

Trick of the Light:
A Game Engine for Exploring
Novel Fog of War Mechanics

Zackery Mason

 A project report submitted to the faculty of

Worcester Polytechnic Institute
in partial fulfillment of the requirements for the

Degree of Master of Science in
Interactive Media and Game Development

Brian Moriarty, Project Chair

Dean O’Donnell, Reader

Dr. Gillian Smith, Reader

i

Abstract

Trick of the Light is an experiment in strategic game design based on imperfect information in a

unique fog of war setting. A hybrid of real-time-strategy, role-playing-game and roguelike

genres, the game challenges players to maintain an expansive base system without being able

to see anything beyond their own limited vision radius. All units, allied or enemy, maintain

private memories about what they have seen, and must directly exchange information to keep

up to date. The player acts as commander, making decisions and giving orders while dealing

with adversaries, sabotage and misinformation. Testing was done to see if the new concepts

could be understood in-game and garner any interest for further development, which proved to

be positive in both cases despite complaints related to having less direct control over allies.

ii

Acknowledgements

 Very special thanks to advisor Brian Moriarty. His support allowed this work of passion

to become a thesis-level project, and his experience in game design and the video game

industry as a whole was an immense boon that I am lucky to have barely tapped into.

 Additional thanks to IMGD undergrad Dave Allen for providing audio and music, and

also to the IMGD community as a whole, not only for playtesting the game but also for going

above and beyond with your genuine interest and suggestions that indicate a desire to watch

the game grow. A game is nothing without players, but a real developer appreciates supporters

even more.

 A final thanks to all of my friends and family involved with development long before this

became any official project, especially my parents, who were avid supports of everything I

attempt since the very first “Hello, world.” Your willingness to feign interest as I babbled on

about technical jargon has gone neither unnoticed nor unappreciated.

iii

Contents

Abstract .. i

Acknowledgements ... ii

Contents ... iii

Figures .. viii

1. Introduction ... 1

2. History of fog of war .. 3

3. Game mechanics and their implementations ... 7

3.1. Game Overview .. 7

3.2. Turn-based vs real-time ... 8

3.2.1. ‘Turn-based’ energy system ... 9

3.2.2. Cooldown vs timer ... 10

3.2.3. The Living class and being ‘alive’ .. 11

3.3. Units ... 13

3.3.1. Heath and combat stats ... 14

3.3.2. Carried items .. 15

3.3.3. Basic interactions ... 16

3.3.4. Teams and threat levels ... 17

3.4. Items .. 18

3.5. Status effects .. 19

3.5.1. Duration ... 20

3.5.2. Status types .. 20

3.5.3. Status types .. 21

3.6. Tasks .. 22

3.6.1. Organization ... 22

3.6.2. Cooldowns and counters .. 24

3.6.3. Items and tasks .. 25

3.6.4. Status effects and tasks .. 25

iv

3.6.5. Makers and doers... 26

3.6.6. Commands ... 26

3.6.7. General purpose ... 27

3.7. Attacks ... 27

3.7.1. Engaging and targeting .. 28

3.8. Squares ... 29

3.8.1. Watchers and glowers .. 29

3.8.2. Movement blocking and sizes .. 30

3.8.3. Being ‘hidden’ from the grid .. 32

3.9. The movement process .. 32

3.10. Pathfinding ... 33

3.10.1. Planning a movement vs actual movement ... 34

3.10.2. The ‘Path’ result ... 35

3.11. Claimed targets .. 36

3.11.1. Filtering functions .. 36

3.12. Visibility .. 37

3.12.1. Light levels .. 37

3.12.2. Sight / glow radii .. 39

3.12.3. Raycasting .. 42

3.12.4. Invisibility ... 44

3.13. Memories ... 46

3.13.1. Initial conception.. 48

3.13.2. From concepts to concrete .. 51

3.13.3. Detailed memories ... 52

3.13.4. Trading info .. 53

3.13.5. Individual use ... 55

3.13.6. Garbage collection ... 55

3.13.7. Player-specific adjustments ... 56

3.14. AI .. 57

3.14.1. Independent AI... 57

3.14.2. Capital AI .. 58

3.14.3. AI: Too dependent? .. 59

3.14.4. AI: Too independent? ... 60

v

3.15. Summary .. 61

4. Technical Design .. 62

4.1. The World class .. 62

4.2. Maps: A tailored experience .. 63

4.2.1. Campaign formula .. 64

4.2.2. Generation ... 65

4.3. Formatting practices .. 66

4.3.1. Class-centric practices .. 67

4.4. Expected game flow ... 68

4.4.1. Expected game anti-flow ... 69

5. Graphics, sound and controls ... 71

5.1. Art .. 71

5.1.1. Roguelikes-alikes .. 72

5.1.2. 2D Squares ... 73

5.1.3. Asset acquisition .. 74

5.1.4. Sprite-based animation .. 75

5.1.5. Fog design .. 76

5.1.6. Pre-generated fog .. 77

5.1.7. Hidden map boundaries ... 78

5.1.8. Lighting ... 79

5.2. User interface ... 81

5.2.1. Minimalistic Style ... 81

5.2.2. Menus from menus .. 82

5.2.3. Radial menus .. 82

5.2.5. Rendering loop ... 83

5.2.6. Animation timers ... 83

5.2.7. Lack of text-logs ... 84

5.3. Controls .. 85

5.3.1. From text to clicks .. 85

5.3.2. Keyboard .. 86

5.4. Sound and music .. 86

vi

6. Testing ... 87

6.1. Results .. 88

7. Postmortem ... 90

7.1. What went right ... 90

7.2. What went wrong .. 91

8. Future development .. 92

9. Conclusion ... 92

Works Cited ... 93

Appendix A: IRB Informed Consent Agreement ... 95

Appendix B: IRB Study Purpose and Protocol ... 98

Appendix C: Post-test survey results .. 103

Appendix D: Post-test survey data ... 105

Appendix E: Art and audio assets ... 125

E1. Audio assets .. 125

E2. Art assets ... 127

Appendix F: Class hierarchy summary .. 134

Appendix G: Level maps ... 135

G1. Map key .. 135

G2. Tutorial level 1 .. 136

G3. Planned tutorial level 2 ... 138

G4. Planned tutorial level 3 ... 139

G5. Raycast test room ... 140

G6. Digger Room ... 141

G7. Stress testing room ... 142

vii

Appendix H: Unit list .. 143

Appendix I: Item list ... 151

Appendix J: Status list .. 158

viii

Figures

Figure 1. Example of vision in Tangledeep (2017), a roguelike game. Source: URL. .. 3

Figure 2. Example of vision in Warcraft 2 (Blizzard, 1995), an RTS game. Source: URL. .. 5

Figure 3. Dwarf Fortress (Bay 12 Games, 2006), a popular simulation game and one of the primary inspirations

for Trick of the Light, may appear to be turn-based but actually uses a cooldown system similar to that

described below. Units can speed up or slow down doing activities like running or resting, making them

take more or less turns over time. Source: URL. ... 10

Figure 4. A summary of the Living class and its children... 12

Figure 5. Units at less than their maximum health show their health bar, with the proportion of red to green

indicating how much health they’re missing. Source: Screen capture. .. 14

Figure 6. The player’s inventory screen. If holding more than 5 items, an option to scroll to the next page is

indicated by the green plus sign in the 5th position. Source: Screen capture. .. 15

Figure 7. Clicking on an item in one’s inventory brings up all possible options one can do with the item. Some

options may be unavailable, like trying to equip a weapon you don’t have training to use, or using an item

that has no purpose. Source: Screen capture. ... 15

Figure 8. The trading menu, allowing the player to give or take items from allied units. Each unit’s maximum

carry amount is on the left, and going over that number and closing the window will drop extra items on

the ground. Clicking the button in the left-middle changes the mode from giving to dropping, in case a

player just wants their ally to drop their inventory. Source: Screen capture. ... 16

Figure 9. Enemy units come with a red circle to indicate hostility. Ideally allied units should also come with an

indicator, but seemed unnecessary for the tutorial when allies were clearly the only other humanoids.

Source: Screen capture. .. 17

Figure 10. A priest ignites a contained spider with holyfire, a damage-over-time effect that removes invisibility

from the afflicted Unit and causes them to glow. Casting another holyfire on it would only increase the

duration of the current fire instead of making a new one. Source: Screen capture. 21

Figure 11. The statistics page from the description menu shows most possible stats associated with a unit. The

attack and defense values, next to and below the sword and shield icons, are based on the weapon or

armor equipped instead of the unit’s default values. Source: Screen capture. ... 27

Figure 12. A player is followed by three medium-sized combat units, but is creating a bottleneck in a 2-square-

long hallway. The third soldier follower can’t get through. The player is able to manually push allies out of

the way to path through them, but normal allies can’t. Source: Screen capture. .. 31

Figure 13. The soldier will instead run around and try to find another path to reach the player, usually ending up

losing sight of him and then heading back to the capital to try and find him again. This process has caused

a massive amount of confusion and grief with playtesters. Source: Screen capture. 31

ix

Figure 14. An illustrated path of where the player plans to walk towards, pathing around the rock walls in the

way and between the two wooden barricades in the fog ahead even though he only has memories of

them. Source: Screen capture. .. 34

Figure 15. A problem that came up during playtesting is that the path wasn’t always illustrated. While the shape

of some structures and long corridors of walls are obvious to the player, the pathing algorithm assumes

anything in the fog is passable if it hasn’t been explored yet and frequently routes through areas that most

likely are blocked off. When the wall is discovered, another path is immediately rerouted, possibly heading

in an even worse direction. Source: Screen capture.. 34

Figure 16. A player with no light source can barely see around him. Source: Screen capture............................... 38

Figure 17. A player with a lit torch can see a greater distance. Source: Screen capture. 38

Figure 18. Throwing the torch makes the glow radius follow it, still providing its full circle of light. The reason it

doesn’t appear as circular as before is because the player’s light radius vision doesn’t extend far enough to

see the outer edge. Source: Screen capture. ... 39

Figure 19. A player with a lit lantern can see a good distance around, but the light doesn’t reach the edge of its

viewable area. The pure-black but non-foggy edges of the circle represents an area that could be viewed if

there was light there. Source: Screen capture. ... 40

Figure 20. The vision-tracking focus lets players see the specifics about their sight radii, including why they can

or can’t see specific tiles around them. Source: Screen capture. ... 40

Figure 21. When the lantern is turned off, the player stops emitting light and can only see as far in the dark as

their dark radius allows. Source: Screen capture. ... 41

Figure 22. The player’s orange dark radius is smaller than their yellow light radius, but that’s not always the

case. Some creatures see farther in the dark, making their light radius useless. Source: Screen capture. ... 41

Figure 23. An example of a cone of vision extending outwards. Note the symmetry between upper and lower

bounds, and how the walls near-adjacent to the seer don’t reveal themselves unless the player is exactly

diagonal with them. Source: Screen capture. ... 43

Figure 24. Another view further outside the narrow tunnel. Vision will never extend this far in a normal game,

normally being around 3-9 squares maximum, but it is important to make sure vision works correctly at

every distance. Source: Screen capture. ... 43

Figure 25. A Seeker spider has faded itself, becoming invisible and able to sneak next to the kobold miners

without causing alarm. Source: Screen capture. ... 44

Figure 26. A player notices an allied soldier (far right) with a lantern on. They are actively watching the soldier,

but still keep a memory of them. Source: Screen capture. .. 46

Figure 27. When the lights go out, the soldier’s last known location is remembered. Source: Screen capture. 47

Figure 28. When the soldier steps into view again, their old position is updated to reflect the new information.

Source: Screen capture. .. 47

x

Figure 29. A freshly-spawned player in the dark, knowing only what they can see. Source: Screen capture. 49

Figure 30. After a bit of exploring, the player still remembers where everything they saw last was. Source:

Screen capture. ... 49

Figure 31. Upon meeting an allied soldier, the player communicates with them, showing an animation of any

information they have to give. Source: Screen capture. ... 50

Figure 32. Even though the player has never been to the newly revealed area, they still acquired memories of it

from the soldier they talked with. Things may have changed in the meantime, but this was the state of the

world last he saw. Source: Screen capture. ... 50

Figure 33. A flowchart showing how memories are selected for copying, replacement, or ignored during the

tradeInfo process. ... 53

Figure 34. A full view of the tutorial level. Source: Screen capture. ... 64

Figure 35. What the level looks like in ASCII form. Every character symbolizes what character goes where,

including some special scripted characters that have additional tasks and such manually added to them on

creation. Source: Screen capture. ... 65

Figure 36. The Seeker from before has informed the spider base of where the miners are, and a hunting Spider

sneaks up on a miner returning from a trip. Source: Screen capture. ... 70

Figure 37. The spider will poison as many miners as it can until confronted by a soldier or anyone else who poses

an actual threat. If undisturbed, the poison eventually numbs the victim, allowing the spider to drag it to

its home nest and let the spiderlings feed and grow to become hunting spiders themselves. If not

accounted for early and the nest tracked down, they become a serious threat. Source: Screen capture. ... 70

Figure 38. Playing Trick of the Light with debug mode turned on looks like this. With no rendering limit, it is

possible to play up to 2000 turns per second to simulate extreme duration games if necessary. Source:

Screen capture. ... 72

Figure 39. Rogue (1980), the game that defined a genre, even though it itself was based upon other ASCII

adventure games and RPGS. Source: URL. .. 73

Figure 40. An example of how gameplay looks in Dungeon Crawl Stone Soup. Source: URL. 74

Figure 41. This still image of the rolling fog doesn’t do it justice, as the 120 fps limit makes it appear much

smoother and less blocky (but still blocky). Source: Screen capture. .. 76

Figure 42. A glow radius is supposed to be a circle, but the result is obviously not. While the source of the light is

apparent due to the gradual falloff, the ‘corners’ of the ‘circle’ are a result of a square-based rendering

engine. Source: Screen capture. .. 80

Figure 43. One of the big problems with light was finding the brightness that differentiated a lit square from a

dark one, and a dark square from a dark square you could still see to because it was within your dark

radius. Can you tell where the light stops and the dark radius begins? Source: Screen capture. 80

Figure 44. The average screen the player sees, with the option to minimize the bottom right inventory screen by

xi

clicking the backpack. Source: Screen capture. ... 81

1

1. Introduction

 Trick of the Light started as a high school garage project called Gridworld: a practice

exercise that shamelessly imitated game mechanics from several existing genres. Its primary

inspiration was anthill-simulators such as Sim Ant (1991), which emphasize indirect control over

swarms of autonomous entities rather than hands-on micromanagement of individual units.

(Maxis) A grid-based engine was created to support a simple, hands-free simulation of miners

breaking down walls and carrying quarried rocks to an ore smelter. More features were

introduced as the project developed, including combat between miners, a greater variety of

resources to harvest, upgrades using collected materials, etc. Everything was displayed via text

output, with no interaction from the player beyond pressing ‘play’ to start things up and watch

the show.

 Everything changed when spiders were added. Originally they were coded as simple

hunters that could stun miners and drag them away. The problem was that the miners were

able to see the spiders coming and flee, collapsing the simulation into an endless cycle of

running and chasing. The first solution considered was making the spiders invisible so they

could sneak up on their prey. This presented a problem: How should invisible entities be

displayed to the player, if at all?

 Until this point, the player possessed an all-seeing perspective of the game world, but

was limited to watching events unfold. If the design evolved to incorporate the player into the

world as an active participant, some model of limited vision needed to be developed. This

would necessitate forethought about what kind of experience the game would eventually

gravitate towards. While brainstorming designs on what could make the game unique and

include a player in the current state of the world, inspiration came from imagining a common

trope among strategy games: the sacrificial scout.

2

 In conventional real-time strategy (RTS) games, all allied forces share map visibility with

each other and the player, who oversees everything from an abstract, top-down point of view.

A typical early tactic in such games is to send an expendable unit, usually a worker or “peon,”

out into the unknown to search for the location of enemy bases. As they move, their findings

are continuously transmitted to the player and allies via their “telepathic” connection, even if

they are half a world away. By the time the scout discovers an enemy, they are usually so far

from their home base that it is more cost-efficient for the player to let them remain in place as

a sort of remote camera, monitoring local activity until they are eventually discovered and

executed by enemy units.

 The game-vision mechanic that enables this strategy is commonly known as fog of war.

It is obviously not intended to be realistic. This doesn’t mean that there is anything wrong with

it. Gamers have been enjoying RTS telepathy and sacrificing peons for decades. Rather than a

problem to be solved, it was a concept to be explored. Scouts don’t need to come back to

report their findings. But what if they did? What parts of fog of war would need to be adapted,

removed, or replaced for something else to take its place? What would that something else be,

and would it make the game more enjoyable? Would the result still be considered fog of war?

 Trick of the Light has ever since been dedicated to the exploration of these questions,

eventually leading to the development of a full-blown memory logistic system and

independent, intelligent handling of each unit’s internal game-state. While the concepts

themselves aren’t new, the scope of which they’re implemented is the key factor: vision is

personalized to each unit, replacing allied telepathy with a model in which every individual

keeps track of their own memories about what they’ve seen, and can only share information by

direct interaction with other units. The player is subject to the same limitations. Instead of

leading their troops from some omnipresent cloud in the sky, they can only know what they see

for themselves, or what they can learn directly from others.

3

 This implementation of limited vision and dependency on others for information

escalated into a play experience demanding a constant need for intelligence reports, with a

heightened sense of paranoia about what information is still up-to-date. This led to deeper

thinking about how this new economy of information could be abused with sabotage, trickery

and other malicious strategies.

 Trick of the Light was in full development for years before it was proposed as a Master’s

thesis. Being able to concentrate on it as an academic project provided an opportunity to

elevate the game to a playable state that introduces its core mechanics and test to see if the

novel unshared vision and memory systems would be understood and appreciated by players

familiar with conventional fog of war.

2. History of fog of war

Figure 1. Example of vision in Tangledeep (2017), a roguelike game. Source: URL.

https://www.tangledeep.com/

4

 Fog of war is a term used to describe the mechanic of making only limited portions of a

game map viewable, usually a combination of the areas immediately surrounding the player’s

character and all allied units (see Figure 1). Unit movement shifts these viewable zones and

causes previously-visited areas to fade out of sight. This mechanic dynamically constrains the

player’s information, as areas outside their current viewing zones may contain active entities of

interest. Progression requires eventual confrontation with whatever lies in the surrounding

“fog,” forcing players to think strategically about how to prepare for these unknowns.

 The term fog of war is used by the military to describe the uncertainty of real-life

combat situations. Command decisions are complicated by not being able to know exactly

where the enemy is; intelligence may be unreliable or outdated, and information management

is a stratagem critical to success. (Kiesling) Fog of war was often integrated into tabletop

wargame simulations to capture this critical aspect of conflict. Implementations could range

from only hiding the strength of enemy forces to making the terrain itself known only to a third-

party referee until explored. (Setear)

 Fog of war’s use in tabletop games is limited by the fact that a referee is almost always

needed to handle the distribution of information in a fair manner, as the physical instantiation

of the game elements make it difficult for players to both hide their actions while ensuring

every move conforms to the rules of conflict. (Guillory)

5

Figure 2. Example of vision in Warcraft 2 (Blizzard, 1995), an RTS game. Source: URL.

 The first digital game to incorporate the now-prevalent version of fog of war was Walter

Bright’s Empire in 1977. (Lewin) Due to limitations of the hardware, revealing an area made it

permanently visible thereafter, even if the scouting unit left, but it still marks the first

appearance of the concept of reducing the viewable area dynamically. Fog of war has since

become a standard feature in multiple genres, including well-known examples from Blizzard’s

Warcraft (shown in Figure 2) and MicroProse’s Civilization franchises, employed with little to no

variation in the basic mechanics. (Wayward)

 Fog of war games focus the player’s attention within their viewable areas. Unseen

territory is expected to be explored and conquered only after their objectives are completed in

the currently visible zones. Once an area is under your control, it’s usually considered “done,”

with little incentive for re-exploration if nothing is left behind. Even in unconquered territory,

forward scouting always provides an accurate representation of the current state of obstacles

or enemies the player may need to consider. Visual information is reliable: if the player can see

something, they have no reason not to believe it isn’t really there.

http://classic.battle.net/war2/basic/fog.shtml

6

 Fog of war is rarely the driving mechanic of a game, but it always bears a significant

impact on a player’s field of attention. In situations where the enemy’s possibility space is

completely known to the player (such as a multiuser game played against familiar opponents on

a standard map), fog of war acts as a temporary shroud. Though it prevents direct observation

of enemy activity, an experienced player can anticipate the likelihood of particular maneuvers

and prepare accordingly. (Burgun, Uncapped)

 However, when an enemy is unknown (typical in a single-player setting), fog of war

imbues play with a sense of genuine mystery. Territory must still be explored and conquered

inch by inch to achieve objectives, but the suspense of exploration is inherently rewarding.

