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ABSTRACT 

 

 

We designed an interactive 3D user interface system to perform object modeling in 

virtual environments. Expanding on existing 3D user interface techniques, we 

integrate low-cost human gesture recognition that endows the user with powerful 

abilities to perform complex virtual object modeling tasks in an immersive game 

setting.  

Much research has been done to explore the possibilities of developing biosensors for 

Virtual Reality (VR) use.  In the game industry, even though full body interaction 

techniques are involved in modern game consoles, most of the utilizations, in terms of 

game control, are still simple. In this project, we extended the use of motion tracking 

and gesture recognition techniques to create a new 3DUI system to support immersive 

gaming. We set a goal for the usability, which is virtual object modeling, and finally 

developed a game application to test its performance. 
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1. INTRODUCTION 

The purpose of this project is to design a 3D user interface for virtual object modeling. 

Expanding on existing 3D user interface techniques, we developed a low-cost human 

body gesture/posture recognition system and let the user perform virtual object 

modeling tasks in an immersive game setting. 

Inspiration for this work comes from a physics-based game, called “Wake up the Box 

4” [1]. In this game, the player needs to draw shapes and let gravity take its course in 

order to hit and wake up each level’s box. It is a puzzle game in which everything 

happens in a 2D plane. To provide a novel game experience, in this project we 

brought the idea into the 3D world: Players can use their hands to create custom 3D 

objects to solve the puzzles. (Figure 1) 

We solved several problems in order to translate this idea from 2D to 3D. First of all, 

we built up a virtual world and allowed users to create virtual objects in this 

environment. Secondly, we developed a motion based user interface to let the user use 

their hands or body to interact with the world. Finally, we developed a system that 

gives users the ability to modify and manipulate these objects to solve the puzzles 

provided on each game level. 

In this project, we extended the use of motion tracking, gesture recognition, and 

immersive object modeling to create more compelling and entertaining game 

contexts. Knowledge of motion recognition and immersive modeling was used. A 3D 

physics-based puzzle game was developed to evaluate this novel immersive 3DUI 

system. 

This paper is organized as follows. Chapter 2 explains the research problem and gives 

the related work in the respective field. Chapter 3 gives an overview of the system 

architecture. In Chapter 4, we elaborate the proposed 3DUI system in details. In 

Chapter 5, we discuss a user study we conduct for the purpose of evaluation. Finally, 

in Chapter 6, we give a conclusion of all our effort and point out the future direction 

of the research. 
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Figure 1: Disturb the box's sleep by drawing objects inside the striped areas [1] 

 

2. PROBLEM STATEMENT 

During the progress of building an immersive 3D object modeling application, we met 

with three problems. First of all, we needed to build a fully functional object modeling 

system. Secondly, we needed to develop a motion-based input system to support 

complex modeling operations. And finally, we needed a well-designed user interface 

to connect the two components together. In the game industry, even though full body 

interaction techniques are involved in modern game consoles, most of the utilizations, 

in terms of game control, are still simple. Most controlling systems rely on tracking 

hands or bodies positions rather than understanding human hands and bodies gestures. 

This places significant restrictions on the game applications which involve these 

techniques. While object modeling is beyond the scope of our research, our research 

interests lie in: (1) How to design a practical human body gesture/posture recognition 

system, and (2) How to design a competent user interface to let the user perform 

virtual object modeling tasks in a comfortable and interactive way. 

2.1     PREVIOUS STUDY 

Detecting human motion is a challenging problem due to variations in pose, lighting 

conditions and complexity of the backgrounds. In the past few years, many image-

based methods have been proposed [2, 3, 4]. Some methods involve statistical training 

based on local features, e.g., gradient-based features such as HOG [2] and SIFT [5]. 

STIP [6] and MoSIFT [7] are another two popular video representations for motion 

recognition. Although many of these image–based methods have very high 

recognition rates, they have high computation and storage requirements and therefore 

cannot be achieved in an interactive way. In November 2010 Microsoft launched the 
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Kinect, which led to renewed research on depth-based motion recognition. With the 

Kinect, the depth data is utilized to constitute a skeleton model which consists of 

twenty joints all through the human body. Raptis et al. [8] presented a real-time 

gesture classification system to recognize dance gestures. The method uses 16 main 

skeleton joints and takes approximately four seconds for data collection. Dan Xu et al. 

[9] presented a natural human-robot interaction system based on dynamic hand 

gesture recognition. In their method, a start/end point detection method is proposed 

for extracting hand gesture from the hand trajectory. Wang et al. [10] presented a 

Hidden Markov Model (HMM) based dynamic hand gesture algorithm using Kinect. 

With a palm node, defined by the Kinect, valid points are extracted and analyzed to 

accurately identify defined gestures and reject non-defined gestures. Gu et al. [11] 

implemented a non-intrusive human gesture recognition system that was able to 

recognize gestures if they were performed faster or slower (within certain ranges) 

compared to the training data. 

In the virtual object modeling area, Clark [12] was the first to use a head-mounted 

display (HMD) system to achieve immersive modeling. Before his work, HMDs were 

only used for exploring virtual worlds. His system allowed users to create parametric 

surfaces by manipulating control points on a wire-frame grid. The use of HMDs was 

mainly to improve interaction with models. Butterworth and Davidson [13] developed 

their “3dm” system which drew techniques of model manipulation from both CAD 

and drawing programs. It supported users’ natural forms of interaction with objects to 

give them better understanding of the models. Matsumiya and Takemura [14] 

developed a new free-form interactive modeling technique based on the metaphor of 

clay work. In this system, users could interactively design 3D solid objects with 

curved surfaces with their hands and fingers. Denting and pinching were the two main 

deformations that the system supported. The major merit of this work was that the 

manipulation method was direct. Kuester and Duchaineau [15] created a semi-

immersive virtual environment for two-handed modeling, sculpting, and analysis 

tasks. Scene navigation and virtual menus were implemented to make more 

complicated modeling tasks possible. 

