Trick of the Light:
A Game Engine for Exploring
Novel Fog of War Mechanics

Zackery Mason

A project report submitted to the faculty of
Worcester Polytechnic Institute
in partial fulfillment of the requirements for the
Degree of Master of Science in
Interactive Media and Game Development

Brian Moriarty, Project Chair

Dean O’Donnell, Reader

Vaze

Dr. Gillian Smith, Reader

Abstract

Trick of the Light is an experiment in strategic game design based on imperfect information in a
unique fog of war setting. A hybrid of real-time-strategy, role-playing-game and roguelike
genres, the game challenges players to maintain an expansive base system without being able
to see anything beyond their own limited vision radius. All units, allied or enemy, maintain
private memories about what they have seen, and must directly exchange information to keep
up to date. The player acts as commander, making decisions and giving orders while dealing
with adversaries, sabotage and misinformation. Testing was done to see if the new concepts
could be understood in-game and garner any interest for further development, which proved to

be positive in both cases despite complaints related to having less direct control over allies.

Acknowledgements

Very special thanks to advisor Brian Moriarty. His support allowed this work of passion
to become a thesis-level project, and his experience in game design and the video game

industry as a whole was an immense boon that | am lucky to have barely tapped into.

Additional thanks to IMGD undergrad Dave Allen for providing audio and music, and
also to the IMGD community as a whole, not only for playtesting the game but also for going
above and beyond with your genuine interest and suggestions that indicate a desire to watch
the game grow. A game is nothing without players, but a real developer appreciates supporters

even more.

A final thanks to all of my friends and family involved with development long before this
became any official project, especially my parents, who were avid supports of everything |
attempt since the very first “Hello, world.” Your willingness to feign interest as | babbled on

about technical jargon has gone neither unnoticed nor unappreciated.

Contents

1Y 413 4 = o1 PPNt i
ACKNOWIEAZEMENLSceeeeeeeeeeieeniesssnsnnss ii
(00071 1 =T 1 £ TON iii
T =TT U viii
I 143 e e 11 Tt o T Y3 T PPN 1
2. HiStOry Of fOZ Of WA c.ccciiiiiiiiiiiiiiiiiiiiiiiiiieinieeieeieieeeeeeeeeeeseeeeesesssnns 3
3. Game mechanics and their implementations........ccccccveeeeeeieiieieieeeieieeeeeeeeeeeeeeeeesessssesssssssssssssssssssssssssssssssssssssss 7
I B o [1= 01 =T 4V -1 USRS 7
I NV [B Yo KXt Y =T | 11 LSRR 8
3.2.1. “TUIN-Dased’ ENEIEY SYSTEM ...ciiiiiiiiiiie ittt ettt ettt ettt st e bt e sbe e st e e s bt e s b et e aeesbeeenseesbeeesseeeanee 9
B R 0o o) [o [0 1YY WA VATN [V=] SRRSO 10
3.2.3. The Living class and BEING ‘@lIVEccocuiie ittt et e et e e et e e e st e e e eetee e savaaeeenbreaenans 11

R T U 71 O 13
3.3.1. Heath and COMDAt STAtS ..euiiiiieiiiiiiiie ettt e e et e e e e e e esaabae e e e e e ee s anraereeeeeesessssseeeeessennsnraeeeas 14
R T 071 £ =T | <] o L U USRS 15
N T T = Y- 1Y ol) (=Y = ot f o 3N 16
3.3.4.TEams @Nd thrEAT IBVEIScooeeireeeeee et e e e e et e e e e e e e s arraeeeeeeeseaarsaeeeeessennsnraeeeas 17

G2 1 (=1 ¢ KPP 18
B MY (o (VK= j = < T OO RSP 19
0 B B IW] - | 4 o] [USRS 20

R T = 14U [Y] o 1= O T P PP PP PP PP PPPPPPPPPPPPN 20

3. 5.3, SEAtUS Y PO c ittt a e 21

306, TUSKS ..ottt e et ettt e e e et ettt e e e e e e et e e et e e e b ——ateeeaaaa—————teaeaaa i ————taateaaa b b——aaaeeeanararrraaas 22
N B @14 -1 o T2 i [] o PP 22
NI 0o o] [o o) Y o 1 Ta e Melo 10 1} {=] 4T USRS 24
T T 1 =T N Lo B = 1 USRS 25

3.6.4. STAtUS EFfECTS ANT TASKS..eiiiiiiieiitiiiiee ettt e et e e e e e st ee e e e e e e s sbaeeeeeeeesenssrsaeeeeeesennssraeeeas 25

RN R Y] =T [e Lo T=T £ T 26

36,5, COMIMANGS ..vtiitieiieeeitee sttt et e sttt et e s bt e e beesabeesbeesabeesabeesabeesabeesabeeeaseesabeesaseesabeesaseesabeesnbeesabaasnseesnbaesnseenns 26
I I A =T aT=T = | o 18T o Lo 1Y =T EUPURS 27
B A 1 o Tol USSR 27
3.7. 1. ENGAgiNg and LarELINGeeeiueiiiiiiiieiiee ettt sttt st sttt s e et st e et e sbe e et e e sabeeeareenas 28
3L 8. SQUAIES oottt ettt et et et et et et et et et et et et et e aararararararaes 29
3.8.1. WatChers and SlOWETS.ooiuii ittt ettt ettt st e e st e s bt e s bt e e bt e sabeeeabeesabeesaseesabeesnneenns 29
3.8.2. Movement bIOCKING @Nd SIZEScccuiiiiiiiieiie ettt sttt st et e e e sb e e 30
3.8.3. Being ‘hidden’ from the Sridcooceiii i eee e e e e e e e e e s e e e eeteeesneeeeesnsseeenans 32
3.9. TRE MOVEIMENT PDIOCESSeeeeuvveeeeeiieeeatiieeaeeteeeeattaaaesttseeaeaatesaesssaaeaatssaaeastssseasssaaassesasassssseessssassssasasasssseeassnes 32
3.10. PALASINAING. ..ottt ettt et s e et e e et s e et e et e et e st e e bt e e e e nee s 33
3.10.1. Planning @ movement vs actual MOVEMENTccocuiiiiiiiiiiieie ettt sttt e s 34
3.10.2. THE ‘PAth’ FESUI .eeiiiieiiee ettt ettt et e s be e st e e sabee s beesabeesabeesaseessbaesaseesabeesnseesasaesnseenns 35
.11, ClAIMEA EAIGELS ...ttt ettt et ettt ettt e e st e et e st e e bt e st e e seesabeasaneasbeesseens 36
3.11.1. FIlEEriNG FUNCHIONS ettt ettt et st e e st e sabee s beeeabeesabeesnseesabeesnneesas 36
K VL1 115U 37
TR 0 T I =4 o Y ol L=V USRS 37
0 0 B - o A= 1o 1YY - o L SRRSO 39
N T 1Yo 1 o [T - S P TSP PP 42
IR B V1Y o111 O PUURUUPPRP 44
G T 1V [T o T4 1= PRSPPI 46
IR0 0 I 1 Y - I o [ol=Y o o T o S URSRS 48
3.13.2. FrOmM CONCEPLS 10 CONCIBLE i 51
3.13.3. DetailEd MEMOIIES .. .eeiiiiiiieetee ettt ettt ettt e st s bt e st e s b e st e st e e e bt e sabeesabeesabeesaseesabeesnseesabeennseenas 52
I T - T 1Y~ T o TSRS 53
3135, INAIVIAUAI USE ..ttt e e ittt e sttt e e s s bt e e s e st e e e sbbteeesabeeeseasbeeesbbaeesanbeeeenans 55
SN N I CT=T o= oo | F=To d o I RUP 55
3.13.7. Player-specifiCc adjUSTMENTESccccuiiiiiiie e ceee e see e e eree e et e e e st e e e snteeeesataeessnsneeeenseaessnseeenanns 56
2 Y B PRSP TP UP PRSP 57
I O 1 Vo 1= o= g Vo 1= o Y F S RUP 57
I8 6o 11 - I Y IO O PO PO UUORUPPPPPRRTPPO 58
300 77 902 TR 1Y Yo X e 1= o T=T T 1= o o SRS 59

I o 1Y i Mo Yo I [g Lo L= oY= oo =T o | o U PUP 60

I Y [T I | OO RPN 61

L B 1Yol 1T Tor- I 0 1= - R 62
0 O I = Vo g Lo ol o X PSPPSR 62
4.2. MaPS: A tQIIOrA @XPEIIBNCEc..eeeeeeeeeeeeee ettt ettt e ettt e e st e st e s e e saaeesnee s 63

4.2.1. CamPai8N FOIMUIAcoeiiiiieee ettt s et e bt e e sae e e be e e s bbeeabe e e sane e bt e e snneeneees 64
o =1 g T=T = (o] o EO SO PPPPPURPPRN 65
/G W 2o Y g'g Lokt 4T [o o [or A (ol =X S AU PRSPPI 66
4.3.0. ClasSS-CONTIIC PraCiCES ..eeeureeiutieiitteeiit ettt ettt rit ettt e s e ettt e sbe e e bt e e sabe e bt e e sabeesbe e e sseeebe e e ssbeenbeeesaneeneeennnesneees 67
N o Ylor =t e Lo T T= i (o1 OSSR 68
4.4.1. Expected 8ame anti-fIOWcooiiiii it e ettt e e e bb e e e e ta e e e eraaeeearaeaan 69

5. Graphics, SOUNd and CONTIOIS........cceueeeeeeeeeeeeeenieiieeeieeeeeeeeeeeeeeeeeeeeeeesseeeessans 71

o T R o PSPPSR 71
5.1.1. ROBUEIKES-GIIKES ..cceeteee ettt e st e e et e e e et e e e e s taeeeeatae e s ssaeeeastaaeeessaeesssaeeeastseaennns 72
5.1.2. 2D SOUAIES .eeeeeiiiee ittt ettt e e et e et e s a e e e e s e s a et e e e e s s arate e s 73
5.1.3. ASSET ACOUISITION ..eiiiiiiiiiiitiee ittt st s e e st e e s s e e e s e nr e e e s see e e e sn s e e e seanneeesnneeeeanreeesanns 74
5.1.4. SPrite-based AaNIMATIONciiiiiiie et et e e et e e e e etae e e e bae e e eareeesataeeeaataeeeastaeeesbaeeeantreeaanes 75
Lo TR oY= o [Ty 1 o SRR 76
LT I S o= T 1T =T I o USRS 77
5.1.7. HiIdden Map DOUNGANIES ..ccceeeiiiiiiieee ettt e e e e e tae e e e e e e e s s bb e e e e e e e e sssaraseeeeeesanssranneas 78
Lo < TR IR - o [Y- SRR 79

A U LY =T gl [(=T o Lo -SSR 81
LT B Y/ T o 1T 4 F= Y 1] A ol Y USRS 81
5.2.2. IMIENUS TrOM MEBNUS ...eviiiiiiiiee ettt ettt ettt st e st esteesebe e s beesabeesabeesabeeeabeesabeesaseesabeesnseesaseasnseesnsaesnseens 82
5.2.3. RAAII MEBNUS ...ttt st b e s b e st e s st e e e bt e sa b e e sabeesabeesaseesabeesaseesabeenabeenas 82
LI (=T Vo 1= T = o Yo o ISP 83
5.2.6. ANIMATION TIMEIS «..eeeeeeccie ettt ettt e e e s bttt e e e s e bttt e e e e s e s s bee et eeesesanrrreeeeeeesansnraneeas 83
I B - Tol Qo] i 1= il [0 = U PUPR 84

.3 CONEIOIS ettt ettt ettt ettt et e st e et e st e et e st e e bt e s be e s abe e s bt e e bt e s baenabeenbeenree s 85
5.3, 1. FrOM tEXE 10 ClICKS weeiiueieeiiieeeeeee et sttt st sttt e st st e e st e e sabeesabeesabeesaneeeas 85
Lo T (=1« Jo =Y o IR PUPR 86

X BRYe TV 1L le Lo Lo g 1V K (oSSR 86

T 1= 4T TN 87

6.0 REOSUIES ..ttt ettt et ettt ettt et a et e et s 88
7 153 €01 =T o 90
7.2 WRGE WENT FIGAT ...ttt et ettt ettt ettt ettt e s bt e et e aaeeas e et eenaneesaneenanes 90
7.2, WRGE WENT WIOMQ ..ottt ettt et ettt et et ettt e at e ettt esat e et e aneeat e e st e eaneenaneenanes 91
8. FULUIE dEVEIOPIMENTceeeeeeieiiiieicsssnsnnnns 92
L= R 0o T ol [T T 92
Lo T T 0 =T Pt 93
Appendix A: IRB Informed Consent AGreEMENTccccceeeeeerrerrssnns 95
Appendix B: IRB Study PUrpose and ProtoCol..........cccccceeriierircrcssnnns 98
Appendix C: POSt-teSt SUIVEY FeSUIS.......cceviiiiiiiiiiiiiiiiiisisississsnss 103
Appendix D: POSt-test SUIVEY data......ccccceriirrrssiiiiiiiiiss 105
Appendix E: Art and audio @SSELS.....uuiiiiiiiiiimeiiiiiiiiiieineiisieriiieennssiseesinsesmssssssessssssnnssssssssssssnnsssssssssssssnnssssssssaaes 125
ET. AUGIO GSSELS ...ttt sttt ettt sttt et et st et e st sne st e s e saeesneene e s e 125
Y oKX= 3 127
Appendix F: Class hierarchy SUMMary......ccoceeeeeiiiiiiiiiiccccciirrereeessesrrreereesse e s sesennnssssssssesesnnnssssssssssnnnnsssssssseaes 134
APPENAIX G: LEVEI MAPS..eenniiiiiiiiiiiiiiiiiiiteneieeessereennessssessseesnnssssssssssesnnssssssssseesnnnssssssssssssnnnsssssssssssnnnssssssssanes 135
Ll LY o] I (=3RS 135
G2, TULOFIQI IEVEI T ...ttt ettt st e st e e et esineeans 136
G3. PIANNEd tULOFIAI IEVEI 2.ttt ettt et ettt e ane s 138
G4, PIANNEA tULOIIOI OV 3.ttt nte st saeesne et eane e 139
G5, RAYCASE EOSE FOOM ... s s s s s e ssssssssssasssssssssssssssssssssssssssssssssssssesnsssens 140
(Lo D] o [1= gl i {o o] o FOP OSSR RTPTPP 141

G7. SErESS TESEING FOOM ...vviieeeeeeeteeee e ee ettt e e e e ettt e e e e e s ettt e e e e e s s sttt e e asesasssstteaaaessasasssseasasssssssssensaessnnsas 142

APPENAIX H: UNIt ISt ..uueneieiiiinisnsnnssssnsssssssssssssssssss st sssnss

Appendix I: Item list

APPENAIX J: STATUS ST ...uueeeeeieiirricsssrsssnssnnns

Figures

Figure 1. Example of vision in Tangledeep (2017), a roguelike game. Source: URL.cccceevriririiiiiiniiiiininnneneennnnnns 3
Figure 2. Example of vision in Warcraft 2 (Blizzard, 1995), an RTS game. Source: URL.cccceevvrieeriiiiieeieienenennnnns 5
Figure 3. Dwarf Fortress (Bay 12 Games, 2006), a popular simulation game and one of the primary inspirations
for Trick of the Light, may appear to be turn-based but actually uses a cooldown system similar to that
described below. Units can speed up or slow down doing activities like running or resting, making them
take more or less turns over time. SOUrce: URL.cccccvvueeeiiiiiiiiiinneeiiiiniinsnnseensissssssssesssssssssssssesssssssssnes 10
Figure 4. A summary of the Living class and its children..........cccccceiiiiiiiereeiiiiiiiiiie e 12
Figure 5. Units at less than their maximum health show their health bar, with the proportion of red to green
indicating how much health they’re missing. Source: Screen capture........ccccceeeeieeieeiieieeeeeeeeeeeeeeeeeeseeeeeeeeens 14
Figure 6. The player’s inventory screen. If holding more than 5 items, an option to scroll to the next page is
indicated by the green plus sign in the 5! position. SOUrce: SCreen Capture.ccveereeereeerenreenreneesnessneens 15
Figure 7. Clicking on an item in one’s inventory brings up all possible options one can do with the item. Some
options may be unavailable, like trying to equip a weapon you don’t have training to use, or using an item
that has NO purpose. SOUrce: SCree@N CAPLUIE.ccceveeeeeeeeeeeeeeeeeeeeeemessns 15
Figure 8. The trading menu, allowing the player to give or take items from allied units. Each unit’s maximum
carry amount is on the left, and going over that number and closing the window will drop extra items on
the ground. Clicking the button in the left-middle changes the mode from giving to dropping, in case a
player just wants their ally to drop their inventory. Source: Screen capture.cccccceeeerrireemeeccciirneeennennnes 16
Figure 9. Enemy units come with a red circle to indicate hostility. Ideally allied units should also come with an
indicator, but seemed unnecessary for the tutorial when allies were clearly the only other humanoids.
T 10T ol =Y of =T = o I of- T« 1 =N 17
Figure 10. A priest ignites a contained spider with holyfire, a damage-over-time effect that removes invisibility
from the afflicted Unit and causes them to glow. Casting another holyfire on it would only increase the
duration of the current fire instead of making a new one. Source: Screen capture..........cccceeviiiiiininiiininnnnn 21
Figure 11. The statistics page from the description menu shows most possible stats associated with a unit. The
attack and defense values, next to and below the sword and shield icons, are based on the weapon or
armor equipped instead of the unit’s default values. Source: Screen capture.ccccevviiiiiiiiiiiiinnnnnn, 27
Figure 12. A player is followed by three medium-sized combat units, but is creating a bottleneck in a 2-square-
long hallway. The third soldier follower can’t get through. The player is able to manually push allies out of
the way to path through them, but normal allies can’t. Source: Screen capture...........ccccceeeeeeeeeeeeeeeeeeeennnnne 31
Figure 13. The soldier will instead run around and try to find another path to reach the player, usually ending up
losing sight of him and then heading back to the capital to try and find him again. This process has caused

a massive amount of confusion and grief with playtesters. Source: Screen capture.ccccceevvvviiiiiiiieinnns 31

Figure 14. An illustrated path of where the player plans to walk towards, pathing around the rock walls in the
way and between the two wooden barricades in the fog ahead even though he only has memories of
L1110 TR 10T of Yo =TT I ot T o1 1] o TN 34

Figure 15. A problem that came up during playtesting is that the path wasn’t always illustrated. While the shape
of some structures and long corridors of walls are obvious to the player, the pathing algorithm assumes
anything in the fog is passable if it hasn’t been explored yet and frequently routes through areas that most

likely are blocked off. When the wall is discovered, another path is immediately rerouted, possibly heading

in an even worse direction. SOUrce: SCreen Capture.......ccccvvriiiiiiiiiiiiiiii s sssssnens 34
Figure 16. A player with no light source can barely see around him. Source: Screen capture.........ccccceeeeeeeeeereennns 38
Figure 17. A player with a lit torch can see a greater distance. Source: Screen capture.cccceeeeeeieiiiieeeeneeeennnns 38

Figure 18. Throwing the torch makes the glow radius follow it, still providing its full circle of light. The reason it
doesn’t appear as circular as before is because the player’s light radius vision doesn’t extend far enough to
see the outer edge. SOUrCe: SCreeN CAPLUNE.ccceeieieeeiiieiie e e e e s s e s e e s s e e s s s s s s s s e s sessessssssssssssssnssnnnns 39
Figure 19. A player with a lit lantern can see a good distance around, but the light doesn’t reach the edge of its
viewable area. The pure-black but non-foggy edges of the circle represents an area that could be viewed if
there was light there. Source: SCreen Capture.uceeeseeeesesereersssssssssssssssssnnns 40
Figure 20. The vision-tracking focus lets players see the specifics about their sight radii, including why they can
or can’t see specific tiles around them. Source: Screen capture..........cccceviiiiiiiiiinnn 40
Figure 21. When the lantern is turned off, the player stops emitting light and can only see as far in the dark as
their dark radius allows. SOUrce: SCreen CaAPUFNE.cceesesseessssssssssssssssssssssnnnnnnns 41
Figure 22. The player’s orange dark radius is smaller than their yellow light radius, but that’s not always the
case. Some creatures see farther in the dark, making their light radius useless. Source: Screen capture....41
Figure 23. An example of a cone of vision extending outwards. Note the symmetry between upper and lower
bounds, and how the walls near-adjacent to the seer don’t reveal themselves unless the player is exactly
diagonal with them. Source: Screen Capture.ccccvviiiiiiiiiiii e e 43
Figure 24. Another view further outside the narrow tunnel. Vision will never extend this far in a normal game,
normally being around 3-9 squares maximum, but it is important to make sure vision works correctly at
every distance. SOUrce: SCreen CaPtUIE.ccivviiiiiiiiiiiiiiiiiiiiiiii s s s s s s e s s s s s s s s s s s s ssssssssssssssssssssnnnns 43
Figure 25. A Seeker spider has faded itself, becoming invisible and able to sneak next to the kobold miners
without causing alarm. SOUrce: SCreen CaAPLUrE.ccieeeeeeeeccciriiieeiercee e rreereeeeeesreeennassssesssesennnnssssssssesennnns 44
Figure 26. A player notices an allied soldier (far right) with a lantern on. They are actively watching the soldier,
but still keep a memory of them. Source: SCreen Capture........cccceriiiiiiiiiiiiiiiiisiissssssssssssssssssssssssssssssssssssssnns 46
Figure 27. When the lights go out, the soldier’s last known location is remembered. Source: Screen capture..... 47
Figure 28. When the soldier steps into view again, their old position is updated to reflect the new information.

T 10T ol =Y of =T = g I of- T o 1 =N 47

Figure 29. A freshly-spawned player in the dark, knowing only what they can see. Source: Screen capture........ 49
Figure 30. After a bit of exploring, the player still remembers where everything they saw last was. Source:
Rl =TT T o= T s 1 ¥ | N 49
Figure 31. Upon meeting an allied soldier, the player communicates with them, showing an animation of any
information they have to give. Source: SCreen cCapture.cccccvviiiiiiiiiiiii e 50
Figure 32. Even though the player has never been to the newly revealed area, they still acquired memories of it
from the soldier they talked with. Things may have changed in the meantime, but this was the state of the
world last he saw. SOUrce: SCreen CAPLUIE.cuvveeeeeeeeeeeeeeeeeemeeeemmmmeemss 50
Figure 33. A flowchart showing how memories are selected for copying, replacement, or ignored during the
L= Lo [T 0 {03 o] o ToL=X TN 53
Figure 34. A full view of the tutorial level. Source: Screen capture.ccccciiiiiiiiiiiin 64
Figure 35. What the level looks like in ASCII form. Every character symbolizes what character goes where,
including some special scripted characters that have additional tasks and such manually added to them on
Creation. SOUrCE: SCre@N CAPTUIE. ...ciiiiirieueiiiiiiiiirisiiiissiitrssasssssssssnrsssssssssssssnsssnnes 65
Figure 36. The Seeker from before has informed the spider base of where the miners are, and a hunting Spider
sneaks up on a miner returning from a trip. Source: Screen capture.ccccceeeeeeeieeieeeeeeeeeee e 70
Figure 37. The spider will poison as many miners as it can until confronted by a soldier or anyone else who poses
an actual threat. If undisturbed, the poison eventually numbs the victim, allowing the spider to drag it to
its home nest and let the spiderlings feed and grow to become hunting spiders themselves. If not
accounted for early and the nest tracked down, they become a serious threat. Source: Screen capture. ... 70
Figure 38. Playing Trick of the Light with debug mode turned on looks like this. With no rendering limit, it is
possible to play up to 2000 turns per second to simulate extreme duration games if necessary. Source:
SN CAPTUNE. . iieeuuiiiieeiiiitniiiieneiiiteneieiteseetmensstressetmesssstmssssstsasssssssssssssssssssssssssssssssssssnssssssnsssssansssssnnsssssnns 72
Figure 39. Rogue (1980), the game that defined a genre, even though it itself was based upon other ASCII
adventure games and RPGS. SOUrce: URL.ccccviiiiiiiiiiiiiiiiiiiniiiiiiiiiisssnns 73
Figure 40. An example of how gameplay looks in Dungeon Crawl Stone Soup. Source: URL.cceeeeeeeeeeeeeeeennns 74
Figure 41. This still image of the rolling fog doesn’t do it justice, as the 120 fps limit makes it appear much
smoother and less blocky (but still blocky). Source: Screen capture.ccccceeeeeerrrereeeiieeccrssnneeseeeesesssnnneens 76
Figure 42. A glow radius is supposed to be a circle, but the result is obviously not. While the source of the light is
apparent due to the gradual falloff, the ‘corners’ of the ‘circle’ are a result of a square-based rendering
ENEZINE. SOUICE: SCrEEN CAPTUIE....uuiiiiiiieiuuiiiiitiirtrassiiistiinesssssssssssitsessssssssssttssanes 80
Figure 43. One of the big problems with light was finding the brightness that differentiated a lit square from a
dark one, and a dark square from a dark square you could still see to because it was within your dark
radius. Can you tell where the light stops and the dark radius begins? Source: Screen capture.................. 80

Figure 44. The average screen the player sees, with the option to minimize the bottom right inventory screen by

clicking the backpack. Source: SCreen Capture.ccccvvviiiiiiiiiiiii s s s s s s ssseees 81

1. Introduction

Trick of the Light started as a high school garage project called Gridworld: a practice
exercise that shamelessly imitated game mechanics from several existing genres. Its primary
inspiration was anthill-simulators such as Sim Ant (1991), which emphasize indirect control over
swarms of autonomous entities rather than hands-on micromanagement of individual units.
(Maxis) A grid-based engine was created to support a simple, hands-free simulation of miners
breaking down walls and carrying quarried rocks to an ore smelter. More features were
introduced as the project developed, including combat between miners, a greater variety of
resources to harvest, upgrades using collected materials, etc. Everything was displayed via text
output, with no interaction from the player beyond pressing ‘play’ to start things up and watch

the show.

Everything changed when spiders were added. Originally they were coded as simple
hunters that could stun miners and drag them away. The problem was that the miners were
able to see the spiders coming and flee, collapsing the simulation into an endless cycle of
running and chasing. The first solution considered was making the spiders invisible so they
could sneak up on their prey. This presented a problem: How should invisible entities be

displayed to the player, if at all?

Until this point, the player possessed an all-seeing perspective of the game world, but
was limited to watching events unfold. If the design evolved to incorporate the player into the
world as an active participant, some model of limited vision needed to be developed. This
would necessitate forethought about what kind of experience the game would eventually
gravitate towards. While brainstorming designs on what could make the game unique and
include a player in the current state of the world, inspiration came from imagining a common

trope among strategy games: the sacrificial scout.