However, the replay value of revealed terrain is limited. Players can rapidly exhaust a map’s

secrets by deploying units widely; a completely revealed world loses the ambiguity that made it

fun. (Burgun, Fog of War)

7

3. Game mechanics and their implementations

 Zack Mason was the sole developer of the project from start to finish, though with

plenty of advice from outside sources for difficult problems. This section goes into what the

core mechanics of the game are, how they work and interact with each other, and the trials and

tribulations that came with creating them.

3.1. Game Overview

 Trick of the Light takes place in a 2D grid filled with units and / or items that occupy

them. The game is turn-based, where units are capable of moving around and interacting with

things world. Units can only see a limited distance around them due to an ever-present fog of

war, but keep memories of the places they’ve been and the people / things they saw when they

lose sight of them. Direct interaction between units allows them to share this information and

keep up to date about the world-state. The game has factions of units working together,

managing a base that necessitates logistics of supplies and information, with each unit acting

independently completing tasks that benefit their team.

 The player acts as a commander in charge of one of these groups, and is subject to the

same limitations involving vision and memories. They’re able to command allied units to do a

variety of tasks but still lose track of them the moment they walk out of sight, requiring the

results to be directly reported to them or discovered first hand. Gameplay takes place over

different pre-generated levels, each with their own unique challenges and goals that require

the played to learn and adapt to the mechanics presented to them.

8

3.2. Turn-based vs real-time

 The decision to stick with a turn-based engine was not made lightly. As the concept was

being finalized, there was much deliberation as to whether a real-time engine would be more

appropriate for the intended style of play, and if so, whether it would be better to move the

game to an existing engine for convenience, or make the extra effort required to create an

optimized custom engine from scratch.

 From a player’s perspective, real-time gameplay might seem to be the more exciting

option. Games like Total Annihilation (Cavedog, 1997) and Warcraft 3 (Blizzard, 2002)

demonstrate how compelling a real-time, hero-centric adventure can be, providing a good mix

of micro and macro management. There are constantly things to do at every given moment,

demanding simultaneous focus on battles in progress while continuing unit production at the

home base, to the point the challenge becomes trying to hand out as many commands as

possible in as short a time frame the control scheme allows.

 The main similarity Trick of the Light has to the RTS genre comes from the similar base

and resource management model, but those systems will now be out of sight a vast majority of

the time. Management comes from queueing up things to be created or built in advance and

learning the results when they get reported later, with the AI handling the logistics of telling

who to make what and bringing things where they need to be themselves. The high amount of

actions required in an RTS aren’t as necessary when the things you can interact with are only

within your view, and consequently have much greater weight. Determining what each unit’s

long-term plan of action should be is better handled in a turn-based setting, where there is no

time pressure to make rushed decisions that might result in bad outcomes.

9

 The lack of complete vision over one’s entire base at any given moment means that

understanding updates involving it are essential. Interacting with a unit reporting in and

learning everything they know at once can result in sudden upheavals to your understanding of

the global map state. Such large-scale changes containing many potential subtleties are best

pondered in a turn-based setting.

 Similar considerations arose at almost every point of the imagined gameplay

experience, implying the design of Trick of the Light favors a more contemplative experience

than what a typical RTS is expected to deliver. It seemed wiser to allow players ample time to

consider multiple strategies and make better-informed decisions rather than demand the fast-

paced reactions a real-time engine necessitates.

3.2.1. ‘Turn-based’ energy system

 The engine of Trick of the Light is ‘turn based,’ but not in the same way found in typical

strategy games that use different phases for allies or enemies. Instead, it employs a tick-based

energy system. Every game object that interacts with the world when it takes a ‘turn’ is a child

of the Living class, hereafter referred to as a ‘living’ object. Such objects are assigned a ‘next

update’ integer, put into a queue with every other living object and sorted so that the one with

the smallest ‘next update’ number will be the next one activated. When a living object is

activated, their update function is called, their ‘next update’ number is increased by their

personal cooldown attribute and put back into the queue, usually behind almost every other

object. The standard cooldown for most living objects is 1000 ‘ticks’ (an arbitrary measure of in-

game time). An object with a cooldown attribute of 500 updates twice as often as normal, while

an object with a cooldown of 2000 would update at half the normal rate.

 This tick-per-turn system added considerable freedom for controlling how often and in

what order objects will update, but in practice it turned out there were very few cases of

objects that needed to update at non-standard speeds. Faster or slower speeds only appear

10

consistent when the cooldown attributes are even ratios of the standard 1000 ticks value. From

a player’s perspective, odd ratios such as 950 or 1050 seem to randomly give or take turns

every few rounds. This led to most non-standard speeds being assigned to even ratios. Odd

ratios were used in situations where their effect is hardly noticeable on a turn-to-turn basis,

such as mining. Breaking down walls is a repetitive process involving dozens of attacks, most of

which are done out of sight of a player, so raising or lowering the cooldown value per swing

results in a way to control how much ore is collected over long periods of time in a way that’s

hardly noticeable to a normal player. Other similar situations arise, but in most cases a normal

player won’t realize the tick system is in place at all and assume a normal turn-based one,

which isn’t a problem.

3.2.2. Cooldown vs timer

Figure 3. Dwarf Fortress (Bay 12 Games, 2006), a popular simulation game and one of the primary
inspirations for Trick of the Light, may appear to be turn-based but actually uses a cooldown system similar

to that described below. Units can speed up or slow down doing activities like running or resting, making
them take more or less turns over time. Source: URL.

 This tick-based system described above was initially based off a cooldown-based system

seen rarely in a select few roguelikes or simulations such as Dwarf Fortress (see Figure 3). In the

https://upload.wikimedia.org/wikipedia/en/c/c6/Dwarf_Fortress_embark_scene.png

11

old system, every turn reset a living object’s ‘next turn’ counter to its default instead of adding

on to its existing value. When the next living object took its turn, every other living object in the

queue would have their timers reduced by the amount currently on the turn taker: for example,

a queue with living objects A, B, C and D with ‘next turn’ counts at 500, 950, 960, 970, would

have A take its turn, lower the entire queue’s counts by 500 resulting in 0, 450, 460 and 470,

then reset A to its default speed of 1000 and enter the queue again, ending up at the back of

the line. Cycling through the whole queue to update this way each time seemed inefficient, and

eventually led to edge-case errors involving ties and unintended negative ’next turn’ counts

that were difficult to debug.

 The system was eventually overhauled to adding a living’s object speed to their tick

counter instead of resetting it each turn, leading to gradual increase of their update counter

over time, as a full cycle of the queue would increase everything’s counter by 1000. This was an

acceptable compromise, simplifying debugging greatly at the cost of limiting the turn count to

about 2 million when a standard game usually lasts 5000 full turn cycles or so resulting in no

change from the player’s point of view.

3.2.3. The Living class and being ‘alive’

 Any object that has the potential to be an influencing factor in the game is a child of the

Living class, named such for their potential to be living things in the game world. All Living

classes are able to join the update queue to take turns, but those that aren’t expected to do

anything on their turns such as walls can be designated as ‘un-alive’ at initialization to remove

them from the queue. Requiring everything to be part of the Living class instead of making it an

optional parent allows for more flexibility when converting things from ‘alive’ to ‘un-alive’ at

will, such as if a wall was mutated by an earth-shaper to become sentient and defend itself

from attackers, or if there was need for a regular unit to behave like a statue while retaining its

other properties.

12

Figure 4. A summary of the Living class and its children.

 Of all the Living subclasses, status effects are the only ones without a physical presence

in the game world: they only exist as an attachment to units, still taking turns in the same

manner but unable to be interacted with directly. Everything else that has the potential to take

up ‘space’ on the grid is part of the Entity subclass, with X/Y position attributes to represent

their location. From there, items are given their own class: they can be picked up by units and

interacted with in common ways such as being equipped, used or thrown.

13

 Units are the most common class, having a variety of ways to interact with other units

and items in the world. They contain a list of tasks and memories used to determine how they

behave. Units may also be part of the Building subclass, having limited movement but the

potential to be constructed instead of just spawned in, or the Multi-unit subclass for things that

occupy more than one grid-tile at a time. Buildings which occupy more than one tile are

assigned to the Multi-building class. The Capital class is for the main HQ of a team, containing

multiple helper-functions for dealing with allies who interact with them. Framework is a single

class for all buildings under construction; when the supplies are delivered to the framework and

the workers do enough build actions, the framework is replaced by whatever building was

intended.

3.3. Units

 Units are the most common class type, and despite the name can represent a person,

inanimate object or any sort of non-humanoid creature that can exhibits behavior in the game

world. Units employ a variety of attributes to determine their form and function mentioned in

the following pages, but are the primary focus of many other mechanics of the game described

in later sections.

 A complete list of implemented units is provided in Appendix H.

14

3.3.1. Heath and combat stats

Figure 5. Units at less than their maximum health show their health bar, with the proportion of red to green
indicating how much health they’re missing. Source: Screen capture.

 Health, or hp, is certainly important: when a Unit’s hp drops to 0 and they don’t have

any special abilities that can save its life, they’re automatically removed from the game. Each

unit remembers its maximum health as maxHp, to determine how injured it is and the cap on

how much it can be healed before overflowing. Figure 5 shows the bars used to indicate a

Unit’s hp status.

 For combat, damage is divided into four types, Physical, Magical, Poison and Pure,

together with their opposite defensive stats, Defense, Negation, Resistance and Divinity, that

determine how much hp is lost when units attack each other. Each attack type is reduced by its

opposite type and its current Divinity, to a minimum of 0 each, then added together and

subtracted from hp. For some units, their default attack and defense values will be very low,

and depend on their equipped weapons and armor to replace their weak stats.

15

3.3.2. Carried items

Figure 6. The player’s inventory screen. If holding more than 5 items, an option to scroll to the next page is
indicated by the green plus sign in the 5th position. Source: Screen capture.

Figure 7. Clicking on an item in one’s inventory brings up all possible options one can do with the item.
Some options may be unavailable, like trying to equip a weapon you don’t have training to use, or using an

item that has no purpose. Source: Screen capture.

 Units can carry items, the exact amount varying from unit to unit. These items are

considered as part of the Unit, following their movements and accessible at any time. A unit can

designate a single weapon or armor among the items they’re holding, replacing their default

attack or defense with the new weapon / armor’s values, but require expertise about that type

of item to be able to do so. For example, a typical priest won’t be able to equip a heavy steel

shield or use a bow, but are able to wield and use magic staffs that most others cannot thanks

to their mystical training. Figures 6 and 7 illustrate how the player’s inventory is displayed.

 Units used to have a designated slot on their person for weapons and armor, making

them not count towards the amount they were carrying, but was changed to the above version

of simply keeping track of which ones in their inventory were equipped. This made it easier to

code searching through items on a unit which helped the debugging process greatly, and was

somewhat more intuitive for making the total held items count include arms and armor.

 In addition to their list of held items, units also have a list of organs that are held the

16

same way as regular items, but can’t be used or interacted with in the usual ways. Organs

typically only represent what they’re going to drop on the ground when they die, such as an

OreWall dropping its ‘organs’ of ores and gems once mined.

3.3.3. Basic interactions

Figure 8. The trading menu, allowing the player to give or take items from allied units. Each unit’s maximum
carry amount is on the left, and going over that number and closing the window will drop extra items on the

ground. Clicking the button in the left-middle changes the mode from giving to dropping, in case a player
just wants their ally to drop their inventory. Source: Screen capture.

 Units have a few ways of interacting with objects around them or on their person:

picking them up is a start. If a unit is on the same square as an item they can pick it up, moving

it from the ground to their list of held items, which hides it from the rest of the world for

anyone doing a common search for items on the ground around them. Dropping works the

same way in reverse. Figure 8 shows the interface used for item trading between the player and

other units.

17

 Units can try to equip items, with the same limitations mentioned before, or attempt to

use them if they have any activatable abilities, such as ‘using’ a held potion to drink it. If other

units are adjacent, one can try giving their items to another to transfer ownership and location.

 Items can be thrown towards a location or other Unit; a raycast check is made in the

target direction, and if nothing is in the way the item is removed from the inventory and lands

on the ground at that spot. If a unit is hit instead, whether manually targeted or accidentally hit

along the way, the item deals its specified thrown-attack damage to them and lands on the first

tile between the victim and the thrower.

3.3.4. Teams and threat levels

Figure 9. Enemy units come with a red circle to indicate hostility. Ideally allied units should also come with
an indicator, but seemed unnecessary for the tutorial when allies were clearly the only other humanoids.

Source: Screen capture.

 Units always have a Team, even if they’re not in one. Used for determining who is an

ally or an enemy, the current teams are Goblins, Humans, FeralSpiders, Spiders, Neutrals,

Creeps and FeralCreeps, each inhabited by usually one type of race or overall theme of units.

The exceptions are Neutrals and FeralCreeps. Every team is neutral with Neutrals, such as walls

and bats, and won’t see them as an enemy to be feared (though they may attack them for

other reasons), while FeralCreeps consider all other units as enemies, including other

18

FeralCreeps. Figure 9 illustrates an example of how enemy units (in this case, spiderlings)

appear onscreen.

 In addition, units have a Threat level that represents how dangerous they are to their

enemies: 0 is a pacifist, 1 is completely subdued, 2 is temporarily subdued, 3 is a low-risk

danger, 4 is an active threat, 5 is a high-risk threat and 6 or more is something unspeakably

horrifying. The amount of bravery or cowardice towards an enemy is usually aligned with their

threat level. Fighters prefer to fight active level 4-5 threats before dealing with helpless 3-threat

farmers. Those weak farmers would behave normally near a hostile dragon if it were knocked

out and locked cage, reducing its threat to 1, and only the most well-trained soldiers won’t run

in fear from a scary demon with threat level 6.

3.4. Items

 Items are entities like units, existing as a physical presence in the game world and taking

up space, but are smaller and more flexible about how they’re used or moved around. A

complete list of implemented items is provided in Appendix I.

 Items have an attack and defense value, even though they can’t be targeted by attacks

or directly attack anyone by themselves. As discussed in the unit section, those values are

meant to replace the owner’s for as long as the item remains equipped. They don’t have health

and can’t be destroyed in the same way units can, only being destroyable with certain

interactions such as food being eaten or crafting materials being used to make the finished

goods. As entities they exist on a square in the game world, but potentially infinite can be

stored in a single square at once and don’t block most units from moving over them.

 Units have an additional property bound to their person and determined on a class by

class basis: whether items in their inventory are being held or stored. Items are aware of

whether they’re being held, stored or an organ of whoever owns them at the time, and may

19

modify or deactivate their normal behavior if they’re not being carried in the intended way.

This was done to ensure units made for carrying large amounts of items like carts or buildings

don’t get unfair advantages from being able to hold so many relative to other units. For

example, the telescope item passively increases the holder’s sight radius if held, but if dozens

are placed in a stronghold for safekeeping they won’t increase its sight radius to cover the

whole map due to it ‘storing’ items instead of ‘holding’ them.

 As items are a child of the living class, they can part of the update cycle and take turns

like units. The vast majority don’t, instead being static items that simply exist to be used by

units, but exceptions exist such as meat degrading to rotten meat if they aren’t being stored

away in a building. When items take their turn, they only do whatever’s in their class’s personal

hardcoded update function, as opposed to how units work with their task-oriented system (see

the Tasks section).

3.5. Status effects

 Status effects are intangible conditions that are attached to a Unit, affecting them

without actually existing in the game world. While without any real form, other Living objects

can still recognize status effects on other units or themselves and possibly react to them, or

even attempt to prevent them from occurring in the first place. Status effects have a duration

that indicates how long they’ll last before expiring, though the way they count down is variable,

and in some cases are permanent instead.

 Status effects used to be attached to items as well in the same way, but the small

number of necessary use cases and difficulty in keeping track of which item was which in

debugging moved them to be Unit-only.

 A complete list of implemented status effects is provided in Appendix J.

20

3.5.1. Duration

 The duration period of a status effect typically starts at some predetermined number of

turns, but can tick down in two different ways: having their own internal timer which adds

them to the normal turn-taking cycle like normal, or becoming a static status that instead waits

for its unit victim to take its turn before acting and counting down along with it. These different

methods are used on a case-by-case basis: a magical fire lasting 5 turns should update

independently and be Living, as one expects a fire to burn at the same rate on a slow turtle or a

fast bat, and expire at the same time if cast on both at once. Meanwhile, for a confusion spell

that makes the victim move in the opposite direction they intended, it may be better to make

everyone affected always perform x steps this way, regardless of how fast or slow they are,

thus a turn-by-turn timer should make it un-Living. This is primarily a concern for what makes

sense from a player’s point of view, though in most cases the descriptions of what’s happening

with each status effect should be intuitive enough.

3.5.2. Status types

 Status effects can be different types depending on whether they’re good or bad,

temporary or permanent, magical or physical in nature, etc. In most cases temporary statuses

are called Buffs if they’re a boon or Debuffs if they negatively affect the victim, while

permanent statuses are likewise called Traits or Curses. Status effect is a very general term, as

the effects don’t have to be mystical in nature: a peasant who’s gone through military training

can get a bonus to health and weapon skills with the Well-Trained trait, while a fighter yelled at

by a scary ogre may have the Fear Debuff.

21

3.5.3. Status types

Figure 10. A priest ignites a contained spider with holyfire, a damage-over-time effect that removes
invisibility from the afflicted unit and causes them to glow. Casting another holyfire on it would only

increase the duration of the current fire instead of making a new one. Source: Screen capture.

 Statuses can be prevented from infecting a unit before they happen, fully canceling out

any effects they’d normally cause. The blocker will usually check for certain status types before

rejecting their attempt to spawn on the victim, such as a priest’s Ward status actively blocking a

spider from injecting the Numbing debuff into a miner with its venomous bite. In addition,

some status types may attempt to ‘stack’ their duration instead of creating another instance: a

squad of 5 priests all casting the “holyfire” debuff on a single spider will result in a single, very

long duration holyfire instead of multiple small holyfires (see Figure 10). In cases like these, the

status will block any statuses of the same exact type on the same Unit, but add the intended

duration to their own.

22

3.6. Tasks

 Tasks are the primary way of making units do actions, and are highly flexible in terms of

their priority or who / what they’re attached to and when they’re active / possible. A task is

basically an action a unit can do on their turn, but are based on a logical behavior: a Run-From-

Enemies task checks for nearby enemies and makes the unit flee if any are present, while a

Drink-Potion-If-Low task will check that the unit has low health and is holding a health potion

before attempting to drink it. Task queues were made to replace behavior trees when it

became apparent that no amount of hardcoded behaviors were capable of keeping up with all

the possible interactions being put in efficiently, and that the task-based system was much

better suited towards making units more dynamically adaptable to their environment. A task

queue also simplifies the decision-making process for players or debuggers: the order a unit will

make decisions in at any moment is very clear, as well as where the decisions came from and

whether they were relevant / necessary after having been done.

3.6.1. Organization

 The important thing to note about the task queue is that it’s a priority task queue: all

tasks have a priority value ranging from 0-99999 that defines which are attempted first,

initialized all at once in the World class at startup for easy comparison with one another. Those

priority values, however, can be changed: Status effects, player decrees, or even the task itself

can adjust its priority to be higher or lower on the fly, deactivated altogether or put on a

cooldown for some number of turns / ticks. There aren’t 99999 different tasks of course, but

having such a large amount allows multiple to be put in a similar level of importance, thus

allowing more flexible use for adding or subtracting priority value.

 Priorities are by default separated into categories based on their value which usually

signify their importance. Starting within certain categories assumes the task will adhere to

certain standards, not explicitly checked for in the task-cycling function but followed as a

general rule in creation. A unit taking its turn will attempt these tasks in order starting from

23

lowest to highest: If a task fails for whatever reason the next one is attempted, and when one

succeeds the process is stopped and the unit’s turn ends.

 0-9999 are for debugging tasks (for testing various things) and 10000-19999 are for

‘ONLY’ actions. Any task in these priority levels was made to be the unit’s only possible

action that it can attempt, and no matter what should end the unit’s turn even if the

task was unsuccessful. No 20000+ level task should ever be allowed to supersede these

tasks, requiring thorough logic checks to make sure rising above that value is impossible,

and that these tasks can’t fall below it.

 20000-29999 are for ‘always’ tasks, being lower priority than ‘ONLY’ but having about

the same requirements otherwise. An example would be someone magically compelled

to run in terror: if the victim’s feet are rooted to the ground by some status effect, they

shouldn’t stop panicking and do other actions like normal just because they can’t move.

