1

per(Y )) such that

1

|Y |
∫

Ω×Y

A(y)[∇xy∗+∇yŷ∗]∇ψdxdy =

∫

Ω

hψdx− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)∇ψdxdy

(2.2.44)

Next consider vε(x) = εψ(x)ϕ(x
ε
) with ψ ∈ D(Ω) and ϕ ∈ C∞

per(Y ) as test functions
in problem (2.2.35). Note that vε ⇀ 0 in H1(Ω). We then have

∫

Ω

A(
x

ε
)∇rε∇vεdx =

∫

Ω

hvεdx−
∫

Ω

A(
x

ε
)∇gε∇vεdx ⇔

⇔ ε

∫

Ω

A(
x

ε
)∇rε∇ψϕ(

x

ε
)dx +

∫

Ω

A(
x

ε
)∇rεψ(x)∇yϕ(

x

ε
)dx =
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=

∫

Ω

hvεdx− ε

∫

Ω

A(
x

ε
)∇gε∇ψϕ(

x

ε
)dx−

∫

Ω

A(
x

ε
)∇gεψ(x)∇yϕ(

x

ε
)dx. (2.2.45)

We will first analyze the left hand side of (2.2.45). It is clear that

ε

∫

Ω

A(
x

ε
)∇rε∇ψϕ(

x

ε
)dx

ε−→ 0 (2.2.46)

For the second term of the left hand side in (2.2.45) we use property 3 in Theorem
6.1.1 and we have

∫

Ω

A(
x

ε
)∇rεψ(x)∇yϕ(

x

ε
)dx =

1

|Y |
∫

Ω̃ε×Y

A(y)Tε(∇rε)Tε(ψ)∇yϕ(y)dxdy. (2.2.47)

Using property 5. in Theorem 6.1.1 we can pass to the limit in (2.2.47) and obtain,

lim
ε→0

∫

Ω

A(
x

ε
)∇rεψ(x)∇yϕ(

x

ε
)dx =

1

|Y |
∫

Ω×Y

A(y)[∇xy∗ +∇yŷ∗]ψ(x)∇yϕ(y)dxdy.

(2.2.48)

Next we will analyze the right hand side of (2.2.45). Easily can be proved that

ε

∫

Ω

A(
x

ε
)∇gε∇ψϕ(

x

ε
)dx

ε−→ 0 (2.2.49)

For the last integral in the right hand side of (2.2.45) we have

∫

Ω

A(
x

ε
)∇gεψ(x)∇yϕ(

x

ε
)dx =ε

∫

Ω

A(
x

ε
)φ∗(

x

ε
)∇zεψ(x)∇yϕ(

x

ε
)dx+

+

∫

Ω

A(
x

ε
)∇yφ∗(

x

ε
)zε(x)ψ(x)∇yϕ(

x

ε
)dx (2.2.50)

Note that

ε

∫

Ω

A(
x

ε
)φ∗(

x

ε
)∇zεψ(x)∇yϕ(

x

ε
)dx

ε−→ 0 (2.2.51)

For the third integral in (2.2.50) we use property 3. in Theorem 6.1.1 and obtain

∫

Ω

A(
x

ε
)∇yφ∗(

x

ε
)zε(x)ψ(x)∇yϕ(

x

ε
)dx =

1

|Y |
∫

Ω̃ε×Y

A(y)∇yφ∗(y)Tε(zε)Tε(ψ)∇yϕ(y)dxdy

(2.2.52)

Using Theorem 6.1.1 we can pass to the limit in (2.2.52)

lim
ε→0

∫

Ω

A(
x

ε
)∇yφ∗(

x

ε
)zε(x)ψ(x)∇yϕ(

x

ε
)dx =

1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)ψ(x)∇yϕ(y)dxdy

(2.2.53)

From (2.2.46), (2.2.48), (2.2.49), (2.2.51) and (2.2.53) we can pass to the limit in
(2.2.45) and obtain
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1

|Y |
∫

Ω×Y

A(y)[∇xy∗+∇yŷ∗]ψ(x)∇yϕ(y)dxdy = − 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)ψ(x)∇yϕ(y)dxdy

(2.2.54)
for all ψ ∈ D(Ω) and ϕ ∈ C∞

per(Y ).

Summarizing, from (2.2.44) and (2.2.54) using the density of the tensor product
D(Ω) × C∞

per(Y ) in L2(Ω, H1
per(Y )) we obtain the unfolded formulation of the limit

problem, i.e.,

Find (y∗, ŷ∗) ∈ H1
0 (Ω)× L2(Ω, H1

per(Y )) such that,

1

|Y |
∫

Ω×Y

A(y)[∇xy∗ +∇yŷ∗](∇xψ(x) +∇yΦ(x, y))dxdy =

∫

Ω

hψdx−

− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)((∇xψ(x) +∇yΦ(x, y))dxdy (2.2.55)

for allψ ∈ D(Ω) and Φ ∈ L2(Ω, H1
per(Y )).

From (2.2.54) we will extract the limit problem verified by y∗. Indeed it can be
easily checked that ŷ∗(x, y) admits the following representation:

ŷ∗(x, y) = χj(y)
∂y∗
∂xj

− φ∗(y)z(x) (2.2.56)

where χj ∈ Wper(Y ) are the corrector function defined in Section 1 at (2.0.3). Using
(2.2.56) in (2.2.44) we obtain

∫

Ω

Ahom∇y∗∇ψdx =

∫

Ω

hψdx for any ψ ∈ D(Ω)

and this translates into:
{ −∇ · (Ahom∇y∗) = h in Ω

y∗ ∈ H1
0 (Ω)

(2.2.57)

where Ahom is defined at (2.0.2). Next, inspired by an idea of Griso [41], we will
use the unfolded formulation (2.2.55) of the limit problem to obtain (2.2.34). We
would like to make the observation that although a few of the steps we take in the
proof are based on ideas of Griso, we decided to present the complete proof here, for
the clarity of the exposition.

Let ψ ∈ H1
0 (Ω). From Theorem 6.1.2 in the Appendix we can see that there exists

ψ̂ε ∈ L2(Ω, H1
per(Y )) such that the estimate (6.1.2) is satisfied. Therefore if we use

the pair (ψ, ψ̂ε) as a test function in (2.2.55) we have

1

|Y |
∫

Ω×Y

A(y)[∇xy∗ +∇yŷ∗](∇xψ(x) +∇yψ̂ε)dxdy =

∫

Ω

hψdx−
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− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)(∇xψ(x) +∇yψ̂ε)dxdy (2.2.58)

Using (2.2.56), (2.2.58) becomes,

1

|Y |
∫

Ω×Y

A(y)[∇xy∗ +∇yχj(y)
∂y∗
∂xj

−∇yφ∗(y)z(x)](∇xψ(x) +∇yψ̂ε)dxdy=

∫

Ω

hψdx−

− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)((∇xψ(x) +∇yψ̂ε)dxdy (2.2.59)

Next consider ρε the distance function defined in Proposition 6.1.3 in the Appendix.
Using the fact that y∗ ∈ H2(Ω) and Proposition 6.1.3 from the Appendix we have,

|h0 − 1

|Y |
∫

Ω×Y

A(y)ρε[∇xy∗ +∇yχj(y)
∂y∗
∂xj

−∇yφ∗(y)z(x)](∇xψ(x) +∇yψ̂ε)dxdy| ≤

≤ Cε
1
2 ||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.60)

with

h0 =

∫

Ω

hψdx− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)((∇xψ(x) +∇yψ̂ε)dxdy (2.2.61)

Note that
||ρε∇y∗||H1(Ω) ≤ Cε−

1
2 ||y∗||H2(Ω) (2.2.62)

Indeed for i ∈ {1, .., N} arbitrarily fixed we have

||∇x

(
ρε

∂y∗
∂xi

)
||[L2(Ω)]N ≤ ||∇xρε

∂y∗
∂xi

||[L2(Ω)]N + ||ρε∇x

(
∂y∗
∂xi

)
||[L2(Ω)]N ≤

≤ ||∇xρε||[L∞(Ω̂ε)]N
||∂y∗

∂xi

||L2(Ω̂ε)
+ ||∇x

(
∂y∗
∂xi

)
||[L2(Ω)]N ≤ Cε−

1
2 ||y∗||H2(Ω)

where Ω̂ε is defined in the Appendix before Proposition 6.1.3. Using Theorem
6.1.2) from the Appendix and (2.2.62) we can replace ∇xψ +∇yψ̂ε by Tε in (2.2.60)
and we obtain

|h1 − 1

|Y |
∫

Ω×Y

A(y)ρε[∇xy∗ +∇yχj(y)
∂y∗
∂xj

−∇yφ∗(y)z(x)]Tε(∇ψ)dxdy| ≤

≤ Cε
1
2 ||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.63)

with

h1 =

∫

Ω

hψdx− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)z(x)Tε(∇ψ)dxdy (2.2.64)
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Next, using inequalities 2 in Proposition 6.1.3 we can remove ρε (2.2.63). Also,

from property 6 in Proposition 6.1.3 we can replace ∇xy∗ with M ε
Y (∇xy∗),

∂y∗
∂xj

with

M ε
Y (

∂y∗
∂xj

) and z(x) with M ε
Y (z) in (2.2.63). Therefore we obtain

|h1 − 1

|Y |
∫

Ω×Y

A(y)[M ε
Y (∇xy∗) +∇yχj(y)M ε

Y (
∂y∗
∂xj

)−∇yφ∗(y)M ε
Y (z)]Tε(∇ψ)dxdy| ≤

≤ Cε
1
2 ||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.65)

From (2.2.33) and Proposition 6.1.3 we can first replace z by zε and afterwards zε

by M ε
Y (zε) in h1 defined at (2.2.64) and (2.2.65) becomes

|h2 − 1

|Y |
∫

Ω×Y

A(y)[M ε
Y (∇xy∗) +∇yχj(y)M ε

Y (
∂y∗
∂xj

)−∇yφ∗(y)M ε
Y (z)]Tε(∇ψ)dxdy| ≤

≤ Cεmin{α, 1
2
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) + Cε||zε||H1(ω) (2.2.66)

with

h2 =

∫

Ω

hψdx− 1

|Y |
∫

Ω×Y

A(y)∇yφ∗(y)M ε
Y (zε)Tε(∇ψ)dxdy (2.2.67)

Next note that
ε||zε||H1(ω) ≤ ε

1
2 ||z||H1(ω) (2.2.68)

We also observe that

||M ε
Y (v)ψ(

x

ε
)||L2(Ω̂ε)

≤ ||M ε
Y (v)||L2(Sε)||ψ(

x

ε
)||Sε ≤ ε||v||L2(Ω)||ψ||L2(Ω) (2.2.69)

for every v ∈ L2(Ω) and ψ ∈ L2
per(Y ), where

Sε =
⋃

ξ∈Ξε

(εξ + εY )

with Ξε = {(εξ + εY ) ∩ Ω̂ε} and Ω̂ε defined at Proposition 6.1.3 in the Appendix.

We used in (2.2.69) properties 4. and 5. of Proposition 6.1.3 in the Appendix.

From property 4. of Theorem 6.1.1 in the Appendix, together with (2.2.68) and
(2.2.69, (2.2.66) becomes

|h3 −
∫

Ω

A(
x

ε
)[M ε

Y (∇xy∗) +∇yχj(
x

ε
)M ε

Y (
∂y∗
∂xj

)−∇yφ∗(
x

ε
)M ε

Y (z)]∇ψdxdy| ≤

≤ Cεmin{α, 1
2
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.70)

with
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h3 =

∫

Ω

hψdx−
∫

Ω

A(
x

ε
)∇yφ∗(

x

ε
)M ε

Y (zε)∇ψdxdy (2.2.71)

Using property 61. of Proposition 6.1.3 we can replace M ε
Y (∇xy∗) with ∇xy∗ and

from (2.2.69) we can introduce ρε in front of ∇yχj(
x
ε
)M ε

Y (∂y∗
∂xj

) − ∇yφ∗(x
ε
)M ε

Y (z) in

(2.2.70) and we have

|h3 −
∫

Ω

A(
x

ε
)

[
∇xy∗ + ρε

(
∇yχj(

x

ε
)M ε

Y (
∂y∗
∂xj

)−∇yφ∗(
x

ε
)M ε

Y (z)

)]
∇ψdxdy| ≤

≤ Cεmin{α, 1
2
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.72)

Property 63 of Proposition 6.1.3 in the Appendix implies, (see [41]),

||(M ε
Y (v)−Qε(v))ψ(

x

ε
)||L2(Ω) ≤ Cε||v||H1(Ω)||ψ||L2(Y ) (2.2.73)

for every v ∈ H1(Ω) and ψ ∈ L2
per(Y ).

Then we can replace M ε
Y (zε) with Qε(zε) in h3 defined at (2.2.71) and we can also

replace M ε
Y (∂y∗

∂xj
) with Qε(

∂y∗
∂xj

) and M ε
Y (z) with Qε(z) in (2.2.72). Therefore we obtain

|h4 −
∫

Ω

A(
x

ε
)

[
∇xy∗ + ρε

(
∇yχj(

x

ε
)Qε(

∂y∗
∂xj

)−∇yφ∗(
x

ε
)Qε(z)

)]
∇ψdxdy| ≤

≤ Cεmin{α, 1
2
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.74)

with

h4 =

∫

Ω

hψdx−
∫

Ω

A(
x

ε
)∇yφ∗(

x

ε
)Qε(zε)∇ψdxdy (2.2.75)

where we used (2.2.68) in (2.2.74) above.

Using Cauchy inequality, (6.2.10), the fact that φ∗ ∈ W 1,p
per(Y ) with p > N and

property 6 of Proposition 6.1.3 in the Appendix we can replace Qε(zε) with zε in
(2.2.75) and (2.2.74) becomes

|h5 −
∫

Ω

A(
x

ε
)

[
∇xy∗ + ρε

(
∇yχj(

x

ε
)Qε(

∂y∗
∂xj

)−∇yφ∗(
x

ε
)Qε(z)

)]
∇ψdxdy| ≤

≤ Cεmin{m,1−N
p
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.76)

with m = min{α,
1

2
} and

h5 =

∫

Ω

hψdx−
∫

Ω×Y

A(
x

ε
)∇yφ∗(

x

ε
)zε∇ψdxdy (2.2.77)

Note that

ε|
∫

Ω

A(
x

ε
)φ∗(

x

ε
)∇zε∇ψdx| ≤ Cε||ψ||H1(Ω)||φ∗||W 1,p(Y )||zε||H1(Ω) (2.2.78)
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Therefore we can introduce ε

∫

Ω

A(
x

ε
)φ∗(

x

ε
)∇zε∇ψdx in (2.2.77) and we have

|h6 −
∫

Ω

A(
x

ε
)

[
∇xy∗ + ρε

(
∇yχj(

x

ε
)Qε(

∂y∗
∂xj

)−∇yφ∗(
x

ε
)Qε(z)

)]
∇ψdxdy| ≤

≤ Cεmin{m,1−N
p
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.79)

with m = min{α,
1

2
} and

h6 =

∫

Ω

hψdx−
∫

Ω×Y

A(
x

ε
)∇(εφ∗(

x

ε
)zε)∇ψdxdy (2.2.80)

Similarly as in Griso, [41], we can observe that

||ε ∂ρε

∂xj

Qε(
∂v

∂xi

)ψ(
.

ε
)||L2(Ω) ≤ ||ε ∂ρε

∂xj

||L∞(Ω̂ε)
||Qε(

∂v

∂xi

)||L2(Ω̂ε)
||ψ||L2(Y ) ≤

≤ Cε||v||H2(Ω)

||ερε
∂

∂xj

Qε(
∂v

∂xi

)ψ(
.

ε
)||L2(Ω) ≤ ε||ρε||L∞(Ω)|| ∂

∂xj

Qε(
∂v

∂xi

)||L2(Ω)||ψ||L2(Y ) ≤

≤ Cε||v||H2(Ω) (2.2.81)

for all v ∈ H2(Ω) and ψ ∈ L2
per(Y ).

Using the inequalities (2.2.81) in (2.2.79) we obtain

|h7 −
∫

Ω

A(
x

ε
)

[
∇xy∗ +∇x

(
ερε

(
χj(

x

ε
)Qε(

∂y∗
∂xj

)− φ∗(
x

ε
)Qε(z)

))]
∇ψdxdy| ≤

≤ Cεmin{m,1−N
p
}||ψ||H1(Ω)(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.82)

with m = min{α,
1

2
} and h7 is given by

h7 =

∫

Ω

hψdx−
∫

Ω×Y

A(
x

ε
)∇gε∇ψdxdy (2.2.83)

where gε = εφ∗(x
ε
)zε.

If we consider ψ = rε −
[
y∗ + ερε

(
χj(

x

ε
)Qε(

∂y∗
∂xj

)− φ∗(
x

ε
)Qε(z)

)]
as a test func-

tion in the initial problem (2.2.35) from the elipticity of the matrix a we obtain

||∇rε −∇x

[
y∗ + ερε

(
χj(

x

ε
)Qε(

∂y∗
∂xj

)− φ∗(
x

ε
)Qε(z)

)]
||L2(Ω) ≤
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≤ Cεmin{m,1−N
p
}(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.84)

with m = min{α,
1

2
} and where rε was defined at (2.2.35).

Using again (2.2.78) and property 2 of Proposition 6.1.3 in Appendix, we can
remove ρε from (2.2.84) and we have

||∇rε −∇x

[
y∗ + εχj(

x

ε
)Qε(

∂y∗
∂xj

)− εφ∗(
x

ε
)Qε(z)

]
||L2(Ω) ≤

≤ Cεmin{m,1−N
p
}(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.85)

with m = min{α,
1

2
}. Note that

||∇gε−ε∇x

(
φ∗(

·
ε
)Qε(z)

)
||L2(Ω) ≤ ||εφ∗( ·

ε
)(∇xzε−∇xQε(z))||L2(Ω)+||∇yφ∗(

·
ε
)(zε−Qε(z))||L2(Ω).

(2.2.86)

We ca easily see that (2.2.30), (2.2.33) and the properties of Qε (see Prop. 4.3 in
the Appendix) imply that,

||zε −Qε(z)||L2(Ω) ≤ εβ||z||H1(Ω) and ||∇xzε −∇xQε(z)||L2(Ω) ≤ C (2.2.87)

where β
.
= min{1, α}. Using (2.2.87) we obtain that,

||εφ∗( ·
ε
) (∇xzε −∇xQε(z)) ||L2(Ω) ≤ Cε||φ∗||L∞(Y )

and triangle inequality together with (6.2.10) give

||∇yφ∗(
·
ε
)(zε −Qε(z))||L2(Ω) ≤ Cεβ(1− 1

N
)||φ∗||W 1,p(Y )||z||H1(Ω).

Using the properties of φ∗ and the last two inequalities in (2.2.86) we obtain

||∇gε − ε∇x

(
φ∗(

·
ε
)Qε(z)

)
||L2(Ω) ≤ Cεβ(1− 1

N
)||z||H1(Ω) (2.2.88)

Inequality (2.2.88) used in (2.2.85) implies,

||∇yε −∇x

[
y∗ + εχj(

x

ε
)Qε(

∂y∗
∂xj

)

]
||L2(Ω) ≤

≤ Cεmin{m,β(1−N
p

)}(||z||H1(Ω) + ||y∗||H2(Ω)) (2.2.89)

where β
.
= min{1, α} and m = min{α,

1

2
}. From (2.2.85) and (2.2.89) we obtain the

statement of the Lemma.
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Then applying Lemma 2.2.4 with h = 0, yε = εϕε, φ∗(y) = χij(y), zε(x) = z(x) =
∂2u0

∂xi∂xj

we obtain that

||εϕε||H1(Ω) ≤ Cεmin{ 1
2
,1−N

p
}||u0||H3(Ω) (2.2.90)

Using (2.2.90) in (2.2.26) we have

||uε(.)− u0(.)− εw1(.,
.

ε
) + εθε(.)− ε2χij(

·
ε
)

∂2u0

∂xi∂xj

||H1(Ω) ≤ Cεmin{ 3
2
,2−N

p
}||u0||H3(Ω)

(2.2.91)

and this concludes the proof of Theorem 2.2.2

Remark 2.2.6. It has been shown in [76] that the assumptions χj, χij ∈ W 1,p
per(Y )

for some p > N are implied by the conditions that the BMO semi-norm norm of
the coefficients matrix a is small enough (see [76] for the precise statement). In a
different work by M. Vogelius and Y.Y. Lin [52], it has been shown that one can
have χj, χij ∈ W 1,∞

per (Y ) in the case of piecewise discontinuous matrix of coefficients
when the discontinuities occur on certain smooth interfaces (see [52] for the precise
statement). It is clear that the lack of smoothness in the matrix a and the fact that we
only assume u0 ∈ H3(Ω) would not allow one to use neither Avellaneda compactness
principle nor the maximum principle to bound ϕε in the L2.

Corollary 2.2.7. For N = 2 we could use a Meyers type regularity result and prove
that there exists p > 2 such that χj, χij ∈ W 1,p

per(Y ). Therefore Theorem 2.2.2 holds
true in this case in the very general conditions that u0 ∈ H3(Ω) and a ∈ L∞(Y ).

Remark 2.2.8. We can see that, in the particular case when p = +∞, the error
estimate (2.2.90) will have order O(ε

3
2 ) as is the case in [1], where they assume

u0 ∈ W 3,∞ and χij ∈ W 1,∞(Y ).

Remark 2.2.9. If one wants to remove the assumptions on χj, χij and only as-
sumes that the sequence zε, z ∈ W 1,∞(Ω) with ||zε||W 1,∞(Ω) ≤ C||z||W 1,∞(Ω), then using
(2.2.33) we can first replace z by zε in h1 defined at (2.2.64). Afterwards using
property 5. of Theorem 6.1.1 in the Appendix we replace zε by Tε(zε) in h1 defined at
(2.2.64) and (2.2.66). We continue the proof of Lemma 2.2.4 using similar arguments
and if we have that α defined at (2.2.33) verifies α ≥ 1

2
we obtain

||∇yε −∇gε −∇x

[
y∗ + εχj(

x

ε
)Qε(

∂y∗
∂xj

)− εφ∗(
x

ε
)Qε(z)

]
||L2(Ω) ≤

≤ Cε
1
2 (||z||W 1,∞(Ω) + ||y∗||H2(Ω)) (2.2.92)

Following similar steps as in the proof of Theorem 2.2.2 we obtain that the error
estimate (2.2.90) will have order O(ε

3
2 ).
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2.3 A natural extra term in the first order correc-

tor to the homogenized eigenvalue of a peri-

odic composite medium

In this section we analyze the Dirichlet eigenvalues of an elliptic operator corre-
sponding to a composite medium with periodic microstructure. This problem was
initially studied in [59], for the case of C∞ coefficients. We generalize their result to
the case of L∞ coefficients.

We will first state a simple consequence of Theorem 2.2.2 which will play a fun-
damental role further in our analysis.

Corollary 2.3.1. Let Ω ⊂ R2 be a bounded, convex curvilinear polygon of class C∞.
Let u0 ∈ H2+r(Ω) with r > 0. In the conditions of Theorem 2.2.2, there exists a
constant Cr independent of u0 and ε such that

||uε(.)− u0(.)− εw1(.,
.

ε
) + εθε(.)||L2(Ω) ≤ Crε

1+r min{ 1
2
,1−N

p
}||u0||H2+r(Ω)

Proof. From Theorem 2.1.1, if u0 ∈ H2(Ω), we have

||uε(·)− u0(·)− εw1(·, .

ε
) + εθε(·)||H1

0 (Ω) ≤ Cε||u0||H2(Ω) (2.3.1)

Indeed note that using the hypothesis on χj, χij and the properties of Qε we have
that

||∇w1(·, .

ε
)−∇u1(·, .

ε
)||L2(Ω) < ε||χj||W 1,p(Y )||u0||H2(Ω) < C

where u1 is defined by (2.0.13).

Also, using the definition of θε and βε, we have

||∇θε −∇βε||L2(Ω) < ||w1(·, .

ε
)− u1(·, .

ε
)||H1(Ω) < C

Using the last two inequalities in Theorem 2.1.1 we obtain (2.3.1). Next we may
see that, for u0 ∈ H3(Ω), Theorem 2.2.2 immediately implies that

||uε(.)− u0(.)− εw1(.,
.

ε
) + εθε(.)||L2(Ω) ≤ Cεmin{ 3

2
,2−N

p
}||u0||H3(Ω) (2.3.2)

Using (2.3.1) and (2.3.2) together with a similar interpolation argument as in [59](
see Theorem 2.4), we prove the statement of the Corollary.

Next we will state the spectral problem and recall briefly the result obtained in
[59]. On the domain Ω ⊂ R2, we consider the spectral problem (2.0.19) associated
with operator Lε, i.e.,

{
Lεvε = −∇ · (A(

x

ε
)∇vε(x)) = λεvε in Ω

vε = 0 on ∂Ω
(2.3.3)
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If we consider the eigenvalue problem for the operator L
.
= −div(Ahom∇) with

Ahom defined at (2.0.2), i.e.,

{
Lv = λv in Ω
v = 0 on ∂Ω

(2.3.4)

then it is well known that for λ simple eigenvalue of (2.3.4), for each ε small
enough, there exists λε, an eigenvalue of (2.3.3) such that

λε ε→ λ

For any f ∈ L2(Ω), we define Tεf = uε where uε ∈ H1
0 (Ω) is the solution of

Lεuε = f in Ω, and similarly Tf = u0 with u0 ∈ H1
0 (Ω) solution of Lu0 = f . Tε and

T are compact and self adjoint operators from L2(Ω) into L2(Ω). Moreover Tε
ε→ T

pointwise.

It can be seen that µε
k =

1

λε
k

are the eigenvalues of Tε and µk =
1

λk

are the

eigenvalues of T . From the definition of Tε and T , the eigenvectors corresponding to
µε

k and respectively µk are the same as the eigenvectors of Lε and L corresponding to
λε

k and respectively λk.

It is proved in [59] that if Ω is a bounded convex domain or bounded with a C2,β

boundary we have that

|λ− λε
k| ≤ Cε (2.3.5)

for ε sufficiently small. Moreover in the case of a smooth matrix of coefficients a,
and for the eigenvectors of L in H2+r(Ω), for some r > 0, using (2.0.8) and (2.0.9)
and a result of Osborne [68], they obtain that

λεn − λ = εnλ

∫

Ω

θ̄εnvdx + O(ε1+r
n )

for any sequence εn → 0 and θ̄ε defined by

−∇ · (A(
x

ε
)∇θ̄ε) = 0 in Ω , θ̄ε = χj(

x

ε
)

∂v

∂xj

on ∂Ω (2.3.6)

The analysis in the case when the coefficients are only L∞ employs a different
argument and is presented in the following Lemma.

Lemma 2.3.2. Let us assume the hypothesis of Corollary 2.3.1, λ a simple eigenvalue
for L corresponding to the eigenfunction with ||v||L2(Ω) = 1, and v ∈ H2+r(Ω) for some
r > 0. Then,

λεn − λ = εnλ

∫

Ω

θ̄εnvdx + O(ε
1+r min{ 1

2
,1−N

p
}

n ) (2.3.7)

for some subsequence εn → 0.
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Proof. Using a result of Osborne [68], we can deduce as in [59] that

1

λ
− 1

λεn
= 〈(T − Tεn)v, v〉+ O (2.3.8)

Similarly as in [59] define wε = Tεv and using the definition of the operators Tε, T

observe that wε and
1

λ
v solve the following boundary value problems in H1

0 (Ω),

Lεwε = v and L(
1

λ
v) = v.

In the conditions of lemma 2.3.2, using Corollary 2.3.3 we have that

||wε(·)− 1

λ
v(·)− ε

λ
χj(

·
ε
)

∂v

∂xj

+
ε

λ
θ̄ε(·)||L2(Ω) = O(ε1+r̄)

where r̄ = r min{1
2
, 1− N

p
} > 0.

Following identical steps as in [59] (see Prop. 3.4) the statement of Lemma 2.3.2
follows.

The fact that θ̄ε is bounded in L2(Ω) follows from χj ∈ W 1,p(Y ), p > 2 and
v ∈ H2+r(Ω) ⊂ W 1,∞(Ω) for r > 0 and Ω ⊂ R2. Using this and (2.3.5) from Lemma
2.3.2 we obtain that the result of Moskow and Vogelius (see Theorem 3.6) remains
true in the general case of nonsmooth coefficients, i.e.,

Theorem 2.3.3. In the hypothesis of Lemma 2.3.2 if λ∗ is the limit of the sequence

(λεn − λ)

εn

(as εn → 0) then there exists a function θ∗, weak limit point of the sequence

θ̄ε in L2(Ω), so that

λ∗ = λ

∫

Ω

θ∗vdx

Conversely, if θ∗ is a weak limit point of the sequence θ̄ε in L2(Ω) the there exists
a sequence εn → 0 such that

(λεn − λ)

εn

→ λ

∫

Ω

θ∗vdx

.

In the end we make the observation that the case when λ is a multiple eigenvalue
can be treated similarly as in [59] (see Remark 3.7).
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Chapter 3

Multiscale analysis of perforated
materials

The periodic unfolding method (see [22]), as a simpler alternative to the two-
scale convergence, was developed to study the limit behavior of periodic problems
depending on a small parameter ε. As it turns out, the same philosophy applies to a
whole range of periodic problems with small parameters, provided they have a specific
period. The method is flexible enough to apply as well to almost any combinations
of the preceding cases.

