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Abstract

Deep neural networks have demonstrated remarkable accuracy for most
image classification machine learning tasks. However, these networks re-
main susceptible to adversarial attacks, where slight perturbations in in-
put data produces a misclassification. Without effective defense, this vul-
nerability creates a significant obstacle to the practical applications of
neural networks. Therefore, in this paper we propose four unique inter-
pretations of adversarial attacks designed to test the limits of adversarial
defenses. To conclude the paper we assess the strengths and weaknesses
of the four defenses we designed and recommend an approach to ensure
the safety and security of neural networks in the public domain.

1 Introduction

Deep neural networks (DNNs) are integral to solving many of the most chal-
lenging machine learning problems such as natural language processing, self-
driving cars, computer vision, fraud detection, and speech recognition [12] [15]
[3]. Therefore, ensuring the security and reliability of these systems is essential
to their functionality and deployment [11]. However, research has demonstrated
that even state-of-the-art neural networks are vulnerable to adversarial attack,
where subtle modifications to input data can manipulate a model into an er-
roneous output. These alterations are often imperceptible to humans while
significantly compromising the performance and safety of DNNs [3] [6] [19].
Consequently, the applications of neural networks in domains vulnerable to ad-
versarial manipulation are severely limited unless robust defensive mechanisms
can be devised to safeguard these models.

While adversarial attacks typically adhere to a common strategy of maxi-
mizing input loss while minimizing the perturbation, there is a wider variety
of defensive techniques available to network architects [3] [6] [19] [11]. These
strategies vary from augmenting training data with adversarial examples so a
model can recognize and respond to potential vulnerabilities, to preprocessing
an image in an effort to filter out adversarial perturbations [7] [2] [8]. The dy-
namic landscape of system security demands constant innovation in adversarial
defenses as defending against adversarial attacks remains an arms race between
attackers and defenders. Therefore, in this paper we assess the current state
of adversarial defense mechanisms and propose alternate ways of defending a
model.

In this paper we introduce:

• An initially robust and accurate neural network architecture capable of
swiftly generating high-confidence predictions.

• Four distinct interpretations of adversarial attacks that exploit various
vulnerabilities in neural networks to evaluate the effectiveness of our model
and its defenses.
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• Four adversarial defenses designed to mitigate identified vulnerabilities
within our neural network architecture.

• Areas in which our attacks and defenses excel to identify potential weak-
nesses in existing models and areas that require more defense.

2 Preliminaries

Self-driving cars, facial recognition and social media safety filters are all real
world examples of neural network applications that have a considerable im-
pact on both general society and individual people’s health and well-being [12].
Therefore, we focused our experimentation on defending and strengthening im-
age classification neural networks. In our preliminary research we propose a
convolutional neural network (CNN) with both high prediction accuracy and
confidence, and outline our unique interpretations and implementations of some
well-known adversarial attacks and defenses.

2.1 Convolutional Neural Networks

Numerous studies have demonstrated that convolutional neural networks are
the premier architecture for tasks like image classification and computer vision.
CNNs differ from standard DNNs as they are specifically designed to efficiently
extract features from images. To perform this extraction a CNN leverages three
fundamental layers: a convolutional layer; a pooling layer; and a linear, fully
connected layer [14] [1] [10].

The convolutional layer is the cornerstone of a CNN, tasked with being the
primary method of detecting features within an input. A CNN performs this
operation by traversing a two-dimensional array of weights, known as a kernel,
across the input to assess feature presence. Feature extraction is accomplished
by computing the dot product between input pixels and the kernel weights while
iteratively shifting the kernel across the input by a specified stride length until
the entire input is traversed. This produces an output array known as a feature
map [14] [1] [10].

Frequently following the convolutional layer in a CNN model is the pooling
layer. A pooling layer employs a kernel in a similar fashion to a convolutional
layer but instead of computing a dot product it aggregates all the values within
the kernel, thus reducing the size of the input. This process reduces model
complexity, enhances predictive speed and mitigates the risk of overfitting. In
our CNN architecture we opted to use a max pooling layer, which selects the
maximum value within the kernel to transmit to the output array [14] [1] [10].

Additionally, we introduced batch normalization and dropout components
into our convolutional layers as these techniques are proven to regularize neural
networks and expedite learning. A ReLU activation function was used between
layers for its efficiency and adaptability [14] [1] [10].

The final basic element of a CNN architecture is the fully connected layer,
consisting of dense, interconnected neurons that utilize the features extracted
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in the preceding layers to perform classifications. The network concludes with a
log softmax function which computes the log probabilities of the logits generated
by the output sub-layer of the fully-connected layer. It then maps them to the
range of (−inf, 0] to remove calculation errors frequently created by softmax
functions when many values are close to 0. The largest log probability serves as
the network’s output for image classification [14] [1] [10].

Below, we present our complete and comprehensive CNN architecture for
this research project, including the number of channels and size of the input
array for each layer.

Figure 1: Implemented CNN structure. Includes two convolutional layers and
one sequential layer.

2.2 Adversarial Attacks

Adversarial attacks in the context of deep learning aim to discover an alternate
input, closely related to an original input, but resulting in a different output clas-
sification [19]. This scenario is frequently expressed as an optimization problem
where the objective is to minimize an objective function to construct an adver-
sarial example while maintaining its proximity to the original input [19] [3]. Or,
in other words, the goal of an adversarial attack is to maximize the loss while
minimizing the perturbation. This process is often formulated as [19]:

minimize : D(x, x+ δ)

so : C(x+ δ) = y′ Constraint 1

x+ δ ∈ [0, 1]n Constraint 2

(1)

where x is the original input image, δ represents the calculated perturbation,
n denotes the height and width of the image, y’ signifies any class that is not the
original, D depicts the distance function between the original and the adversarial
inputs, and C is the classifier function. Essentially, adversarial attacks endeavor
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to identify the closest input to the original that causes misclassification, while
adhering to the dimensions of the original image.