In conventional real-time strategy (RTS) games, all allied forces share map visibility with
each other and the player, who oversees everything from an abstract, top-down point of view.
A typical early tactic in such games is to send an expendable unit, usually a worker or “peon,”
out into the unknown to search for the location of enemy bases. As they move, their findings
are continuously transmitted to the player and allies via their “telepathic” connection, even if
they are half a world away. By the time the scout discovers an enemy, they are usually so far
from their home base that it is more cost-efficient for the player to let them remain in place as
a sort of remote camera, monitoring local activity until they are eventually discovered and

executed by enemy units.

The game-vision mechanic that enables this strategy is commonly known as fog of war.
It is obviously not intended to be realistic. This doesn’t mean that there is anything wrong with
it. Gamers have been enjoying RTS telepathy and sacrificing peons for decades. Rather than a
problem to be solved, it was a concept to be explored. Scouts don’t need to come back to
report their findings. But what if they did? What parts of fog of war would need to be adapted,
removed, or replaced for something else to take its place? What would that something else be,

and would it make the game more enjoyable? Would the result still be considered fog of war?

Trick of the Light has ever since been dedicated to the exploration of these questions,
eventually leading to the development of a full-blown memory logistic system and
independent, intelligent handling of each unit’s internal game-state. While the concepts
themselves aren’t new, the scope of which they’re implemented is the key factor: vision is
personalized to each unit, replacing allied telepathy with a model in which every individual
keeps track of their own memories about what they’ve seen, and can only share information by
direct interaction with other units. The player is subject to the same limitations. Instead of
leading their troops from some omnipresent cloud in the sky, they can only know what they see

for themselves, or what they can learn directly from others.

This implementation of limited vision and dependency on others for information
escalated into a play experience demanding a constant need for intelligence reports, with a
heightened sense of paranoia about what information is still up-to-date. This led to deeper
thinking about how this new economy of information could be abused with sabotage, trickery

and other malicious strategies.

Trick of the Light was in full development for years before it was proposed as a Master’s
thesis. Being able to concentrate on it as an academic project provided an opportunity to
elevate the game to a playable state that introduces its core mechanics and test to see if the
novel unshared vision and memory systems would be understood and appreciated by players

familiar with conventional fog of war.

2. History of fog of war

Figure 1. Example of vision in Tangledeep (2017), a roguelike game. Source: URL.

https://www.tangledeep.com/

Fog of war is a term used to describe the mechanic of making only limited portions of a
game map viewable, usually a combination of the areas immediately surrounding the player’s
character and all allied units (see Figure 1). Unit movement shifts these viewable zones and
causes previously-visited areas to fade out of sight. This mechanic dynamically constrains the
player’s information, as areas outside their current viewing zones may contain active entities of
interest. Progression requires eventual confrontation with whatever lies in the surrounding

“fog,” forcing players to think strategically about how to prepare for these unknowns.

The term fog of war is used by the military to describe the uncertainty of real-life
combat situations. Command decisions are complicated by not being able to know exactly
where the enemy is; intelligence may be unreliable or outdated, and information management
is a stratagem critical to success. (Kiesling) Fog of war was often integrated into tabletop
wargame simulations to capture this critical aspect of conflict. Implementations could range
from only hiding the strength of enemy forces to making the terrain itself known only to a third-

party referee until explored. (Setear)

Fog of war’s use in tabletop games is limited by the fact that a referee is almost always
needed to handle the distribution of information in a fair manner, as the physical instantiation
of the game elements make it difficult for players to both hide their actions while ensuring

every move conforms to the rules of conflict. (Guillory)

Figure 2. Example of vision in Warcraft 2 (Blizzard, 1995), an RTS game. Source: URL.

The first digital game to incorporate the now-prevalent version of fog of war was Walter
Bright’s Empire in 1977. (Lewin) Due to limitations of the hardware, revealing an area made it
permanently visible thereafter, even if the scouting unit left, but it still marks the first
appearance of the concept of reducing the viewable area dynamically. Fog of war has since
become a standard feature in multiple genres, including well-known examples from Blizzard’s
Warcraft (shown in Figure 2) and MicroProse’s Civilization franchises, employed with little to no

variation in the basic mechanics. (Wayward)

Fog of war games focus the player’s attention within their viewable areas. Unseen
territory is expected to be explored and conquered only after their objectives are completed in
the currently visible zones. Once an area is under your control, it’s usually considered “done,”
with little incentive for re-exploration if nothing is left behind. Even in unconquered territory,
forward scouting always provides an accurate representation of the current state of obstacles
or enemies the player may need to consider. Visual information is reliable: if the player can see

something, they have no reason not to believe it isn’t really there.

http://classic.battle.net/war2/basic/fog.shtml

Fog of war is rarely the driving mechanic of a game, but it always bears a significant
impact on a player’s field of attention. In situations where the enemy’s possibility space is
completely known to the player (such as a multiuser game played against familiar opponents on
a standard map), fog of war acts as a temporary shroud. Though it prevents direct observation
of enemy activity, an experienced player can anticipate the likelihood of particular maneuvers

and prepare accordingly. (Burgun, Uncapped)

However, when an enemy is unknown (typical in a single-player setting), fog of war
imbues play with a sense of genuine mystery. Territory must still be explored and conquered
inch by inch to achieve objectives, but the suspense of exploration is inherently rewarding.
However, the replay value of revealed terrain is limited. Players can rapidly exhaust a map’s
secrets by deploying units widely; a completely revealed world loses the ambiguity that made it

fun. (Burgun, Fog of War)

3. Game mechanics and their implementations

Zack Mason was the sole developer of the project from start to finish, though with
plenty of advice from outside sources for difficult problems. This section goes into what the
core mechanics of the game are, how they work and interact with each other, and the trials and

tribulations that came with creating them.

3.1. Game Overview

Trick of the Light takes place in a 2D grid filled with units and / or items that occupy
them. The game is turn-based, where units are capable of moving around and interacting with
things world. Units can only see a limited distance around them due to an ever-present fog of
war, but keep memories of the places they’ve been and the people / things they saw when they
lose sight of them. Direct interaction between units allows them to share this information and
keep up to date about the world-state. The game has factions of units working together,
managing a base that necessitates logistics of supplies and information, with each unit acting

independently completing tasks that benefit their team.

The player acts as a commander in charge of one of these groups, and is subject to the
same limitations involving vision and memories. They’re able to command allied units to do a
variety of tasks but still lose track of them the moment they walk out of sight, requiring the
results to be directly reported to them or discovered first hand. Gameplay takes place over
different pre-generated levels, each with their own unique challenges and goals that require

the played to learn and adapt to the mechanics presented to them.

3.2. Turn-based vs real-time

The decision to stick with a turn-based engine was not made lightly. As the concept was
being finalized, there was much deliberation as to whether a real-time engine would be more
appropriate for the intended style of play, and if so, whether it would be better to move the
game to an existing engine for convenience, or make the extra effort required to create an

optimized custom engine from scratch.

From a player’s perspective, real-time gameplay might seem to be the more exciting
option. Games like Total Annihilation (Cavedog, 1997) and Warcraft 3 (Blizzard, 2002)
demonstrate how compelling a real-time, hero-centric adventure can be, providing a good mix
of micro and macro management. There are constantly things to do at every given moment,
demanding simultaneous focus on battles in progress while continuing unit production at the
home base, to the point the challenge becomes trying to hand out as many commands as

possible in as short a time frame the control scheme allows.

The main similarity Trick of the Light has to the RTS genre comes from the similar base
and resource management model, but those systems will now be out of sight a vast majority of
the time. Management comes from queueing up things to be created or built in advance and
learning the results when they get reported later, with the Al handling the logistics of telling
who to make what and bringing things where they need to be themselves. The high amount of
actions required in an RTS aren’t as necessary when the things you can interact with are only
within your view, and consequently have much greater weight. Determining what each unit’s
long-term plan of action should be is better handled in a turn-based setting, where there is no

time pressure to make rushed decisions that might result in bad outcomes.

The lack of complete vision over one’s entire base at any given moment means that
understanding updates involving it are essential. Interacting with a unit reporting in and
learning everything they know at once can result in sudden upheavals to your understanding of
the global map state. Such large-scale changes containing many potential subtleties are best

pondered in a turn-based setting.

Similar considerations arose at almost every point of the imagined gameplay
experience, implying the design of Trick of the Light favors a more contemplative experience
than what a typical RTS is expected to deliver. It seemed wiser to allow players ample time to
consider multiple strategies and make better-informed decisions rather than demand the fast-

paced reactions a real-time engine necessitates.

3.2.1. ‘Turn-based’ energy system

The engine of Trick of the Light is ‘turn based,’” but not in the same way found in typical
strategy games that use different phases for allies or enemies. Instead, it employs a tick-based
energy system. Every game object that interacts with the world when it takes a ‘turn’ is a child
of the Living class, hereafter referred to as a ‘living’ object. Such objects are assigned a ‘next
update’ integer, put into a queue with every other living object and sorted so that the one with
the smallest ‘next update’ number will be the next one activated. When a living object is
activated, their update function is called, their ‘next update’ number is increased by their
personal cooldown attribute and put back into the queue, usually behind almost every other
object. The standard cooldown for most living objects is 1000 ‘ticks’ (an arbitrary measure of in-
game time). An object with a cooldown attribute of 500 updates twice as often as normal, while

an object with a cooldown of 2000 would update at half the normal rate.

This tick-per-turn system added considerable freedom for controlling how often and in
what order objects will update, but in practice it turned out there were very few cases of

objects that needed to update at non-standard speeds. Faster or slower speeds only appear

consistent when the cooldown attributes are even ratios of the standard 1000 ticks value. From
a player’s perspective, odd ratios such as 950 or 1050 seem to randomly give or take turns
every few rounds. This led to most non-standard speeds being assigned to even ratios. Odd
ratios were used in situations where their effect is hardly noticeable on a turn-to-turn basis,
such as mining. Breaking down walls is a repetitive process involving dozens of attacks, most of
which are done out of sight of a player, so raising or lowering the cooldown value per swing
results in a way to control how much ore is collected over long periods of time in a way that’s
hardly noticeable to a normal player. Other similar situations arise, but in most cases a normal
player won’t realize the tick system is in place at all and assume a normal turn-based one,

which isn’t a problem.

3.2.2. Cooldown vs timer

Figure 3. Dwarf Fortress (Bay 12 Games, 2006), a popular simulation game and one of the primary
inspirations for Trick of the Light, may appear to be turn-based but actually uses a cooldown system similar
to that described below. Units can speed up or slow down doing activities like running or resting, making
them take more or less turns over time. Source: URL.

This tick-based system described above was initially based off a cooldown-based system

seen rarely in a select few roguelikes or simulations such as Dwarf Fortress (see Figure 3). In the

https://upload.wikimedia.org/wikipedia/en/c/c6/Dwarf_Fortress_embark_scene.png

old system, every turn reset a living object’s ‘next turn’ counter to its default instead of adding
on to its existing value. When the next living object took its turn, every other living object in the
gueue would have their timers reduced by the amount currently on the turn taker: for example,
a queue with living objects A, B, C and D with ‘next turn’ counts at 500, 950, 960, 970, would
have A take its turn, lower the entire queue’s counts by 500 resulting in 0, 450, 460 and 470,
then reset A to its default speed of 1000 and enter the queue again, ending up at the back of
the line. Cycling through the whole queue to update this way each time seemed inefficient, and
eventually led to edge-case errors involving ties and unintended negative 'next turn’ counts

that were difficult to debug.

The system was eventually overhauled to adding a living’s object speed to their tick
counter instead of resetting it each turn, leading to gradual increase of their update counter
over time, as a full cycle of the queue would increase everything’s counter by 1000. This was an
acceptable compromise, simplifying debugging greatly at the cost of limiting the turn count to
about 2 million when a standard game usually lasts 5000 full turn cycles or so resulting in no

change from the player’s point of view.

3.2.3. The Living class and being ‘alive’

Any object that has the potential to be an influencing factor in the game is a child of the
Living class, named such for their potential to be living things in the game world. All Living
classes are able to join the update queue to take turns, but those that aren’t expected to do
anything on their turns such as walls can be designated as ‘un-alive’ at initialization to remove
them from the queue. Requiring everything to be part of the Living class instead of making it an
optional parent allows for more flexibility when converting things from ‘alive’ to ‘un-alive’ at
will, such as if a wall was mutated by an earth-shaper to become sentient and defend itself
from attackers, or if there was need for a regular unit to behave like a statue while retaining its

other properties.

Living

Status

Of all the Living subclasses, status effects are the only ones without a physical presence
in the game world: they only exist as an attachment to units, still taking turns in the same
manner but unable to be interacted with directly. Everything else that has the potential to take
up ‘space’ on the grid is part of the Entity subclass, with X/Y position attributes to represent

their location. From there, items are given their own class: they can be picked up by units and

Item

Entity 1

Unit

e

Multiunit

Building

==

MultiBuilding

75

Captial

Framework

Figure 4. A summary of the Living class and its children.

interacted with in common ways such as being equipped, used or thrown.

Units are the most common class, having a variety of ways to interact with other units
and items in the world. They contain a list of tasks and memories used to determine how they
behave. Units may also be part of the Building subclass, having limited movement but the
potential to be constructed instead of just spawned in, or the Multi-unit subclass for things that
occupy more than one grid-tile at a time. Buildings which occupy more than one tile are
assigned to the Multi-building class. The Capital class is for the main HQ of a team, containing
multiple helper-functions for dealing with allies who interact with them. Framework is a single
class for all buildings under construction; when the supplies are delivered to the framework and
the workers do enough build actions, the framework is replaced by whatever building was

intended.

3.3. Units

Units are the most common class type, and despite the name can represent a person,
inanimate object or any sort of non-humanoid creature that can exhibits behavior in the game
world. Units employ a variety of attributes to determine their form and function mentioned in
the following pages, but are the primary focus of many other mechanics of the game described

in later sections.

A complete list of implemented units is provided in Appendix H.

3.3.1. Heath and combat stats

Figure 5. Units at less than their maximum health show their health bar, with the proportion of red to green
indicating how much health they’re missing. Source: Screen capture.

Health, or hp, is certainly important: when a Unit’s hp drops to 0 and they don’t have
any special abilities that can save its life, they’re automatically removed from the game. Each
unit remembers its maximum health as maxHp, to determine how injured it is and the cap on
how much it can be healed before overflowing. Figure 5 shows the bars used to indicate a

Unit’s hp status.

For combat, damage is divided into four types, Physical, Magical, Poison and Pure,
together with their opposite defensive stats, Defense, Negation, Resistance and Divinity, that
determine how much hp is lost when units attack each other. Each attack type is reduced by its
opposite type and its current Divinity, to a minimum of 0 each, then added together and
subtracted from hp. For some units, their default attack and defense values will be very low,

and depend on their equipped weapons and armor to replace their weak stats.

3.3.2. Carried items

Your inventory [| Page 1}

Figure 6. The player’s inventory screen. If holding more than 5 items, an option to scroll to the next page is
indicated by the green plus sign in the 5t position. Source: Screen capture.

\ BN Co FERY - . = ?_".
¢ Iterm Actions lCF

Figure 7. Clicking on an item in one’s inventory brings up all possible options one can do with the item.
Some options may be unavailable, like trying to equip a weapon you don’t have training to use, or using an
item that has no purpose. Source: Screen capture.

Units can carry items, the exact amount varying from unit to unit. These items are
considered as part of the Unit, following their movements and accessible at any time. A unit can
designate a single weapon or armor among the items they’re holding, replacing their default
attack or defense with the new weapon / armor’s values, but require expertise about that type
of item to be able to do so. For example, a typical priest won’t be able to equip a heavy steel
shield or use a bow, but are able to wield and use magic staffs that most others cannot thanks

to their mystical training. Figures 6 and 7 illustrate how the player’s inventory is displayed.

Units used to have a designated slot on their person for weapons and armor, making
them not count towards the amount they were carrying, but was changed to the above version
of simply keeping track of which ones in their inventory were equipped. This made it easier to
code searching through items on a unit which helped the debugging process greatly, and was
somewhat more intuitive for making the total held items count include arms and armor.

In addition to their list of held items, units also have a list of organs that are held the

same way as regular items, but can’t be used or interacted with in the usual ways. Organs
typically only represent what they’re going to drop on the ground when they die, such as an

OreWall dropping its ‘organs’ of ores and gems once mined.

3.3.3. Basic interactions

Give this item?

Figure 8. The trading menu, allowing the player to give or take items from allied units. Each unit’s maximum
carry amount is on the left, and going over that number and closing the window will drop extra items on the
ground. Clicking the button in the left-middle changes the mode from giving to dropping, in case a player
just wants their ally to drop their inventory. Source: Screen capture.

Units have a few ways of interacting with objects around them or on their person:
picking them up is a start. If a unit is on the same square as an item they can pick it up, moving
it from the ground to their list of held items, which hides it from the rest of the world for
anyone doing a common search for items on the ground around them. Dropping works the

same way in reverse. Figure 8 shows the interface used for item trading between the player and

other units.

16

Units can try to equip items, with the same limitations mentioned before, or attempt to
use them if they have any activatable abilities, such as ‘using’ a held potion to drink it. If other

units are adjacent, one can try giving their items to another to transfer ownership and location.

Items can be thrown towards a location or other Unit; a raycast check is made in the
target direction, and if nothing is in the way the item is removed from the inventory and lands
on the ground at that spot. If a unit is hit instead, whether manually targeted or accidentally hit
along the way, the item deals its specified thrown-attack damage to them and lands on the first

tile between the victim and the thrower.

3.3.4. Teams and threat levels

Figure 9. Enemy units come with a red circle to indicate hostility. Ideally allied units should also come with
an indicator, but seemed unnecessary for the tutorial when allies were clearly the only other humanoids.
Source: Screen capture.

Units always have a Team, even if they’re not in one. Used for determining who is an
ally or an enemy, the current teams are Goblins, Humans, FeralSpiders, Spiders, Neutrals,
Creeps and FeralCreeps, each inhabited by usually one type of race or overall theme of units.
The exceptions are Neutrals and FeralCreeps. Every team is neutral with Neutrals, such as walls
and bats, and won’t see them as an enemy to be feared (though they may attack them for

other reasons), while FeralCreeps consider all other units as enemies, including other

FeralCreeps. Figure 9 illustrates an example of how enemy units (in this case, spiderlings)

appear onscreen.

In addition, units have a Threat level that represents how dangerous they are to their
enemies: 0 is a pacifist, 1 is completely subdued, 2 is temporarily subdued, 3 is a low-risk
danger, 4 is an active threat, 5 is a high-risk threat and 6 or more is something unspeakably
horrifying. The amount of bravery or cowardice towards an enemy is usually aligned with their
threat level. Fighters prefer to fight active level 4-5 threats before dealing with helpless 3-threat
farmers. Those weak farmers would behave normally near a hostile dragon if it were knocked
out and locked cage, reducing its threat to 1, and only the most well-trained soldiers won’t run

in fear from a scary demon with threat level 6.

3.4. Items

Iltems are entities like units, existing as a physical presence in the game world and taking
up space, but are smaller and more flexible about how they’re used or moved around. A

complete list of implemented items is provided in Appendix I.

Iltems have an attack and defense value, even though they can’t be targeted by attacks
or directly attack anyone by themselves. As discussed in the unit section, those values are
meant to replace the owner’s for as long as the item remains equipped. They don’t have health
and can’t be destroyed in the same way units can, only being destroyable with certain
interactions such as food being eaten or crafting materials being used to make the finished
goods. As entities they exist on a square in the game world, but potentially infinite can be

stored in a single square at once and don’t block most units from moving over them.

Units have an additional property bound to their person and determined on a class by
class basis: whether items in their inventory are being held or stored. Items are aware of

whether they’re being held, stored or an organ of whoever owns them at the time, and may

modify or deactivate their normal behavior if they’re not being carried in the intended way.
This was done to ensure units made for carrying large amounts of items like carts or buildings
don’t get unfair advantages from being able to hold so many relative to other units. For
example, the telescope item passively increases the holder’s sight radius if held, but if dozens
are placed in a stronghold for safekeeping they won’t increase its sight radius to cover the

whole map due to it ‘storing’ items instead of ‘holding’ them.

As items are a child of the living class, they can part of the update cycle and take turns
like units. The vast majority don’t, instead being static items that simply exist to be used by
units, but exceptions exist such as meat degrading to rotten meat if they aren’t being stored
away in a building. When items take their turn, they only do whatever’s in their class’s personal
hardcoded update function, as opposed to how units work with their task-oriented system (see

the Tasks section).

3.5. Status effects

Status effects are intangible conditions that are attached to a Unit, affecting them
without actually existing in the game world. While without any real form, other Living objects
can still recognize status effects on other units or themselves and possibly react to them, or
even attempt to prevent them from occurring in the first place. Status effects have a duration
that indicates how long they’ll last before expiring, though the way they count down is variable,

and in some cases are permanent instead.
Status effects used to be attached to items as well in the same way, but the small
number of necessary use cases and difficulty in keeping track of which item was which in

debugging moved them to be Unit-only.

A complete list of implemented status effects is provided in Appendix J.

3.5.1. Duration

The duration period of a status effect typically starts at some predetermined number of
turns, but can tick down in two different ways: having their own internal timer which adds
them to the normal turn-taking cycle like normal, or becoming a static status that instead waits
for its unit victim to take its turn before acting and counting down along with it. These different
methods are used on a case-by-case basis: a magical fire lasting 5 turns should update
independently and be Living, as one expects a fire to burn at the same rate on a slow turtle or a
fast bat, and expire at the same time if cast on both at once. Meanwhile, for a confusion spell
that makes the victim move in the opposite direction they intended, it may be better to make
everyone affected always perform x steps this way, regardless of how fast or slow they are,
thus a turn-by-turn timer should make it un-Living. This is primarily a concern for what makes
sense from a player’s point of view, though in most cases the descriptions of what’s happening

with each status effect should be intuitive enough.

3.5.2. Status types

Status effects can be different types depending on whether they’re good or bad,
temporary or permanent, magical or physical in nature, etc. In most cases temporary statuses
are called Buffs if they’re a boon or Debuffs if they negatively affect the victim, while
permanent statuses are likewise called Traits or Curses. Status effect is a very general term, as
the effects don’t have to be mystical in nature: a peasant who's gone through military training
can get a bonus to health and weapon skills with the Well-Trained trait, while a fighter yelled at

by a scary ogre may have the Fear Debuff.

3.5.3. Status types

Figure 10. A priest ignites a contained spider with holyfire, a damage-over-time effect that removes
invisibility from the afflicted unit and causes them to glow. Casting another holyfire on it would only
increase the duration of the current fire instead of making a new one. Source: Screen capture.

Statuses can be prevented from infecting a unit before they happen, fully canceling out
any effects they’d normally cause. The blocker will usually check for certain status types before
rejecting their attempt to spawn on the victim, such as a priest’s Ward status actively blocking a
spider from injecting the Numbing debuff into a miner with its venomous bite. In addition,
some status types may attempt to ‘stack’ their duration instead of creating another instance: a
squad of 5 priests all casting the “holyfire” debuff on a single spider will result in a single, very
long duration holyfire instead of multiple small holyfires (see Figure 10). In cases like these, the
status will block any statuses of the same exact type on the same Unit, but add the intended

duration to their own.

3.6. Tasks

Tasks are the primary way of making units do actions, and are highly flexible in terms of
their priority or who / what they’re attached to and when they’re active / possible. A task is
basically an action a unit can do on their turn, but are based on a logical behavior: a Run-From-
Enemies task checks for nearby enemies and makes the unit flee if any are present, while a
Drink-Potion-If-Low task will check that the unit has low health and is holding a health potion
before attempting to drink it. Task queues were made to replace behavior trees when it
became apparent that no amount of hardcoded behaviors were capable of keeping up with all
the possible interactions being put in efficiently, and that the task-based system was much
better suited towards making units more dynamically adaptable to their environment. A task
gueue also simplifies the decision-making process for players or debuggers: the order a unit will
make decisions in at any moment is very clear, as well as where the decisions came from and

whether they were relevant / necessary after having been done.

3.6.1. Organization

The important thing to note about the task queue is that it’s a priority task queue: all
tasks have a priority value ranging from 0-99999 that defines which are attempted first,
initialized all at once in the World class at startup for easy comparison with one another. Those
priority values, however, can be changed: Status effects, player decrees, or even the task itself
can adjust its priority to be higher or lower on the fly, deactivated altogether or put on a
cooldown for some number of turns / ticks. There aren’t 99999 different tasks of course, but
having such a large amount allows multiple to be put in a similar level of importance, thus

allowing more flexible use for adding or subtracting priority value.

Priorities are by default separated into categories based on their value which usually
signify their importance. Starting within certain categories assumes the task will adhere to
certain standards, not explicitly checked for in the task-cycling function but followed as a

general rule in creation. A unit taking its turn will attempt these tasks in order starting from

lowest to highest: If a task fails for whatever reason the next one is attempted, and when one

succeeds the process is stopped and the unit’s turn ends.

e 0-9999 are for debugging tasks (for testing various things) and 10000-19999 are for
‘ONLY’ actions. Any task in these priority levels was made to be the unit’s only possible
action that it can attempt, and no matter what should end the unit’s turn even if the
task was unsuccessful. No 20000+ level task should ever be allowed to supersede these
tasks, requiring thorough logic checks to make sure rising above that value is impossible,
and that these tasks can’t fall below it.

e 20000-29999 are for ‘always’ tasks, being lower priority than ‘ONLY’ but having about
the same requirements otherwise. An example would be someone magically compelled
to runin terror: if the victim’s feet are rooted to the ground by some status effect, they
shouldn’t stop panicking and do other actions like normal just because they can’t move.

e 30000-39999 are for dire needs. These tasks usually revolve around a temporary but
imminent distress / impulse requiring immediate reaction. Tasks of these levels and
higher are allowed to be modified by effects, and its fine if the task fails before others
are attempted.

e 40000-49999 are for orders given by high-importance units, namely the player.
Commands should be followed above normal behaviors, but in most cases non-combat-
related commands will check to see if there’s a battle going on and temporarily
deactivate to let normal combat routines through.

e 50000-59999 are for combat-related actions. These tasks are used when a unit sees an
enemy, and can include running away just as much as actual fighting as long as its what
someone does in combat situations.

e 60000-69999 are for minor emergencies, such as emptying one’s inventory if they’re full
before going out mining again. These are things a unit should deal with before
continuing their regular duties, not necessarily being a bad thing.

e 70000-79999 are for normal duties, being whatever a type of unit is expected to do

normally such as miners mining or scouts exploring. The result of their efforts usually

cause a 60000-level task to be activated when they’re done, allowing them to reset
work again.

e 80000-89999 are for ‘weak’ duties, mostly meaning trying to find ways to get more of
their normal work. Checking up at the capital is usually the thing to do in those
situations, or any other popular information hub, or with whoever’s nearby as a last
resort.

e 90000-99999 are for idle actions that one does if they have nothing else they can

attempt right now. Mostly this is just wandering around in circles or exploring aimlessly.