In this chapter, we present these various extensions and show how they apply to
known results and allow for generalizations. This approach is significantly simpler
than the original ones, both in spirit and in practice.

The plan of the chapter is as follows.

Section 3.1 is devoted to the presentation of various unfolding operators and their
main properties. More precisely, in subsection 3.1.1, we recall the definition of the
unfolding operator Tε for the periodic case in fixed domains ([22] and [31]). In sub-
section 3.1.2, we present the unfolding operator adapted to the case of holes of size
ε (with Neumann boundary condition) with period of same size (see [25] for details
and applications). Subsection 3.1.3 introduces the unfolding operator Tε,δ depending
of two small parameters ε and δ (corresponding to the scales ε and εδ) and was first
introduced in a similar form in [19] and [20]. The following subsections deal again
with an unfolding operator T bl

ε,δ depending on the scales ε and εδ when the latter
occurs only on a layer. This approach never assumes the existence of an extension
operator in the cells but is based on the Poincaré-Wirtinger inequality (subsections
3.1.1) and Sobolev-Poincaré-Wirtinger inequality (subsections 3.1.2 and 3.1.3). The
latter requires that the dimension N be larger than 2.

The remainder of the chapter is devoted to the application to various linear prob-
lems in perforated domains and with oscillating coefficients. For simplicity, we assume
a homogeneous Dirichlet boundary condition on the outer boundary of the domain,
but more general boundary conditions can be handled provided the outer boundary
is Lipschitz and the perforations do not intersect it. In each case, we obtain both
the unfolded and the classical (standard) form for the limit problem. The opera-
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tor Tε allows to homogenize the coefficients of the differential operators, whereas the
operators Tε,δ (or T bl

ε,δ,...) generates the “strange terms” in the limit.

Section 3.2 concerns the homogenization of elliptic problems with oscillating co-
efficients, for volume ε-periodically distributed small holes of size εδ with Dirichlet
condition. These results are well known for the Laplace operator, with the appear-
ance of the “strange term” (see [26] and references therein). For the case of oscillating
coefficients, we refer to [29] where H-convergence is used. It should be noted that for
technical reasons, our method fails to apply in dimension N = 2.

Section 3.3 considers small perforations of size εδ which are distributed ε-periodically
in a layer of thickness ε. It generalizes the results of [73], [61] and [26] to the case of
oscillating coefficients.

Section 3.4 deals with the Neumann sieve problem with zero thickness and oscil-
lating coefficients. For the case of constant coefficients, we refer the reader to [6],
[30], [60], [72], [3] and [66]. In Section 3.5, the case of the thick sieve is treated (for
which we refer to [35] for the case of the Laplace operator). The unfolding method
was applied for the first time for sieve problems, in [63] also in the case of an operator
with constant coefficients.

To conclude this section, we would like to point out that using the various un-
folding operators introduced in this chapter, one can treat any combination of the
previous problems, for instance, a medium with ε−size Neumann perforations and
εδ−size Dirichlet holes in the bulk (see Figure 3.10), or even a thick sieve in such a
medium. This will be presented in a forthcoming paper which will also include the
proof of convergence for the energies.

3.1 The periodic unfolding operator

In this section we recall the general properties of the periodic unfolding operator
introduced in [22] and include variants and generalizations, all based on the technique
of unfolding. In particular, we introduce the notion of unfolding criterion for
integrals (in short u.c.i.), in order to simplify the proofs where unfolding is used.

Let Y be the unit cube of RN centered in the origin, Y
.
=

]
−1

2
,
1

2

[N

(more general

sets Y having the paving property in RN can also be used, cf. [32]). We consider the
periodical net on RN (i.e. the subgroup RN) and all the corresponding translates of
Y . By analogy with the one-dimensional case, to each x ∈ RN we can associate its
integer part, [x]Y belonging to the net, such that x − [x]Y ∈ Y , the latter being its
fractional part respectively, i.e, {x}Y = x − [x]Y (see figure 3.1). These definitions
are ambiguous, but only on a set of measure zero, which is enough for our purpose.

Therefore we have

x = ε
{x

ε

}
Y

+ ε
[x

ε

]
Y

for any x ∈ RN .
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Figure 3.1: The basic decomposition

Let Ω be open and bounded in RN . We use the following notations

Ω̂ε =
{

x ∈ Ω,
(
ε
[x

ε

]
+ εY

)
⊂ Ω

}
, Λε = Ω \ Ω̂ε. (3.1.1)

The set Ω̂ε is the smallest finite union of εY cells contained in Ω, while Λε is the
subset of Ω containing the parts from εY cells intersecting the boundary ∂Ω (See
Figure 3.2).

3.1.1 The case of fixed domains: the operator Tε

We recall here the definition of the unfolding operator and its main properties (for
details and proofs we refer the reader to [22] anf [31]).

Definition 3.1.1. For φ ∈ Lp(Ω), the unfolding operator Tε : Lp(Ω) → Lp(Ω× Y ) is
defined as follows:

Tε(φ)(x, y) =

{
φ
(
ε
[x

ε

]
Y

+ εy
)

if (x, y) ∈ (
Ω \ Λε)× Y,

0 if (x, y) ∈ Λε × Y.

Theorem 3.1.2. (Properties of the operator Tε)

1. For any v, w ∈ Lp(Ω), Tε(vw) = Tε(v)Tε(w).
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Figure 3.2: The sets Ω, Ω̂ε and Λε

2. For any w ∈ Lp(Ω), one has the following “exact integration” formula:

∫

Ω×Y

Tε(w)(x, y) dx dy =

∫

Ω

w(x) dx−
∫

Λε

w(x) dx =

∫
bΩε

w(x) dx.

3. For any u ∈ L1(Ω), ∫

Ω×Y

|Tε(u)| dxdy ≤
∫

Ω

|u| dx.

4. For any u ∈ L1(Ω),

∣∣∣∣
∫

Ω

udx−
∫

Ω×Y

Tε(u) dxdy

∣∣∣∣ ≤
∫

Λε

|u|dx. (3.1.2)

5. Let {wε} ⊂ L2(Ω) such that wε → w strongly in L2(Ω). Then

Tε(wε) → w strongly in L2(Ω× Y ).

6. Let wε ⇀ w weakly in H1(Ω). Then, there exists a subsequence and ŵ ∈
L2

(
Ω; H1

per(Y )
)

such that

Tε(∇wε) ⇀ ∇xw +∇yŵ weakly in L2(Ω× Y ).
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Property 4 shows that any integral of a function w on Ω, is “almost equivalent”
to the integral of its unfolded on Ω×Y , the ”integration defect” arises only from the
cells intersecting the boundary ∂Ω and is controlled by the right hand side integral
in (3.1.2).

The following proposition, that we call unfolding criterion for integrals (u.c.i.),
is very useful tool when treating homogenization problems.

Proposition 3.1.3. (u.c.i.) If {wε} is a sequence in L1(Ω) satisfying
∫

Λε

|wε| dx → 0,

then ∫

Ω

wε dx−
∫

Ω×Y

Tε(wε) dxdy → 0.

Based on this result, in order to simplify the proofs in the sequel, we introduce
the following notation:

Notation 3.1.4. If {wε} is a sequence satisfying u.c.i., we write
∫

Ω

wεdx
Tε'

∫

Ω×Y

Tε(wε) dxdy.

Corollary 3.1.5. Let {uε} be bounded in L2(Ω) and {vε} be bounded in Lp(Ω) with
p > 2. Then we have

∫

Ω

uεvεdx
Tε'

∫

Ω×Y

Tε(uε)Tε(vε) dxdy.

We end this subsection with the notion of local average of a function.

Definition 3.1.6. The local average M ε
Y : Lp(Ω) 7→ Lp(Ω), is defined for any φ in

Lp(Ω), 1 ≤ p < ∞, by

M ε
Y (φ)(x)

.
=

∫

Y

Tε(φ)(x, y) dy.

Remark 3.1.7. The function M ε
Y (φ) is indeed a local average, since

M ε
Y (φ)(x) =

∫

Y

Tε(φ)(x, y) dy =





1

εN

∫

ε
[x

ε

]
+ εY

φ(ζ) dζ, if x ∈ Ω̂ε,

0 if x ∈ Λε.

Remark 3.1.8. Note that Tε(M
ε
Y (φ)) = M ε

Y (φ) on the set Ω× Y .

The next proposition, which will be frequently used as well, is classical:

Proposition 3.1.9. Let {wε} be a sequence such that wε → w strongly in Lp(Ω)
where 1 ≤ p < ∞. Then we have

M ε
Y (wε) → w strongly in Lp(Ω).
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3.1.2 Unfolding in domains with volume-distributed “small”
holes: the operator Tε,δ

In Section 3.2, we will consider domains with holes of size εδ (with δ → 0 with
ε) and εY -periodically distributed. More precisely (see Figure 3.3), for a given open
B ⊂⊂ Y we denote Y ∗

δ = Y \ δB and define the perforated domain Ω∗
ε,δ as

Ω∗
ε,δ =

{
x ∈ Ω, such that

{x

ε

}
∈ Y ∗

δ

}
. (3.1.3)

Figure 3.3: The sets B and Y ∗
δ and the corresponding Ω∗

ε,δ

This geometry of domains with “small” holes requires another unfolding operator
Tε,δ depending on both parameters ε and δ. In the next sections, we will be concerned
by functions vε,δ that vanish on the whole boundary of the perforated domain Ω∗

ε,δ,
namely belonging to the space H1

0 (Ω∗
ε,δ). They are naturally extended by zero to the

whole of Ω and these extensions denoted ṽε,δ are functions in H1
0 (Ω). This justifies

the introduction of Tε,δ on the fix domain Ω (but keeping in mind that our aim will
be to apply it to ṽε,δ).
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Definition 3.1.10. For φ ∈ Lp(Ω), p ∈ [1,∞[, the unfolding operator Tε,δ : Lp(Ω) →
Lp(Ω× RN) is defined by

Tε,δ(φ)(x, z) =

{
Tε(x, δz) if (x, z) ∈ Ω̂ε × 1

δ
Y,

0 otherwise.

The following results follow directly from Theorem 2.2 by using the change of
variable z = (1/δ)y.

Theorem 3.1.11. (Properties of the operator Tε,δ)

1. For any v, w ∈ Lp(Ω), Tε,δ(vw) = Tε,δ(v)Tε,δ(w).

2. For any u ∈ L1(Ω), one has

δN

∫

Ω×RN

|Tε,δ(u)| dxdz ≤
∫

Ω

|u| dx.

3. For any u ∈ L2(Ω),

‖Tε,δ(u)‖2
L2(Ω×RN ) ≤

1

δN
‖u‖2

L2(Ω).

4. For any u ∈ L1(Ω),

∣∣∣∣
∫

Ω

udx− δN

∫

Ω×RN

Tε,δ(u) dxdz

∣∣∣∣ ≤
∫

Λε

|u| dx.

5. Let u ∈ H1(Ω). Then

Tε,δ(∇xu) =
1

εδ
∇z

(Tε,δ(u)
)

in Ω× 1

δ
Y.

Suppose N ≥ 3, set 2∗ = 2N/(N − 2) and denote the Sobolev-Poincaré-Wirtinger
constant for H1(Y ) by C.

6. Let ω be open and bounded in RN . Then the following estimates hold:

‖∇z

(Tε,δ(u)
)‖2

L2(Ω× 1
δ
Y )
≤ ε2

δN−2
‖∇u‖2

L2(Ω), (3.1.4)

‖Tε,δ

(
u−M ε

Y (u)
)‖2

L2(Ω;L2∗ (RN )) ≤
Cε2

δN−2
‖∇u‖2

L2(Ω), (3.1.5)

and

‖Tε,δ

(
u)‖2

L2(Ω×ω) ≤
2Cε2

δN−2
‖∇u‖2

L2(Ω) + 2|ω | ‖u‖2
L2(Ω).

7. Let {wε,δ} be a sequence of functions in H1(Ω) which converges weakly to some w0

when both ε and δ go to zero. Then, up to an subsequence, there is U in L2(Ω; L2
loc(RN))
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and W in L2(Ω; L2∗(RN)) with ∇zW in L2(Ω× RN) such that

δ
N
2
−1

ε

(Tε,δ(wε,δ)−M ε
Y (wε,δ)1 1

δ
Y

)
⇀ W weakly in L2(Ω; L2∗(RN)),

δ
N
2
−1

ε
∇z

(Tε,δ(wε,δ)
)
1 1

δ
Y ⇀ ∇zW weakly in L2(Ω× RN),

δ
N
2
−1

ε
Tε,δ(wε,δ) ⇀ U weakly in L2(Ω; L2

loc(RN)).

Remark 3.1.12. The use of the Poincaré-Wirtinger inequality in place of the Sobolev-
Poincaré-Wirtinger inequality in estimate (3.1.5) gives

‖Tε,δ

(
u−M ε

Y (u)
)‖2

L2(Ω′×RN ) ≤
1

δ2

C ′ε2

δN−2
‖∇u‖2

L2(Ω),

where C ′ is the Poincaré-Wirtinger constant of Y . This estimate is not compatible
with (3.1.4).

Concerning the integral formulas, we have the following results, similar to those
of the previous subsection.

Proposition 3.1.13. (u.c.i.) If {wε} is a sequence in L1(Ω) satisfying

∫

Λε

|wε| dx → 0,

then ∫

Ω

wε dx
Tε,δ' δN

∫

Ω×RN

Tε,δ(wε) dxdz.

Corollary 3.1.14. Let {uε} be bounded in L2(Ω) and {vε} be bounded in Lp(Ω) with
p > 2. Then ∫

Ω

uεvεdx
Tε,δ' δN

∫

Ω×RN

Tε,δ(uε)Tε,δ(vε)dxdz.

3.1.3 The boundary-layer unfolding operator: the operator
T bl

ε,δ

For sieve-type problems (Section 3.3 and 3.4 below), we consider the case of holes
of size εδ, distributed in Σ ′

ε, a layer of thickness ε parallel to a hyperplane in the open
domain Ω in RN . We denote x′ .

= (x1, · · · , xN−1), Π
.
= {xN = 0} and set Σ = Π ∩Ω.

The layer Σ ′
ε is defined as:

Σ ′
ε = Ω ∩

{
x; |xN | < ε

2

}
,
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and by analogy with the (3.1.1), we introduce the corresponding sets

Σ̂ ′
ε =

{
x ∈ Σ ′

ε,
(
ε
[x

ε

]
+ εY

)
⊂ Σ ′

ε

}
, Λ ′

ε = Σ ′
ε, \Σ̂ ′

ε,

and denote Σ̂ε = Σ̂ ′
ε ∩ Π.

The set Σ̂ ′
ε is the smallest union of εY cells contained in Σ ′

ε (see figure 3.4.)

Figure 3.4: The sets Σ′
ε, Σ̂ε and Λ′ε

Definition 3.1.15. For φ ∈ Lp(Σ ′
ε), p ∈ [1,∞[ the unfolding operator T bl

ε,δ : Lp(Σ ′
ε) →

Lp(Σ× RN) is defined by

T bl
ε,δ(φ)(x′, z) =

{
φ
(
ε
[x′

ε

]
Y

+ εδz
)

if (x′, z) ∈ Σ̂ε × 1

δ
Y,

0 otherwise .

This operation, designed to capture the contribution of the barriers in the limit
process, was originally used in [63].

We also introduce the notion of local average related to the hyperplane Σ.

Definition 3.1.16. The local average M ε,bl
Y : Lp(Σ ′

ε) 7→ Lp(Σ), is defined for any φ
in Lp(Σ ′

ε), 1 ≤ p < ∞, by

M ε,bl
Y (φ)(x′) = δN

∫
1
δ
Y

T bl
ε,δ(φ)(x′, z) dz =





1

εN

∫

ε
[x′

ε

]
+ εY

φ(ζ) dζ, if x′ ∈ Σ̂ε,

0 if x′ ∈ Σ \ Σ̂ε.
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Remark 3.1.17. Since elements of Lp(Σ) can be considered as functions of Lp(Σ ′
ε),

M ε,bl
Y can be applied to them. With this convention, T bl

ε,δ(M
ε,bl
Y (φ)) = M ε,bl

Y (φ) on the
set Σ.

We also have an equivalent of Proposition 3.1.9.

Proposition 3.1.18. Let wε be a sequence such that wε ⇀ w weakly in H1(Ω). Then

M ε,bl
Y (wε) → w|Σ strongly in L2(Σ).

It is easy to check that most of the results stated in the previous subsection extend
to T bl

ε,δ.

Theorem 3.1.19. (Properties of the operator T bl
ε,δ)

1. For any v, w ∈ Lp(Σ ′
ε),

T bl
ε,δ(vw) = T bl

ε,δ(v)T bl
ε,δ(w).

2. For any u ∈ L1(Σ ′
ε),

εδN

∫

Σ×RN

T bl
ε,δ(u) dxdz =

∫
bΣ ′

ε

u dx, and

εδN

∫

Σ×RN

|T bl
ε,δ(u)| dxdz ≤

∫

Σ ′
ε

|u| dx.

3. For any u ∈ L2(Σ ′
ε),

‖T bl
ε,δ(u)‖2

L2(Σ×RN ) ≤
1

εδN
‖u‖2

L2(Σ ′
ε)
.

4. For any u ∈ L1(Σ ′
ε), one has

∣∣∣∣
∫

Σ ′
ε

u dx− εδN

∫

Σ×RN

T bl
ε,δ(u) dxdz

∣∣∣∣ ≤
∫

Λ ′ε

|u| dx.

5. Let u be in H1(Σ ′
ε). Then,

T bl
ε,δ(∇xu) =

1

εδ
∇z

(T bl
ε,δ(u)

)
in Σ× 1

δ
Y.

Suppose N ≥ 3, set 2∗ = 2N/(N − 2) and denote the Sobolev-Poincaré-Wirtinger
constant for H1(Y ) by C.

6. Let ω be open and bounded in RN . Then the following estimates hold:

‖∇z

(T bl
ε,δ(u)

)‖2
L2(Σ× 1

δ
Y )
≤ ε

δN−2
‖∇u‖2

L2(Σ ′
ε)
,

‖T bl
ε,δ

(
u−M ε,bl

Y (u)
)‖2

L2(Σ;L2∗ (RN ))
≤ Cε

δN−2
‖∇u‖2

L2(Σ ′
ε)
,
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and

‖T bl
ε,δ

(
u)‖2

L2(Σ×ω) ≤ 2
Cε

δN−2
‖∇u‖2

L2(Σ ′
ε)

+ 2|ω | ‖u‖2
L2(Σ ′

ε)
.

7. Let wε,δ be in H1(Σ ′
ε) such that ‖∇wε,δ‖L2(Σ ′

ε)
is bounded. Then, up to a subse-

quence, there exists U in L2(Σ; L2
loc(RN)) and W in L2(Σ; L2∗(RN)) with ∇zW in

L2(Σ× RN) such that

δ
N
2
−1

√
ε

(Tε,δ(wε,δ)−M ε
Y (wε,δ)1 1

δ
Y

)
⇀ W weakly in L2(Σ; L2∗(RN)),

δ
N
2
−1

√
ε
∇z

(Tε,δ(wε,δ)
)
1 1

δ
Y ⇀ ∇zW weakly in L2(Σ× RN),

δ
N
2
−1

√
ε
Tε,δ(wε,δ) ⇀ U weakly in L2(Ω; L2

loc(RN)).

Proposition 3.1.20. (u.c.i.) If {wε} is a sequence in L1(Σ ′
ε) satisfying

∫

Λ ′ε

|wε| dx → 0,

then ∫

Σ ′
ε

wε dx
T bl

ε,δ' εδN

∫

Σ×RN

T bl
ε,δ(wε) dxdz.

Corollary 3.1.21. Let {uε} ⊂ L2(Σ ′
ε) and {vε} ⊂ Lp(Σ ′

ε) with p > 2, such that
‖uε‖L2(Σ ′

ε)
and ‖vε‖Lp(Σ ′

ε) are bounded independently of ε. Then

∫

Σ ′
ε

uεvε dx
T bl

ε,δ' εδN

∫

Σ×RN

T bl
ε,δ(uε)T bl

ε,δ(vε) dxdz.

For sieve problems, there is a need to distinguish between the subdomains above
and below Σ. Set

Ω+ = RN
+ ∩ Ω, Ω− = RN

− ∩ Ω, Y+ = RN
+ ∩ Y, Y− = RN

− ∩ Y.

We suppose that the two domains Ω+ and Ω− have a Lipschitz boundary.

For simplicity, we will make the convention that all the results stated for Ω+, are
true also for Ω− unless specified otherwise. For any function u defined in Ω, we denote
by u+ its restriction to the domain Ω+, i.e., u+ ≡ u|Ω+ . Analogously, u− ≡ u|Ω− .

The corresponding definitions and propositions are the following:

Definition 3.1.22. The local average M ε,bl
Y± : Lp(Σ ′

ε±) 7→ Lp(Σ), is defined for any φ
in Lp(Σ ′

ε±), 1 ≤ p < ∞, by

M ε,bl
Y± (φ)(x′) .

=
δN

|Y±|
∫

Y±
T bl

ε,δ(φ)(x′, z) dz.
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Proposition 3.1.23. Let wε be a sequence such that wε ⇀ w± weakly in H1(Ω±).
Then

M ε,bl
Y± (wε) → w±|Σ strongly in L2(Σ).

Theorem 3.1.24. 1. For all φ ∈ L2(Ω±),

‖T bl
ε,δ(u)‖2

L2(Σ×RN
± ) ≤

1

εδN
‖u‖2

L2(Σ ′
ε±).

Suppose N ≥ 3, set 2∗ = 2N/(N − 2) and denote the Sobolev-Poincaré-Wirtinger
constant for H1(Y±) by C.

2. Let u ∈ H1(Ω±). Let ω open and bounded in RN
+ . Then the following estimates

hold:
‖∇z

(T bl
ε,δ(u)

)‖2
L2(Σ× 1

δ
Y±)

≤ ε

δN−2
‖∇u‖2

L2(Σ ′
ε±),

‖T bl
ε,δ

(
u−M ε,bl

Y (u)
)‖2

L2(Σ;L2∗ (RN
± ))

≤ Cε

δN−2
‖∇u‖2

L2(Σ ′
ε±),

and

‖T bl
ε,δ

(
u)‖2

L2(Σ×ω) ≤ 2
Cε

δN−2
‖∇u‖2

L2(Σ ′
ε+) + 2|ω | ‖u‖2

L2(Σ ′
ε+).

A similar inequality is true for bounded open subsets of RN
− .

3. Let wε,δ be in H1(Σ ′
ε +) such that ‖∇wε,δ‖L2(Σ ′

ε +) is bounded. Then, up to a sub-

sequence there exists U+ in L2(Σ; L2
loc(RN

+ )) and W+ in L2(Σ; L2∗(RN
± )) with ∇zW

+

in L2(Σ× RN
+ ) such that

δ
N
2
−1

√
ε

(T bl
ε,δ(wε,δ)−M ε

Y+
(wε,δ)1 1

δ
Y+

)
⇀ W+ weakly in L2(Σ; L2∗(RN

+ )),

δ
N
2
−1

√
ε
∇z

(T bl
ε,δ(wε,δ)

)
1 1

δ
Y+

⇀ ∇zW
+ weakly in L2(Σ× RN

+ ),

δ
N
2
−1

√
ε
T bl

ε,δ(wε,δ) ⇀ U+ weakly in L2(Σ; L2
loc(RN

+ )).

The same result holds true for sequences in H1(Σ ′
ε−).

The equivalent of Proposition 3.1.20 (u.c.i.) also holds true in Ω±.

3.2 Homogenization in domains with small holes

which are periodically distributed in volume

3.2.1 Functional setting

Let α and β be two real numbers such that 0 < α < β. For any open set O
in RN , denote by M(α, β,O) the set of the N × N matrix-fields A = (aij)1≤i,j≤N ∈
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(L∞ (O))N×N such that

α|λ|2 ≤ (A(x)λ, λ), |A(x)λ|2 ≤ β(A(x)λ, λ),

for any λ ∈ RN and a.e. x in O.

The perforated domain Ω∗
ε,δ is defined by (3.1.3). Assume that the matrix field

Aε(x) = (aε
ij(x))1≤i,j≤N belongs to M(α, β, Ω). For f ∈ L2(Ω), consider the following

problem:





Find uε,δ ∈ H1
0 (Ω∗

ε,δ) satisfying
∫

Ω∗
ε,δ

Aε∇uε,δ∇φ =

∫

Ω∗
ε,δ

fφ, (Pε,δ)

∀φ ∈ H1
0 (Ω∗

ε,δ).

In this section we suppose that N ≥ 3 and study the asymptotic behavior of
problem (Pε,δ) as ε and δ = δ(ε) are such that there exists a positive constant k1

satisfying

k1 = lim
ε→0

δ
N
2
−1

ε
, with 0 ≤ k1 < ∞. (3.2.1)

3.2.2 Unfolded homogenization result

We now derive the unfolded formulation of the limit problem for Pε,δ. In the limit
we will observe the contribution of the periodic oscillations as well as the contribution
of the perforations.

Here is the main theorem of this section.

Theorem 3.2.1. Let Aε belong to M(α, β, Ω). Suppose that, as ε goes to 0, there
exists a matrix A such that

Tε

(
Aε

)
(x, y) → A(x, y) a.e. in Ω× Y.

Furthermore, suppose that there exists a matrix field A0 such that as ε and δ → 0,

Tε,δ

(
Aε

)
(x, z) → A0(x, z) a.e. in Ω× (RN \B). (3.2.2)

Let uε,δ be the solution of the problem (Pε,δ). Then

uε,δ ⇀ u0 weakly in H1
0 (Ω), (3.2.3)

and there exists û ∈ L2(Ω; H1
per(Y )), and U satisfying (3.2.15) with U − k1u0 in

L2(Ω; KB), such that (u0, û, U) solves the equations

∫

Y

A(x, y)
(∇xu0(x) +∇yû(x, y)

)∇yφ(y) dy = 0, (3.2.4)
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for a.e. x in Ω and all φ ∈ H1
per(Y ) ;

∫

RN\B
A0(x, z)∇zU(x, z) ∇zv(z) dz = 0, (3.2.5)

for a.e. x in Ω and all v ∈ KB with v(B) = 0;
∫

Ω×Y

A
(∇xu0 +∇yû

)∇ψ dxdy − k1

∫

Ω×∂B

A0∇zU νB ψ dσz =

∫

Ω

f ψ dx, (3.2.6)

for all ψ ∈ H1
0 (Ω), where νB is the inward normal on ∂B and dσz the surface measure.

For the proof of this theorem, we need the following two elementary results.

Lemma 3.2.2. Let δ0 > 0. Then, for N ≥ 3, the set
⋃

0<δ<δ0

{φ ∈ H1
per(Y ); φ = 0 on δB}

is dense in H1
per(Y ).

Proof. Let ψ ∈ C∞
per(Y ) be fixed. For δk

k→∞−→ 0 consider φk ∈ H1
per(Y ) smooth with

φk =

{
0 on δkB,
1 on Y \2δkB,

and such that |∇φk| ≤ C
δk

. Define Φk = φk ψ. We claim that Φk converges to ψ

strongly in H1
per(Y ). To do so, observe that

||Φk − ψ||L2(Y ) + ||∇Φk −∇ψ||L2(Y ) ≤
∫

2δkB

|ψ|2dy +

∫

2δkB

|∇ψ|2dy

+

∫

2δkB

|∇φk|2|ψ|2dy.

For the last integral, using the definition of φk, one gets
∫

2δkB

|∇φk|2|ψ|2dy ≤ C2δN−2
k ‖ψ‖2

L∞(Y ).

Hence,
Φk → ψ strongly in H1

per(Y ).

Since H1
per(Y ) is the closure of C∞

per(Y ) in the H1-norm, a density argument completes
the proof.

Lemma 3.2.3. Let v in D(RN) ∩KB (i.e. v = const. = v(B) on B), and set

wε,δ(x) = v(B)− v
( 1

δ

{x

ε

}
Y

)
for x ∈ RN .

Then,
wε,δ ⇀ v(B) weakly in H1(Ω). (3.2.7)
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Proof. For δ small enough, the support of v is compact in 1
δ
Y and consequently,

∫
1
δ
Y

|v(z)|2 dz = ‖v‖2
L2(Rn).

Clearly, wε,δ is uniformly bounded on RN . Observe that the set where wε,δ differs
from v(B) is

⋃
ξ∈ZN εξ + εδ{Support(v)}, so that the measure of its intersection with

Ω, is bounded by CδN . Thus, wε,δ converges to v(B) in every Lq(Ω) for finite q.

Since Tε,δ(wε)(x, z) = v(B)− v(z), property 4 from Theorem 3.1.11 gives

Tε,δ(∇wε,δ) = − 1

εδ
∇zv in Ω̂ε × 1

δ
Y, (3.2.8)

so that (see Theorem 3.1.2 (2)),

‖∇wε,δ‖2
L2(bΩε)

≤ δN−2

ε2
|Ω| ‖∇z v‖2

L2(RN ).

Due to (3.2.1), ∇wε,δ is bounded in L2
loc(Ω) which concludes the proof, since wε,δ is

εY -periodic in RN .