Solving this optimization problem typically involves defining an objective
function and performing gradient descent until an optimal solution is found.
However, this process is difficult and computationally expensive to solve due
to the highly nonlinear nature of C(x + δ) = y′. Therefore, our proposed at-
tacks employ different and diverse methodologies to circumvent these expensive
operations [19].

Approaches to solving this problem generally fall into two categories: black-
box and white-box attacks [3]. Black-box attacks generate adversarial examples
without needing access to internal model parameters or gradients. Alternatively,
white-box attacks utilize all available information within a model, most fre-
quently using gradients to inform perturbations. White-box attacks have been
shown to be more powerful than black-box attacks, and given black-box access
to a model it is possible to train an analogous model with white-box privileges
[3]. However, to ensure our defenses are robust to all types of attacks, evaluat-
ing them with both white-box and black-box attacks is imperative. Therefore,
in this section we outline three white box attacks (Iterative Fast Gradient Sign
Method (IFGSM), Deepfool and Carlini-Wagner (CW)) and one black box at-
tack (Iterative Pixel Swap) that will be used to evaluate our defenses.

2.2.1 Iterative Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) is a single-step, white-box adversarial
attack that prioritizes speed over creating the most visually similar adversarial
image. It comprises of three main steps [6]:

1. Calculate the total loss after a forward pass.

2. Determine the gradients utilized in gradient descent during back propa-
gation for each pixel in the input.

3. Perturb the image in the direction of the gradient that maximizes loss
during forward propagation

The steps can be mathematically expressed as [6]:

x′ = x+ ϵ ∗ sign(∇xJ(θ, x, y)) (2)

Where x’ represents the perturbed input, x denotes the original input, theta
is the models parameters, y signifies the target associated with the input,
J(θ, x, y) is the cost function used during back propagation, ∇x signifies the cal-
culated gradients, and ϵ serves as the constraining factor controlling the amount
of perturbation applied to the input. Selecting an appropriate ϵ value is essen-
tial to the success of an FGSM attack, as opting for a value that is too small
can result in insufficient perturbation, while too large a value can cause the
perturbation to be too obvious [6].
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The Iterative Fast Gradient Sign Method is an iterative extension of FGSM,
where a similar algorithm is applied repeatedly until either misclassification
occurs or a predetermined number of iterations is reached. IFGSM can be
further optimized by integrating momentum boosting into its algorithm, which
accumulates the gradients of the loss function at each iteration to facilitate
escape from local maxima. These adjustments modify the initial FGSM equation
to [5]:

x′ =x+ α ∗ sign(g′)

where : g′ =µ ∗ g + sign(∇J(θ, x, y))

∥sign(∇xJ(θ, x, y))∥
(3)

Here, ϵ retains its role of constraining total perturbation, but IFGSM intro-
duces a new constant α which determines the perturbation step size towards ϵ,
with images ultimately clipped to remain within the vicinity of ϵ. The parame-
ter µ decays the importance of older gradients when calculating the momentum
[5].

IFGSM outperforms FGSM by iteratively applying perturbations to an in-
put, increasing the likelihood of a successful attack even if the initial iteration
fails. Additionally, IFGSM mitigates the tradeoffs associated with selecting an
epsilon value, as the perturbations escalate with each iteration, reducing the
risks of excessively perturbing an image. Ultimately, IFGSM prioritizes speed
and efficiency over an optimal input perturbation, rendering it a very effective
attack algorithm, albeit potentially with more conspicuous perturbations than
other techniques.

2.2.2 Deepfool

The deepfool algorithm is an iterative adversarial attack renowned for its abil-
ity to compute an optimal perturbation. Its approach involves searching neural
networks for vulnerabilities by assuming the network is linear, despite the pres-
ence of nonlinear activation functions inherent to neural networks. The attack
iteratively completes the following steps until the input’s predicted class changes
[13]:

1. Determine the closest decision boundary to the current image’s classifica-
tion.

2. Calculate the direction of this decision boundary from the current image’s
position.

3. Update the image with a small perturbation toward the selected decision
boundary.

The equation used to calculate the distance to a decision boundary is as
follows [13]:

l̂ =
| f ′

k |
∥w′

k∥2
(4)
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Where l̂ is the distance to a decision boundary, f ′
k are the gradients computed

for class k, and w′
k is the normal vector to class k. The minimum of these

distances is then used to identify the closest decision boundary, after which
the gradients for that class can be computed and the perturbation calculated
accordingly. The equation to calculate that perturbation is shown below [13]:

Perturbation = − f(x)

∥∇f(x)∥22
∇f(x) (5)

Where f is the neural network, and x is the image in its current state.
The numerator represents the initial prediction of the neural network, while
the denominator denotes the magnitude of the gradient vector of the neural
network squared. This fraction scales the output vector by the gradients so the
perturbation is applied according to the calculated distance. The negation of
this value ensures the perturbation moves the image towards the target decision
boundary.

The deepfool algorithm’s main benefit is its ability to compute the absolute
minimum amount of perturbation required to induce a misclassification by the
network. Despite the robustness of convolutional neural networks, deepfool
excels at generating adversarial examples with minimal, often imperceptible,
perturbations.

2.2.3 Carlini-Wagner

The Carlini-Wagner attack (CW) is a method of generating adversarial examples
designed to find an optimal perturbation amount to apply to an image, but
at the expense of computational speed. The core section of the CW attack
utilizes two separate loss functions: one ensuring the generated image induces
a misclassification, and the other determining that the perturbation is both
minimal and subtly applied. As previously discussed in equation 1, the function
C(x + δ) = y′ is very computationally difficult to solve, so the CW algorithm
reformulates the optimization problem to one that is easier to solve. This is
achieved by expressing the first constraint using an objective function f so that
when C(x+ δ) = y′, f(x+ δ) <= 0 [3].