In recent years, motion capture based techniques have been used for more complex 

modeling tasks. Leithinger et al. [16] designed a novel shape output system. The 
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shapes that a user could create were much less restricted than in previous work. Direct 

touch interaction with 2.5D shape displays (2D + height) in real space was extended 

by a set of free-hand gestures. The system was able to form a 2.5D approximation of 

an object’s shape, similar to a relief sculpture. (Figure 2: 2.5D shape display with 

gestural interaction) Tasks that could be implemented by gesture input included: 

selection, translation, rotation, and scaling. However, these conductions are still 

limited in 2D surface. 

 

Figure 2: 2.5D shape display with gestural interaction [16] 

 

2.2     OUR WORK 

In computing, a Natural User Interface (NUI) is the common parlance to refer to a 

user interface that is based on natural elements [17]. The user uses simple voice or 

body gestures rather than artificial control devices to make the operation more natural. 

While simple immersive modeling is not a difficult task, how to perform such tasks 

naturally is what concerns us here. Many previous methods had different kinds of 

limitations to the user. For instance, some methods used too much computation time 

and the user had to wait for its response. Some methods required specific devices 

which are not common. Some methods would come to different results when the user 

performed the same activity at a different speed.  

In this project, we made use of the Kinect camera and built a 3D NUI to support 

natural body gesture input.  The 3D NUI contains a low computation cost human 

body gesture/posture recognition system that could run in an interactive way. Most 

importantly, our system gives the user flexibility when giving commands. The user is 
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not limited to a fixed position and does not need to worry about giving wrong 

commands due to unintentional gestures. We developed a game which lets the user 

perform virtual object tasks in an entertaining way. We also ran a user study to 

evaluate the user experience when using our 3D user interface. 

3. SYSTEM ARCHITECHTURE 

A brief architecture for the system is as follows (Figure 3). A depth sensor (we used 

the Kinect in our system) is used to capture a user’s gesture input (wave, push 

forward, etc.). The data is then delivered to a recognition system on a workstation that 

can detect the gesture types, and then translate the data into digital commands. These 

commands are sent to the game engine where corresponding activities are performed. 

Proper output devices connected to the workstation display the results. 

 

 

Figure 3: Architecture of the Natural Interaction System 

 

3.1    3DUI DESIGN 

In order to realize the proposed architecture, our method focused on solving the 

following three problems: (1) Finding a pose descriptor that concisely represents a 

human body motion; (2) Designing a proper gesture recognition system that robustly 

identifies gesture input commands in an interactive way; (3) Building an immersive 
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gaming environment which makes full use of the gesture recognition system and 

allows the user to perform complex virtual tasks efficiently. 

3.1.1 KINECT SENSOR AND SKELETAL MODEL 

The Kinect (Figure 4) is innovative game controller technology introduced by 

Microsoft in November 2010. The Kinect depth sensor consists of a depth camera and 

an RGB camera which give an RGB image as well as depth at each pixel. Early in 

2012, Microsoft shipped the commercial version of the SDK which contains the NUI 

application programming interface (API) and the Microsoft Kinect drivers to integrate 

the Kinect sensor within Microsoft Windows. The version we used is Kinect SDK 1.5 

which was released in June 2012. 

 

 

Figure 4: Microsoft XBox Kinect Sensor [18] 

 

Generally, the SDK provides two models of analyzing human motion: Image-based 

modeling and Depth-based modeling. Image-based modeling relies on the visual 

image of the human body. By analyzing the image in each frame, the human body’s 

posture is identified. This process usually requires various kinds of digital image 

processing knowledge. The depth-based model makes full use of the depth stream and 

eventually builds up a skeleton model of the human body in front of the sensor. 

Normally it requires significant processing work using image-based models. Although 

we can get accurate results to reconstruct a human body in detail after massive 

calculation, it is not efficient. For our project, those results are not necessary. In our 

gaming environment, we only need to care about the activities of the key points of the 

user, their head and hand gestures, for instance. Therefore, joint tracking becomes a 
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great choice in our interaction application. The depth-based model, which consists of 

20 joint positions, is sufficient and is employed to represent the human (Figure 5) [19]. 

 

 

Figure 5: Human Skeleton Model 

 

3.1.2 INTERACTIVE GESTURE RECOGNITION SYSTEM 

With the development of inexpensive motion capture based input devices, such as 

Nintendo Wii Remote and the Kinect, video games have already come to the new 

generation. However, people still cannot enjoy a virtual reality experience due to 

technical limitations. For instance, the usage of these modern game consoles, in terms 

of game control, is still simplistic. In order to achieve virtual reality interaction, we 

need to extend the existing 3D user interface techniques. We need a system which can 

enable the user to have more choices to perform much more complex actions.  

Time is another issue in this system. The gaming world is a time-sensitive 

environment. Any time delay would significantly decrease the user’s immersive 
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feeling. Therefore, being interactive is one of the requirements of our project. We 

can’t accept any noticeable latency to guarantee the natural interaction between the 

user and the system. We will have a more detailed discussion of the implementation 

of our interactive gesture recognition in Chapter 4. 

3.1.3 APPLICATION IMPLEMENTATION 

We used the Unity Game Engine as the development platform and built a 3D virtual 

environment. Unity supports flexibility for virtual object editing. Most importantly, 

developers can directly use c# in Unity. This feature significantly enhanced the 

compatibility when importing the recognition system to our game development 

environment. We developed a virtual object modeling system in Unity. During the 

game play, the user’s gesture is translated into game commands and applied to the 

target object. 

3.2     CONNECTING EVERYTHING TOGETHER 

Our work also involves many other components, which need to talk to each other. 

Starting from capturing raw data from the Kinect sensor, we need to consider the 

communication between the following pairs: Kinect sensor and gesture recognition 

system; gesture recognition system and game engine. 

In order to make it easier to use the gesture recognition system in the game engine, we 

used c# to develop our gesture recognition system and compile the codes into libraries. 

We then put these libraries into the Unity environment, so that we can call defined 

functions during game play. 

Communication between the Kinect and the gesture recognition system is more 

complicated. A system called VRPN [20] is introduced here. VRPN, which stands for 

Virtual-Reality Peripheral Network, is a set of classes within a library and a set of 

servers that are designed to implement a network-transparent interface between 

application programs and the set of physical devices (trackers, etc.) used in a VR 

system. VRPN provides connections between the application and all of the devices. 