Tasks of the same type tend to have similar priorities, but are further distinguished by
tags that can separate them into factions like ‘cowardly,” ‘violent’ or ‘greedy’ and such. Effects
like a cowardice spell can be made to find all ‘cowardly’ tasks and increase their priority, making
them attempted before regular fighting actions for example, or vice-versa with a ‘bravery’ spell.
A player will naturally learn the order of actions a general type of unit performs, but should be
able to do so intuitively even if the exact numbers aren’t available. Similarly, effects that change
priorities like cowardice should be important, having both noticeable effects but also possible

countermeasures or retaliatory actions to regain control of the priority system to their favor.

3.6.2. Cooldowns and counters

Tasks may seem like they should be connected to the energy-based turn system, but are
in fact not part of the living class. Unlike items or status effects, tasks will never need to operate
at a fixed time independent of their unit controller: they’re just a list of possible actions a unit
can make, rather than something that exists in any form to take an action by themselves. For
tasks on cooldown, they’re simply set to not be active until the tick counter stored in the World
class is past a certain point; there is no need for them to enter the turn cycle to turn themselves
on at the exact right time, as they can always just wait to be checked up on later when actually

being called.

If a task should be set to only activate after a unit has had x-many turns, the solution is
also simple enough: add a value to the class every time it tries to call that task, decrementing
till 0 after x many turns before allowing itself to activate again, ensuring the cooldown is tied
with the Unit’s update loop. The unit also saves the last task it attempted for similar reasons:
charging up a spell over multiple turns can check to see if it was used last time, incrementing an
internal counter for however long is necessary before activating, or resetting to 0 if something

else took priority or they were otherwise interrupted.

3.6.3. Items and tasks

Items have a list of tasks, though they don’t perform the tasks themselves. When items
take their turn, they only do whatever’s in their personal hardcoded update function, with most
items being non-updating static objects like rocks or meat, though exceptions are possible (such
as a bomb with a lit fuse). Instead, these tasks are added to whoever picks up the item, which
the owner attempts to carry out with the rest of their usual tasks when they update. This
adaptive behavior allows units to use carried items intelligently, even if they by default have
nothing to do with them. For example, a miner by default doesn’t go and punch rocks, but only
knows to go out and find a pick. When one is found, the miner is given the pick’s list of tasks
that involve mining ores and bringing them back to a nearby storage area. This allows units to
be general purpose without wasting time failing tasks due to supplies they don’t have, and
items to always be used by any appropriate unit that has them. These tasks sometimes depend
on being held a certain way as mentioned in the items section, or that the unit be of a certain
type. For example, if a pick is given to a cart that stores multiple items at once for transport, it

won’t receive the pick’s task to equip it due to being ‘stored’ instead of ‘held’.

3.6.4. Status effects and tasks

Status effects have a list of tasks added to a unit in the same manner as an item,

remaining for long as the status exists attached to that unit. Most tasks added by a status effect

have high priority levels around 20000-40000 that take over a unit’s normal actions for as long
as the status is there, but more permanent effects like traits may add normal low-priority tasks

a unit will attempt along with their normal behavior.

3.6.5. Makers and doers

Tasks can be added to units via items or status effects, but are bound to that item /
effect and usually only last for as long as the bound thing remains with the Unit. Tasks keep
track of both the unit they’re currently attached to and the thing that created the task in the
first place. This helps a player understand what added certain behaviors to units if they start
acting atypically, and allows task creators to pinpoint their own creations. This also allows the
creator to keep track of things related to its task: a sword that gains power as it’s owner kills
using it can increment its kill count every time it’s attack task is used to good effect, modifying
the task and remaining that way even if the task is removed and implanted into the next unit

that picks up the sword.

3.6.6. Commands

Player-created tasks are referred to as commands. No matter what type of unit a player
is acting as at the time, they’re able to command nearby allies by giving them one of numerous
preset tasks that usually overrides most normal duties on their priority scale depending on the
command. The tasks are general purpose, including following a selected unit, moving towards a
location, picking up all items around a given spot, and many more, each with levels of caution
concerning dangers they find along the way ranging from suicidal tunnel-vision to immediate

retreat.

Commands used to be queue-able, but very few use cases and an extra-click worth of
complexity on the players part made it seem unnecessary. Instead, new commands overwrite
previous commands given by the player. When the commands are fulfilled, they simply delete

themselves from the Unit’s queue with no immediate feedback to the player; the results have

to be discovered indirectly through the unit reporting their memories of the results or the

player discovering what happened.

3.6.7. General purpose

Tasks used to be a comprehensive set of everything affiliated with a behavior; a mining
task used to include looking for ores, looking for walls, mining walls, bringing the ores back to
base and checking for updates about where new walls are all in one go, but it soon became
apparent these were better split into their own separate actions that came with whatever
caused a miner to act like a miner. This started making tasks more like ‘actions’, which allowed

them to be used for things like casting spells or using special moves as well as mimicking overall

behaviors.

3.7. Attacks

T Team: Goblins

Health 270 7270

0% ¥ O jinhis 25 Size: Large

N

0 0
Lightvision Radius 7
04+ O .
o% o Mg 15 Speed 1000
Captain 1275 O Traits Status Effects

Figure 11. The statistics page from the description menu shows most possible stats associated with a unit.
The attack and defense values, next to and below the sword and shield icons, are based on the weapon or
armor equipped instead of the unit’s default values. Source: Screen capture.

An ‘Attack’ not only have separate attributes like physical, magic, poison and pure
damage, but contain their own class as well, encapsulating everything about a single complete
‘attack’. The attacker, target, distance, weapon used, attack type and attack result are stored in
this class, for the sole purpose of allowing other things to react to it. Figure 11 shows the

onscreen display of attack-oriented statistics associated with a Unit.

When a unit takes a swing at another unit, a copy of their current attack value (either
their default one or their equipped weapon’s) is created, taking the effects of any outside
modifiers that may increase or decrease the four standard damage attributes. Those attributes
are then reduced by the target’s defensive stats, and the sum of the remaining damage is
removed from the target’s hp. This process allows the attack to quickly be shared globally with
things that may react to an attack being launched without having to modify the original attack

values back to normal each time.

3.7.1. Engaging and targeting

Attacks require the target to be in range of the attacker, which doesn’t always mean
melee distance. For this, units have their own personal methods of engagement, allowing them
to head towards the nearest enemy and attempt an attack regardless of their weapon or range.
The engage function has inputs to intelligently use whatever weapon is currently equipped, to
use only default punches for the good old-fashioned barbarian rage, and / or to target only a

specific few units such as a miner looking to mine nearby walls but not enemy bats.

In the case of ranged attacks, a raycast attempt is made from the attacker to the
defender before the damage process begins. Being able to aim at something doesn’t necessarily
follow up with a hit: it could be invisible units, their aim being redirected elsewhere, or the
attacker just shooting blindly, but if something gets in the way of the destination they switch to
being the target instead. In the case of multiple interruptions, only the one closest to the

attacker is struck.

3.8. Squares

The grid of the game world contains an X by Y number of Square class objects, each used
to hold data about who or what is contained within them. The grid is just a 2D array: there are

no sub-squares or non-integer values.

3.8.1. Watchers and glowers

Squares are primarily a container for all the different types of things that can occupy
them, which are units, items, ‘watchers’ and ‘glowers’. Units and items enter and leave the
square only when they move in or out of it, but the other two are different: ‘watchers’ indicate
which units currently have line of sight to the square, making then possibly able to see the item
or unit inside, and ‘glowers’ indicate how many light sources are close enough to be considered

in-range, thus making the square considered bright.

Whenever a unit enters or leaves the square, a check is done on all watchers: if the
square is bright and within its light radius, or is within their dark radius, they notice the unit’s
movement and add or update them in their memories. In the case of a unit walking out of a
square, they also recognize where they just moved into and remember them as last being at
the new square, even if they’re not ‘watching’ the arrival square. When a watcher or glower
moves, all their current watched and glowed squares are removed, with a raycast check within
their radius to check for their new updated positions. Note that if a unit’s light radius is farther
than their dark radius, their watched area may extend far into the dark where they can’t

currently see, waiting for something that glows to come along and make it visible.

3.8.2. Movement blocking and sizes

Squares are often checked to see if a unit is allowed to move into them, usually
depending on how big the people already there are (see Figures 12 and 13 below). Unit and
items are entities, thus occupying one or more squares in the grid, but additionally have a size
property that determines how many other things of other sizes should be allowed to share the
same square, with a few exceptions. Units have a size value determining how big they are,
while items will always have a default size: 0 for ghost-lik, 1 for gaseous or flying things, 2 for
items or very tiny units, 3 for dog-sized, 4 for human-sized, 5 for giant-sized, 6 for building-

sized, 7 for solid walls and 8 for magically sealed walls.

The above size list isn’t an exact measurement; its primary use is determining whether a
unit can move into another square, considering the sizes and team affiliations of the units in the

impending move.

e Size 0 units can go anywhere except a square with at least one 8-sized unit.

e Size 1 can goin squares that don’t have at least a size 7.

e Size 2 can move where the largest size is less than 6.

e Size 3 can go into squares with only other size 3’s or below, but are blocked if one of the
size 3’s in the square belongs to an enemy: they’ll reject the mover, blocking and
pushing them back.

e Size 4 and 5 can only move if the square’s largest size is 2 or below.

e Anything with a size higher than 5 normally shouldn’t be moving at all, but are
otherwise blocked by size 1 units (except size 8, which is blocked if anything is in the

incoming square at all).

Every movement attempt, each unit in the occupying square is checked against these
values. While that might sound intensive at first glance, usually only one of these checks ends

up being done, and squares rarely have more than one unit in them for checking against.

Figure 12. A player is followed by three medium-sized combat units, but is creating a bottleneck in a 2-
square-long hallway. The third soldier follower can’t get through. The player is able to manually push allies
out of the way to path through them, but normal allies can’t. Source: Screen capture.

Figure 13. The soldier will instead run around and try to find another path to reach the player, usually
ending up losing sight of him and then heading back to the capital to try and find him again. This process has
caused a massive amount of confusion and grief with playtesters. Source: Screen capture.

3.8.3. Being ‘hidden’ from the grid

Entities have an additional property in addition to existing on the grid: not existing on
the grid. Primarily used by items, the ‘isHidden’ value determines whether an entity is currently
where it’s supposed to be in the world at its x/y coordinates or merely representative of where

they should be, preventing interaction with it or searches directed towards its type.

When a unit picks up an item, the item become hidden and stops existing for other units
to find and pick up themselves, but still exists as an item being held by its owner and can still be
found via checking the owner’s inventory. This means any location-dependent abilities are still
accurate wherever they’re carried, or anyone seeking out a hidden object with pre-defined

knowledge about what it is can still have a goal to move towards.

3.9. The movement process

Movement, from either items or units, behave a lot like Attacks in the number of layers
and reverse layers they go through to completion. All of that Unit’s currently watched units are
cleared, its memories are set to a minimum of “l just lost sight of everyone,” and every square
that contains it as a watcher is cleared. Squares that contain it as a glower are also cleared, but
recorded for later use. The mover is then removed from their current square and placed at the
new square, with all their items following suit immediately after. Glowing is then reactivated,

checking for all the possible squares that can be raycasted to, and adding the mover as one.

If a square that had no glowers before the move gained one due to the movement, or a
square just lost its last glower, they refresh the sight of all their watchers to check if they lost
sight of or gained sight of anyone at the now-changed square. The mover then raycasts out
their sight radius the same way, adding themselves as a watcher to the new squares and
updating its memories to account for the new discoveries. The Unit’s movement is then made

known to the watchers of its previous square and the current watchers of the new one, and

then the World cycles through all Living objects that check for reactions based on movement to
see if any care about the mover’s new position (such as pressure-plate traps being sprung if a

unit steps on them).

The above methodology is necessary for two very frequent cases: a sight-blocking unit
moving with viewers on either side, and something with a very large glow radius causing the
game to lag to a halt. The above technique of only checking for the updated glowing squares
solved the latter problem, but for the first imagine a long, narrow, one-square-wide corridor: a
high-sight-radius scout waits at the very top, a fat view-blocking fog-demon is just below them,
and a bat lies at the other end of the corridor. The above process was the result of many
attempt to make it so the demon, when moving down one tile at a time, would still be blocking
the line of sight of the scout: for the longest time during movement, the scout would be able to
glimpse the bat for a brief moment and record it in their memory when the demon

‘disappeared’ from his starting square for a single cycle to move to the next.
3.10. Pathfinding

Pathfinding has been a long process throughout the project’s history, not due to any
experimental new techniques, but because of constant attempts to find a way to account for
every imaginable scenario of pathing from A to as close to B as possible while maintaining
efficiency. Pathfinding started out completely breadth-search style, then was quickly renovated
to A* and has remained so since. Because diagonal movement was counted the same as
horizontal or vertical moves and the closely-bounded level designs, other pathing techniques

tended to be inefficient or inaccurate when tested.

Common time-saving techniques are implemented, such as checking if one is near their
destination already, or pre-defining navigable areas beforehand. There’s a distinct difference
between pathfinding to an exact square or just trying to path to any square around it, and for

pathfinding to any number of target tiles as opposed to only accepting a single end point.

3.10.1. Planning a movement vs actual movement

Figure 14. An illustrated path of where the player plans to walk towards, pathing around the rock walls in
the way and between the two wooden barricades in the fog ahead even though he only has memories of
them. Source: Screen capture.

Figure 15. A problem that came up during playtesting is that the path wasn’t always illustrated. While the
shape of some structures and long corridors of walls are obvious to the player, the pathing algorithm
assumes anything in the fog is passable if it hasn’t been explored yet and frequently routes through areas
that most likely are blocked off. When the wall is discovered, another path is immediately rerouted, possibly
heading in an even worse direction. Source: Screen capture.

What about invisible units, or squares the unit has seen before but can’t see right now?
Planning to move into a square is different than attempting it, and the results may differ if one
doesn’t have perfect information about the destination. This allows units the mover doesn’t
notice at the moment but should block movement to go undetected, making the mover believe

they can attempt the move and in doing so bumping into the blocker instead.

Actual attempts to walk can only happen into squares adjacent to the mover, but any
square can be checked to see if the mover thinks they’d be allowed to move into it. When
planning a path some distance away that goes beyond their sight radius, memories come into
play. Rather than checking all the units currently at an out-of-sight square, the mover’s
memories are checking instead, looking for anything last seen at that location that was last
known to be able to block the user’s move. In the vast majority of cases this means a wall
blocking the way, and the mover will remember to try and find other squares to path around
rather than hope a solid wall wandered away while their back was turned, as illustrated in

Figures 14 and 15.

3.10.2. The ‘Path’ result

The return value from a pathfinding function is a ‘path’ in the form of a queue of
squares leading to the target destination: an empty queue means the unit is already there, a
queue with a single square set to negative x/y values means a path couldn’t be found, and a
gueue filled with normal squares shows the steps needed to walk from the pathfinder’s current
position to the closest destination. This means a typical attempt to see if someplace is navigable
requires a manual double-check immediately afterwards to see if there’s any path to follow at
all, or if the path is real or a fake one with a negative square that would cause immediate errors
if attempted to move into. Making a ‘path’ object that would be returned instead would be the
standard approach, but wouldn’t have any apparent improvements on anything beyond a one
or two line shortening from the template already in place to make pathing checks, so this

potentially dangerous method remained without incident so far.

3.11. Claimed targets

The search for things to be pathed to is often more complicated than the pathing
process itself. Units keep a record of everything they know in their memories, but often times
they only care about things they can see immediately in front of them, which are kept a list of
watched units for easier iteration. For example, when a miner is trying to mine a wall, they’ll
always head for the closest one they can see before searching through every memory for an
out-of-sight mineable wall, on average reducing computation time greatly and making their
movements more predictable / intuitive. Often it turns out that many other nearby miners have
the same idea, meaning they may pile on excessively towards the same destination if it’s the
closest one to all of them. This was causing chaos when it came to picking up ores dropped on
the ground; whenever one broke off a wall and dropped nearby, every miner would stop mining
to scramble towards it when only one person needed to do so. This led to checking if things
could be ‘claimed’ by other visible units of the same type by being the closest ones to said
destination. Seeing that a target is ‘claimed’ meant the claimant was the same unit type as the
seeker, likely doing the same things with the same thought process, and should be the one to
handle that target since they were closer to it. This fixed the ore problem immediately, and also
found some creative uses in combat where targets were preferably spread out among the

fighters.

An important note is that units only consider other claimants they can see. If two units
are after the same quarry but can’t see each other, they won’t consider the thing claimed by

anyone else and both head towards it like normal.

3.11.1. Filtering functions

Finding claimed units was one of many necessary filters. Given a number of known
items, units or memories, a given scenario could require them to be narrowed down in a

number of different ways: only things farther than x distance away, only things with a certain

status effect on them, only things holding x many items, only things of a certain type, etc.
Manually scanning for these terms or conditions proved repetitive and error-prone, so filtering
functions were added to the World class that would skim through vectors and only keep the
desired objects. The current filters include: species, family, genus, order, visibility, see-ability (if
a unit can see something regardless of whether it is trying to be invisible or not), raycast-ability
(includes whether one can directly see-to, aim towards or fully target towards their quarry),
within / outside of a given radius, team, tags, holding or claimed. A Unit’s typical internal check
for what it has memories also comes with some filtering options that can be left blank to
ignore, containing these kind of filters: within a given radius, raycast-able, species, tag, team
level (only enemies, anything not an ally, anything not an enemy, or allies only), threat level or
status level (only dead memories, dead or missing memories, visible or out-of-sight memories,

or only visible guaranteed memories).

3.12. Visibility

All units are capable of seeing things around them, but the process to determine what’s
viewable or not is a multi-step system that requires constant updates whenever things start
moving around. The three main steps to seeing any entity are being able to raycast to it,
checking if square is close enough to the viewer’s light or dark vision radius, and making sure

the target isn’t invisible to the viewer.

3.12.1. Light levels

Light levels are synonymous with glowing: rather than setting a square to bright or not
via some constant, all entities have a ‘glow level’ value representing the radius around them
that’s lit up at all times. The radius follows the entity, moving along with it, and spreads
outward whenever the environment is refreshed to check for things that may block line-of-sight
such as walls or smoke. Squares the light source reaches puts the source in its list of ‘glowers,’
and for related visibility checks the square is considered bright if it has at least one glower

regardless of its distance. Figures 16-18 illustrates a player manipulating a light source (a torch).

Figure 16. A player with no light source can barely see around him. Source: Screen capture.

Figure 17. A player with a lit torch can see a greater distance. Source: Screen capture.

Figure 18. Throwing the torch makes the glow radius follow it, still providing its full circle of light. The
reason it doesn’t appear as circular as before is because the player’s light radius vision doesn’t extend far
enough to see the outer edge. Source: Screen capture.

While all in-game logic only considers light sources as being on or off, when being
rendered on a square grid this looks absolutely terrible (as discussed in the rendering section)
and was made to only aesthetically consider distance from the source so that farther areas
were dimmer than the square the light source was directly on. This gives the player the
advantage of being able to judge where the source of a light is coming from, while Als only

recognize the lit squares and won’t connect it to a circle-shaped source in the same way.

3.12.2. Sight / glow radii

All units can only see some distance around them through the ever-present fog of Trick
Of The Light. The values that determine how far are their light radius and dark radius, indicating
the range they can see in well-lit areas and in complete darkness respectively. Described in
more detail in the Vision section (3.13), every entity has a Glowlevel that determines how many
squares around them are considered bright, and a square without any glowers is considered

pitch black. Figures 19-22 illustrate how light radii are displayed on the map.

M12 WASD Eso_iy\) ;

Figure 19. A player with a lit lantern can see a good distance around, but the light doesn’t reach the edge of
its viewable area. The pure-black but non-foggy edges of the circle represents an area that could be viewed
if there was light there. Source: Screen capture.

= Within sight racius and fllumineted by a ight source
=Nolght, but within nghtvision radius so siil visiole
= Nolight bejord gzt i, cntsee > = Blocked

il B

Hover for info, or right click to go back

Figure 20. The vision-tracking focus lets players see the specifics about their sight radii, including why they
can or can't see specific tiles around them. Source: Screen capture.

M12 WASD ESC|@ W\, B

Figure 21. When the lantern is turned off, the player stops emitting light and can only see as far in the dark
as their dark radius allows. Source: Screen capture.

= Within sightradius and luminated by 2 light source
=Nolight, but within nightvision radius so stil visible
=Nolght, eyond dark e, cantses = Blocked

Hover for info, or right click to go back

Figure 22. The player’s orange dark radius is smaller than their yellow light radius, but that’s not always the
case. Some creatures see farther in the dark, making their light radius useless. Source: Screen capture.

If a square is bright and the distance between it and the unit is less than the light radius,
or if the square is either bright or dark but within the dark radius distance, then that unit can
see the square and tell what items and units are within it. This means the dark radius is strictly
better than the light radius, but for most units the light radius is much larger, meaning a well-lit
area will be much more visible than a dark one. These mechanics result in light sources being a
double-edged sword: carrying something bright like a torch will help one scout a greater
distance around them as they travel, but something in the darkness ahead is likely to see the

torch-bearer with his light before being seen in the darkness.

3.12.3. Raycasting

To see whether someone is invisible or not, one needs to be able to see to where the
intended target is. To know the viewable area, given a Unit’s sight radius, all squares in range

are raycasted to check for anything that would block line of sight.

All sorts of methods were tested for what worked best for raycasting, always only
concerned with having the ideal output no matter the computational cost, which ended up
making it the most expensive algorithm overall in terms of CPU use. Starting as a simple check
copied almost directly from the Roguebasin-wiki tutorials, typical ray casting consisted of
checking if the center of the starting square could draw a straight line to the receiving square
without being interrupted. (Roguebasin, Register) This immediately brought to view a problem
with long series of walls: gaps would appear after a certain distance as if you couldn’t see half
of the wall straight in front of you. Shadowcasting, again via tutorials from Roguebasin, were
implemented instead, fixing the previous problem but causing new ones, such as being
asymmetrical (standing in square A and seeing B didn’t always mean one could see from B to A)
and lone wall ‘pillars’ not covering things behind them in rational ways (usually with the
immediate back of the pillar being visible but further squares being blocked). (Roguebasin,

Bergstrém)

Diamond raycasting was tried next, but before a complete replacement was finished
again it was apparent that the logic wouldn’t work with the gameplay. Diamond raycasting
treats pillars as being diamond-shaped for movement and vision, but would only be ideal with
diamond-only movement and accounted for a larger gap between diagonal squares than

desired. (Milazzo)

Figure 23. An example of a cone of vision extending outwards. Note the symmetry between upper and
lower bounds, and how the walls near-adjacent to the seer don’t reveal themselves unless the player is
exactly diagonal with them. Source: Screen capture.

Figure 24. Another view further outside the narrow tunnel. Vision will never extend this far in a normal
game, normally being around 3-9 squares maximum, but it is important to make sure vision works correctly
at every distance. Source: Screen capture.

Eventually, all work was moved towards a heavily edited version of normal raycasting,
drawing heavily from the Dungeons and Dragons version of sight and cover checking. Instead of
just center to center, every octagonal point to octagonal point was checked as well with special
checks for exact-diagonal-edge cases that worked with our movement system (see Figures 23
and 24). Halfway through testing it became apparent that using doubles were giving rounding
errors for our approximate calculations by being unable to represent ratios accurately, causing
eventual overflow or underflow that caused constant irregularities and made the algorithm
asymmetrical. An explanation from a tutorial by Lode suggested to instead use exact ratios with
integers to determine how far along the x or y length of a square we were, guaranteeing an
ending at exactly the edge or middle of the target square every time. (Vandevenne) The end
result solved all the above problems but runs up to 8 times slower than normal raycasting for
results that fail in worst cases (bring surrounded by walls on all sides), though the smaller radii

of the average entity calling raycast checks makes it reasonable enough to never be noticed.

3.12.4. Invisibility

Figure 25. A Seeker spider has faded itself, becoming invisible and able to sneak next to the kobold miners
without causing alarm. Source: Screen capture.

A unit can be effected by invisibility status effects that render them untraceable to most
normal methods of being noticed, with three exceptions: they’re made to be revealed by a
status effect that marks them as always visible to any viewer, the unit trying to see them has a
‘truesight’ effect which lets see invisible units, or the unit trying to see them looks like an ally,
as invisible units reveal their presence to everyone they think is on their side. Items work
differently, being always visible if they’re on the ground but share their owner’s visibility if

being carried.

Invisibility goes hand in hand with fog in the visibility theme, and like the fog efforts
were designed to make it feel as intuitive as possible. One such correction was pathing: if one
can’t see something in the way, what happens when they try to move through it? Being told
you can’t move to a location without being told why is clearly a design flaw, but a wall made to
be invisible shouldn’t just stop having the properties it did before. Figure 25 illustrates an

example of a seeker-spider invisibly scouting out potential victims.

Common sense dictated that the mover would accidentally bump into the invisible
blocker and reveal its location, which leads to units being able to ‘shake’ each other. Any unit
that does something or is affected by something that would realistically cause them to become
unbalanced or disrupted in some way (such as being bumped into, attacking, casting a spell,
being attacked, etc.) makes them react by being shaken for some amount proportional to how
disturbing the force was. For every invisibility-related effect, any amount of shaking is enough
to cancel it and remove the invisibility, fixing the invisible-blocker problem and opening up
many other methods of interaction. Shaking can be used in other ways as well: large enough
shakes, requiring intentionally disruptive abilities, can interrupt multi-turn (aka channeling)

tasks or even knock away the victim.

3.13. Memories

All units have a list of memories about other units they’ve encountered in their travels.
If a unit can see a square and another unit is already there or enters that square later, the
seeing unit remembers where the unit is, and once visibility between them is lost, remembers
the time and place where they were last seen. Figures 26-28 illustrate how these mechanics are

displayed onscreen.

A
e 2 '.S-.-'l‘

A

TS R A S R AV AB SR A S T TR A A TS TN
TN AT TN
e ', S e e

Figure 26. A player notices an allied soldier (far right) with a lantern on. They are actively watching the
soldier, but still keep a memory of them. Source: Screen capture.

Figure 27. When the lights go out, the soldier’s last known location is remembered. Source: Screen capture.

[ey YA
LAY
ke |

Soa

Figure 28. When the soldier steps into view again, their old position is updated to reflect the new
information. Source: Screen capture.