 30000-39999 are for dire needs. These tasks usually revolve around a temporary but

imminent distress / impulse requiring immediate reaction. Tasks of these levels and

higher are allowed to be modified by effects, and its fine if the task fails before others

are attempted.

 40000-49999 are for orders given by high-importance units, namely the player.

Commands should be followed above normal behaviors, but in most cases non-combat-

related commands will check to see if there’s a battle going on and temporarily

deactivate to let normal combat routines through.

 50000-59999 are for combat-related actions. These tasks are used when a unit sees an

enemy, and can include running away just as much as actual fighting as long as its what

someone does in combat situations.

 60000-69999 are for minor emergencies, such as emptying one’s inventory if they’re full

before going out mining again. These are things a unit should deal with before

continuing their regular duties, not necessarily being a bad thing.

 70000-79999 are for normal duties, being whatever a type of unit is expected to do

normally such as miners mining or scouts exploring. The result of their efforts usually

24

cause a 60000-level task to be activated when they’re done, allowing them to reset

work again.

 80000-89999 are for ‘weak’ duties, mostly meaning trying to find ways to get more of

their normal work. Checking up at the capital is usually the thing to do in those

situations, or any other popular information hub, or with whoever’s nearby as a last

resort.

 90000-99999 are for idle actions that one does if they have nothing else they can

attempt right now. Mostly this is just wandering around in circles or exploring aimlessly.

 Tasks of the same type tend to have similar priorities, but are further distinguished by

tags that can separate them into factions like ‘cowardly,’ ‘violent’ or ‘greedy’ and such. Effects

like a cowardice spell can be made to find all ‘cowardly’ tasks and increase their priority, making

them attempted before regular fighting actions for example, or vice-versa with a ‘bravery’ spell.

A player will naturally learn the order of actions a general type of unit performs, but should be

able to do so intuitively even if the exact numbers aren’t available. Similarly, effects that change

priorities like cowardice should be important, having both noticeable effects but also possible

countermeasures or retaliatory actions to regain control of the priority system to their favor.

3.6.2. Cooldowns and counters

 Tasks may seem like they should be connected to the energy-based turn system, but are

in fact not part of the living class. Unlike items or status effects, tasks will never need to operate

at a fixed time independent of their unit controller: they’re just a list of possible actions a unit

can make, rather than something that exists in any form to take an action by themselves. For

tasks on cooldown, they’re simply set to not be active until the tick counter stored in the World

class is past a certain point; there is no need for them to enter the turn cycle to turn themselves

on at the exact right time, as they can always just wait to be checked up on later when actually

being called.

25

 If a task should be set to only activate after a unit has had x-many turns, the solution is

also simple enough: add a value to the class every time it tries to call that task, decrementing

till 0 after x many turns before allowing itself to activate again, ensuring the cooldown is tied

with the Unit’s update loop. The unit also saves the last task it attempted for similar reasons:

charging up a spell over multiple turns can check to see if it was used last time, incrementing an

internal counter for however long is necessary before activating, or resetting to 0 if something

else took priority or they were otherwise interrupted.

3.6.3. Items and tasks

 Items have a list of tasks, though they don’t perform the tasks themselves. When items

take their turn, they only do whatever’s in their personal hardcoded update function, with most

items being non-updating static objects like rocks or meat, though exceptions are possible (such

as a bomb with a lit fuse). Instead, these tasks are added to whoever picks up the item, which

the owner attempts to carry out with the rest of their usual tasks when they update. This

adaptive behavior allows units to use carried items intelligently, even if they by default have

nothing to do with them. For example, a miner by default doesn’t go and punch rocks, but only

knows to go out and find a pick. When one is found, the miner is given the pick’s list of tasks

that involve mining ores and bringing them back to a nearby storage area. This allows units to

be general purpose without wasting time failing tasks due to supplies they don’t have, and

items to always be used by any appropriate unit that has them. These tasks sometimes depend

on being held a certain way as mentioned in the items section, or that the unit be of a certain

type. For example, if a pick is given to a cart that stores multiple items at once for transport, it

won’t receive the pick’s task to equip it due to being ‘stored’ instead of ‘held’.

3.6.4. Status effects and tasks

 Status effects have a list of tasks added to a unit in the same manner as an item,

remaining for long as the status exists attached to that unit. Most tasks added by a status effect

26

have high priority levels around 20000-40000 that take over a unit’s normal actions for as long

as the status is there, but more permanent effects like traits may add normal low-priority tasks

a unit will attempt along with their normal behavior.

3.6.5. Makers and doers

 Tasks can be added to units via items or status effects, but are bound to that item /

effect and usually only last for as long as the bound thing remains with the Unit. Tasks keep

track of both the unit they’re currently attached to and the thing that created the task in the

first place. This helps a player understand what added certain behaviors to units if they start

acting atypically, and allows task creators to pinpoint their own creations. This also allows the

creator to keep track of things related to its task: a sword that gains power as it’s owner kills

using it can increment its kill count every time it’s attack task is used to good effect, modifying

the task and remaining that way even if the task is removed and implanted into the next unit

that picks up the sword.

3.6.6. Commands

 Player-created tasks are referred to as commands. No matter what type of unit a player

is acting as at the time, they’re able to command nearby allies by giving them one of numerous

preset tasks that usually overrides most normal duties on their priority scale depending on the

command. The tasks are general purpose, including following a selected unit, moving towards a

location, picking up all items around a given spot, and many more, each with levels of caution

concerning dangers they find along the way ranging from suicidal tunnel-vision to immediate

retreat.

 Commands used to be queue-able, but very few use cases and an extra-click worth of

complexity on the players part made it seem unnecessary. Instead, new commands overwrite

previous commands given by the player. When the commands are fulfilled, they simply delete

themselves from the Unit’s queue with no immediate feedback to the player; the results have

27

to be discovered indirectly through the unit reporting their memories of the results or the

player discovering what happened.

3.6.7. General purpose

 Tasks used to be a comprehensive set of everything affiliated with a behavior; a mining

task used to include looking for ores, looking for walls, mining walls, bringing the ores back to

base and checking for updates about where new walls are all in one go, but it soon became

apparent these were better split into their own separate actions that came with whatever

caused a miner to act like a miner. This started making tasks more like ‘actions’, which allowed

them to be used for things like casting spells or using special moves as well as mimicking overall

behaviors.

3.7. Attacks

Figure 11. The statistics page from the description menu shows most possible stats associated with a unit.
The attack and defense values, next to and below the sword and shield icons, are based on the weapon or

armor equipped instead of the unit’s default values. Source: Screen capture.

 An ‘Attack’ not only have separate attributes like physical, magic, poison and pure

damage, but contain their own class as well, encapsulating everything about a single complete

‘attack’. The attacker, target, distance, weapon used, attack type and attack result are stored in

this class, for the sole purpose of allowing other things to react to it. Figure 11 shows the

onscreen display of attack-oriented statistics associated with a Unit.

28

 When a unit takes a swing at another unit, a copy of their current attack value (either

their default one or their equipped weapon’s) is created, taking the effects of any outside

modifiers that may increase or decrease the four standard damage attributes. Those attributes

are then reduced by the target’s defensive stats, and the sum of the remaining damage is

removed from the target’s hp. This process allows the attack to quickly be shared globally with

things that may react to an attack being launched without having to modify the original attack

values back to normal each time.

3.7.1. Engaging and targeting

 Attacks require the target to be in range of the attacker, which doesn’t always mean

melee distance. For this, units have their own personal methods of engagement, allowing them

to head towards the nearest enemy and attempt an attack regardless of their weapon or range.

The engage function has inputs to intelligently use whatever weapon is currently equipped, to

use only default punches for the good old-fashioned barbarian rage, and / or to target only a

specific few units such as a miner looking to mine nearby walls but not enemy bats.

 In the case of ranged attacks, a raycast attempt is made from the attacker to the

defender before the damage process begins. Being able to aim at something doesn’t necessarily

follow up with a hit: it could be invisible units, their aim being redirected elsewhere, or the

attacker just shooting blindly, but if something gets in the way of the destination they switch to

being the target instead. In the case of multiple interruptions, only the one closest to the

attacker is struck.

29

3.8. Squares

 The grid of the game world contains an X by Y number of Square class objects, each used

to hold data about who or what is contained within them. The grid is just a 2D array: there are

no sub-squares or non-integer values.

3.8.1. Watchers and glowers

 Squares are primarily a container for all the different types of things that can occupy

them, which are units, items, ‘watchers’ and ‘glowers’. Units and items enter and leave the

square only when they move in or out of it, but the other two are different: ‘watchers’ indicate

which units currently have line of sight to the square, making then possibly able to see the item

or unit inside, and ‘glowers’ indicate how many light sources are close enough to be considered

in-range, thus making the square considered bright.

 Whenever a unit enters or leaves the square, a check is done on all watchers: if the

square is bright and within its light radius, or is within their dark radius, they notice the unit’s

movement and add or update them in their memories. In the case of a unit walking out of a

square, they also recognize where they just moved into and remember them as last being at

the new square, even if they’re not ‘watching’ the arrival square. When a watcher or glower

moves, all their current watched and glowed squares are removed, with a raycast check within

their radius to check for their new updated positions. Note that if a unit’s light radius is farther

than their dark radius, their watched area may extend far into the dark where they can’t

currently see, waiting for something that glows to come along and make it visible.

30

3.8.2. Movement blocking and sizes

 Squares are often checked to see if a unit is allowed to move into them, usually

depending on how big the people already there are (see Figures 12 and 13 below). Unit and

items are entities, thus occupying one or more squares in the grid, but additionally have a size

property that determines how many other things of other sizes should be allowed to share the

same square, with a few exceptions. Units have a size value determining how big they are,

while items will always have a default size: 0 for ghost-lik, 1 for gaseous or flying things, 2 for

items or very tiny units, 3 for dog-sized, 4 for human-sized, 5 for giant-sized, 6 for building-

sized, 7 for solid walls and 8 for magically sealed walls.

 The above size list isn’t an exact measurement; its primary use is determining whether a

unit can move into another square, considering the sizes and team affiliations of the units in the

impending move.

 Size 0 units can go anywhere except a square with at least one 8-sized unit.

 Size 1 can go in squares that don’t have at least a size 7.

 Size 2 can move where the largest size is less than 6.

 Size 3 can go into squares with only other size 3’s or below, but are blocked if one of the

size 3’s in the square belongs to an enemy: they’ll reject the mover, blocking and

pushing them back.

 Size 4 and 5 can only move if the square’s largest size is 2 or below.

 Anything with a size higher than 5 normally shouldn’t be moving at all, but are

otherwise blocked by size 1 units (except size 8, which is blocked if anything is in the

incoming square at all).

 Every movement attempt, each unit in the occupying square is checked against these

values. While that might sound intensive at first glance, usually only one of these checks ends

up being done, and squares rarely have more than one unit in them for checking against.

31

Figure 12. A player is followed by three medium-sized combat units, but is creating a bottleneck in a 2-
square-long hallway. The third soldier follower can’t get through. The player is able to manually push allies

out of the way to path through them, but normal allies can’t. Source: Screen capture.

Figure 13. The soldier will instead run around and try to find another path to reach the player, usually
ending up losing sight of him and then heading back to the capital to try and find him again. This process has

caused a massive amount of confusion and grief with playtesters. Source: Screen capture.

32

3.8.3. Being ‘hidden’ from the grid

 Entities have an additional property in addition to existing on the grid: not existing on

the grid. Primarily used by items, the ‘isHidden’ value determines whether an entity is currently

where it’s supposed to be in the world at its x/y coordinates or merely representative of where

they should be, preventing interaction with it or searches directed towards its type.

 When a unit picks up an item, the item become hidden and stops existing for other units

to find and pick up themselves, but still exists as an item being held by its owner and can still be

found via checking the owner’s inventory. This means any location-dependent abilities are still

accurate wherever they’re carried, or anyone seeking out a hidden object with pre-defined

knowledge about what it is can still have a goal to move towards.

3.9. The movement process

 Movement, from either items or units, behave a lot like Attacks in the number of layers

and reverse layers they go through to completion. All of that Unit’s currently watched units are

cleared, its memories are set to a minimum of “I just lost sight of everyone,” and every square

that contains it as a watcher is cleared. Squares that contain it as a glower are also cleared, but

recorded for later use. The mover is then removed from their current square and placed at the

new square, with all their items following suit immediately after. Glowing is then reactivated,

checking for all the possible squares that can be raycasted to, and adding the mover as one.

 If a square that had no glowers before the move gained one due to the movement, or a

square just lost its last glower, they refresh the sight of all their watchers to check if they lost

sight of or gained sight of anyone at the now-changed square. The mover then raycasts out

their sight radius the same way, adding themselves as a watcher to the new squares and

updating its memories to account for the new discoveries. The Unit’s movement is then made

known to the watchers of its previous square and the current watchers of the new one, and

33

then the World cycles through all Living objects that check for reactions based on movement to

see if any care about the mover’s new position (such as pressure-plate traps being sprung if a

unit steps on them).

 The above methodology is necessary for two very frequent cases: a sight-blocking unit

moving with viewers on either side, and something with a very large glow radius causing the

game to lag to a halt. The above technique of only checking for the updated glowing squares

solved the latter problem, but for the first imagine a long, narrow, one-square-wide corridor: a

high-sight-radius scout waits at the very top, a fat view-blocking fog-demon is just below them,

and a bat lies at the other end of the corridor. The above process was the result of many

attempt to make it so the demon, when moving down one tile at a time, would still be blocking

the line of sight of the scout: for the longest time during movement, the scout would be able to

glimpse the bat for a brief moment and record it in their memory when the demon

‘disappeared’ from his starting square for a single cycle to move to the next.

3.10. Pathfinding

 Pathfinding has been a long process throughout the project’s history, not due to any

experimental new techniques, but because of constant attempts to find a way to account for

every imaginable scenario of pathing from A to as close to B as possible while maintaining

efficiency. Pathfinding started out completely breadth-search style, then was quickly renovated

to A* and has remained so since. Because diagonal movement was counted the same as

horizontal or vertical moves and the closely-bounded level designs, other pathing techniques

tended to be inefficient or inaccurate when tested.

 Common time-saving techniques are implemented, such as checking if one is near their

destination already, or pre-defining navigable areas beforehand. There’s a distinct difference

between pathfinding to an exact square or just trying to path to any square around it, and for

pathfinding to any number of target tiles as opposed to only accepting a single end point.

34

3.10.1. Planning a movement vs actual movement

Figure 14. An illustrated path of where the player plans to walk towards, pathing around the rock walls in
the way and between the two wooden barricades in the fog ahead even though he only has memories of

them. Source: Screen capture.

Figure 15. A problem that came up during playtesting is that the path wasn’t always illustrated. While the
shape of some structures and long corridors of walls are obvious to the player, the pathing algorithm

assumes anything in the fog is passable if it hasn’t been explored yet and frequently routes through areas
that most likely are blocked off. When the wall is discovered, another path is immediately rerouted, possibly

heading in an even worse direction. Source: Screen capture.

35

 What about invisible units, or squares the unit has seen before but can’t see right now?

Planning to move into a square is different than attempting it, and the results may differ if one

doesn’t have perfect information about the destination. This allows units the mover doesn’t

notice at the moment but should block movement to go undetected, making the mover believe

they can attempt the move and in doing so bumping into the blocker instead.

 Actual attempts to walk can only happen into squares adjacent to the mover, but any

square can be checked to see if the mover thinks they’d be allowed to move into it. When

planning a path some distance away that goes beyond their sight radius, memories come into

play. Rather than checking all the units currently at an out-of-sight square, the mover’s

memories are checking instead, looking for anything last seen at that location that was last

known to be able to block the user’s move. In the vast majority of cases this means a wall

blocking the way, and the mover will remember to try and find other squares to path around

rather than hope a solid wall wandered away while their back was turned, as illustrated in

Figures 14 and 15.

3.10.2. The ‘Path’ result

 The return value from a pathfinding function is a ‘path’ in the form of a queue of

squares leading to the target destination: an empty queue means the unit is already there, a

queue with a single square set to negative x/y values means a path couldn’t be found, and a

queue filled with normal squares shows the steps needed to walk from the pathfinder’s current

position to the closest destination. This means a typical attempt to see if someplace is navigable

requires a manual double-check immediately afterwards to see if there’s any path to follow at

all, or if the path is real or a fake one with a negative square that would cause immediate errors

if attempted to move into. Making a ‘path’ object that would be returned instead would be the

standard approach, but wouldn’t have any apparent improvements on anything beyond a one

or two line shortening from the template already in place to make pathing checks, so this

potentially dangerous method remained without incident so far.

36

3.11. Claimed targets

 The search for things to be pathed to is often more complicated than the pathing

process itself. Units keep a record of everything they know in their memories, but often times

they only care about things they can see immediately in front of them, which are kept a list of

watched units for easier iteration. For example, when a miner is trying to mine a wall, they’ll

always head for the closest one they can see before searching through every memory for an

out-of-sight mineable wall, on average reducing computation time greatly and making their

movements more predictable / intuitive. Often it turns out that many other nearby miners have

the same idea, meaning they may pile on excessively towards the same destination if it’s the

closest one to all of them. This was causing chaos when it came to picking up ores dropped on

the ground; whenever one broke off a wall and dropped nearby, every miner would stop mining

to scramble towards it when only one person needed to do so. This led to checking if things

could be ‘claimed’ by other visible units of the same type by being the closest ones to said

destination. Seeing that a target is ‘claimed’ meant the claimant was the same unit type as the

seeker, likely doing the same things with the same thought process, and should be the one to

handle that target since they were closer to it. This fixed the ore problem immediately, and also

found some creative uses in combat where targets were preferably spread out among the

fighters.

 An important note is that units only consider other claimants they can see. If two units

are after the same quarry but can’t see each other, they won’t consider the thing claimed by

anyone else and both head towards it like normal.

3.11.1. Filtering functions

 Finding claimed units was one of many necessary filters. Given a number of known

items, units or memories, a given scenario could require them to be narrowed down in a

number of different ways: only things farther than x distance away, only things with a certain

37

status effect on them, only things holding x many items, only things of a certain type, etc.

Manually scanning for these terms or conditions proved repetitive and error-prone, so filtering

functions were added to the World class that would skim through vectors and only keep the

desired objects. The current filters include: species, family, genus, order, visibility, see-ability (if

a unit can see something regardless of whether it is trying to be invisible or not), raycast-ability

(includes whether one can directly see-to, aim towards or fully target towards their quarry),

within / outside of a given radius, team, tags, holding or claimed. A Unit’s typical internal check

for what it has memories also comes with some filtering options that can be left blank to

ignore, containing these kind of filters: within a given radius, raycast-able, species, tag, team

level (only enemies, anything not an ally, anything not an enemy, or allies only), threat level or

status level (only dead memories, dead or missing memories, visible or out-of-sight memories,

or only visible guaranteed memories).

3.12. Visibility

 All units are capable of seeing things around them, but the process to determine what’s

viewable or not is a multi-step system that requires constant updates whenever things start

moving around. The three main steps to seeing any entity are being able to raycast to it,

checking if square is close enough to the viewer’s light or dark vision radius, and making sure

the target isn’t invisible to the viewer.

3.12.1. Light levels

 Light levels are synonymous with glowing: rather than setting a square to bright or not

via some constant, all entities have a ‘glow level’ value representing the radius around them

that’s lit up at all times. The radius follows the entity, moving along with it, and spreads

outward whenever the environment is refreshed to check for things that may block line-of-sight

such as walls or smoke. Squares the light source reaches puts the source in its list of ‘glowers,’

and for related visibility checks the square is considered bright if it has at least one glower

regardless of its distance. Figures 16-18 illustrates a player manipulating a light source (a torch).

38

Figure 16. A player with no light source can barely see around him. Source: Screen capture.

Figure 17. A player with a lit torch can see a greater distance. Source: Screen capture.

39

Figure 18. Throwing the torch makes the glow radius follow it, still providing its full circle of light. The
reason it doesn’t appear as circular as before is because the player’s light radius vision doesn’t extend far

enough to see the outer edge. Source: Screen capture.

 While all in-game logic only considers light sources as being on or off, when being

rendered on a square grid this looks absolutely terrible (as discussed in the rendering section)

and was made to only aesthetically consider distance from the source so that farther areas

were dimmer than the square the light source was directly on. This gives the player the

advantage of being able to judge where the source of a light is coming from, while AIs only

recognize the lit squares and won’t connect it to a circle-shaped source in the same way.