In the original paper, the authors explore several objective functions and
determined the most effective was:

f(x′) = max(max(Z(x′)i : i ̸= t)− Z(x′)t,−k) (6)

Where Z(x′) signifies the logits for the adversarial example x′, max(Z(x′)i :
i ̸= t) represents the probability of the target class, so the expressionmax(Z(x′)i :
i ̸= t)−Z(x′)t is the total difference between the model’s predicted output and
the desired output. By introducing a parameter k and taking the maximum
value of the two expressions, we also establish a lower limit on the loss value,
allowing for fine-tuning of the model’s confidence on adversarial examples [3].

With this objective function defined we can reformulate the optimization
problem as:
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minimize : D(x, x+ δ) + c ∗ f(x+ δ)

so : x+ δ ∈ [0, 1]n
(7)

We introduce an additional constant c here to penalize the effect of the
objective function. The optimal value of c is determined by conducting a binary
search over potential values ranging from 1 ∗ 10−3 to 1 ∗ 1010, however the best
value of c often lies between 1 and 2 [3].

This leaves us with one more constraint to solve x+ δ ∈ [0, 1]n, or the “box
constraint”. This problem is addressed by performing a “change of variable”
operation where we optimize over a new value w rather than the over original
δ. This transformation alters this constraint to [3]:

δ =
1

2
(tanh(w) + 1)− x

or : δ + x =
1

2
(tanh(w) + 1)

(8)

Where tanh is the hyperbolic tangent, so as tanh(w) varies from [−1, 1],
x + δ ranges from [0, 1], thus solving this constraint and ensuring the values
remain within the box. Therefore our final optimization problem is [3]:

minimize : D(
1

2
(tanh(w) + 1), x) + c ∗ f(1

2
(tanh(w) + 1))

so : tanh(w) ∈ [−1, 1]

where : f(x′) = max(max(Z(x′)i : i ̸= t)− Z(x′)t,−k)

(9)

The CW attack is a very effective algorithm that succeeds at a high rate
and generally produces higher quality examples than other adversarial attacks.
However, this efficacy comes at a computational cost, as the dual operations
of a binary search and reformulating the optimization problem are computa-
tionally demanding. Therefore, CW attacks are at their most effective when
computational speed and efficiency are not a concern.

2.2.4 Iterative Pixel Swap

A pixel swap attack is a concept explored in a variety of academic literature, with
notable success rates demonstrated in various studies [16] [18]. For example, one
study from 2022 reported a very high misclassification rate when modifying just
a single pixel [16]. Our iterative pixel swap attack adheres to these fundamental
principles of pixel swap attacks by:

1. Mapping pixels to each other based on a predetermined mapping function.

2. Swapping pixels according to their mapped counterparts from the previous
step.

3. Repeating this swapping process until misclassification occurs.
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The mapping function can be defined in a number of different ways, but our
implementation focused on mapping the pixels with the most different light val-
ues. For example, the darkest pixel in the image would be mapped to the lightest
pixel in the image. Subsequently, we initiate the swapping process, beginning
with swapping the most dissimilar pixels until the image is misclassified.

A key advantage of a pixel swapping attack lies in its characterisation as a
black-box attack, meaning it does not rely on any information gained from the
network’s structure or parameters. While this form of attack remains useful,
particularly as models become better defended and harder to obtain information
from, the perturbations produced by this attack can be extremely nonoptimal
and noticeable, as there is no method to compare the closeness of the adversarial
example to the original image.

2.3 Adversarial Defenses

Adversarial defenses are techniques constructed to safeguard and maintain a
model’s performance against attack, while having little or no effect on the
model’s performance on unaltered inputs [11]. In this paper we explore two
distinct categories of defense: network based and image based. Network based
strategies are applied directly to the neural network model, usually through
further training or small changes to the architecture itself. Conversely, image
based defenses manipulate the input image or associated data while leaving the
original model intact. Both types of defenses have demonstrated effectiveness
in minimizing the effects of adversarial examples [11] [15] [8]. However, a conse-
quence of these defenses is they may inadvertently lower the models performance
in instances where no adversarial noise is present.

2.3.1 Adversarial Examples

Adversarial example training is used to increase the robustness of a neural net-
work by exposing it to adversarial examples during its training phase, enabling
it to learn common patterns and features within adversarial examples. Typi-
cally, this technique is implemented atop an existing and high-performing model,
mitigating the negative effects of adversarial example training. For our study,
we took our previously defined robust network and trained it for a further five
epochs using adversarial examples [7].

The most important component of adversarial example training is obtaining
adequate examples. In this research project, we used the four adversarial attacks
outlined in the previous section to generate our adversarial examples. Each
attack perturbs images in a distinct manner, therefore exposing our model to
a variety of attack techniques. We implemented this by randomly selecting
and applying an attack for each batch during each pass of our training loop.
By employing different attacks in each batch we prevent overfitting to specific
perturbations and ensure a diverse array of attacks across epochs. For each
image we retained and used its original label so the model can learn an accurate
classification despite the added noise [7].
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A limitation of this implementation of adversarial example training is that
the model is both trained and tested using the same adversarial attacks. Con-
sequently, we are unable to evaluate whether the model is learning general noise
patterns and features, or merely those associated with each type of attack. This
potentially leaves a model susceptible to a new type of adversarial attack despite
exposure to adversarial examples during training. Additionally, adversarial ex-
ample training extends the training time and costs necessary to produce a model
beyond what is required for initial high performance. Furthermore, adversar-
ial example training can reduce the models baseline accuracy on unperturbed
images. However, regularizing a model using adversarial examples still has a
positive effect on its defense, provided the impacts on its unattacked accuracy
remain limited [7].