Proof of Theorem 3.1 (for the case k1 > 0). Observe first that by the Lax-Milgram
theorem, there exists a unique solution uε,δ of (Pε,δ) and it satisfies

||uε,δ||H1
0 (Ω∗ε,δ) ≤ C||f ||L2(Ω). (3.2.9)

Still denoting uε,δ the extension by zero of uε,δ to the whole of Ω, (3.2.9) implies
convergence (3.2.3), up to a subsequence. Next, by Theorem 3.1.2, there exists û ∈
L2(Ω; H1

per(Y )) such that

Tε(∇uε,δ) ⇀ ∇xu0 +∇yû weakly in L2(Ω× Y ). (3.2.10)

By Theorem 3.1.11 (7), there exists some U in L2(Ω; L2
loc(RN)) such that, up to a

subsequence

δ
N
2
−1

ε
Tε,δ(uε,δ) ⇀ U weakly in L2(Ω; L2

loc(RN)). (3.2.11)

By Proposition 3.1.9, one has

δ
N
2
−1

ε
M ε

Y (uε,δ)1 1
δ
Y →k1u0 strongly in L2(Ω; L2

loc(RN)). (3.2.12)

On the other hand, by Theorem 3.1.11 (5) there exists a W in L2(Ω; L2∗(RN))
with ∇zW in L2(Ω× RN) such that

δ
N
2
−1

ε

(Tε,δ(uε,δ)−M ε
Y (uε,δ)1 1

δ
Y

)
⇀ W weakly in L2(Ω; L2∗(RN)). (3.2.13)
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From (3.2.11), (3.2.12) and (3.2.13), one concludes

U = W + k1u0, and ∇zU = ∇zW,

and, by Theorem 3.1.11 (5) again

δ
N
2
−1

ε
∇z

(Tε,δ(uε,δ)
)
1 1

δ
Y = δ

N
2 Tε,δ(∇uε,δ) ⇀ ∇zU weakly in L2(Ω× RN). (3.2.14)

From Definition 3.1.10, Tε,δ(uε,δ) = 0 in Ω×B, so that by (3.2.11),

U = 0 on Ω×B. (3.2.15)

Now introduce the functional space KB defined as follows:

KB = {Φ ∈ L2∗(RN) ; ∇Φ ∈ L2(RN), Φ = const. on B}. (3.2.16)

Due to (3.2.15) , one actually has W = U − k1u0 belongs to L2(Ω; KB).

Using Φ(·) = εψ(·)φ( ·
ε
) with ψ ∈ D(Ω) and φ ∈ C1

per(Y ) vanishing in a neighbor-
hood of the origin, as a test function in (Pε,δ) we have

ε

∫

Ω∗ε,δ

Aε∇uε,δ∇ψ φ
( ·

ε

)
+

∫

Ω∗ε,δ

Aε∇uε,δ ψ ∇φ
( ·

ε

)
= ε

∫

Ω∗ε,δ

fψφ
( ·

ε

)
.

It is easy to see that the first integral, as well as the right hand side of the above
equality, converges to zero. The second integral above is unfolded by Tε to get

∫

Ω∗ε,δ

Aε∇uε,δψ∇φ(
·
ε
)
Tε'

∫

Ω×Y

Tε(A
ε)(x, y) Tε(∇xuε,δ)(x, y)∇φ(y) Tε(ψ)(x, y)dxdy

(3.2.17)
since the unfolding criterion of integrals (u.c.i.) is satisfied due to the choice of test
functions. From (3.2.10), we can pass to the limit with respect to ε in (3.2.17). Then,
by Lemma 3.2.2, we obtain (3.2.4), the first equation of the unfolded formulation for
the limit problem. This equation describes the effect of the periodic oscillations of
the coefficients in (Pε,δ).

In order to describe the contribution of the perforations, we use the function wε,δ

introduced in Lemma 3.2.3. For ψ in D(Ω), use wε,δ ψ as a test function in (Pε,δ) to
obtain,

∫

Ω∗ε,δ

Aε∇uε,δ∇wε,δ ψ +

∫

Ω∗ε,δ

Aε∇uε,δ ∇ψ wε,δ =

∫

Ω∗ε,δ

f wε,δ ψ. (3.2.18)

The first term in (3.2.18) is unfolded with Tε,δ. Again, the choice of the test
function (see (3.2.7)), implies that u.c.i. is satisfied, so by Corollary 3.1.14, we can
write

∫

Ω∗ε,δ

Aε∇uε,δ∇wε,δ ψ
Tε,δ' δN

∫

Ω×RN

Tε,δ(A
ε)Tε,δ(∇uε,δ)Tε,δ(∇wε,δ)Tε,δ(ψ). (3.2.19)
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Therefore (3.2.19), together with (3.2.8), yields

∫

Ω∗ε,δ

Aε∇uε,δ∇wε,δ ψ
Tε,δ' δ

N
2
−1

ε

∫

Ω×RN

Tε,δ(A
ε)δ

N
2 Tε,δ(∇uε,δ)(−∇zv)Tε,δ(ψ). (3.2.20)

From the following obvious inequality

||Tε,δ(ψ)− ψ||L∞(bΩε× 1
δ
Y ) ≤ C ε||∇ψ||L∞(Ω),

we obtain
Tε,δ(ψ)∇zv → ψ∇zv strongly in L2(Ω× RN). (3.2.21)

Convergences (3.2.14), (3.2.21), as well as hypothesis (3.2.2), allows us to pass to the
limit in (3.2.20) to obtain

lim
ε→0

∫

Ω∗ε,δ

Aε∇uε,δ∇wε,δ ψ dx = −k1

∫

Ω×(RN\B)

A0(x, z)∇zU(x, z)∇zv(z) ψ(x) dxdz,

(3.2.22)
which by density, is true for any v ∈ KB.

The second term in (3.2.18) is unfolded with Tε and we have,

∫

Ω∗ε,δ

Aε∇uε,δ wε,δ ∇ψ
Tε'

∫

Ω×Y

Tε(A
ε) Tε(∇uε,δ)Tε(wε,δ)Tε(∇ψ).

Using Theorem 3.1.2 and convergence (3.2.7), we can pass to the limit with respect
to ε in the above equality to get

lim
ε→0

∫

Ω∗ε,δ

Aε∇uε,δ wε,δ ∇ψ = v(B)

∫

Ω×Y

A
(∇xu0 +∇yû

) ∇xψ, (3.2.23)

where we also used the fact that Tε(∇ψ) converges uniformly to ∇ψ.

Passing to the limit with respect to ε in (3.2.18) and using (3.2.22) and (3.2.23),
we obtain

v(B)

∫

Ω×Y

A
(∇xu0+∇yû

)∇ψ −k1

∫

Ω×(RN\B)

A0∇zU ∇v ψ = v(B)

∫

Ω

f ψ, (3.2.24)

which, by density, holds true for all ψ ∈ H1
0 (Ω) and v ∈ KB. Choosing v(B) = 0

in (3.2.24) yields equation (3.2.5), whereupon the Stokes formula transforms (3.2.24)
into (3.2.6). This concludes the proof of the theorem.

3.2.3 Standard form for the limit problem

Here we show that the unfolded problem is well-posed and we give the formulation
in terms of the macroscopic solution u0 alone.
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First, see [11], consider the classical correctors χ̂j, j = 1, . . . , N defined by the cell
problems 




χ̂j ∈ L∞(Ω; H1
per(Y )),

∫

Y

A(x, y)∇(χ̂j − yj) ∇φ dy = 0 a.e. x ∈ Ω,

∀φ ∈ H1
per(Y ).

(3.2.25)

Assuming u0 is known and solving equation (3.2.4) for û as a function of u0, gives

û(x, y) = −
N∑

j=1

∂u0

∂xj

(x) χ̂j(x, y),

which used in equation (3.2.6) from Theorem 3.2.1 yields
∫

Ω

Ahom∇u0∇ψ dx− k1

∫

Ω×∂B

A0∇zU νB ψ dσz =

∫

Ω

f ψ dx, (3.2.26)

where, for a. e. x in Ω, Ahom(x) is the homogenized matrix

Ahom
ij (x) =

∫

Y

(
aij(x, y)−

N∑

k=1

aik(x, y)
∂χ̂j

∂yk

(x, y)
)

dy. (3.2.27)

Equation (3.2.26) is the variational formulation for

− div (Ahom∇u0)− k1

∫

∂B

A0∇zU νB dσz = f. (3.2.28)

It remains to clarify the connection between the second term in (3.2.28) and u0.
In order to do so, let θ be the solution of the corresponding “cell problem”:





θ ∈ L∞(Ω; KB), θ(x,B) ≡ 1,
∫

RN\B
tA0(x, z)∇zθ(x, z) ∇zΨ(z) dz = 0 a.e. for x ∈ Ω,

∀Ψ ∈ KB with Ψ(B) = 0.

(3.2.29)

From (3.2.29), (3.2.15) and Green’s formula together with equation (3.2.5), we get
∫

∂B

A0∇zU νB dσz =

∫

∂B

A0∇z(U − k1u0) νB dσz = −k1u0

(∫

∂B

tA0∇zθ νB dσz

)
,

so that equation (3.2.28) becomes

− div (Ahom∇u0) + k
2

1 Θu0 = f,

where

Θ(x)
.
=

∫

∂B

tA0(x, z)∇zθ(x, z) νB dσz. (3.2.30)
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Remark 3.2.4. From definition (3.2.30) the function Θ(x) equals

Θ(x) =

∫

RN\B
A0(x, z)∇zθ(x, z)∇zθ(x, z) dz,

which is non-negative and can be interpreted as the local capacity of the set B.

In conclusion, by Lax-Milgram’s theorem, we have

Theorem 3.2.5. The limit function u0 given by Theorem 3.2.1 is the unique solution
of the homogenized equation





u0 ∈ H1
0 (Ω),

∫

Ω

Ahom∇u0∇ψ + k
2

1

∫

Ω

Θ u0 ψ =

∫

Ω

f ψ,

∀ψ ∈ H1
0 (Ω).

(3.2.31)

Remark 3.2.6. The contribution of the oscillations of the matrix Aε in the homog-
enized problem are reflected by the first term of the left hand side in (3.2.31). The

contribution of the perforations is the zero order “strange term” k
2

1 Θ(x) u0.

Remark 3.2.7.

1. The proof is actually simpler for the case k1 = 0 and the statement is included
in Theorem 3.2.5: the small holes have no influence at the limit.

2. The case of lim
δ

N
2
−1

ε
= ∞ is easy to analyze: from Theorem 3.1.11 (6),

Tε,δ(uε,δ) ⇀ u0 weakly in L2(Ω; L2
loc(RN)).

On the other hand, since Tε,δ(uε,δ) = 0 in Ω×B, this implies that u0 = 0.

3.3 Homogenization in domains with small holes

which are periodically distributed in a layer

3.3.1 Functional setting

As in the preceding section, we suppose that N ≥ 3. We use the notations
introduced in subsection 3.1.3 for domains with small holes contained in the layer Σ ′

ε.
The corresponding perforated layer Σ ′

ε,δ is given by

Σ ′
ε,δ =

{
x ∈ Σ ′

ε such that
{x

ε

}
Y
∈ Y ∗

δ

}
.

The perforated domain is now (see Figure 3.5 for an example)

Ω ′
ε,δ = Ω \

{
x ∈ Σ ′

ε such that
{x

ε

}
Y
∈ δB

}
.
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The small perforations are of size εδ with δ = δ(ε) satisfying

k2 = lim
ε→0

δ
N
2
−1

√
ε

, where 0 ≤ k2 < ∞. (3.3.1)

Figure 3.5: An example of set Ω ′
ε,δ: an electrostatic screen

We consider the asymptotic behavior for the following problem:





Find uε,δ ∈ H1
0 (Ω ′

ε,δ) satisfying∫

Ω ′
ε,δ

Aε∇uε,δ∇φ =

∫

Ω ′
ε,δ

fφ, f ∈ L2(Ω), (P ′
ε,δ)

∀φ ∈ H1
0 (Ω ′

ε,δ).

3.3.2 Unfolded homogenization result

Theorem 3.3.1. Let Aε belong to M(α, β, Ω). Suppose that, as ε goes to 0, there
exists a matrix A such that

Tε

(
Aε

)
(x, y) → A(x, y) a.e. in Ω× Y.

Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ

(
Aε

)
(x′, z) → A0(x

′, z) a.e. in Σ× (RN \B). (3.3.2)

Let uε,δ be the solution of the problem (Pε,δ). Then

uε,δ ⇀ u0 weakly in H1
0 (Ω),
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and there exists û ∈ L2(Ω; H1
per(Y )), and U satisfying (3.3.11) with U − k2u0 in

L2(Σ; KB), such that (u0, û, U) solves the equations
∫

Y

A(x, y)
(∇xu0(x) +∇yû(x, y)

)∇yφ(y) dy = 0, (3.3.3)

for a.e. x in Ω and all φ ∈ H1
per(Y ) ;

∫

RN\B
A0(x

′, z)∇zU(x′, z)∇zv(z) dz = 0, (3.3.4)

for a.e. x′ in Σ and all v ∈ KB with v(B) = 0;
∫

Ω×Y

A
(∇xu0 +∇yû

)∇ψ − k2

∫

Σ×∂B

A0∇zU νB ψ dσz =

∫

Ω

f ψ, (3.3.5)

for all ψ ∈ H1
0 (Ω), where νB and dσz are the inward normal and the surface measure

on ∂B.

For the proof of this theorem, we need the equivalent of Lemma 3.2.3 with a
similar proof (with Tε,δ replaced by T bl

ε,δ).

Lemma 3.3.2. Let v in D(RN) ∩KB and, for δ small enough, set

wbl
ε,δ(x) = v(B)− v

( 1

δ

{x′

ε

}
Y
,
xN

εδ

)
for x ∈ RN .

Then,
wbl

ε,δ ⇀ v(B) weakly in H1(Ω). (3.3.6)

Proof of Theorem 3.3.1 (for the case k2 > 0). We denote uε,δ the extension by zero
to the whole of Ω of the solution of (P ′

ε,δ). The reasoning is similar to that of the
previous section. The following estimate is straightforward from (P ′

ε,δ):

||uε,δ||H1
0 (Ω) ≤ C||f ||L2(Ω),

so that, up to a subsequence,

uε,δ ⇀ u0 weakly in H1
0 (Ω).

Equation (3.3.3) is obtained exactly as in the proof of Theorem 3.2.1.

By Theorem 3.1.19 (7), there exists some U in L2(Σ; L2
loc(RN)) such that, up to a

subsequence

δ
N
2
−1

√
ε
T bl

ε,δ(uε,δ) ⇀ U weakly in L2(Σ; L2
loc(RN)). (3.3.7)

Since T bl
ε,δ

(
M ε,bl

Y (uε,δ)
)

= M ε,bl
Y (uε,δ)1 1

δ
Y , Proposition 3.1.18 implies

δ
N
2
−1

√
ε

M ε,bl
Y (uε,δ)1 1

δ
Y →k2u0|Σ strongly in L2(Σ; L2

loc(RN)). (3.3.8)
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On the other hand, Theorem 3.1.19 (7) gives a W in L2(Σ; L2∗(RN)) with ∇zW
in L2(Σ× RN), such that

δ
N
2
−1

√
ε

(T bl
ε,δ(uε,δ)−M ε,bl

Y (uε,δ)1 1
δ
Y

)
⇀ W weakly in L2(Ω; L2∗(RN)). (3.3.9)

From (3.3.7), (3.3.8) and (3.3.9), one concludes

U = W + k2u0, and ∇zU = ∇zW,

and, by Theorem 3.1.19 (7) again

√
ε δ

N
2 T bl

ε,δ(∇uε,δ) =
δ

N
2
−1

√
ε
∇z

(T bl
ε,δ(uε,δ)

)
1 1

δ
Y ⇀ ∇zU weakly in L2(Σ× RN).

(3.3.10)
From Definition 3.1.15, T bl

ε,δ(uε,δ) = 0 in Σ×B, so (3.3.7) implies

U = 0 on Σ×B. (3.3.11)

Therefore, W = U − k2u0 belongs to L2(Σ; KB).

In order to capture the contribution of the perforations to the limit problem, we
adapt the proof of Theorem 3.2.1 and use Lemma 3.3.2. For ψ ∈ D(Ω), let Φ

.
= ψ wbl

ε,δ,
be a test function in problem (P ′

ε,δ). One obtains

∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δ ψ +

∫

Ω ′
ε,δ

Aε∇uε,δ ∇ψ wbl
ε,δ =

∫

Ω ′
ε,δ

f wbl
ε,δ ψ. (3.3.12)

Observe that since wbl
ε,δ vanishes in the holes, one actually has

∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δ ψ =

∫

Σ′ε

Aε∇uε,δ∇wbl
ε,δ ψ,

which unfolded with T bl
ε,δ gives

∫

Σ ′
ε

Aε∇uε,δ∇wbl
ε,δ ψ

T bl
ε,δ' εδN

∫

Σ×RN

T bl
ε,δ(A

ε)T bl
ε,δ(∇uε,δ)T bl

ε,δ(∇wbl
ε,δ)T bl

ε,δ(ψ). (3.3.13)

Property 5 of Theorem 3.1.19 implies,

T bl
ε,δ(∇wbl

ε,δ) = − 1

εδ
∇z v,

so that (3.3.10) and (3.3.13) yield

∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δ ψ

T bl
ε,δ' δ

N
2
−1

√
ε

∫

Σ×RN

T bl
ε,δ(A

ε)
δ

N
2
−1

√
ε
∇z

(T bl
ε,δ(uε,δ)

)(−∇zv
)T bl

ε,δ(ψ).

(3.3.14)

62



From the compactness of the support of v and the straightforward inequality

||T bl
ε,δ(ψ)− ψ||L∞(bΣε× 1

δ
Y ) ≤ cε||∇xψ||L∞(Ω)N ,

we obtain
T bl

ε,δ(ψ)∇zv → ψ∇zv strongly in L2(Σ× RN). (3.3.15)

This, together with convergences (3.3.1) and (3.3.10), as well as hypothesis (3.3.2),
allows us to pass to the limit in (3.3.14) which now reads

lim
ε→0

∫

Σ ′
ε,δ

Aε∇uε,δ∇wbl
ε,δ ψ dx = −k2

∫

Σ×RN

A0(x
′, z)∇zU(x′, z)∇zv ψ dx′dz. (3.3.16)

By a density argument, (3.3.15) is true for any v in KB.

The second term in (3.3.12) is unfolded with Tε and using Theorem 3.1.2, we get
at the limit

lim
ε→0

∫

Ω ′
ε,δ

Aε∇uε,δ wbl
ε,δ ∇ψ dx = v(B)

∫

Ω×Y

A(x, y)
(∇xu0 +∇yû

)∇xψ dxdy,

which, with (3.3.16) gives equation (3.3.4). Equation (3.3.5) is obtained similarly.

3.3.3 Standard form of the homogenized equation

Like in subsection 3.3.2, one can rewrite system (3.3.3)-(3.3.5) in the standard
form. The result is stated in the next theorem, the proof of which follows the same
lines as that of Theorem 3.2.5.

Theorem 3.3.3. The limit function u0 given by Theorem 3.3.1 is the solution of the
homogenized equation





u0 ∈ H1
0 (Ω),

∫

Ω

Ahom∇u0∇ψ + k
2

2

∫

Σ

Θ ′u0 ψ =

∫

Ω

f ψ,

∀ψ ∈ H1
0 (Ω),

(3.3.17)

where Θ ′ is defined by (3.2.30) with x ′ in place of x.

Remark 3.3.4. The strong formulation for (3.3.17) is the following:



−divAhom∇u0 = f in Ω \ Σ,
− [Ahom∇u0

]
= (k2)

2Θ ′u0 on Σ,
u0 = 0 on ∂Ω,

where
[Ahom∇u0

]
denotes the jump across Σ,

[Ahom∇u0

] .
= Ahom ∇u−0 n− +Ahom ∇u+

0 n+ on Σ,

n+ and n− denoting the respective exterior unit normal to Ω+ and Ω− on Σ.
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Remark 3.3.5.

1. The proof for the case k2 = 0 is actually simpler, and the statement is included
in Theorem 3.3.3: the small holes have no influence at the limit, i.e. the equation
−divAhom∇u0 = f is satisfied in the whole of Ω.

2. As in Remark 3.2.7, for the case of lim
δ

N
2
−1

√
ε

= ∞, from Theorem 3.1.19 (6),

T bl
ε,δ(uε,δ) ⇀ u0|Σ weakly in L2(Σ; L2

loc(RN)).

On the other hand, T bl
ε,δ(uε,δ) = 0 in Σ × B implies that u0|Σ = 0. The limit

problem splits into the two separate homogeneous Dirichlet problems in Ω+ and Ω−
{ −divAhom∇u0 = f in Ω±

u0 = 0 on ∂Ω± .

3.4 The thin Neumann sieve with variable coeffi-

cients

3.4.1 Functional setting

We use the same notations as in Section 3.2 and Section 3.3. For an open subset
S of Y ∩ Π such that S ⊂ (Y ∩ Π), set

Yδ = Y+ ∪ Y− ∪ δS,

and
Sε,δ =

{
x ∈ Σ such that

{x

ε

}
Y
∈ δS

}
.

For Ω open and bounded in RN (N ≥ 3) , define

Ωbl
εδ = Ω+ ∪ Ω− ∪ Sε,δ and Σ′

ε,δ
.
= Σ′

ε ∩ Ωbl
εδ.

The connection between Ω+ and Ω− occurs through the “sieve” consisting of the set
Sε,δ (see Figure 3.6). We assume that ε and δ satisfy assumption (3.3.1) of section 4:

k2 = lim
ε→0

δ
N
2
−1

√
ε

, where 0 ≤ k2 < ∞.

Consider the space

V = {v ∈ H1(Ω+ ∪ Ω−); v = 0 on ∂Ω}
which is a Hilbert space for the scalar product

< u, v >V =

∫

Ω+∪Ω−
∇u ∇v for all u, v ∈ V.
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Figure 3.6: The set Yδ and the thin sieve Ωbl
εδ

For simplicity, when v belongs to V , we denote ∇v the L2(Ω)−function which equals
the gradient of v in Ω+ ∪ Ω− (this is the restriction to Ω+ ∪ Ω− of the distributional
gradient of v). We also denote by [v] the jump of v across Σ, [v]

.
= v+|Σ −v−|Σ, which

belongs to H1/2(Σ). Finally set

Vε,δ = {v ∈ V, [v] = 0 on Sε,δ}.

The thin Neumann sieve model is




Find uε,δ ∈ Vε,δ satisfying
∫

Ωbl
ε,δ

Aε∇uε,δ∇φ =

∫

Ωbl
ε,δ

fφ, f ∈ L2(Ω), (Pbl
ε,δ)

∀φ ∈ Vε,δ.
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3.4.2 Unfolded homogenization result

In this problem, the equivalent of the space KB of Section 3.2 (see (3.2.16)), is

K̂S =
{

Φ ∈ H1
loc(RN

+ ∪ RN
− ) ; ∇Φ ∈ L2(RN

+ ∪ RN
− ),

[
Φ

]
= 0 on S

}
. (3.4.1)

Proposition 3.4.1. There exist two linear forms l± on K̂S such that for every Φ in
K̂S, the functions Φ± − l±(Φ) belong to L2∗(RN

± ).

The space K̂S is Hilbert space for the norm

‖Φ‖2
dKS

.
= ‖∇Φ‖2

L2(RN
+∪RN

− ) +
( l+(Φ) + l−(Φ)

2

)2

. (3.4.2)

Furthermore,

K̂S

∞ .
=

{
Φ ∈ K̂S, Φ± ∈ C∞(RN

± ), supp(∇Φ±) bounded in RN
±

}
,

is dense in K̂S for this norm.

Proof. Due to the Sobolev-Poincaré-Wirtinger inequality (applied in the sets 1
δ
Y± with

δ → 0), for every Φ in K̂S, there exist two constants l±(Φ) such that
(
Φ± − l±(Φ)

)
belong to L2∗(RN

± ).

It is well-known that the first term in (3.4.2) is a Hilbert semi-norm on the space

K̂S, so that, with the second term, it defines a norm. The density of K̂S

∞
in K̂S

follows by a standard argument of truncation and regularization.

Theorem 3.4.2. Let Aε belong to M(α, β, Ω). Suppose that, as ε goes to 0, there
exists a matrix A such that

Tε

(
Aε

)
(x, y) → A(x, y) a.e. in Ω× Y.

Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ

(
Aε

)
(x′, z) → A0(x

′, z) a.e. in Σ× RN . (3.4.3)

Let uε,δ be the solution of the problem (Pbl
ε,δ). Then

uε,δ ⇀ u0 weakly in V,

and there exists û ∈ L2(Ω; H1
per(Y )), U ∈ L2(Σ; K̂S) satisfying

l±(U) = k2 u±0 |Σ for a.e. x′ ∈ Σ, (3.4.4)

and such that (u0, û, U) solves the following three equations:
∫

Y

A(x, y)
(∇xu0(x) +∇yû(x, y)

)∇yφ(y) dy = 0, (3.4.5)
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for a.e. x in Ω and all φ ∈ H1
per(Y ),

∫

RN

A0(x
′, z)∇zU(x′, z)∇zv(z) dz = 0, (3.4.6)

for a.e. x′ in Σ and all v ∈ K̂S with l±(v) = 0, and

∫

Ω×Y

A
(∇xu0 +∇yû

)∇φ− k2

∫

Σ×S

A0 ∇zU n+ [φ]
Σ

=

∫

Ω

f φ, (3.4.7)

for all φ ∈ V .

Proof (for the case k2 > 0.) Let uε,δ be a test function in (Pbl
ε,δ). Using the Poincaré

inequality on Ω+ and Ω−, there is a constant C (independent of ε, δ) such that,

||uε,δ||V ≤ C||f ||L2(Ω).

Consequently, up to a subsequence, there exists u0 ∈ V such that

uε,δ ⇀ u0 weakly in V.

By Theorem 3.1.2, one can also assume that there exists û ∈ L2(Ω; H1
per(Y )) with

Tε(∇uε,δ) ⇀ ∇xu0 +∇yû weakly in L2(Ω× Y ).

Using ψ ∈ D(Ω) as a test function in (Pbl
ε,δ), and unfolding with operator Tε, we

get ∫

Ωbl
ε,δ

Aε∇uε,δ∇φ dx
Tε'

∫

Ω×Y

Tε(A
ε)Tε(∇uε,δ)Tε(∇ψ) dxdy.

Applying properties 5 and 6 of Theorem 3.1.2 we can pass to the limit to obtain

∫

Ω×Y

A(x, y)[∇xu0 +∇yû]∇xψ dxdy =

∫

Ω

fψ dx.

Next, consider φ ∈ H1
per(Y ) and ψ ∈ D(Ω+) ∪ D(Ω−). Using Φ(x) = εψ(x)φ(x

ε
)

as a test function in (Pbl
ε,δ) yields

ε

∫

Ωbl
ε,δ

Aε∇uε,δ∇ψ φ
( ·

ε

)
+

∫

Ωbl
ε,δ

Aε∇uε,δ ψ ∇φ
( ·

ε

)
= ε

∫

Ωbl
ε,δ

fψφ
( ·

ε

)
.

As in subsection 3.3, passing to the limit gives (3.4.5).

By Theorem 3.1.24 (3), there exists U ∈ L2(Σ; L2
loc(RN

± )) such that (up to a
subsequence)

δ
N
2
−1

√
ε
T bl

ε,δ(u
±
ε,δ) ⇀ U± weakly in L2(Σ; L2

loc(RN
± )). (3.4.8)
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By construction T bl
ε,δ

(
M ε,bl

Y± (u±ε,δ)
)

= M ε,bl
Y± (u±ε,δ)1 1

δ
Y± . By Proposition 3.1.23, one

has
δ

N
2
−1

√
ε

M ε,bl
Y± (u±ε,δ)1 1

δ
Y →k2u

±
0 |Σ strongly in L2(Σ; L2

loc(RN
± )). (3.4.9)

By Theorem 3.1.24 (3) there exists a W in L2(Σ; L2∗(RN)) with∇zW
± in L2(Σ× RN

± )
such that

δ
N
2
−1

√
ε

(T bl
ε,δ(u

±
ε,δ)−M ε,bl

Y± (u±ε,δ)1 1
δ
Y

)
⇀ W± weakly in L2(Σ; L2∗(RN

± )). (3.4.10)

From (3.4.8), (3.4.9) and (3.4.10), one concludes

U± = W± + k2u
±
0 |Σ , and ∇zU

± = ∇zW
±. (3.4.11)

Again by Theorem 3.1.24 (3), one has the convergence

δ
N
2
−1

√
ε
∇z

(T bl
ε,δ(u

±
ε,δ)

)
=
√

εδ
N
2 T bl

ε,δ(∇u±ε,δ) ⇀ ∇zU
± weakly in L2(Σ× RN

± ). (3.4.12)

From Definition 3.1.15, T bl
ε,δ(u

+
ε,δ) = T bl

ε,δ(u
−
ε,δ) on Σ × S, so that by convergences

(3.4.8), (3.4.12) one has

[U(x′, ·)] = 0 on S for a.e. x′ ∈ Σ.

Therefore, U ∈ L2(Σ; K̂S), and (3.4.11) implies (3.4.4).

In order to obtain equations (3.4.6) and (3.4.7), choose a function v in K̂S

∞
and

set

wε,δ(x
′, xN) = v

( 1

δ

{x′

ε

}
Y
,
xN

εδ

)
.