If a unit witnesses another’s death, the memory is updated to note that their death
occurred there instead of just a sighting, or if someone attempted to look for a unit that was
somewhere previously but wandered off, will update that memory to be a reminder that
they’re not there anymore. Similarly, units will remember all the squares they’ve seen at least
once to tell the difference between completely unexplored areas or squares they’ve been to

but didn’t have anyone there.

3.13.1. Initial conception

Memories are what came of trying to solve the problem of scouts having to return with
information, and are arguably the most interesting / definitive feature of the game. The first,
admittedly easier version was to simply consider territory in terms of zones: friendly and not
friendly. For a standard RTS, consider anywhere nearby one’s base or central HQ as the
‘friendly’ territory that’s almost always completely in view with no hidden corners, and
anywhere outside as being neutral or hostile territory. A scout, or anyone else, leaving the
friendly zone would have their discoveries lay dormant until they returned to friendly territory,
whereupon it would instantly update everyone and the player to the map outside as they last
saw it. This brought to question how the scout, or anyone else, would be controlled outside of
friendly territory if they couldn’t be seen, or if this kind of ‘echolocation’ vision of periodic map
updates would be enjoyable to a player back when the game was angling towards an abstract-
player god-like angle. Figures 29-32 (below) illustrate how the memory mechanics are displayed

to a player, alone and when interacting with an ally that shares its memory.

Further brainstorming regarding zones continued to bring up cases of them being too
abstract and abusable a concept that was sure to fail in unrealistic ways, with the main benefit
often only making the game seem more comparable to a standard RTS. The idea of using zones
was scrapped, and instead more drastic measures were thought up: Instead of scouts being
independent when they left the base, instead what if everyone was independent at all times?
What if not only scouts had to report their findings, but the resource gatherers and hunters and

soldiers as well?

Figure 30. After a bit of exploring, the player still remembers where everything they saw last was. Source:
Screen capture.

49

Figure 31. Upon meeting an allied soldier, the player communicates with them, showing an animation of
any information they have to give. Source: Screen capture.

Figure 32. Even though the player has never been to the newly revealed area, they still acquired memories
of it from the soldier they talked with. Things may have changed in the meantime, but this was the state of
the world last he saw. Source: Screen capture.

50

As most units only care about one aspect of the game world at a time (where walls are
for miners, where bats are for hunters, etc.) they could all try to keep up to date with the things
they cared about at the base, in turn necessitating a meeting ground and way of exchanging
information. Everyone would keep track of their own map, even if they were doing things

together in a group, with no shared vision at all.

3.13.2. From concepts to concrete

Initially memories were much simpler, being the location for concepts that each race
considered differently. All units would have a memory of their last known ‘mining’ spot, which
was always the last mine-able wall they saw, and when they noticed a new one would update
their memory to it instead. Units could then talk to each other, giving a new location if one
didn’t have any yet, which was usually done at their race’s capital that would almost always
have something for everyone. Heading to a memorized location only to find nothing there
would mark that memory as outdated, and anyone attempting to trade that exact memory with
the same unit would become updated in turn. This meant everyone could only retain one

location per concept at a time, which would eventually fail for two reasons.

The first and foremost was that only one location at a time being memorized meant
units were very short-sighted involving multiple things in an area, especially things that could
move. Bats are a hunter’s target, being stored in their huntingGround memory, but chasing a
single bat that ran away from its herd and killing it would result in a path to its last known
hunting ground, i.e., the bat they just killed, declaring it out of date then having no idea where
to go from there. Cases like these happened often, frequently causing miners to end work
halfway through a large chunk of walls or for fighters to call off the hunt early in situations that

didn’t make sense without exact knowledge of why their memories seemed so short-lived.

The second reason was the concepts being too abstract: different races had different
definitions for what was hunt-able, mine-able, friend or foe, etc., and any communication

between them became conflicted with ‘translation issues.” Hunters declared their most recent

bat sighting as their hunting memory, while spiders who were picking off anyone with the ‘prey’
tag considered goblin workers, even those hunters, as their quarry they stored in their
huntingGround memory. If interrogation was ever to be added, or any attempt to see how
other races thought and remembered, this was going to be a huge issue. Concepts weren’t
encompassing enough; Units needed to remember everything they saw, even if it wasn’t

completely relevant to them at the time.

3.13.3. Detailed memories

Thus, memories became a list of units seen. A ‘memory’ was now a new class entirely,
containing a number of variables to specify a bit more about the specific memory associated
with them. The location of the target being remembered remained, and in the case of large
units occupying multiple squares at once only their center location was stored. A last-seen-
status value replaced the system for checking out-of-date memories, being able to differentiate
a ‘memory’ of something currently being viewed, a memory the unit still believes is there but is
out of sight, a memory that something wasn’t where it was last searched for, and a memory of
something believed to have died. The difference between ‘dead’ and ‘missing’ allowed for
complete closure as to if something should still be considered worth searching around for, and
the last-seen-status value became a deciding factor in whose memories transferred over to

whom when trading information.

Knowing how long ago a memory was created was also important, recorded in an ‘age’
value, and in the old cooldown-based system every memory would increase in age along with
all the other units when an update was handled. When the newer tick system was
implemented, age was replaced by recording the last tick the memory was updated and didn’t
need to be constantly aged alongside units anymore. The last threat level the remembered-
target was seen at was also recorded: captured / subdued enemies were no longer tracked
down, discovered to be harmless, ignored then tracked down again the moment they were out

of sight. The unit who first created the memory is recorded as well, which helps to keep track of

who started causing problems in the debugger but didn’t have any impact on gameplay, though

it could conceivably be used to track the source of a blatant liar.

3.13.4. Trading info

If Abe doesn't have a memory
involving the remembered unitin
question, Abe creates a copy of

Bob’s memory, stores it in his

memory bank and proceeds to the
next memory

Memory B
Cloned

Is STATUS A just
‘missing’ while
STATUS B is 'l saw
him die"?

e —

Is STATUS A just
‘missing’ while
STATUS Bis 'l last
saw him at Viw'?

If not, Abe’s memory
is always more
relevant and up-fo-
date than Bobs, so
memory B won't be
copied over

Memory B
Ignored

If =0, Abe's memory
is more recent than
Bob's

Start here

Unit Abe checks a
memaory from Unit Bob,
involving another unit,
Coy

v

Doss Abe already have
a memory involving the
remembered unit Coy?

If Abe does have a
memaory about Coy,
then the two memories
are compared o see
which should be used

Is Bob currently
looking directly at
Coy and Abe isn't?

If so, Abe was out of
the loop and went
looking for someone
that Bob saw die
later, meaning he

Is TIME A more

should use the older
memaory B

If =0, Abe only knows
one spot where Coy
wasn't at. while Bob
knows the last spot
he was at Bob's
memory is slightly
more useful, and thus
should replace
memaory A

recent TIME B?

Is STATUS B just
‘missing’?

Memory B
Copied

If we reach here, Memory B is
in some way more up-to-date

or maore informative about

Y

Memory B, from Unit Bob
Rememberad Unit: Coy
Location: VW
Time the remembered was last seen: TIME B
State of the thing being remembered: STATUS Bj

A

” Memory A, from Unit Abe
Remembered Unit: Coy
Location: XY
Time the remembered was last seen: TIME A
State of the thing being remembered: STATUS A)

If =0, Bob's memory is
most definitely up-to-date

Yes

irrelevant

If s0, Memory B only
matters to Abe if it makes
his own memory

Memory B
Copied

rl

Is Location XY the
same as Location
VIW?

‘Yes

Is STATUS A'l saw
him dig"?

Coy than memory A, and
should replace all of A's
values with its own

If not, Bob confirmed
that Coy wasn't at the
location Abe last saw
him, and should
accept the new
memaory as being
more up-to-date

If not, Abe's memory
is always at least
equally important fo
Bob's memory, and
should remain
unchanged

If 50, Abe believes
Coy died at that

location and Bob just

wasn't around to see
it. only noting Coy
wasn't there later

Yes

Memory B
lgnored

Figure 33. A flowchart showing how memories are selected for copying, replacement, or ignored during the

tradelnfo process.

The transfer of memories between units was meant to be an intuitive process, though

the result ended up looking extremely complex, as suggested by Figure 33 (above). Two allied

adjacent units can trade information with each other through direct contact, which essentially
takes all the relevant memories from one unit and gives them to the other then repeats with
the units reversed. The unit being searched iterates through all of its memories: if a memory is
completely new, the receiver creates its own copy of it, but if they both contain a memory of

the same unit each are compared to check for which one gets updated.

Memories currently being seen have the highest priority, always replacing the other as
they’re seen as always accurate (“I saw Dave a while ago, but you’re looking at him right now,

so I'll trust you’re correct”).

Next, if the receiver’s memory is more recent but only knows the unit wasn’t there at
the last check, their memory could be replaced if the giver either knew for sure it died (“l didn’t
see him at the docks a minute ago, but Fred saw him die a week ago”) or was seen at another
spot before (“I didn’t see him at the docks a minute ago, but Fred saw him at the carnival two

minutes ago”).

If the giver’s memory is just that they haven’t seen them at their location, and the
receiver’s memory involves anywhere else, they ignore the memory and nothing gets updated

(“I didn’t see Jeff at the docks, and he didn’t see him at the carnival, so who cares?”).

If none of these edge-cases occur, the last check is that the other memory is more
recent that the receiver’s, and if so all of giver’s statistics are transferred over to the receiver.
The process repeats until all the giver’s memories are checked, at which point the receiver is
fully up to date with everything the giver knows and can trade positions. The process would
require a bit less iteration if the transfer was mutual, which it initially was for a time, but having
the process be one-sided allows for interrogations where only one unit extracts information

from another.

3.13.5. Individual use

More importantly that having or trading memories was being able to use them for
something. Whenever a task called for searching for something a unit may know about, that
Unit’s memories were scanned through for the closest relevant thing to become the target. One
of the first efficiency changes was to add a list of watched units similar to memories, to be used
as a short circuit check before shifting through the entire library of every remembered Unit,
and also to add some intuitiveness by always going for things in sight even if other memories
were ‘closer’ but not in view at the time (A bird in the hand is worth two in the bush). Filters
were added to check for things like being within a certain radius, the difference between being
an ally vs not an enemy vs neutral, looking only for things worth trying to reach, preferring
melee targets over ranged, etc. Iterating through memories this way allow every unit to base

their decisions off their own map state at any given time.

3.13.6. Garbage collection

The thought of garbage collection for ‘dead” memories came up, with bad results after a
large amount of work and testing. The first iteration involved an additional ‘intelligence’ value
for units that determined how long their memories could last before expiring. Regular units
could remember things for 100 turns, capitals and such could remember for up to 10,000 turns,
while critters like bats could only remember for 5 turns or so basically making them forget
everything the moment they walked out of sight. There was still no limit to the amount of
memories one could hold, only their duration if left without updating via seeing in person or
being told about them. This would allow relevant memories to keep getting refreshed when
they were traded at the capital hub, while also allowing for a new paradigm of manipulating

intelligence to make units remember more or less with specific effects.

Both intentions failed: expiring memories never turned out well, causing countless
pathing issues in places that weren’t ‘recently’ explored while not reducing the size of memory

arrays by any significant amount. Modifying intelligence to be greater had no apparent effect

from a player’s point of view, as memory length is usually requires a very long-term investment
to notice any changes, while reducing intelligence certainly made units appear more stupid, but
usually just through erratic pathing and / or forgetting where their main home was and just
standing around or walking in circles trying to find it. These inevitable higher / lower bounds
wouldn’t be very fun or interactive from a player’s point of view, and manipulating a player’s

memory in that way was simply unthinkably horrible, so the idea was discarded.

The only other point of garbage collection afterwards was the need to go to a memory’s
last known location to confirm the unit in question wasn’t there anymore, which was causing
buggy issues and was somewhat unrealistic (A miner would have to stand in the exact spot a
wall used to be to realize it wasn’t there anymore, for example). Checking all memories on
every update for anything that should be in view and making sure that they were was the
solution, setting their status to ‘missing’ if not found, though this process is horribly inefficient

CPU-wise.

3.13.7. Player-specific adjustments

A player’s memories are the most important, and required a bit more detail to make
things more clear and intuitive. These are the only memories that need to show up on the
screen, and as discussed in the rendering section this can be a bit more difficult than first
imagined. Multiple units at the same location had to be concatenated to a single one with a box
symbolizing more were present, and the difference between an out-of-sight memory vs a
present viewed subject needed to be crystal clear. This is the main cause of the constant
missing memory checks mentioned before, as having that in meant the visible squares could be
reserved for only ‘real’ present units while out-of-sight squares in the fog were purely
memories. In fact, players have no way of telling what their ‘missing’ or ‘dead’ memories are, as
they don’t show up on their screen, though they still transfer the memories and information

when they trade info with allies.

Trading info in particular needed to be informative, as any changes should be noticeable
while the overall map may look the same. This led to a ‘sonar’-like reveal animation inspired by
the map from Darkest Dungeon (Red Hook, 2016), where any changes are sorted in distance
order and highlighted as a circle expands outward from one’s character. Old memories are
cleared and moved to their new locations, while new ones flash out as the circle goes over

them to catch the player’s attention.

The player’s point of view also necessitated an additional thing to keep track of: squares
that were explored at least once, regardless of whether they had units or not, as there was no
way to tell previously what had been explored unless a unit was there. Now all units keep track
of every square they’ve cast their ‘watched’ raycast check to, mixing the results when they
trade info and giving the player the sum along with everything else when they meet up, so
empty tiles reduce the fog from its ‘heavy’ unexplored amount to a negligible ‘explored but

currently unseen’ amount as a visual indicator.

3.14. Al

The flexibility granted by how tasks are created or removed so easily means that Al
should be considered much more the sum of its parts than any individual unit. The intricacies of
how things interact with each other and react to their environment combined with all the ways
their knowledge of the world is constantly being limited make it difficult to pin down specifics

about the upper or lower limits of their behavior.

3.14.1. Independent Al

An important note about the nature of the game is that there is never any top-level
controller looking on and commanding from above: all interaction between entities in the game
is direct, with no abstract third party giving orders as in a typical RTS. Each individual in the
game has their own set of motivations and beliefs about what they can and should be doing at

any given moment, only performing whatever behaviors they start with or acquire along the

way. Even when given commands, the individual following them is completely unaware of how
what they are doing affects the world for good or bad. No exceptions exist in this regard, but
there exist some units that do care about the macro-level economy and overall well-being of
their group within their limited scope of knowledge. A player would be the prime example of
this, able to make educated guesses about the state of their team compared to the enemy
given what they know, and react by giving orders accordingly, and from the Al we have

commanders and capitals acting to emulate a human’s behavior as much as possible.

3.14.2. Capital Al

Capitals are the central hub of a team / race’s civilization, where everyone heads to for
information about what needs doing and to provide their findings to the hivemind at large.
Capitals, being stationary buildings, don’t do anything on their turn normally and are activated
and updated every time a unit interacts with them, progressing through their thought process
depending on their world state after trading information. All capitals, as a general following
between all possible races, have a ‘need’ queue for things they think need to be done with top
priority, a ‘greed’ queue for luxury tasks that are helpful but not absolutely necessary, a
‘resupply’ queue to ensure independent storage facilities are occasionally emptied and brought
to a more centralized location, a ‘build’ queue for whatever construction or repair work needs
to be done, and a ‘check’ queue to check in with all known buildings now and then to make

sure they’re still standing.

When a unit interacts with a capital and hands over any extra inventory items (unusable
supplies like ores or raw meat), the capital quickly checks its memories and inventory to see
what it thinks is lacking, and if anything is on the queue, and depending on the type of unit
they’re given a new task that will fulfill that need somehow. A lack of some type of item usually
involves a delivery to the building that can craft it with the necessary supplies, a recent report
of fighters going missing for long periods of time may involve a message to the training grounds

asking for replacements, all usually amounting to fetch / delivery / check-up quests that are

swiftly accomplished with the dutiful unit then heading back to check for more chores and

repeat the process.

The details of tasks given out are dependent on the unit receiving them: carts are
usually only given delivery tasks to and from storage areas, most basic units receive things
related to their normal duties, while some only come to a capital to update their own
knowledge of the world. Commander-type units are among those, treating the capital like a
glorified messaging board to find the next area of interest that requires their attention.
Currently, this amounts to finding any as-yet undefeated enemies, waiting around the capital
for military-grade units to recruit, overriding their default tasks with an order to follow them to
war and waiting for a reasonable sized army to head out and fight anything that looks at them
funny along the way before heading back to refuel. The combination of a capital and
commander was meant to simulate a typical player’s thought process, with any additional
behaviors being added on a race-by-race basis based on their strengths, weaknesses or other

necessities.

3.14.3. Al: Too dependent?

A difficult opinion lies in the question of how smart is too smart, or how dumb is too
dumb, when dealing with independent Al. Players coming in from other genres are used to
bases that run on auto-pilot if left untouched and units that only do the last thing they’re told
before waiting for further instruction. The independent nature of the memory and task system
necessitates a smarter individual, but smarter is a very relative term: it may seem smart for a
unit in possession of a sword to swap to it and fight in the face of an enemy in general, but
there are often scenarios where even the time spend equipping the sword is better spent

running away to safety 5 feet away.

Not every unit can be engrained with the intelligence of a player, yet we’ve developed

the game around limiting micromanagement to a minimum. This draws the difference between

tactics and strategy: a player needs to learn the behaviors of all their allies, not expecting them
to always be perfectly rational agents in their field, but more of a tool meant for a specific part
of gameplay: fighters charge enemies, archers stay in the back, workers flee from enemies but
rush towards walls, etc. Everything isn’t given player-level intelligence for a reason: Al in every
game is meant to be predictable and flawed, with the challenge and fun of a game being the

efforts to abuse and overcome it, and exploit it fully when it’s on your side.

3.14.4. Al: Too independent?

On the other hand, the game’s anthill-simulator roots are apparent in its multi-
dimensional design. Even if autonomous entities behave imperfectly on a turn-by-turn basis, we
wouldn’t want them smart enough to complete the whole game for the player. Most of the
automation mentioned previously with commanders and capitals is on the part of the
commander, which is entirely replaced by the player, and the capital parts are manually
disabled when a player is on the capital’s team. This doesn’t stop a capital from giving out basic
commands, only limiting their task-giving systems to whatever the player assigns them to do.
The player can queue up items and units to be created / trained, and the capital will handle the
rest. The player isn’t prevented from manually redirecting units to where the capital would tell
them to go anyway, or carrying and delivering supplies himself, but such automation is

naturally left to the ‘system’ similar to mining.

If units behaving too intelligently for micro-intensive behavior like kiting or combat is a
problem, then only their attributes need to change: moving faster or slower, doing more or less
damage, fleeing at different health values. Anything can be tweaked to strike up a good balance

between fair fights and smart ones.

3.15. Summary

Trick of the Light’s overall experience goal is to have the player in an environment
they’re familiar with from other genres, but training a mental muscle that rarely gets touched in
other games considering the themes of imperfect information. Most of the player-side
gameplay is highly correlated with that of the roguelike and RPS genres, having numerous
options to interact with the world around them (mostly related to combat) and being able to
personalize themselves and followers with weapons and armor. The macro-level gameplay
requires strategic thinking in line with a standard RTS, having base-management and Unit-
upkeep as primary concerns, though often a fire-and-forget one that involves queueing up and
waiting for the results. The goals and flow of the challenges are in the same style as a classic
adventure, leading the player along an interesting narrative that puts them at the center of the

story.

Blizzard’s Warcraft 3 (2002), though an RTS, would be considered the primary
inspiration for how the game turned out in this regard, having all the elements in the same way
described above, but also being the primary offender in the first question we sought an answer
too at the beginning of this project about the sacrificial scout. Trick of the Light’s step into the
territory of imperfect information should cast a shadow of doubt about how a player typically
trusts their own in-game mental state. Not everything their character sees is real, nor are all the
things they’re told are true. Not everything that occurs within their territory will be relayed to
them, and the lack of information should start to become just as telling as receiving it in some
cases. Deductive reasoning and a slight sense of paranoia are absolutely the critical separation
from the aforementioned genres, enunciated through the more immersive and realistic themes

even when the actual characters are goblins and ghouls.

The extra visibility mechanics all have the same purpose as normal fog of war, in that
they limit character’s vision in a somewhat realistic manner to reduce the amount of ‘perfect’

information they have. Even within their own sight radius things are constantly being hidden

around blockages, in the darkness or simply invisible to the naked eye, each adding an element

of uncertainty to the only direct source of vision they have in the world.

Fog of war at its core is intended to emulate the real-life property of never being
omnipotent about a situation: there are almost always unknowns that need to be accounted
for, the allied side just as much as the enemy, and implementing so many things involving one’s
personal vision radius is a way of suggesting that even depending on everything one can see
may be dangerous without taking certain preparations or being overly thorough, which is rarely

a luxury that can be afforded.

4. Technical Design

The code of Trick of the Light has gone through many re-bases and language changes,
learning many common practices and general formatting techniques. The end result is always
the most critical goal, but the processes put into the engine are ultimately the ones that shape

the flow of the game most of all.
4.1. The World class

Starting the game initializes the World class, the main hub of the engine where all
decisions are resolved and effects ultimately applied. The World is a static class, meaning
there’s only ever one instance of it at any given time. That instance is always called by anything

interacting with the world to ensure everything is taking place in the same ‘universe’.

The initialization process starts with reading a map file and starting to print out units
and items at their designated locations, but spawning them in the normal way would cause
problems: Units being placed in sequence with walls would see areas and things they weren’t
supposed to if everything spawned in at once, so the normal creation process is separated into

chunks of placement, glow-casting, start-reacting, vision casting and then hard refreshing,

normally done all at once when a new entity is created. The ‘refresh’ function mentioned above
is a Unit-only function that ensures all non-internal sources affecting the unit are checked
again, with the option to make it a ‘hard’ reset that will recalculate everything the unit is
looking at as well as everything which may be looking at them. This is mostly necessary for large
changes, such as a sight-blocking wall becoming invisible and letting everyone attempt to check

if their sight radius was updated.

4.2. Maps: A tailored experience

Map generation was a key consideration for how the game would be played, and what
kind of game experience would be created. Trick of the Light’s presentation is visually similar to
a roguelike game. Its maps could also have been produced a similar way: by procedural
generation. Doing this would have introduced additional elements of exploration and
uncertainty that would align with the experience we wanted to produce. However, the core
objective of Trick of the Light was to see how well players would comprehend and react to its
memory and fog mechanics, not to produce a highly replayable game. Adding geographic

randomness makes no sense in an experiment that is only expected to be played once or twice.

4.2.1. Campaign formula

Figure 34. A full view of the tutorial level. Source: Screen capture.

The decision not to employ randomization positioned Trick of the Light squarely within
the RTS tradition of single-player campaigns. A ‘campaign’ is a series of levels of increasing
difficulty, usually introducing a single unit type and/or game mechanic on each level. It is
essentially an extended, well-integrated game tutorial, which is exactly what we wanted to
ensure that the elements of the game we wanted explained would be taught to every player
the same way. Campaigns also allows for scripted events and one-time gimmicks that won’t be
reproduced elsewhere in the game, such as dialogue between characters or spawning /
despawning items and units after certain conditions are met, which help to create situations

and storylines that make learning as intuitive as possible.

Trick of the Light was initially planned to have its own campaign in the same format,
showing off all mechanics in chunks, but we quickly realized the scope of a full campaign would
scare away potential playtesters. At 10-20 minutes per level, anyone who didn’t like the initial
mechanics shown were unlikely to proceed through the rest of the game to learn the rest,
which very early unofficial testing undoubtedly confirmed. It was decided to compact the most

iconic mechanics into a single level that would introduce all of them in sequence. The most

important part of testing was to see if testers could understand the core vision, fog and
memory systems, which a single level could provide. Figure 34 (above) shows the layout of the
tutorial map used for initial playtesting. Two additional levels were prototyped and partially

implemented. Their layouts are displayed in Appendix G.

4.2.2. Generation

std::string Introtut[]= {

" ff 35
"#0000do00w # H# # r #",
"#0000000 bbbb bb ## rarars #",

" 00w ¥ ¥ % sEEL & e EE & ## #",
004 et BEHE e # Q0000 #",
"I ¥ & &% % £55 e EE ¥ F #", // 3@
" W ERRRELLLLELLs e L E HHEE"

"R . WiNW #H #EEE #",

" e e H SESERSLnnLLnD W #",

" fradtiHEE EEL ERELLRRLn b £=% W #",

" feradbun ; b H#H wb #", // 25
" 0000w R R H# W #",
"#i#000000 H#H b 3 iHHE b w #",

"#o00 # # # b H#H W #",

" # H#H % c ; ## woD o ww #",

" bbb ## #5 F h R #H wowwwOOwt", // 28
i # ; # ; b ## O0wECooo#",

" # # LELEn H W HHHEHHH R OH® ",
"iHHHHHE £=% £ LEsns f K HHHHHEE #7,

mgE g Hw # % : # # ",

" e e £=% £=% £=% #H", S/ 15
" froraranadt] E e e # #",

"# o~ £ &5 £=% e R i B #",

"4 ## ## e ol #",

"How £=% # 555 FHHEEE"

"# ww 4 ; ¥ R SRR Ry 4 re FHHHHEEEER, /S 18
" E £=% £ £&5 e 5 E #",
"iHHHHHE EE W £=% Herors e e HEHHGHEEE d #7,

"Hw ti wWW 0O HHHEEEHHEEEE roerene 2T o~ $E dHEE~d ddd #7,

"H wrena W o W frors rans HHHAHE frorers d #",

e LUEEE S 3 w 0 W # £=% # re bedHEEHEEE", S/ S
"wre e o ## oo HHHE ww # rey e FEE S E W

" @ e 3R ; # #H # w W rars w]E =

" e == E # o £=% G re e FE #",

1s
World Galaxy=*(new World(7e, 35, Introtut, 38, false));
Figure 35. What the level looks like in ASCII form. Every character symbolizes what character goes where,

including some special scripted characters that have additional tasks and such manually added to them on
creation. Source: Screen capture.

Map creation is done within the ‘main.h’ class, taking in a manually-made 2D string
array filled with characters that represent the units / items to be placed (see Figure 35). The
world is then created by manually scanning the array and putting things where they look like
they should be on the ASCIl ‘map.” While obviously not the most sophisticated choice, it’s been
working since the start of the project with no major reason to upgrade to anything else thus far.
Offloading the mapmaking process to an outside script would make it editable without having
to rebuild, but most changes for testing or debugging rarely require that much fine-tuning after

a general change, and the rebuild process for changing a string in main is negligible.