2.3.2 Feature Smoothing

Feature smoothing is the act of preprocessing the input data of a neural network
to reduce the impact of noise introduced during an adversarial attack. Our im-
plementation accomplishes this task by introducing a gaussian blur to an image,
a technique that employs a kernel similarly to a convolutional or pooling layer,
yet distinct in its computation of kernel weights. These weights are calculated
using a normal distribution then used to aggregate values within a kernel in a
similar manner to a convolutional or pooling layer. The output from a gaussian
blur can be computed by [20]:

∑ original image value at a pixel relative to the original pixel

kernel value for that position
(10)

Where the kernel value is determined by [20]:

K(x, y) =
1

2πσ2
e−

x2+y2

wσ2 (11)

WhereK(x, y) represents the kernel value at (x, y), x and y are the respective
distances from the current pixel being evaluated, and σ denotes the width of the
kernel. This operation produces the blur by computing the weighted average
of all the original values within the kernel, then replacing the target pixel with
the calculated average. Consequently, small perturbations are removed as the
adversarial noise is averaged out by unperturbed pixels. The resultant output
image then replaces the original image as the input for the machine learning
model [20].

Feature smoothing has the primary advantage of mitigating the effects of ad-
versarial attacks by indiscriminately filtering out noise, making it a very versa-
tile defense. It has the further advantage of requiring no further model training,
meaning it is quick and inexpensive to implement. However, feature smoothing
alters all images in a manner perceptible to humans, meaning its output could
be perceived as inferior to defenses that do not alter images [20].
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2.3.3 Gradient Masking

Gradient masking is a defensive technique primarily employed to mitigate the
vulnerability of neural networks to adversarial attacks that rely on white-box
access to a model’s gradients. By obscuring gradient information, gradient
masking aims to make a models loss function inaccurate and more difficult
to optimize, therefore limiting an attack’s ability to craft effective adversarial
examples [2] [8].

The primary goal of gradient masking is to increase the complexity and un-
predictability of a model’s loss function, which impedes an adversary’s attempts
to leverage the gradient in an attack. There are several ways of obfuscating this
gradient, including adding random noise, regularizing or normalizing the gradi-
ents, or applying some form of non-differentiable equation in the model archi-
tecture. Introducing these effects to the gradient can cause it to become noisy,
flat or undefined, making the model less deterministic and harder for attacks to
find a precise direction for perturbations [2] [8].

The most common approach to gradient masking requires inserting random
noise on top of the gradients calculated during backpropagation. This noise
perturbs the gradient information in a direction that is inconsistent with the
model’s parameters, therefore introducing uncertainty and inefficiency into the
optimization process. This noise is typically drawn randomly from a normal
distribution with a mean of 0 and a variance of 1. Additionally, to control the
magnitude of the noise introduced by the gradient mask, it is multiplied by
a scalar ϵ value. This parameter serves as a regularization component which
constrains the noise to a reasonable level. The choice of ϵ value represents
a tradeoff between robustness against adversarial attacks and preservation of
model performance against clean data [2] [8].

Mathematically, gradient masking can be represented as:

G′ = G+ ϵ ∗ N(0, 1) (12)

with G′ representing the masked gradients, G representing the original gra-
dients, ϵ depicting the scalar regularization parameter and N(0, 1) defining the
randomly sampled noise array.

Incorporating gradient masking into the defense of a neural network can ren-
der a model less susceptible to attack, as the perturbed gradients obscure the
true loss function making it harder for an adversary to exploit network vulner-
abilities. Furthermore, gradient masking is inexpensive to implement and can
be incorporated into existing networks without the need for retraining. How-
ever, gradient masking may impact model performance on unperturbed inputs
as a consequence of introducing this extra noise. Additionally, the benefits of
gradient masking can be negated by using a black-box attack, as these attacks
do not use model gradients or parameters [2] [8].
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2.3.4 Defensive Distillation

Distillation as a technique was initially proposed as a mechanism to compress
large neural networks into smaller ones, while maintaining the performance of
the larger one. This method has since been adapted into a defensive mechanism
against adversarial attacks in neural networks [15] [3].

There are three main steps to producing a distilled model [15]:

1. A large and high performing model, known as a “teacher”, is trained on
the original dataset using a standard approach.

2. The probabilities generated by the softmax function in the output layer
of the teacher model are used to create “soft” labels, which represent the
predictive distribution of classes in each input in a more detailed manner.

3. A “student” model is trained using these soft labels instead of the original,
one-hot encoded targets.

Defensive distillation differs from distillation in that the goal is not to ex-
tract greater performance from a smaller model, but to defend a model against
adversarial examples. As model speed and complexity are not the primary goals
of defensive distillation, the teacher and student models are of equal size and
structure. By distilling knowledge from the teacher to the student model, defen-
sive distillation smooths the decision boundaries between classes, which removes
some of the vulnerable regions adversarial examples frequently exploit. Further-
more, defensive distillation can combat overfitting by teaching the student model
more generalized representations of classifications. However, defensive distilla-
tion is much more computationally expensive than any other of our defenses, as
it requires two models of substantial size to be trained [15].

3 Methodologies

The methodologies used to complete our research can be split into five major
steps. For the first step we selected three high quality datasets of differing sizes,
shapes and colors. Following this, we chose three evaluation metrics that each
encapsulated a different measure of model performance to assess the effectiveness
of our neural networks and the corresponding attacks and defenses. Next we
trained a multi layer convolutional neural network using cleaned images from the
selected datasets. Finally, we developed and designed four adversarial attacks
intended to exploit different vulnerabilities in neural networks and devised four
defenses to protect against these attacks.