Therefore, VRPN can be treated as a middle-layer which provides some sort of 

standard. 
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Figure 6: FAAST's Joint's Sensor 

 

For Kinect devices, USC’s FAAST (Flexible Action and Articulated Skeleton Toolkit) 

[21] includes a VRPN server to stream user skeletons over a network, allowing VR 

applications to read the skeletal joints as trackers using any VRPN client. A total of 

24 skeleton joint transformations are streamed as sensors (Figure 6). It supports 

Microsoft Kinect for Window SDK for Windows *64 (64-bit), which fulfills the OS 

requirement in our work. At last, we brought in another a middle-ware called UIVA 

(Unity Indie VRPN Adapter), which is designed to adapt VRPN to the Indie version 

of the Unity game engine [22]. We used UIVA in our project to exchange data 

between FAAST’s VRPN server and our recognition system. At this point, we have 

generated a more detailed system architecture overview (Figure 7). 

 

Figure 7: A More Detailed Architecture of the System 
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4. METHODOLOGY 

4.1     TM-SIFT GESTURE RECOGNITION SYSTEM 

Human body gesture recognition from video has been studied for many years. While 

the recognition rate of many good algorithms can reach nearly 100%, they tend to be 

complex and computationally demanding. Therefore they are not well suited for 

interactive applications. In addition, due to the various limitations of the devices and 

algorithms, most of development remains in the experimental stage. In our project—

modeling interactive virtual objects for gaming applications—we faced specific 

challenges when designing our recognition system. Compared to other applications, 

object modeling requires lower latency in operation. Even slight latency will result in 

increased inconsistency between the virtual and real contexts. Therefore, we 

developed a low-cost but satisfactory interactive gesture recognition system that 

fulfills our goals.  

Scale-Invariant Feature Transform (SIFT) is an algorithm in computer vision to detect 

and describe local features in images [23]. SIFT detects many interest points (key 

points) in a 2D image and descriptors of these points are used to match static objects 

(Figure 8). SIFT only works on vectors that are supposed to be distinctive and 

invariant to any scaling, rotation, or translation. A core step in SIFT is to calculate a 

gradient magnitude and orientation near the key points and create a gradient 

histogram. This Histogram of Gradient (HOG) is used to generate the feature which 

represents the area information near a key point (Figure 9) [23]. 

 

 
Figure 8: Image Gradients and Key Point Descriptor 
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Figure 9: SIFT and Histogram of gradient (HOG) 

 

SIFT is designed to detect distinctive interest points in a still image. For motion 

detection, Histogram of Optical Flow (HOF) [24], similar to HOG, is used to extract 

motion features from video streams. The idea is to use the velocity vector of the key 

point between adjacent frames (temporal differences) to describe its motion state. 

However, if the time used to finish the motion varies, these motions would be treated 

as different. It is similar to other template-based methods, which may require the 

same speed to perform a gesture [25].  

Inspired by HOF, we developed a new method using a similar idea but bringing in 

new recognition criteria: Trajectory Matching. We call this method TBTM-SIFT 

(Template Based Trajectory Matching Scale-Invariant Feature Transform) recognition. 

Under our new criteria of recognition, the speed of finishing the motion or the 

velocity during the motion does not matter. The user would have no time pressure on 

performing activities. Moreover, the user could accelerate his gestures once he gets 

used to the system. 

4.2     ALGORITHM DESIGN 

An advantage of skeleton model is that we could use joint points to represent 

corresponding parts of human body. This method largely decreases the complexity of 

calculation. We create 20 ArrayList objects to store the last n positions of each joint 

of the human body. Once we want to know the behavior of the certain joint, we only 

need to deal with the ArrayList for the corresponding joint. For each slot in the array, 

we record the position and time information. Therefore, the movement of each joint is 

divided into n-1 segments.  Each segment contains two points, pt (xt, yt, zt) and pt-1(xt-1, 
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yt-1, zt-1), and is represented by a vector vt (xt - xt-1, yt - yt-1, zt - zt-1). We define m 

vectors as standard direction vectors (Figure 10). In our work, we defined 8 standard 

direction vectors plus two depth direction vectors (forward and backward), as shown 

in Figure 11. 

 

 

Figure 10: Data structure to record joint motion information 

  

Figure 11: Standard Direction Vectors 
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Figure 12: Extract Motion Trajectory Features to Form Histogram of Distribution (HOD) 

 

Then we find the closest direction vector of each segment vector vt and calculate the 

projection along that direction vector. All the projections are accumulated as energy 

to form a histogram which indicates the distribution of these standard directions. We 

call this histogram as Histogram of Distribution (HOD). At this point, joint motion 

description is replaced by HOD, and is used for all the following processing (Figure 

12). 

4.3      DATA PRE-PROCESSING 

Noise interference is unavoidable, and data from the Kinect is not yet completely 

reliable. A “shake” phenomenon may happen when limbs are close to the body. Also, 

because of the characteristics of the depth-based data, errors in recognition are more 

likely to happen when the user’s hands are right in front his body. These influences 

need to be minimized, and our method addresses this problem. Before a position is 

entered into the array, we detect if it moves “too much” based on its previous position. 

If the displacement exceeds the threshold, we would treat it as bad data and simply 

throw it away. When the next data comes, the threshold will be extended because the 

time span has been increased. The same evaluation would be performed to make sure 

that all the data stored is valid.  It needs to be noted that occasional bad data would 

hardly affect the result, because within a short time interval, the new displacement 

vector vt’ (xt - xt-2, yt - yt-2, zt - zt-2) would indicate the same and correct energy 
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contribution for HOD. While “too much” is bad, “too little” is also treated as not good. 

Since our criteria is trajectory matching, time cost should not be taken into account. If 

the user’s motion pauses for a while at some point, the array should not be updated, 

since the “new” data would contribute nothing to trajectory matching. We simply 

throw them away. However, we still need to update the time data for the previous slot 

so that when the next useful data comes, it would be recorded correctly under our first 

rule. 