Clearly, [wε,δ] = 0 on Sε,δ and ∇w±
ε,δ vanishes outside Σ′

ε,δ for δ small enough. One
easily shows (as in Lemma 3.3.2) that




Tε(w

±
ε,δ) → l±(v) strongly in L2(Ω±),

w±
ε,δ ⇀ l±(v) weakly in H1(Ω±).

(3.4.13)

For ψ ∈ D(Ω), using ψ wεδ as a test function in problem (Pbl
ε,δ) gives

∫

Ωbl
ε,δ

Aε∇uε,δ ∇ψ wε,δ +

∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δ ψ =

∫

Ωbl
ε,δ

f wε,δ ψ. (3.4.14)

The first term in (3.4.14) is unfolded with Tε as usual. This yields

∫

Ωbl
ε,δ

Aε∇uε,δ ∇ψ wε,δ
Tε'

∫

Ω×Y

Tε(A
ε)Tε(∇uε,δ)Tε(∇ψ)Tε(wε,δ) dxdy.
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Applying (3.4.13) and properties 5 and 6 of Theorem 3.1.2, one obtains

lim
ε→0

∫

Ωbl
ε,δ

Aε∇uε,δ ∇ψ wε,δ = l+(v)

∫

Ω+×Y

A(x, y)
(∇xu0 +∇yû

)∇xψ dxdy

+l−(v)

∫

Ω−×Y

A(x, y)
(∇xu0 +∇yû

)∇xψ dxdy.

The second term in (3.4.14) is unfolded with T bl
ε,δ. The choice of the test function

implies that u.c.i. is satisfied, so
∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δ ψ
T bl

ε,δ' εδN

∫

Σ×RN

T bl
ε,δ(A

ε)T bl
ε,δ(∇uε,δ)T bl

ε,δ(∇wε,δ)T bl
ε,δ(ψ). (3.4.15)

Property 4 from Theorem 3.1.19 gives

T bl
ε,δ(∇wε,δ) =

1

εδ
∇zv,

which, together with (3.4.15), yields

∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δ ψ
T bl

ε,δ' δ
N
2
−1

√
ε

∫

Σ×RN

T bl
ε,δ(A

ε)
√

εδ
N
2 T bl

ε,δ(∇uε,δ) ∇zv T bl
ε,δ(ψ). (3.4.16)

Convergences (3.4.3), (3.4.12), allow to pass to the limit in (3.4.16) to obtain

lim
ε→0

∫

Σ ′
ε,δ

Aε∇uε,δ∇wε,δ ψ = k2

∫

Σ×RN

A0∇zU(x′, z)∇zv ψ dx′dz.

Now, the limit in (3.4.14) becomes

l+(v)

∫

Ω+×Y

A
(∇xu0 +∇yû

)∇xψ + l−(v)

∫

Ω−×Y

A
(∇xu0 +∇yû

)∇xψ+

+k2

∫

Σ×RN

A0(x
′, z)∇zU(x′, z)∇zv ψdx′dz = l+(v)

∫

Ω+

fψ + l−(v)

∫

Ω−
fψ,

(3.4.17)

which, by density, holds for every v ∈ K̂S. Equation (3.4.6) is then simply obtained
by choosing l+(v) = l−(v) = 0 in (3.4.17).

Using (3.4.6) with an arbitrary v in K̂S

∞
one deduces by Green’s formula that

∫

RN
±

A0∇zU ∇zv dz =

∫

S

A0∇zU n±
(
v(z′)− l±(v)

)
dz′, (3.4.18)

which still holds for every v ∈ K̂S. Then, (3.4.18) together with (3.4.17) leads to

l+(v)

(∫

Ω+×Y

A
(∇xu0 +∇yû

)∇xψ − k2

∫

Σ×S

A0∇zU n+ψ −
∫

Ω+

fψ

)

+l−(v)

(∫

Ω−×Y

A
(∇xu0 +∇yû

)∇xψ − k2

∫

Σ×S

A0∇zU n−ψ −
∫

Ω−
fψ

)

+k2

∫

Σ×S

(
A0∇zU n+ + A0∇zU n−

)
v ψ = 0.

(3.4.19)
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Taking l+(v) = l−(v) = 0 in (3.4.19), implies that

A0∇zU n+ + A0∇zU n− .
= [A0∇zU ]S = 0 a.e. on Σ× S. (3.4.20)

Since l+(v) and l−(v) are independent, (3.4.19) now gives the following two formulas:
∫

Ω+×Y

A
(∇xu0 +∇yû

)∇xψ − k2

∫

Σ×S

A0∇zU n+ ψ =

∫

Ω+

fψ,
∫

Ω−×Y

A
(∇xu0 +∇yû

)∇xψ − k2

∫

Σ×S

A0∇zU n− ψ =

∫

Ω−
fψ,

(3.4.21)

which, by density, hold for every ψ in H1
0 (Ω). Let φ be arbitrary in V . Equation

(3.4.7) is obtained by choosing ψ = φ+, respectively ψ = φ− in (3.4.21), and adding
the two corresponding equations.

3.4.3 Standard form of the homogenized equation

As in subsection 3.4.2, one can write system (3.4.4), (3.4.5), (3.4.6), (3.4.7) in a
standard form, with only u0 as unknown.

First, from (3.4.6), the first term in the left-hand side of (3.4.7), can be written
in terms of the standard homogenized operator

∫

Ω×Y

A
(∇xu0 +∇yû

)∇φ =

∫

Ω

Ahom∇u0∇φ,

for every φ in the space V , using the same cell-problems (3.2.25) and the same Ahom

(as given by (3.2.27)).

Next, observe that for a given u0, problem (3.4.4)-(3.4.6) for U , has a unique

solution by the Lax-Milgram theorem (applied on a closed affine subspace of K̂S).

Now, we show how equation (3.4.7) can be brought to the standard form. More
precisely, it remains to clarify the connection between the term −k2

∫
S

A0 ∇zU n+

and [u0]
Σ
. In order to do so, let θ be the solution of the following “cell problem”:





θ ∈ L∞(Σ; K̂S), l±(θ) ≡ ±1,
∫

RN

tA0(x
′, z)∇zθ(x

′, z) ∇zΨ(z) dz = 0 for a.e. x′ ∈ Σ,

∀Ψ ∈ K̂S with l±(Ψ) = 0.

(3.4.22)

From (3.4.18) follows
∫

RN
+∪RN

−

A0∇zU ∇zv dz =
(
l+(v)− l−(v)

) ∫

S

A0∇zU n− dz′. (3.4.23)

Similarly, the solution of (3.4.22) is unique and satisfies for a.e. x′ in Σ

tA0∇zθ n+ + tA0∇zθ n− .
= [ tA0∇zθ]S = 0,
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∫

RN
+∪RN

−

tA0∇zθ∇zv dz =
(
l+(v)− l−(v)

) ∫

S

tA0∇zθ n− dz′. (3.4.24)

Formula (3.4.23) holds for v = θ, whereas (3.4.24) does for v = U , so that combining
the two yields

∫

S

A0∇zU n− dz′ =
l+(θ)− l−(θ)

2

∫

S

A0∇zU n− dz′ =
l+(U)− l−(U)

2

∫

S

tA0∇zθ n− dz′.

Consequently, by (3.4.4)

k2

∫

S

A0(x
′, z) ∇zU(x′, z) n− dz′ =

k
2

2

2
Θ(x′) [u0]

Σ
(x′),

where

Θ(x′) .
=

∫

S

tA0∇zθ n− dz′ = −
∫

S

tA0∇zθ n+ dz′,

the latter equality deriving from (3.4.23). Thus, equation (3.4.7) becomes

∫

Ω

Ahom∇u0∇φ dx +
k

2

2

2

∫

Σ

Θ(x′) [u0]
Σ
(x′) [φ]

Σ
(x′) dx′ =

∫

Ω

f φ dx.

We have proved the following theorem:

Theorem 3.4.3. The limit function u0 given by Theorem 3.4.2 is the solution of the
homogenized equation





u0 ∈ V,
∫

Ω

Ahom∇u0∇φ +
k

2

2

2

∫

Σ

Θ [u0]
Σ

[φ]
Σ

=

∫

Ω

f φ,

∀φ ∈ V.

(3.4.25)

Remark 3.4.4. Taking v = θ in (3.4.24) shows that

Θ(x′) =
1

2

∫

RN
+∪RN

−

A0(x
′, z)∇zθ(x

′, z)∇zθ(x
′, z) dz,

which is non-negative. This implies existence and uniqueness of the solution u0 of
(3.4.25).

Remark 3.4.5. The strong formulation for the solution u0 of the limit problem is:





−divAhom∇u0 = f in Ω \ Σ,

Ahom∇u0 n−|Σ = −Ahom∇u0 n+|Σ =
k2

2

2
Θ [u0]Σ ,

u0 = 0 on ∂Ω.
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Remark 3.4.6. In the case where A0 is even with respect to zN , θ vanishes on
S. Then, Θ(x′) can be interpreted as the local capacity of the set S, the capacitary
potential being (1∓ θ±).

Remark 3.4.7.

1. The proof for the case k2 = 0 is actually simpler and the statement is included in
Theorem 3.4.3: the holes are too small to keep any connection between Ω+ and Ω−.
The limit problem is split into two independent problems in each of these sets with
mixed homogeneous boundary conditions,





−divAhom∇u0 = f in Ω±,
Ahom∇u0 n±|Σ = 0 on Σ,

u0 = 0 on ∂Ω± \ Σ.

2. For the case of lim
δ

N
2
−1

√
ε

= ∞ Theorem 3.1.24 (2),

T bl
ε,δ(uε,δ) ⇀ u±0 |Σ weakly in L2(Σ; L2

loc(RN
± )).

On the other hand, [T bl
ε,δ(uε,δ)]S = 0 on Σ× S implies that [u0]|Σ = 0. Therefore,

the limit problem is satisfied in the whole of Ω.

3.5 The thick Neumann sieve with variable coeffi-

cients

In this section we extend the results of Section 3.4 to the case of a thick Neumann
sieve of thickness of order ε > 0. We will use the same notations, unless specified
othewise, and we only sketch the main modifications of setting and of the proof.

For an open subset S of Y ∩Π such that S ⊂⊂ (Y ∩Π), we introduce the class FS
of admissible sets, which we use to describe a thick sieve with holes shaped according
to S.

Definition 3.5.1. The subset set F of RN is in FS, if

i) F is closed with connected complement in RN ,

ii) F is symmetric with respect to all the hyperplanes of equations {zj = 0, j ∈
{1, . . . , N − 1} and F = F+ ∪ F− ∪ {Π \ S},

iii) F is such that F ∩ 1

δ
Y ⊂

{
|zN | ≤ 1

2δ

}
for any 0 < δ << 1,

iv) F+ and F− are unbounded with Lipschitz boundary,

v) there exists some positive R such that the boundaries ∂F+ and ∂F− outside the
ball of radius R, are Lipschitz graphs over RN−1.

For F ∈ FS , set

Fδ = δF ∩ Y, and Fε,δ =
{

x ∈ Σ′
ε such that

{x

ε

}
Y
∈ Fδ

}
.
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Figure 3.7: An example of set F: the hole in the sieve

Define

Ωns
εδ = Ω \ Fεδ and Sε,δ = Ωns

εδ ∩ Π.

Figure 3.7 present an example of admissible set F in dimensions 3. Figure 3.8 is the
corresponding sieve. Figure 3.9 is a two dimensional cross-section.

Figure 3.8: The 3D geometry of the thick Neumann sieve

We use the same space V as in Section 5, while the Vε,δ is now

Vε,δ =
{
v ∈ H1(Ωns

εδ + ∪ Ωns
εδ−), v|∂Ω = 0, [v]Sε,δ

= 0
}
.

The thick Neumann sieve problem can be stated as follows:



Find uε,δ ∈ Vε,δ satisfying
∫

Ωns
ε,δ

Aε∇uε,δ∇φ =

∫

Ωns
ε,δ

fφ, f ∈ L2(Ω), (Pns
ε,δ)

∀φ ∈ Vε,δ.
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Figure 3.9: A 2D cross-section of the set F and the domain Ωns
ε,δ

The equivalent of the space K̂S (see (3.4.1)) is the following, where G denotes the
complement of F :

K̃G =
{

Φ ∈ H1
loc(G) ; ∇Φ ∈ L2(G)

}
. (3.5.1)

Proposition 3.5.2. There exit two linear forms l± on K̃G such that for every Φ in
K̃G, the functions Φ± − l±(Φ) belong to L2∗((RN \ F )±).

The space K̃G is a Hilbert space for the norm given by

‖Φ‖2
gKG

.
= ‖∇Φ‖2

L2((RN
+∪RN

− )\F ) + l+(Φ)2 + l−(Φ)2.

Furthermore, for this norm, l+ and l− are continuous on K̃G and

K̃G

∞ .
=

{
Φ ∈ K̃G, Φ ∈ C∞(G), supp(∇Φ) bounded in G

}
,

is dense in K̃G.

Proof. The proof is the same as that of Proposition 3.4.1. The only modification
concerns the sequence of sets on which the Sobolev-Poincaré-Wirtinger inequality
(with a uniform constant) is applied. In view of Definition 3.5.1(iv), this can be
achieved on the sets 1

δ
Y± ∩ {±zN > R} ∩G (making use of [77]).

The unfolded limit problem and the standard homogenized equation are given in
the next two theorems. Up to the modifications of notations indicated above, theirs
proofs are the same as in Section 3.4.

Theorem 3.5.3. Let Ω be open and bounded in RN , N ≥ 3 and Aε belong to
M(α, β, Ω). Suppose that, as ε goes to 0, there exists a matrix A such that

Tε

(
Aε

)
(x, y) → A(x, y) a.e. in Ω× Y.
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Furthermore, suppose that there exists a matrix field A0 such that, as ε and δ → 0,

T bl
ε,δ

(
Aε

)
(x′, z) → A0(x

′, z) a.e. in Σ× (RN \ F ).

Let uε,δ be the solution of the problem (Pns
ε,δ). Then

uε,δ ⇀ u0 weakly in H1
loc(Ω \ Σ),

and there exists û ∈ L2(Ω; H1
per(Y )), U ∈ L2(Σ; K̃G) satisfying

l±(U) = k2(u
±
0 )|Σ for a.e. x′ ∈ Σ,

and such that (u0, û, U) solves the equations
∫

Y

A(x, y)
(∇xu0(x) +∇yû(x, y)

)∇yφ(y) dy = 0,

for a.e. x in Ω and all φ ∈ H1
per(Y ) ;

∫

G

A0(x
′, z)∇zU(x′, z)∇zv(z) dz = 0,

for a.e. x′ in Σ and all v ∈ K̃G with l±(v) = 0 ;
∫

Ω×Y

A
(∇xu0 +∇yû

)∇φ− k2

∫

Σ×S

A0 ∇zU n+ [φ]
Σ

=

∫

Ω

f φ,

for all φ ∈ V .

Theorem 3.5.4. The limit function u0 given by Theorem 3.5.3 is the solution of the
homogenized equation




u0 ∈ V,
∫

Ω

Ahom∇u0∇φ +
k

2

2

2

∫

Σ

Θ [u0]
Σ

[φ]
Σ

=

∫

Ω

f φ,

∀φ ∈ V,

where

Θ(x′) =
1

2

∫

G

A0(x
′, z)∇zθ(x

′, z)∇zθ(x
′, z) dz,

and θ is the solution of the cell-problem




θ ∈ L∞(Σ; K̃G), l±(θ(x′, ·)) ≡ ±1,
∫

G

tA0(x
′, z)∇zθ(x

′, z) ∇zΨ(z) dz = 0, a.e. for x′ ∈ Σ,

∀Ψ ∈ K̃G with l±(Ψ) = 0.
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Remark 3.5.5. The function Θ(x′) can be interpreted as the local relative capacity (in
G) of the set C(x′) defined as the set where θ(x′, · ) vanishes, the capacitary potential
being (1− θ(x′, · )) “above C(x′)” and (1 + θ(x′, · )) “below C(x′)”.

Figure 3.10: The combination of a Neumann hole T and a Dirichlet hole δB

76



Chapter 4

A class of Steklov type problems
associated to the Neumann sieve

In this chapter we study a spectral problem associated to the Neumann sieve (see
Figure 4.1 for the geometry of the problem). Consider a plane Σ that separates a three
dimensional domain Ω in two subdomains Ω+ and Ω− and distribute ε-periodically
on Σ two dimensional small holes of diameter εδ(ε) < ε denoted by Sε,δ.

Figure 4.1: The geometry of the Neumann Sieve

Set
V = {u ∈ H1(Ω+) ∪H1(Ω−) | u = 0 on ∂Ω}

and
Vε,δ = {u ∈ V | [u] = 0 on Sε,δ}

where [u] = u+ − u− and u+ = u on Ω+ and u− = u on Ω−.

The Steklov-type spectral problem associated to the Neumann sieve problem, (see
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Damlamian [30], Attouch [6]), is




−∆uε = 0 in Ω+ ∪ Ω− ∪ Sε,δ

∂(uε)+

∂n
= −∂(uε)−

∂n
= λε[uε] on Σ− Sε,δ

uε = 0 on ∂Ω

(4.0.1)

An equivalent formulation can be expressed in terms of the Dirichlet to Neumann
(DtN) map. For this, we consider for any z in H

1
2 (Σ) the solution v of the following

problem

inf{1

2
|∇v|2L2(Ω+∪Ω−) | v ∈ V with [v]Σ = z}.

Let n be the unit normal to Σ towards Ω+. Then denote by L the map from z to
Lz

.
= ∂v+

∂n
= −∂v−

∂n
. L is a well defined fixed operator from H

1
2 (Σ) to H− 1

2 (Σ). It is
known that L−1 is onto V and is compact (see [78]).

Let TVε,δ the subspace of H
1
2 (Σ) of elements which vanish on Sε,δ i.e, TVε,δ is the

trace subspace of Vε,δ. An equivalent formulation to (4.0.1) is then, find zε ∈ TVε,δ

and λε ∈ R, such that
L(zε) = λεzε. (4.0.2)

The spectral problem (4.0.1) is associated to the Neumann sieve problem:




−∆uε = f in Ω+ ∪ Ω− ∪ Sε,δ

∂(uε)+

∂n
= −∂(uε)−

∂n
= 0 on Σ− Sε,δ

uε = 0 on ∂Ω

(4.0.3)

Depending on the order of δ(ε) with respect to ε it has been proved in Damlamian
[30] that the homogenized problem is of the form



−∆u = f on Ω+ ∪ Ω−
∂u+

∂n
= −∂u−

∂n
=

C

4
[u] on Σ

where C = 0 if δ(ε) ¿ ε, C is the capacity in R3 of the holes if δ(ε) ≈ ε or C = ∞ if
δ(ε) À ε and [u] was defined above.

This type of behavior was first observed in the work of Cioranescu and Murat [26]
where the same problem but with three dimensional holes periodically distributed in
the entire domain or on a hyperplane was studied.

Homogenization of a Stekloff type problem for perforated domains with three
dimensional ε sized holes distributed in the entire domain has been studied in Van-
ninathan [81], using multiscale analysis and Tartar’s method.

In Section 4.2 we set the functional framework and the problem to be analyzed.
By using G-convergence techniques and the homogenization result of (4.0.3) obtained
by Damlamian [30] we obtain in Section 4.3 the limit problem for (4.0.1),





−∆u = 0 in Ω+ ∪ Ω−
∂u+

∂n
= −∂u−

∂n
=

(
λ− C

4

)
[u] on Σ

u = 0 on ∂Ω
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or equivalently the limit problem for (4.0.2),

Lz = (λ− C

4
)z

where L : H
1
2 (Σ) → H− 1

2 (Σ) is the DtN operator defined above, and λ is a limit
point of a sequence of eigenvalues {λε}ε>0 of (4.0.2) or (4.0.1).

We show that the entire sequence formed by the n-th eigenvalue of the ε-problem,
i.e {λε

n}ε converges to the n-th eigenvalue of the limit problem (4.0.4). When λn is a
simple eigenvalue we can prove that the entire sequence of eigenvectors, uε

n associated
to λε

n for the problem (4.0.1) will converge to the eigenvector un associated to λn.

Subsections 4.3.1 and 4.3.2 present the cases when lim
ε→0

δ(ε)

ε
= ∞ and lim

ε→0

δ(ε)

ε
= 0

respectively.

In the form (4.0.1) our problem is related to the modelling of earthquake initiation
phase where one has a periodic system of faults on which slip-weakening friction is
considered. The eigenvalues λε provide stability properties of the solutions of the
dynamic problem (see [45] and [47]). Also (4.0.1) can be considered as the spectral
problem associated to a heat conduction problem where imperfectly conducting in-
terfaces are present (see Sanchez-Palencia [62], Lipton and Vernescu [55] and Belyaev
et al. [10]).

In the form (4.0.2) the problem is a spectral problem for DtN operator in domains
perforated along a hyperplan. The asymptotic behavior of the spectrum is similar
and is obtained as a consequence of the analysis for (4.0.1).

4.1 Problem Statement

Consider an open set Ω ⊂ R3 and a plane Σ that separates Ω into two open
subsets Ω+, Ω− such that

Ω = Ω+ ∪ Ω− ∪ Σ

For simplicity we will consider in the sequel Σ = {z = 0}.
We define Y = [0, 1]2 as the reference square and an open set S ⊂ Y . With

0 < δ(ε) ≤ 1 we construct on Σ ε-periodically distributed obstacles obtained by
εδ(ε)-homothety from S and denote by Sε,δ its union:

Sε,δ =
⋃

k∈Z2

(εδ(ε)S + kε)

We introduce the natural functional framework for our problem by defining

V = {u ∈ H1(Ω+) ∪H1(Ω−) | u = 0 on ∂Ω}, Vε,δ = {u ∈ V | [u] = 0 on Sε,δ}
where [u] denotes the jump on Σ defined as above. V is a Hilbert space endowed with
the following scalar product:

〈u, v〉V =

∫

Ω+∪Ω−
∇u∇v
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and Vε,δ is a subspace of V .

Let us remark that H1
0 (Ω) is a closed subspace of Vε,δ and denote by Wε,δ =

(H1
0 (Ω))⊥ its orthogonal in Vε,δ and by W = (H1

0 (Ω))⊥ its orthogonal in V . Thus
Vε,δ = H1

0 (Ω)⊕Wε,δ and , V = H1
0 (Ω)⊕W . Let us also define PWε,δ

: Vε,δ → Wε,δ the
orthogonal projection onto Wε,δ.

Also it is easy to see that the trace space of Vε,δ, TVε,δ is identical with the trace
space of Wε,δ, TWε,δ.

In this setting the problem (4.0.2) is equivalent with the following spectral prob-
lem: find uε ∈ Vε,δ, λ

ε ∈ R+ such that

(Pε)




−∆uε = 0 on Ω+ ∪ Ω− ∪ Sε,δ

∂(uε)+

∂n
= −∂(uε)−

∂n
= λε[uε] on Σ− Sε,δ

(4.1.1)

The corresponding equivalent variational formulation is: find uε ∈ Vε,δ, λ
ε ∈ R+ such

that ∫

Ω+∪Ω−
∇uε∇w = λε

∫

Σ−Sε,δ

[uε][w], for any w ∈ Vε,δ (4.1.2)

The equivalence between the problems (4.0.2) and (4.1.1) is understood in the
sense that they have the same eigenvalues and related eigenvectors. Thus if {zε

n}n∈N is

an orthonormal sequence of eigenvectors for (4.0.2), then the sequence { 1√
λε

n

uε
n}n∈N,

where uε
n is, for any n ∈ N, the solution of

inf{1

2
|∇v|2L2(Ω+∪Ω−) | v ∈ W with [v]Σ = zε

n, }. (4.1.3)

is an orthonormal sequences of eigenvectors for problems (4.1.1). Conversely, if
{uε

n}n∈N is an orthonormal sequence of eigenvectors for (4.1.1) then the sequence
{zε

n

√
λε

n}n∈N with
zε

n = [uε
n] for (n ∈ N) (4.1.4)

is an orthonormal sequence for (4.0.2).

From the compactness of L−1, we have that L has an increasing sequence of eigen-
values {λε

n}n∈N and an orthonormal sequence of corresponding eigenvectors {zε
n}n∈N

in L2(Σ). Also from the Rayleigh’s principle we have

λε
n = inf

z∈TWε,δ,z⊥zε
i

i=1,n−1

< Lz, z >L2(Σ)

‖ z ‖2
L2(Σ)

(4.1.5)

4.2 Asymptotic analysis

Because of the equivalence relations (4.1.3), (4.1.4) we will study only the asymp-
totic behavior of (4.1.1). The similar results for the problem (4.0.2) will be stated as
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corollaries.
Now it is easy to observe that from the equivalence relation, (4.1.3) and (4.1.4) we
have

inf
z∈TWε,δ,z⊥zε

i

i=1,n−1

< Lz, z >L2(Σ)

‖ z ‖2
L2(Σ)

= inf
u∈Wε,δ,u⊥uε

i

i=1,n−1

‖ u ‖2
V∫

Σ

[u]2dσ

(4.2.1)

From (4.1.5) and (4.2.1) we get the following representation for λε
n, i.e

λε
n = inf

u∈Wε,δ,u⊥uε
i

i=1,n−1

‖ u ‖2
V∫

Σ

[u]2dσ

(4.2.2)

Lemma 4.2.1. If lim
ε→0

δ(ε)

ε
< ∞ then C1 ≤ λε

n and lim sup
ε

λε
n < ∞ where C1 is a

constant with respect to ε and n.

Proof. Using the trace continuity and (4.2.2) we obtain

λε
n ≥ C1 for any n ∈ N (4.2.3)

with C1 not depending on ε, and therefore {λε
n} is uniformly bounded from below.

We will prove next that all the limit points λn of {λε
n}ε > 0 are finite. We consider

the following capacity potential:



−∆wε = 0 in Bε − εδ(ε)S
wε = 1 on εδ(ε)S
wε = 0 on ∂Bε

where Bε is the ball of radius ε centered in the εY cube. The function wε is extended
by periodicity on a layer of size ε around Σ and then by zero to R3. The sequence wε

has the property that (see [6])

wε ⇀ 0 weakly in H1(Ω).

Consider u ∈ V ∩ [C∞(Ω+) ∪ C∞(Ω−)], with the orthogonal decomposition u =
ū1 + ū2, where ū1 ∈ W and ū2 ∈ H1

0 (Ω). We suppose that ū1 6= 0 and ū2 6= 0. Define
zε = (1− wε)u, then zε satisfies

zε ⇀ u weakly in V, [zε] = (1− wε)[ū1] on Σ and zε ∈ Vε,δ.

We make the observation that, for ε small enough, zε /∈ H1
0 (Ω) and zε /∈ Wε,δ.

Indeed, we have [zε] = (1 − wε)[ū1] 6= 0 on Σ, since ū1 ∈ W . On the other hand
letting ε go to zero we obtain:

lim
ε→0

< zε, ū2 >=

∫

Ω

∇u∇ū2 =‖ ū2 ‖2
V > 0.
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Therefore there exists ε0 > 0 such that < zε, ū2 >6= 0 for any ε < ε0, i.e
zε /∈ Wε,δ for any ε < ε0.

From (4.2.2) we have that

λε
1 ≤

|| PWε,δ
zε ‖2

V∫

Σ

[PWε,δ
zε]2

≤ ‖ zε ‖2
V∫

Σ

[zε]2
≤ C1∫

Σ

[zε]2
,

where we used the orthogonal decomposition Vε,δ = Wε,δ ⊕H1
0 (Ω) in order to obtain

∫

Σ

[PWε,δ
zε]2 =

∫

Σ

[zε]2.

Since {zε} is weakly convergent to u and using the continuity of the trace we get

lim sup
ε→0

λε
1 ≤

C1∫

Σ

[ū1]
2

< ∞

where C1 is a constant independent of ε.

Next we will use an induction argument to prove the statement for all n ∈ N.
Let’s assume that

lim sup
ε→0

λε
k < ∞ for any k ≤ n− 1. (4.2.4)

We need to prove
lim sup

ε→0
λε

n < ∞

Let {λε
n}ε>0 be a subsequence of {λε

n}ε>0 still denoted by ε. Then, using the induction
hypothesis (4.2.4), the orthonormality of the associated sequence of eigenvectors and
a diagonalization argument we find a decreasing sequence {εj}j∈N, such that εj → 0
and

u
εj

k

j
⇀ uk ∈ W (4.2.5)

lim
j→∞

λ
εj

k

.
= λk < ∞ (4.2.6)

for k = 1, n− 1
Let zε be as in the proof of Lemma (4.2.1), with

ū1 /∈ span{u1, ..., un−1} (4.2.7)

We can do that because W has infinite dimension.

From (4.2.2) we obtain

λεj
n = inf

u∈Wεj ,δj
, u⊥u

εj
i

i=1,n−1

‖ u ‖2
V∫

Σ

[u]2dσ

(4.2.8)
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Consider now

z̄εj = zεj −
n−1∑
i=1

u
εj

i < zεj , u
εj

i >V

First we can see that

< z̄εj , u
εj

i >V = 0 for any i = 1, n− 1 (4.2.9)

Then z̄εj ∈ Vεjδj
and z̄εj /∈ H1

0 (Ω) for j big enough. Indeed from (4.1.2) we have

< zεj , u
εj

i >V = λ
εj

i

∫

Σ

[u
εj

i ][zεj ]

and using the trace continuity, the definition of zεj , (4.2.5) and (4.2.6) in the above
relation implies

z̄εj ⇀ z̄
.
= u−

n−1∑
i=1

uiλi

∫

Σ

[ū1][ui].