3.12.2. Sight / glow radii

 All units can only see some distance around them through the ever-present fog of Trick

Of The Light. The values that determine how far are their light radius and dark radius, indicating

the range they can see in well-lit areas and in complete darkness respectively. Described in

more detail in the Vision section (3.13), every entity has a Glowlevel that determines how many

squares around them are considered bright, and a square without any glowers is considered

pitch black. Figures 19-22 illustrate how light radii are displayed on the map.

40

Figure 19. A player with a lit lantern can see a good distance around, but the light doesn’t reach the edge of
its viewable area. The pure-black but non-foggy edges of the circle represents an area that could be viewed

if there was light there. Source: Screen capture.

Figure 20. The vision-tracking focus lets players see the specifics about their sight radii, including why they
can or can’t see specific tiles around them. Source: Screen capture.

41

Figure 21. When the lantern is turned off, the player stops emitting light and can only see as far in the dark
as their dark radius allows. Source: Screen capture.

Figure 22. The player’s orange dark radius is smaller than their yellow light radius, but that’s not always the
case. Some creatures see farther in the dark, making their light radius useless. Source: Screen capture.

42

 If a square is bright and the distance between it and the unit is less than the light radius,

or if the square is either bright or dark but within the dark radius distance, then that unit can

see the square and tell what items and units are within it. This means the dark radius is strictly

better than the light radius, but for most units the light radius is much larger, meaning a well-lit

area will be much more visible than a dark one. These mechanics result in light sources being a

double-edged sword: carrying something bright like a torch will help one scout a greater

distance around them as they travel, but something in the darkness ahead is likely to see the

torch-bearer with his light before being seen in the darkness.

3.12.3. Raycasting

 To see whether someone is invisible or not, one needs to be able to see to where the

intended target is. To know the viewable area, given a Unit’s sight radius, all squares in range

are raycasted to check for anything that would block line of sight.

 All sorts of methods were tested for what worked best for raycasting, always only

concerned with having the ideal output no matter the computational cost, which ended up

making it the most expensive algorithm overall in terms of CPU use. Starting as a simple check

copied almost directly from the Roguebasin-wiki tutorials, typical ray casting consisted of

checking if the center of the starting square could draw a straight line to the receiving square

without being interrupted. (Roguebasin, Register) This immediately brought to view a problem

with long series of walls: gaps would appear after a certain distance as if you couldn’t see half

of the wall straight in front of you. Shadowcasting, again via tutorials from Roguebasin, were

implemented instead, fixing the previous problem but causing new ones, such as being

asymmetrical (standing in square A and seeing B didn’t always mean one could see from B to A)

and lone wall ‘pillars’ not covering things behind them in rational ways (usually with the

immediate back of the pillar being visible but further squares being blocked). (Roguebasin,

Bergström)

43

 Diamond raycasting was tried next, but before a complete replacement was finished

again it was apparent that the logic wouldn’t work with the gameplay. Diamond raycasting

treats pillars as being diamond-shaped for movement and vision, but would only be ideal with

diamond-only movement and accounted for a larger gap between diagonal squares than

desired. (Milazzo)

Figure 23. An example of a cone of vision extending outwards. Note the symmetry between upper and
lower bounds, and how the walls near-adjacent to the seer don’t reveal themselves unless the player is

exactly diagonal with them. Source: Screen capture.

Figure 24. Another view further outside the narrow tunnel. Vision will never extend this far in a normal
game, normally being around 3-9 squares maximum, but it is important to make sure vision works correctly

at every distance. Source: Screen capture.

44

 Eventually, all work was moved towards a heavily edited version of normal raycasting,

drawing heavily from the Dungeons and Dragons version of sight and cover checking. Instead of

just center to center, every octagonal point to octagonal point was checked as well with special

checks for exact-diagonal-edge cases that worked with our movement system (see Figures 23

and 24). Halfway through testing it became apparent that using doubles were giving rounding

errors for our approximate calculations by being unable to represent ratios accurately, causing

eventual overflow or underflow that caused constant irregularities and made the algorithm

asymmetrical. An explanation from a tutorial by Lode suggested to instead use exact ratios with

integers to determine how far along the x or y length of a square we were, guaranteeing an

ending at exactly the edge or middle of the target square every time. (Vandevenne) The end

result solved all the above problems but runs up to 8 times slower than normal raycasting for

results that fail in worst cases (bring surrounded by walls on all sides), though the smaller radii

of the average entity calling raycast checks makes it reasonable enough to never be noticed.

3.12.4. Invisibility

Figure 25. A Seeker spider has faded itself, becoming invisible and able to sneak next to the kobold miners
without causing alarm. Source: Screen capture.

45

 A unit can be effected by invisibility status effects that render them untraceable to most

normal methods of being noticed, with three exceptions: they’re made to be revealed by a

status effect that marks them as always visible to any viewer, the unit trying to see them has a

‘truesight’ effect which lets see invisible units, or the unit trying to see them looks like an ally,

as invisible units reveal their presence to everyone they think is on their side. Items work

differently, being always visible if they’re on the ground but share their owner’s visibility if

being carried.

 Invisibility goes hand in hand with fog in the visibility theme, and like the fog efforts

were designed to make it feel as intuitive as possible. One such correction was pathing: if one

can’t see something in the way, what happens when they try to move through it? Being told

you can’t move to a location without being told why is clearly a design flaw, but a wall made to

be invisible shouldn’t just stop having the properties it did before. Figure 25 illustrates an

example of a seeker-spider invisibly scouting out potential victims.

 Common sense dictated that the mover would accidentally bump into the invisible

blocker and reveal its location, which leads to units being able to ‘shake’ each other. Any unit

that does something or is affected by something that would realistically cause them to become

unbalanced or disrupted in some way (such as being bumped into, attacking, casting a spell,

being attacked, etc.) makes them react by being shaken for some amount proportional to how

disturbing the force was. For every invisibility-related effect, any amount of shaking is enough

to cancel it and remove the invisibility, fixing the invisible-blocker problem and opening up

many other methods of interaction. Shaking can be used in other ways as well: large enough

shakes, requiring intentionally disruptive abilities, can interrupt multi-turn (aka channeling)

tasks or even knock away the victim.

46

3.13. Memories

 All units have a list of memories about other units they’ve encountered in their travels.

If a unit can see a square and another unit is already there or enters that square later, the

seeing unit remembers where the unit is, and once visibility between them is lost, remembers

the time and place where they were last seen. Figures 26-28 illustrate how these mechanics are

displayed onscreen.

Figure 26. A player notices an allied soldier (far right) with a lantern on. They are actively watching the
soldier, but still keep a memory of them. Source: Screen capture.

47

Figure 27. When the lights go out, the soldier’s last known location is remembered. Source: Screen capture.

Figure 28. When the soldier steps into view again, their old position is updated to reflect the new
information. Source: Screen capture.

48

 If a unit witnesses another’s death, the memory is updated to note that their death

occurred there instead of just a sighting, or if someone attempted to look for a unit that was

somewhere previously but wandered off, will update that memory to be a reminder that

they’re not there anymore. Similarly, units will remember all the squares they’ve seen at least

once to tell the difference between completely unexplored areas or squares they’ve been to

but didn’t have anyone there.

3.13.1. Initial conception

 Memories are what came of trying to solve the problem of scouts having to return with

information, and are arguably the most interesting / definitive feature of the game. The first,

admittedly easier version was to simply consider territory in terms of zones: friendly and not

friendly. For a standard RTS, consider anywhere nearby one’s base or central HQ as the

‘friendly’ territory that’s almost always completely in view with no hidden corners, and

anywhere outside as being neutral or hostile territory. A scout, or anyone else, leaving the

friendly zone would have their discoveries lay dormant until they returned to friendly territory,

whereupon it would instantly update everyone and the player to the map outside as they last

saw it. This brought to question how the scout, or anyone else, would be controlled outside of

friendly territory if they couldn’t be seen, or if this kind of ‘echolocation’ vision of periodic map

updates would be enjoyable to a player back when the game was angling towards an abstract-

player god-like angle. Figures 29-32 (below) illustrate how the memory mechanics are displayed

to a player, alone and when interacting with an ally that shares its memory.

 Further brainstorming regarding zones continued to bring up cases of them being too

abstract and abusable a concept that was sure to fail in unrealistic ways, with the main benefit

often only making the game seem more comparable to a standard RTS. The idea of using zones

was scrapped, and instead more drastic measures were thought up: Instead of scouts being

independent when they left the base, instead what if everyone was independent at all times?

What if not only scouts had to report their findings, but the resource gatherers and hunters and

soldiers as well?

49

Figure 29. A freshly-spawned player in the dark, knowing only what they can see. Source: Screen capture.

Figure 30. After a bit of exploring, the player still remembers where everything they saw last was. Source:
Screen capture.

50

Figure 31. Upon meeting an allied soldier, the player communicates with them, showing an animation of
any information they have to give. Source: Screen capture.

Figure 32. Even though the player has never been to the newly revealed area, they still acquired memories
of it from the soldier they talked with. Things may have changed in the meantime, but this was the state of

the world last he saw. Source: Screen capture.

51

 As most units only care about one aspect of the game world at a time (where walls are

for miners, where bats are for hunters, etc.) they could all try to keep up to date with the things

they cared about at the base, in turn necessitating a meeting ground and way of exchanging

information. Everyone would keep track of their own map, even if they were doing things

together in a group, with no shared vision at all.

3.13.2. From concepts to concrete

 Initially memories were much simpler, being the location for concepts that each race

considered differently. All units would have a memory of their last known ‘mining’ spot, which

was always the last mine-able wall they saw, and when they noticed a new one would update

their memory to it instead. Units could then talk to each other, giving a new location if one

didn’t have any yet, which was usually done at their race’s capital that would almost always

have something for everyone. Heading to a memorized location only to find nothing there

would mark that memory as outdated, and anyone attempting to trade that exact memory with

the same unit would become updated in turn. This meant everyone could only retain one

location per concept at a time, which would eventually fail for two reasons.

 The first and foremost was that only one location at a time being memorized meant

units were very short-sighted involving multiple things in an area, especially things that could

move. Bats are a hunter’s target, being stored in their huntingGround memory, but chasing a

single bat that ran away from its herd and killing it would result in a path to its last known

hunting ground, i.e., the bat they just killed, declaring it out of date then having no idea where

to go from there. Cases like these happened often, frequently causing miners to end work

halfway through a large chunk of walls or for fighters to call off the hunt early in situations that

didn’t make sense without exact knowledge of why their memories seemed so short-lived.

 The second reason was the concepts being too abstract: different races had different

definitions for what was hunt-able, mine-able, friend or foe, etc., and any communication

between them became conflicted with ‘translation issues.’ Hunters declared their most recent

52

bat sighting as their hunting memory, while spiders who were picking off anyone with the ‘prey’

tag considered goblin workers, even those hunters, as their quarry they stored in their

huntingGround memory. If interrogation was ever to be added, or any attempt to see how

other races thought and remembered, this was going to be a huge issue. Concepts weren’t

encompassing enough; Units needed to remember everything they saw, even if it wasn’t

completely relevant to them at the time.

3.13.3. Detailed memories

 Thus, memories became a list of units seen. A ‘memory’ was now a new class entirely,

containing a number of variables to specify a bit more about the specific memory associated

with them. The location of the target being remembered remained, and in the case of large

units occupying multiple squares at once only their center location was stored. A last-seen-

status value replaced the system for checking out-of-date memories, being able to differentiate

a ‘memory’ of something currently being viewed, a memory the unit still believes is there but is

out of sight, a memory that something wasn’t where it was last searched for, and a memory of

something believed to have died. The difference between ‘dead’ and ‘missing’ allowed for

complete closure as to if something should still be considered worth searching around for, and

the last-seen-status value became a deciding factor in whose memories transferred over to

whom when trading information.

 Knowing how long ago a memory was created was also important, recorded in an ‘age’

value, and in the old cooldown-based system every memory would increase in age along with

all the other units when an update was handled. When the newer tick system was

implemented, age was replaced by recording the last tick the memory was updated and didn’t

need to be constantly aged alongside units anymore. The last threat level the remembered-

target was seen at was also recorded: captured / subdued enemies were no longer tracked

down, discovered to be harmless, ignored then tracked down again the moment they were out

of sight. The unit who first created the memory is recorded as well, which helps to keep track of

53

who started causing problems in the debugger but didn’t have any impact on gameplay, though

it could conceivably be used to track the source of a blatant liar.

3.13.4. Trading info

Figure 33. A flowchart showing how memories are selected for copying, replacement, or ignored during the
tradeInfo process.

 The transfer of memories between units was meant to be an intuitive process, though

the result ended up looking extremely complex, as suggested by Figure 33 (above). Two allied

54

adjacent units can trade information with each other through direct contact, which essentially

takes all the relevant memories from one unit and gives them to the other then repeats with

the units reversed. The unit being searched iterates through all of its memories: if a memory is

completely new, the receiver creates its own copy of it, but if they both contain a memory of

the same unit each are compared to check for which one gets updated.

 Memories currently being seen have the highest priority, always replacing the other as

they’re seen as always accurate (“I saw Dave a while ago, but you’re looking at him right now,

so I’ll trust you’re correct”).

 Next, if the receiver’s memory is more recent but only knows the unit wasn’t there at

the last check, their memory could be replaced if the giver either knew for sure it died (“I didn’t

see him at the docks a minute ago, but Fred saw him die a week ago”) or was seen at another

spot before (“I didn’t see him at the docks a minute ago, but Fred saw him at the carnival two

minutes ago”).

 If the giver’s memory is just that they haven’t seen them at their location, and the

receiver’s memory involves anywhere else, they ignore the memory and nothing gets updated

(“I didn’t see Jeff at the docks, and he didn’t see him at the carnival, so who cares?”).

 If none of these edge-cases occur, the last check is that the other memory is more

recent that the receiver’s, and if so all of giver’s statistics are transferred over to the receiver.

The process repeats until all the giver’s memories are checked, at which point the receiver is

fully up to date with everything the giver knows and can trade positions. The process would

require a bit less iteration if the transfer was mutual, which it initially was for a time, but having

the process be one-sided allows for interrogations where only one unit extracts information

from another.

55

3.13.5. Individual use

 More importantly that having or trading memories was being able to use them for

something. Whenever a task called for searching for something a unit may know about, that

Unit’s memories were scanned through for the closest relevant thing to become the target. One

of the first efficiency changes was to add a list of watched units similar to memories, to be used

as a short circuit check before shifting through the entire library of every remembered Unit,

and also to add some intuitiveness by always going for things in sight even if other memories

were ‘closer’ but not in view at the time (A bird in the hand is worth two in the bush). Filters

were added to check for things like being within a certain radius, the difference between being

an ally vs not an enemy vs neutral, looking only for things worth trying to reach, preferring

melee targets over ranged, etc. Iterating through memories this way allow every unit to base

their decisions off their own map state at any given time.

3.13.6. Garbage collection

 The thought of garbage collection for ‘dead’ memories came up, with bad results after a

large amount of work and testing. The first iteration involved an additional ‘intelligence’ value

for units that determined how long their memories could last before expiring. Regular units

could remember things for 100 turns, capitals and such could remember for up to 10,000 turns,

while critters like bats could only remember for 5 turns or so basically making them forget

everything the moment they walked out of sight. There was still no limit to the amount of

memories one could hold, only their duration if left without updating via seeing in person or

being told about them. This would allow relevant memories to keep getting refreshed when

they were traded at the capital hub, while also allowing for a new paradigm of manipulating

intelligence to make units remember more or less with specific effects.

 Both intentions failed: expiring memories never turned out well, causing countless

pathing issues in places that weren’t ‘recently’ explored while not reducing the size of memory

arrays by any significant amount. Modifying intelligence to be greater had no apparent effect

56

from a player’s point of view, as memory length is usually requires a very long-term investment

to notice any changes, while reducing intelligence certainly made units appear more stupid, but

usually just through erratic pathing and / or forgetting where their main home was and just

standing around or walking in circles trying to find it. These inevitable higher / lower bounds

wouldn’t be very fun or interactive from a player’s point of view, and manipulating a player’s

memory in that way was simply unthinkably horrible, so the idea was discarded.

 The only other point of garbage collection afterwards was the need to go to a memory’s

last known location to confirm the unit in question wasn’t there anymore, which was causing

buggy issues and was somewhat unrealistic (A miner would have to stand in the exact spot a

wall used to be to realize it wasn’t there anymore, for example). Checking all memories on

every update for anything that should be in view and making sure that they were was the

solution, setting their status to ‘missing’ if not found, though this process is horribly inefficient

CPU-wise.

3.13.7. Player-specific adjustments

 A player’s memories are the most important, and required a bit more detail to make

things more clear and intuitive. These are the only memories that need to show up on the

screen, and as discussed in the rendering section this can be a bit more difficult than first

imagined. Multiple units at the same location had to be concatenated to a single one with a box

symbolizing more were present, and the difference between an out-of-sight memory vs a

present viewed subject needed to be crystal clear. This is the main cause of the constant

missing memory checks mentioned before, as having that in meant the visible squares could be

reserved for only ‘real’ present units while out-of-sight squares in the fog were purely

memories. In fact, players have no way of telling what their ‘missing’ or ‘dead’ memories are, as

they don’t show up on their screen, though they still transfer the memories and information

when they trade info with allies.

57

 Trading info in particular needed to be informative, as any changes should be noticeable

while the overall map may look the same. This led to a ‘sonar’-like reveal animation inspired by

the map from Darkest Dungeon (Red Hook, 2016), where any changes are sorted in distance

order and highlighted as a circle expands outward from one’s character. Old memories are

cleared and moved to their new locations, while new ones flash out as the circle goes over

them to catch the player’s attention.

 The player’s point of view also necessitated an additional thing to keep track of: squares

that were explored at least once, regardless of whether they had units or not, as there was no

way to tell previously what had been explored unless a unit was there. Now all units keep track

of every square they’ve cast their ‘watched’ raycast check to, mixing the results when they

trade info and giving the player the sum along with everything else when they meet up, so

empty tiles reduce the fog from its ‘heavy’ unexplored amount to a negligible ‘explored but

currently unseen’ amount as a visual indicator.

3.14. AI

 The flexibility granted by how tasks are created or removed so easily means that AI

should be considered much more the sum of its parts than any individual unit. The intricacies of

how things interact with each other and react to their environment combined with all the ways

their knowledge of the world is constantly being limited make it difficult to pin down specifics

about the upper or lower limits of their behavior.

3.14.1. Independent AI

 An important note about the nature of the game is that there is never any top-level

controller looking on and commanding from above: all interaction between entities in the game

is direct, with no abstract third party giving orders as in a typical RTS. Each individual in the

game has their own set of motivations and beliefs about what they can and should be doing at

any given moment, only performing whatever behaviors they start with or acquire along the

58

way. Even when given commands, the individual following them is completely unaware of how

what they are doing affects the world for good or bad. No exceptions exist in this regard, but

there exist some units that do care about the macro-level economy and overall well-being of

their group within their limited scope of knowledge. A player would be the prime example of

this, able to make educated guesses about the state of their team compared to the enemy

given what they know, and react by giving orders accordingly, and from the AI we have

commanders and capitals acting to emulate a human’s behavior as much as possible.

3.14.2. Capital AI

 Capitals are the central hub of a team / race’s civilization, where everyone heads to for

information about what needs doing and to provide their findings to the hivemind at large.

Capitals, being stationary buildings, don’t do anything on their turn normally and are activated

and updated every time a unit interacts with them, progressing through their thought process

depending on their world state after trading information. All capitals, as a general following

between all possible races, have a ‘need’ queue for things they think need to be done with top

priority, a ‘greed’ queue for luxury tasks that are helpful but not absolutely necessary, a

‘resupply’ queue to ensure independent storage facilities are occasionally emptied and brought

to a more centralized location, a ‘build’ queue for whatever construction or repair work needs

to be done, and a ‘check’ queue to check in with all known buildings now and then to make

sure they’re still standing.

 When a unit interacts with a capital and hands over any extra inventory items (unusable

supplies like ores or raw meat), the capital quickly checks its memories and inventory to see

what it thinks is lacking, and if anything is on the queue, and depending on the type of unit

they’re given a new task that will fulfill that need somehow. A lack of some type of item usually

involves a delivery to the building that can craft it with the necessary supplies, a recent report

of fighters going missing for long periods of time may involve a message to the training grounds

asking for replacements, all usually amounting to fetch / delivery / check-up quests that are

59

swiftly accomplished with the dutiful unit then heading back to check for more chores and

repeat the process.

 The details of tasks given out are dependent on the unit receiving them: carts are

usually only given delivery tasks to and from storage areas, most basic units receive things

related to their normal duties, while some only come to a capital to update their own

knowledge of the world. Commander-type units are among those, treating the capital like a

glorified messaging board to find the next area of interest that requires their attention.