3.1 Datasets

To train a robust and precise deep neural network classifier we required large
datasets complete with high quality images and labels. When a model is trained
on poor quality or insufficient data, the model will perform poorly and be an
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inadequate base from which to evaluate our adversarial attacks and defenses. We
also wished to use a variety of datasets with different features and characteristics
to examine and compare our results using an array of different inputs. By using
a diverse collection of datasets we were able to evaluate our results using data
of varying colors, dimensions and subjects. The three datasets we chose are
all popular machine learning benchmarks that fulfill these criteria: MNIST,
GTSRB and CIFAR10 [17] [4] [9].

l

Dataset Dataset Topic Number of Classes Image Dimensions and Color Number of Images
MNIST Handwritten Digits 10 28x28, Grayscale 60000
CIFAR10 Common Objects 10 32x32, RGB 60000
GTSRB Traffic Signs 43 Varies, RGB 51839

Table 1: Detailed information about the contents of the MNIST, CIFAR10 and
GTSRB datasets

(a) MNIST (b) CIFAR10 (c) GTSRB

Figure 2: Sample images from each of the utilized datasets

Our preprocessing plan involved normalizing all of the inputs and resizing
them to become uniform 3x32x32 images. The inputs were normalized to trans-
form all of the features to be on a similar scale to reduce the impact of outlier
features. We resized the images to be 32x32 and in RGB because having consis-
tent input size values increased compatibility with the network training process
and increased comparability of our results between datasets.

3.2 Evaluation Metrics

We used two heuristics to evaluate the effectiveness of each adversarial attack:
F1 Score and Prediction Time. These metrics encompass the two most impor-
tant factors to consider when evaluating adversarial attacks and defenses: the
accuracy of the model, and the amount of time it takes to make a prediction
[21].
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F1 score is a way of measuring the accuracy of a machine learning model by
taking the harmonic mean of precision and recall. Precision is the proportion of
positive identifications by a model that are actually positive, using the following
equation:

TP

TP + FP
(13)

Conversely, recall is the proportion of actual positives that are identified
positively, using the below equation:

TP

TP + FN
(14)

Precision and recall can then be combined to form an F1 score accordingly
[21]:

2 ∗ precision ∗ recall
precision+ recall

(15)

F1 score is an effective measurement of a model’s accuracy as maximizing
the F1 score implies maximizing both the precision and recall of the model,
guaranteeing a more accurate overall network. We used the F1 score to evaluate
the overall accuracy of the model and to compare the differences in scores after
an attack or defense had been applied [21].

Prediction time is calculated as the amount of time it took, on average, for
the model to complete one forward pass of an input. This was measured by tak-
ing the amount of time it took to test the model on the complete test dataset
and dividing it by the size of the test dataset to compute the average. Predic-
tion time is used as a benchmark to evaluate how computationally expensive
an attack or defense operation is. However, it is important to note that despite
conducting all tests in a consistent environment, it is possible outside variables
influenced the recording of prediction time, potentially resulting in greater vari-
ability in prediction time than expected between attacks and defenses.

3.3 Convolutional Neural Network

For the purpose of introducing as few variables into our research as possible, we
decided to identically implement the architecture we proposed in the prelimi-
naries for each of our three datasets. Each dataset was divided into a train and
test set in an 80:20 ratio and subsequently a further 20% of the train dataset
was used to create a validation set.

We trained our models for 20 epochs, resulting in robust and effective models
tailored to each dataset. Following the training phase our models generally
exhibited an acceptable loss value; however it is noteworthy that the CIFAR10
dataset yielded a model with higher loss than anticipated.
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Figure 3: Training loss for MNIST. Depicts gradualy decreasing loss over 20
epochs.

Figure 4: Training loss for CIFAR. Shows fluctuating loss over 20 epochs.

14



Figure 5: Training loss for GTSRB. Displays an inital rapid decrease in loss,
followed by a more gradual decrease over 20 epochs.

While we trained each of our models for the full 20 epochs, to combat poten-
tial overfitting we saved the parameters of the model with the lowest validation
loss, and used that model to conduct our tests. We attribute the inferior perfor-
mance of the CIFAR10 model to the datasets inherent complexity; as the images
have intricate and diverse features that our CNN struggled to fully capture.
Constructing a model for CIFAR10 with higher accuracy would have defeated
our objective of preserving a uniform network structure between datasets, and
necessitated the construction of a larger and more complex model beyond the
scope of this project. Furthermore, the presence of a slightly less accurate model
enabled us to assess the ability of our defense methods in enhancing the baseline
accuracy. Despite variations across datasets, all our models yielded satisfactory
results for evaluating our attacks and defenses, characterized by high accuracy
score, minimal loss, and efficient prediction times.
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Figure 6: Baseline accuracy of CNNs. Shows at least adequate performance for
each model with exceptional performance for MNIST and GTSRB

l
MNIST CIFAR GTSRB

Prediction Time 0.003 0.002 0.016

Table 2: Baseline prediction time of each CNN

3.4 Adversarial Attacks

All the adversarial attacks were evaluated using the complete test dataset. We
also use a digit 7 from the MNIST dataset to highlight the perturbations each
of our attacks applies to an image, and the effect each attack has on the model’s
predictions and confidences. The baseline image and the model’s 3 most confi-
dent predictions are shown below for reference.
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Figure 7: Baseline image and confidence of a 7 from the MNIST dataset. Shows
that an undefended network classifies an unattacked image correctly with very
high confidence.