If we suppose [
u−

n−1∑
i=1

uiλi

∫

Σ

[ū1][ui]

]
= 0

this is equivalent with [
ū1 −

n−1∑
i=1

uiλi

∫

Σ

[ū1][ui]

]
= 0

which implies

ū1 −
n−1∑
i=1

uiλi

∫

Σ

[ū1][ui] = 0 (4.2.10)

because ū1 −
∑n−1

i=1 uiλi

∫

Σ

[ū1][ui] ∈ W and W is orthogonal on H1
0 (Ω). But (4.2.10)

leads to a contradiction with (4.2.7).
Therefore [z̄] 6= 0 and this implies the statement, i.e z̄εj /∈ H1

0 (Ω) for j big enough.
Next using (4.2.9) and (4.2.8) we obtain

λεj
n ≤

‖ PWεjδj
z̄εj ‖2

V∫

Σ

[PWεj ,δj
z̄εj ]2

≤ ‖ zεj ‖2
V∫

Σ

[z̄εj ]2
≤ C1∫

Σ

[z̄εj ]2

where C1 is a constant independent of j. Passing to the limit when j →∞ we obtain

lim sup
j→∞

λεj
n ≤

C1∫

Σ

[z̄]2
< ∞. (4.2.11)

So we have proved that any subsequence of λε
n has a subsequence {λεj

n }j∈N such
that (4.2.11) is satisfied. Therefore we have that

lim sup
ε→0

λε
n < ∞

for any n ∈ N
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The next Corollary shows that the weak-limits un of the sequence {uε
n}ε>0 of the

normal eigenvectors associated to the eigenvalue λε
n, cannot be zero.

Corollary 4.2.2. Let {uε
n}n∈N be the orthonormal sequence of eigenvectors associated

to λε
n for the problem (Pε). Then every weak-limit un of {uε

n}n∈N (i.e., un such that
on a subsequence uε

n
ε

⇀ un), is nonzero.

Proof. Because ‖ uε
n ‖= 1 a subsequence, still denoted by uε

n, will weakly converge to
some un. Using the variational form of (Pε) we have

λε
n =

1∫
Σ
[uε

n]2
.

Letting ε go to zero above we obtain

lim sup λε
n =

1∫
Σ
[un]2

.

Next using Lemma (4.2.1) we obtain that
∫

Σ

[un]2 6= 0.

and this implies the statement.

Remark 4.2.3. Similar results hold for the problem (4.1.1),i.e, all the strong-L2(Σ)
limit points of the sequence {zε

n}ε are nonzero.

Let us now consider the duality operator J ε : Vε,δ → (Vε,δ)
′

〈J εu,w〉(Vε,δ)′,Vε,δ
= 〈u,w〉Vε,δ

for any u,w ∈ Vε,δ

J ε is an operator of subdifferential type

J ε = ∂ϕε, ϕε : Vε,δ → R (4.2.12)

ϕε(u) =
1

2
‖ u ‖2

Vε,δ
(4.2.13)

By using the results in Damlamian [30] and Attouch [6] we have the following
lemma:

Lemma 4.2.4. The sequence of functionals {ϕε} is Γ-convergent weakly in V to ϕ
given by

ϕ(u) =
1

2

(
‖ u ‖2

V +
C

4

∫

Σ

[u]2
)

where C =





R · cap S if lim
ε→0

δ(ε)

ε
= R < ∞

∞ if lim
ε→0

δ(ε)

ε
= ∞
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We have used capS for the capacity of the set S in R3, i.e

capS = inf{
∫

R3

| ∇w |2dx | w ∈ H1(R3), w ≥ 1 a.e. on S}.

Corollary 4.2.5. The sequence of operators J ε is G convergent to ∂ϕ, with respect
to the weak × strong topology in V × V ′.

Proof. Using the G-convergence result for subdifferentials of Γ-convergent sequences
(see Attouch [6]-Th.3.67) we have that the Γ-convergences of the sequence ϕε to ϕ
imply the G-convergence of the subdifferentials,

∂ϕε G→ ∂ϕ

Next, we state the first homogenization result for problem (4.1.1):

Theorem 4.2.6. There is a decreasing sequence {εj}j ∈ N with εj → 0 such that
u

εj
n ⇀un, λ

εj
n → λn where (λn, un) solves the limit problem (P):

(P)




−∆un = 0
∂(un)+

∂n
= −∂(un)−

∂n
=

(
λn − C

4

)
[un]

where C 6= ∞ is as in Lemma 4.2.4.

Proof. Let an arbitrary fixed n ∈ N. Let {λε
n}ε>0 be the sequence of eigenvalues

for the problem (Pε) and uε
n the corresponding orthonormal sequence of eigenvectors.

Then there is a subsequence {εj}j ∈ N such that:

uεj
n ⇀ un and λεj

n → λn

We have proved in Lemma 4.2.1 that λn < ∞.
Let f

εj
n ∈ V ′ be defined as

f εj
n (w) = λεj

n

∫

Σ

[uεj
n ][w] for all w ∈ V.

Using the variational formulation (4.1.2) we have:

f εj
n (w) =< J εjuεj

n , w >(Vε,δ)′,Vε,δ
for all w ∈ Vεj ,δj

.

This implies
f εj

n ∈ ∂ϕεj (4.2.14)

The next observation is that:

f εj
n

j→∞−→ fn strongly in V ′ (4.2.15)
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where

fn(w) = λn

∫

Σ

[un][w] for all w ∈ V

The proof of the above convergence is straightforward. Indeed,

‖ f εj
n − fn ‖V ′ = sup

w∈W

‖w‖V ≤1

(
λεj

n

∫

Σ

[uεj
n ][w]− λn

∫

Σ

[un][w]

)

Now from the reflexivity of the space V we have that there exists wj
0 ∈ V with ‖

wj
0 ‖V≤ 1 such that

‖ f εj
n − fn ‖V ′ =

(
λεj

n

∫

Σ

[uεj
n ][wj

0]− λn

∫

Σ

[un][wj
0]

)
=

= (λεj
n − λn)

∫

Σ

[uεj
n ][wj

0] + λn

∫

Σ

[uεj
n − un][wj

0]

Thus, from Cauchy-Schwartz inequality

‖ f εj
n − fn ‖V

′ ≤| λεj
n − λn |

(∫

Σ

[uεj
n ]2

)1/2 (∫

Σ

[wj
0]

2

)1/2

+

+λn

(∫

Σ

[uεj
n − un]2

)1/2 (∫

Σ

[wj
0]

2

)1/2

.

Next we will use the following interpolation inequality (see[46]):

‖ u ‖2
L2(Σ)≤ M ‖ u ‖H1(Ω)‖ u ‖L2(Ω) ∀u ∈ V (4.2.16)

and the fact that ‖ wj
0 ‖V≤ 1 to obtain :

f εj
n

j→∞−→ fn strongly in
(
V
′
)

.

Therefore from (4.2.14), (4.2.15) and using the Corollary (4.2.5) we obtain that:

fn ∈ ∂ϕ(un). (4.2.17)

But (4.2.17) is exactly the problem (P).

The limit problem (P), is equivalent with the following spectral problem for the
DtN operator defined above. Indeed problem (P) is:

Find λ ∈ R and z ∈ H
1
2 (Σ) such that:

Lz = (λ− C

4
)z. (4.2.18)

Using the equivalence relations (4.1.3) and (4.1.4) the next Corollary is a obvious
consequence of the above discussions.
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Corollary 4.2.7. There is a decreasing sequence {εj}j ∈ N with εj → 0 such that
z

εj
n →zn, strongly in (L2(Σ)) and λ

εj
n → λn where (λn, zn) solves the limit problem :

Lzn = (λn − C

4
)zn

where C 6= ∞ is as in Lemma 4.2.4.

The main homogenization result is:

Theorem 4.2.8. If lim
ε→0

δ(ε)

ε
<∞ then:

i) lim
ε→0

λε
n = λn on the entire sequence.

ii) There is a decreasing sequence {εj}j∈N with εj → 0, such that u
εj
n ⇀un weakly

in V and z
εj
n →zn strongly in L2(Σ),

iii) λn = (C
4

+ βn) with (Lzn = βnzn), where βn is the n-th eigenvalue of the DtN
operator L, and C is as in Lemma 4.2.4.

Proof. Suppose there is λ 6= λn for any (n ∈ N) eigenvalue for the limit problem.
Let u ∈ W be the associated normal eigenvector, i.e ‖ u ‖V = 1 and

< u, w >= (λ− C

4
)

∫

Σ

[u][w] for all w ∈ W.

There is m ∈ N such that
λ < λm+1 (4.2.19)

From the Lax Milgram lemma we have that there exists wε ∈ Wε,δ such that

< J εwε, w >(Vε,δ
′
,Vε,δ)= λ

∫

Σ

[u][w] for all (w ∈ Wε,δ) .

Easily can be seen that wε is bounded in the norm of V .
Then on a subsequence still denoted by ε we have,

wε ⇀ w̄ as ε → 0

for some w̄ ∈ W . But if we consider fλ ∈ V
′

with fλ(w) = λ
∫
Σ
[u][w] then clearly

fλ(w) =< J εwε, w >(Vε,δ
′
,Vε,δ)=⇒ fλ ∈ ∂ϕε(wε).

So using the G-convergence result stated in (4.2.5) we obtain

fλ ∈ ∂ϕ(w̄) ⇐⇒< w̄, v > +
C

4

∫

Σ

[u][w̄] = λ

∫

Σ

[u][v]

for any v ∈ W .
Therefore, because of the definition of u we have that u = w̄. Now by Uryson’s
property we can see that

wε ⇀ u when (ε → 0)
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Let

vε = wε −
m∑

i=1

uε
i(w

ε, uε
i)V

We can see that

(wε, uε
i)V = λε

i

∫

Σ

[uε
i ][w

ε]
ε→ λi

∫

Σ

[u][ui].

But using the variational form of problem (P) the last integral in the above equality
is zero by the assumption λ 6= λn for any (n ∈ N).

Thus vε ⇀ u weakly in (V ). Noticing that vε ∈ Wε,δ and vε ⊥ uε
i for all

(
i = 1,m

)
from the Rayleigh’s principle for (4.1.1) we have

λε
m+1 ≤

‖ vε ‖2
V∫

Σ

[vε]2
(4.2.20)

Now, from the definition of wε and the inequality (4.2.16) we have

lim
ε→0

‖ vε ‖2
V = lim

ε→0
‖ wε ‖2

V = λ

∫

Σ

[u]2.

From the last relation and Theorem (4.2.6), passing to the limit when ε → 0 in
(4.2.20) we obtain the contradiction.

Using the equivalence relations (4.1.3), (4.1.4) and Corollary 4.2.7 we obtain ii)
and iii).

Next, following an idea in [6], we give a Mosco-convergence (see [6] for the defini-

tion of Mosco-convergence) result for the case lim
ε→0

δ(ε)

ε
< ∞:

Theorem 4.2.9. Let lim
ε→0

δ(ε)

ε
< ∞ and i ∈ N arbitrary fixed.

Then if mi is the order of multiplicity of λi, i.e

λi−1 < λi = λi+1 = ... = λi+mi−1 < λi+mi

then the sequence of subspaces generated by {uε
i , ..., u

ε
i+mi−1} Mosco-converge in L2(Ω)

to the eigenspace {ui, ..., ui+mi−1}, associated to λi.

Proof. We remark that the multiplicity of λε
i might be strictly smaller than that of

λi. So if we denote

{uε
i , ..., u

ε
i+mi−1} .

= Sε
i and {ui, ..., ui+mi−1} .

= Si

we can see that as in the above remark Sε
i may be strictly larger than the eigenspace

of λε
i . Now from Theorem (4.2.8) we have that there is a subsequence {uεj

n }j∈N such
that

lim
ε→0

λε
n = λn and uεj

n ⇀un,
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where (un, λn) solve the spectral limit problem P .
From the linearity of Pε and P we can say that

lim sup
ε→0

Sε
i ⊂ Si.

We can easily see that for arbitrary fixed i, j ∈ N, with i 6= j and

uε
i ⇀ ui and uε

j ⇀ uj

we have
< ui, uj >V = 0.

Indeed from

0 =< uε
i , u

ε
j >V = λε

i

∫

Σ

[uε
i ][u

ε
j]

passing to the limit when ε → 0 we have

λi

∫

Σ

[ui][uj] = 0 =⇒< ui, uj >V = 0

using the variational form of the limit problem. Next using the linear independence
of {ui, ..., ui+mi−1} and the fact that the dimension of the eigenspace associated to λi

is mi we have in fact that
lim sup

ε→0
Sε

i = Si.

Because of the compact imbeding of H1 in L2 we have that there is a subsequence εj

such that
lim inf

ε→0
Sε

i = lim sup
j→∞

S
εj

i .

Now if there is v such that
v /∈ lim inf

ε→0
Sε

i

then from the above relation we have

v /∈ lim sup
j→∞

S
εj

i = Si

which implies
Si ⊂ lim inf

ε→0
Sε

i .

So we have proved the statement.

The next corollary is a consequence of the above results and states:

Corollary 4.2.10. Let lim
ε→0

δ(ε)

ε
< ∞ and i ∈ N arbitrary fixed.

Then if mi is the order of multiplicity of λi, i.e

λi−1 < λi = λi+1 = ... = λi+mi−1 < λi+mi

then the sequence of subspaces generated by {zε
i , ..., z

ε
i+mi−1} Mosco-converge in L2(Σ)

to the eigenspace {zi, ..., zi+mi−1}, associated to λi for the problem (4.2.18).
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Next we will analyze the case when λi is a simple eigenvalue of the limit problem.
We have the following result:

Theorem 4.2.11. Let lim
ε→0

δ(ε)

ε
< ∞. If λε

n → λn and λn is a simple eigenvalue of

the limit problem (P), then the whole sequence {uε
n} is convergent, uε

n ⇀ un, where

un is an eigenvector for (P) associated to λn and ‖ un ‖2
V =

(
1

βn

C
4

+ 1
)−1

where βn is

as in Theorem 4.2.8 and C is defined in Lemma (4.2.4).

Proof. Let ũn be the orthonormal eigenvector associated to λn. Because λn is simple
we will have that λε

n will be simple for ε small enough. We can suppose

〈uε
n, ũn〉 ≥ 0, (4.2.21)

for every ε > 0.
From the orthogonality of (uε

n)n∈N we have that their limits (un)n∈N from a orthog-
onal subsequence . Indeed, using Theorem 4.2 and (4.2.16) we have that there is a
subsequence still denoted by ε such that we can pass to the limit when ε → 0 in the
next equality

0 = 〈uε
n, u

ε
m〉V = λε

n

∫

Σ

[uε
n][uε

m]

In the limit when ε → 0 in the last equality, we obtain

λn

∫

Σ

[un][um] = 0 ⇔ 〈un, um〉V · λn

λn − C
4

= 0 ⇔ 〈un, um〉V = 0,

and therefore the orthogonality of the limits eigenfunctions is proved.

On the other hand, using the orthonormality of (uε
n)n∈N we have that for any

subsequence (u
εj
n )j there is a subsequence of it (u

εjk
n )k such that u

εjk
n ⇀ un.

Because λn is a simple eigenvalue we get that there is a constant r such that un = r·ũn.
Then from the orthonormality we get again

‖ u
εjk
n ‖V = 1 ⇔ 〈uεjk

n , u
εjk
n 〉V = 1 ⇔ λ

εjk
n

∫

Σ

[u
εjk
n ][u

εjk
n ] = 1

Passing to the limit when k →∞ in the above equality and using that λn = C
4

+ βn

we obtain

(
C

4
+ βn)

∫

Σ

[un][un] = 1 ⇔ 〈un, un〉V · ( 1

βn

C

4
+ 1) = 1

Therefore, because un = r · ũn ∀n ∈ N we have that

| r |=
(

1

βn

C

4
+ 1

)−1/2

.

But because of (4.2.21) we get that r > 0.Thus

r =

(
1

βn

C

4
+ 1

)−1/2

.
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So we have proved that every subsequence {uεjk
n }k∈N of {uε

n}ε>0 has a subsequence of

it which converge in the weak topology of V , to un = ũn

(
1

βn

C
4

+ 1
)−1/2

. Therefore

the conclusion follows immediately.

The next corollary follows from the equivalence relations (4.1.3), (4.1.4) and Corol-
lary 4.2.7.

Corollary 4.2.12. Let lim
ε→0

δ(ε)

ε
< ∞. If λε

n → λn and λn is a simple eigenvalue of

the limit problem (P) then the entire sequence of eigenvectors for the problem (4.1.1),
{zε

n}ε, is convergent to zn strongly in L2(Σ), where zn is an eigenvector for (4.2.18)

and ‖ zn ‖2
L2(Σ)=

1
C
4

+ βn

.

4.2.1 Case lim
ε→0

δ(ε)

ε
= ∞

In this case we can see that the sequence {ϕε}ε>0 defined in 4.2.4, Γ-converge to
ϕ and we have

ϕ(u) =





∫

Ω

| ∇u |2 dx if u ∈ H1
0 (Ω)

∞ otherwise

Now suppose that there is n ∈ N such that λε
n

ε→ λn < ∞.
Now using the same approach as before, we obtain from Theorem (4.2.6) and Corollary
(4.2.5) that y ∈ ∂ϕ(un).This means that

un ∈ Dom(ϕ) = H1
0 (Ω).

But we know that uε
n ∈ Wε,δ ⊂ W which means that

un ∈ W.

Using the fact that W = (H1
0 (Ω))⊥ in V we obtain un = 0, which contradicts Corollary

4.2.2. Therefore λε
n

ε→∞. Now from the variational form of (4.1.1) if uε
n is the normal

eigenvector associated to λε
n we have

1

λε
n

=

∫

Σ

[uε
n]2

Consider un ∈ W to be the weak limit of uε
n when ε → 0. Passing to the limit for

ε → 0 in the equality above we obtain
∫

Σ

[un]2 = 0

And this together with the fact that un ∈ W and W ⊥ H1
0 (Ω) give us that un = 0.

So in this case we have that all the eigenvectors of the Pε converges to zero and all
the eigenvalues of the same problem converges to ∞.
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4.2.2 Case lim
ε→0

δ(ε)

ε
= 0

Although this can be seen as a particular case for all the results stated above,
we will discus it separately due to the fact that we can obtain a stronger variant of
Theorem (4.2.9).This case is very interesting because the holes Sε,δ ”disappear” in
the limit problem.

First, we can observe following ([6], Th.1.27) that in this case we have

wε → 0 strongly in H1
0 (Ω).

where wε is the capacity potential defined in Lemma 4.2.1.

It can be easily seen that for each u ∈ W , using wε, we can construct sequences,
ũε = u − wεru with ru smooth enough (for example in W 1,∞(Ω+) ∪W 1,∞(Ω−)) and
[ru] = [u] on Σ, such that ũε ∈ Vε,δ and PWε,δ

ũε → u strongly in W .
Using the strong convergence of the capacity potential we obtain:

ũε → u strongly in V when ε → 0. (4.2.22)

Now we have
ũε = PWε,δ

ũε + (ũε − PWε,δ
ũε).

Let a = lim
ε→0

PWε,δ
ũε and b = lim

ε→0
(ũε − PWε,δ

ũε) be two (arbitrary chosen) weak limit

points of {PWε,δ
ũε}ε>0 and respectively {ũε − PWε,δ

ũε}ε>0.
It’s easy to see that a ∈ (H1

0 (Ω))⊥ and b ∈ H1
0 (Ω). Therefore we obtain u = a + b.

and thus b = 0 and a = u. By the arbitrary choice of a and b, and the compactness
of the above sequences we get that

PWε,δ
ũε ⇀ u

ũε − PWε,δ
ũε ⇀ 0

(4.2.23)

Next we will use the following lemma in order to get the conclusion.

Lemma 4.2.13. Let {an}n∈N and {bn}n∈N be two sequences in V (where V can be a
general Hilbert space, and (., .)the scalar product in V ) such that an ⊥ bn for every
n ∈ N.
If (an + bn) → L strongly in V and an ⇀ L then an → L and bn → 0 strongly in V
as n →∞.

Proof. First we have that

‖ an ‖2
V = (an + bn, an) →‖ L ‖2

V .

Therefore we have that
‖ an ‖V→‖ L ‖V

Now from reflexivity of V we get the result.
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Next, from the above lemma, (4.2.23), (4.2.22) and using the orthogonal decom-
position of ũε we obtain

PWε,δ
ũε → u strongly in V

ũε − PWε,δ
ũε → 0 strongly in V

(4.2.24)

Noticing that Wε,δ is a closed subspace of W , using (4.2.24) we can easily prove that

PWε,δ
u → u for every u ∈ W.

Indeed we have

‖ PWε,δ
u− u ‖

V
≤ ‖ ũε − u ‖V + ‖ PWε,δ

u− PWε,δ
ũε ‖V + ‖ PWε,δ

ũε − ũε ‖V (4.2.25)

But for any u ∈ V we have

‖ PWε,δ
u− PWε,δ

ũε ‖V = ‖ PWε,δ
(P εu)− PWε,δ

ũε ‖V ≤ ‖ P εu− ũε ‖V ≤
≤ ‖ P εu− u ‖V + ‖ ũε − u ‖V ≤ 2 · ‖ ũε − u ‖V .

(4.2.26)

Thus, from (4.2.24), (4.2.22) and (4.2.26), the right hand member in (4.2.25) goes to
0 when ε → 0. This implies

PWε,δ
u → u for every u ∈ W. (4.2.27)

Let PWε,δ
≡ Rε.

Now if for u ∈ Wε,δ we define Kε : Wε,δ → Wε,δ and K : W → W as

〈Kεu, w〉V =

∫

Σ−Sε,δ

[u][w], for any w ∈ Wε,δ. (4.2.28)

and

〈Ku, w〉V =

∫

Σ

[u][w], for any w ∈ W. (4.2.29)

we can see that Kε and K,are compact and symmetric operators and they have
the eigenvalues { 1

λε
n
}n∈N and { 1

βn
}n∈N respectively and the associated eigenvectors

sequence {uε
n}n∈N and {un}n∈N respectively. It is easy to check now that Rε verify

the properties stated in ([51], section 11.1) In these conditions all the results obtained
in ([51], chapter.11) are valid in our case too. Define

N(βn, K) = {u ∈ W,Ku =
1

βn

u}.

as in [51]. Now following the results in [51] we have λε
n → βn and

| 1

λε
n

− 1

βn

|≤ 2 · sup
u∈N(βn,K),‖u‖W =1

‖ KεRεu−RεKu ‖W (4.2.30)

and for the eigenvectors {uε
n}n∈N the following stronger version of Theorem (4.2.9)

holds.
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Theorem 4.2.14. Let i ≥ 1 be an integer and

λi−1 < λi = ... = λi+mi−1 < λmi+i i.e,

the multiplicity of the eigenvalue λi is equal to mi, then for any w ∈ N(βi, K),
‖ w ‖V = 1, there exists a linear combination ūε of eigenvectors uε

i, ..., uε
i+mi−1 of Kε

such that
‖ ūε −Rεw ‖V≤ Mi ‖ KεRεw −RεKw ‖V (4.2.31)

where the constant Mi does not depend on ε

.

Remark 4.2.15. The relation (4.2.31) in Theorem (4.2.14) can be rewritten as

‖ ūε − w ‖V≤ Mi ‖ KεRεw −RεKw ‖V + ‖ Rεw − w ‖V .

Using (4.2.27) and the relation above we can see that Theorem (4.2.14) states in
fact the Mosco-convergence in the strong topology of V of the sequence of the spaces
generated by {uε

i, ..., uε
i+mi−1} to the eigenspace associated to λi, and this is stronger

than Theorem (4.2.9).

Remark 4.2.16. As a last observation we can see that using (4.1.3) and (4.1.4)
similar results as those obtained in Section 3.1 and Section 3.2 can be stated and
proved for the problem (4.0.2).
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Chapter 5

Homogenization results for a
contact problem with friction
arising in the modeling of the
earthquake initiation phase

The origin of friction has to be found in the hard contacts between two rough
surfaces and the the geometry of the contact, let us say the roughness, has been
shown to be a decisive parameter for frictional behavior [75]. Since friction is a
phenomenon that concerns both microscopic and macroscopic scales the contact on
a geological fault is also modelled at the scale of the seismic waves (i.e. kilometric).

The friction properties are likely heterogeneous on the fault, particularly with the
presence of barriers. By the term barrier, we denote here a patch on the fault plane
where no slip occurs. This concept cannot be applied for the evolution of the fault
at the geological time scale but it has been shown to be useful and relevant in the
description of fault heterogeneity during an earthquake [69, 70].

The macroscopic behavior of a fault with small-scale heterogeneity of rupture
resistance (small scale barriers) is difficult to relate to the local properties of the fault.
A formal measure of the friction on the fault itself would just be a local particular
law, that is varying with the position along the fault. In this chapter we focus on the
following question : How can we obtain an effective (equivalent) friction law which,
used on a homogeneous fault, leads to a slip evolution similar to the one produced on
the heterogeneous fault ?

Mathematically the problem is related to the homogenization of the Newmann
Sieve problem for the Laplacian studied by several authors [30, 26, 6, 21]. In the
geophysical context the problem was studied (see [18, 17, 71]) in two dimensions
(anti-plane geometry) to obtain the rescaling of the weakening rate through a spectral
analysis.

The Newmann Sieve problem associated to the linear elasticity operator was stud-
ied by Lobo and Perez [56, ?]. An extension to the non-linear case of the Neumann
Sieve has been studied by Ansini in [3]. Our friction problem is similar to the previ-
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ous, with the important difference that the tangential component of the displacement
has zero jump on the barriers, and the limit analysis is therefore developed on a larger
functional space.

Let us outline the content of the chapter.

In section 5.2 we consider the three dimensional shearing of an elastic domain
which contains an internal boundary (the fault) located on a plane(the fault plane).
The contact on the fault is described through a slip weakening friction (i.e. the
decrease of the friction force with slip). This friction law is used in the geophysical
context of earthquakes modeling and experimental studies [67] pointed out the good
agreement of this model with experimental data. The symmetry of the displacement
field with respect to the fault plane (see for instance [39] for the geophysical meaning)
gives an important simplification of the problem: the normal over stress on the fault
vanishes. The fact that the normal stress has a weak variation of during the dynamic
rupture was already observed in direct computations [5, 57] as well as in the inversion
of seismological data [27]. An important consequence of the above assumption is
the fact that we can associate to the physical problem a minimization problem for
the energy function. In modelling seismic phenomena, where at least two equilibria
(before and after an earthquake) are involved, the energy function cannot be supposed
convex.

In section 5.3 we obtain(as in [50] under slightly different assumptions) sufficient
conditions of stability through the first eigenvalue of the tangent problem. Since this
eigenvalue problem has an important significance in the description of the physical
properties of the fault, we shall study it in the next section.

In section 5.4 we give the main results of the chapter. Firstly we set the perturbed
(or heterogeneous) problem: a fault which has ε-periodically distributed barriers of
radius rε. For 0 < c =: limε→0 δ(ε)/ε < ∞ we prove that the sequence of energy
functionals Γ-converges to a limit energy functional. For the proof of liminf and the
limsup inequalities we adapt an idea from [3].

The limit functional is associated to another slip weakening friction problem called
the equivalent friction law. In the last part of this section we prove that the eigenvalues
and eigenfunctions of the perturbed tangent problem converge to the eigenvalues
and eigenfunctions of the equivalent (limit) tangent problem. For this we adapt G-
convergence techniques, developed for the Newmann-Sieve problem in [66].

The slip weakening rate of the equivalent (or limit) fault is smaller then undis-
turbed fault. Since the limit slip weakening rate may be negative a slip-hardening
effect can also be expected. Moreover, we have to point out that even if the small
scale friction law is isotropic the equivalent one is not. This surprising fact is natural
if we have in mind that the periodic distribution of the barriers is not isotropic, hence
the limit problem will inherit this anisotropic geometrical perturbation. We have to
mention here that this property was also obtained [?, 56] for an elastic body with a
surface having small no-slip regions.We make the observation that the proof of the
convergence is based there on the explicit computation of the solution for the cell
problem, which in our case cannot be easily computed because of the general mixed
type boundary conditions on parts of the boundary. This is the reason we chose the
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Γ-convergence approach in our paper.

In the last section we give the physical interpretation of the previous theoretical
results in the context of a barrier erosion process during the earthquake nucleation (or
initiation) phase, which precedes the dynamic rupture. We point out the important
role played by the process of erosion of the barriers in the effective properties of the
homogenized fault. We deduce from our analysis that the nucleation phase can be
divided in three time periods. Firstly we are dealing with a locking stage with no
”macroscopic” slip. The second time period is characterized by a smaller, and even
negative, weakening rate and by the loss of the isotropy of the friction law. The third
time period corresponds to the last stage of (effective) initiation when the friction
properties are the same with the undisturbed fault.

5.1 Statement of the physical problem

We consider the three dimensional shearing of an elastic domain D ⊂ R3. If we
denote by u : D −→ R3 the displacement field, then the elastic constitutive equation
and the equilibrium equation read

σ(u) = Aε(u), div(Aε(u)) = 0 in D, (5.1.1)

where A is the fourth order elastic tensor, σ(u) is the over stress tensor and ε(u) =
1

2
(∇u + ∇T u) is the small strain tensor. A is a symmetric and positively defined

fourth order tensor, i.e.