Currently, this amounts to finding any as-yet undefeated enemies, waiting around the capital

for military-grade units to recruit, overriding their default tasks with an order to follow them to

war and waiting for a reasonable sized army to head out and fight anything that looks at them

funny along the way before heading back to refuel. The combination of a capital and

commander was meant to simulate a typical player’s thought process, with any additional

behaviors being added on a race-by-race basis based on their strengths, weaknesses or other

necessities.

3.14.3. AI: Too dependent?

 A difficult opinion lies in the question of how smart is too smart, or how dumb is too

dumb, when dealing with independent AI. Players coming in from other genres are used to

bases that run on auto-pilot if left untouched and units that only do the last thing they’re told

before waiting for further instruction. The independent nature of the memory and task system

necessitates a smarter individual, but smarter is a very relative term: it may seem smart for a

unit in possession of a sword to swap to it and fight in the face of an enemy in general, but

there are often scenarios where even the time spend equipping the sword is better spent

running away to safety 5 feet away.

 Not every unit can be engrained with the intelligence of a player, yet we’ve developed

the game around limiting micromanagement to a minimum. This draws the difference between

60

tactics and strategy: a player needs to learn the behaviors of all their allies, not expecting them

to always be perfectly rational agents in their field, but more of a tool meant for a specific part

of gameplay: fighters charge enemies, archers stay in the back, workers flee from enemies but

rush towards walls, etc. Everything isn’t given player-level intelligence for a reason: AI in every

game is meant to be predictable and flawed, with the challenge and fun of a game being the

efforts to abuse and overcome it, and exploit it fully when it’s on your side.

3.14.4. AI: Too independent?

 On the other hand, the game’s anthill-simulator roots are apparent in its multi-

dimensional design. Even if autonomous entities behave imperfectly on a turn-by-turn basis, we

wouldn’t want them smart enough to complete the whole game for the player. Most of the

automation mentioned previously with commanders and capitals is on the part of the

commander, which is entirely replaced by the player, and the capital parts are manually

disabled when a player is on the capital’s team. This doesn’t stop a capital from giving out basic

commands, only limiting their task-giving systems to whatever the player assigns them to do.

The player can queue up items and units to be created / trained, and the capital will handle the

rest. The player isn’t prevented from manually redirecting units to where the capital would tell

them to go anyway, or carrying and delivering supplies himself, but such automation is

naturally left to the ‘system’ similar to mining.

 If units behaving too intelligently for micro-intensive behavior like kiting or combat is a

problem, then only their attributes need to change: moving faster or slower, doing more or less

damage, fleeing at different health values. Anything can be tweaked to strike up a good balance

between fair fights and smart ones.

61

3.15. Summary

 Trick of the Light’s overall experience goal is to have the player in an environment

they’re familiar with from other genres, but training a mental muscle that rarely gets touched in

other games considering the themes of imperfect information. Most of the player-side

gameplay is highly correlated with that of the roguelike and RPS genres, having numerous

options to interact with the world around them (mostly related to combat) and being able to

personalize themselves and followers with weapons and armor. The macro-level gameplay

requires strategic thinking in line with a standard RTS, having base-management and Unit-

upkeep as primary concerns, though often a fire-and-forget one that involves queueing up and

waiting for the results. The goals and flow of the challenges are in the same style as a classic

adventure, leading the player along an interesting narrative that puts them at the center of the

story.

 Blizzard’s Warcraft 3 (2002), though an RTS, would be considered the primary

inspiration for how the game turned out in this regard, having all the elements in the same way

described above, but also being the primary offender in the first question we sought an answer

too at the beginning of this project about the sacrificial scout. Trick of the Light’s step into the

territory of imperfect information should cast a shadow of doubt about how a player typically

trusts their own in-game mental state. Not everything their character sees is real, nor are all the

things they’re told are true. Not everything that occurs within their territory will be relayed to

them, and the lack of information should start to become just as telling as receiving it in some

cases. Deductive reasoning and a slight sense of paranoia are absolutely the critical separation

from the aforementioned genres, enunciated through the more immersive and realistic themes

even when the actual characters are goblins and ghouls.

 The extra visibility mechanics all have the same purpose as normal fog of war, in that

they limit character’s vision in a somewhat realistic manner to reduce the amount of ‘perfect’

information they have. Even within their own sight radius things are constantly being hidden

62

around blockages, in the darkness or simply invisible to the naked eye, each adding an element

of uncertainty to the only direct source of vision they have in the world.

 Fog of war at its core is intended to emulate the real-life property of never being

omnipotent about a situation: there are almost always unknowns that need to be accounted

for, the allied side just as much as the enemy, and implementing so many things involving one’s

personal vision radius is a way of suggesting that even depending on everything one can see

may be dangerous without taking certain preparations or being overly thorough, which is rarely

a luxury that can be afforded.

4. Technical Design

 The code of Trick of the Light has gone through many re-bases and language changes,

learning many common practices and general formatting techniques. The end result is always

the most critical goal, but the processes put into the engine are ultimately the ones that shape

the flow of the game most of all.

4.1. The World class

 Starting the game initializes the World class, the main hub of the engine where all

decisions are resolved and effects ultimately applied. The World is a static class, meaning

there’s only ever one instance of it at any given time. That instance is always called by anything

interacting with the world to ensure everything is taking place in the same ‘universe’.

 The initialization process starts with reading a map file and starting to print out units

and items at their designated locations, but spawning them in the normal way would cause

problems: Units being placed in sequence with walls would see areas and things they weren’t

supposed to if everything spawned in at once, so the normal creation process is separated into

chunks of placement, glow-casting, start-reacting, vision casting and then hard refreshing,

63

normally done all at once when a new entity is created. The ‘refresh’ function mentioned above

is a Unit-only function that ensures all non-internal sources affecting the unit are checked

again, with the option to make it a ‘hard’ reset that will recalculate everything the unit is

looking at as well as everything which may be looking at them. This is mostly necessary for large

changes, such as a sight-blocking wall becoming invisible and letting everyone attempt to check

if their sight radius was updated.

4.2. Maps: A tailored experience

 Map generation was a key consideration for how the game would be played, and what

kind of game experience would be created. Trick of the Light’s presentation is visually similar to

a roguelike game. Its maps could also have been produced a similar way: by procedural

generation. Doing this would have introduced additional elements of exploration and

uncertainty that would align with the experience we wanted to produce. However, the core

objective of Trick of the Light was to see how well players would comprehend and react to its

memory and fog mechanics, not to produce a highly replayable game. Adding geographic

randomness makes no sense in an experiment that is only expected to be played once or twice.

64

4.2.1. Campaign formula

Figure 34. A full view of the tutorial level. Source: Screen capture.

 The decision not to employ randomization positioned Trick of the Light squarely within

the RTS tradition of single-player campaigns. A ‘campaign’ is a series of levels of increasing

difficulty, usually introducing a single unit type and/or game mechanic on each level. It is

essentially an extended, well-integrated game tutorial, which is exactly what we wanted to

ensure that the elements of the game we wanted explained would be taught to every player

the same way. Campaigns also allows for scripted events and one-time gimmicks that won’t be

reproduced elsewhere in the game, such as dialogue between characters or spawning /

despawning items and units after certain conditions are met, which help to create situations

and storylines that make learning as intuitive as possible.

 Trick of the Light was initially planned to have its own campaign in the same format,

showing off all mechanics in chunks, but we quickly realized the scope of a full campaign would

scare away potential playtesters. At 10-20 minutes per level, anyone who didn’t like the initial

mechanics shown were unlikely to proceed through the rest of the game to learn the rest,

which very early unofficial testing undoubtedly confirmed. It was decided to compact the most

iconic mechanics into a single level that would introduce all of them in sequence. The most

65

important part of testing was to see if testers could understand the core vision, fog and

memory systems, which a single level could provide. Figure 34 (above) shows the layout of the

tutorial map used for initial playtesting. Two additional levels were prototyped and partially

implemented. Their layouts are displayed in Appendix G.

4.2.2. Generation

Figure 35. What the level looks like in ASCII form. Every character symbolizes what character goes where,
including some special scripted characters that have additional tasks and such manually added to them on

creation. Source: Screen capture.

66

 Map creation is done within the ‘main.h’ class, taking in a manually-made 2D string

array filled with characters that represent the units / items to be placed (see Figure 35). The

world is then created by manually scanning the array and putting things where they look like

they should be on the ASCII ‘map.’ While obviously not the most sophisticated choice, it’s been

working since the start of the project with no major reason to upgrade to anything else thus far.

Offloading the mapmaking process to an outside script would make it editable without having

to rebuild, but most changes for testing or debugging rarely require that much fine-tuning after

a general change, and the rebuild process for changing a string in main is negligible.

 If we were to expand the game further, mapmaking would definitely need an

improvement at some point, with some early inspection being done about how the Tiled map

editor software could be integrated. (Tiled) Tiled is intended specifically for 2D grid-based map

systems like we have in Trick of the Light, but why even go that far to add an outside source to

the game when the engine could handle it quite easily by itself? An in-game editor would only

require a menu system for selecting what to add where, with saving and loading being simple

read-write from a text-log. A few playtesters that experimented with the debug-view of the

game were genuinely surprised the feature wasn’t already in, believing they missed a button

somewhere that would have everything they needed ready to go. The feature could easily have

been put in at the time if we thought anyone would be interested.

4.3. Formatting practices

 Formatting and general code style hasn’t been a serious problem due to the one-man

development team so far, but the ‘so far’ aspect being subject to change led to some common-

sense minimal standards. The spacing of indices and such are consistent throughout the whole

project, comments are available where complex or non-obvious decisions are made, return

types and input values are listed at the front of every function, all enough so that someone

reading things for the first time would know how things worked if not the order they should

start looking.

67

 The most populated class types are units, items, status effects and tasks, each

containing templates to easily generate new ones. Further templates are available for certain

‘genres’ of classes, like a kobold type unit or an item-producing building, but frequently require

a clone of their related tasks as well to change any of their standard behaviors: the unit class

only defines what the unit is like statistics-wise, while all of their actual activity comes from

whatever tasks they’re initialized with during creation.

4.3.1. Class-centric practices

 An ongoing problem is determining what functions should be put in World vs what

should remain within one of the Living subclasses, such as spawning in new entities or handling

interactions or reactions between them. The general rule is that if something should remain

constant throughout all possible instances or subclasses it belongs as close to World as

possible, while functions that have even a slight possibility of being overwritten for some

specific use case should belong in one of the living subclasses to be modified at the specific unit

/ item / Status effect level when need be. For example, an entity being moved from point A to B

should always result in a few things, like being transferred between squares and handling any

glow / vision changes that arise because of the movement, and thus became part of the

World’s moveItem/unit functions instead of having a unit/item-based movement function. The

attempt to walk, however, may be dependent on the Unit’s class: imagine if spiders were able

to walk through squares with webs in them, regardless of what other units were on the square,

or a type of magical golem that was strictly forbidden from trying to walk too far away from its

power source. Cases like those are why functions related to ‘trying’ to move are part of the unit

class that can be modified at will, while set-in-stone functionality like actual movement is

‘archived’ in World.

 Similar thought process occurred for handling things like vision, memory, pathing and

more, though quite often a change of heart occurred that required reformatting or rolling back.

The worst case of this would be the status effect class’ call to try and infect a Unit, going

through a loop of calling functions between the World and Status that requires said effect to be

68

initialized and assigned to its unit target even if it ends up being blocked.

4.4. Expected game flow

 The overall game flow can be characterized by a cycle of exploration, fighting and

recuperation, repeated until all objectives are fulfilled, even if every enemy lies slain and no

exploration is left.

 At the beginning of each level, a short dramatic prologue (presented either as a dialog

with nearby allies, or as a monologue if the player is alone) describes the player’s situation,

motivation and objectives. For example, in the introductory tutorial level, the player learns that

they have assumed the role of a newly-hired commander assigned to report to a base camp

located nearby. However, a recent earthquake has blocked direct access, requiring a search for

miners who can be recruited to clear a path. Once the base is reached, the player learns that a

neighboring nest of giant spiders have been bringing local mining operations to a halt. This

affords all the excuse needed for their immediate extermination.

 The player starts out with only the bare essentials in terms of units and structures, with

development requiring time to mine and process the resources. In the meantime, players are

expected to be scouting themselves and doing as much as they can: player characters were

intentionally made unable to mine to discourage them from feeling obligated to work in that

repetitive area.

 Waiting in one place for every possible resource to be extracted and all upgrades maxed

out, referred to as ‘turtling’ in the RTS community, is still possible but indirectly discouraged by

the intentional lack of a ‘wait for x turns’ function along with many easy short-term goals

manually added into each level that should be more appealing than waiting. Overall, at some

point the player goes out exploring, finding enemies and obstacles as well as rewards and

treasures, and at some point will come back due to injury or a lack of inventory space to collect

69

more loot. Supplies are made to be consumable to encourage this behavior: trinkets and

potions can be used only once, ammo or throwable items are easily wasted, and long-lasting

weapons and armor eventually become outdated as the enemies grow stronger farther from

home.

 The return to the base is a time to get updated about events that may have occurred

while the player was away, such as raids or new discoveries, and gives the player a chance to

ponder what needs doing as they restock themselves and deposit their findings for safekeeping

if necessary. Construction and micromanagement is expected to happen in bursts at first,

coinciding when the player returns from adventuring, but additional methods and tools for

staying in touch will reveal themselves throughout the game, allowing a constant line of

communication and direction over the workforce from afar while player-led excursions are

underway.

4.4.1. Expected game anti-flow

 Much of the experience of the game comes from interrupting this expected flow of

gameplay, highlighting the features of the fog and memory system that are unique and

interesting. One of the very first things we try to show players is how memories are accurate,

but can quickly become outdated: they’re given a preview of the path leading straight to their

base, but come 5 steps later they see rocks that weren’t there before and come to realize they

took the place of the previously empty ground. Enemies appear that will try and memorize

patrol routes, waiting for caravans returning with a good haul before striking or picking off lone

scouts if an opportunity presents itself. Spellcasters in the shadows can implant false memories

into scouts that inevitably lead back to the player; things like fake dragons and demons or piles

of gold and gems meant to lead them into an ambush. These mechanics are meant to get the

player into a state of thinking about how reliable their information and beliefs really are at any

given moment, a skill rarely exercised in the genres this game is related to.

 Figures 36 and 37 (below) illustrate a typical spider strategy for picking off miners who

stray too far from the safety of their base.

70

Figure 36. The Seeker from before has informed the spider base of where the miners are, and a hunting
Spider sneaks up on a miner returning from a trip. Source: Screen capture.

Figure 37. The spider will poison as many miners as it can until confronted by a soldier or anyone else who
poses an actual threat. If undisturbed, the poison eventually numbs the victim, allowing the spider to drag it

to its home nest and let the spiderlings feed and grow to become hunting spiders themselves. If not
accounted for early and the nest tracked down, they become a serious threat. Source: Screen capture.

71

5. Graphics, sound and controls

 The artistic side of game development can often be just as difficult as making the game,

which turned out to be the case during Trick of the Light’s development. Despite the numerous

intricate systems explained in other sections, getting the themes of the game expressed on the

screen was a whole new challenge whose refinement was a very grueling process.

5.1. Art

 Visual art considerations for this game should have been a primary concern, but being a

one-man team with a focus on technical development, this aspect of development was often

relegated to decisions about how to economically present necessary concepts to a player. The

SDL2 library was used more for its simplicity and readily-available tutorials rather than any sort

of artistic preferences, in fact being more comforting that other engines with advanced features

that were sure to go underutilized. (SDL2) The features we did use were used often, with many

‘cheap tricks’ or roundabout ways of solving problems that would likely be handled much better

by someone with more expertise in the graphical design field.

72

5.1.1. Roguelikes-alikes

Figure 38. Playing Trick of the Light with debug mode turned on looks like this. With no rendering limit, it is
possible to play up to 2000 turns per second to simulate extreme duration games if necessary. Source:

Screen capture.

 Trick of the Light (Figure 38) has a very good precedent for simplicity: roguelikes.

Deriving from the 1980 game Rogue (Figure 39 below), this genre has ASCII-based roots highly

engrained into its design, with the community at large still remaining reluctant to expand

anywhere more mainstream than 2D graphics. (Rogue) Our grid based engine and ASCII roots fit

directly in line with this kind of style, even if the gameplay mechanics were becoming distant as

development progressed.

73

Figure 39. Rogue (1980), the game that defined a genre, even though it itself was based upon other ASCII
adventure games and RPGS. Source: URL.

 All of the art in Trick of the Light is tile-based, made to fit in an even 1x1 ratio within a

square and fit seamlessly with its neighbors to potentially expand forever in any direction. The

images depicted can sometimes mean much more than they show, or have hidden properties

one can’t discern from a single glance (such as what items a unit is carrying), but give the gist

about what the unit is and what one can expect from it with a single still image: walls stand still,

bats flap around, fighters swing swords at close range, archers run away and shoot, etc.

5.1.2. 2D Squares

 Up till the end of development, the rendering process using only 2D art was extremely

efficient in terms of CPU use, allowing far more than 120 FPS before a common-sense cap was

put in place. The high framerate granted some extended creativity with gradual camera

movement instead of instantaneous jumps, especially when zooming in and out was added in,

and allowed camera controls which feel very fluid. It also unfortunately hiccupped any time a

https://static.giantbomb.com/uploads/scale_small/1/15568/537945-rogue_006.png

74

particularly complex function was being done during a turn, as a drop to 40 FPS for a split

second was much more noticeable than the function that caused it in most cases. Zooming was

a mixed blessing as well. This nifty feature entailed additional requirements for images which

needed to be scalable and look good at any size, which doesn’t coincide well with the fact most

of our images were taken from free online 16x16 / 32x32 tilesets.

5.1.3. Asset acquisition

Figure 40. An example of how gameplay looks in Dungeon Crawl Stone Soup. Source: URL.

 As none of the development team were great artists and the amount of individual

images needed were plentiful, a savior came in the form of an online roguelike community that

grants explicit permission for their assets to be used freely for any purpose, Dungeon Crawl

Stone Soup. (Dungeon) Containing a multitude of available tilesets for not only units but UI and

controls as well, most of the assets come directly from their extensive library (see Figure 40

above), though only as placeholders for what we would commission in the event of actual

publication.

https://lgdb.org/sites/default/files/node_images/43/5454.png

75

 Supplementary tilesets were found on OpenGameArt.org for a few of the remaining

assets, though a number of multi-square units, especially walls, lacked a perfect solution.

(OpenGameArt) Some images from Game-Icons.net were also used to make the UI as

consistent as possible, as the art design from Dungeon Crawl Stone Soup was a bit random at

times considering how it was a community effort. (Game-Icons.net)

 A complete list of art assets is provided in Appendix E.

5.1.4. Sprite-based animation

 The thought of animated sprites was abandoned early on, as it would multiply the

number of necessary images, but animation wasn’t necessarily forgone. Rather than advance

motion tweening, model / sprite warping, particle effects and whatnot, only basic SDL

functionality was used, such as opacity and rotation. Combat was done simply by ramming the

attacker into the defender, similar to animations done in card games like Hearthstone or Magic:

The Gathering. Ranged attacks and throwing was a simple lerp from thrower to victim,

sometimes with a spin or two depending on the thing being thrown. Most UI elements involved

lerped movement / opacity reveals instead of flat rates or immediate transitions, such as the

radial menus and vision checker, but always fast enough that an expert player who knew where

things are later in the game would have to wait between clicks.

76

5.1.5. Fog design

Figure 41. This still image of the rolling fog doesn’t do it justice, as the 120 fps limit makes it appear much
smoother and less blocky (but still blocky). Source: Screen capture.

 Fog had to be the greatest artistic challenge, both for its absolute necessity as an

intuitive form of vision and for the incredible variety of possible adaptations that could have

been done with it. The first thing that needed to be decided with fog was whether there

needed to be fog at all: though the term used to describe it is ‘fog of war,’ in reality we just

needed a way of separating the map into what we can see now, what’s been explored before,

and what has yet to be explored. The ‘fog’ could easily just be ‘darkness’ that was illuminated

once explored, but it was decided the effect would seem like a cop-out when the term ‘fog of

war’ was being used so much, so some sort of fog needed to be put in.

 A simple fog-image overlaying a square with less alpha than usual worked well, being

able to differentiate explored vs unexplored and allowing a smooth transition simply by lerping

the alpha value instead of immediately removing the fog image (see Figure 41). A cheap

randomizer was the initial attempt, where the fog would appear to glide in a direction as a

random fog density was passed along one square every frame, but one-directional fog was less

than ideal: it appeared as if there was wind billowing the fog in one direction constantly when

the theme was an underground cave. A particle engine or fluid-like techniques would have

been ideal for making a swimming-ish water-like fog effect, but little was known on how to do

77

so and early prototypes using flocking algorithms were very CPU intensive and not very

appealing to look at. Manually adding permutation would provide the ripple effect we wanted,

but there was a better idea.