4.4      VALID DATA COLLECTION 

A challenge in motion recognition is how to define valid motion segments. In some 

situations, it is relatively easy to solve this problem. Cited as an example, Samsung’s 

new smart phone Galaxy 4 [26] allows the user to control the cell phone with a wave 

of his hand over the sensor. Whether the user’s hand is in or out of the view of the 

sensor is an important signal that is used to detect gesture division [26]. However, in 

our environment, the user will always be in the Kinect camera’s view area. That 

means we need to rely on some methods to detect a valid motion segment. An easy 

solution is to ask the user to perform a specific gesture to tell the system when to start 

and end the gesture input [27, 28]. However, this may add complexity to the method. 

More importantly, extra time is added to the whole interaction progress, which will 

decrease the user experience. Although such extra signal may only need 0.5 ~ 1 

second, under frequent interaction, such cost is not acceptable.  

A very important advantage of our method is that we need no such start and end 

points to collect valid motion data for recognition. Under the criteria of “trajectory 

matching”, our method continuously detects if the total length of movement reaches 

the threshold. Once “enough” movement is collected, a recognition method would be 

applied to the captured trajectory. If a valid gesture is detected, the array would be 

cleaned for the coming data. Otherwise, the array will simply update its data.  

4.5     RECOGNITION PROGRESS 

Once enough movement is captured, the corresponding HOD array is calculated. We 

then interrogate the HOD to analyze the motion. For instance, if the energy in a single 

direction exceeds 80%, we would treat it as a single direction movement. If the energy 

falling into the direction of “right”, “down”, “left” and “up” is around 25% and the 

total deviation is less than 20%, we would treat it as a “square”.  
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However, there is a problem. Consider the situation where the user is gesturing a 

standard “square” verses doing a half size “square” twice. The result would be the 

same. In order to decrease the rate of error recognition, we extracted another feature 

to increase the robustness of the algorithm. We found that the big difference between 

the two trajectories is how many sharp changes (more than 60 degrees) of the move 

direction occur, as happens around the corners of the square. In this example, there 

are four sharp changes in the standard square and eight in the half size square. We use 

this value to distinguish different trajectories. 

 

Figure 13: Add “Sharp Direction Change Times” as another Feature 

 

 

In real applications, we also need to consider the fact that users are all different. It is 

nearly impossible to define the perfect standard trajectory for everyone. Sometimes 

even though the user thinks the trajectory is very clear, his real performance could be 

different.  In order to increase the recognition rate, we decrease the threshold for 

trajectory matching, but ask the user to use both hands to complete a motion. For 

instance, for “square” detection, the user needs to use both hands to draw left and 

right halves of the square. (Figure 14) Our system will detect if both the user’s hands 
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are doing the corresponding motion at the same time. This approach which requires 

using both hands should help decrease the chance of misunderstanding due to 

unintentional gestures. 

 

Figure 14: Both Hands "Drawing" Shapes 

 

4.6     OTHER GESTURE AND POSTURE RECOGNITION 

In order to make our system more expressive, we needed to define sufficient 

gesture/posture input in preparation for complicated system operations in applications. 

In many cases, we only need the latest value in the array for recognition. For instance, 

DetectFeetSplit() is a function to detect if the user is standing with his feet apart. In 

this function, we only need the top value from the array of “left foot” and “right foot”. 

A complete set of currently supported actions are shown in Table 1. We will elaborate 

how to use these actions to perform virtual object modeling tasks in the next chapter. 

 

Table 1: Supported Functions of the Algorithm 

 

Function Description 

DetectSquare() Return the similarity value to “square” trajectory 

DetectCircle() Return the similarity value to “circle” trajectory 

DetectTriangle() Return the similarity value to “triangle” trajectory 

DetectCover() Return the similarity value to “cover” trajectory 
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DetectWave() Return the similarity value to “wave” trajectory 

HeadLeaning() Return the direction of head leaning 

ShoulderLeaning() Return the direction of shoulder leaning 

HandClose() Detect if hands are close together 

LimbCross() Detect if arms are doing a “crossing” posture 

IsShaking() Detect if a joint is shaking within a small area 

IsFootSplit() Detect if feet are split apart, 

left and right, or back and forth 

 

  



 

 

18 

 

5. GAME DESIGN 

All of our efforts are made to make sure that we could develop a user-friendly user 

interface dedicated to solving virtual object modeling tasks at the application level. 

With our core gesture system established, whether we could build up an elegant and 

efficient UI would determine the success of our work. In this chapter, we will discuss 

the development of our application—the 3D puzzle game which involves virtual 

object modeling. We will highlight the design of the user interface.    

5.1     GAME OVERVIEW 

While Wake up the Box 4 [1] gave us our initial inspiration, another inspiration of our 

work, a short sci-fi file World Builder (Figure 15) [29], told us what the interaction 

might look like. The concept of World Builder is about building up a virtual world 

within the virtual world itself. The protagonist simply uses his body as an input device 

and starts by creating and customizing basic virtual objects, such as cube buildings. 

He later adds details to each box and makes them look like buildings. He also has the 

ability to make windows, doors, and even flowers.  When he finishes, those objects no 

longer look like computer models but physical objects. Even though it is only a 

concept video, it points out an interesting direction for 3DUI development. While 

obviously most of the technology in this video is not available in our world, some 

basic functionality deserves scientific research interest. 

 

 

Figure 15: World builder by Bruce Banit 

 

Memory Hacker is the game we developed. It is a 3D puzzle game and the general 

idea is to let the user place virtual objects to solve physics-based puzzles. In each 

level, a wisp will walk from a start point to a destination point, following a fixed, pre-
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scripted route (which varies on different levels). We treat this behavior as “walking to 

a destination based on memories” (Figure 16). However, our poor wisp lost part of his 

memories and will fall into the hole or will be blocked by obstacles due to confusion 

in his memory. The player, as a memory hacker, needs to “repair” this route in his 

memory to help him walk to the destination. Normally, the way of repairing this route 

is to cover the missing gap with an appropriate object. As the difficulty level increases, 

the player needs to adjust the shape of the objects accurately to guide the wisp to the 

destination. 