If we were to expand the game further, mapmaking would definitely need an
improvement at some point, with some early inspection being done about how the Tiled map
editor software could be integrated. (Tiled) Tiled is intended specifically for 2D grid-based map
systems like we have in Trick of the Light, but why even go that far to add an outside source to
the game when the engine could handle it quite easily by itself? An in-game editor would only
require a menu system for selecting what to add where, with saving and loading being simple
read-write from a text-log. A few playtesters that experimented with the debug-view of the
game were genuinely surprised the feature wasn’t already in, believing they missed a button
somewhere that would have everything they needed ready to go. The feature could easily have

been put in at the time if we thought anyone would be interested.

4.3. Formatting practices

Formatting and general code style hasn’t been a serious problem due to the one-man
development team so far, but the ‘so far’ aspect being subject to change led to some common-
sense minimal standards. The spacing of indices and such are consistent throughout the whole
project, comments are available where complex or non-obvious decisions are made, return
types and input values are listed at the front of every function, all enough so that someone
reading things for the first time would know how things worked if not the order they should

start looking.

The most populated class types are units, items, status effects and tasks, each
containing templates to easily generate new ones. Further templates are available for certain
‘genres’ of classes, like a kobold type unit or an item-producing building, but frequently require
a clone of their related tasks as well to change any of their standard behaviors: the unit class
only defines what the unit is like statistics-wise, while all of their actual activity comes from

whatever tasks they’re initialized with during creation.

4.3.1. Class-centric practices

An ongoing problem is determining what functions should be put in World vs what
should remain within one of the Living subclasses, such as spawning in new entities or handling
interactions or reactions between them. The general rule is that if something should remain
constant throughout all possible instances or subclasses it belongs as close to World as
possible, while functions that have even a slight possibility of being overwritten for some
specific use case should belong in one of the living subclasses to be modified at the specific unit
/ item / Status effect level when need be. For example, an entity being moved from point A to B
should always result in a few things, like being transferred between squares and handling any
glow / vision changes that arise because of the movement, and thus became part of the
World’s moveltem/unit functions instead of having a unit/item-based movement function. The
attempt to walk, however, may be dependent on the Unit’s class: imagine if spiders were able
to walk through squares with webs in them, regardless of what other units were on the square,
or a type of magical golem that was strictly forbidden from trying to walk too far away from its
power source. Cases like those are why functions related to ‘trying’ to move are part of the unit
class that can be modified at will, while set-in-stone functionality like actual movement is

‘archived’ in World.

Similar thought process occurred for handling things like vision, memory, pathing and
more, though quite often a change of heart occurred that required reformatting or rolling back.
The worst case of this would be the status effect class’ call to try and infect a Unit, going

through a loop of calling functions between the World and Status that requires said effect to be

initialized and assigned to its unit target even if it ends up being blocked.

4.4, Expected game flow

The overall game flow can be characterized by a cycle of exploration, fighting and
recuperation, repeated until all objectives are fulfilled, even if every enemy lies slain and no

exploration is left.

At the beginning of each level, a short dramatic prologue (presented either as a dialog
with nearby allies, or as a monologue if the player is alone) describes the player’s situation,
motivation and objectives. For example, in the introductory tutorial level, the player learns that
they have assumed the role of a newly-hired commander assigned to report to a base camp
located nearby. However, a recent earthquake has blocked direct access, requiring a search for
miners who can be recruited to clear a path. Once the base is reached, the player learns that a
neighboring nest of giant spiders have been bringing local mining operations to a halt. This

affords all the excuse needed for their immediate extermination.

The player starts out with only the bare essentials in terms of units and structures, with
development requiring time to mine and process the resources. In the meantime, players are
expected to be scouting themselves and doing as much as they can: player characters were
intentionally made unable to mine to discourage them from feeling obligated to work in that

repetitive area.

Waiting in one place for every possible resource to be extracted and all upgrades maxed
out, referred to as ‘turtling’ in the RTS community, is still possible but indirectly discouraged by
the intentional lack of a ‘wait for x turns’ function along with many easy short-term goals
manually added into each level that should be more appealing than waiting. Overall, at some
point the player goes out exploring, finding enemies and obstacles as well as rewards and

treasures, and at some point will come back due to injury or a lack of inventory space to collect

more loot. Supplies are made to be consumable to encourage this behavior: trinkets and
potions can be used only once, ammo or throwable items are easily wasted, and long-lasting
weapons and armor eventually become outdated as the enemies grow stronger farther from

home.

The return to the base is a time to get updated about events that may have occurred
while the player was away, such as raids or new discoveries, and gives the player a chance to
ponder what needs doing as they restock themselves and deposit their findings for safekeeping
if necessary. Construction and micromanagement is expected to happen in bursts at first,
coinciding when the player returns from adventuring, but additional methods and tools for
staying in touch will reveal themselves throughout the game, allowing a constant line of
communication and direction over the workforce from afar while player-led excursions are

underway.
4.4.1. Expected game anti-flow

Much of the experience of the game comes from interrupting this expected flow of
gameplay, highlighting the features of the fog and memory system that are unique and
interesting. One of the very first things we try to show players is how memories are accurate,
but can quickly become outdated: they’re given a preview of the path leading straight to their
base, but come 5 steps later they see rocks that weren’t there before and come to realize they
took the place of the previously empty ground. Enemies appear that will try and memorize
patrol routes, waiting for caravans returning with a good haul before striking or picking off lone
scouts if an opportunity presents itself. Spellcasters in the shadows can implant false memories
into scouts that inevitably lead back to the player; things like fake dragons and demons or piles
of gold and gems meant to lead them into an ambush. These mechanics are meant to get the
player into a state of thinking about how reliable their information and beliefs really are at any
given moment, a skill rarely exercised in the genres this game is related to.

Figures 36 and 37 (below) illustrate a typical spider strategy for picking off miners who

stray too far from the safety of their base.

Figure 36. The Seeker from before has informed the spider base of where the miners are, and a hunting
Spider sneaks up on a miner returning from a trip. Source: Screen capture.

Figure 37. The spider will poison as many miners as it can until confronted by a soldier or anyone else who
poses an actual threat. If undisturbed, the poison eventually numbs the victim, allowing the spider to drag it
to its home nest and let the spiderlings feed and grow to become hunting spiders themselves. If not
accounted for early and the nest tracked down, they become a serious threat. Source: Screen capture.

5. Graphics, sound and controls

The artistic side of game development can often be just as difficult as making the game,
which turned out to be the case during Trick of the Light’s development. Despite the numerous
intricate systems explained in other sections, getting the themes of the game expressed on the

screen was a whole new challenge whose refinement was a very grueling process.

5.1. Art

Visual art considerations for this game should have been a primary concern, but being a
one-man team with a focus on technical development, this aspect of development was often
relegated to decisions about how to economically present necessary concepts to a player. The
SDL2 library was used more for its simplicity and readily-available tutorials rather than any sort
of artistic preferences, in fact being more comforting that other engines with advanced features
that were sure to go underutilized. (SDL2) The features we did use were used often, with many
‘cheap tricks’ or roundabout ways of solving problems that would likely be handled much better

by someone with more expertise in the graphical design field.

5.1.1. Roguelikes-alikes

B BR - SHHEHE
B - - e BR mmmmm e A
B - ommos meeeee S
B SHHHHE
B e T S
FEREFHRW - -d-d- - - - - wWEE SRR R RS
HEEEE w0000 coo- wwwwwd- - - x0- - -3EEEEEE

HEHEHEnnwe00000 D wwiw D #. Dweend- - 38 - - -Sdaes
HHEHE A . Ooowiv- ODOwadhwaelt-* 08 — ——shitpieee

#HHE o owitwocooww - - d -0000000wE - - % - - --SiEEER
FHEEEFEFRw W WWERE - oowm I - - - - - - - - - FEERRS
FHHHEHROD W O OO OWWWO OWWIWWWWIWEE - - - - - - - - = R
FHEHEFRAWWO D00 0w 0000w - - - - - - - - - SEEsRs
FHEEFHRWO 0000w D0vwwmmavo oo O0wwid - - - - - - - - - FEEERS
FHEFEHR0 OOER W - - - - - - - - - R
FHHEHERRW O OWIWIWWO 0000w - - - - - - - - = R
FHHEHHRWO 00 DWW - - - - - - - - = FEERRS
HEEHH a0 0w - - - - - - - - - FEERRS
#HHHHHD000000000000000000000000000H# - - - - - - - - = R
FHHEHHERWWIRO DO W - - - - - - - - = FEeses
FHEEEEFR o oW WO 0000w - - - - - - - - = FEERRS
BRI OO DWW WA - - = - = = = - = R
F e T L e T O T S B T T T T RS SEEsRs
R AW - - - - - - - - = FEEERS
FHEFEHR0 OOER W - - - - - - - - - R
FHEHHRNAMWO O WWO 0000w - - - - - - - - = SEEsRs
FHHEHHRWO 00 DWW - - - - - - - - = FEERRS
HHEHHRwaaanwaan s - - - - - - -RRERREL

Turn: 31 (312886)

Figure 38. Playing Trick of the Light with debug mode turned on looks like this. With no rendering limit, it is
possible to play up to 2000 turns per second to simulate extreme duration games if necessary. Source:
Screen capture.

Trick of the Light (Figure 38) has a very good precedent for simplicity: roguelikes.
Deriving from the 1980 game Rogue (Figure 39 below), this genre has ASClI-based roots highly
engrained into its design, with the community at large still remaining reluctant to expand
anywhere more mainstream than 2D graphics. (Rogue) Our grid based engine and ASCII roots fit
directly in line with this kind of style, even if the gameplay mechanics were becoming distant as

development progressed.

ol now Bave a qold potion tel

Sted 1016 Goldided Aesorld Bl 4042
I.I.I'IH'H_-I

Figure 39. Rogue (1980), the game that defined a genre, even though it itself was based upon other ASCII
adventure games and RPGS. Source: URL.

All of the art in Trick of the Light is tile-based, made to fit in an even 1x1 ratio within a
square and fit seamlessly with its neighbors to potentially expand forever in any direction. The
images depicted can sometimes mean much more than they show, or have hidden properties
one can’t discern from a single glance (such as what items a unit is carrying), but give the gist
about what the unit is and what one can expect from it with a single still image: walls stand still,

bats flap around, fighters swing swords at close range, archers run away and shoot, etc.

5.1.2. 2D Squares

Up till the end of development, the rendering process using only 2D art was extremely
efficient in terms of CPU use, allowing far more than 120 FPS before a common-sense cap was
put in place. The high framerate granted some extended creativity with gradual camera
movement instead of instantaneous jumps, especially when zooming in and out was added in,

and allowed camera controls which feel very fluid. It also unfortunately hiccupped any time a

https://static.giantbomb.com/uploads/scale_small/1/15568/537945-rogue_006.png

particularly complex function was being done during a turn, as a drop to 40 FPS for a split
second was much more noticeable than the function that caused it in most cases. Zooming was
a mixed blessing as well. This nifty feature entailed additional requirements for images which
needed to be scalable and look good at any size, which doesn’t coincide well with the fact most

of our images were taken from free online 16x16 / 32x32 tilesets.

5.1.3. Asset acquisition

8 Dungeon Crawl Stone Soup 0,8.0-20.3615.2181913¢

Figure 40. An example of how gameplay looks in Dungeon Crawl Stone Soup. Source: URL.

As none of the development team were great artists and the amount of individual
images needed were plentiful, a savior came in the form of an online roguelike community that
grants explicit permission for their assets to be used freely for any purpose, Dungeon Crawl|
Stone Soup. (Dungeon) Containing a multitude of available tilesets for not only units but Ul and
controls as well, most of the assets come directly from their extensive library (see Figure 40
above), though only as placeholders for what we would commission in the event of actual

publication.

https://lgdb.org/sites/default/files/node_images/43/5454.png

Supplementary tilesets were found on OpenGameArt.org for a few of the remaining
assets, though a number of multi-square units, especially walls, lacked a perfect solution.
(OpenGameArt) Some images from Game-Icons.net were also used to make the Ul as
consistent as possible, as the art design from Dungeon Crawl Stone Soup was a bit random at

times considering how it was a community effort. (Game-Icons.net)

A complete list of art assets is provided in Appendix E.

5.1.4. Sprite-based animation

The thought of animated sprites was abandoned early on, as it would multiply the
number of necessary images, but animation wasn’t necessarily forgone. Rather than advance
motion tweening, model / sprite warping, particle effects and whatnot, only basic SDL
functionality was used, such as opacity and rotation. Combat was done simply by ramming the
attacker into the defender, similar to animations done in card games like Hearthstone or Magic:
The Gathering. Ranged attacks and throwing was a simple lerp from thrower to victim,
sometimes with a spin or two depending on the thing being thrown. Most Ul elements involved
lerped movement / opacity reveals instead of flat rates or immediate transitions, such as the
radial menus and vision checker, but always fast enough that an expert player who knew where

things are later in the game would have to wait between clicks.

5.1.5. Fog design

Figure 41. This still image of the rolling fog doesn’t do it justice, as the 120 fps limit makes it appear much
smoother and less blocky (but still blocky). Source: Screen capture.

Fog had to be the greatest artistic challenge, both for its absolute necessity as an
intuitive form of vision and for the incredible variety of possible adaptations that could have
been done with it. The first thing that needed to be decided with fog was whether there
needed to be fog at all: though the term used to describe it is ‘fog of war,” in reality we just
needed a way of separating the map into what we can see now, what’s been explored before,
and what has yet to be explored. The ‘fog’ could easily just be ‘darkness’ that was illuminated
once explored, but it was decided the effect would seem like a cop-out when the term ‘fog of
war’ was being used so much, so some sort of fog needed to be put in.

A simple fog-image overlaying a square with less alpha than usual worked well, being
able to differentiate explored vs unexplored and allowing a smooth transition simply by lerping
the alpha value instead of immediately removing the fog image (see Figure 41). A cheap
randomizer was the initial attempt, where the fog would appear to glide in a direction as a
random fog density was passed along one square every frame, but one-directional fog was less
than ideal: it appeared as if there was wind billowing the fog in one direction constantly when
the theme was an underground cave. A particle engine or fluid-like techniques would have

been ideal for making a swimming-ish water-like fog effect, but little was known on how to do

76

so and early prototypes using flocking algorithms were very CPU intensive and not very
appealing to look at. Manually adding permutation would provide the ripple effect we wanted,

but there was a better idea.

5.1.6. Pre-generated fog

If we wanted a fog effect, we didn’t have to make it generated at runtime: we could
take an outside fog effect that we liked and fit it in the game. Rather than update all the
variable we were using for fog every frame, we could instead convert a fog gif created in
another program to a 3D array of integers: 512 x 512 to cover the span of the whole map, with
300 frames to cycle through, and each integer ranging between 0-100 depending to how heavy
the fog should be in that square if applicable. Every frame the renderer would increment
through to the next array, which would make the fog appear to repeat seamlessly in a way we
could fabricate beforehand to be exactly what we want. A crippling problem was the amount of
space the arrays took up, being almost 50mb in size. This caused crashes in the Eclipse IDE for
its multi-hour indexing times. The final result was also not worth the effort, being noticeably
prefabricated instead of seemingly ‘natural’, with the performance boost from reading an array
being negligible as CPU use was the least of our concerns at the time. In addition, the fine-grain
detail of the fog was actually a detriment as the size of the map tiles were much larger than the

fine-grain details in the original gif, ending up looking very blocky / pixelated.

An edited version of smaller size and more fined-tuned for the size of the map was in
the works, but we decided to test with the previous version of rolling-fog. In the current
version, the entire map appears covered in fog with limitations on zooming and bounded
movement to maintain secrecy about the real bounds of the map at first, but all the maps we

have end up looking square-shaped after complete exploration, which is fine.

5.1.7. Hidden map boundaries

With the theme of exploration and the unknown being major factors of the game, we
had a concern with how fog could be used to mystify the map even more. The ability to zoom in
and out made a minimap unnecessary, freeing up any Ul work that needed to be done in that
regard but also causing the effect of having the map be unbounded by that same Ul. While the
map is square-shaped in the nature of its initialization, players don’t specifically know that for
sure, and the lack of minimap doesn’t bind them to being at any relative location to the edge of
the map. This basically means we could structure the fog so the map boundaries were never
revealed, and we ended up with two different ways of accomplishing this. One was to only
show fog a certain distance around explored locations, revealing more of the map from
complete darkness with a very light layer of fog to show explored locations, and the other was
to cover the full area of the map in fog and only allow camera movement a certain distance
away from explored areas. Initial testing was done with the former version, which turned out to
be very complexing for new users who couldn’t tell what the fog was representing next to the
darkness and why it didn’t seem to be a complete constant around the map even when it was.
When they progressed further into the map, they felt their progress was being hindered by the
fog-circle surrounding them rather than more of the area being revealed as they cut through
the fog, which we counted as a failure. The alternate version worked fine, but highlighted the
aforementioned need for a constantly changing fog animation for the background, as a solid
texture fog was unimpressive even if it felt better for exploration and unbounded the map as

we desired.

5.1.8. Lighting

Lighting was put in just after fog was, unfortunately bringing light to another artistic
problem. Creating light was more about creating darkness: all that changed from the previous
version was an overlay of a slightly transparent dark tile above the usual one, making anything
in darkness appear obfuscated while squares with light sources were untouched and much
more visible. The distinction was very noticeable, especially its shape: light sources casted
outwards in a circle formation, but that didn’t translate well at lower distances and was very
noticeably square. Incrementing one’s light radius in small amounts would usually extend only a
single tile in a random direction, which is less than intuitive, and at very low values wouldn’t
appear circular at all. Making light radiate out from the source using raycasting to check for
walls would have worked, but the rendering engine would have required a complete remodel
to make it work and would have been extremely difficult to make work from the player’s point
of view without making a few edge-case scenarios give him more information than they should
know while ensuring every square was clearly recognizable as being lit or not. Figures 42 and 43

illustrate the glow radius effect onscreen.

While the ideal solution, it was pushed back for later and instead adjusted glow values
were added: each glow source on a square would be checked for their distance away, with the
closest source defining how bright the square was. This helped alleviate the square-ness and
made the actual sources of light much more apparent, and with a bit of flickering added in it

was a very convincing torch-like glow.

Figure 42. A glow radius is supposed to be a circle, but the result is obviously not. While the source of the
light is apparent due to the gradual falloff, the ‘corners’ of the ‘circle’ are a result of a square-based
rendering engine. Source: Screen capture.

Figure 43. One of the big problems with light was finding the brightness that differentiated a lit square from
a dark one, and a dark square from a dark square you could still see to because it was within your dark
radius. Can you tell where the light stops and the dark radius begins? Source: Screen capture.

5.2. User interface

5.2.1. Minimalistic Style

Figure 44. The average screen the player sees, with the option to minimize the bottom right inventory
screen by clicking the backpack. Source: Screen capture.

The in-game Ul was intentionally minimalistic, with as few elements as possible taking
up constant screen space at any given moment (Figure 44). Rather than up to 25% of the lower
half of the screen being reserved for controls as per a customary RTS or roguelike, only three Ul
elements exist: the inventory / ground / units section to the right, the help text in the center,
and the ability section to the left, each with ways to minimize for maximum screen exposure.
We felt no need to flood the player with all possible options from the start, and controlling their
character was intended to be intuitive enough that shaking their mouse around at first would
indicate how they were to interact with the world through the constantly-updating help text.
The game immediately became more about looking around the screen and seeing what their
character sees with no subgroups or alternate sources of attention, a much more immersive

experience to assist with learning mechanics that required much more intuition than normal.

81

5.2.2. Menus from menus

Despite the value of minimalisim, there’s are many things units can be told to do in the
game, and there had to be menus to direct those actions. The inventory section doesn’t take up
much of the screen, but going through items brings up a menu showing what you can do with
each one. If there are items or units sharing your square, you can bring up a replacement menu
to decide what you do with them, which returns to the inventory menu immediately
afterwards. Some actions that require a target to complete will require a second screen for
choosing said target, such as picking where / who to throw an item towards or the destination

of a unit being commanded to go scouting.

5.2.3. Radial menus

A radial menu scheme was devised to handle most possible interactions, including ones
not normally used by Al units such as inspecting things or having a mutual trade menu. Right
clicking a visible unit or item brought up a ‘focus” menu from which to choose these options,
following the scheme of simplistic animations by having the icons extend from the target and
quickly but gradually lerp to their intended position for easy clicking. The intent was for the
radial aspect to be more for quickly cycling through menus like a tree, narrowing down one’s
intent to a specific command from a number of available types, but we found very few testers
were willing to explore much beyond the first level of menus that pops up after right clicking,
and instead put more options in less menus. This in turn diluted the screen with too many
options for selection, with many often not being selectable depending on whatever was being
right-clicked, but more importantly confusing new players with an information overload of

possible things to do.

In the end, aspects of both ideas were incorporated: the first radial menu popup was
very general, showing only the option to trade, inspect, command or interact, with only the

command menu leading to a variety of specific options to narrow down to.

5.2.5. Rendering loop

Rendering was handled almost totally within a single rend function, called whenever we
wanted the full screen displayed in its typical tiled format with all units and items visible from
someone’s point of view (usually the player). Because SDL rendering overlaps everything done
previously in the same bounded area, overall rendering is done in layers starting with the things

we expect to possibly get replaced later.

Explored territory is drawn first, including areas the player can’t see at the moment but
have seen at least once, but only drawing items at visible locations. Currently visible units are
drawn in the next layer, not checking the tiles themselves but rather the player’s memories for
units they are watching. This allows for less overlap in the case of multi-tile units that’d be
drawn once for every square they were in and to lower the iteration parameters to only units

we cared about at the moment.

Next, deep fog is rendered over unexplored territory, including adjusting the random
values that make the fog ‘roll’ northwards over time, though if the array-version of fog is ever
used it’s a simple uncommenting of a single line to adapt. Next, out-of-sight memories are
drawn, checking from what the player remembers but didn’t draw in the previous section and
putting their transparent silhouettes over where they think they are in the fog before finishing
up and displaying the final image. In each case where units and items were being drawn, checks
for overlapping occurs where additional units / items beyond the first are instead symbolized
with a blue or orange plus symbol to indicate there’s more things sharing that square. Right

clicking these packed squares lets the player pick which one they want to focus in on.

5.2.6. Animation timers

Though the animations were acceptable, they attempted to complete two opposite
tasks at once: be concise enough to allow seamless gameplay while also ensuring every

important action was displayed to the player. This problem was merely mentioned in the radial

section above, but the real problem was unit movement. Movement was merely sliding the
Unit’s sprite from one position to another, and when coming in / out of fog also giving a ripple-
like effect to attract some attention. If the player’s character alone is on the screen, clicking to
move was reasonably fast enough to keep up with an average player’s clicking, taking about 20
frames on a 120 FPS limit for the full animation and returning to wait for player input. The
problem arose when the player had a group of units who were also moving: their movement
animations added up, sometimes involving a number of smaller units occupying the same
square moving the same direction, taking long periods of time to show each individual

movement.

The first attempt to solve the problem was an animMult double that controlled the
length of each animation, starting at 1.0 for the original length and reducing by 10-20% every
time an animation played to hurry along the long chains. While much faster than before, it
became too fast to actually detect who was being moved at high speeds: enemies could appear
from the fog in front of them, or a follower may have been led astray due to some mischief and
the player wouldn’t notice in the increasing flurry of movement as the continuously clicked.
Resetting the animMult timer back to 1.0 after each movement wasn’t a good middle ground

either, causing both problems at once instead of solving them.

Eventually, instead of the stream-of-consciousness way of rendering inter-turns for the
player where animations only played after the last one was done, a collection of movement and
attacking actions were recorded and played near-simultaneously, greatly concatenating groups
of units moving or attacking at once, and keeping the aniMult properties as-is except for

resetting once the player stopped rapidly clicking to move around.

5.2.7. Lack of text-logs

Somewhat ironically, what with the theme of memories being prevalent and the debug-
text-output being retained for most testing versions, there are no text-log of any sort among

the Ul elements. Normally a staple in any roguelike-like game, the text log usually doubles as a

combat-tracker, giving exact values behind what hit / didn’t hit, and an adventure log, giving
exposition text about the environment or dialogue and generally setting the mood where in-

game images isn’t enough.

The absence of this feature in Trick of the Light was completely intentional. The lack of a
paper trail encourages players to be alert and attentive to the world they can see as it evolves,
taking things to their own memory as an example of how easy things can be to forget when
they’re not explicitly recorded or there’s no ‘go-back’ reset and retry button. Being as intuitive
and immersive as possible was a common theme that hopefully was carried through
successfully. Similar effects were also limited, such as damage numbers popping up after hitting
things, and even health bars were begrudgingly put in as a bare minimum to help indicate when

some creatures took more than one hit to kill.

5.3. Controls

5.3.1. From text to clicks

The control scheme started from its initial humble origins as text-based commands back
when everything was ASCII; everything was uphill from there. Like a classic adventure game, all
available commands were listed out to be typed and sent in one after another, leading to
separate menus with more commands, just like how the radial system described previously
worked. The first jump to keyboard and mouse was when SDL was put in, starting with using
the numpad to move in any orthogonal direction. It turns out fewer computers than we’d
hoped have a full 0-9 numpad in the format we wanted, where every key was mapped to the
direction the player was moving, and as the left-hand side of the keyboard (the qwe-asd-zxc

keys) didn’t line up the same way movement had to be transferred over to the mouse.

Clicking initially moved one in the orthogonal direction clicked, but was almost
immediately changed to fully pathing towards the square indicated instead: left click for a single

step and right click to keep taking steps till the destination was reached. One could right click

into unexplored territory as well, but the pathing wasn’t always intuitive: at every step the path
was being recalculated, and with movement sometimes coming faster than the player could
fully interpret, players would often watch semi-helplessly as their character tried to go
sometimes the complete opposite direction of where they intended if the destination was
unreachable (semi-helplessly, as they could click at any time to stop the auto-pathing but very
rarely did so during playtesting). The solution was to simply not recalculate the path: the first
route they saw was the one they took to the point something solid blocked their way, even if it

ended up requiring multiple right clicks to reach their destination.

5.3.2. Keyboard

The keyboard wasn’t entirely abandoned, though it turns out during actual gameplay it
often was. Instead of character movement, the keyboard was now solely for controlling the
map: WASD was used to move the camera around, allowing one to change the view to out-of-
sight locations and inspect memories in the fog, as well as the Q and E keys being used to zoom
in and out and Z, X, C for refocusing the camera at predefined close, medium and far zoom
levels. While necessary at times, the mouse could also be used for camera control by scrolling
to the edge of the screen and zooming in / out from the mouse-pointer’s location using the
mouse wheel, resulting in many playing the game one-handed without needing the keyboard
controls for a majority of the gameplay. This wasn’t seen as an explicit problem, as the
functionality was there if needed, and was mainly intended for more macro-oriented gameplay

anyways, such as checking a recently updated map.