5.1.6. Pre-generated fog

 If we wanted a fog effect, we didn’t have to make it generated at runtime: we could

take an outside fog effect that we liked and fit it in the game. Rather than update all the

variable we were using for fog every frame, we could instead convert a fog gif created in

another program to a 3D array of integers: 512 x 512 to cover the span of the whole map, with

300 frames to cycle through, and each integer ranging between 0-100 depending to how heavy

the fog should be in that square if applicable. Every frame the renderer would increment

through to the next array, which would make the fog appear to repeat seamlessly in a way we

could fabricate beforehand to be exactly what we want. A crippling problem was the amount of

space the arrays took up, being almost 50mb in size. This caused crashes in the Eclipse IDE for

its multi-hour indexing times. The final result was also not worth the effort, being noticeably

prefabricated instead of seemingly ‘natural’, with the performance boost from reading an array

being negligible as CPU use was the least of our concerns at the time. In addition, the fine-grain

detail of the fog was actually a detriment as the size of the map tiles were much larger than the

fine-grain details in the original gif, ending up looking very blocky / pixelated.

 An edited version of smaller size and more fined-tuned for the size of the map was in

the works, but we decided to test with the previous version of rolling-fog. In the current

version, the entire map appears covered in fog with limitations on zooming and bounded

movement to maintain secrecy about the real bounds of the map at first, but all the maps we

have end up looking square-shaped after complete exploration, which is fine.

78

5.1.7. Hidden map boundaries

 With the theme of exploration and the unknown being major factors of the game, we

had a concern with how fog could be used to mystify the map even more. The ability to zoom in

and out made a minimap unnecessary, freeing up any UI work that needed to be done in that

regard but also causing the effect of having the map be unbounded by that same UI. While the

map is square-shaped in the nature of its initialization, players don’t specifically know that for

sure, and the lack of minimap doesn’t bind them to being at any relative location to the edge of

the map. This basically means we could structure the fog so the map boundaries were never

revealed, and we ended up with two different ways of accomplishing this. One was to only

show fog a certain distance around explored locations, revealing more of the map from

complete darkness with a very light layer of fog to show explored locations, and the other was

to cover the full area of the map in fog and only allow camera movement a certain distance

away from explored areas. Initial testing was done with the former version, which turned out to

be very complexing for new users who couldn’t tell what the fog was representing next to the

darkness and why it didn’t seem to be a complete constant around the map even when it was.

When they progressed further into the map, they felt their progress was being hindered by the

fog-circle surrounding them rather than more of the area being revealed as they cut through

the fog, which we counted as a failure. The alternate version worked fine, but highlighted the

aforementioned need for a constantly changing fog animation for the background, as a solid

texture fog was unimpressive even if it felt better for exploration and unbounded the map as

we desired.

79

5.1.8. Lighting

 Lighting was put in just after fog was, unfortunately bringing light to another artistic

problem. Creating light was more about creating darkness: all that changed from the previous

version was an overlay of a slightly transparent dark tile above the usual one, making anything

in darkness appear obfuscated while squares with light sources were untouched and much

more visible. The distinction was very noticeable, especially its shape: light sources casted

outwards in a circle formation, but that didn’t translate well at lower distances and was very

noticeably square. Incrementing one’s light radius in small amounts would usually extend only a

single tile in a random direction, which is less than intuitive, and at very low values wouldn’t

appear circular at all. Making light radiate out from the source using raycasting to check for

walls would have worked, but the rendering engine would have required a complete remodel

to make it work and would have been extremely difficult to make work from the player’s point

of view without making a few edge-case scenarios give him more information than they should

know while ensuring every square was clearly recognizable as being lit or not. Figures 42 and 43

illustrate the glow radius effect onscreen.

 While the ideal solution, it was pushed back for later and instead adjusted glow values

were added: each glow source on a square would be checked for their distance away, with the

closest source defining how bright the square was. This helped alleviate the square-ness and

made the actual sources of light much more apparent, and with a bit of flickering added in it

was a very convincing torch-like glow.

80

Figure 42. A glow radius is supposed to be a circle, but the result is obviously not. While the source of the
light is apparent due to the gradual falloff, the ‘corners’ of the ‘circle’ are a result of a square-based

rendering engine. Source: Screen capture.

Figure 43. One of the big problems with light was finding the brightness that differentiated a lit square from
a dark one, and a dark square from a dark square you could still see to because it was within your dark

radius. Can you tell where the light stops and the dark radius begins? Source: Screen capture.

81

5.2. User interface

5.2.1. Minimalistic Style

Figure 44. The average screen the player sees, with the option to minimize the bottom right inventory
screen by clicking the backpack. Source: Screen capture.

 The in-game UI was intentionally minimalistic, with as few elements as possible taking

up constant screen space at any given moment (Figure 44). Rather than up to 25% of the lower

half of the screen being reserved for controls as per a customary RTS or roguelike, only three UI

elements exist: the inventory / ground / units section to the right, the help text in the center,

and the ability section to the left, each with ways to minimize for maximum screen exposure.

We felt no need to flood the player with all possible options from the start, and controlling their

character was intended to be intuitive enough that shaking their mouse around at first would

indicate how they were to interact with the world through the constantly-updating help text.

The game immediately became more about looking around the screen and seeing what their

character sees with no subgroups or alternate sources of attention, a much more immersive

experience to assist with learning mechanics that required much more intuition than normal.

82

5.2.2. Menus from menus

 Despite the value of minimalisim, there’s are many things units can be told to do in the

game, and there had to be menus to direct those actions. The inventory section doesn’t take up

much of the screen, but going through items brings up a menu showing what you can do with

each one. If there are items or units sharing your square, you can bring up a replacement menu

to decide what you do with them, which returns to the inventory menu immediately

afterwards. Some actions that require a target to complete will require a second screen for

choosing said target, such as picking where / who to throw an item towards or the destination

of a unit being commanded to go scouting.

5.2.3. Radial menus

 A radial menu scheme was devised to handle most possible interactions, including ones

not normally used by AI units such as inspecting things or having a mutual trade menu. Right

clicking a visible unit or item brought up a ‘focus’ menu from which to choose these options,

following the scheme of simplistic animations by having the icons extend from the target and

quickly but gradually lerp to their intended position for easy clicking. The intent was for the

radial aspect to be more for quickly cycling through menus like a tree, narrowing down one’s

intent to a specific command from a number of available types, but we found very few testers

were willing to explore much beyond the first level of menus that pops up after right clicking,

and instead put more options in less menus. This in turn diluted the screen with too many

options for selection, with many often not being selectable depending on whatever was being

right-clicked, but more importantly confusing new players with an information overload of

possible things to do.

 In the end, aspects of both ideas were incorporated: the first radial menu popup was

very general, showing only the option to trade, inspect, command or interact, with only the

command menu leading to a variety of specific options to narrow down to.

83

5.2.5. Rendering loop

 Rendering was handled almost totally within a single rend function, called whenever we

wanted the full screen displayed in its typical tiled format with all units and items visible from

someone’s point of view (usually the player). Because SDL rendering overlaps everything done

previously in the same bounded area, overall rendering is done in layers starting with the things

we expect to possibly get replaced later.

 Explored territory is drawn first, including areas the player can’t see at the moment but

have seen at least once, but only drawing items at visible locations. Currently visible units are

drawn in the next layer, not checking the tiles themselves but rather the player’s memories for

units they are watching. This allows for less overlap in the case of multi-tile units that’d be

drawn once for every square they were in and to lower the iteration parameters to only units

we cared about at the moment.

 Next, deep fog is rendered over unexplored territory, including adjusting the random

values that make the fog ‘roll’ northwards over time, though if the array-version of fog is ever

used it’s a simple uncommenting of a single line to adapt. Next, out-of-sight memories are

drawn, checking from what the player remembers but didn’t draw in the previous section and

putting their transparent silhouettes over where they think they are in the fog before finishing

up and displaying the final image. In each case where units and items were being drawn, checks

for overlapping occurs where additional units / items beyond the first are instead symbolized

with a blue or orange plus symbol to indicate there’s more things sharing that square. Right

clicking these packed squares lets the player pick which one they want to focus in on.

5.2.6. Animation timers

 Though the animations were acceptable, they attempted to complete two opposite

tasks at once: be concise enough to allow seamless gameplay while also ensuring every

important action was displayed to the player. This problem was merely mentioned in the radial

84

section above, but the real problem was unit movement. Movement was merely sliding the

Unit’s sprite from one position to another, and when coming in / out of fog also giving a ripple-

like effect to attract some attention. If the player’s character alone is on the screen, clicking to

move was reasonably fast enough to keep up with an average player’s clicking, taking about 20

frames on a 120 FPS limit for the full animation and returning to wait for player input. The

problem arose when the player had a group of units who were also moving: their movement

animations added up, sometimes involving a number of smaller units occupying the same

square moving the same direction, taking long periods of time to show each individual

movement.

 The first attempt to solve the problem was an animMult double that controlled the

length of each animation, starting at 1.0 for the original length and reducing by 10-20% every

time an animation played to hurry along the long chains. While much faster than before, it

became too fast to actually detect who was being moved at high speeds: enemies could appear

from the fog in front of them, or a follower may have been led astray due to some mischief and

the player wouldn’t notice in the increasing flurry of movement as the continuously clicked.

Resetting the animMult timer back to 1.0 after each movement wasn’t a good middle ground

either, causing both problems at once instead of solving them.

 Eventually, instead of the stream-of-consciousness way of rendering inter-turns for the

player where animations only played after the last one was done, a collection of movement and

attacking actions were recorded and played near-simultaneously, greatly concatenating groups

of units moving or attacking at once, and keeping the aniMult properties as-is except for

resetting once the player stopped rapidly clicking to move around.

5.2.7. Lack of text-logs

 Somewhat ironically, what with the theme of memories being prevalent and the debug-

text-output being retained for most testing versions, there are no text-log of any sort among

the UI elements. Normally a staple in any roguelike-like game, the text log usually doubles as a

85

combat-tracker, giving exact values behind what hit / didn’t hit, and an adventure log, giving

exposition text about the environment or dialogue and generally setting the mood where in-

game images isn’t enough.

 The absence of this feature in Trick of the Light was completely intentional. The lack of a

paper trail encourages players to be alert and attentive to the world they can see as it evolves,

taking things to their own memory as an example of how easy things can be to forget when

they’re not explicitly recorded or there’s no ‘go-back’ reset and retry button. Being as intuitive

and immersive as possible was a common theme that hopefully was carried through

successfully. Similar effects were also limited, such as damage numbers popping up after hitting

things, and even health bars were begrudgingly put in as a bare minimum to help indicate when

some creatures took more than one hit to kill.

5.3. Controls

5.3.1. From text to clicks

 The control scheme started from its initial humble origins as text-based commands back

when everything was ASCII; everything was uphill from there. Like a classic adventure game, all

available commands were listed out to be typed and sent in one after another, leading to

separate menus with more commands, just like how the radial system described previously

worked. The first jump to keyboard and mouse was when SDL was put in, starting with using

the numpad to move in any orthogonal direction. It turns out fewer computers than we’d

hoped have a full 0-9 numpad in the format we wanted, where every key was mapped to the

direction the player was moving, and as the left-hand side of the keyboard (the qwe-asd-zxc

keys) didn’t line up the same way movement had to be transferred over to the mouse.

 Clicking initially moved one in the orthogonal direction clicked, but was almost

immediately changed to fully pathing towards the square indicated instead: left click for a single

step and right click to keep taking steps till the destination was reached. One could right click

86

into unexplored territory as well, but the pathing wasn’t always intuitive: at every step the path

was being recalculated, and with movement sometimes coming faster than the player could

fully interpret, players would often watch semi-helplessly as their character tried to go

sometimes the complete opposite direction of where they intended if the destination was

unreachable (semi-helplessly, as they could click at any time to stop the auto-pathing but very

rarely did so during playtesting). The solution was to simply not recalculate the path: the first

route they saw was the one they took to the point something solid blocked their way, even if it

ended up requiring multiple right clicks to reach their destination.

5.3.2. Keyboard

 The keyboard wasn’t entirely abandoned, though it turns out during actual gameplay it

often was. Instead of character movement, the keyboard was now solely for controlling the

map: WASD was used to move the camera around, allowing one to change the view to out-of-

sight locations and inspect memories in the fog, as well as the Q and E keys being used to zoom

in and out and Z, X, C for refocusing the camera at predefined close, medium and far zoom

levels. While necessary at times, the mouse could also be used for camera control by scrolling

to the edge of the screen and zooming in / out from the mouse-pointer’s location using the

mouse wheel, resulting in many playing the game one-handed without needing the keyboard

controls for a majority of the gameplay. This wasn’t seen as an explicit problem, as the

functionality was there if needed, and was mainly intended for more macro-oriented gameplay

anyways, such as checking a recently updated map.

5.4. Sound and music

 Sounds were put in far into development, just before testing. IMGD undergraduate Dave

Allen created all sound and music assets, using a combination of assets he had created

beforehand and new ones using Foley or synthesized tones. Sound effects were very short,

often less than a second, and included menu-related noises like clicking or selection pips as well

87

as in-game effects like swinging a sword or lighting a torch. “Music” was implemented as a

collection of ambient noises made to sound like the area one was traveling around, looped until

moving into another area caused the track to switch. However, only the default open-area track

is currently used, regardless of the player’s location.

 A complete list of audio assets is provided in Appendix E.

6. Testing

 Testing was conducted using 20 IMGD undergraduate students as subjects, playing

simultaneously on separate PCs in the IMDG lab. Every subject completed an IRB Informed

Consent Agreement (Appendix A) before beginning.

 The tutorial level (illustrated in Appendix G) challenged testers with tasks involving the

vision and memory-related mechanics. The goal was to see if players would understand these

concepts well enough to successfully complete the tasks, using an online post-test survey to

solicit their subjective opinion of the new systems.

 Playtesters were encouraged to express their thoughts and ask for help anytime during

the test session. Testers were not observed as they filled in the surveys to minimize any

influence by the presence of the developer.

88

6.1. Results

 The post-test survey included 1-4 Likert rankings of specific aspects of the game, as well

as four questions requiring short written responses. The survey instrument is reproduced in

Appendix B, with the complete results available in Appendix C.

 In general, the results indicate that playtesters were generally able to understand the

mechanics being presented, but experienced some trouble fully utilizing them. The theme-

relevant questions, related to knowing what was going on around them in terms of vision,

memories and lighting, all tested positively. “How often did you feel as if you understood what

was going on around you?” had 75% reply with ‘Often’ or ‘Almost Always,’ while the question

“How would you rate your understanding of the memory/map-sharing system?” received over

85% saying the system was ‘Understandable’ or ‘Very understandable.’

 However, the above results are not, by themselves, an adequate way to assess

comprehension. The understanding of a concept cannot be determined simply by asking “Did

you understand the concept?”, especially in a setting of imperfect information in which many

unknown things may be happening that a player doesn’t know they’re not reacting to.

89

 In addition, the developer’s presence in the room during testing can influence the

behavior of test subjects. Some may be reluctant to disappoint the developer, even if they are

specifically instructed to respond as impartially and honestly as possible.

 The written survey question asking testers where they stopped playing provided more

impartial data. The similarity between the number of players who reported understanding the

mechanics in questions 2 and 4 (averaging 80%) and the number who reported completing the

tutorial (about 70%) suggests that the latter players successfully acquired the knowledge

necessary to progress.

 Physically being there to observe them as they played, being asked questions about said

themes and listening as some spoke their thoughts out loud as they played, confirmed their

understanding in ways that are more ambiguous in the written sections. Many of the questions

were related to interactions not specified in-game, clarifications about the way memories are

shared, or even just asking about how a new unit or interaction could be added in with the

mechanics they knew about. In a few cases, questions evolved into discussions about the

potential to expand on the design and the state of similar genre-related mechanics. The

suggestions for interesting and relevant additions to the game implies that players understood

them well enough to imagine and actually care about extra steps that might be built on those

mechanics.

 However, equally vocal was the dissatisfaction with the movement scheme and

irregularities with controlling allies. The question “How would you rate the difficulty of

managing your own units?” received a very telling 90% saying ‘Hard’ or ‘Very hard’ with the

vast majority of the responses in the “What part of the game could use the most

improvement?” citing the AI followers often wandering away once out of sight. The animation

section mentioned before highlighted some of the solutions to problems that occurred though

the iterations, but there was always something that seemed to be slowing down gameplay

related to movement that always popped up after the previous problem was fixed. And allies,

90

while always attempting to complete their tasks in a predictable manner, sometimes acted

erratically from a players point of view, usually connected with being out-of-sight when moving

around corners or having long narrow corridors that results in round-about pathing.

 The placeholder images and minimalistic animations didn’t seem to cause any backlash

at all (possibly because the testers were just being courteous) and the fog and sonar-reveal

effects were praised, but the UI was mentioned as a problem when trying to learn all possible

actions or attempt them. There was some confusion about where to go exploring next at any

given moment, as evidenced by the low average of scores in the “How often did you feel

confident about where you should go/explore next?” question with a 65% ‘Almost Never’ or

‘Not Often’ answer. This was somewhat intentional, considering the efforts we made to make

the map boundaries appear indistinguishable, but written responses reacting poorly indicated

some more effort should be made to encouraging scouting in every direction to find interesting

leads a player would jump for themselves.

7. Postmortem

7.1. What went right

 The game resulting from our research and experimentation feels like it holds up under

the weight of being a hybrid of so many familiar genres. The sense of adventure and intrigue

that emerge from the limited vision and small-scale interactivity was an experience goal we

believe we have achieved, and the RTS roots of base management and large-scale goals add

strategic depth and autonomous handling of usually boring micromanagement tasks. Testers

showed genuine appreciation of the game’s novel mechanics and expressed interest in the

project’s development. Having a single technical developer implement an entire game engine

from scratch provided a unique opportunity to learn about many different aspects of software

architecture, and how to customize common algorithms for specific purposes.

91

7.2. What went wrong

 The most difficult part of development was the artistic portion of the game. At the start

of development, the engine was nearly complete and completely playable in an ASCII manner,

but only by the designer who knew what everything represented and was able to extrapolate

the systems of paranoia and limited vision from a bunch of D’s and F’s moving along a debug

text log. Making those concepts into a sharable experience was much harder to master than

any technical aspect of the project, because we didn’t know what the best possible solution

was for getting our thoughts onto the screen. Many of the game’s features and mechanics are

only felt indirectly or weren’t able to be fully implemented because of this design bottleneck,

resulting in only core aspects of the game being satisfactorily presented.

 The testing results also indicate clear problems with the playability of the game,

primarily due to the difficulty in commanding allied AI and a few flow-breaking aspects of UI

and animation. While the speed issues are superficial, the problems concerning the AI behaving

erratically are deeply entangled with the challenge of implementing fully independent entities

with personalized memories. While it would be easy to simply make allies cheat and use the

player’s location more often than they should actually know, the primary purpose of the fog of

war being escalated to these levels was to bring forth that level of separation on a universal

scale, with anything less being a clear violation of the founding intent and a failure to deliver

that world consistently.

92

8. Future development

 Trick of the Light will continue to be worked on post-graduation, though with no

immediate plans for publication. Many more iterations of testing and refinement, not to

mention a complete overhaul of the game art, would need to be completed before any serious

attempt to bring the game to market. Nevertheless, the game’s genre-defying concepts have

garnered enough interest from testers to suggest it is worth offering to the public eventually.

 Its campaign-style gameplay would allow for an incremental release, delivering packs of

maps filled with different challenges and races. At the very least, the game will continue to be

refined solely as a point of pride, adding new features regardless of who else is interested.

9. Conclusion

 Trick of the Light was a pet project that was elevated to thesis status, becoming a game

about unshared fog of war and the related systems that developed from it. The concepts of

individualism and propagation of information were sufficiently expanded to create a playable

game, teaching numerous complex mechanics in an intuitive and immersive manner, though

most of the difficulty and effort in development was presenting those concepts to the players.

 Its new and potentially confusing mechanics received a positive reaction during

playtesting, sparking playtester’s imaginations and intrigue, and encouraging future work in

development of the engine and ideas. The negative feedback involving the controlling of allied

units indicates a clear need to make more player-centric design choices in future development.