Aijkl ∈ L∞(D), A(x)ε · σ = A(x)σ · ε, a.e. x ∈ D, (5.1.2)

such that A(x)ε · ε ≥ M1|ε|2 and |A(x)ε| ≤ M2|ε| a.e x ∈ D with M1,M2 > 0 ,
(5.1.3)

for all i, j, k, l = 1, 3 and for all σ, ε ∈ R3×3
S .

The smooth boundary Σ = ∂D is divided into two disjoint parts Σ = Σd ∪ Γf :
Σd = ∂D̄ the exterior boundary and Γf the interior one (i.e. it’s a subset of the
interior of D̄). For the sake of simplicity on the exterior boundary we shall suppose
vanishing displacement conditions, i.e. u = 0 on Σd. The interior boundary is located
in the plane Π = {x3 = 0}, and will be called in the following the fault or fault
region. We assume that the pre-stress σ∞ ∈ C0(D̄) is such that the fault does not
open. Moreover the fault Γf is under a slip-dependent friction law:

[σi3(u)] = 0, i = 1, 3, [u3] = 0, on Γf , (5.1.4)

στ (u) + τ∞ = −µ(|[uτ ]|)|σ33(u)− S⊥| [uτ ]

|[uτ ]| if [uτ ] 6= 0 on Γf , (5.1.5)

|στ (u) + τ∞| ≤ µ(0)|σ33(u)− S⊥| if [uτ ] = 0 on Γf , (5.1.6)

where [ ] denotes the half of the jump across Γf , (i.e. [w] = (w+ − w−)/2), στ (u) =
−(σ13(u), σ23(u), 0) is the tangential over-stress, σ33(u) is the normal over-stress, uτ =
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Figure 5.1: The geometry of the 3-D problem

(u1, u2, 0) is the tangential displacement, and τ∞ =: −(σ∞13, σ
∞
23, 0) and −S⊥ =: σ∞33 are

the tangential and the normal pre-stress acting on Γf . From the above assumptions
on σ∞ we have S⊥, τ∞i ∈ C0(Γf ). Equations (5.1.5)-(5.1.6) assert that the tangential
(friction) stress is bounded by the normal stress multiplied by the value of the friction
coefficient µ(0). If this limit is not attained sliding does not occur. Otherwise the
friction stress is opposed to the slip [uτ ] and its absolute value depends on the slip
modulus through µ(|[uτ ]|). Concerning the regularity of µ : R+ → R+ we suppose
that the friction coefficient is a Lipschitz function with respect to the slip, i.e. there
exists Lµ ≥ 0 such that

|µ(s1)− µ(s2)| ≤ Lµ|s1 − s2|, (5.1.7)

and we denote by H its antiderivative

H(u) :=

∫ u

0

µ(s) ds.

We suppose that there exists γ ∈ L∞(R+) and a ≥ 0 such that

H(r)−H(s) ≥ µ(s)(r − s)− γ(s)(r − s)2/2− a|r − s|3, ∀r, s ≥ 0. (5.1.8)

Let us remark that if µ is two times differentiable with a bounded second deriva-
tive then (5.1.8) holds with γ(s) = −µ′(s). If µ is continuous but only piecewise
differentiable then (5.1.8) holds with γ(s) = −min{µ′(s+), µ′(s−)}.

A specific friction law with a linear piecewise slip weakening, which is a reasonable
approximation of the experimental observations (see [67]), can be written as follows

µ(s) =

{ µd − µs

Dc

s + µs if s ≤ Dc

µd if s ≥ Dc

(5.1.9)

where µs > µd are the static and, respectively, dynamic friction coefficients and Dc is
the critical slip. In this case γ(x) = (µs − µd)/Dc.
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We shall suppose in the following that D is symmetric with respect to the plane
Π. As in [39] the following symmetries of the displacement field with respect to the
plane Π will be considered:

u1(x,−x3) = −u1(x, x3), u2(x,−x3) = −u2(x, x3), u3(x,−x3) = u3(x, x3),
(5.1.10)

where x = (x1, x2) and (x, 0) belongs to Σ0 the intersection of D̄ with the plane Π.
In the case of an isotropic elastic material, i.e.

Aijkl = λδijδkl + Gδikδjl, (5.1.11)

with λ,G > 0 the Lamé coefficients, we deduce the following symmetries of the stress
field σ33:

σ33(x,−x3) = −σ33(x, x3).

The condition of continuity of the stress vector (5.1.4) on the fault plane Γf gives
the fact that the normal over-stress σ33 does not present any variation during the slip

σ33(x, 0+) = σ33(x, 0−) = 0, for any (x, 0) ∈ Σ0. (5.1.12)

Since the displacement field is continuous outside the faults, from the symmetry
conditions (5.1.10) we get that the tangential displacement is vanishing outside Γf :

u1(x, 0+) = u1(x, 0−) = u2(x, 0+) = u2(x, 0−) = 0, for all (x, 0) ∈ Σ0 \Γf , (5.1.13)

and the jump on Γf is the given by:

[ui(x, 0)] = ui(x, 0+) = −ui(x, 0−), i = 1, 2, for all (x, 0) ∈ Γf . (5.1.14)

Let us denote by Ω := D ∩ {x3 > 0} the upper half of the domain D and by
Γd := Σd ∩{x3 > 0}, Γt := Σ0 \Γf which implies that ∂Ω = Γd ∪Γt ∪Γf . From the
above symmetry properties we can restrict ourselves to the upper half Ω of D. We
state the problem (P) : find the displacement field u : Ω → R3 solution of

σ(u) = Aε(u), div(Aε(u)) = 0 in Ω, (5.1.15)

u = 0 on Γd, σ33(u) = 0, uτ = 0 on Γt, (5.1.16)

σ33(u) = 0,





στ (u) = −S⊥µ(|uτ |) uτ

|uτ | − τ∞ if uτ 6= 0

|στ (u) + τ∞| ≤ S⊥µ(0) if uτ = 0.
on Γf , (5.1.17)

5.2 Existence and stability

Let us denote by V the closed subspace of [H1(Ω)]3 given by

V := {v ∈ [H1(Ω)]3/v = 0 on Γd, vτ = 0 on Γt}. (5.2.1)
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From Korn’s inequality and Poincare’s inequality one can easily deduce that the
following inner product

< u, v >V :=

∫

Ω

Aε(u) · ε(v), ∀u, v ∈ V, (5.2.2)

generates a norm, denoted by ‖ ‖V , which is equivalent with the natural norm on
[H1(Ω)]3 and

M1 ‖ Du ‖2
L2≤‖ u ‖2

V≤ M2 ‖ Du ‖2
L2 ∀u ∈ V.

We have the following variational formulation of the physical problem (5.1.15)-(5.1.17),
(see also [50])

u ∈ V, < u, u− v >V +j(u, u)− j(u, v) ≤ f(u− v) ∀v ∈ V, (5.2.3)

where j : V × V −→ R+ and f : V −→ R are given by

j(u, v) =

∫

Σ0

S⊥µ(|uτ |)|vτ |, f(v) = −
∫

Σ0

τ∞ · vτ ∀u, v ∈ V. (5.2.4)

Let us introduce now the total energy functional W : V −→ R given by

W(v) =
1

2
‖v‖2

V +

∫

Σ0

S⊥H(|vτ |)− f(v), ∀v ∈ V, (5.2.5)

which characterizes the ”physically acceptable” solutions. Indeed we have the follow-
ing result.

Theorem 5.2.1. If u ∈ V is a local minimum for W, then u is a solution of (5.2.3).
Moreover there exists a global minimum for W, i.e. there exists u ∈ V such that

W(u) ≤ W(v), ∀v ∈ V. (5.2.6)

Proof. Let u be a local minimum, i.e. there exists δ such that W(u) ≤ W(w) for all
w ∈ V with ‖w − u‖V ≤ δ. For all v ∈ V we put w = u + t(v − u), with t > 0 small
enough, in the last inequality and we pass to the limit with t → 0 to deduce (5.2.3).

In order to prove that W has a global minimum we remark that the trace map
is compact from V to L2(Γf ). Hence v → ∫

Γf
S⊥H(|vτ |)− f(v) is weakly continuous

on V , which implies that W is weakly lower semicontinuous. Bearing in mind that
lim infW(v) = ∞ for ‖v‖V → ∞, from a Weierstrass type theorem we deduce that
W has at least one global minimum.

Let us consider now the following eigenvalue problem, which will be useful to
characterize the stability of the local minima, (E): find u : Ω −→ R3, u 6= 0 and
λ ∈ R such that

σ(u) = Aε(u), div σ(u) = 0, in Ω, (5.2.7)

u = 0 on Γd, σ33(u) = 0, uτ = 0 on Γt, (5.2.8)

σ33(u) = 0, στ (u) = λuτ on Γf , (5.2.9)
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which has the following variational formulation:

u ∈ V, < u, v >V = λ

∫

Γf

uτ · vτ , ∀v ∈ V. (5.2.10)

The same technique as in [50] can be used to get the structure of the spectrum.
For the convenience of the reader we shall give here the proof.

Theorem 5.2.2. The eigenvalues and eigenfunctions of (5.2.10) form a sequence
(λn, un)n≥1 with 0 < λ1 ≤ λ2 ≤ ..... and λn −→ +∞. Moreover we have

||u1||2V∫

Γf

|u1τ |2 dx

= λ1 = min
v∈V

||v||2V∫

Γf

|vτ |2 dx

. (5.2.11)

Proof. Let L = {f = (f1, f2, 0)/f1, f2 ∈ L2(Σ0), f1 = f2 = 0 on Γt} be a closed
subspace of [L2(Σ0)]

3. Denote by γτ : V → L the compact operator which associates
to all v ∈ V the tangential component of its trace on Γf , i.e.,

γτ (v)
.
= vτ = v − (v · n)n along Γf

for any v ∈ V .
Let V1 = ker γτ . Using the definition of V we can see that

V1 = {v ∈ V/ vτ = 0 on Σ0 }.

Consider now
W = V ⊥

1 = {v ∈ V/ < v, w >V = 0 ∀ w ∈ V1}.
Let PW : V → W be the orthogonal projection onto W and define T : L → W to be
the linear and bounded operator which associates to each f ∈ L the unique solution
T (f) ∈ W of the following linear equation

〈T (f), v〉V =

∫

Γf

f · vτ dx, ∀v ∈ V. (5.2.12)

We can define now the linear bounded operator K : W → W by Kv
.
= T (vτ ). From

(5.2.12) we get

< Ku, v >V =

∫

Γf

uτvτ (5.2.13)

for all u, v ∈ W , which implies that K is symmetric compact and strictly positive.
Hence K has a positive and decreasing sequence of eigenvalues (βn)n≥1 with βn → 0
and an orthonormal sequence of corresponding eigenvectors, (un)n≥1.

It’s easy to observe that λn
.
=

1

βn

will be the eigenvalues of the problem (E) and un

will be the orthonormal eigenvectors corresponding to it.
Then Rayleigh’s principle for K gives us the statement of the theorem.
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The following theorem makes use of the first eigenvalue of the above spectral
problem to give sufficient conditions for a solution of (5.2.3) to be stable.

Theorem 5.2.3. Let u ∈ V be a solution of (5.2.3) and let λ1 be the first eigenvalue
of E. If

λ1 > cu =: ess sup
x∈Γf

S(x)γ(|uτ (x)|), (5.2.14)

where γ has been defined in (5.1.8) and −S is the normal stress on Γf , then u is an
isolated local minimum for W, i.e. there exists δ > 0 such that

W(u) < W(v) ∀ v ∈ V, v 6= u, ‖v − u‖V < δ. (5.2.15)

Proof. Let us suppose that u is not a local minimum for W , i.e. there exists (vm)m ⊂
V , vm → u and W(vm) ≤ W(u). If we put v = vm in (5.2.3) from the last inequality
and from (5.1.8) we get:

‖u−vm‖2
V −

∫

Γf

Sγ(|uτ |)(|uτ |− |vmτ |)2 ≤ 2a

∫

Γf

S | |vmτ | − |uτ | |3. Since the trace

map is continuous from V to L3(Γf ) the last inequality becomes

‖u− vm‖2
V − cu

∫

Γf

(|uτ | − |vmτ )|)2 ≤ C‖u− vm‖3
V , (5.2.16)

where C is a generic constant. If cu ≤ 0 then we obtain 1 ≤ C‖u−vm‖V , a contradic-

tion. If cu > 0 then from (5.2.11) and (5.2.16) we get
λ1 − cu

λ1

‖u−vm‖2
V ≤ C‖u−vm‖3

V

which implies λ1 − cu ≤ Cλ1‖ū− vm‖V . Since vm → u we obtain λ1 − cu ≤ 0, which
contradicts (5.2.14).

5.3 The perturbed problem

Denote by R3
+ = {x ∈ R3; x3 > 0} and R3

− = {x ∈ R3; x3 < 0}.
Throughout the chapter we will use M as an arbitrary constant independent of

any parameter. Also by B2
1(0) we denote the two dimensional ball centered in 0 and

with radius 1.
Let Γ0

f ⊂ Σ0, with dist(Γ0
f , Σ0) > 0, be the unperturbed (or equivalent) fault and

let ε > 0 be a small parameter. Let S a fixed open set compactly inclosed in the
2-dimensional unit square and consider the lattice ε

2
Z2 on the plane Π. Let

Qε
i,2 =

{
xε

i +
(
− ε

2
,
ε

2

)2
}
× {0} (5.3.1)

denote the periodic cell on Π, centered at x = (xε
i , 0) where xε

i = iε for i ∈ Z2.
The perturbed fault Γε

f ⊂ Σ0 has ε-periodically distributed holes, called (small scale)
barriers. More precisely in each ε-square of the ε-lattice on the fault plane Π, the
friction contact is considered outside an open set Sε,δ (small scale barrier) of size
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εδ(ε) < ε, (see Figure 5.2) with Sε,δ = εδ(ε)S + k
2
ε , k ∈ Z2. For the simplicity of the

exposition we will assume that Sε,δ is a 2-dimensional ball, denoted by B2(xε
i , εδ(ε))

centered in xε
i , i ∈ Z2 and of radius εδ(ε). We shall denote by Bε the set of all the

microscopic barriers and let Γε
f := Γ0

f \ B̄ε be the perturbed fault. As before we define
Γε

t := Σ0 \ Γε
f .

Define now the spaces:

X = {u ∈ [H1(Ω)]3/u = 0 on Γd}, V = {u ∈ X / uτ = 0 on Σ \ Γ0
f}

and W = V ⊥
1 the orthogonal complement of V1 in V .

We define the perturbed problem :

(Pε) find uε : Ω → R3, solution of (5.1.15)-(5.1.17) with Γf = Γε
f and Γt = Γε

t.

We consider

Vε,δ := {v ∈ [H1(Ω)]3/v = 0 on Γd, vτ = 0 on Γε
t}. (5.3.2)

to formulate (Pε) in terms of the minimum of energy, Wε : Vε,δ → R, i.e.,

uε ∈ Vε,δ Wε(uε) ≤ Wε(v) ∀v ∈ Vε,δ. (5.3.3)

We define the perturbed eigenvalue problem, associated to the above perturbed min-
imum problem, as

(Eε) find uε : Ω → R3, and λε solution of (5.2.7)-(5.2.9) with Γf = Γε
f and Γt = Γε

t,

which has the variational formulation

uε ∈ Vε,δ, < uε, v >V = λε

∫

Γ0
f

uε
τ · vτ , ∀v ∈ Vε,δ. (5.3.4)

Let Lε = {f = (f1, f2, 0)/f1, f2 ∈ L2(Σ0), f1 = f2 = 0 on Γε
t} and let the tangential

trace on Γε
f be defined as before. Thus if we consider

V ε
1 = {v ∈ Vε,δ ; vτ = 0 on Γε

f}
we can see that

V ε
1 = V1 = {v ∈ V ; vτ = 0 on Σ0 },

and V1 is a subspace of Vε,δ. Let’s define Wε
.
= V ⊥

1 to be the orthogonal complement
of V1 in Vε,δ, and PWε : Vε,δ → Wε to be the orthogonal projection onto Wε.
Then as is the proof of Theorem 5.2.2 we can write (5.3.4) as an eigenvalue problem
for the operator Kε : Wε → Wε, defined by

〈Kεu, v〉 =

∫

Γ0
f

uτvτ .

Thus the problem (5.3.4) will have an orthonormal sequence of eigenvectors {uε
n}n≥1

and a sequence of corresponding eigenvalues {λε
n}n≥1, such that 0 < λε

1 ≤ λε
2 ≤ .....,

λε
n −→ +∞, and

||uε
1||2V∫

Γε
f
|uε

1τ |2 dx
= λε

1 = min
v∈Wε

||v||2V∫
Γε

f
|vτ |2 dx

. (5.3.5)
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Figure 5.2: The splitting of Σ0 into Γε
f (the friction surface) in grey and Γε

t (the barrier
surface) in white for the the perturbed problem.

5.3.1 Asymptotic analysis of the problem Pε

The main theorem concerning the homogenization of problem Pε is given next:

Theorem 5.3.1. The sequence of functionals Wε : Vε,δ → R

Wε(v) =
1

2
‖ v ‖V +

∫

Γ0
f

SH(|vτ |)− f(v)

Γ-converge with respect to the weak topology of V to, W : V → R with

W(v) =
1

2
‖ v ‖2

V +

∫

Γ0
f

SH(|vτ |)− f(v) +
1

2
c

3∑
i,j=1

∫

Γ0
f

Cijvivj

where for k, l = 1, 3

Ckl =





0 if (k − 3)(l − 3) = 0∫

R3
+

Aε(wk)ε(wl)dx otherwise,

0 < c = lim
ε→0

δ(ε)

ε
< ∞ and wk, for k = 1, 2 is the solution of the following local

problem 



∂
∂yj

σij(w
k) = 0 on R3

+ for i = 1, 2, 3

σ33(w
k) = 0, wk

τ = ek on B2
1(0)

σi3(w
k) = 0 on R2\B2

1(0)
wk(y) → 0 where y3 ≥ 0 and |y| → ∞
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Before beginning the proof we make the following useful remark.

Remark 5.3.2. The result above can be rewritten in the following way: Γ−limε→0Wε =
W where W : V → R is defined as

W(v) =
1

2
‖ v ‖2

V +

∫

Γ0
f

S⊥H(|vτ |)− f(v) +
1

2
c

∫

Γ0
f

vτCvτ

with c and the matrix C defined as above.

Proof. We mention that the asymptotic analysis of this problem uses similar tech-
niques as those developed in [3] and [4]. For the convenience of the reader we present
the proof of our results, referring to the above mentioned papers when needed. The
next lemma can be easily adapted from [3] using Korn’s inequality.

Lemma 5.3.3. Let (uj) be bounded in V and let N, k ∈ N. Let εj be a decreasing
sequence of positive numbers converging to 0 and let

Zj
f,1 = {i ∈ Z2/B2(x

εj

i , εjδ(εj)) ∩ Γ0
f 6= ∅} and Zj

f = {i ∈ Z2/Q
εj

i,2 ⊂ Γ0
f}

Let (ρεj
) be a sequence of positive numbers, such that Nρεj

< 1
2
εj. For all i ∈ Zj

f

there exists ki ∈ {0, . . . , k − 1} such that, having set

Cj
i = {x ∈ R3

+ / 2−ki−1Nρεj
< |x− (xε

i , 0)| < 2−kiNρεj
}

ui
j =

1

|Cj
i |

∫

Cj
i

ujdx (the mean value of uj on Cj
i ) and ρj

i = 3
4
2−kiNρεj

(the middle

radius of Cj
i ) there exists a sequence (wj) such that

wj = uj on Ω \
⋃

i∈Zj
f

Cj
i

wj(x) = ui
j if |x− (xε

i , 0)| = ρi
j and x3 > 0, for i ∈ Zj

f , and

∑

i∈Zj
f

∫

Cj
i

(Aε(wj)ε(wj) +Aε(uj)ε(uj)dx) ≤ M

k
,

where M is independent of j.
Moreover, if ρ3

εj
= o(ε2

j), and the sequence (|Duj|2) is equi-integrable in Ω, then we

can choose ki = 0 for all i ∈ Zj
f and

lim
j→+∞

∑

i∈Zj
f

∫

Cj
i

(Aε(wj)ε(wj) +Aε(uj)ε(uj)) = 0

As in [3] we can make the following remark.
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Remark 5.3.4. If uj → u strongly in L2(Ω) and sup
j
Wεj

(uj) < +∞ then uj ⇀ u

weakly in V . Moreover if (wj) is defined as in the above lemma then wj → u strongly
in L2(Ω) and since (wj) is bounded in V we get that also (wj) converges weakly to u
in V . If (|Duj|2) is equi-integrable then (|Dwj|2) is also equi-integrable.

For any R ∈ R+ we will denote by BR(x) ⊂ R3 be the ball centered in x ∈ R3,
and radius R, and B+

R(x) = BR(x) ∩ R3
+.

Let

φN(z)=inf

{∫

B+
N (0)

Aε(v)ε(v)/ v ∈ H1(B+
N(0),R3), vτ =0 on B2

1(0), v = z on ∂B+
N(0) \ Σ0

}

(5.3.6)

We will now make another useful remark:

Remark 5.3.5. If f is a convex function and 0 ≤ f(A) ≤ M(1 + |A|2) then f is
locally Lipschitz i.e.,

|f(A)− f(B)| ≤ M(1 + |A|+ |B|)|A−B|, for all A, B ∈M3×3. (5.3.7)

In addition if f is also homogeneous of order 2, then

|f(A)− f(B)| ≤ M(|A|+ |B|)|A−B| for all A,B ∈M3×3. (5.3.8)

Proof. Indeed from (5.3.7) if we consider a sequence εj, such that εj → 0 we have

|f(A)− f(B)| = ε2
j

∣∣∣∣f
(

1

εj

A

)
− f

(
1

εj

B

)∣∣∣∣ ≤ ε2
jM

(
1 +

1

εj

|A|+ 1

εj

|B|
)

1

εj

|A−B|.

Thus
|f(A)− f(B)| ≤ Mεj|A−B|+ M(|A|+ |B|))|A−B|

for all A,B ∈ M3×3 and for any j ∈ N.Then passing to the limit where j → ∞ we
have (5.3.8).

Now we have

Lemma 5.3.6. For all N ∈ N with N > 2, φN defined above verifies

| φN(z)− φN(w) |≤ M | w − z | (| z | + | w |) for all z, w ∈ R3 (5.3.9)

Proof. Fix 1 > ν > 0. Using the definition of φN(z) we find w̄ ∈ H1(B+
N(0);R3) ,

with
w̄ = 0 on ∂B+

N(0) \ Σ0 and w̄τ = −zτ on B2
1(0) such that

∫

B+
N (0)

Aε(w̄)ε(w̄) ≤ φN(z) + ν (5.3.10)
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Let ϕ ∈ C∞
0 (B2(0)) be a cutoff function such that φ = 1 on B1(0) and | Dϕ |≤ M .

For w ∈ R3 define ψ = w̄ + (1− ϕ)(w − z) on B+
N(0). So we can see that

{
ψτ = −zτ on B2

1(0)
ψ = w − z on ∂B+

N(0) \ Σ0.

So ψ is a test function for φN(w). Thus using (5.1.3), (5.3.8) and (5.3.6) we have

φN(w)− φN(z) ≤
∫

B+
N (0)

Aε(ψ)ε(ψ)dx−
∫

B+
N (0)

Aε(w̄)ε(w̄) + ν

≤M

∫

B+
N (0)

(| ε(ψ) | + | ε(w̄) |) · (|ε(ψ)− ε(w̄) |)dx + ν (5.3.11)

Next from the definition of the test function ψ in (5.3.11) we obtain

φN(w)− φN(z) ≤ M

∫

B+
N (0)

(2 | ε(w̄) | + | w − z | | Dϕ |) | w − z | | Dϕ | +ν

≤ M | w − z |
(∫

B+
N (0)

| ε(w̄) |2 dx

)1/2

·
(∫

B+
N (0)

| Dϕ |2 dx

)1/2

+ M | w − z |2
∫

B+
N (0)

| Dϕ |2 dx + ν. (5.3.12)

Since N > 2 we have that

∫

B+
N (0)

| Dϕ | dx and

∫

B+
N (0)

| Dϕ |2 dx are constants

independent of N and by condition (5.1.3) and the definition of φN we get

M

∫

B+
N (0)

| ε(w̄) |2 dx ≤
∫

B+
N (0)

Aε(w̄)ε(w̄) ≤ φN(z) + ν (5.3.13)

and from Korn’s inequality and monotonicity of φN

φN(z) ≤ φ2(z) ≤ M | z |2 inf

{∫

B+
2 (0)

| Dv |2 dx v ∈ H1(B+
2 (0);R3) ,

vτ = 0 on B2
1(0), v =

z

| z | on ∂B+
2 (0) \ Σ0

}
. (5.3.14)

But
{

v / v ∈ H1(B+
2 (0);R3), vτ = 0 on B2

1(0), v =
z

| z | on ∂B+
2 (0) \ Σ0

}

contains
{

v / v ∈ H1(B2(0) \ C1,2;R3), v =
z

| z | on ∂B+
2 (0) \ Σ0, v = 0 on B2(0) ∩ R3

−

}
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as a subset, where
C1,2 =

{
(x′, 0) ∈ R3 : 1 ≤ |x′| < 2

}
.

From (5.3.14) and the above inclusion we obtain

φN(z) ≤ φ2(z) ≤ M | z |2 inf

{∫

B+
2 (0)

| Dv |2 dx /v ∈ H1(B2(0) \ C1,2,R3),

v =
z

| z | on ∂B+
2 (0) \ Σ0, v = 0 on B2(0) ∩ R3

−

}
.

Now following the ideas in [3] (see (4.9)), we obtain

φN(z) ≤ M
| z |2

2
Cap (B2

1(0))

where Cap(B2
1(0)) is the usual capacity, i.e.,

Cap(B2
1(0)) = inf

{∫

R3

| Dφ |2 dx, φ ∈ H1(R3), φ = 1 on B2
1(0)

}

By (5.3.13) we get ∫

B+
N (0)

| ε(w̄) |2 dx ≤ M(
| z |2

2
+ ν) (5.3.15)

Now, from the results obtained so far, and (5.3.15) and (5.3.12) we have

φN(w)− φN(z) ≤ M | w − z |
( | z |2

2
+ ν

)1/2

+ M | w − z |2 +ν ≤

≤ M | w − z | ((ν + 1) | z | + | w | +√ν) + ν.

Now by the arbitrariness of ν we get that

φN(w)− φN(z) ≤ M | w − z | (| z | + | w |).

Lemma 5.3.7. φN → φ uniformly where φ(z) =
3∑

k,l=1

Cklzkzl, and Ckl is given by

(5.3.16) and the local problem (LP ).

Proof. From Ascoli-Arzela’s Theorem we have that φN → φ uniformly on compact
sets of R3.

For any N ∈ N the problem (5.3.9) has a unique solution w̃ + z for fixed z ∈ R3.
The Euler-Lagrange equation for w̃ is





σ(w̃) = Aε(w̃), −divσ(w̃) = 0 on B+
N(0)

σ33(w̃) = 0, w̃τ = −zτ on B2
1(0)

σij(w̃)nj = 0 on C1,N

w̃ = 0 on ∂B+
N(0)\Σ0
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So φN =

∫

B+
N (0)

Aε(w̃)ε(w̃)dx =
3∑

k,l=1

CN
kl zkzl where

CN
kl =





0 (k − 3)(l − 3) = 0∫

B+
N (0)

Aε(wk
N)ε(wl

N) otherwise, for k, l = 1, 3

where wk
N for k = 1, 2 is the solution of the following local problem,




∂
∂yj

σij(w
k
N) = 0 on B+

N(0) for i = 1, 3

σ33(w
k
N) = 0, wk

Nτ = ek on B2
1(0)

σi3(w
k
N) = 0 on C1,N

wk
N = 0 on ∂B+

N(0) \ Σ

where {ek}k=1,3 is the canonical base of R3. So φN → φ uniformly on compacts
subsets of R3 where

φ(z) =
3∑

k,l=1

Cklzkzl and

Ckl =





0 (k − 3)(l − 3) = 0∫

R3
+

Aε(wk)ε(wl)dx otherwise , for k, l = 1, 3 (5.3.16)

and wk for k = 1, 2 is the solution of the following local problem,

(LP )





∂
∂yj

σij(w
k) = 0 on R3

+ for i = 1, 3

σ33(w
k) = 0, wk

τ = ek on B2
1(0)

σi3(w
k) = 0 on R2 −B2

1(0)
wk(y) → 0 when | y |→ ∞

Remark 5.3.8. From Lemma 5.3.7 we can see that

φN(z) = φN(zτ ) and φ(z) = φ(zτ ).

Now using Remark 5.3.8, by similar techniques as in ([3], see Prop 4.4) we have.

Lemma 5.3.9. Let uj → u weakly in V and bounded in L∞(Ω;R3). Consider ψj to
be defined as

ψj =
∑

i∈Zj
f

φN(ui
jτ )χQ

εj
i,2

where

Q
εj

i,2 = (x
εj

i , 0) +
(
−εj

2
,
εj

2

)2

,

and ui
j and Zj

f are defined in Lemma 5.3.3.

Then we have

lim
j→∞

∫

Γ0
f

| ψj − φN(uτ ) | ds = 0
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Proof. First we will show that

|Γ0
f \

⋃

i∈Zj
f

Q
εj

i,2|
j→∞−→ 0.