3.4.1 IFGSM

The results from our IFGSM attack are as expected - it is a fast and effective
attack, and this is showcased by the low F1 scores and prediction time across
all datasets. This is particularly noticeable in the attack time as IFGSM is
significantly quicker to perform than any of our other attacks.

l
MNIST CIFAR GTSRB

F1 Score 0.08 0.01 0.11

Table 3: Accuracy of CNN after IFGSM attack. Shows poor performance of
CNN on adversarial examples generated by the IFGSM algorithm.

l
MNIST CIFAR GTSRB

Prediction Time 0.07 0.04 0.13

Table 4: Prediction time of CNN after IFGSM attack.

However, a surprising observation from our IFGSM attack is how little per-
turbation was evident on each image. IFGSM does not seek an optimal pertur-
bation, rather, it aims to misclassify as fast as possible, so we would expect to
see significant noise on each image. However, upon examining the digit 7 after
it was attacked by IFGSM, there is little perturbation perceptible to the human
eye. We theorize that using a small step size and momentum boosting facilitated
smaller perturbations at each step, leading to a more optimal perturbation than
initially anticipated. However, despite these subtle visual changes, the adver-
sarial example significantly diverged from the original image, as the number 7
does not appear anywhere in the models three most confident predictions.
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Figure 8: IFGSM attack image and confidence of a 7 from the MNIST dataset.
Shows an undefended network misclassifying an IFGSM attack image with low
confidence and high uncertainty.

3.4.2 Deepfool

The results from our deepfool algorithm indicate it is a very successful attack
as it yielded the lowest F1 scores of any of our attacks. The attack was also
performed quickly, producing a prediction time only marginally longer than for
an IFGSM attack.

l
MNIST CIFAR GTSRB

F1 Score 0.01 0.13 0.02

Table 5: Accuracy of CNN after deepfool attack. Shows poor performance of
CNN on adversarial examples generated by the deepfool algorithm.

l
MNIST CIFAR GTSRB

Prediction Time 0.21 0.19 0.41

Table 6: Prediction time of CNN after deepfool attack.

However, the deepfool algorithm frequently introduced perceptible noise to
the targeted images. This noise was often manifested as a blurring of the images,
which subtly altered the appearance of the image while retaining most of the
prominent original features, but with a perturbation discernible by a human.

The confidences produced by the deepfool algorithm align with expectations,
as the model’s prediction remains very close to the decision boundary, with only
a 0.01% confidence separating a prediction of a 3 to a 7. Such behavior is antici-
pated, as a deepfool algorithm navigates directly to the nearest decision bound-
ary without any deviation towards other boundaries and terminates perturbing
the image as soon as the boundary is crossed.
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Figure 9: Deepfool attack image and confidence of a 7 from the MNIST dataset.
Shows an undefended network misclassifying a deepfool attack with marginal
confidence and high uncertainty.

3.4.3 Carlini-Wagner

In comparison to our IFGSM and deepfool algorithms, our CW attack exhibited
relatively lower success rates and significantly longer execution times. Nonethe-
less, our CW attack remained a viable option for adversarial manipulation, par-
ticularly against the MNIST and CIFAR datasets. However, its performance
was notably less effective on the GTSRB dataset, with an F1 score slightly be-
low 0.5. We attribute this outcome to the combination of the complexity of the
images in the GTSRB dataset and the robustness of its original model, likely
causing the attack to prematurely terminate its binary search before finding an
optimal constraint value.

l
MNIST CIFAR GTSRB

F1 Score 0.07 0.16 0.46

Table 7: Accuracy of CNN after CW attack. Shows poor performance of CNN
on adversarial examples generated by the CW algorithm.

Our CW attack was also rather slow with completion times significantly
longer compared to our previous attacks, primarily due to the computational
overhead introduced by the binary search for an optimal constraint value. This
iterative search process necessitated creating more adversarial examples than
other techniques, contributing to the overall increase in execution time.

l
MNIST CIFAR GTSRB

Prediction Time 0.87 0.73 1.35

Table 8: Prediction time of CNN after CW attack

Unsurprisingly, the original and perturbed images were extremely similar.
Given the primary objective of a CW attack is to identify an optimal adversarial
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example, it is unsurprising the perturbed images closely represent the original.
Additionally, the confidence scores obtained from the CW attack closely mirror
those of the IFGSM attack, suggesting underlying similarities in the operations
of the two attacks.

Figure 10: CW attack image and confidence of a 7 from the MNIST dataset.
Shows an undefended network misclassifying a CW attack with low confidence
and high uncertainty.

3.4.4 Iterative Pixel Swap

The iterative pixel swap attack emerged as the least effective of our adversarial
attacks. While it exhibited a reasonably high success rate, with the highest F1
score reaching only 0.22, its overall performance remained lower than our other
attacks. Furthermore, the pixel swap attack was extremely slow to operate,
being significantly more time intensive than our other methods. We attribute
this performance to inefficiencies prevalent in the mapping function, particularly
its use of an inefficient sorting algorithm to order the lightest and darkest pixels.

l
MNIST CIFAR GTSRB

F1 Score 0.11 0.20 0.22

Table 9: Accuracy of CNN after Pixel Swap attack. Shows poor performance
of CNN on adversarial examples generated by the Pixel Swap algorithm.

l
MNIST CIFAR GTSRB

Prediction Time 0.93 0.84 2.47

Table 10: Prediction time of CNN after Pixel Swap attack

Unsurprisingly, the resulting images from a pixel swap attack display the
most noticeable deviations from the originals. This aligns with the attack’s
straightforward methodology of swapping pixels, a process that lacks the sub-
tleties small changes guided by gradients can provide. Consequently, any alter-
ations made by the attack are more conspicuous to human eyes. Additionally,
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the model’s prediction maintains a close proximity to the decision boundary,
indicating that despite a marked difference between the adversarial image and
its original, the network discerns minimal differences between the two.