93

Works Cited

Bergström, Björn. FOV using recursive shadowcasting. Roguebasin. 16 May 2017. URL:
<http://www.roguebasin.com/index.php?title=FOV_using_recursive_shadowcasting>

Burgun, Keith. Fog of War in Push the Lane (and strategy games, generally). 27 April 2017. Web.
URL: <http://keithburgun.net/fog of war-in-push-the-lane-and-strategy-games-generally/>

Burgun, Keith. Uncapped Look-Ahead and the Information Horizon. 30 December 2014. Web.
URL: <http://keithburgun.net/uncapped-look-ahead-and-the-information-horizon/>

Dungeon Crawl Stone Soup. Web. 3 February 2018. URL: <https://crawl.develz.org/>

Game-Icons. Web. July 2017. URL: <http://game-icons.net/>

Guillory, Brant. What don’t we know about what we don’t know that we don’t know?
Grogheads. Web. 15 July 2015. URL: <http://grogheads.com/featured-posts/8596>

Kiesling, Eugenia. On War without the Fog. Military Review. Web. September 2001. URL:
<https://www.clausewitz.com/bibl/Kiesling-OnFog.pdf>

Lewin, Christopher George. War Games and their History. Fonthill Media, 2012. Print. ISBN 978-
1-78155-042-7.

Milazzo, Adam. Roguelike Vision Algorithms. Web. 8 October 2014. URL:
<http://www.adammil.net/blog/v125_roguelike_vision_algorithms.html>

Open Game Art. Web. 15 January 2018. URL: <https://opengameart.org/>

Register, Steve. Simple Line of Sight. Roguebasin. 15 December 2014. URL:
<http://www.roguebasin.com/index.php?title=Simple_Line_of_Sight>

Rogue. A.I. Design. 1980. Video game.

SDL (Simple DirectMedia Layer). Open-source cross-platform development library. URL:
<http://www.libsdl.org/>

Setear, John. Simulating the Fog of War. The RAND corporation. Web. February 1989. URL:
<http://www.dtic.mil/dtic/tr/fulltext/u2/a228112.pdf>

SimAnt. Maxis. 1981. Video game.

94

Tiled. Web. 2017. URL: <https://www.mapeditor.org/>

Vandevenne, Lode. Lode's Computer Graphics Tutorial. Web. 2018. URL:
<http://lodev.org/cgtutor/raycasting.html>

Warcraft 3. Blizzard. 3 July 2002. Video game.

Wayward. Battlefield Uncertainty and Fog of War. Wayward Strategist, 30 January 2015. Web.
URL: <https://waywardstrategist.com/2015/01/30/battlefield-uncertainty-and-fog of war/>

95

Appendix A: IRB Informed Consent Agreement

Informed Consent Agreement for Participation in a WPI Research Study

Investigator: Brian Moriarty, IMGD Professor of Practice

Contact Information:

Brian Moriarty

bmoriarty@wpi.edu, 508 831-5638

Title of Research Study: Unshared Fog-of-War Experiment

Sponsor: WPI

Introduction: You are being asked to participate in a research study. Before you agree,

however, you must be fully informed about the purpose of the study, the procedures to be

followed, and any benefits, risks or discomfort that you may experience as a result of your

participation. This form presents information about the study so that you may make a fully

informed decision regarding your participation.

Purpose of the study: The purpose of this study is to obtain playtest feedback in order to

locate/address operational bugs, to identify opportunities for design improvement, and to

gather data to conduct statistical analyses on to measure games effectiveness towards the

experience goal.

Procedures to be followed: You will be asked to play a brief game lasting less than thirty

minutes. After completing the game, you will be asked to complete brief, anonymous survey

describing your subjective experience. Any responses you offer will not be associated with your

name or any other personally identifiable information about you.

96

Risks to study participants: There are no foreseeable risks associated with this research study.

Benefits to research participants and others: You will have an opportunity to enjoy and

comment on a new game under active development. Your feedback will help improve the game

experience for future players.

Record keeping and confidentiality: Records of your participation in this study will be held

confidential so far as permitted by law. However, the study investigators and, under certain

circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be

able to inspect and have access to this confidential data. Any publication or presentation of the

data will not identify you.

Compensation or treatment in the event of injury: There is no foreseeable risk of injury

associated with this research study. Nevertheless, you do not give up any of your legal rights by

signing this statement.

For more information about this research or about the rights of research participants, or in case

of research-related injury, contact the Investigator listed at the top of this form. You may also

contact the IRB Chair (Professor Kent Rissmiller, Tel. 508-831-5019, Email: kjr@wpi.edu) and

the University Compliance Officer (Jon Bartelson, Tel. 508-831-5725, Email: jonb@wpi.edu).

Your participation in this research is voluntary. Your refusal to participate will not result in any

penalty to you or any loss of benefits to which you may otherwise be entitled. You may decide

to stop participating in the research at any time without penalty or loss of other benefits. The

project investigators retain the right to cancel or postpone the experimental procedures at any

time they see fit.

97

By signing below, you acknowledge that you have been informed about and consent to be a

participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

____________________________________ Date: ___________________

Study participant signature

Study participant name (please print)

____________________________________ Date: ___________________

98

Appendix B: IRB Study Purpose and Protocol

 In addition to the playtesting survey, our intention was to poll several prominent

experts on game design (Sid Meier, George Phillies and Chris Crawford) on a single question

regarding their experiences with fog of war:

 What map-based analog or digital games have you encountered that employ

particularly effective, creative and/or unusual implementations of (1) fog of war and/or (2) the

propagation/transfer of knowledge about the current map state?

 It was hoped that their responses to this question would contribute to the development

of Trick of the Light’s mechanics. Unfortunately, the IRB protocol describing the proposed

queries was approved very late into development. The emails were sent out regardless, but no

replies were received in time for inclusion in this report.

Title: Unshared Fog-of-War Experiment

1. Purposes of study

a. To obtain playtest feedback in order to locate/address operational bugs in the game, and to

identify opportunities for design improvement.

b. To solicit the opinion of domain experts regarding the most effective, creative and/or

unusual implementations of fog of war and map-state knowledge propagation/transfer they

have encountered among analog and digital games.

99

2. Study protocol for playtest feedback

Participants are provided a computer on which to play the game. Investigators observe

participants during play. Afterward, participants are asked to fill out a short survey to

characterize their subjective experience.

2.1. Opening briefing for playtesters

“Hello, and thank you for volunteering to test my game. Before we begin, could you please read

and sign this Informed Consent form?”

[Subject signs Informed Consent form.]

100

“Thank you. When your play session is complete, I will ask you to complete a brief survey about

your play experience. At no point during your play session, or in the survey after, will any sort of

personal and/or identifying information about you be recorded. Please begin playing when you

feel ready.”

2.2. Post-Playtest Survey Questions

[Note: Space will be provided for optional comments after each question.]

All questions are optional. Respond to as few or as many as you want.

1. How would you rate the effectiveness of the tutorials in explaining how to play?

1-4 Likert scale, 1 = Poor, 4 = Excellent

2. How often did you feel lost or uncertain about your location while exploring?

1-4 Likert scale, 1 = Almost never, 4 = Nearly always

3. How often did you feel as if you understood what was going on around you?

1-4 Likert scale, 1 = Almost never, 4 = Nearly always

4. How often did you feel confident about where you should go/explore next?

1-4 Likert scale, 1= Almost never, 4 = Nearly always

101

5. How would you rate your understanding of the memory-sharing system?

1-4 Likert scale, 1 = Poor, 4 = Excellent

6. How often did you feel dependent on the vision-sharing system in order to progress?

1-4 Likert scale, 1= Almost never, 4 = Nearly always

8. How would you rate the difficulty of managing your own units?

1-4 Likert scale, 1 = Difficult, 4 = Easy

9. How would you rate the overall difficulty of the game?

1-4 Likert scale, 1 = Difficult, 4 = Easy

10. Did any aspects of the game seem particularly unusual or unexpected?

Blank field for written response

11. Do you have any general comments/feedback regarding your game experience?

Blank field for written response

102

3. Study protocol for solicitation of expert opinion

Three publicly-known professional game designers (Sid Meier, Chris Crawford and George

Phillies, all personal acquaintances of the principal investigator) will be contacted via email,

explained the purpose of the thesis and invited to voluntarily respond to the following

question:

What map-based analog or digital games have you encountered that employ particularly

effective, creative and/or unusual implementations of (1) fog of war and/or (2) the

propagation/transfer of knowledge about the current map state?

Key quotations from consenting respondents will be incorporated into the body of the thesis

report. Complete transcripts of all responses will be included as appendices in the report.

Respondents will be given an opportunity to review and approve the response text attributed

to them before report publication.

4. Hazardous materials/special diets

No hazardous materials or special diets are involved in this study.

103

Appendix C: Post-test survey results

104

105

Appendix D: Post-test survey data

(20) 2018-03-20 15:32:31

×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

4/4

2. How often did you feel as if you understood what was

going on around you?

2/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

I stopped playing after I got

miners to help me mine ores

but could not equip my own

pick axes. They were crossed

out in my menu even when I

didn't have another weapon

equipped. I felt like it would

be too difficult if I could not

mine on my own.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

The walking mechanic is

hard to get used to, probably

because is it relatively slow.

I don't think the player

character should have to be

within one block of another

object to interact with it--2

blocks away seems more

natural.

9. What part of the game could use the most

improvement?

Playing speed - I am trying

to play faster than the game

allows; it feels limiting.

10. Do you have any general comments/feedback

regarding your game experience?

I really like the exploration

aspect and figuring out the

mechanics!

106

(19) 2018-03-20 15:28:47 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 2/4

7. At what point in the game did you stop playing and

why?

I stopped playing after I

filled out the entire map.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

Not really.

9. What part of the game could use the most

improvement?

The ally management

system. It was confusing to

get map info, and when I tell

them to follow me, the units

would most of the time go

off on their own.

10. Do you have any general comments/feedback

regarding your game experience?

This is a good game idea,

just not my cup of tea.

(18) 2018-03-20 15:27:22 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

2/4

3. How often did you feel confident about where you

should go/explore next?

4/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

107

7. At what point in the game did you stop playing and

why?

When I got to the buildings,

and found out that you

couldn't yet interact with

them

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

It was weird that it kind of

suddenly turned from an

adventure game into an RTS

9. What part of the game could use the most

improvement?

INVENTORIES. it's

inconvenient and frustrating

that in the initial exploring

part of the game, you didn't

have enough inventory space

to carry everything you

found. Additionally, the

"escape" information panel

doesn't contain information

on dropping/equipping

items, so I need to stumble

around until I figured it out.

10. Do you have any general comments/feedback

regarding your game experience?

If this is supposed to be an

RTS-style game, then I feel

that the beginning adventure

phase is a little too long.

(17) 2018-03-20 15:20:10 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

3/4

4. How would you rate your understanding of the

memory/map-sharing system?

4/4

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

Once most of the areas had

been explored, leaving only

a few hidden behind mine-

able rock. It was too

frustrating to try and lead

108

miners to those areas to mine

the rock for me.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

Light and map sharing

system was very interesting.

Every time I shared a map

with an ally it felt like an

accomplishment. Seeing the

map revealed was rewarding.

9. What part of the game could use the most

improvement?

AI pathfinding abilities.

Your followers too easily get

lost or distracted.

10. Do you have any general comments/feedback

regarding your game experience?

Very interesting concepts,

enjoyable to play. If AI can

be sharpened up or the

player didn't have to rely on

them as much, it might

improve things.

(16) 2018-03-20 15:14:11 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

3/4

4. How would you rate your understanding of the

memory/map-sharing system?

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

I stopped playing once I

accidentally got off the map

pressing the map moving

keys. I couldn't access my

characters at that point

anymore, and when I got

back onto a map everything

was set up at different places

but I couldn't move any

characters. I think I probably

played it wrong, but I don't

109

exactly know what happened

there.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I liked the right-click

commands.

9. What part of the game could use the most

improvement?

Probably the icons and most

especially the movement of

the units under your control.

They move very randomly

after the player character

moves, and if you're not

careful you'll have to go

back and forth just to have

your party in one place.

Also, add a function to make

the player move more than

one tile, or just shorten the

map. It gets tedious clicking

once and then waiting for

them to make their one tile

move

10. Do you have any general comments/feedback

regarding your game experience?

It was slow, but it was

rewarding.

(15) 2018-03-20 15:11:39 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

End of tutorial, then

explored the remainder of

the navigable map. No

further content.

8. Did any aspect of the game seem particularly unusual, The NPC's wandering by

110

interesting or unexpected? were rather strange, it was a

bit annoying to chase them

down to interact with them

because some of them

seemed to be doing their

own thing and would not

respond to follow requests.

9. What part of the game could use the most

improvement?

2 major changes: - The

freezing on the map sharing

mechanic really breaks the

flow of the gameplay -

NPC's just disappear when

going off screen and don't

always keep up with the

player

10. Do you have any general comments/feedback

regarding your game experience?

- Making intro text sequence

more concise, explaining

mechanics a bit more

visually as opposed to just

paragraphs would make it

much smoother - Minor

detail, but it would be nice to

be able to use the keyboard

for navigation more

(especially using space to go

through tooltips instead of

having to click)

(14) 2018-03-20 15:10:13 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

4/4

2. How often did you feel as if you understood what was

going on around you?

2/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and I stopped playing once it

111

why? seemed like I explored the

entire cave and killed the

spider base.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I liked the concept of

commanding your units

around and how they worked

behind the scenes whether

you were seeing them work

or not. It gave the game

world a organic feeling.

9. What part of the game could use the most

improvement?

I felt that the GUI for

commanding allies and

trading items was clunky. A

control scheme similar to

Warcraft 3 might be more

efficient and visually

appealing. I also feel that the

cave might benefit from a

procedural generated

randomness.

10. Do you have any general comments/feedback

regarding your game experience?

Interesting Concept that

seems to work well. If the

cave's size is extended or if

new areas are able to be

unlocked, the exploration

and resource management

will be a fun experience.

(13) 2018-03-20 15:10:11 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

3/4

4. How would you rate your understanding of the

memory/map-sharing system?

4/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and Once I finished exploring the

112

why? map

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I was very surprised when I

realized diggers were

harvesting and delivering on

their own.

9. What part of the game could use the most

improvement?

Pathfinding and UI

navigation.

10. Do you have any general comments/feedback

regarding your game experience?

Very neat.

(12) 2018-03-20 15:07:08 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

4/4

4. How would you rate your understanding of the

memory/map-sharing system?

What memory sytem?

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and

why?

I stopped playing after the

tutorial had finished and I

felt like I had explored most

of the map. I stopped after

exploring most of the map

because I felt that I had seen

everything the game had to

offer at that point.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

The actions of the

supplementary characters

(the miners/diggers

especially). Their movement

patterns were very erratic,

and trying to get them to stay

with me or perform certain

actions (especially mining)

proved to be quite the

challenge.

113

9. What part of the game could use the most

improvement?

I think either the flow of the

game or the AI need to be

improved upon, more so the

AI. I had a lot of trouble

trying to keep my party

together, even after giving

them commands to follow

me. They would get lost in

the fog, and sometimes I

would not find them until 15

minutes later in some

random part of the map.

10. Do you have any general comments/feedback

regarding your game experience?

I had fun playing this game.

I do not play many RTS

games to begin with, so

waiting for each of my party

members/ enemies to take

their turns before I could

move to another space/

perform another action was a

little tedious. However, I

think the exploration with

the fog elements is really

well integrated, and I

enjoyed discovering new

areas within the game. The

combat could be better, as it

was really easy to take down

enemies and provided almost

no challenge. The biggest

issue is managing your AI

companions, as they easily

get lost behind you when

you move far away from

them, and they can drag you

down if they are trying to

mine the same block when

you want them to move, for

instance. Overall, the

aesthetics were done well,

and exploration was very

fun, but the combat and map

traversal could definitely be

worked on.

(11) 2018-03-20 15:06:33 ×

114

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

I tried to interact with a

block of allies and the game

crashed

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I liked the sharing system,

but it was a little bit difficult

to understand

9. What part of the game could use the most

improvement?

Sometimes the following

commands didn't seem to be

working. The tutorial could

use some proofreading You

missed a few apostrophes

and instead of "..." ",,,"

appeared multiple times.

10. Do you have any general comments/feedback

regarding your game experience?

I clicked during a map

exchange and the game froze

for a bit. If you could show

which items had been given

to your allies through

smaller icons, that would be

helpful. In the tutorial, you

instruct the player to right

click to command a group of

allies. This blurb appeared

before I was in range to do

this. I'd suggest having it

show up while the player is

in range. In the tutorial,

sometimes dialogue boxes

would appear on the right

side of the screen and be

115

partially cut off. I could not

read all of the text because

of this. I would suggest

editing the tutorial text to

make sure the grammar and

capitalization are correct. I

also didn't know what an

RTS was, but the tutorial

assumes that the player has

this knowledge.

(10) 2018-03-20 15:05:10 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

4/4

2. How often did you feel as if you understood what was

going on around you?

4/4

3. How often did you feel confident about where you

should go/explore next?

3/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

Kept going after the tutorial

ended for a little bit to mine

out a corner of the map, but

when it led to a dead end I

was sad and quit.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I thought the mechanic of

being able to share maps

with allied units was

interesting. The same thing

was sort of implemented in

some versions of Civilization

(Civ III, I think) where you

could trade maps with other

civs once you both learned

the writing and cartography

technologies.

9. What part of the game could use the most

improvement?

The UI

116

10. Do you have any general comments/feedback

regarding your game experience?

Good concept, with some

polish it could be great :)

(9) 2018-03-20 15:00:47 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and

why?

Just after where the game

said the survey was done,

since I was curious. The last

thing I did was try to interact

with the thing just south of

me at that point, where I

gave it the ores I had and its

tiles quickly alternated

between two sprites, I think.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

Units following me stopped

following me surprisingly

often. Led to one of the two

initial allies dying when it

went alone after I and the

other initial ally went

through a thin corridor that

led to a dead end. Maybe the

other ally was blocking it's

vision of me or something? I

dunno.

9. What part of the game could use the most

improvement?

tough question...I guess the

ways you can control your

allies? The miners mined at

whatever was minable we

came a fair distance of, and I

wish there was a command

117

for them to ONLY follow

me.

10. Do you have any general comments/feedback

regarding your game experience?

Not really.

(8) 2018-03-20 15:00:32 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

When I reached the end of

the tutorial there wasn't that

much more to do than just

walking around.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

You can't stray too far from

miners when you go light

speed because they get lost

in the dark or mine

something in there path

rather than move around it

which was kind of annoying.

9. What part of the game could use the most

improvement?

The run time for map sharing

takes a few minutes to load

rather than just a few

seconds. Fixing this would

make the experience slightly

better.

10. Do you have any general comments/feedback

regarding your game experience?

Make the miners faster!

(7) 2018-03-20 14:59:26 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

118

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

2/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and

why?

After I got to the castle at the

end of the tutorial, it seemed

to crash. It eventually

recovered but at that point I

didn't really know what was

going on.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

The memory system seems

cool, but after the tutorial I

still don't quite understand it.

Will the units ever learn new

information if they're just

following you?

9. What part of the game could use the most

improvement?

The UI often seemed

unintuitive. The movement

was difficult, requiring a

click each turn. Why can't I

just move with arrow keys?

I'm not sure that two

separate move commands

are necessary (just have one

that does the path). Holding

down the movement button

to keep moving would be

good too. In terms of

inventory management, it

would be good to

automatically equip new

items if they are better than

what is already in the slot.

The page system also doesn't

seem to work very well, as

you can only scroll one way.

It would be better to click on

119

the page tabs themselves, or

have a full inventory screen

plus a hotbar. When dealing

with allies, I wasn't sure how

to get them to use the items I

gave them. They should

automatically equip the best

weapon in their inventory.

Finally, a major problem

with the turn based

gameplay is that the player

can't move while allies are

attacking inanimate objects.

Could you do the same thing

as Civ and make everybody

take their turn at the same

time unless they are in

combat?

10. Do you have any general comments/feedback

regarding your game experience?

In general, the UI felt like it

could be made simpler. The

over-reliance on multiple

menus is super common in

this type of game and makes

them difficult to learn and

adds features that many

people will likely never use.

(6) 2018-03-20 14:59:11 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

2/4

2. How often did you feel as if you understood what was

going on around you?

2/4

3. How often did you feel confident about where you

should go/explore next?

4/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

3/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

When the scripted tutorial

stopped, and I got to the

miners.

120

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

- Allies disappearing when

performing pathfinding to a

blocked location

9. What part of the game could use the most

improvement?

- Tutorials, needs graphics

for demonstration - More

unified UI - The plus sign in

the inventory UI is

confusing; does it add more

items or does it go to the

next inventory page?

10. Do you have any general comments/feedback

regarding your game experience?