Indeed, let

w
′′
j =

⋃

i∈Z2\Zj
f

Q
εj
i,2∩Γ0

f 6=∅

Q
εj

i,2.

Then easily can be seen that


Γ0

f \
⋃

i∈Zj
f

Q
εj

i,2


 ⊂ w

′′
j

and therefore we obtain the limit when j →∞ that

lim
j→∞

|Γ0
f \

⋃

i∈Zj
f

Q
εj

i,2| ≤ lim
j→∞

H2(w
′′
j ) ≤ H2(∂Γ0

f ) = 0 (5.3.17)

Using Remark 5.3.8 we get

lim
j→∞

∫

Γ0
f

| ψj − φN(uτ ) | ds = lim
j→∞

∫

Γ0
f

∣∣∣∣
∑

i∈Zj
f

φN(ui
j)χQ

εj
i,2
− φN(u) |≤

≤ lim
j→∞




∑

i∈Zj
f

∫

Q
εj
i,2

| φN(ui
j)− φN(u) | ds


 + lim

j→∞

∫

Γ0
f\
S

i∈Zj
f

Q
εj
i,2

|φN(u)|

Now from Lemma 5.3.6, and (5.3.17),the uniform boundedness of φN , Lemma 5.3.6
and the boundedness of (uj)j in L∞(Ω,R3) we get

lim
j→∞

∫

Γ0
f

| ψj − φN(uτ ) | ds ≤ M lim
j→∞

∑

i∈Zj
f

∫

Q
εj
i,2

| ui
j − u | ds

By similar arguments as in ([3], Prop 4.4.) we can prove that

lim
j→∞

∑

i∈Zj
f

∫

Q
εj
i,2

| ui
j − u | ds = 0

and this proves the statement of the Lemma.

Using Remark 5.3.8, Lemma 5.3.7, Lemma 5.3.9, by similar arguments as in ([3],
Sec. 5) we obtain the liminf inequality
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Lemma 5.3.10. Consider ρεj

.
= εjδ(εj) defined as in Lemma 1 such that

0 < lim
j→∞

δ(εj)

εj

= c < +∞. (5.3.18)

Let k, N ∈ M fixed, and N > 2k. Then for any sequence (uj)j, such that uj ∈ Vεj

and uj ⇀ u weakly in V , we have

lim inf
j→∞

‖ uj ‖2
V≥‖ u ‖2

V +c

3∑

k,l=1

∫

Γ0
f

Cklukulds

where the matrix (Ckl)k,l=1,3 is defined in Theorem 5.3.1.

Proof. Remark 5.3.8 is very important. Because of the property mentioned in Remark
5.3.8, we can follow the proof in ([3], Sec. 5), although in our case the space Vε,δ is
not the same as in [3] and therefore the functions φN and φ respectively are not the
same as in [3].
Let u ∈ V and consider {uj}j such that uj ∈ Vεj

and uj ⇀ u. Let wj and ρi
j as in

Lemma 5.3.3 and

Ej =
⋃

i∈Zj
f

Bj
i with Bj

i = Bρi
j
(x

εj

i , 0) ∩ {x ∈ R3 | x3 > 0} for all i ∈ Zj
f

We have

lim inf
j→∞

‖ uj ‖2
V≥ lim inf

j→∞

∫

Ω\Ej

Aε(uj)ε(uj)dx + lim inf
j→∞

∫

Ej

Aε(uj)ε(uj)dx (5.3.19)

Next we can see that

M

k
+ lim inf

j→∞

∫

Ω\Ej

Aε(uj)ε(uj)dx ≥‖ u ‖2
V (5.3.20)

The proof of (5.3.20) is identical with the proof in ([3], Prop 5.1)) and therefore
we won’t present here.

Now similarly as in [3] let’s define, for fixed j ∈ N and i ∈ Zj
f

ϕ(x) =

{
wj((x

εj

i , 0) + εjδ(εj)x) if x ∈ B+
3
4
2−kiN

(0)

ui
j if x ∈ B+

N(0)\B+
3
4
2−kiN

(0),
(5.3.21)

where ki ∈ 1, k − 1 and ui
j are as in Lemma 5.3.3.

As in [3] we have, by Lemma 5.3.3

M

k
+ lim inf

j→∞

∫

Ej

Aε(uj)ε(uj)dx ≥ lim inf
j→∞

∫

Ej

Aε(wj)ε(wj)dx (5.3.22)
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and using ϕ, defined in (5.3.21), as a test function in the definition of φN (see
[3],(5.31)) we get

lim inf
j→∞

∫

Ej

Aε(wj)ε(wj)dx ≥ lim inf
j→∞

δ(εj)

εj

∑

i∈Zj
f

ε2
jφN(ui

j)

By Remark 5.3.8 and the hypothesis (5.3.18) we obtain

lim inf
j→∞

∫

Ej

Aε(wj)ε(wj)dx ≥ c · lim inf
j→∞

∑

i∈Zj
f

ε2
jφN(ui

jτ ). (5.3.23)

Note now that for any j ∈ N we have

∑

i∈Zj
f

ε2
jφN(ui

jτ ) =

∫

Γ0
f

ψjds, (5.3.24)

where ψj, has been defined in Lemma 5.3.9. Combining (5.3.22), (5.3.23), (5.3.24) we
obtain

M

k
+ lim inf

j→∞

∫

Ej

Aε(uj)ε(uj)dx ≥ c lim inf
j→∞

∫

Γ0
f

ψjds (5.3.25)

and from (5.3.20) and (5.3.25) we obtain

M

k
+ lim inf

j→∞

∫

Ω

Aε(uj)ε(uj)dx ≥‖ u ‖2
V +c lim inf

j→∞

∫

Γ0
f

ψjds (5.3.26)

From Lemma 5.3.7, Lemma 5.3.9, (5.3.26) and the arbitrariness of k ∈ N, using
Lemma 3.5 from [13] as in ([3], sec. Prop 5.2), we can “remove” the L∞(Ω,R3)
boundedness hypothesis from Lemma 5.3.9, and obtain the liminf inequality in a
similar manner.

Next, we will prove the limsup inequality.

Lemma 5.3.11. Let δ(εj) be such that

0 < lim
j→∞

δ(εj)

εj

= c < +∞.

Then for all u ∈ V and for all δ > 0 there exists a sequence uj ∈ Vεj ,δj
converging to

u, in the weak topology of V , such that

lim sup
j→∞

‖ uj ‖2
V −δ ≤‖ u ‖2

V +c

∫

Γ0
f

3∑

k,l=1

Cklukulds,

where (Ckl)k,l=1,3 has been defined in Lemma 5.3.7.
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Proof. Without loss of generality we will assume δ small enough. Again Remark 5.3.8
allows us to follow the same arguments as in ([3], Sec. 6).

Indeed, suppose first that u ∈ L∞(Ω,R3). Recall that BNρεj
≡ BNρεj

(x
εj

i , 0) and

B+
Nρεj

= BNρεj
∩{x3 > 0}. From Lemma 5.3.3 for uj ≡ u and ρεj

= 4
3
εjδ(εj) and from

the equi-integrability condition we obtain a sequence (wj)j such that

wj = ui
j =

1

|Cj
i |

∫

Cj
i

u on ∂B+
Nεjδ(εj)

\ Σ0.

where by |A| we denoted the usual superficial measure supported by A. Define

vj = wj on Ω \
⋃

i∈Zj
f,1

B+
Nεjδ(εj)

(5.3.27)

Then because |
⋃

i∈Zj
f,1

B+
Nεjδ(εj)

|∼ εjδ
3(εj), and wj ⇀ u weakly in V , we obtain that

vj ⇀ u weakly in V . We will define vj on
⋃

i B
+
Nεjδ(εj)

below.

Next, using similar arguments as in ([3], Sec. 6) we get

lim sup
j→∞

‖ vj ‖2
V≤‖ u ‖2

V + lim sup
j→∞

∫
⋃

i∈Zj
f,1

BNεjδ(εj)

Aε(vj)ε(vj)dx . (5.3.28)

From Lemma 5.3.7, we have that for any δ > 0, there is an N0 ∈ N such that

φ(z)− δ

2
≤ φN(z) ≤ φ(z) +

δ

2
for any z with | z |≤ m, (5.3.29)

and for any N ≥ N0, where m =‖ u ‖L∞(Ω,R3).

By the definition of φN there is wi
j ∈ H1(B+

N(0);R3), wi
jτ = 0 on B2

1(0) and wi
j = ui

j

on ∂B+
N(0) \ Σ0, such that

∫

B+
N (0)

Aε(wi
j)ε(w

i
j)dx ≤ φN(ui

j) +
δ

2
≤ φ(ui

j) + δ = φ(ui
jτ ) + δ (5.3.30)

where we used Remark 5.3.8 for the last equality above. Next, similar as in ([3], Sec.

6) we define vj on
⋃

i∈Zj
f,1

BNρεj
to be

vj = wi
j

(
x− (xεi

i , 0)

εjδ(εj)

)
on BNεjδ(εj) for i ∈ Zj

f (5.3.31)

and

vj = h ·
(

x− (xεi
i , 0)

εjδ(εj)

)
wj(x) on B+

Nεjδ(εj)
for i ∈ Zj

f,1 \ Zj
f (5.3.32)
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where 0 ≤ h ≤ 1 is the same scalar function used in ([3]), i.e., h = 1 on ∂B+
N(0) \ Σ0

an h = 0 on B2
1(0).

From (5.3.27), (5.3.31) and (5.3.32) we can see that vj ∈ Vεj
and from (5.3.30) we

have that ,

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx = εjδ(εj)

∫

B+
N (0)

Aε(wi
j)ε(w

i
j)dx ≤ δ(εj)

εj

(ε2
jφ(ui

jτ ) + ε2
jδ)

(5.3.33)
for any i ∈ Zj

f .

Obviously we have

lim sup
j→∞

∑

i∈Zj
f,1

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx ≤ lim sup
j→∞

∑

i∈Zj
f,1\Zj

f

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx (5.3.34)

+ lim sup
j→∞

∑

i∈Zj
f

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx (5.3.35)

Now let w′
j =

⋃

i∈Zj
f,1\Zj

f

Q
εj

i,2. For any i ∈ Zj
f,1 \ Zj

f we have

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx ≤ M(N)

∫

B+
Nεjδ(εj)

| Dvj |2 dx ≤

≤ 1

ε2
jδ

2(εj)
M(N)

∫

B+
Nεjδ(εj)

|Dh|2|wj|2dx +

∫

B+
Nεjδ(εj)

|Dwj|2dx. (5.3.36)

Then using (5.3.36) and the equi-integrability and L∞ bound of wj we obtain

lim sup
j→∞

∑

i∈Zj
f,1\Zj

f

.

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx ≤ M(N) lim
j→∞

δ(εj)

εj

lim
j→∞

H2(w′
j) ≤ M(N)·c·H2(∂Γ0

f ) = 0.

(5.3.37)

Next summing in (5.3.33) for all i ∈ Zj
f and passing to the limit when j →∞ we

get

lim sup
j→∞

∑

i∈Zj
f

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx ≤ lim
j→∞

δ(εj)

εj

lim sup
j→∞

∑

i∈Zj
f

(ε2
jφ(ui

jτ ) + ε2
jδ). (5.3.38)

From (5.3.29) we have that

∑

i∈Zj
f

ε2
jφ(ui

jτ ) ≤
∑

i∈Zj
f

(
ε2
jφN(ui

jτ ) + ε2
j

δ

2

)
≤ Mδ +

∑

i∈Zj
f

ε2
jφN(ui

jτ ). (5.3.39)
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From (5.3.39) and Lemma 5.3.9, we obtain

lim sup
j→∞

∑

i∈Zj
f

ε2
jφ(ui

jτ ) ≤ Mδ + lim sup
j→∞

∫

Γ0
f

ψjds = Mδ +

∫

Γ0
f

φN(uτ )ds. (5.3.40)

From (5.3.34), (5.3.37) and (5.3.38), we obtain that there exists a positive constant
M = M

(‖ u ‖L∞ , c, M1,M2, |Γ0
f |

)

lim sup
j→∞

∑

i∈Zj
f,1

∫

B+
Nεjδ(εj)

Aε(vj)ε(vj)dx ≤ c ·
3∑

k,l=1

∫

Γ0
f

Cklukulds + Mδ. (5.3.41)

From (5.3.41) and (5.3.28) we obtain

lim sup
j→∞

‖ vj ‖2
V≤‖ u ‖2

V +c

3∑

k,l=1

∫

Γ0
f

Cklukulds + Mδ.

Because of the fact that M is a constant independent of δ the statement follows
taking for example δ

.
= δ

M
in (5.3.33) and (5.3.30). Next the boundedness assumption

for u ∈ L∞(Ω;R3) can be removed exactly by the same arguments in [3].

Next we make the simple observation that the functional v Ã
∫

Γ0
f

S⊥H(|vτ |)−f(v)

is continuous with respect to the weak topology on V . This can be seen by the trace
continuity and the definition of the function H. Also easily we can observe that the
limit functional does not depend on the particular subsequence εj and therefore by
Uryson’s property for the Γ-limits, using Lemma 5.3.10 and Lemma 5.3.11 and the
above observations we proved Theorem 5.3.1.

The cases c = 0 and c = ∞ are discussed in the following Remark:

Remark 5.3.12. We can see that when c = 0 the influence of the barriers disappear
in the limit problem. Indeed in this case we obtain

Γ− lim
ε→0

Wε = W

where W : V → R3

W(v) =
1

2
‖ v ‖2

V +

∫

Γ0
f

S⊥H(|vτ |)− f(v).

In the other case c = ∞ we obtain that

Γ− lim
ε→0

Wε = W
with W : V → R3 and

W(u) =

{
1
2
‖ u ‖2

V if u ∈ V1

∞ otherwise
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5.3.2 Asymptotic analysis of the spectral problem Eε

Rayleigh’s principle for the operator Kε gives us

λε
n = inf

u∈Wε,u⊥uε
i

i=1,n−1

‖ u ‖2
V∫

Γ0
f

u2
τ

. (5.3.42)

where {uε
i}i form the orthonormal sequence of eigenvectors for Kε corresponding to

the sequence of eigenvalues {λε
i}i. Using trace inequality and (5.1.3) we obtain

λε
n ≥ M for any n ∈ N (5.3.43)

with M not depending on ε, and therefore {λε
n} is uniformly bounded from below.

Next we will prove that all the limit points λn of {λε
n}ε > 0 are finite.

Lemma 5.3.13. If lim
ε→0

δ(ε)

ε
< ∞ then we have lim sup

ε→0
λε

n < ∞ for any n ∈ N.

Proof. Let u ∈ V such that u = ū1 + ū2 where 0 6= ū1 ∈ W and 0 6= ū2 ∈ V1.
Next consider the recovering sequence for u, i.e., ūε defined in the proof of Theorem
5.3.1,(5.3.27) and (5.3.31). We have that ūε ∈ Vε,δ and ūε ⇀ u weakly in V . Obviously
from the definition of u ∈ V we can see that there is an ε0 > 0 such that

ūε /∈ V1 and ūε /∈ Wε (5.3.44)

for ε < ε0.
Indeed if ūε ∈ V1 for a subsequence still denoted by ε,with ε → 0,then

0 =< ūε, ū1 >V→< ū1, ū1 >V =‖ ū1 ‖2
V > 0

and therefore the contradiction. Similarly it can be seen that ūε /∈ Wε for all ε < ε0.
From (5.3.42) we have that

λε
1 ≤

‖ PWε ūε ‖2
V∫

Γ0
f

(PWεūε)
2
τ

≤ ‖ ūε ‖2
V∫

Γ0
f

ū2
ετ

≤ M∫

Γ0
f

ū2
ετ

.

Since ūε is weakly convergent to u and using the continuity of the trace we get

lim sup
ε→0

λε
1 ≤

M∫

Γ0
f

ū2
1τ

< ∞

where we used the orthogonal decomposition

Vε,δ = Wε ⊕ V1
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in order to obtain ∫

Γ0
f

(PWεūε)
2
τ =

∫

Γ0
f

ū2
ετ .

Next we will use an induction argument to prove the statement for all n ∈ N.
Let’s assume that

lim sup
ε→0

λε
k < ∞ for any k ≤ n− 1. (5.3.45)

We need to prove
lim sup

ε→0
λε

n < ∞

Let {λε
n}ε>0 be a subsequence of {λε

n}ε>0 still denoted by ε. Then, using the induction
hypothesis (5.3.45), the orthonormality of the associated sequence of eigenvectors and
a diagonalization argument we find a decreasing sequence {εj}j∈N,such that εj → 0
and

u
εj

k

j
⇀ uk ∈ W (5.3.46)

lim
j→∞

λ
εj

k

.
= λk < ∞ (5.3.47)

for k = 1, n− 1
Let u ∈ V , u = ū1 + ū2 where 0 6= ū1 ∈ W and 0 6= ū2 ∈ V1, with

ū1 /∈ span{u1, ..., un−1} (5.3.48)

We can do that because W has infinite dimension.
Let ūε be the recovering sequence defined before such that ūε ∈ Vε,δ and ūε ⇀ u.

From (5.3.42) we obtain

λεj
n = inf

u∈Wεj ,u⊥u
εj
i

i=1,n−1

‖ u ‖2
V∫

Γ0
f

u2
τdσ

(5.3.49)

Consider now

z̄εj = ūεj
−

n−1∑
i=1

u
εj

i < ūεj
, u

εj

i >V (5.3.50)

First we can see that

< z̄εj , u
εj

i >V = 0 for any i = 1, n− 1 (5.3.51)

Then z̄εj ∈ Vεj
and z̄εj /∈ V1 for j big enough.

Indeed from (5.3.4) we have

< ūεj
, u

εj

i >V = λ
εj

i

∫

Γ0
f

u
εj

iτ ūεjτ for i = 1, n− 1 (5.3.52)
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and from the trace continuity, the definition of ūεj , (5.3.46) and (5.3.47) letting j go
to the ∞ in (5.3.52) and using the result in (5.3.50) we have

z̄εj ⇀ z̄
.
= u−

n−1∑
i=1

uiλi

∫

Γ0
f

uiτ ū1τ .

If we suppose zτ = 0 on Γ0
f this is equivalent to

(
u−

n−1∑
i=1

uiλi

∫

Σ0

uiτ ū1τ

)

τ

= 0 on Σ0

and this is equivalent to

(
ū1 −

n−1∑
i=1

uiλi

∫

Γ0
f

uiτ ū1τ

)

τ

= 0 on Σ0

which implies

ū1 −
n−1∑
i=1

uiλi

∫

Γ0
f

uiτ ū1τ = 0 (5.3.53)

because ū1 −
∑n−1

i=1 uiλi

∫

Γ0
f

uiτ ū1τ ∈ W and W ⊥ V1.

But (5.3.53) leads to a contradiction with (5.3.48).
Therefore z̄τ 6= 0 and this implies the statement, i.e z̄εj /∈ V1 for j big enough.
Next using (5.3.51) and (5.3.49) we obtain

λεj
n ≤

‖ PWεj
z̄εj ‖2

V∫

Γ0
f

(PWεj
z̄εj)2

τ

≤ ‖ zεj ‖2
V∫

Γ0
f

(z̄εj)2
τ

≤ M∫

Γ0
f

(z̄εj)2
τ

.

Passing to the limit when j →∞ we obtain

lim sup
j→∞

λεj
n ≤

M∫

Γ0
f

z̄2
τ

< ∞. (5.3.54)

So we have proved that any subsequence of λε
n has a subsequence {λεj

n }j∈N such
that (5.3.54) is satisfied. Therefore we have that

lim sup
ε→0

λε
n < ∞

for any n ∈ N

The next corollary shows that the weak-limits un of the sequence {uε
n}ε>0 of the

normal eigenvectors associated to the eigenvalue λε
n, cannot be zero.
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Corollary 5.3.14. Let {uε
n}n∈N is the orthonormal sequence of eigenvectors associ-

ated to λε
n for the problem (Eε).

Then for any n ∈ N we have that every weak-limit un of {uε
n}n∈N (i.e., un such that

on a subsequence uε
n

ε
⇀ un), is nonzero.

Proof. Let n ∈ N be arbitrary fixed. Let un be a weak limit of {uε
n}.Thus there exists

a subsequence of {uε
n}ε still denoted by ε such that uε

n ⇀ un.
Using the variational form of Eε and the normality of {uε

n} we have

λε
n =

1∫
Γ0

f
uε

nτ
2
.

Letting ε go to zero above we obtain

λn =
1∫

Γ0
f
u2

nτ

.

Next using Lemma 5.3.13 we obtain that
∫

Γ0
f

u2
nτ 6= 0.

and this together with the arbitrariness of n implies the statement.

Let us now consider the duality operator J ε : Vε,δ → (Vε,δ)
′

〈J εu,w〉(Vε,δ)′,Vε,δ
= 〈u,w〉V for any u,w ∈ Vε,δ

J ε is an operator of subdifferential type

J ε = ∂ϕε, ϕε : Vε,δ → R (5.3.55)

ϕε(u) =
1

2
‖ u ‖2

V (5.3.56)

Lemma 5.3.15. The sequence of operators J ε is G convergent to ∂ϕ, with respect to
the weak × strong topology in V × V ′.

Proof. From the proof of Theorem 5.3.1 the sequence of functionals {ϕε} is Γ-convergent
weakly in V to ϕ given by

ϕ(v) =
1

2
‖ v ‖2

V +
1

2
c

∫

Γ0
f

Cijvivj =
1

2
‖ v ‖2

V +
1

2
c

∫

Γ0
f

vτCvτ

where c and the matrix (Cij)i,j=1,3 are defined in Theorem 5.3.1. Using the G-
convergence result for subdifferentials of Γ-convergent sequences (see Attouch [6]-
Th.3.67) we have that the Γ-convergences of the sequence ϕε to ϕ imply the G-
convergence of the subdifferentials,

∂ϕε G→ ∂ϕ
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Theorem 5.3.16. There is a decreasing sequence {εj}j ∈ N with εj → 0 such that
u

εj
n ⇀un, λ

εj
n → λn where (λn, un) solves the limit problem, λn ∈ R and un ∈ W such

that:

σ(un) = Aε(un), div σ(un) = 0, in Ω, (5.3.57)

un = 0 on Γd σ33(un) = 0 on Σ0 (5.3.58)

στ (un) = unτ (λnI3 − cC) on Γ0
f , (5.3.59)

where I3 is the unity matrix in M3×3 and c and the matrix C have been defined in
Theorem 5.3.1.

Proof. Let an arbitrary fixed n ∈ N. Let {λε
n}ε>0 be the sequence of eigenvalues

for the problem (Eε) and uε
n the corresponding orthonormal sequence of eigenvectors.

Then there is a subsequence {εj}j ∈ N such that:

uεj
n ⇀ un and λεj

n → λn

We have proved in Lemma 5.3.13 that λn < ∞ for all n ∈ N.

Let f
εj
n ∈ V ′ be defined as

f εj
n (w) = λεj

n

∫

Γ0
f

uεj
nτwτ for all w ∈ V.

Using the variational formulation (5.3.4) we have:

f εj
n (w) =< J εjuεj

n , w >(Vεj )′ ,Vεj
for all w ∈ Vεj

.

This implies
f εj

n ∈ ∂ϕεj(uεj
n ) (5.3.60)

The next observation is that:

f εj
n

j→∞−→ fn strongly in V
′

(5.3.61)

where

fn(w) = λn

∫

Γ0
f

unτwτ for all w ∈ V

The proof of the above convergence is straightforward. Indeed,

‖ f εj
n − fn ‖V ′ = sup

w∈V

‖w‖V ≤1

∣∣∣∣∣λ
εj
n

∫

Γ0
f

uεj
nτwτ − λn

∫

Γ0
f

unτwτ

∣∣∣∣∣

Now from the reflexivity of the space V we have that there exists
wj

0 ∈ V with ‖ wj
0 ‖V≤ 1 such that

‖ f εj
n − fn ‖V ′ =

∣∣∣∣∣λ
εj
n

∫

Γ0
f

uεj
nτw

j
0τ − λn

∫

Γ0
f

unτw
j
0τ

∣∣∣∣∣ =
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=

∣∣∣∣∣(λ
εj
n − λn)

∫

Γ0
f

uεj
nτw

j
0τ + λn

∫

Γ0
f

(uεj
nτ − unτ )w

j
0τ

∣∣∣∣∣
Thus, from Cauchy-Schwartz inequality

‖ f εj
n − fn ‖V

′ ≤ |λεj
n − λn|

(∫

Γ0
f

|uεj
nτ |2

)1/2 (∫

Γ0
f

|wj
0τ |2

)1/2

+

+|λn|
(∫

Γ0
f

|uεj
nτ − unτ |2

)1/2 (∫

Γ0
f

|wj
0τ |2

)1/2

.

Next we will use the following interpolation inequality (see [48]):

Lemma 5.3.17. Let Ω ⊂ Rd be as above and let α ∈ [2,
2(d− 1)

d− 2
] if d ≥ 3 and α ≥ 2

if d = 2. Then, for β =
d(α− 2) + 2

2α
if d ≥ 3 or if d = 2 and α = 2, and for all

β ∈]
α− 1

α
, 1[ if d = 2 and α > 2, there exists a constant C = C(β) such that:

||v||Lα(∂Ω) ≤ C||v||1−β
L2(Ω)||v||βH1(Ω), ∀v ∈ H1(Ω). (5.3.62)

In our case d = 3, α = 2 and β = 1
2

and thus the inequality becomes,

‖ uτ ‖2
L2(Σ)≤ M ‖ u ‖H1(Ω)‖ u ‖L2(Ω) ∀u ∈ V. (5.3.63)

Using the trace inequality, (5.3.63) and the fact that ‖ wj
0 ‖V≤ 1 we obtain :

f εj
n

j→∞−→ fn strongly in V
′
.

Therefore from (5.3.60), (5.3.61) and using the Lemma 5.3.15 we obtain that:

fn ∈ ∂ϕ(un). (5.3.64)

But (5.3.64) is equivalent with:

〈un, w〉V =

∫

Γ0
f

unτ (λnI3 − cC)wτ for any w ∈ W. (5.3.65)

which is the variational formulation for the problem (5.3.57), (5.3.58), (5.3.59).

From the arbitrariness of n ∈ N we have that the Theorem 5.3.16 is proved for
all positive integers n.

The main homogenization result of this section is:

Theorem 5.3.18. If c = lim
ε→0

δ(ε)

ε
<∞ then for any n ∈ N we have

i) lim
ε→0

λε
n = λn on the entire sequence,and λn is the n-th eigenvalue of the limit

problem,

ii) There is a decreasing sequence {εj}j∈N with εj → 0 such that u
εj
n ⇀un, where

un is the normal eigenvector for the limit problem associated to λn.
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Proof. Suppose there is λ eigenvalue of the limit problem such that λ 6= λn for any n ∈
N.
Let u ∈ W be the normal eigenvector associated to λ, i.e, ‖ u ‖V = 1 and

〈u,w〉V =

∫

Γ0
f

uτ (λI3 − cC)wτ for any w ∈ W. (5.3.66)

Now obviously there is m ∈ N such that

λ < λm+1. (5.3.67)

From the Lax-Milgram lemma we have that there exists wε ∈ Wε such that

< J εwε, w >(Vε,δ
′
,Vε,δ)= λ

∫

Γ0
f

uτwτ for all w ∈ Wε.

It can be seen easily that wε is bounded in the norm of V .
Then on a subsequence still denoted by ε we have,

wε ⇀ w̄ as ε → 0

for some w̄ ∈ W . But if we consider fλ ∈ V
′

with fλ(w) = λ
∫
Γ0

f
uτwτ then clearly

from the definition of wε an J ε we have

fλ(w) =< J εwε, w >(Vε,δ
′
,Vε,δ)=⇒ fλ ∈ ∂ϕε(wε).

So using the G-convergence result stated in Lemma 5.3.15 we obtain

fλ ∈ ∂ϕ(w̄) ⇐⇒< w̄, v >V +c

∫

Γ0
f

vτCw̄τ = λ

∫

Γ0
f

uτvτ

for any v ∈ W .

Therefore, from (5.3.66) we have that u = w̄. Now by Uryson’s property we can
see that

wε ⇀ u when ε → 0.

Let

vε = wε −
m∑

i=1

uε
i〈wε, uε

i〉V

Using the interpolation inequality (5.3.63) and (5.3.4) we obtain

〈wε, uε
i〉V = λε

i

∫

Γ0
f

uε
iτw

ε
τ

ε−→ λi

∫

Γ0
f

uiτuτ for i = 1, m.

On the other hand using the definition of wε we can see that

〈wε, uε
i〉V = λ

∫

Γ0
f

uτu
ε
iτ

ε−→ λ

∫

Γ0
f

uiτuτ for i = 1,m.
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Now because λ 6= λi for all i = 1,m from the last two relations we have that
∫

Γ0
f

uiτuτ = 0 for all i = 1,m.

Thus 〈wε, uε
i〉V ε−→ 0 and therefore vε ⇀ u weakly in V . Noticing that vε ∈ Wε

and vε ⊥ uε
i for all i = 1,m from the Rayleigh’s principle for (Eε) we have

λε
m+1 ≤

‖ vε ‖2
V∫

Γ0
f

(vε
τ )

2

. (5.3.68)

Now, from the definition of wε and the trace continuity we have

lim
ε→0

‖ vε ‖2
V = lim

ε→0
‖ wε ‖2

V = λ

∫

Γ0
f

(uτ )
2.