Figure 11: Pixel swap attack image and confidence of a 7 from the MNIST
dataset. Shows an undefended network misclassifying a pixel swap attack with
marginal confidence and high uncertainty.

3.5 Adversarial Defenses

To assess the effectiveness of adversarial defenses, we mirrored the methodol-
ogy for evaluating our attacks. This approach ensured a consistent analysis
framework, allowing for a direct comparison of results.

3.5.1 Adversarial Example Training

Adversarial example training proved to be an effective tool for countering ad-
versarial attacks, demonstrating improved predictive accuracy across all at-
tack scenarios, while maintaining performance on clean data. However, there
is a notable discrepancy in the MNIST model which exhibited notably lower
unattacked accuracy than its base model. This discrepancy when coupled with
the remarkably high accuracies achieved on the IFGSM and CW attacks - two
methods closely related to each other - suggests potential overfitting during the
training process. This overfitting likely resulted in the model prioritizing the
identification of adversarial noise patterns over the differentiation of images,
therefore compromising its base performance.
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Figure 12: CNN accuracy after adversarial example training.

Despite the risks of overfitting, adversarial example training still presents
numerous advantages as a defense mechanism. For instance, overfitting ten-
dencies could be countered by training the model for less epochs or reducing
the number of adversarial examples. Additionally, the prediction time was min-
imally impacted by adversarial training as the additional computational cost
lies in the training phase rather than the inference stage.

l

Prediction Time MNIST CIFAR GTSRB
No Attack 0.004 0.004 0.007
IFGSM 0.11 0.07 0.34
Deepfool 0.42 0.27 0.96

CW 0.84 0.83 1.57
Pixel Swap 0.92 0.75 2.34

Table 11: Prediction time after adversarial example training.

In conclusion, adversarial example training is a simple but effective method
of mitigating the power of adversarial attacks at little cost to accuracy on clean
data. Furthermore, adversarial example training is an extremely adaptable
strategy that compliments other defenses well, underscoring its place as a robust
defense mechanism for neural networks.

3.5.2 Feature Smoothing

Feature smoothing was overall a successful attack, with particularly noticeable
effects on the deepfool and pixel swap attacks. Despite being less computation-
ally intense to implement than other attacks and altering the images from their
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original look, feature smoothing was still able to improve model performance
on each type of attack. We theorize that feature smoothing was particularly
successful against deepfool and pixel swap as these attacks move the models
confidence very close to the prediction boundary, meaning subtle changes such
as aggregating pixel values have a larger effect, as the models confidence only
needs to be moved a small amount to correct the prediction. We also theorize
this defense does not work so well against the IFGSM and CW attacks, as those
images look the most similar to the originals but have wildly different prediction
confidences, meaning any noticeable changes to the image are unlikely to have
such a drastic effect on those attacks.

Figure 13: CNN accuracy after feature smoothing.

The impact of feature smoothing on the prediction time of our model was ul-
timately negligible. This result was somewhat unexpected, as feature smoothing
involves a kernel sweeping across the image and performing matrix operations,
which are traditionally known to be computationally demanding. However,
gaussian blur techniques have been significantly optimized over time, likely ex-
plaining the speed of the operation.

l

Prediction Time MNIST CIFAR GTSRB
No Attack 0.009 0.007 0.014
IFGSM 0.10 0.04 0.35
Deepfool 0.66 0.26 0.84

CW 0.73 0.65 1.86
Pixel Swap 0.81 0.75 2.76

Table 12: Prediction time after feature smoothing.
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Ultimately, feature smoothing is a promising and effective form of defense
against attacks strategies that perturb predictions until they lie close to the
prediction boundary. However, it exhibits greater vulnerabilities than other
defenses when exposed to attacks that deviate significantly from the original
predictions. Therefore, its optimal use may be in combination with other de-
fenses that mitigate this weakness.

3.5.3 Gradient Masking

Our gradient masking implementation generated disappointing results, as it ex-
hibited little effect on classification accuracy of adversarial examples and, in
some cases, even led to a decrease in accuracy on unattacked data. Notably,
the prediction accuracy of our adversarial attacks remained largely consistent
compared to an undefended model, indicating the attacks could still leverage
an accurate or nearly accurate gradient to create an adversarial example. Un-
surprisingly, gradient masking did not affect the performance of our black-box
attack, as this attack operates independently of a model’s gradient information.

Figure 14: CNN accuracy after gradient masking.

The overall time to make a prediction did not meaningfully change after
applying a gradient masking defense. This outcome aligns with expectations,
given the operations we used in gradient masking were not particularly compu-
tationally expensive, resulting in a minimal impact on prediction time.
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l

Prediction Time MNIST CIFAR GTSRB
No Attack 0.002 0.002 0.03
IFGSM 0.11 0.06 0.22
Deepfool 0.36 0.24 0.77

CW 0.82 0.68 0.57
Pixel Swap 0.91 0.76 1.36

Table 13: Prediction time after gradient masking.

To summarize, our implementation of gradient masking proved ineffective as
it both decreased performance on clean data and failed to improve performance
on perturbed data. While gradient masking theoretically holds promise for
enhancing the robustness of neural networks, our implementation ultimately
did not work, highlighting the need for further refinement to realize its potential
effectiveness.