 

 

Figure 16: Basic Game Logic 

 

 

5.2     GAMEPLAY 

The basic game flow is shown in Figure 17. When the game starts, the user can 

choose from “NEW GAME”, “CREDITS” and “EXIT”. Once the user selects the 

“NEW GAME” option, he will be brought to the level selection panel. When the user 

finally chooses a level to play, he enters the game level. No matter the user fails to 

succeeds in the puzzle, he will also be led back to “LEVEL SELECTION” panel. If 

the user successfully solves a puzzle and the time is shorter than previous tries, the 

new record will be updated and shown in the “LEVEL SELECTION” panel. 
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Figure 17: Game Flow 

 

 

5.2.1 FIRST MINUTE 

 
Figure 18: Title Screen 

 

Once the game is launched, a title screen is presented to the player. After a short 

animation, the name of the game “Memory Hacker” will show up on the top of the 

screen. At the same time, a warning message “raise your hands to start” will appear at 

the bottom section. (Figure 18) The player needs to raise both of his hands to active 

the game menu. Once player selects “New Game”, the player will be led to the level 

selection panel. A total of six boxes representing six different levels will show up on 
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the panel. (Figure 20) On each level box, the player can read the best time record. 

When the player confirms a selection of the level to play, he enters the level 

immediately. At first, a memory replay will be presented to the player. The player can 

learn the “route in the memory” of the level. The player can do nothing at this time 

but just watch. Once the demo ends, the player enters the playable level. (Figure 21) 

The description of the current level will appear in a window at the left of the screen. A 

clock indicating how much time is left to finish the level will be located in the left-top 

corner of the screen. At the right side, there is a function bar. The player needs to use 

his gesture to select the first function-- “Creation”. Then the player performs the 

correct gesture to create a cube. After this, the player selects the second function--

“Translation”, and gets ready to adjust the position of the cube…  

 

5.3     GAME ACTIONS 

5.3.1 SYSTEM CONTROL ACTIONS 

In Kinect-based gaming environments, the human body is the exclusive controller, 

which replaces traditional input devices like the mouse and keyboard. This means the 

user would be able to control the game flow without using other devices. Our game 

includes the system control actions listed in Table 2. 

 

Table 2: System Control Actions 

 

Action Description 

Menu Selection Choose an option in the menu (e.g., New Game) 

Level Selection Choose a level to play in level selection panel 

Move Control Navigation in the virtual 3D game environment 

Modeling Function Selection  Choose one of the modeling functions from the 

Modeling Function Bar 

Play Move Finish adding objects, and test if the solution can solve 

the current puzzle  
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5.3.2 VIRTUAL OBJECT MODELING ACTIONS 

Virtual object modeling actions are the core actions in the gameplay of our game. In 

the beta version of our game, we provide the following modeling actions for the 

player shown in Table 3.  

Table 3: Object Modeling Actions 

 

Action Description 

Object Creation  

(Cube) 

Create a basic cube model 

Object Creation  

(Sphere) 

Create a basic sphere model 

Translation Translate the current model 

Scaling  

(Size) 

Scale the model proportionally along three axes 

Scaling 

(Shape) 

Scale the model along three axes individually 

Rotation Rotate the model 

Delete Delete the current model 

Drop Change the model into a “real” object in the 

virtual environment, dropping it to the surface 

 

5.4     INTERFACES 

5.4.1 HUDS 

In the “Game Title” panel and the “Level Selection” panel, the user needs to wave his 

hands to control the curser (the red magic fire in Figure 19 & Figure 20). The left-

hand fire is used to select one of the available choices on the screen. Once the user 

selects an option, a corresponding animation effect would occur.  If the user wants to 

confirm the current choice, he needs to use his right hand to perform a “Confirm” 

action in the “Confirm Area” (Figure 20). 
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Figure 19: Game Title Panel 

 

Figure 20: Level Selection Panel 

 

 

Figure 21: Game Interface 
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Once the user enters the “Game” interface, he can find a timer and a description 

window at left side. A “Tip” window shows up at the bottom which gives user guides 

and tips during the gameplay. At the right side, there is a function bar which is used to 

switch between different modeling functions (Figure 21). 

 

5.4.2 CONTROL WITH TBTM-SIFT RECOGNITION SYSTEM 

 
Table 4: Modeling with TBTM-SIFT Recognition System 

 

Action Solution 

Menu Selection Left hand controls the curser 

Right hand shakes in the “confirm area” to perform a “click” 

Level Selection Left hand controls the curser 

Right hand shakes in the “confirm area” to perform a “click” 

Move Control Separate feet left and right to trigger “move” state 

Lift right arm to point the move direction 

Modeling Function 

Selection 

Separate feet forward and back to trigger “function selection” state  

Lift right arm to select the function 

Close feet to trigger “function selection” to confirm the selection 

Play Move Under “function selection” state, lift both arms up 

Object Creation 

(Cube) 

Select “Creation” mode 

Hands draw left and right half of a “square” 

Object Creation 

(Sphere) 

Select “Creation” mode 

Hands draw left and right half of a “circle” 

Translation Select “Translation” mode 

Clap hands to trigger “translate” state 

Left hand controls the movement of the model 

Both hands stay still for 2 sec to leave “translate” state 

Scaling 

(Size and Shape) 

Select “Scaling” mode 

Turn shoulders to left and right to change mode between “Size 

Scaling” and “Shape Scaling” 

Clap hands to trigger “Scaling” state 

Use both hands to scale the object 

Both hands stay still for 2 sec to leave “translate” state 

Rotation Select “Rotation” mode 

Clap hands to trigger “Rotation” state 

Use both hands to rotate the object 

Both hands stay still for 2 sec to leave “translate” state 

Delete Cross arms to delete the current model 

Drop Separate feet forward and back to trigger “function selection” state 

Push arms forward to confirm all the modeling operations and drop 

the object into the game environment 
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A general description of how to use our TBTM-SIFT recognition system to perform 

different object modeling tasks is shown in Table 4. It is noteworthy that, in our UI 

system, we use a “modal selection system” to let the user select between different 

modeling functions. The difference between “modal selection” and “non-modal 

selection” is that, in non-modal selection, the user has no visual UI. The user relies on 

another set of gestures to tell the system what function he is going to perform. 