(5) 2018-03-20 14:55:47 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

4/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

Shortly after the tutorial. I

took a little time to explore

further, but at that point,

there were no more goals to

complete.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I liked that my little miner

friends have a mind of their

own as I traveled back

through the cave. I liked that

they went off to go mine a

rock and then continued to

follow me. At first I was

like, "Wait. Friend. Where

are you going?" Then It

made sense.

121

9. What part of the game could use the most

improvement?

The UI. I'm not sure if it was

the placeholder assets or the

structure of the UI, but it felt

very cumbersome.

Especially the backpack. It

was a little annoying to only

see four or five items at a

time and to have my

inventory be in the way of

portions of the map I was

trying to see. I do like the

right click character menu,

though. I'm sure once there

are uniform art assets it will

feel a little better.

10. Do you have any general comments/feedback

regarding your game experience?

Overall, I think that it could

be a really fun game. It's

pretty buggy, which I'm sure

that you're aware of. It also

suffers from confusing

placeholder art assets. One

suggestion I have is to

maybe increase the

movement or turn speed?

Right now traveling long

distances feels a little slow

and awkward. I look forward

to seeing how the game

evolves!

(4) 2018-03-20 14:55:23 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

2/4

2. How often did you feel as if you understood what was

going on around you?

1/4

3. How often did you feel confident about where you

should go/explore next?

1/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 3/4

122

7. At what point in the game did you stop playing and

why?

Once I freed the units, the

rest of the game seemed

pointless.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

Other than the AI constantly

breaking when it tries to

follow me moving faster

than 1 square at a time, the

load times were very off.

9. What part of the game could use the most

improvement?

The load times and the

combat need to be improved.

Combat feels boring and

uninteresting.

10. Do you have any general comments/feedback

regarding your game experience?

To make the combat feels

better, I guess actually

commanding units to attack

rather than let them auto hit.

(3) 2018-03-20 14:54:19 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

3/4

5. How would you rate the difficulty of managing your

own units?

2/4

6. How would you rate the overall difficulty of the game? 3/4

7. At what point in the game did you stop playing and

why?

I stopped playing after the

tutorial, because I believe

that I had achieved the

understanding needed.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

The base was not fleshed out

in the tutorial, so it was

confusing.

9. What part of the game could use the most

improvement?

Movement, it can get tedious

when a lot of units are on the

screen.

123

10. Do you have any general comments/feedback

regarding your game experience?

Nothing to serious when

wrong for mine, but

pathfinding could be

improved.

(2) 2018-03-20 14:52:27 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

3/4

2. How often did you feel as if you understood what was

going on around you?

3/4

3. How often did you feel confident about where you

should go/explore next?

1/4

4. How would you rate your understanding of the

memory/map-sharing system?

4/4

5. How would you rate the difficulty of managing your

own units?

1/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and

why?

After I unlocked the whole

map through memories and

returned to the mining camp.

That felt complete to me.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

I only had AI that I got to

follow me for the whole

game.

9. What part of the game could use the most

improvement?

AI pathfinding. Bug fixing.

Combat.

10. Do you have any general comments/feedback

regarding your game experience?

I had a lot of glitches, like I

could hit enemies from

anywhere on the screen, and

I couldn't destroy the bat

birdhouse thing no matter

how many times I hit it. Also

my AI and I stopped taking

damage after the troll hit us

both.

(1) 2018-03-20 14:50:48 ×

1. How would you rate the effectiveness of the tutorials

in explaining how to play?

2/4

2. How often did you feel as if you understood what was 4/4

124

going on around you?

3. How often did you feel confident about where you

should go/explore next?

2/4

4. How would you rate your understanding of the

memory/map-sharing system?

4/4

5. How would you rate the difficulty of managing your

own units?

4/4

6. How would you rate the overall difficulty of the game? 4/4

7. At what point in the game did you stop playing and

why?

Stop Playing once I reached

a very populated area as the

turn based aspect of the

game had me waiting for

long intervals to move just

one step.

8. Did any aspect of the game seem particularly unusual,

interesting or unexpected?

Map sharing cause large load

times, Speed traveling

caused companions who are

set to follow to be lost, High

populated areas with nothing

going on causes travel to be

painfully long.

9. What part of the game could use the most

improvement?

Turn based aspect, if you are

in a room with people who

are set to friendly or neutral

status I should not have to

wait for a "turn" to move as I

am passing through.

10. Do you have any general comments/feedback

regarding your game experience?

I like this game

conceptually.

125

Appendix E: Art and audio assets

 Note: These lists include all assets planned for inclusion in the first full release (totalling

seven levels) of the game. Only a subset was actually produced for the tutorial level completed

for the submitted project.

E1. Audio assets

126

127

E2. Art assets

128

129

130

131

132

133

134

Appendix F: Class hierarchy summary

135

Appendix G: Level maps

G1. Map key

Key: the character below will produce the resulting unit or item in the designated x/y

coordinate

w = Wall b = Bat d = Digger & = Storage

o = Orewall B = Batcave c = Cart $ = Stronghold

O = Rich Ore Wall T = Troll s = Scout S = Smeltery

E = Eternal Wall Z = Monstrosity h = Hunter R = Barracks

= Hard Wall / = Eyebeast f = Fighter K = Blacksmith

= = Floorwall p = Priest W = Witchhut

~ = Wood blockage x = Spider C = Captain ; = Torchstand

A = immortal wall % = Spider Nest e = Explorer

 * = Spiderling a = Archer [= Trap

@ = Player . = Seeker l = Lever

! = Torch) = Stalker H = Human D = Door

: = Lantern

t = Copper Sword 4 = Chest with goodies

 5 = Chest with more goodies

F = Tutorial Fighter 1 6 = Locked chest with goodies

G = Tutorial Fighter 2 7 = Chest with rare goodies

136

G2. Tutorial level 1

 The player (@) starts in the lower left corner, waking up after having been knocked out

due to an earthquake, and are reminded of their duty to check up on a base to the north. Some

starting equipment can be found by groping through the darkness, and after breaking through

the rubble they meet a fighter who welcomes them. His memories of the base are shared, but

the road turns out to be blocked by fallen rubble. A miner is needed to pass, where they’re told

of a small mining operation to the east. Heading that way they’re warned of a troll (the T) up

ahead by a fleeing fighter, who turned off his lantern to escape unseen. If the player turns off

137

their lantern they can sneak through the rubble to the south to reach the base, or head to the

right to access a few chests (4, 5, 6) for better equipment. Leaving their light on puts them in

range of the troll’s vision, who will come and fight them.

 Coming up to the base reveals a swarm of spiderlings, who must be cleared out to reach

the miners trapped behind a wall of rubble (bottom right). The player can then lead the miners

back along the path, breaking down the walls in their way and reaching the stronghold (Middle

section, $). They’re informed of the situation of suspiciously inconvenient quakes and of spiders

starting to get aggressive, with their next goal being clear out any nests they can find. They

have ample time to mine as much as they need to make new equipment, raise a small army and

scout out the nearby spider nest, which will start sending out hunters if enough time passes.

After the nest is cleared they’re informed they’ve beaten the tutorial, and can quit out or

explore the rest of the map if they please.

138

G3. Planned tutorial level 2

 Prototype of the second planned level, made to introduce base-building mechanics and

spider ambush tactics. The player was to be in charge of constructing buildings destroyed from

earthquakes, and eventually learn of spiders picking off diggers and tasked with exterminating

them. Condensed into one level to facilitate testing.

139

G4. Planned tutorial level 3

 Rough prototype of the third tutorial level, made to teach more about tasks, commands,

memories and not believing everything one sees. The player would start in a small base, tasked

with collecting three special talismans in nearby ancient ruins. The ruins themselves contained

various traps and monsters trying to drive them away, and as the talismans get collected new

monsters would start spawning periodically. They’d rush out and cause production-stopping

chaos among the workers at home, involving hallucinations, madness and forgetfulness

depending on the order the amulets were acquired. Collecting them all would attract a demon

from a final sealed ruin, hunting the player relentlessly till they brought the amulets to its now

opened altar.

140

G5. Raycast test room

 A debugging room made to test and experiment with how vision was drawn. The player

was given infinite sight range, making long-distance blockers appear to cast shadows. The

raycasting function went through numerous iterations before an acceptable method was

confirmed to work.

141

G6. Digger Room

 Simple room filled with walls of all types to test mining mechanics. The right side of the

room was eventually added to make sure spiders were working as intended after a minor

overhaul of the way status effects were handled.

142

G7. Stress testing room

 A miniature base with all unit-producing buildings, made to see how many could be

handled at once on maximum turn-speed before causing lag. Miners and hunters continue to

bring resources to the stronghold, which eventually assigns new workers to be built what speed

up production, to the point the world is completely filled with kobold troops. Some of those

troops blocked allied movement, so production would eventually grind to a halt.

143

Appendix H: Unit list

Monstrosity. Scary looking, but actually very weak. Sneaks around in the dark and magically scares
everyone nearby when confronted to make enemies prioritize running away. Runs away itself the
moment it starts taking damage.

Troll. Regenerates health rapidly, but does low damage. Has terrible night vision, despite living in a cave.

Eyebeast. Weak in combat, but can gaze at targets to make them think everyone besides the eyebeast is
an enemy.

Spider Seeker. Scouts of the spider army. Can become invisible for short periods of time, but very
cowardly if visible.

144

Spider Hunter. A fully grown spider. Hunts weaker targets with invisibility and poison. Will drag
paralyzed targets back to their nest, but flee from most combat situations.

Spider Nest. A huge nest of spiders, and technically their capital. Collects meat from hunted prey and
spawns spiderlings over time.

Spiderling. A young and relatively tiny spider, but much more aggressive than its adult version. Will
defend its nest and grow into other spiders if enough meat is hoarded.

Spider Stalker. A spider made for fighting. Injects a long lasting poison into targets then attempts to flee
to darkness.

Kobold Captain. A kobold commander, in charge of leading the troops to battle enemies. If any are
discovered, will rally a large army and hunt them down, but if the battle appears lost will order a call for
retreat and run back to the capital to heal. A player will typically possess one of these as their avatar,
overriding their usual behaviors.

145

Kobold Cart. A kobold hauler, being able to carry many more items than usual and used to deliver
supplies en-masse between buildings.

Kobold Digger. A kobold miner, able to use picks. Can only carry a few ores at a time before having to go
store them at the closest storage area or capital.

Kobold Explorer. A kobold with better night-vision than normal. Is sent off to explore the unknown,
coming back when enough new discoveries are made.

Kobold Fighter. The staple of the kobold army, able to use a variety of weapons and armor. Has much
better combat stats than others, and can be trained at a barracks to learn new techniques.

Kobold Archer. A kobold that prefers to use a bow, staying away from enemies. Is only a little stronger
than the average kobold and can’t see that far in the dark, making his range only useful in certain
situations.

146

Kobold Hunter. A kobold hunter-gatherer whose preferred target is bats. Has a bit of combat training,
but is still a target for spiders.

Kobold Priest. A kobold magic user, able to cast HolyFire on enemies and passively has truesight to
reveal invisible things. Can wield magic staffs and is great against spiders.

Kobold Scout. A kobold with better light-vision than normal. Explores areas nearby around the capital,
usually being the first watchdog to report an attack.

Kobold Barracks. Kobold training grounds and unit producer, spawning troops if given enough metal and
meat.

Kobold Blacksmith. A kobold crafting area to turn iron or steel bars into weapons, armor or tools.

147

Kobold Smeltery. The place where ores are smelted into bars. The process of heating up the smelting
furnace takes some time, but when its on ores are quickly processed.

Kobold Storage. A kobold storage facility for collecting unprocessed goods. Usually constructed near
mining and hunting zones, where harvesters are saved from walking all the way back to the capital with
each trip. Will also hold tool upgrades and give them out to the appropriate user when they next arrive.

Kobold Stronghold. A kobold fortress, and their capital. The central hub of a kobold base that directs
anyone who interacts with it to go do whatever chores need to be done. Also the central storage facility
for all finished goods, which are given out freely to whoever needs them or forwarded to storages to be
passed out there.

Kobold Witchhut. A kobold hut for crafting magic or alchemy related things if given specific materials.

Human. Humans are versatile, starting out with no particular strengths but can learn skills that allow
them to fit into any role depending on the items they’re given. New tasks get implanted into them by
bringing required materials to a relevant building, along with better combat stats depending on the type
of training. Currently in alpha status, as they use the same buildings as kobolds, but confirmed to behave
as intended.

148

Torchstand. A constructible torch stand that constantly emits light. Unlike regular torches, lasts forever
until knocked down.

Bat. A small wandering creature that drops a disproportionate amount of tasty meat when killed. If
attacked, will be infected with Fear and run away from anything hostile-looking at high speeds.

Batcave. A nest of bats, constantly spawning new ones if there aren’t any nearby.

Chest. A goodie bag filled with trinkets and baubles. Can sometimes be locked, but a smart player will
try to break it open.

Trapped Chest. A seemingly innocent chest that activates a nearby mechanism when opened.

149

Door . A door that can be opened or closed. Can start out locked, but usually can be opened just by
busting it down.

Lever. A togglable lever that activates or deactivates nearby mechanism, typically opening a door or
resetting a trap or such.

Trap. A pressure plate booby trap that usually activates when stepped on, damaging the victim. Can be
discovered and disabled with true sight, or by other means.

Floorwall. Untargetable walls that look like darkened floors on the map boundary, made to mark an
entrance point. Used when we want to suggest the player came from a certain direction, but don’t want
them heading back there.

Wall. A mineable wall that doesn’t drop anything if destroyed. All walls have a huge amount of defense,
resistance and negation, resulting in only the ‘pure’ damage type found on picks or spells capable of
doing any harm.

150

Hardwall. A wall so infused with the demonic environment that it’s hardened beyond the point of being
mineable. Can’t be damaged in any way.

Ore Wall. A wall filled with ore, dropping some on the ground when it gets destroyed.

Rich Ore Wall. A wall so full of ores that it drops one every time its attacked, landing in a nearby square.

Eternal Ore Wall. A very valuable wall that sits on a surging vein of ore. Produces ores when struck a few
times and constantly regenerates itself, potentially making an infinite amount. Slower to mine than
normal walls, so miners will prefer to seek out other types of walls before grinding away at these ones.

Wood Rubble. Wooden debris that blocks paths. Only the player will attack it to clear the way, as
everyone else will just try to path around it.

151

Appendix I: Item list

Copper Sword. A standard sword used for combat.

Iron Sword. A sword made of iron. Does more damage than a copper sword.

Wood Shield. A simple shield that helps defend against physical attacks.

Iron Shield. A solid shield that blocks even more physical damage.

Health Vial. A health potion that can be drunk to heal minor wounds. Anyone holding one will know to
use it when low on health. Throwing it at someone slightly heals the target.

152

Health Potion. A health potion that heals for a large amount when drunk. Anyone holding one knows to
use it when low on health. Throwing it at someone slightly heals the target.

Poison Vial. A vial of poison that shouldn’t be drunk. Infects the target with poison when thrown.

Regeneration Vial. Causes the drinker to heal over time when drunk. Less useful than simply healing the
flat amount, but more cost efficient to make.

Sharesight Talisman. Allows the user to see the area around all other talismans, but has a limited
number of uses before being destroyed. Useful for checking up on the base when one is out
adventuring.

Flight Amulet. Passively gives the holder the ability to fly, allowing more freedom with movement and
the ability to move into most occupied squares, depending on who’s there.

153

Lifesaver Talisman. Passively protects the holder from a deathblow: if they get hit and are about to die,
the talisman heals them to one HP and is destroyed.

Moonstone Amulet. Teaches the user how to use a basic magic spell with a long cooldown for as long as
its held.

Hunting Net. A net that can be thrown at a small-sized target to root them in place. Mainly used by
hunters to ensnare their bat prey, but works on other small creatures as well.

Ore. Rubble from a wall that contains trace elements of iron. Glows slightly. Can be smelted down to
bars or used in construction.

Gemstones. Some walls will drop valuable gems instead of ores when destroyed, but they’re more likely
found in ancient ruins. Used to create magical items.

154

Iron Bar. An ore refined into a piece of metal that can be used for construction or crafting.

Wood bow. A common bow, capable of attacking things from a long range. Comes with an infinite
amount of arrows that appear out of nowhere. Don’t worry too much about it.

Iron Bow. A bow made of iron. Can shoot farther than a normal bow. Does more damage as well, so it
must shoot the arrows harder too.

Copper Pick. A standard pick used for mining. Its attack damage type is pure, to break through wall
defenses.

Iron Pick. A pick made of iron. Does slightly more damage than a normal pick, and allows the owner to
attack walls much faster by lowering their normal post-turn cooldown by 30%.

155

Meat. Chunks of meat from a critter, most likely a bat. Is edible right off the ground, but preferably used
in crafting. If left unstored long enough, will degrade to rotten meat.

Rotten Meat. Expired meat that causes damage if eaten. Can still be used for crafting poisons.

Staff. A piece of wood shaped into a staff. Can be used by magic users for self defense if need be.

Shaman Staff. A magical staff used by tribal magic users. Teaches its wielder how to cast a protective
ward.

Fire Staff. A magical staff used by sophisticated magic users. Teaches its wielder how to cast fireball.

156

Moon Staff. A magical staff used by ancient magic users. Teaches its wielder how to cast a temporary
shield on an ally (Or enemy, if one so pleases).

SORD. A cheat-weapon made for testing and debugging purposes. Has absurd attack damage, high
range, and brightens up everything nearby.

Throwing Knife. A small dagger made for throwing. Low damage if equipped, but can be thrown for a
good amount and to possibly embed in the target.

Torch. A couple rags on a stick. Can be lit to provide some light, but will eventually burn out and reduce
in brightness over time. If thrown at a target will ignite them briefly.

Lantern. Can be turned on to become a light source, but can also be turned off unlike many other light
sources.

157

Telescope. A rare newfangled technology, not made for use in heavily-foggy demonic caves. Passively
increases the holder’s light-radius (which means they’re just constantly looking through the hourglass at
any given point in time, I guess).

Orb of True Sight. A mystical orb that enhances one’s senses. Passively grants true sight to the holde,
allowing them to see invisible people or things.

158

Appendix J: Status list

Faded. A spider’s technique of walking with the fog, carrying it with them even when they step into the
light. The target becomes invisible, but any actions or being bumped into will cause it to wear off
immediately.

Poisoned. The target was injected with some sort of poison, taking constant damage over time.

Numbing. A hunter spider’s poison, making the target eventually go limp if they move around too much.
One can be trained to recognize the effects of the poison and stand still to avoid the effects, but
otherwise any movement will increase the duration to the point they become Numb.

Numb. Once a Numbing effects is high enough in duration the target can’t move at all and becomes
helpless, becoming easy prey for anything nearby. Movement still increases the duration, potentially
lasting forever.

159

Web Carried. Signifies the target is trapped in a spider’s net and being hauled along behind them. If the
victim stands still they’ll follow the movements of the spider carrying them, but any attacks on the
carrier or movement from the victim will break the binds and free them.

Scared. The target becomes scared, making them run away from any threats at high speed. Not always a
bad thing, as it makes one move faster than normal at the cost of being uncontrollable.

Terrified. The target is made to be hysterically afraid, running away from all known enemies or the
closest one they remember nearby.

Winded. The target just got the stuffing knocked out of them, becoming stunned and unable to act for a
short time.

Cowardly. The target becomes disheartened, increasing the priority of cowardly actions like fleeing
while disabling any combat-related ones.

160

Greed. Makes the target extremely greedy, suicidally running for any nearby valuables or stealing them
from allies regardless of any other dangers.

Moral Boost. The target is encouraged to fight to the end, boosting their melee damage and increasing
the priority of combat-related tasks.

Regeneration. The target heals a constant amount of HP over time.

Holy Flames. The target is immolated by holy flames, slightly burning them over time and revealing
them for the duration. Also causes the target to glow brightly, allowing them to be easily tracked.

Ensnared. The target is entangled in a net, rooting them to the ground.

161

Warded. The target is protected by shaman magics, shielding them from bad mojo. Rejects a single
debuff from effecting the target before wearing off, and has an incredibly high duration.

Blinded. The target has limited vision in some way, sometimes becoming completely blind and unable to
interact with anything around them.

Fighter Training. A trait earned through training at a barracks. Makes the target stronger, healthier, able
to wield most common brute-force weapons, and able to use a minor stunning blow ability.

Magic Training. A trait earned through training at a Witch Hut. Makes the target learn a basic magic
spell, and grants the ability to wield and use magic staffs.

Scripted. Various level-specific effects were added that follow a unit or units, waiting for them to
complete certain objectives before causing new events to happen. Usually stage based, IE: starting at 0
and causing different things as new milestones are achieved. Can range from starting dialogue,
spawning / removing units / items, revealing portions of the map and more.