5.4. Sound and music

Sounds were put in far into development, just before testing. IMGD undergraduate Dave
Allen created all sound and music assets, using a combination of assets he had created
beforehand and new ones using Foley or synthesized tones. Sound effects were very short,

often less than a second, and included menu-related noises like clicking or selection pips as well

as in-game effects like swinging a sword or lighting a torch. “Music” was implemented as a
collection of ambient noises made to sound like the area one was traveling around, looped until
moving into another area caused the track to switch. However, only the default open-area track

is currently used, regardless of the player’s location.

A complete list of audio assets is provided in Appendix E.

6. Testing

Testing was conducted using 20 IMGD undergraduate students as subjects, playing
simultaneously on separate PCs in the IMDG lab. Every subject completed an IRB Informed

Consent Agreement (Appendix A) before beginning.

The tutorial level (illustrated in Appendix G) challenged testers with tasks involving the
vision and memory-related mechanics. The goal was to see if players would understand these
concepts well enough to successfully complete the tasks, using an online post-test survey to

solicit their subjective opinion of the new systems.

Playtesters were encouraged to express their thoughts and ask for help anytime during
the test session. Testers were not observed as they filled in the surveys to minimize any

influence by the presence of the developer.

6.1. Results

The post-test survey included 1-4 Likert rankings of specific aspects of the game, as well
as four questions requiring short written responses. The survey instrument is reproduced in

Appendix B, with the complete results available in Appendix C.

2. How often did you feel as if you 4. How would you rate your understanding of the
understood what was going on memory/map-sharing system?
around you?
12
13 66.67%
~ 65%
4]
27.78%
4 0 ’
0
1 0% z 0% 5.56% 1 1
505 10% A q »j b a &
£ “3\'@ \?"{'\ &
— o & S &
N 1) > g o N =L
o &+ 4'_; ?}cs ¢-<3'
] 5 f"‘ {\b 6\?»
o & A ™ &
\9@ ﬁd\e '.,'\Z-ﬂ -ﬂf\

In general, the results indicate that playtesters were generally able to understand the
mechanics being presented, but experienced some trouble fully utilizing them. The theme-
relevant questions, related to knowing what was going on around them in terms of vision,
memories and lighting, all tested positively. “How often did you feel as if you understood what
was going on around you?” had 75% reply with ‘Often’ or ‘Almost Always,” while the question
“How would you rate your understanding of the memory/map-sharing system?” received over

85% saying the system was ‘Understandable’ or ‘Very understandable.’

However, the above results are not, by themselves, an adequate way to assess
comprehension. The understanding of a concept cannot be determined simply by asking “Did
you understand the concept?”, especially in a setting of imperfect information in which many

unknown things may be happening that a player doesn’t know they’re not reacting to.

In addition, the developer’s presence in the room during testing can influence the
behavior of test subjects. Some may be reluctant to disappoint the developer, even if they are

specifically instructed to respond as impartially and honestly as possible.

The written survey question asking testers where they stopped playing provided more
impartial data. The similarity between the number of players who reported understanding the
mechanics in questions 2 and 4 (averaging 80%) and the number who reported completing the
tutorial (about 70%) suggests that the latter players successfully acquired the knowledge

necessary to progress.

Physically being there to observe them as they played, being asked questions about said
themes and listening as some spoke their thoughts out loud as they played, confirmed their
understanding in ways that are more ambiguous in the written sections. Many of the questions
were related to interactions not specified in-game, clarifications about the way memories are
shared, or even just asking about how a new unit or interaction could be added in with the
mechanics they knew about. In a few cases, questions evolved into discussions about the
potential to expand on the design and the state of similar genre-related mechanics. The
suggestions for interesting and relevant additions to the game implies that players understood
them well enough to imagine and actually care about extra steps that might be built on those

mechanics.

However, equally vocal was the dissatisfaction with the movement scheme and
irregularities with controlling allies. The question “How would you rate the difficulty of
managing your own units?” received a very telling 90% saying ‘Hard’ or ‘Very hard’ with the
vast majority of the responses in the “What part of the game could use the most
improvement?” citing the Al followers often wandering away once out of sight. The animation
section mentioned before highlighted some of the solutions to problems that occurred though
the iterations, but there was always something that seemed to be slowing down gameplay

related to movement that always popped up after the previous problem was fixed. And allies,

while always attempting to complete their tasks in a predictable manner, sometimes acted
erratically from a players point of view, usually connected with being out-of-sight when moving

around corners or having long narrow corridors that results in round-about pathing.

The placeholder images and minimalistic animations didn’t seem to cause any backlash
at all (possibly because the testers were just being courteous) and the fog and sonar-reveal
effects were praised, but the Ul was mentioned as a problem when trying to learn all possible
actions or attempt them. There was some confusion about where to go exploring next at any
given moment, as evidenced by the low average of scores in the “How often did you feel
confident about where you should go/explore next?” question with a 65% ‘Almost Never’ or
‘Not Often’ answer. This was somewhat intentional, considering the efforts we made to make
the map boundaries appear indistinguishable, but written responses reacting poorly indicated
some more effort should be made to encouraging scouting in every direction to find interesting

leads a player would jump for themselves.

7. Postmortem

7.1. What went right

The game resulting from our research and experimentation feels like it holds up under
the weight of being a hybrid of so many familiar genres. The sense of adventure and intrigue
that emerge from the limited vision and small-scale interactivity was an experience goal we
believe we have achieved, and the RTS roots of base management and large-scale goals add
strategic depth and autonomous handling of usually boring micromanagement tasks. Testers
showed genuine appreciation of the game’s novel mechanics and expressed interest in the
project’s development. Having a single technical developer implement an entire game engine
from scratch provided a unique opportunity to learn about many different aspects of software

architecture, and how to customize common algorithms for specific purposes.

7.2. What went wrong

The most difficult part of development was the artistic portion of the game. At the start
of development, the engine was nearly complete and completely playable in an ASCIl manner,
but only by the designer who knew what everything represented and was able to extrapolate
the systems of paranoia and limited vision from a bunch of D’s and F's moving along a debug
text log. Making those concepts into a sharable experience was much harder to master than
any technical aspect of the project, because we didn’t know what the best possible solution
was for getting our thoughts onto the screen. Many of the game’s features and mechanics are
only felt indirectly or weren’t able to be fully implemented because of this design bottleneck,

resulting in only core aspects of the game being satisfactorily presented.

The testing results also indicate clear problems with the playability of the game,
primarily due to the difficulty in commanding allied Al and a few flow-breaking aspects of Ul
and animation. While the speed issues are superficial, the problems concerning the Al behaving
erratically are deeply entangled with the challenge of implementing fully independent entities
with personalized memories. While it would be easy to simply make allies cheat and use the
player’s location more often than they should actually know, the primary purpose of the fog of
war being escalated to these levels was to bring forth that level of separation on a universal
scale, with anything less being a clear violation of the founding intent and a failure to deliver

that world consistently.

8. Future development

Trick of the Light will continue to be worked on post-graduation, though with no
immediate plans for publication. Many more iterations of testing and refinement, not to
mention a complete overhaul of the game art, would need to be completed before any serious
attempt to bring the game to market. Nevertheless, the game’s genre-defying concepts have

garnered enough interest from testers to suggest it is worth offering to the public eventually.

Its campaign-style gameplay would allow for an incremental release, delivering packs of
maps filled with different challenges and races. At the very least, the game will continue to be

refined solely as a point of pride, adding new features regardless of who else is interested.

9. Conclusion

Trick of the Light was a pet project that was elevated to thesis status, becoming a game
about unshared fog of war and the related systems that developed from it. The concepts of
individualism and propagation of information were sufficiently expanded to create a playable
game, teaching numerous complex mechanics in an intuitive and immersive manner, though

most of the difficulty and effort in development was presenting those concepts to the players.

Its new and potentially confusing mechanics received a positive reaction during
playtesting, sparking playtester’s imaginations and intrigue, and encouraging future work in
development of the engine and ideas. The negative feedback involving the controlling of allied

units indicates a clear need to make more player-centric design choices in future development.

Works Cited

Bergstrom, Bjorn. FOV using recursive shadowcasting. Roguebasin. 16 May 2017. URL:
<http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting>

Burgun, Keith. Fog of War in Push the Lane (and strategy games, generally). 27 April 2017. Web.
URL: <http://keithburgun.net/fog of war-in-push-the-lane-and-strategy-games-generally/>

Burgun, Keith. Uncapped Look-Ahead and the Information Horizon. 30 December 2014. Web.
URL: <http://keithburgun.net/uncapped-look-ahead-and-the-information-horizon/>

Dungeon Crawl Stone Soup. Web. 3 February 2018. URL: <https://crawl.develz.org/>
Game-Icons. Web. July 2017. URL: <http://game-icons.net/>

Guillory, Brant. What don’t we know about what we don’t know that we don’t know?
Grogheads. Web. 15 July 2015. URL: <http://grogheads.com/featured-posts/8596>

Kiesling, Eugenia. On War without the Fog. Military Review. Web. September 2001. URL:
<https://www.clausewitz.com/bibl/Kiesling-OnFog.pdf>

Lewin, Christopher George. War Games and their History. Fonthill Media, 2012. Print. ISBN 978-
1-78155-042-7.

Milazzo, Adam. Roguelike Vision Algorithms. Web. 8 October 2014. URL:
<http://www.adammil.net/blog/v125_roguelike_vision_algorithms.htmlI>

Open Game Art. Web. 15 January 2018. URL: <https://opengameart.org/>

Register, Steve. Simple Line of Sight. Roguebasin. 15 December 2014. URL:
<http://www.roguebasin.com/index.php?title=Simple_Line_of Sight>

Rogue. A.l. Design. 1980. Video game.

SDL (Simple DirectMedia Layer). Open-source cross-platform development library. URL:
<http://www.libsdl.org/>

Setear, John. Simulating the Fog of War. The RAND corporation. Web. February 1989. URL:
<http://www.dtic.mil/dtic/tr/fulltext/u2/a228112.pdf>

SimAnt. Maxis. 1981. Video game.

Tiled. Web. 2017. URL: <https://www.mapeditor.org/>

Vandevenne, Lode. Lode's Computer Graphics Tutorial. Web. 2018. URL:
<http://lodev.org/cgtutor/raycasting.html>

Warcraft 3. Blizzard. 3 July 2002. Video game.

Wayward. Battlefield Uncertainty and Fog of War. Wayward Strategist, 30 January 2015. Web.
URL: <https://waywardstrategist.com/2015/01/30/battlefield-uncertainty-and-fog of war/>

Appendix A: IRB Informed Consent Agreement

Informed Consent Agreement for Participation in a WPI Research Study
Investigator: Brian Moriarty, IMGD Professor of Practice

Contact Information:
Brian Moriarty

bmoriarty@wpi.edu, 508 831-5638
Title of Research Study: Unshared Fog-of-War Experiment
Sponsor: WPI

Introduction: You are being asked to participate in a research study. Before you agree,

however, you must be fully informed about the purpose of the study, the procedures to be
followed, and any benefits, risks or discomfort that you may experience as a result of your
participation. This form presents information about the study so that you may make a fully

informed decision regarding your participation.

Purpose of the study: The purpose of this study is to obtain playtest feedback in order to
locate/address operational bugs, to identify opportunities for design improvement, and to
gather data to conduct statistical analyses on to measure games effectiveness towards the

experience goal.

Procedures to be followed: You will be asked to play a brief game lasting less than thirty
minutes. After completing the game, you will be asked to complete brief, anonymous survey
describing your subjective experience. Any responses you offer will not be associated with your

name or any other personally identifiable information about you.

Risks to study participants: There are no foreseeable risks associated with this research study.

Benefits to research participants and others: You will have an opportunity to enjoy and
comment on a new game under active development. Your feedback will help improve the game

experience for future players.

Record keeping and confidentiality: Records of your participation in this study will be held
confidential so far as permitted by law. However, the study investigators and, under certain
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be
able to inspect and have access to this confidential data. Any publication or presentation of the

data will not identify you.

Compensation or treatment in the event of injury: There is no foreseeable risk of injury
associated with this research study. Nevertheless, you do not give up any of your legal rights by

signing this statement.

For more information about this research or about the rights of research participants, or in case
of research-related injury, contact the Investigator listed at the top of this form. You may also
contact the IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu) and

the University Compliance Officer (Jon Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will not result in any
penalty to you or any loss of benefits to which you may otherwise be entitled. You may decide
to stop participating in the research at any time without penalty or loss of other benefits. The

project investigators retain the right to cancel or postpone the experimental procedures at any

time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

Date:

Study participant signature

Study participant name (please print)

Date:

Appendix B: IRB Study Purpose and Protocol

In addition to the playtesting survey, our intention was to poll several prominent
experts on game design (Sid Meier, George Phillies and Chris Crawford) on a single question

regarding their experiences with fog of war:

What map-based analog or digital games have you encountered that employ
particularly effective, creative and/or unusual implementations of (1) fog of war and/or (2) the

propagation/transfer of knowledge about the current map state?

It was hoped that their responses to this question would contribute to the development
of Trick of the Light’s mechanics. Unfortunately, the IRB protocol describing the proposed
queries was approved very late into development. The emails were sent out regardless, but no

replies were received in time for inclusion in this report.

Title: Unshared Fog-of-War Experiment

1. Purposes of study

a. To obtain playtest feedback in order to locate/address operational bugs in the game, and to

identify opportunities for design improvement.

b. To solicit the opinion of domain experts regarding the most effective, creative and/or
unusual implementations of fog of war and map-state knowledge propagation/transfer they

have encountered among analog and digital games.

2. Study protocol for playtest feedback

Participants are provided a computer on which to play the game. Investigators observe
participants during play. Afterward, participants are asked to fill out a short survey to
characterize their subjective experience.

2.1. Opening briefing for playtesters

“Hello, and thank you for volunteering to test my game. Before we begin, could you please read

and sign this Informed Consent form?”

[Subject signs Informed Consent form.]

“Thank you. When your play session is complete, | will ask you to complete a brief survey about

your play experience. At no point during your play session, or in the survey after, will any sort of

personal and/or identifying information about you be recorded. Please begin playing when you

feel ready.”

2.2. Post-Playtest Survey Questions

[Note: Space will be provided for optional comments after each question.]

All questions are optional. Respond to as few or as many as you want.

1. How would you rate the effectiveness of the tutorials in explaining how to play?

1-4 Likert scale, 1 = Poor, 4 = Excellent

2. How often did you feel lost or uncertain about your location while exploring?

1-4 Likert scale, 1 = Almost never, 4 = Nearly always

3. How often did you feel as if you understood what was going on around you?

1-4 Likert scale, 1 = Almost never, 4 = Nearly always

4. How often did you feel confident about where you should go/explore next?

1-4 Likert scale, 1= Almost never, 4 = Nearly always

5. How would you rate your understanding of the memory-sharing system?

1-4 Likert scale, 1 = Poor, 4 = Excellent

6. How often did you feel dependent on the vision-sharing system in order to progress?

1-4 Likert scale, 1= Almost never, 4 = Nearly always

8. How would you rate the difficulty of managing your own units?

1-4 Likert scale, 1 = Difficult, 4 = Easy

9. How would you rate the overall difficulty of the game?

1-4 Likert scale, 1 = Difficult, 4 = Easy

10. Did any aspects of the game seem particularly unusual or unexpected?

Blank field for written response

11. Do you have any general comments/feedback regarding your game experience?

Blank field for written response

3. Study protocol for solicitation of expert opinion

Three publicly-known professional game designers (Sid Meier, Chris Crawford and George
Phillies, all personal acquaintances of the principal investigator) will be contacted via email,
explained the purpose of the thesis and invited to voluntarily respond to the following

question:

What map-based analog or digital games have you encountered that employ particularly
effective, creative and/or unusual implementations of (1) fog of war and/or (2) the

propagation/transfer of knowledge about the current map state?

Key guotations from consenting respondents will be incorporated into the body of the thesis
report. Complete transcripts of all responses will be included as appendices in the report.
Respondents will be given an opportunity to review and approve the response text attributed
to them before report publication.

4. Hazardous materials/special diets

No hazardous materials or special diets are involved in this study.

Appendix C: Post-test survey results

3 3
15% 15%
[i]
ox [
LY 1 k- \h
& rd
¢

& 3
2 20%
15%
= B
LN 1] L
& £
& ol

1
~ ¥ L} L3 A
& & f(\ ﬁ‘é
f f@@“j\ ®
\\éi 35 o
&

103

13
65%

30%
1
0
5%
0% m—
A 2 i L
& o
@ &

104

Appendix D: Post-test survey data

(20) 2018-03-20 15:32:31

1.

10.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

4/4

214

214

3/4

2/4

3/4

| stopped playing after I got
miners to help me mine ores
but could not equip my own
pick axes. They were crossed
out in my menu even when |
didn't have another weapon
equipped. I felt like it would
be too difficult if I could not
mine on my own.

The walking mechanic is
hard to get used to, probably
because is it relatively slow.
| don't think the player
character should have to be
within one block of another
object to interact with it--2
blocks away seems more
natural.

Playing speed - | am trying
to play faster than the game
allows; it feels limiting.

| really like the exploration
aspect and figuring out the
mechanics!

(19) 2018-03-20 15:28:47

1.

10.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(18) 2018-03-20 15:27:22

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

X

3/4

3/4

2/4

3/4

214

2/4

| stopped playing after |
filled out the entire map.

Not really.

The ally management
system. It was confusing to
get map info, and when I tell
them to follow me, the units
would most of the time go
off on their own.

This is a good game idea,
just not my cup of tea.

X

3/4

2/4

4/4

3/4

2/4

3/4

10.

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(17) 2018-03-20 15:20:10

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

When | got to the buildings,
and found out that you
couldn't yet interact with
them

It was weird that it kind of
suddenly turned from an
adventure game into an RTS

INVENTORIES. it's
inconvenient and frustrating
that in the initial exploring
part of the game, you didn't
have enough inventory space
to carry everything you
found. Additionally, the
"escape” information panel
doesn't contain information
on dropping/equipping
items, so | need to stumble
around until I figured it out.

If this is supposed to be an
RTS-style game, then | feel
that the beginning adventure
phase is a little too long.

X

3/4

3/4

3/4

4/4

1/4

3/4

Once most of the areas had

been explored, leaving only
a few hidden behind mine-

able rock. It was too
frustrating to try and lead

10.

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(16) 2018-03-20 15:14:11

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

miners to those areas to mine
the rock for me.

Light and map sharing
system was very interesting.
Every time | shared a map
with an ally it felt like an
accomplishment. Seeing the
map revealed was rewarding.

Al pathfinding abilities.
Your followers too easily get
lost or distracted.

Very interesting concepts,
enjoyable to play. If Al can
be sharpened up or the
player didn't have to rely on
them as much, it might
improve things.

X

3/4

3/4

3/4

2/4

3/4

| stopped playing once |
accidentally got off the map
pressing the map moving
keys. | couldn't access my
characters at that point
anymore, and when | got
back onto a map everything
was set up at different places
but I couldn't move any
characters. | think | probably
played it wrong, but | don't

10.

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(15) 2018-03-20 15:11:39

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,

exactly know what happened
there.

I liked the right-click
commands.

Probably the icons and most
especially the movement of
the units under your control.
They move very randomly
after the player character
moves, and if you're not
careful you'll have to go
back and forth just to have
your party in one place.
Also, add a function to make
the player move more than
one tile, or just shorten the
map. It gets tedious clicking
once and then waiting for
them to make their one tile
move

It was slow, but it was
rewarding.

X

3/4

3/4

214

3/4

214

3/4

End of tutorial, then
explored the remainder of

the navigable map. No
further content.

The NPC's wandering by

interesting or unexpected?

9. What part of the game could use the most
improvement?

10. Do you have any general comments/feedback
regarding your game experience?

(14) 2018-03-20 15:10:13

1. How would you rate the effectiveness of the tutorials
in explaining how to play?

2. How often did you feel as if you understood what was
going on around you?

3. How often did you feel confident about where you
should go/explore next?

4. How would you rate your understanding of the
memory/map-sharing system?

5. How would you rate the difficulty of managing your
own units?

6. How would you rate the overall difficulty of the game?

7. Atwhat point in the game did you stop playing and

were rather strange, it was a
bit annoying to chase them
down to interact with them
because some of them
seemed to be doing their
own thing and would not
respond to follow requests.

2 major changes: - The
freezing on the map sharing
mechanic really breaks the
flow of the gameplay -
NPC's just disappear when
going off screen and don't
always keep up with the
player

- Making intro text sequence
more concise, explaining
mechanics a bit more
visually as opposed to just
paragraphs would make it
much smoother - Minor
detail, but it would be nice to
be able to use the keyboard
for navigation more
(especially using space to go
through tooltips instead of
having to click)

X

4/4

2/4

2/4

3/4

2/4

4/4
| stopped playing once it

10.

why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(13) 2018-03-20 15:10:11

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and

seemed like | explored the
entire cave and killed the
spider base.

I liked the concept of
commanding your units
around and how they worked
behind the scenes whether
you were seeing them work
or not. It gave the game
world a organic feeling.

| felt that the GUI for
commanding allies and
trading items was clunky. A
control scheme similar to
Warcraft 3 might be more
efficient and visually
appealing. I also feel that the
cave might benefit from a
procedural generated
randomness.

Interesting Concept that
seems to work well. If the
cave's size is extended or if
new areas are able to be
unlocked, the exploration
and resource management
will be a fun experience.

X

3/4

3/4

3/4

4/4

2/4

3/4

Once I finished exploring the

10.

why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(12) 2018-03-20 15:07:08

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

map

| was very surprised when |
realized diggers were
harvesting and delivering on
their own.

Pathfinding and Ul
navigation.

Very neat.

X

3/4

3/4

4/4

What memory sytem?

1/4

4/4

| stopped playing after the
tutorial had finished and |
felt like 1 had explored most
of the map. | stopped after
exploring most of the map
because | felt that | had seen
everything the game had to
offer at that point.

The actions of the
supplementary characters
(the miners/diggers
especially). Their movement
patterns were very erratic,
and trying to get them to stay
with me or perform certain
actions (especially mining)
proved to be quite the
challenge.

9. What part of the game could use the most
improvement?

10. Do you have any general comments/feedback
regarding your game experience?

(11) 2018-03-20 15:06:33

I think either the flow of the
game or the Al need to be
improved upon, more so the
Al. I had a lot of trouble
trying to keep my party
together, even after giving
them commands to follow
me. They would get lost in
the fog, and sometimes |
would not find them until 15
minutes later in some
random part of the map.

| had fun playing this game.
| do not play many RTS
games to begin with, so
waiting for each of my party
members/ enemies to take
their turns before | could
move to another space/
perform another action was a
little tedious. However, |
think the exploration with
the fog elements is really
well integrated, and |
enjoyed discovering new
areas within the game. The
combat could be better, as it
was really easy to take down
enemies and provided almost
no challenge. The biggest
issue is managing your Al
companions, as they easily
get lost behind you when
you move far away from
them, and they can drag you
down if they are trying to
mine the same block when
you want them to move, for
instance. Overall, the
aesthetics were done well,
and exploration was very
fun, but the combat and map
traversal could definitely be
worked on.

X

10.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

3/4

3/4

2/4

3/4

214

3/4

| tried to interact with a
block of allies and the game
crashed

| liked the sharing system,
but it was a little bit difficult
to understand

Sometimes the following
commands didn't seem to be
working. The tutorial could
use some proofreading You
missed a few apostrophes
and instead of "..." ",,,"
appeared multiple times.

| clicked during a map
exchange and the game froze
for a bit. If you could show
which items had been given
to your allies through
smaller icons, that would be
helpful. In the tutorial, you
instruct the player to right
click to command a group of
allies. This blurb appeared
before | was in range to do
this. I'd suggest having it
show up while the player is
in range. In the tutorial,
sometimes dialogue boxes
would appear on the right
side of the screen and be

(10) 2018-03-20 15:05:10

1.

9.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

partially cut off. | could not
read all of the text because
of this. I would suggest
editing the tutorial text to
make sure the grammar and
capitalization are correct. |
also didn't know what an
RTS was, but the tutorial
assumes that the player has
this knowledge.

X

4/4

414

3/4

3/4

1/4

3/4

Kept going after the tutorial
ended for a little bit to mine
out a corner of the map, but
when it led to a dead end |
was sad and quit.

| thought the mechanic of
being able to share maps
with allied units was
interesting. The same thing
was sort of implemented in
some versions of Civilization
(Civ 111, 1 think) where you
could trade maps with other
civs once you both learned
the writing and cartography
technologies.

The Ul

10.

Do you have any general comments/feedback
regarding your game experience?

(9) 2018-03-20 15:00:47

1.

9.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Good concept, with some
polish it could be great :)

X

3/4

3/4

214

3/4

1/4

414

Just after where the game
said the survey was done,
since | was curious. The last
thing I did was try to interact
with the thing just south of
me at that point, where |
gave it the ores | had and its
tiles quickly alternated
between two sprites, | think.

Units following me stopped
following me surprisingly
often. Led to one of the two
initial allies dying when it
went alone after | and the
other initial ally went
through a thin corridor that
led to a dead end. Maybe the
other ally was blocking it's
vision of me or something? |
dunno.

tough question...I guess the
ways you can control your
allies? The miners mined at
whatever was minable we
came a fair distance of, and |
wish there was a command

10.

Do you have any general comments/feedback
regarding your game experience?

(8) 2018-03-20 15:00:32

1.

10.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(7) 2018-03-20 14:59:26

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

for them to ONLY follow
me.

Not really.

X

3/4

3/4

2/4

3/4

2/4

3/4

When | reached the end of
the tutorial there wasn't that
much more to do than just
walking around.

You can't stray too far from
miners when you go light
speed because they get lost
in the dark or mine
something in there path
rather than move around it
which was kind of annoying.

The run time for map sharing
takes a few minutes to load
rather than just a few
seconds. Fixing this would
make the experience slightly
better.

Make the miners faster!

3/4

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

3/4

2/4

2/4

214

414

After | got to the castle at the
end of the tutorial, it seemed
to crash. It eventually
recovered but at that point |
didn't really know what was
going on.

The memory system seems
cool, but after the tutorial I
still don't quite understand it.
Will the units ever learn new
information if they're just
following you?

The Ul often seemed
unintuitive. The movement
was difficult, requiring a
click each turn. Why can't |
just move with arrow keys?
I'm not sure that two
separate move commands
are necessary (just have one
that does the path). Holding
down the movement button
to keep moving would be
good too. In terms of
inventory management, it
would be good to
automatically equip new
items if they are better than
what is already in the slot.
The page system also doesn't
seem to work very well, as
you can only scroll one way.
It would be better to click on

10.