From the last relation, the inequality (5.3.63) and Theorem 5.3.16, passing to the limit
when ε → 0 in (5.3.68) we obtain the contradiction. So i) above has been proved and
ii) is exactly the same as in Theorem 5.3.16.

Next, following an idea in ([6]), we give a Mosco-convergence (see [6] for the

definition of Mosco-convergence) result for the case c = lim
ε→0

δ(ε)

ε
< ∞:

Theorem 5.3.19. Let c = lim
ε→0

δ(ε)

ε
< ∞ and i ∈ N arbitrary fixed and let {λε

n, uε
n}n

be the couple of eigenvalues and normal eigenfunctions for Eε.
Then if mi is the order of multiplicity of λi,i.e

λi−1 < λi = λi+1 = ... = λi+mi−1 < λi+mi
(5.3.69)

then the sequence of subspaces generated by {uε
i , ..., u

ε
i+mi−1} Mosco-converge in L2(Ω)

to the eigenspace {ũi, ..., ũi+mi−1}, associated to λi.

Proof. We remark that the multiplicity of λε
i might be strictly smaller than that of

λi. So if we denote

span{uε
i , ..., u

ε
i+mi−1} .

= Sε
i and span{ũi, ..., ũi+mi−1} .

= Si

we can see that as in the above remark Sε
i may be strictly larger than the eigenspace

of λε
i . Now from Theorem 5.3.18 we have that, for any n ∈ N, there is a subsequence

still denoted by ε such that

lim
ε→0

λε
n = λn and uεj

n ⇀un weakly in V,

where (un, λn) solve the spectral limit problem (5.3.57), (5.3.58) and (5.3.59).
From the linearity of Eε and E we can say that

lim sup
ε→0

Sε
i ⊂ Si.
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We can easily see that for arbitrary fixed l, j ∈ {i, ..., i + mi − 1}, with l 6= j and

uε
l ⇀ ul and uε

j ⇀ uj

we have
ul 6= uj (5.3.70)

Indeed suppose that there are l, j ∈ {i, ..., i + mi − 1}, with l 6= j such that ul =
uj.Then from

2 =‖ uε
l − uε

j ‖2
V =

∫

Σ0

(λε
lu

ε
lτ − λε

ju
ε
jτ )(u

ε
lτ − uε

jτ )

passing to the limit when ε → 0 using the inequality (5.3.63) we obtain the contra-
diction.

Next we will prove that set {ui, ..., ui+mi−1} is linear independent.

Indeed let
i+mi−1∑

k=i

ckuk = 0 (5.3.71)

We have for any j ∈ {i, ..., i + mi − 1} that

cj = 〈
i+mi−1∑

k=i

cku
ε
k, u

ε
j〉V = λε

j

∫

Σ0

(
i+mi−1∑

k=i

cku
ε
kτ

)
uε

jτ
ε−→ λj

∫

Σ0

(
i+mi−1∑

k=i

ckukτ

)
ujτ = 0

where the last equality above comes from (5.3.71).

Using the linear independence of {ui, ..., ui+mi−1}, (5.3.70) and the fact that the
dimension of the eigenspace associated to λi is mi we have in fact that

Si = span{ui, ..., ui+mi−1}
and therefore

lim sup
ε→0

Sε
i = Si.

Because of the compact imbedding of V in [L2]3 we have that there is a subsequence
εj such that

lim inf
ε→0

Sε
i = lim sup

j→∞
S

εj

i .

Now if there is v such that
v /∈ lim inf

ε→0
Sε

i

then from the above relation we have

v /∈ lim sup
j→∞

S
εj

i = Si

which implies
Si ⊂ lim inf

ε→0
Sε

i .

So we have proved the statement.
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In the next Remark we will briefly discuss the cases c = 0 and c = ∞.

Remark 5.3.20. The case c = 0 can be seen as a particular case of the previous
theorems.The limit problem for the problem Eε is

σ(un) = Aε(un), div σ(un) = 0, in Ω, (5.3.72)

un = 0 on Γd σ33(un) = 0 on Σ0 (5.3.73)

στ (un) = λnunτ on Γ0
f . (5.3.74)

In the other case c = ∞ we have seen that the sequence {ϕε}ε>0 defined in Lemma
5.3.15, Γ-converge to ϕ and we have

ϕ(u) =

{ ‖ u ‖2
V dx if u ∈ V1

∞ otherwise

Now suppose that there is n ∈ N such that λε
n

ε→ λn < ∞.
Now using the same approach as before, from Theorem 5.3.16 and Lemma 5.3.15 we
obtain that fλ ∈ ∂ϕ(un) where fλ has been defined above. This means that

un ∈ Dom(ϕ) = V1.

But we know that uε
n ∈ Wε,δ ⊂ W which means that

un ∈ W.

Using the fact that W = V1
⊥ in V we obtain un = 0,which contradicts Corollary

5.3.14. Then our assumption that λn < ∞ is false. Now from the variational form
of (5.3.4) if uε

n is the normal eigenvector associated to λε
n we have

1

λε
n

=

∫

Σ0

(uε
nτ )

2

Consider un ∈ W to be the weak limit of uε
n when ε → 0. Passing to the limit for

ε → 0 in the equality above we obtain
∫

Σ0

(unτ )
2 = 0

And this together with the fact that un ∈ W and W ⊥ V1 give us that un = 0. So
in this case we have that all the eigenvectors of the Eε converges to zero and all the
eigenvalues of the same problem converges to ∞.

5.4 Physical Interpretation

We give here the physical interpretation of the previous theoretical results con-
cerning the macroscopic behavior of a fault with small-scale heterogeneity of rupture
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resistance (small scale barriers). Through theorems 4.2 and 4.16 we have obtained an
effective (or equivalent) friction law which, used on a homogeneous fault, leads to a
slip evolution similar to the one produced on the heterogeneous fault. More precisely,
for a fault which has ε-periodically distributed barriers of radius rε we have proved
that for 0 < c =: limε→0 δ(ε)/ε < ∞ the sequence of energy functionals Γ-converges to
a limit energy functional. This limit functional is associated to another slip weakening
friction problem called the equivalent friction law. These results can be interpreted in
the context of a barrier erosion process during the nucleation phase of an earthquake.

The earthquake nucleation (or initiation) phase, preceding the dynamic rupture,
has been pointed out by detailed seismological observations (e.g. [44, 37]) and it
has been recognized in laboratory experiments (e.g. [36, 67]) to be related to the
slip-weakening friction. This physical model was thereafter used in the qualitative
description of the initiation phase in unbounded (e.g. [16, 2]) and bounded (e.g.
[33, 80]) fault models. Important physical properties of the nucleation phase (charac-
teristic time, critical fault length, etc.) were obtained in [16, 33, 34] through simple
mathematical properties of the unstable evolution.

During the nucleation phase, the stress concentration and at the boundary between
the barriers and the slipping zone exceeds the the barriers’ strength and a part of the
barrier is broken (i.e. it is transformed in a slipping zone). The evolution of the shape
and of the distribution of the barriers can change the effective frictional properties
of the fault and can explain the qualitatively different behaviors with the same local
friction law.

In order to see how the barriers evolution change the effective friction properties
during the initiation phase let us imagine that we deal with a external loading process
on the time interval [0, T ]. Since the loading rate of the tectonic plates is very slow
we can suppose that the process is quasi-static. In this context [0, T ], the nucleation
(or initiation) phase of an earthquake, turns out to be the transition between the
quasi-static and the dynamic slip. The fault will be supposed to have periodically
distributed barriers of period ε (small non-dimensional distance with respect to the
fault length) and of a variable diameter εδ(ε, t) (non-dimensional length) with t ∈
[0, T ]. The erosion of the barriers is described by the fact that the function t → δ(ε, t)
is non-increasing. Regarding the evolution of the parameter

Aε(t) =:
δ(ε, t)

ε

we can distinguish three periods of time. At the beginning of the process, [0, T1], the
diameter of the barriers is large (i.e. Aε(t) is very large). The second period of time
[T1, T2] the parameter Aε(t) is of the order of unity and the last period [T2, T ] the
parameter Aε(t) is very small.

1) In the first period of time [0, T1] the barriers are too large with respect to the
distance between them, (i.e. c(t) =: limε→0 δ(ε, t)/ε = ∞) and the equivalent fault
is locked (i.e. no large scale slip even if we can have a small scale slip). This means
that the presence of the ”large” barriers (i.e. with diameters of the same order of
the distance between them) will imply that the effective static friction force is larger
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than the local one. Such a fault can stand ”large-scale” locked without slipping even
if the loading is greater than the local friction resistance.

2) In the second period of time [T1, T2] the ratio between the barrier radius and the
inter-barrier distance is of order of the ratio between the the inter-barrier distance
and the fault length (i.e. 0 < c(t) =: limε→0 δ(ε, t)/ε < ∞). In this case on the
equivalent fault is acting a slip weakening friction law with a smaller weakening rate.
That means that during this period of time the equivalent fault has a larger critical
slip Dc. The presence of barriers that slow down the growth of the instability is
accounted for in the effective law by an initial weakening rate that is much smaller
than that for the local laws. Since the initial weakening of a friction law determines
the initiation duration, as discussed in [49], the initiation time associated with a
large earthquake which develops on a large area of an heterogeneous fault can be
important. The equivalent slip weakening rate may be also negative, hence a slip-
hardening effect can be expected. This type of friction properties were used in [83] in
describing the dynamic rupture arrest. Moreover, the large scale (equivalent) friction
law is not isotropic (i.e. the tangential stress and the slip are not collinear). This can
be explained by the fact that the periodic distribution of the barriers is not isotropic,
hence the limit problem will heritage this anisotropic geometrical perturbation.

3) In the third period of time [T2, T ] the barriers are too small with respect to
the distance between them, (i.e. c(t) =: limε→0 δ(ε, t)/ε = 0) and the presence of the
barriers does not affect the friction law on the equivalent fault. That means that the
effective friction law is the same as the local one only in the last stage of nucleation
phase. Moreover the slip weakening rate at the end of the initiation is larger than
the rate of the initial stage of nucleation.

Let us summarize now the role played by the process of erosion of the barriers
in the effective properties of the homogenized fault. In this context the time period
[0, T1] turns to be the ”(effective) locking period”, the second one [T1, T2] is the ”first
stage of (effective) initiation” and the last one [T2, T ] becomes the ”last stage of
(effective) initiation”.

i) The effective friction resistance (static friction) is greater than the local one.

ii) The slip weakening rate is smaller at the beginning of initiation phase than at
the end. This imply a concave shape of the friction distribution with respect to the
slip of the effective friction law. From the concavity of the friction law we can expect
a long initiation phase.

iii )A negative weakening rate (i.e. hardening of the friction force) can be present
in some cases at the beginning of the initiation phase.

iv) A loss of the isotropicity of the friction force can be remarked during the first
stage of the nucleation phase.

We have to mention that the partition of the initiation phase into two stages with
two weakening rates was also pointed out in [17] into a different context. Indeed, in
[17] they analyze a dynamic two dimensional (anti-plane) process, and the separation
between the two stages is given by the fact that barriers are (almost) instantaneously
broken. In contrast in the present analysis this separation is given by a quasi-static
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erosion of the barriers.

128



Chapter 6

Appendix

In this Section we will present the proofs for some of the results used in the
previous Sections and which were not included in the main body of the chapter for
the sake of clarity of the exposition.

6.1 Definition and Properties of the Unfolding Op-

erator

Let Ξε ={ξ ∈ ZN ; (εξ + εY ) ∩ Ω 6= ∅} and define

Ω̃ε =
⋃

ξ∈Ξε

(εξ + εY ) (6.1.1)

Let us also consider H1
per(Y ) to be the closure of C∞

per(Y ) in the H1 norm, where
C∞

per(Y ) is the subset of C∞(RN) of Y -periodic functions, and

Wper(Y )
.
=

{
v ∈ H1

per(Y )/R ,
1

|Y |
∫

Y

vdy = 0

}

(see [24] for properties).

Next, similarly as in [22],[31], if we have a periodical net on RN with period
Y , by analogy with the one-dimensional case, to each x ∈ RN we can associate its
integer part, [x]Y , such that x − [x]Y ∈ Y and its fractional part respectively, i.e,
{x}Y = x− [x]Y . Therefore we have:

x = ε
{x

ε

}
Y

+ ε
[x

ε

]
Y

for any x ∈ RN .

We will recall in the following the definition of the Unfolding Operator as it have
been introduced in [22](see also [31]), and review a few of its principal properties. Let
the unfolding operator be defined as Tε : L2(Ω̃ε) → L2(Ω̃ε × Y ) with

Tε(φ)(x, y) = φ(ε
[x

ε

]
Y

+ εy) for all φ ∈ L2(Ω̃ε)

We have (see [22]):
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Theorem 6.1.1. For any v, w ∈ L2(Ω) we have

1.
Tε(vw) = Tε(v)Tε(w)

2.
∇y (Tε(u)) = εTε(∇xu) where u ∈ H1(Ω)

3. ∫

Ω

udx =
1

|Y |
∫

Ω̃ε×Y

Tε(u)dxdy

4. ∣∣∣∣
∫

Ω

udx−
∫

Ω×Y

Tε(u)dxdy

∣∣∣∣ < |u|L1({x∈Ω̃ε; dist(x,∂Ω)<
√

nε})

5.
Tε(ψ) → ψ uniformly on Ω× Y for any ψ ∈ D(Ω)

6.
Tε(w) → w strongly in L2(Ω× Y )

7. Let {wε} ⊂ L2(Ω× Y ) such that wε → w in L2(Ω). Then

Tε(wε) → w in L2(Ω× Y )

8. Let wε ⇀ w in H1(Ω). Then there exists a subsequence and ŵ ∈ L2
(
Ω; H1

per(Y )
)

such that:
a) Tε(wε) ⇀ w in L2(Ω; H1(Y ))

b) Tε(∇wε) ⇀ ∇xw +∇yŵ in L2(Ω× Y )

Another important property of the Unfolding Operator it is presented in the next
Theorem due to Damlamian and Griso, see [41].

Theorem 6.1.2. For any w ∈ H1(Ω) there exists ŵε ∈ L2(Ω, H1
per(Y )) such that

{ ||ŵε||L2(Ω,H1
per(Y )) ≤ C||∇xw||[L2(Ω)]N

||Tε(∇xw)−∇xw −∇yŵε||L2(Y,H−1(Ω)) ≤ Cε||∇xw||[L2(Ω)]N
(6.1.2)

where C only depends on N and Ω.

Next present some interesting technical results obtained in [41] which are used in

Section 4. Define ρε(.) = inf{ρ(.)

ε
, 1} where ρ(x) = dist(x, ∂Ω). Define also Ω̂ε =

{x ∈ Ω ; ρ(x) < ε} and for any φ ∈ L2(Ω) consider M ε
Y (φ)(x) =

1

|Y |
∫

Y

Tε(φ)(x, y)dy.

Let v ∈ H2(Ω) be arbitrarily fixed, and the regularization Qε defined at (2.0.6). Then
(see Griso [41], for the proofs)
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Proposition 6.1.3. We have

1. ||∇xρε||L∞(Ω) = ||∇xρε||L∞(Ω̂ε)
= ε−1

2. ||(1− ρε)v||[L2(ω)]N ≤ ||v||[L2(Ω̂ε)]N
≤ Cε

1
2 ||v||H1(Ω) for any v ∈ H1(Ω)

3.||∇xv||L2(Ω̂ε)
≤ Cε

1
2 ||v||H2(Ω) ⇒ ||Qε(∇xv)||L2(Ω̂ε)

+||M ε
Y (∇xv)||L2(Ω̂ε)

≤ Cε
1
2 ||v||H2(Ω)

for any v ∈ H2(Ω).

4. ||ψ(
.

ε
)||L2(Ω̂ε)

+ ||∇yψ(
.

ε
)||L2(Ω̂ε)

≤ Cε
1
2 ||ψ||H1(Y ) for every ψ ∈ H1

per(Y )

5. ||M ε
Y (v)||L2(Ω) ≤ ||v||L2(Ω̃ε)

for any v ∈ L2(Ω̃ε)

6.




||v −M ε

Y (v)||L2(Ω) ≤ Cε||∇v||[L2(Ω)]N

||v − Tε(v)||L2(Ω×Y ) ≤ Cε||∇v||[L2(Ω)]N

||Qε(v)−M ε
Y (v)||L2(Ω) ≤ Cε||∇v||[L2(Ω)]N for any v ∈ H1(Ω)

7. ||Qε(v)ψ(
.

ε
)||L2(Ω) ≤ C||v||L2(Ω̃ε,2)||ψ||L2(Y ) for any v ∈ L2(Ω̃ε,2) and ψ ∈ L2(Y )

6.2 Convergence results a the smoothing argument

Let mn ∈ C∞ be the standard mollifying sequence, i.e., 0 < mn ≤ 1,
∫
RN mndz =

1, sppt(mn) ⊂ B(0, 1
n
). Define An(y) = (mn ∗A)(y), where a has been defined in the

Introduction (see (2.0.1)). We have:

1.An − Y periodic matrix

2.|An|L∞ < |A|L∞
3.An → A in Lp for any p ∈ (1,∞) (6.2.1)

From (6.2.1) we have that c|ξ|2 ≤ An
ij(y)ξiξj ≤ C|ξ|2 ∀ξ ∈ RN . Define

(Ahom
n )ij = MY (An

ij(y) + An
ik(y)

∂χn
j

∂yk

) (6.2.2)

where MY (·) =
1

|Y |
∫

Y

·dy and χn
j ∈ Wper(Y ) are the solutions of the local problem

−∇y · (A(y)(∇χn
j + ej)) = 0 (6.2.3)

Next we present a few important convergence results needed in the smoothing
argument developed in the previous Sections.
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Lemma 6.2.1. Let fn, f ∈ H−1(Ω) with fn ⇀ f in H−1(Ω) and let bn, b ∈ L2(Ω),
with

c|ξ|2 ≤ bn
ij(y)ξiξj ≤ C|ξ|2

c|ξ|2 ≤ bij(y)ξiξj ≤ C|ξ|2
for all ξ ∈ RN and

bn → b in L2(Ω)

Consider ζn ∈ H1
0 (Ω) the solution of

∫

Ω

bn(x)∇ζn∇ψdx =

∫

Ω

fnψdx

for any ψ ∈ H1
0 (Ω). Then we have

ζn ⇀ ζ in H1
0 (Ω)

and ζ verifies
∫

Ω

b(x)∇ζ∇ψdx =

∫

Ω

fψdx for any ψ ∈ H1
0 (Ω).

Proof. Immediately can be observed that

||ζn||H1
0 (Ω) ≤ C

and therefore there exists ζ such that on a subsequence still denoted by n we have

ζn ⇀ ζ in H1
0 (Ω) (6.2.4)

For any smooth ψ ∈ H1
0 (Ω) easily it can be seen that

∫

Ω

bn(x)∇ζn∇ψdx →
∫

Ω

b(x)∇ζ∇ψdx

and this implies the statement of the Lemma. Due to the uniqueness of ϕ one can
see that the limit (6.2.4) holds on the entire sequence.

Remark 6.2.2. Using similar arguments it can be proved that the results of Lemma
6.2.1 hold true if we replace the Dirichlet boundary conditions with periodic boundary
conditions.

Corollary 6.2.3. Let un
ε ∈ H1

0 (Ω) be the solution of
{
−∇ · (An(

x

ε
)∇un

ε ) = f in Ω

un
ε = 0 on ∂Ω

We then have
un

ε
n
⇀ uε in H1

0 (Ω)

where uε verifies {
−∇ · (A(

x

ε
)∇uε) = f in Ω

uε = 0 on ∂Ω
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Proof. Using (6.2.1) we have that

An(
x

ε
)

n→ A(
x

ε
) in L2(Ω)

and the statement follows immediately from Remark 6.2.2.

Corollary 6.2.4. for j ∈ {1, ..., N}, let χn
j ∈ Wper(Y ) be the solution of

−∇y · (An(y)(∇χn
j + ej)) = 0 (6.2.5)

where {ej}j denotes the canonical basis of RN . Then we have

χn
j ⇀ χj in Wper(Y )

where χj ∈ Wper(Y ) verifies

−∇y · (A(y)(∇χj + ej)) = 0

Proof. From (6.2.1) we obtain

∂

∂yi

An
ij(y) ⇀

∂

∂yi

Aij(y) in (Wper(Y ))′

The statement of the Remark follows then immediately from Remark 6.2.2.

Proposition 6.2.5. Let v ∈ [H1(Ω)]N be arbitrarily fixed and for every j ∈ {1, .., N},
let χj ∈ Wper(Y ) be defined as in (6.2.3), and χn

j ∈ Wper(Y ), for j ∈ {1, .., N}, to be
the solutions of (6.2.5.

Define hn(x,
x

ε
) = χn

j (
x

ε
)vj, h(x,

x

ε
) = χj(

x

ε
)vj, gn(x,

x

ε
) = χn

j (
x

ε
)Qε(vj), g(x,

x

ε
) =

χj(
x

ε
)Qε(vj). We have that

1. gn n
⇀ g in H1(Ω)

2. If v ∈ [W 1,p(Ω)]N , p > N, then , hn n
⇀ h in H1(Ω)

Proof. First note that applying Corollary 6.2.4 to the sequence {χn
j }n we have

χn
j

n
⇀ χj in Wper(Y ) (6.2.6)

Next we have

||gn(x,
x

ε
)||2H1(Ω) =

∫

Ω

(χn
j (

x

ε
)Qε(vj))

2dx+
1

ε2

∫

Ω

(∇yχ
n
j (

x

ε
)Qε(vj))

2dx+

∫

Ω

(χn
j (

x

ε
)∇xQε(vj))

2dx

(6.2.7)
and
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||hn(x,
x

ε
)||2H1(Ω) =

∫

Ω

(χn
j (

x

ε
)vj)

2dx +
1

ε2

∫

Ω

(∇yχ
n
j (

x

ε
)vj)

2dx +

∫

Ω

(χn
j (

x

ε
)∇xvj)

2dx

(6.2.8)

For the first convergence in Theorem 6.2.5 we use that

||χn
j (

x

ε
)Qε(vj)||H1(Ω) ≤ C||χn

j ||Wper(Y ) (6.2.9)

Next we can see that (6.2.7) imply that

||gn(x,
x

ε
)− g(x,

x

ε
)||2L2(Ω) =

∫

Ω

(
χn

j (
x

ε
)− χj(

x

ε
)
)2

(Qε(vj))
2dx

and using (6.2.9) we obtain the desired result.

For the second convergence result in Theorem 6.2.5 we will recall now a very
important inequality (see [53], Chp. 2) to be used for our estimates.

For any p > N we have

||φ||
L

2p
p−2 (Ω)

≤ c(p)(||φ||L2(Ω) + ||∇φ||
N
p

L2(Ω)||φ||
1−N

p

L2(Ω)) (6.2.10)

for any φ ∈ H1(Ω) and where c(p) is a constant which depends only on q,N, Ω.

For v ∈ [W 1,p(Ω)]N with p > N , using (6.2.6), the Sobolev imbedding W 1,p(Ω) ⊂
L∞(Ω) and (6.2.10) in (6.2.8) we obtain

||hn(x,
x

ε
)||2H1(Ω) < C

where the constant C above does not depend on n.

Next we can easily observe that

||hn(x,
x

ε
)− h(x,

x

ε
)||2L2(Ω) =

∫

Ω

(
χn

j (
x

ε
)− χj(

x

ε
)
)2

(vj)
2dx

and in either of the above cases, (6.2.6) and a few simple manipulations imply that

hn(x,
x

ε
)

n→ h(x,
x

ε
) in L2(Ω)

This together with the bound on the sequence {hn(x, x
ε
)}n implies the statement of

the Corollary.

The two convergence results in the next Corollary will follow immediately from
Proposition 6.2.4.

Corollary 6.2.6. Let wn
1 (x,

x

ε
) = χn

j (
x

ε
)
∂u0

∂xj

and un
1 (x,

x

ε
) = χn

j (
x

ε
)Qε(

∂u0

∂xj

). Then

we have
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1. If u0 ∈ W 3,p(Ω) for p > N ,

wn
1

n
⇀ w1 in H1(Ω)

2. If u0 ∈ H2(Ω),
un

1
n
⇀ u1 in H1(Ω)

Corollary 6.2.7. Let θn
ε be the solution of

−∇ · (An(
x

ε
)∇θn

ε ) = 0 in Ω , θn
ε = wn

1 (x,
x

ε
) on ∂Ω (6.2.11)

and βn
ε be the solution of

−∇ · (An(
x

ε
)∇βn

ε ) = 0 in Ω , βn
ε = un

1 (x,
x

ε
) on ∂Ω (6.2.12)

We have that

(i) if u0 ∈ W 3,p(Ω), p > N , then

θn
ε

n
⇀ θε in H1(Ω)

(ii) if u0 ∈ H2(Ω), then
βn

ε
n
⇀ βε in H1(Ω)

where θε and βε satisfies

−∇ · (A(
x

ε
)∇θε) = 0 in Ω , θε = w1(x,

x

ε
) on ∂Ω (6.2.13)

and
−∇ · (A(

x

ε
)∇βε) = 0 in Ω , βε = u1(x,

x

ε
) on ∂Ω (6.2.14)

Proof. Using Corollary 6.2.6 and a few simple arguments one can simply show that

−∇ · (A(
x

ε
)∇wn

1 (x,
x

ε
))

n
⇀ −∇ · (A(

x

ε
)∇w1(x,

x

ε
)) in H−1(Ω)

and
−∇ · (A(

x

ε
)∇wn

1 (x,
x

ε
))

n
⇀ −∇ · (A(

x

ε
)∇w1(x,

x

ε
)) in H−1(Ω)

Homogenizing the data in the problems (6.2.11) and (6.2.12) and using Corollary
6.2.6 and Lemma 6.2.1 the statement follows immediately.

Corollary 6.2.8. For any i, j ∈ {1, .., N} let χn
ij ∈ Wper(Y ) be the solutions of:

∇y · (An∇yχ
n
ij) = bn

ij −MY (bn
ij) (6.2.15)

where

bn
ij = −An

ij − An
ik

∂χn
j

∂yk

− ∂

∂yk

(An
ikχ

n
j )

and MY (.) is the average on Y .

135



Then we have

χn
ij ⇀ χij in Wper(Y ) for any i, j ∈ {1, .., N}

where χij satisfies

∫

Y

A(y)∇yχij∇yψdy = (bij −MY (bij), ψ)((Wper(Y ))′,Wper(Y )) (6.2.16)

for any ψ ∈ Wper(Y ) and with

bij = −Aij − Aik
∂χj

∂yk

− ∂

∂yk

(Aikχj).

Proof. For any ψ ∈ Wper(Y ), we have that,

∫

Y

(bn
ij −MY (bn

ij)ψdy =

∫

Y

(−An
ij − An

ik

∂χn
j

∂yk

)ψdy + (Ahom
n )ij

∫

Y

ψdy +

∫

Y

An
kiχ

n
j

∂ψ

∂yk

dy

(6.2.17)
where we have used that MY (bn

ij) = −(Ahom
n )ij (see [59]).

Using (6.2.1), (6.2.6), and simple manipulations we can prove that

An
ik

∂χn
j

∂yk

⇀ Aik
∂χj

∂yk

in L2(Y ) (6.2.18)

and
An

ikχ
n
j ⇀ Aikχj in L2(Y ) (6.2.19)

From (6.2.18), (6.2.1) and (6.2.2) we have that

(Ahom
n )ij → Ahom

ij (6.2.20)

Finally using (6.2.1), (6.2.6), (6.2.18) and (6.2.19) in (6.2.17) we obtain that

bn
ij −MY (bn

ij) ⇀ bij −MY (bij) in (Wper(Y ))′

This and Remark 6.2.2 complete the proof of the statement.

Remark 6.2.9. We can easily observe that we have

An
ijχ

n
ij

n
⇀ Aijχij, An

ij

∂χn
ij

∂yk

n
⇀ Aij

∂χij

∂yk

weakly in Wper(Y )

Corollary 6.2.10. Let u0 ∈ H2(Ω) be the solution of the homogenized problem (2.0.2)
and χn

ij, χij ∈ Wper(Y ) be defined by (6.2.15) and (6.2.16). Suppose that there exists

p > N such that u0 ∈ W 3,p(Ω). Define un
2 (x, y) = χn

ij(y)
∂2u0

∂xj∂xi

(x) and u2(x, y) =

χij(y)
∂2u0

∂xj∂xi

(x). Consider ϕn
ε the solution of

∇ · (An(
x

ε
)∇ϕn

ε ) = 0 in Ω , ϕn
ε = un

2 (x,
x

ε
) on ∂Ω (6.2.21)
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Then we have that

un
2 (x,

x

ε
)

n
⇀ u2(x,

x

ε
) and ϕn

ε
n
⇀ ϕε in H1(Ω)

where ϕε satisfies

∇ · (A(
x

ε
)∇ϕε) = 0 in Ω , ϕε = u2(x,

x

ε
) on ∂Ω (6.2.22)

Proof. Following similar arguments as those used in Corollary 6.2.5 we can prove that

un
2 (x,

x

ε
)

n
⇀ χij(y)

∂2u0

∂xj∂xi

(x) in H1(Ω)

Using the above convergence result and similar ideas as in Corollary 6.2.7 we
complete the proof of the statement.
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