3.5.4 Defensive Distillation

Defensive distillation emerged as one of our most effective defense methods,
consistently increasing prediction accuracy across a variety of scenarios. Par-
ticularly noteworthy is its effectiveness against the deepfool attack, moving the
classification accuracy from nearly to 0% to closely resembling the performance
on clean data. Furthermore, defensive distillation exhibited strong performance
against the pixel swap attack, nearly doubling the prediction accuracy compared
to the pre-defense state. However, as expected, the CW attack posed a signifi-
cant challenge to defensive distillation, showcasing the strategies susceptibility
to attacks specifically engineered to beat it. This weakness was also present in
the IFGSM attack, indicating defensive distillation has a significant vulnerabil-
ity to that classification of attack. Interestingly, defensive distillation improved
the prediction accuracy on clean data for the CIFAR and GTSRB models, which
can likely be attributed to the benefits of the greater adaptability provided by
training on soft labels.
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Figure 15: CNN accuracy after defensive distillation.

Once again, the prediction time remained largely unchanged compared to the
original model, as the operations involved in a distilled model do not significantly
differ from those in the base model. Instead, the time disparity occurs in the
training phase as an additional model is required to be trained for defensive
distillation.

l

Prediction Time MNIST CIFAR GTSRB
No Attack 0.003 0.002 0.03
IFGSM 0.10 0.04 0.16
Deepfool 0.34 0.21 0.58

CW 0.62 0.67 0.71
Pixel Swap 0.77 0.77 1.40

Table 14: Prediction time after defensive distillation.

To conclude, defensive distillation proved to be one of our more effective
defensive methods as it increased model performance on most attacks and en-
hanced accuracy on clean data. However, its widespread adoption as a defensive
technique has led to the development of many attack strategies, such as the CW
attack, designed to exploit its weaknesses. Therefore, while defensive distillation
has proved to be an effective defense, its well known vulnerabilities necessitate
alternate defense strategies to be adopted as well.

3.6 Final Evaluation

We conclude our examination of attacks and defenses by conducting a complete
performance evaluation to assess whether any attacks or defenses consistently
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exhibited a dominant performance.
One of the key takeaways from our study is the dominant performance of

our defenses against the deepfool algorithm compared to other attack methods.
We hypothesize this phenomenon arises because the deepfool attack perturbs
images so they lie very close to the prediction boundary. Consequently, only a
minor defensive adjustment is necessary to correct the model’s classification. A
similar effect is observed with the pixel swap attacks; however, the more extreme
perturbations associated with this attack reduces the prominence of this effect
compared to a deepfool attack.

Our defenses generally worked better on the MNIST dataset than the CIFAR
and GTSRB datasets. We attribute this to the lower complexity in the images
of the MNIST dataset, which allowed for a more robust initial model, compared
to the more intricate images of the other datasets where detecting noise can
become more challenging.

Ultimately, adversarial example training emerged as the best performing de-
fense overall, closely followed by defensive distillation and feature smoothing.
While feature smoothing was very effective against deepfool and the pixel swap
attack, it ultimately exhibited significantly lower capabilities against other at-
tacks. Conversely, adversarial example training and defensive distillation were
not extraordinarily successful against one type of attack, but their overall im-
pact was more impressive. We conclude that training a model to recognize
adversarial noise and features is the most effective technique to enhance the
robustness of neural networks, as this training provides the broadest coverage
across a variety of attack strategies.

4 Conclusion

In conclusion, our research highlighted the susceptibility of neural networks to
adversarial attacks, as we designed four potent attack strategies, each exploit-
ing distinct network vulnerabilities. While our defenses against these attacks
exhibited promise overall, none proved universally effective against all types of
attacks. This underscores the inherent challenge in designing effective defenses
for neural networks, as all networks retain some level of vulnerability regardless
of defense.

We also determined that our network-based defenses, defensive distillation
and adversarial example training, generally outperformed image-based defenses
like feature smoothing and gradient masking. This disparity likely emerges from
the network-based defenses’ ability to train models to discern perturbations, en-
abling adaptability to detect a diverse array of noise patterns. This contrasts
with image-based defenses reliance on constraining the noise to a format rec-
ognizable by base models. Consequently, network-based models display greater
resiliency to perturbed data, as image-based defenses will always fail if they are
unable to effectively mitigate noise.
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Figure 16: Summarizes performance of all defenses against all attacks on the
MNIST dataset.

Figure 17: Summarizes performance of all defenses against all attacks on the
CIFAR dataset.
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Figure 18: Summarizes performance of all defenses against all attacks on the
GTSRB dataset.

4.1 Future Work

Although we concluded there are no perfect defenses against adversarial attack,
we propose some additional approaches to enhance defensive performance be-
yond the development of alternate defense mechanisms. Gradient masking, in
particular, represents an intriguing avenue of exploration, with the potential to
greatly limit the impact of white-box attacks. There are other forms of imple-
menting gradient masking, such as incorporating non-differentiable functions to
a neural networks architecture, which addresses the linearity in neural networks
that often render them susceptible to attack. Another prospective method in-
volves deliberately introducing a vanishing or exploding gradient problem to
render the gradient unusable for attacks, although this approach may compro-
mise unattacked accuracy by impeding model training and prediction accuracy.

Another area of defense to explore is against targeted attacks. While we
briefly experimented with designing attacks designed to converge upon a spec-
ified classification, further investigation into the impacts of defense strategies
against these attacks is warranted. As targeted attacks are more powerful and
applicable to the real world than untargeted attacks, it is important to measure
our defenses against targeted attacks to truly evaluate their effectiveness.

Finally, our preliminary findings suggest that combining multiple defense
methodologies can produce a superior model performance over using a singular
defense. Given each defense has different strengths and weaknesses, integrating
defenses with different components can help hide the weakness inherent to a
particular approach. Notably, our experiments produced encouraging results
when combining adversarial example training with feature smoothing, as the
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model capitalized on the strengths of each defense while mitigating their respec-
tive weaknesses. With further refinement and extensive testing, the integration
of multiple adversarial defenses holds promise in providing robust protection
against a variety of adversarial attacks, while preserving model performance on
clean data.
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