Do you have any general comments/feedback
regarding your game experience?

(6) 2018-03-20 14:59:11

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

the page tabs themselves, or
have a full inventory screen
plus a hotbar. When dealing
with allies, | wasn't sure how
to get them to use the items |
gave them. They should
automatically equip the best
weapon in their inventory.
Finally, a major problem
with the turn based
gameplay is that the player
can't move while allies are
attacking inanimate objects.
Could you do the same thing
as Civ and make everybody
take their turn at the same
time unless they are in
combat?

In general, the Ul felt like it
could be made simpler. The
over-reliance on multiple
menus is super common in
this type of game and makes
them difficult to learn and
adds features that many
people will likely never use.

X

214
214
4/4
3/4
3/4
3/4
When the scripted tutorial

stopped, and | got to the
miners.

10.

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(5) 2018-03-20 14:55:47

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

- Allies disappearing when
performing pathfinding to a
blocked location

- Tutorials, needs graphics
for demonstration - More
unified Ul - The plus sign in
the inventory Ul is
confusing; does it add more
items or does it go to the
next inventory page?

X

3/4

3/4

2/4

414

2/4

3/4

Shortly after the tutorial. |
took a little time to explore
further, but at that point,
there were no more goals to
complete.

| liked that my little miner
friends have a mind of their
own as | traveled back
through the cave. I liked that
they went off to go mine a
rock and then continued to
follow me. At first | was
like, "Wait. Friend. Where
are you going?" Then It
made sense.

9.

10.

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(4) 2018-03-20 14:55:23

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

The Ul. I'm not sure if it was
the placeholder assets or the
structure of the U, but it felt
very cumbersome.
Especially the backpack. It
was a little annoying to only
see four or five items at a
time and to have my
inventory be in the way of
portions of the map | was
trying to see. I do like the
right click character menu,
though. I'm sure once there
are uniform art assets it will
feel a little better.

Overall, I think that it could
be a really fun game. It's
pretty buggy, which I'm sure
that you're aware of. It also
suffers from confusing
placeholder art assets. One
suggestion | have is to
maybe increase the
movement or turn speed?
Right now traveling long
distances feels a little slow
and awkward. I look forward
to seeing how the game
evolves!

X

2/4

1/4

1/4

3/4

1/4

3/4

10.

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(3) 2018-03-20 14:54:19

1.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Once | freed the units, the
rest of the game seemed
pointless.

Other than the Al constantly
breaking when it tries to
follow me moving faster
than 1 square at a time, the
load times were very off.

The load times and the
combat need to be improved.
Combat feels boring and
uninteresting.

To make the combat feels
better, | guess actually
commanding units to attack
rather than let them auto hit.

X

3/4

3/4

2/4

3/4

2/4

3/4

| stopped playing after the
tutorial, because | believe
that | had achieved the
understanding needed.

The base was not fleshed out
in the tutorial, so it was
confusing.

Movement, it can get tedious
when a lot of units are on the
screen.

10.

Do you have any general comments/feedback
regarding your game experience?

(2) 2018-03-20 14:52:27

1.

10.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was
going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

(1) 2018-03-20 14:50:48

1.

2.

How would you rate the effectiveness of the tutorials
in explaining how to play?

How often did you feel as if you understood what was

Nothing to serious when
wrong for mine, but
pathfinding could be
improved.

X

3/4

3/4

1/4

4/4

1/4

4/4

After | unlocked the whole
map through memories and
returned to the mining camp.
That felt complete to me.

I only had Al that | got to
follow me for the whole
game.

Al pathfinding. Bug fixing.
Combat.

| had a lot of glitches, like |
could hit enemies from
anywhere on the screen, and
| couldn't destroy the bat
birdhouse thing no matter
how many times | hit it. Also
my Al and | stopped taking
damage after the troll hit us
both.

X

2/4

4/4

10.

going on around you?

How often did you feel confident about where you
should go/explore next?

How would you rate your understanding of the
memory/map-sharing system?

How would you rate the difficulty of managing your
own units?

How would you rate the overall difficulty of the game?

At what point in the game did you stop playing and
why?

Did any aspect of the game seem particularly unusual,
interesting or unexpected?

What part of the game could use the most
improvement?

Do you have any general comments/feedback
regarding your game experience?

214

414

4/4

4/4

Stop Playing once | reached
a very populated area as the
turn based aspect of the
game had me waiting for
long intervals to move just
one step.

Map sharing cause large load
times, Speed traveling
caused companions who are
set to follow to be lost, High
populated areas with nothing
going on causes travel to be
painfully long.

Turn based aspect, if you are
in a room with people who
are set to friendly or neutral
status | should not have to
wait for a "turn” to move as |
am passing through.

I like this game
conceptually.

Appendix E: Art and audio assets

Note: These lists include all assets planned for inclusion in the first full release (totalling

seven levels) of the game. Only a subset was actually produced for the tutorial level completed

for the submitted project.

E1l. Audio assets

Filename +.wav Real name

Ambient Soundtrack

Description

Mot actual music: more like background noises, looping forever

Cave noises: echos, rocks crumbling, etc

Battlish tense atmossphere: an enemy is visible, but could be anything from a frog to a demaon
Friendly base noises: construction, chit-chat, fireplace crackles

Mystical ambience: odd charging noises, unexplained noises

Flowing water sounds, as if a pool of water was nearby, dripping, etc

Ancient abandoned ruins: creaking bookshelves, woaden floor, pillars falling

Opressive music: demonic sounds, an impossible fight theme

|actual music, non-looping but not necessarily long

CaveMusic Cave sounds
TenseMusic Battlish sounds
CampMusic Camp sounds
MysteryMusic Eerie sounds
WaterMusic Watery sounds
RuinsMusic Ruins sounds
BossMusic Boss sounds
Music

Intro Menu select music
Victory Victory jingle
Defeat Defeat Jingle

Menu Buttons

Click Menu Selection

BadClick Bad Menu Selection

BaddishClick Currently Unavailable Menu Selection
SelectClick Finished exit selection

Hover Hover aver Selection

Scroll Map Scrolling

RadialHover Hovering over radial options

Title menu music, more info when we get an artist for the cover but entirely up to you
Victory jungle for when you beat a level
Defeat jingle for when you die or fail an objective and have to restart

Quick, likely repeatable-very-quickly sound effects for most menu selection
Clicking a generic menu option

Clicking a menu option you're not allowed, or one that's greyed out / red
Clicking a menu option that does something bad or isnt applicable now
Clicking an option to go back a tab or click out of a window

Hovering over a selectable menu option

scrolling the map around with the mousewheel or being zoomed into a section
Hovering over your quick-select options

Sound Effects
Windup
BluntHit
SharpHit
StabHit
ArrowHit
BiteHit
PickHit
Missed
Blocked
HumanDie
AnimalDie
GoblinDie
WallDie
WallCrumble
TorchOn
Footstepl
Footstep2
Footstep3
Flap
WagonMove
Alerted
Stealthalerted
HeatingUp
Smelting
HammerClang
PotionMix
Training
YesMilordl
YesMilord2
YesMilord3
RightAwayl
RightAway2
RightAway3
MapReveal
FireSpell
FireCrackle

FireCrackle
Burning
Whirlwind
HumanTalkl
HumanTalk2
HumanTalk3
GoblinTalkl
GoblinTalk2
SpiderTalk
CultTalk
Throw
GlassShatter
SpellCharge
Fading
Appearing
Buff

Debuff

Eat

Drink
EquipW
EquipA
Pickup

Drop

Give

Attack windup
Blunt Attack
Sharp Attack

Stab Attack

Bow attack

Bite attack
Mining Pick Attack
Missed swoosh
Blocked a hit
Human dieing
Animal Dieing
Goblin Dieing
Demolished Wall
Chunk of rock being removed
Torch being Lit
Footsteps

A

"

Wing flapping movement
Wagon Movement

Solid Snake alert

Quiet alert

Smithy heating up
Smithy smelting ore
Anvil hammering
Potions being brewed
Units being trained

Generic acknowledgement
I

LY
Generic acceptance of orders
n

A

Unknown territoriy being revealed
Firebolt spell
Fireplace crackle

Fireplace crackle
Immoation
Whirlwhind attack

Human talking
P

n

Goblin Talking
P

Spider talking

Cultist talking
Something being thrown
Glass breaking

Spell being charged up
Becoming Invisible
Becoming Visible
Buffed Unit

Debuffed Unit

Eat some food

Drink a potion

Equip a weapon

Put on armor

Pick up an item

Drop an item

Give an item

In-game effects relevant to whatever characters are doing at the time
An attack of any type being wound up, followed by one of the effects below
Hitting someone with a blunt weapon, ie club

Slashing someone with a sharp weapon, ie sword

Stabbing someone with a sharp weapon, ie dagger

Hitting someone with an arrow launched from a bow

Biting someone, most likely from an animal like a spider / dog
Hitting something with a pick, likely a rock

Missing someone after trying to attack them

Blocking an attack

A human character just died

An animal character just died, most likely a spider

A goblin character just died

A wall was just completely mined out and reduced to rubble

A wall was mined enough to shake loose some ore

A torch was just lit

Someone walking, likely to be repeated multiple times in a row
A

A
Something, likely a bat, moving by flapping its wings

A wagon carrying items slowly moving around

An enemy just spotted you, or you both just spotted eachother
You or an ally spotted an enemy, but they havent seen you yet

A smeltery is heating up to break ores into bars

A smeltery is fully heated and is smelting ore

A blacksmith is working on tools on an anvil

An alchemist is mixing potions in a hut nearby

A unit is training nearby, practicing sword technigues or whatever

A unitwas just selected, and you're setting up an order to be given
I

LY
You just finalized the order made above, and the unit responds to confirm
A

A

You were shown a map, and get an animation of the new tiles being revealed
A fireball being launched
A torch or fireplace crackling

A torch or fireplace crackling
A unit is burning, likely totally immolated
You swing your weapon around yourself, hitting everyone nearby

A human talking about anything, not real words, just sims-ish mumbles
A

s

A goblin &
A

A Spider ~

A cultist»

You throw something in a direction, could be anything
A glass bottle is broken, likely after being thrown
A generic amgic spell is being charged

A unit is fading into invisibility

A unit is revealed from invisibility

A unit was buffed in some way

A unit was debuffed in some way

A unit just ate something

A unit just drank something, likely a potion

A unit just equpped a weapon

A unit just equiped some form of armor

A unit just picked up an item from the ground

A unit just dropped an item on the ground

A unit just gave someone else one or more items

E2. Art assets

File name Real name Description

Ground tile textures

StoneGroundl Rock Ground tile Standard cave ground found almost everywhere
StoneGround2 ~ n

StoneGround3 n "

StoneGround4 " n

StoneGrounds ~ n

TilledGround Farmable tile Mare dirt-like ground suitable for growing cave plants
WoodGroundl Wood ground tile Wooden ground tiles for old abandoned ruins
WoodGround2 n "

WoodGround3 " n

CorruptGroundl Corrupted ground tile Cursed ground tiles for areas effected by black magiks
CorruptGround2 ~ n

BioGroundl Biological ground tile Fleshy zerg-creep-like ground tiles that appear bicluminesent
BioGround2 " n

Walls / Water

Hardwall Hard Wall Unmineable walls that limit where units can go
HardwallFull " "

HardwallNoLeft n n

HardWallMoTopLeft ~ ~

HardWallOnlyBotRight ~ ~

Softwall Soft Wall Mineable walls that drop nothing
Softwallrull " "

SoftwallNoLeft n n

SoftwallNoTopLeft ~ ~

SoftwallOnlyBotRight n n

Crewall Ore Wall Mineable walls that drop a single ore / gem
Crewallrull " "

OreWallNoLeft n n

OreWallNoTopLeft ~ ~

OreWallOnlyBotRight A A

RichOreWall Rich Ore Wall Mineable walls that drop lots of ores / gems
Richwallrull " "

RichWallNoLeft n n

RichWallNoTopLeft ~ ~

RichWallOnlyBotRight A A

Gemwall Gem Wall Mineable walls that drop lots of gems
GemwallFull n n

GemWallNoLeft n n

GemWallNoTopLeft ~ ~

GemWallOnlyBotRight A A

Eternalwall Eternal wall Mineable walls with an endless amount of ore
EternalwallFull n n

EternalWwallNoLeft ~ ~

EternalwallMoTopLeft ~ ~

EternalWwallOnlyBotRight n n

EmptyEternalwall Empty Eternal wall Mineable wall that's slowly regenerating itself with ore
EmptyEternalWallFull n n

EmptyEternalWallNoLeft ~ ~

EmptyEternalWallNoTopLeft A A

EmptyEternalWallCnlyBotRight n n

EmptyEternalWallOnlyBotRight
Ruinswall
RuinswallFull
RuinsWallNoLeft
RuinswWallNoTopLeft
RuinswallOnlyBotRight
Water

WaterFull

WaterMoLeft
WaterNoToplLeft
WaterOnlyBotRight
Smoke

Non-wieldable items
COrel

Ore2

Ore3
IronBar
SteelBar
MithrilBar
BloodBar
Goldbar
Geml

Gem2

Gem3
Gemd

Gems
EmptyPot
RedPot
GreenPot
BluePot
YellowPot
PurplePot
TealPot
BlackPot
BloodPot
Firecrackerl
Firecracker2
Firecracker3
Firecrackerd
Bomb
BomblLit
HuntingMNet
Plantsl
Plants2
Plants3
Plants4
CorruptPlant
Log

Meat
RottenMeat

A

Ruins Wall

n

Iron bar
Steel Bar
Mithril bar
Blood Bar
Gold Bar
Gemstone

n
n
A

A

Empty Pation

Colored Potion
A

L
LY
A
A
LY
A
Firecracker
LY
L

A

Bomb

Lit Bomb
Hunting Net
Plants

n
n

A

Corrupt Plant
Log

Meat

Rotten Meat

M

Unmineable walls with an ancient ruin theme carved into them
M

M

M

M

Cavewater that only a few units can pass

M

M

M

M

Obscuring smoke that blocks vision of that square

Rocks / minerals that can be smelted into bars and whatnot
M

N

A smelted iron bar used in construction or smith work
~steel bar ¢
A mithril bar ~
Magically constructed bar made of flesh
Smelted gold bar just there to be valuable

Gemstones used for magical or payment purposes
Y

~
M

M

Empty potion that can be filled with whatever

Generic colored potion
M

Y
M
M
M
M
M
Firecracker or flashbang; pull and throw-like grenade
M
M

M

Generic cartoonly primitive bomb, unlit
Generic cartoonly primitive bomb, with a not lit fuse
Hunting net used to capture small prey

Cavernous plants grown and used in potions and whatnot
M

N

M

Plants that have been corrupted by evil magicks

Generic log gained from cutting cave plants

Meat dropped from cave creatures, generic turkey stick is fine
Rotten meat from when above meat is left unstored for too long

RottenMeat
Leather

Scrolll

Scroll2

Scroll3

Scroll4

Scrolls
MessageScroll
HumanCorpse
GoblinCorpse
SpiderCorpse
MonsterCorpse
SkeletonCorpse
Bonel

Bone2

Bone3

Wieldable-items
WoodPick
IronPick
SteelPick
MagicPick
WoodSword
IronSword
SteelSword
MagicSword
WoodSpear
IronSpear
SteelSpear
MagicSpear
IronShield
MagicShield
LeatherArmor
PlateArmor
MagicPlateArmor
PlainRobes
MagicRobes
RogueRobes
CultRobes
IronKnife
Steelknife
Magicknife
Culiknife
Stick

Club
Bludgeon
HookChain
WoodBow
IronBow
MagicBow
WoodStaff
MagicStaff
SkullStaff
Tribalstaff
BloodyStaff

Rotten Meat
Leather
Scroll

M

A

N

~

Message Scroll
Human Corpse
Goblin Corpse
Spider Corpse
Monster Corpse
Skeleton

Bone

A

n

Pickaxe

Shield

N

Leather armor

Plate armor
Enchanted plate armaor
Plain robes

Magical Robes
Rogueish stealth robes
Cultist robes

Knife
LY

~

”n

Stick

Club

Bludgeon
Hook and Chain

Bow and arrow
LY

A

Staff

Magic staff
Skulled staff
Tribal staff
Bloody Staff

Rotten meat from when above meat is left unstored for too long
Leather from some dead animal

Mystic scroll that casts a spell when used
A

A
n

~

Paper with an intelligence report on it, or just a wraped up note
Generic human corpse

Generic goblin corpse

Generic spider corpse

Generic monster corpse of anything else

Human / goblin corpse degraded to a generic skeleton

Random bone left from a decayed body

A

n

Pickaxe used for mining
A

L

~n

Sword used for slicing

~n

L

~n

Spear used for thrusting
~n

L

~n

Shield used for blocking

~n
Armor used for not-dieing
~n

n

Robes with no magical properties, yet
Wizardish robes, more tribal than fancy
Cloak-and-dagger-like robes

Ominous cultist robes with hood

Knife used for stabbing

n

n

Knife used for stabbing a sacrifical sheep: tribal / bloody

stick used for poking

Club used for smashing

Bludgeon used for knocking out guards with a hit to the back of the head
Meat-hook and chain used for making sure enemies cant escape a-la Pudge

Generic bow with a notched arrow
N

s

Staff used for walking

Staff used for casting spells, but obviously made from the above staff
Staff with a skull on top

Staff with a tiki mask and other baubles

Cultist staff with organs and such on it

BloodyStaff
OnTorch
OffTorch
Onlantern
OffLantern
Orbl

0Orb2

0Orb3

Orb4

Hero
Heroldle
Herolnjured
HeroAlert
HeroCorrupt
HeroAttackMelee
HeroAttackRange
HeroThrowing
HeroCastHand
HeroCastltem
HeroRecoil

Wielding units
GobArcher

GobHunter
GobCaptain
GobScout
GobBoss
GobDigger
GobFighter
GobWitch
Cultist
WitchCultist

Goblin buildings
Smeltery
Barracks
CraftArea
GobStorage
WitchHut
GobCapital
GobBarricadeUD
GobBarricadelR

Bloody Staff
Lit Torch
Unlit torch

Lit lantern
unlit lantern
Clear orb
Darkish orb
Darkening orb
Corrupt orb

Idle hero
Injured Hero
Alert Hero
Corrupted hero
Swinging hero

Bow-shooting hero

throwing hero
Spellcasting hero
Item-using hero
Recoiling hero

Goblin archer
Goblin hunter
Goblin captain
goblin scout
goblin boss
goblin digger
goblin fighter
goblin witch
Generic cultist
Runed cultist

Goblin smeltery
goblin barracks

goblin crafting station

goblin storage area
goblin witch hut
goblin capital
goblin barricades
goblin barricades

Cultist staff with organs and such on it
Torched used for lighting up the place
Snuffed torch

Lantern used for lighting up the place more
Snuffed lantern

Like a seer's crystal ball, only handheld
Above, but kinda dirty-looking inside
Above, but mostly dirty looking
Completely darkened orb, cultist-y

The guy the player will be seeing every moment

The hero standing still

The hero idle but injured, used instead of idle whenever at low hp

The hero in a ready stance when an enemy is on screen / in combat

The hero idle but with cracks and whatnot like a cultist, maybe glowy red eyes
The hero swinging his melee weapon

The hero shooting a bow at someone

The hero throwing something

The hero casting a spell

The hero using a magical item, just holding a scroll above his head is fine
The hero recoiling after just getting hit by an attack

The goblin's designated ranged-weapons user

Goblin in charge of catching cookable prey for meat

Authoritative goblin but not that much stronger than normal

Goblin made for exploration and sneaking around

Strong goblin leader

Goblin peon made for mining and construction

Goblin grunt in charge of punching / clubbing things

Witch-doctor like goblin with a tribal mask

Crazed generic-bloody cultist most likely wielding a knife

Spellslinging demon-summoning Cultist with glowing bloody runes all over his body

Smoke and rock oven that could turn oresinto slag

goblin housing / war room area

Building with lots of low-quality crafting supplies / anvils for weaponmaking

Storage building or sectioned area for lots of supplies

Spooky area filled with skulls leading to a mystic oracle-like building
Slightly-fancy tent with gold and supplies and message boards similar to human capital

Spears and sticks and such formed into semi-fence structures
~

Other units

Spiderl Spider Giant feral spider, just a human-sized tarantula

Spider2 Hauling spider Same tarantula, only dragging someone it's captured

Seeker Seeker spider Thinner spider used for scouting, daddy-longlegs like

Spiderlings Spiderlings Mass of baby spiders

BigSpider Boss spider Older, battle scarred spider, obviously stronger than other spiders
Spidernest Spidernest Giant egg-sac nest with spiderlings crawling around

Spiderhale Spider hale A burrowed-spider waiting to pop out

Maole Giant Mole Massive feral mole, digging claws and possibly rabid-looking

Ogre QOgre Giant club-wielding brute

Golem Magic golem Stone / runed golem, big and intimidating tank, not cultist-y

BigGolem Massive golem Same golem, only 4x4

Zombie Human zombie Rotten, skeletal human zombie

Wispl Wisps Orb-like luminous wisps

Wisp2 Wisps »

Wisp3 Wisps »

HumCartFull Filled human cart Cart filled with supplies, pullable by humans (not horse-drawn carriage)
HumCartEmpty empty human cart same cart above only visibly empty

GobCartFull filled goblin cart Goblin cart filled with supplies, more rickshaw than human cart
GobCartEmpty empty goblin cart Empty goblin cart

Bat Bat Meaty bat that flaps around blindly and gets killed for meat

Batcave Bat-cave Hole-filled wall where bats come out every once in a while

Rat Rat Tiny rat, barely noticable

Critter Critter Miniature non-threatening dog-like critter that'll wander aimlessly for decoration
Slither Slither Like magic-the-gathering slither, 2 claws for hands and sharp beak, no legs, small and non-threatening
PressureOn Activated Pressure plate Pressure-plate that has something heavy on it

PressureOff Deactivated pressure pl Pressure-plate that's yet to be stepped on

LeverOn Lever pulled down Lever that's been pulled to one side

LeverOff upright lever Upright lever that hasn't been used

WoodDoorOpen Open door Opened door, with the hinges on the left [right

WoodDoorClosed closed door closed door

MetalDoor*=* Metal door Metalic-door made of harder materials

RuinsDoor*** Ruins-themed door Ancient fancy-door connected to ruin-walls on the left { right

SpikeOn Spike-trap extended Spike-trap with spears sticking out from the ground piercing whoever's above
SpikeOff Spike-trap un-activated The holes of above spear-trap without the spears sticking out, yet
FlamesOn Activated Flame-trap ~ Flames jutting out of holes on the ground

FlamesOff Unused flametrap The holes of said flames above, without the flames

OrbOn Orb-turret activated An orb on a pedestal that's probably going to zap anyone who comes near
OrbOn Orb-turret activated An orb on a pedestal that's probably going to zap anyone who comes near
OrboOff Orb-turret deactivated An orb on a pedestal that appears deactived compared to above
OrbEmpty Orb-turret without an o1The pedestal from above with no orb, its been stolen

Portal Teleportation portal A portal for teleportation, should look jump-in-able

BookshelfFull Filled bookshelf An old bookshelf filled with books

BookshelfOne Single-book bookshelf An old bookshelf with a single important looking book

BookshelfEmpty Empty bookshelf An empty bookslef, slightly ruined and decrepid

Rune Glowing rune A cultisty rune glowing some random color

LargeRune Big glowing rune Same as above, only 2x2 in size

BigRune Masive glowing rune Same as above, only 3x3 in size and the middle made for sacrifices
LaserUD Mystical Laser lines A line filled with magical energy, like a spell shooting from across the square
LaserLlR " ~

LaserUL-DR " ~

LaserUR-DL " ~

Command lcons
Interact

Talk

Trade

Scout
AttackPoint
AttackGuy
GiveMessage
Construct
Grab

Release
Follow

Lead

Use

Equip

Give

Drop

Throw
Inspect
Knockout
Wait
WaitXTurns
Return
GetReturn
DoFlee
DolnjuredRetreat
DoFight
AndThen
MassFlee
MassAttack
MassFocusfire
MassFollow
MassLead
MassHold
MassHoldMe

Spell lcons
Whirlwind
Shove
Heavypunch
Knockpunch
Interrogate
Fireball
Freeze
Flameblast
Smokegrenade
Guard

Block
Shieldsup
Counterattack
Throwdust
Bless

Curse
Moralboost
Commandpoint
Heal
Regeneration
Cauterize
Knifethrow
PKnifethrow
BKnifethrow

Interact with x

Talk with someone
Trade items

Go scouting
Attack-move towards a i
attack a specific unit
Deliver a message
Construct a building
Grab a unit

Release a grabbed unit
Follow a unit

Lead in front of a unit
Use an item

Equip a weapon

Give an item

Drop an item

Throw an item

Inspect something
Knockout a unit

Wait here

Wait here for x turns
Return to me

Getinfo then return

If in trouble, flee

If in trouble, put up a fig
If in trouble, fight to the
And then,,,

Everyone flee
Everyone attack
Everyone attack this guy
Everyone follow me
Everyone lead in fronto
Everyone hold position
Everyone hold position

Whirlwind

Shove

Heavy attack
Knockback punch
Interrogate
Fireball

Freezing blast
Firey blast

Smoke grenade
Guard

Block

Shields up!
Counterattack
Throw dust

Bless

Curse

Moral boost
Commanding point
Heal

Regeneration
Cauterize

Knife throw
Poisoned knife throw
Bloody knife throw

All are spell / command icons that may be used for more than one relevant ability
A very generic 'interaction’. Could be anything from pulling a lever to giving items to a building
Talk with another unit

Trade items with a unit or building

Scout to some far-off position

Attack anything you see while moving to a position

Attack a specificunitin view

Deliver a message to an allied building

Order the construction of a building

Grab and carry someone in view

Release anyone you're currently grabbing

Follow someone in view

Guide someone wherever they go, trying to stay in front of them

Use an item you're holding

Equip an item they're holding

Give an item to another unit or building

Drop an item they're currently holding

Throw an item at someone or someplace in view

Inspect something, bringing up its info-screen usually

Try to knockout a unit non-lethally

Wait at a targeted position until | say otherwise

Wait at a targeted position for x turns

Return to me when you're done with the previous command

Get updates from an information hub, then return to me

If you run into enemies along the way, just run to safety

If you run into enemies along the way, put up a fight but run if you're low on hp
If you run into enemies along the way, fight them till one of you dies
Queue up commands

Everyone around me should run away

Everyone around me should attack to some point

Everyone around me should focus attacks on that guy

Everyone around me should start following targeted unit

Everyone around me should start leading in front of targeted unit
Everyone around me should hold position where they're currently at
Everyone around me should get as close as possible to me and then wait