Undoubtedly, without a visual UI, the user will be less aware of the fact that he is 

using an artificial interaction system. This would be a great help on increasing the 

“presence” feeling for the user in the virtual environment. However, the cost is that 

the user would have to face a much more complicated interaction system. As the 

number of available functions increases, the user would need to learn many more 

gestures, which at the same time need to be distinguished from each other. Eventually, 

the interaction manner will become awkward. That would run counter to our desire.  

On the other hand, using a modal selection scheme would simplify the interaction and 

help improve system efficiency, but it is unavoidable that user needs to frequently 

notice the existence of the artificial system. It is a trade-off between the user 

experience and system efficiency, which also partly affects the user experience. In 

view of this theory, we designed our UI system by adding a modal selection scheme 

merely for the user to navigate to the categories of modeling functions, but giving the 

user complete freedom to perform all the modeling activities purely using body 

gestures. Figure 22- Figure 25 show some important modeling tasks performed using 

our user interface.  
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Figure 22: Camera Move 

 
 

 

Figure 23: Object Creation (Cube) 
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Figure 24: Scaling (Shape) 

  

 

Figure 25: Rotation 

 

 



 

 

28 

 

6. EVALUATION 

Since the purpose of the project is to create an effective system which supports a 

Natural User Interface in a real gaming context, our user study is designed to answer 

two questions: (1) what are the most natural ways to interact with the target game 

environment, and (2) what are the most effective ways to complete the tasks given in 

the game. In consideration of the fact that participants may not be able to provide a 

flawless solution in limited time, or that participants’ solutions may not be practical, 

we defined a set of gestures tailored to our system performance. We asked the user 

whether they accept our complete solution.  

6.1     STUDY DESIGN 

We prepared two different studies for the participants. The first study was designed in 

a survey style to gather ideas from the participants. We first introduced the research 

question and described the gameplay to the participants. Then we asked them to give 

their ideal gestures for performing each action that may happen in the game. We also 

discussed with our subjects the extension of other possibilities of the gameplay just to 

help stand in a higher level when providing a design plan. The second study is an 

experiment designed to evaluate the whole system and the gameplay. In this 

experiment, participants used a scheme we designed to perform the game task. They 

were then asked about the experience and give comparison between their solutions 

and our solutions.  

We hypothesized that participants would have better understanding of the research 

question, and would either have new ideas or revise their previous solutions to be 

more practical.  

6.2     SUBJECT DEMOGRAPHICS 

A total of nineteen people participated in the study (thirteen male, six female), with a 

mean age of 22.42. Among them, 16 participants have played video games which 

have a 3D environment. When participants were asked their experience playing 

motion based consoles, sixteen participants indicated that they have played Wii 

Remote, Xbox Kinect, PS Move Controller and other motion sensing input devices 

before. 50% of these sixteen participants have played Kinect games. Most of the 
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participants were recruited from a general psychology course, and were offered a 

research credit for participating.  

6.3     EQUIPMENT 

We ran experiments in the tech suite of the school library. Such a tech suite is a 

private workspace offering an opportunity to perform our user study. Most of these 

tech suits are more than eight square meters and are equipped with the following 

standard technology: (1) 50” plasma display, (2) Dedicated networked PC, (3) 

Wireless coverage for the entire room, (4) Ability to connect two additional laptops 

using ports in the pop-up receptacles on the desk and (5) Whiteboard.   

The Kinect sensor is the core equipment used in the experiment and no equipment is 

required to be worn. The experiment was run on a 3
rd

 Generation Intel Core i7 

2.30GHz PC running Windows 7 with a total of 6GB of RAM and an NVIDIA GTX 

660M graphics card. 

 

6.4     DETAILED PROCEDURE 

The study contained two sub studies. Each one took approximately 30 minutes to 

complete. Participants were initially given an opportunity to read the informed 

consent form and ask questions about the study. After participants signed the 

informed consent form, they were required to complete a demographics survey. As 

part of this questionnaire, they were asked their experience of playing video games, 

especially those which have 3D context. They were also invited to share their game 

experience using motion-based controllers. For those who had rich experiences, we 

discussed with them the advantages and disadvantages of different devices. We 

focused on how they feel when using these devices. If they happened to have an idea 

to improve the usage of these devices, we would write them down.  

After completing the pre-questionnaires, the subjects were introduced to the whole 

project. More detailed descriptions were given if the participant was confused or 

curious. Those questions which were not quite related to the user study were 

explained briefly and promised to be given more deep explanation after the user study. 

In order to help the participants understand the research question, we prepared one 

flash game to explain the inspiration and a video to demonstrate the concept result. 
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For those who were not familiar with Kinect games, we spent some more time on 

explaining the mechanism to them. Then, we made clear to participants why we were 

doing the user study, and what they could do to help us gather useful information.  

When the participants were ready, we introduced the two sub studies and began with 

the first study. We first introduced detailed gameplay and then pointed out the 

possible behaviors, from level selection to level completion. We then presented them 

a paper that listed all the important behaviors that may happen in the game and asked 

them to describe their solutions. We also asked the participants the following question: 

Q1: How would you let the system know what commands mentioned you are giving?  

Which one do you prefer? 

a. Non-modal selection: Make the gesture to execute the action. (do a gesture to tell 

the system what task you are performing) 

b. Modal selection: Select the mode first, and then make the gesture to execute the 

action. (Use a gesture to switch between these modes.) 

It is important to note that we did not give tips or anything that may affect the user’s 

solution. We only explained to them when we found they misunderstood a certain 

question. We also pointed out to the participant if we found his solution impractical.  

Normally, they would have a much better idea once they met with such a problem. 

When participants confirmed their solutions, first study ends. It is very likely that 

their final solutions still had flaws. However, most parts would be feasible.  

We then presented a video which had been recorded in advance to demonstrate our 

design. If there was a big difference between the solutions, we would summarize the 

two solutions and explain, if any, the potential problems to them.  We then setup the 

experiment and invite them to use our system. When everything was ready, we asked 

the participants to try each behavior we just discussed. When participants got used to 

these behaviors, they were free the play the game and attempted to solve the puzzle. 