A spin-your-arms-around attack that hits everyone around you
A spin-your-arms-around attack that shoves away everyone around you
A heavy attack that deals more damage but slows you down

A weapon or punch that knocks back the target

Interrogate a captive enemy for information they know

Cast a fireball on someone

A chilling ace blast that freezes enemies hit

A Fiery blast that ignites enemies hit

A smoke grenade that can obstruct vision

Guard an incoming attack

Block with a shield

Form a shieldwall with a massive tower-shield

Prepare to reflect an attack and counter with your own

Throw dust at enemies eyes, blinding them

A holy blessing on a friendly unit

A debilitating curse on an enemy unit

A Fistpump that improve allied stats

A commanding-looking point, as generic as possible

A healing spell

A heal-over-time spell

Heal wounds by burning them shut

Throw a knife at a target

Throw a poisoned knife at a target

Throw a bloody knife at a target to make them bleed over time

Status effect icons

Scared Scared This unit is scared of something

Terrified Terrified this unit is REALLY scared of something

Cowardly Cowardly This unit wants to run away from battle

Selfish Selfish This unit only cares about himself

Alerted Alerted This unit is aware of enemies nearby

Cautious Cautious This unit is suspicious that there may be nearby enemies
Safe Safe This unit is unaware of nearby enemies

Fading Fading This unit is becoming invisible

Invisible Invisible This unit blends into the background and cant be seen
Revealed Revealed This unit is revealed, even if invisible

Numbing Numbing This unit is going numb, slowly becoming unable to move
Paralyzed Paralyzed This unit is paralyzed and can't move at all

Helpless Helpless This unit is helpless for some reason or another, and isn't a threat
Threatening Threatening This unit looks like a dangerous threat

Hooked Hooked This unit has been caught in a hook and has its movement limited
Ignited Ignited This unit is on fire

Magiclgnited Ignited with magic This unit is on fire with magical, multicolor flames
Haolylgnited Ignited with holy flame: This unit is on fire with blessed holy flames

Darklgnited Ignited with cult flames This unit is on fire with dark, unholy, cultish flames
Illuminated Hluminated This thing is glowing

Darkened Darkened This thing is much darker than it usually is, sucking light around it
Disguised Disguised This unit is disguised, wearing a mask a-la tf2 to trick enemies
Marked Marked This thing is marked, making it something to focus on
Tracked Tracked This unit is being tracked, making it easier to follow

Asleep Asleep This unit is asleep

Nightmares Nightmares This unit is asleep and having nightmares

Netted Netted This unit is caught in a net

Growing Growing This unit is growing to a larger size

Shrinking Shrinking This unit is shrinking to a smaller size

AttackBoost Attack Boost This thing has a physical attack buff

AttackLoss Attack Loss This thing has a physical attack debuff

PoisonAttack™** Poison attack boost/los: This thing has a posion attack buff or debuff

MagicAttack™®** Magic attack boost/loss This thing has a magic attack buff or debuff

PureAttack*** Pure attack boost/loss This thing has a pure attack buff or debuff. Pure damage is only blocked by pure defence, so its mostly piercing
Speed*** Speed boost/loss This thing has a speed buff or debuff

Speed*** Speed boost/loss This thing has a speed buff or debuff

Defence®** Defence boost/loss This thing has a physical defence attack buff or debuff
PoisonDefence®** Poison defence boost/lt This thing has a posion defence buff or debuff
MagicDefence*** Magic defence boost/lo This thing has a magical defence buff or debuff
PureDefence®** Pure defence boost/los: This thing has a pure defence buff or debuff

Courage Courage This unit is encouraged and brave

Blinded Blinded This unit is completely blind

Farsight Farsight This unit can see farther than normal

Darksight Darksight This unit can see farther in the dar than normal

Nightvision Nightvision This unit can see everything in the dark

Truevision Truevision This unit can see invisible units

Xrayvision Xrayvision This unit can see through walls

Shortsighted Shortsighted This unit has shorter vision than usual

MagicProtect Magic Protect This unit is protected against harmful spells

Magiclmmune Magic Immunity This unit is immune to all spells

Magicvulnerable Magic Vulnerable This unit is vulnerable to spells

Poisoned Poisoned This unit is poisoned

Bleeding Bleeding This unit is bleeding

Insane Insane This unit is crazed and insane

Enranged Enranged This unit is in a battle frenzy, not strictly bad

Chainlightning Chainlightning This unit is effected by lightning that will spread to other units around it

wWebbed Webbed This unit is caught in a spider's web

Appendix F: Class hierarchy summary

Class Name Ais a parent of B Ais stored within B

] L] >

--
.
.

SquareQue |< ------------- '

fmmms | : [muttiunit | | Building |

MultiBuilding

| Captial | | Framework |

Appendix G: Level maps

G1. Map key

Key: the character below will produce the resulting unit or item in the designated x/y

coordinate

w = Wall

o = Orewall

O = Rich Ore Wall
E = Eternal Wall

= Hard Wall

= = Floorwall

~ = Wood blockage

A = immortal wall

@ = Player
I =Torch
: = Lantern

t = Copper Sword

F = Tutorial Fighter 1
G = Tutorial Fighter 2

p = Priest

b = Bat d = Digger
B = Batcave c=Cart
T="Troll s = Scout

Z = Monstrosity h = Hunter
/ = Eyebeast f = Fighter
x = Spider C = Captain
% = Spider Nest e = Explorer
* = Spiderling a = Archer

. = Seeker

) = Stalker H = Human

4 = Chest with goodies

5 = Chest with more goodies
6 = Locked chest with goodies

7 = Chest with rare goodies

& = Storage
S = Stronghold
S = Smeltery
R = Barracks
K = Blacksmith
W = Witchhut

; = Torchstand

[=Trap
| = Lever

D = Door

G2. Tutorial level 1

£ 35
"#0000#000W # H# # re #",
" 0000000 bbbb bb i rarans #",
"0 ¥ % % FERE & re E & # % #",
"H0H0H it HEEE e # Q0000 #",
"iHHHEHHHE ¥ & & F e e # & ¥ & #", /) 38
i W BREERLELLLLLes e e #HHR",
"# E . WIW HHHE HHHE #",
"3 FEERE HEER fa= s H FEEREEEEREEER w #",
" BEE WEREEEREES h E=r W #",
" e : b #H# w b #', /) 25
" #r0000W : : H#HE W #",
"##000000 H#H o} 3 iHHE bw #",
“"#o00 # # # b H#H W #",
" # HHt % C R #H wod o ww #",
i bbb # 5 F h R #H wowwwOOwWh", // 28
i # ; # ; b ## OOwWEOoooO#",
"3 # # HEEREE H W $HHHEHEHHHoR ",
"I E= ¥ HEEER f K HHHHEEEE #",
g g H#w # 8 ## : # # HE"
"it e ey pr=r =y Er=r #", /15
" fErararanadt frere e =y fr v e v e e ¥ #",
"# o * #E; =y G SEEER EERERSREERRER B #",
"4 H## H## e el ",
"How 55 # s HEHHE" ,
"H# ww 5 s F FEL £EE5 rE5s &5 e FHHEHERERER" , S/ 18
i £55 5 & 55 e 5 £55 #",
"I # & w E= dtrors re re HHHHGIHEEE ;d #7,
“Hw Hid wW O FHHEHEHEHEE rororene 3T w0 dHE dHEE 0 ddd #7,
"H# e W a W Hrore rane HHHHE Frrorara d #",
“itre renadiliE w O Wi # Er=r ¥ re HEedEEHHEHET, S S
" repitiine e #t oo dHHE ww % ey ome FEEE W
" @ rare HE ; # #HO# W W rar: wE =
" e v renaylRE 55 # #o 5 G e FE #",

The player (@) starts in the lower left corner, waking up after having been knocked out
due to an earthquake, and are reminded of their duty to check up on a base to the north. Some
starting equipment can be found by groping through the darkness, and after breaking through
the rubble they meet a fighter who welcomes them. His memories of the base are shared, but
the road turns out to be blocked by fallen rubble. A miner is needed to pass, where they’re told
of a small mining operation to the east. Heading that way they’re warned of a troll (the T) up

ahead by a fleeing fighter, who turned off his lantern to escape unseen. If the player turns off

their lantern they can sneak through the rubble to the south to reach the base, or head to the
right to access a few chests (4, 5, 6) for better equipment. Leaving their light on puts them in

range of the troll’s vision, who will come and fight them.

Coming up to the base reveals a swarm of spiderlings, who must be cleared out to reach
the miners trapped behind a wall of rubble (bottom right). The player can then lead the miners
back along the path, breaking down the walls in their way and reaching the stronghold (Middle
section, S). They’re informed of the situation of suspiciously inconvenient quakes and of spiders
starting to get aggressive, with their next goal being clear out any nests they can find. They
have ample time to mine as much as they need to make new equipment, raise a small army and
scout out the nearby spider nest, which will start sending out hunters if enough time passes.
After the nest is cleared they’re informed they’ve beaten the tutorial, and can quit out or

explore the rest of the map if they please.

G3. Planned tutorial level 2

r 35
#
"#0 b h winHHEEHE #",
" bbb h WWEHHHHHE w #",
"Hunwow #HE b p & (G #",
"# wwww iR HHHHE #", f/f 3@
g i 8% ddd s ",
"4 S d #4 ",
" SLELns o] £55 #H",
"# HEERE g 00 #5 HE",
"# BEEEEE BERER] fa= s HEHEHE", JS 25
"# FEEEER FEEEER FEEg HE",
"# B #EEEs BEEEEE Wi ### bbbbb #H#",
“iHHE # HHHHE b # iHHHHEHEE heaaae HHHE HHHE #",
" iHHHEHE HHHHE {HEHHHEHHHR o ooOWWIW it HEHHEE #",
"$# IHHHEHEhERERRE $HEHHHEEHHHEROO00wWW #HE owww #", F/Ff 28
"# FHEHHHEHEHRE #HEOoooOW HHE O O# # #",
" R ##ooo bW # #",
" R $HHHE ssTf #HHRo $HHE #",
" # e 5 aa oo # #",
"# e C #Hooow # #", F/Ff 15
"# C C #Hooow H#i# #",
"4 5 ## ## ",
"# K FREHERRES fr=r f ==y #",
"# #HE # bitHHEHE e L e # #",
"# wWE SEEREL £55 # # #", f/f 1@
" FHww whEE 5% F55 # #",
"# W == HEy # #",
" Hihww w i # #",
"# p FEFOoWWE FEEREEEER E= #",
"# pr= T Er=r #", /f 5
"4 e ¥ p H#H #",
"# #HHOOW # # #",
"4 Boft £ # ",
" " 'y 1

Prototype of the second planned level, made to introduce base-building mechanics and
spider ambush tactics. The player was to be in charge of constructing buildings destroyed from
earthquakes, and eventually learn of spiders picking off diggers and tasked with exterminating

them. Condensed into one level to facilitate testing.

G4. Planned tutorial level 3

, /35
"4 #",
"4 #",
"4 #",
"4 #",
"4 #",
"i £ #",
"i #",
"4 SEERES #",
"3 - ¥ # #",
" & E # #",
"#oo000ow # # #",
"# dddp HEE #",
“"#oo0 # #",
"4 #",
"4 #",
"i #",
"4 - #",
"3 #",
"4 #",
"4 #",
"HHEHSEHEHEE B #",
"4 # TR #",
"4 HHHHEE # # # #",
"4 p B HEHEHR #",
"i EFEEFE h ¢ HEHEHEHEE"
"4 ¥ K # #",
“IHHHEEE B R B # % # #",
“"$#bbbbb# # # # # # #",
"$hbbbb# # # # # ff FHHEHHEE #",
"4 # ## % # # # FEE AT
THeHE B OB B £ # 5 # B gEEEE® #",
"4 #! # & # # W R # # FFF #",
"t @ # # #oEEE g
" i

Rough prototype of the third tutorial level, made to teach more about tasks, commands,
memories and not believing everything one sees. The player would start in a small base, tasked
with collecting three special talismans in nearby ancient ruins. The ruins themselves contained
various traps and monsters trying to drive them away, and as the talismans get collected new
monsters would start spawning periodically. They’d rush out and cause production-stopping
chaos among the workers at home, involving hallucinations, madness and forgetfulness
depending on the order the amulets were acquired. Collecting them all would attract a demon
from a final sealed ruin, hunting the player relentlessly till they brought the amulets to its now

opened altar.

G5. Raycast test room

= = =
[T

LR

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

"g g ! # #",
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

= =
-

+#
H H
t.-=t.-

Elﬂ:
...=|..=|..

#EE #EEE #
@
#5 H

= =
-

-

= = = =
e

H oH oH R
H OH
t.-=t.-=l.-=t.-=t.-

Ehr s R EREES

= = =
[

E-
[

=

A debugging room made to test and experiment with how vision was drawn. The player
was given infinite sight range, making long-distance blockers appear to cast shadows. The
raycasting function went through numerous iterations before an acceptable method was

confirmed to work.

G6. Digger Room

El -";.'II. 1
"4 d dd #",
"4 d & dd £#",
i d dd £#",
" #, /15
- o

El
I WIWIWIWINWINWE R,
" SFrnnain DO 00NN O O OWIWIWIWWWINI VI
" Frnaew 00000 IERW W
"R ae000 o0 0000wtlE X x
" FrwoowiHHWO 00 oWWWNWIWO 00000 0w
" SOOI O O oW
" B DO DA O O O OWIWIN O DWW
" 0000 0w 0000w
" 00000 ovannR 00w o 0000w
" S OO ORI
" v oI D00 Ouavinvini
"B O D OWWWI W IV
" D0 0w
"#00000000000000000000000000004%
" O D OV WY
" Hra e oI O DO D Cuaiiviiviay
" BN O D OWWWI W IV
T T T T T TR W T T U T I
I WA
" Huanid OO O AW W
" AN DWW O DO D OuiiiiE
" BN O D OWWIWI W IV
WA E W
" "/ 38

(SRS

/7 18

o Wt

// 15

- ow W

/i 20

o e

ff 25

B M K K K M K R K R B W R N R N R K R OH
I-I-I-I-I- I-

Simple room filled with walls of all types to test mining mechanics. The right side of the
room was eventually added to make sure spiders were working as intended after a minor

overhaul of the way status effects were handled.

141

G7. Stress testing room

woOOww wE#"
o OwoE#"
codo wowwER"

|

R . T L
[} (%]
=

HH K H K E RN

HOH G H M N R K W

#OH A
m

[

/28

A miniature base with all unit-producing buildings, made to see how many could be
handled at once on maximum turn-speed before causing lag. Miners and hunters continue to
bring resources to the stronghold, which eventually assigns new workers to be built what speed
up production, to the point the world is completely filled with kobold troops. Some of those

troops blocked allied movement, so production would eventually grind to a halt.

Appendix H: Unit list

Monstrosity. Scary looking, but actually very weak. Sneaks around in the dark and magically scares
everyone nearby when confronted to make enemies prioritize running away. Runs away itself the
moment it starts taking damage.

Troll. Regenerates health rapidly, but does low damage. Has terrible night vision, despite living in a cave.

Eyebeast. Weak in combat, but can gaze at targets to make them think everyone besides the eyebeast is
an enemy.

&

Spider Seeker. Scouts of the spider army. Can become invisible for short periods of time, but very
cowardly if visible.

Spider Hunter. A fully grown spider. Hunts weaker targets with invisibility and poison. Will drag
paralyzed targets back to their nest, but flee from most combat situations.

&

Spider Nest. A huge nest of spiders, and technically their capital. Collects meat from hunted prey and
spawns spiderlings over time.

Spiderling. A young and relatively tiny spider, but much more aggressive than its adult version. Will
defend its nest and grow into other spiders if enough meat is hoarded.

Spider Stalker. A spider made for fighting. Injects a long lasting poison into targets then attempts to flee
to darkness.

Kobold Captain. A kobold commander, in charge of leading the troops to battle enemies. If any are
discovered, will rally a large army and hunt them down, but if the battle appears lost will order a call for
retreat and run back to the capital to heal. A player will typically possess one of these as their avatar,
overriding their usual behaviors.

Kobold Cart. A kobold hauler, being able to carry many more items than usual and used to deliver
supplies en-masse between buildings.

=

Kobold Digger. A kobold miner, able to use picks. Can only carry a few ores at a time before having to go
store them at the closest storage area or capital.

Kobold Explorer. A kobold with better night-vision than normal. Is sent off to explore the unknown,
coming back when enough new discoveries are made.

E
Kobold Fighter. The staple of the kobold army, able to use a variety of weapons and armor. Has much
better combat stats than others, and can be trained at a barracks to learn new techniques.

Kobold Archer. A kobold that prefers to use a bow, staying away from enemies. Is only a little stronger
than the average kobold and can’t see that far in the dark, making his range only useful in certain
situations.

Kobold Hunter. A kobold hunter-gatherer whose preferred target is bats. Has a bit of combat training,
but is still a target for spiders.

Kobold Priest. A kobold magic user, able to cast HolyFire on enemies and passively has truesight to
reveal invisible things. Can wield magic staffs and is great against spiders.

Kobold Scout. A kobold with better light-vision than normal. Explores areas nearby around the capital,
usually being the first watchdog to report an attack.

Kobold Barracks. Kobold training grounds and unit producer, spawning troops if given enough metal and
meat.

Kobold Blacksmith. A kobold crafting area to turn iron or steel bars into weapons, armor or tools.

Kobold Smeltery. The place where ores are smelted into bars. The process of heating up the smelting
furnace takes some time, but when its on ores are quickly processed.

Kobold Storage. A kobold storage facility for collecting unprocessed goods. Usually constructed near
mining and hunting zones, where harvesters are saved from walking all the way back to the capital with
each trip. Will also hold tool upgrades and give them out to the appropriate user when they next arrive.

Kobold Stronghold. A kobold fortress, and their capital. The central hub of a kobold base that directs
anyone who interacts with it to go do whatever chores need to be done. Also the central storage facility
for all finished goods, which are given out freely to whoever needs them or forwarded to storages to be
passed out there.

Kobold Witchhut. A kobold hut for crafting magic or alchemy related things if given specific materials.

Human. Humans are versatile, starting out with no particular strengths but can learn skills that allow
them to fit into any role depending on the items they’re given. New tasks get implanted into them by
bringing required materials to a relevant building, along with better combat stats depending on the type

of training. Currently in alpha status, as they use the same buildings as kobolds, but confirmed to behave
as intended.

Torchstand. A constructible torch stand that constantly emits light. Unlike regular torches, lasts forever
until knocked down.

Bat. A small wandering creature that drops a disproportionate amount of tasty meat when killed. If
attacked, will be infected with Fear and run away from anything hostile-looking at high speeds.

Batcave. A nest of bats, constantly spawning new ones if there aren’t any nearby.

Chest. A goodie bag filled with trinkets and baubles. Can sometimes be locked, but a smart player will
try to break it open.

Trapped Chest. A seemingly innocent chest that activates a nearby mechanism when opened.

Door . A door that can be opened or closed. Can start out locked, but usually can be opened just by
busting it down.

Lever. A togglable lever that activates or deactivates nearby mechanism, typically opening a door or
resetting a trap or such.

Trap. A pressure plate booby trap that usually activates when stepped on, damaging the victim. Can be
discovered and disabled with true sight, or by other means.

Floorwall. Untargetable walls that look like darkened floors on the map boundary, made to mark an
entrance point. Used when we want to suggest the player came from a certain direction, but don’t want
them heading back there.

Wall. A mineable wall that doesn’t drop anything if destroyed. All walls have a huge amount of defense,
resistance and negation, resulting in only the ‘pure’ damage type found on picks or spells capable of
doing any harm.

Hardwall. A wall so infused with the demonic environment that it’s hardened beyond the point of being
mineable. Can’t be damaged in any way.

Ore Wall. A wall filled with ore, dropping some on the ground when it gets destroyed.

Rich Ore Wall. A wall so full of ores that it drops one every time its attacked, landing in a nearby square.

Eternal Ore Wall. A very valuable wall that sits on a surging vein of ore. Produces ores when struck a few
times and constantly regenerates itself, potentially making an infinite amount. Slower to mine than
normal walls, so miners will prefer to seek out other types of walls before grinding away at these ones.

Wood Rubble. Wooden debris that blocks paths. Only the player will attack it to clear the way, as
everyone else will just try to path around it.

150

Appendix I: Item list

Copper Sword. A standard sword used for combat.

Iron Sword. A sword made of iron. Does more damage than a copper sword.

Wood Shield. A simple shield that helps defend against physical attacks.

Iron Shield. A solid shield that blocks even more physical damage.

Health Vial. A health potion that can be drunk to heal minor wounds. Anyone holding one will know to
use it when low on health. Throwing it at someone slightly heals the target.

Health Potion. A health potion that heals for a large amount when drunk. Anyone holding one knows to
use it when low on health. Throwing it at someone slightly heals the target.

Poison Vial. A vial of poison that shouldn’t be drunk. Infects the target with poison when thrown.

Regeneration Vial. Causes the drinker to heal over time when drunk. Less useful than simply healing the
flat amount, but more cost efficient to make.

Sharesight Talisman. Allows the user to see the area around all other talismans, but has a limited
number of uses before being destroyed. Useful for checking up on the base when one is out
adventuring.

Flight Amulet. Passively gives the holder the ability to fly, allowing more freedom with movement and
the ability to move into most occupied squares, depending on who's there.

Lifesaver Talisman. Passively protects the holder from a deathblow: if they get hit and are about to die,
the talisman heals them to one HP and is destroyed.

Moonstone Amulet. Teaches the user how to use a basic magic spell with a long cooldown for as long as
its held.

Hunting Net. A net that can be thrown at a small-sized target to root them in place. Mainly used by
hunters to ensnare their bat prey, but works on other small creatures as well.

Ore. Rubble from a wall that contains trace elements of iron. Glows slightly. Can be smelted down to
bars or used in construction.

Gemstones. Some walls will drop valuable gems instead of ores when destroyed, but they’re more likely
found in ancient ruins. Used to create magical items.

Iron Bar. An ore refined into a piece of metal that can be used for construction or crafting.

I

Wood bow. A common bow, capable of attacking things from a long range. Comes with an infinite
amount of arrows that appear out of nowhere. Don’t worry too much about it.

N

Iron Bow. A bow made of iron. Can shoot farther than a normal bow. Does more damage as well, so it
must shoot the arrows harder too.

+

Copper Pick. A standard pick used for mining. Its attack damage type is pure, to break through wall
defenses.

Iron Pick. A pick made of iron. Does slightly more damage than a normal pick, and allows the owner to
attack walls much faster by lowering their normal post-turn cooldown by 30%.

§

Meat. Chunks of meat from a critter, most likely a bat. Is edible right off the ground, but preferably used
in crafting. If left unstored long enough, will degrade to rotten meat.

Y

Rotten Meat. Expired meat that causes damage if eaten. Can still be used for crafting poisons.

”

Staff. A piece of wood shaped into a staff. Can be used by magic users for self defense if need be.

Shaman Staff. A magical staff used by tribal magic users. Teaches its wielder how to cast a protective

Fire Staff. A magical staff used by sophisticated magic users. Teaches its wielder how to cast fireball.

Moon Staff. A magical staff used by ancient magic users. Teaches its wielder how to cast a temporary
shield on an ally (Or enemy, if one so pleases).

SORD. A cheat-weapon made for testing and debugging purposes. Has absurd attack damage, high
range, and brightens up everything nearby.

Throwing Knife. A small dagger made for throwing. Low damage if equipped, but can be thrown for a
good amount and to possibly embed in the target.

AR

Torch. A couple rags on a stick. Can be lit to provide some light, but will eventually burn out and reduce
in brightness over time. If thrown at a target will ignite them briefly.

14304

Lantern. Can be turned on to become a light source, but can also be turned off unlike many other light
sources.

Telescope. A rare newfangled technology, not made for use in heavily-foggy demonic caves. Passively
increases the holder’s light-radius (which means they’re just constantly looking through the hourglass at
any given point in time, | guess).

Orb of True Sight. A mystical orb that enhances one’s senses. Passively grants true sight to the holde,
allowing them to see invisible people or things.

Appendix J: Status list

Faded. A spider’s technique of walking with the fog, carrying it with them even when they step into the
light. The target becomes invisible, but any actions or being bumped into will cause it to wear off
immediately.

-

Poisoned. The target was injected with some sort of poison, taking constant damage over time.

Numbing. A hunter spider’s poison, making the target eventually go limp if they move around too much.
One can be trained to recognize the effects of the poison and stand still to avoid the effects, but
otherwise any movement will increase the duration to the point they become Numb.

Numb. Once a Numbing effects is high enough in duration the target can’t move at all and becomes
helpless, becoming easy prey for anything nearby. Movement still increases the duration, potentially
lasting forever.

Web Carried. Signifies the target is trapped in a spider’s net and being hauled along behind them. If the
victim stands still they’ll follow the movements of the spider carrying them, but any attacks on the
carrier or movement from the victim will break the binds and free them.

&

Scared. The target becomes scared, making them run away from any threats at high speed. Not always a
bad thing, as it makes one move faster than normal at the cost of being uncontrollable.

8.

Terrified. The target is made to be hysterically afraid, running away from all known enemies or the
closest one they remember nearby.

Winded. The target just got the stuffing knocked out of them, becoming stunned and unable to act for a
short time.

Cowardly. The target becomes disheartened, increasing the priority of cowardly actions like fleeing
while disabling any combat-related ones.

&

Greed. Makes the target extremely greedy, suicidally running for any nearby valuables or stealing them
from allies regardless of any other dangers.

%

Moral Boost. The target is encouraged to fight to the end, boosting their melee damage and increasing
the priority of combat-related tasks.

Vo

Regeneration. The target heals a constant amount of HP over time.

) ¢

Holy Flames. The target is immolated by holy flames, slightly burning them over time and revealing
them for the duration. Also causes the target to glow brightly, allowing them to be easily tracked.

i

Ensnared. The target is entangled in a net, rooting them to the ground.

Warded. The target is protected by shaman magics, shielding them from bad mojo. Rejects a single
debuff from effecting the target before wearing off, and has an incredibly high duration.

Blinded. The target has limited vision in some way, sometimes becoming completely blind and unable to
interact with anything around them.

Fighter Training. A trait earned through training at a barracks. Makes the target stronger, healthier, able
to wield most common brute-force weapons, and able to use a minor stunning blow ability.

Magic Training. A trait earned through training at a Witch Hut. Makes the target learn a basic magic
spell, and grants the ability to wield and use magic staffs.

Scripted. Various level-specific effects were added that follow a unit or units, waiting for them to
complete certain objectives before causing new events to happen. Usually stage based, IE: starting at 0
and causing different things as new milestones are achieved. Can range from starting dialogue,
spawning / removing units / items, revealing portions of the map and more.