We also gathered some game bugs during their play. We usually left 10 minutes for 

the participants to write down any feedback of our system. We asked them to rate 

their feelings on each behavior solution and recorded them to form a 1-7 scale (1 = 

terrible, 4 = normal, 7 = excellent). It should be noted that we encouraged participants 

to give low score if they feel awkward on any solution even if it worked. Besides the 

Likert scales, dedicated to be used to evaluate existing behavior solutions, we also 
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asked them if they liked our UI style. We provided two more questions in this section 

to help them evaluate our system: 

Q2: When giving gesture/posture input, which of the following ways do you feel more 

natural and comfortable? 

a. Continuous gesture recognition system 

b. Prompted gesture recognition. (Giving commands after specially appointed 

signals in dialog style) 

 

a. Standing at a fixed location 

b. Standing at arbitrary location 

Finally, we asked them to write other comments and discussed them to gather 

qualitative feedback. In particular, we always asked participants to point out the worst 

design part of the whole system. 

6.5     RESULTS AND DISCUSSION 

6.5.1 PART1: SOLUTION GATHERING 

Based on the demographics data, subjects were divided into four groups: (1) Female 

who has used motion tracking based devices; (2) Female who has not used motion 

tracking based devices; (3) Male who has used motion tracking based devices; (4) 

Male who has used motion tracking based devices. When organizing their solutions, 

we found common ideas and recorded them into Table 5. 

(Note: Sometimes, the entire solution for a single action may vary, but part of the 

solution was very similar. We also recorded these ideas and treat them as valuable 

information.) 

 

 

Table 5: Most Selected Solutions or Ideas from the Participants 

 

Action Most Selected Solutions or Ideas 

Item Selection 

(System Control) 

Use one hand to select the item, and then dwell over for a while to confirm 

the selection (5 participants) 

Put both hands on the item to select the item (4 participants) 

Move Control Turn and Lean body to movement (4) 

Creation (Cube) Hands split horizontally  (6) 
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Draw square with two hands (4) 

Creation (Sphere) Hands split vertically (5) 

Draw circle with two hands (5) 

Translation Both hands hold the object to move, separate hands to stop (6) 

Use one hand to move, use the other hand to stop (3) 

Scaling (Shape) Use both hands to scale along different axes (5) 

Click virtual arrow to scale (4) 

Scaling (Size) Use both hands to scale (5) 

Click virtual arrow to scale (4) 

Rotation Use both hands do rotation (6) 

One hand swipe to rotate (3) 

 

 

It should be noted that only a few participants gave a complete set of solutions for all 

the actions. Also, some of the gathered solutions had big defect and were therefore not 

feasible. Sometimes, even the participant himself was not satisfied with his own 

design ideas.  On this basis, the solutions recorded in the above table can be treated as 

highly centralized results. 

For “Item Selection”, five participants (three male and two female; four out of the five 

have used motion-tracking devices before) preferred to “Use one hand to select the 

item, and then hang over for a while to confirm the selection”. This is a very simple 

solution and it works. Our solution “Use one hand to select, use the other hand to 

shake to select” aimed to avoid misoperation by applying complex gestures was not 

quite accepted by our participants. While most participants agreed that our solution 

made sense and worked, they preferred other ways. As a result, we concluded our first 

solution as a bad design. 

For “Move Control”, four participants (four male; all have used motion-tracking 

devices before) suggested using head or torso as a joystick. That was one of our 

solutions during experimental stage. But we late found that after several attempts, the 

user would begin feeling dizzy or nauseous. We therefore would not consider this idea. 

Apart from this one, there’s no other common idea. So we decided to keep our 

original solution. 

For “Creation (Cube)” and “Creation (Sphere)”, five participants (four male and one 

female; all have used motion-tracking based devices before) came to the solution 

“Hands split horizontally and vertically”. While it was indeed a concise solution, it 
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was not an ideal one. We told our participants in the second part of the user study that 

we would add more basic models later, and then they realized the problem. Every one 

of the five agreed with the idea that we should use those gestures which made more 

sense and were easier to remember. Our project aimed to solve large-scale object 

modeling tasks in the future, and we decided to keep our original solution. 

For “Translation”, six participants (five male and one female; four out of the six have 

used motion-tracking devices before) chose to “hold” the object to move and “release” 

hands to stop. This could be considered as the most natural manner to move the 

objects. However, the flaw in this method is that it is difficult to define the critical 

point between “hold” and “release”. Suppose we define that the object will always 

stay in the center of the user’s two hands the user is moving it, it is possible that the 

object would continue moving while the user’s two hands are “releasing” at slightly 

different speed. While we believed that using two hands are more natural to move an 

object than using only one hand (our original solution), we decided to use a 

compromised solution: putting hands really close together to move the object, and 

separating hands away to stop moving. 

For “Scaling”, the most chosen method was similar to ours. The difference was that 

our solution allowed the user to scale along three axes at the same time. Eighteen out 

of nineteen participants thought that our solution was better than “scaling along one 

axes at one time”, and all the nineteen participants agreed that it was good to have two 

different scaling modes (size scaling and shape scaling). We therefore decided to 

continue using this solution. 

For “Rotation”, six participants (four male and two female; five out of the six have 

used motion-tracking devices before) thought that the most natural way is to use two 

hands to rotate as if “holding” a real object in front of the chest. Our method did 

exactly the same way and was therefore kept. 

For question Q1 (Action execution style between mode selection and non-modal 

selection), thirteen out of nineteen participants (nine male and four female; twelve out 

of the thirteen have used motion-tracking devices before) chose modal-selection. In 

these thirteen participants, three stated that modal-selection was very suitable for our 

application. However, they would prefer non-modal selection if the disadvantages of 

which are overcome in the future. There was another participant who suggested that if 
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the commands are not too many in an application, he preferred to use non-modal 

selection. But for our application, he believed that “modal selection” was more 

suitable. Based on all the views from our participants, we concluded our design as a 

proper solution. 

6.5.2 PART 2: SYSTEM EVALUTION 

Although, some of our solutions were not exactly the same as the participant’s ones, it 

didn’t affect the fact that our solutions were highly accepted. Actually, most of the 

participants stated that our solutions were better than their solutions (Figure 26). As 

the statics suggest, the average 7-point degree of comfort rating of each section is 

much higher than 4 (feels OK). “Object Creation” (Cube & Sphere) and “Rotation” 

received the best comments. “Item selection” (system control) and “Camera control” 

(movement) had the relative lowest score. 

 

 

Figure 26: Rating Scores of the System 

 

We discussed a lot with every participant on every detail of our system. We found that 

even though some of our design solutions received same score, the reasons were not 

quite the same. Participants gave high scores to “Rotation” and “Scaling” actions 

because participants thought our idea was much better than theirs and solved the 

problem. At the same time, for “Object Creation” (Cube & Sphere), our solution was 



 

 

35 

 

more complex than simply separating hands apart. But participants also gave us high 

score because they had good user experience on them. 

For the question Q2 we presented in this part, twelve participants (seven male and 

five female; ten out of the twelve have used motion-tracking devices before) preferred 

continuous gesture recognition, which was one of the features of our gesture 

recognition system. In these nineteen participants, only half (six male and four female; 

nine out of the ten have used motion-tracking devices before) of which preferred 

“Standing at arbitrary position”, which was another feature of our system, when 

giving commands. After further discussion, we found that what participants really 

meant was that they believed “Standing at fixed position” would help the system 

understand the gesture. This didn’t mean that “Standing at arbitrary position” was 

useless. Quite the contrary, this proved that users cared about the recognition rate 

when performing gestures in front of the camera, and our system gave them great help. 

 

6.6     DISCUSSION 

The user studies we designed have achieved the expected result. In our first user study 

we showed that people did have common ideas on natural interaction for our 

application. These common ideas were what we were looking for and were treated as 

a standard to evaluate our work. The results showed that most of our design met with 

the users’ ideas. At the same time, we also found those designs which were different 

from the common ideas. We treated them as not ideal solutions even though they 

worked effectively. We would redesign the methods and make them as close as 

possible to people’s common thought. 

Our second study was designed to evaluate the user’s feeling when using our system 

to perform virtual object modeling tasks, and the results showed that people felt good 

and comfortable. The second study was conducted immediately after the first study. 

We wanted the participant to give a direct comparison between his solutions and our 

solutions. In spite of the fact that our solutions were well accepted, participants 

pointed out some problems. Similar to what we did in the first study, common views 

were considered as more convincing comments. Many participants stated that our 

solution for “Item Selection” and “Confirmation” was complex. We therefore decided 

to change the solution to the most suggested methods. Another problem participants 

stated was that our solution for navigation in the virtual environment was not very 
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natural, although it worked perfectly. However, participants could not give a feasible 

solution. Therefore, we decided to keep our solution while tagging it “not ideal”. 

Generally, we received high scores for the overall performance of our system. The 

average score was 5.88 in the 7-point degree of comfort rating. 

We also received other valuable comments. These comments covered different 

respects of our work. Many participants suggested adding tutorials in the first few 

levels to help the user learn how to use the system. Some participants suggested that 

we should strengthen the awareness of position in the virtual environments to help 

increase the accuracy of the modeling work. For instance, we could add a mini map to 

tell the user’s position in another view aspect. Some participants wanted us to add 

more basic models so that our system could be more powerful. We thought all of 

these comments were of great value and plan to add these features in the next version 

of our system. 
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7. CONCLUSION AND FUTURE WORK 

In this project, we developed an immersive 3D user interface for a virtual object 

modeling application. We used an Xbox Kinect sensor to set up the working 

environment, which required no aid from other body-worn devices. We expanded the 

usability of the Kinect sensor by designing a human body gesture & posture 

recognition system. The recognition system has many advantages compared to other 

systems: (1) It does not require huge time and space resources and can work in an 

interactive way; (2) It does not require the user to perform the gesture at a specific 

speed; (3) The user does not have to do extra “start” & “end” gestures to help the 

system select the meaningful motion division; (4) It can recognize gestures in three 

dimensions; (5) It is compiled into a c# library, and could be imported to any 

application that is run in a c# environment; (6) The target device does not need to be 

the Kinect sensor, as any motion-tracking based device which can tell the position 

information would be able to make full use of our algorithm. 

We developed an object modeling based puzzle game and gave the player high 

freedom for performing virtual object modeling activities. When we finished the beta 

version of the game, we conducted a user study. In this user study we found out the 

users’ common ideas on natural interaction between human and computer. We also 

gathered other useful ideas on developing such an application. In the second part of 

the study, we let the participants use each function we designed in the application and 

asked them to describe their experiences. We received many useful comments. For 

instance, many participants thought that our solutions for “Item Selection” and 

“Navigation” were not quite natural and needed further modification. In spite of these 

comments, the overall results were promising. We got an average score of “5.88” in a 

7-point degree of comfort rating. Thus, we concluded that people felt good and 

comfortable when using our system to perform virtual object modeling tasks.  
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Figure 27: Use "dwell time" as the selection method 

 

 
Figure 28: Object Creation (Pyramid) 

 

However, we noticed that some of our solutions were not the same as the most ideal 

ones from the ideas we gathered from the participants. Although most of the 

participants stated that our solutions worked effectively, we thought about changing 

“not ideal” solutions since they were not conducted in the most natural manner. For 

those functions that got a better idea from the participants, we simply replaced them 

in our system. In the latest version of our application, we changed the gesture input 

for “Item Selection” to the most ideal solution gathered from the user study (Figure 

27). For those functions that had no better alternative (e.g., “Navigation”), we will 

explore the research in that filed, and try to come up with a better solution in the 

future. We added one more primitive model—“Pyramid” (Figure 28) to give our users 

more choices when solving the puzzles. It is also important to improve our gesture 

recognition system to support more complex gesture input. In the next step, we plan to 
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extract more features of the joint motion in the algorithm and combine them with 

body postures. In the next game version, we will add more features based on the 

participants’ comments on gameplay. Finally, since we treated our application as the 

first stage of the big concept project—world builder—we would put in more effort to 

create more possibilities and eventually realize the real “virtual world builder”. 
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