


Abstract

Filtering has been shown successful in prediction from dynamically changing data. In

this thesis, we perform case studies and comparison among three filters: Kalman filter,

unscented Kalman filter and particle flow filter.

We consider Kalman filter in the first chapter where we focus on studying the S&P

model in a time-discrete dynamics with time-discrete observations for dividend yield and

S&P returns. For this filtering problem, Kalman filter performs well only in the first few

time steps.

Since the S&P model we consider is nonlinear, we are motivated to apply nonlinear

filters and use unscented Kalman filter. The key technique is to approximate non-Gaussian

processes (non-linear models) by assigning the so-called sigma points (nonrandom) around

the priori mean. We implement it on the S&P model in Chapter 2. We also implement

unscented Kalman filter for a two-dimensional tumor growth model. Unscented Kalman

filter works reasonably well for both models with capturing the trend and predicting the

values.

We consider the recently-developed particle flow filter in Chapter 3. Particle flow

filter is a method of moving the particles by partial differential equations generated from

proper chosen likelihood functions via the Bayes rule. By solving partial differential

equations, one can construct an explicit dynamic model on how to move particles. In this

chapter, we implement two models as in Chapter 2. One is the S&P model and the other

is perturbed tumor growth model. We compare performance of particle flow filter and

unscented Kalman filter for these two models.
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Chapter 1

Kalman Filter

Filtering is a simulation method for obtaining optimal estimation from data and an im-

perfect model. It contains two models – the first is a measurement model and the second

is an observation model.

Kalman Filter has been used to minimize the estimation error for unknown variables

in a noisy stochastic system, when observation models are linear. Kalman Filter works

recursively to update estimation by incorporating observed measurements over time. The

measurement model is used to generate prior estimation for current state variables; obser-

vation model is used to update the estimation and create posterior estimation. Kalman

Filter has broad applications, such as predicting natural weather and prices of traded

commodities. It also has been used to monitor complex dynamic systems, like signal

processing in GPS and motion monitoring in robotics [3].

1.1 Linear Dynamic Systems in Discrete Time

The linear filtering problem can be presented by combining the following two models [3].

• Measurement model

xk = φk−1xk−1 + wk−1, wk ∼ N (0,Qk). (1.1)
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• Observation model

zk = Hkxk + vk, vk ∼ N (0,Rk). (1.2)

Here vk and wk are assumed as independent Gaussian random processes with the mean

of zero. The initial value of xk is known, denoted as x0, with known initial covariance

matrix P0.

The goal is to find estimations of x̂k presented by function of zk such that the mean-

squared error is minimized. Denote Pk(−) as the prior covariance matrix for x at time

tk, Pk(+) as the posterior covariance matrix for x at time tk, K̄k as Kalman gain at time

tk, x̂k(−) as the prior estimate of xk and x̂k(+) as the posterior estimate of xk. By using

orthogonality properties, we can prove the following updating equations [3]:

Pk(−) = φk−1P(k−1)(+)φ
T
k−1 +Qk−1, (1.3)

K̄k = Pk(−)H
T
k [HkPk(−)H

T
k +Rk]

−1, (1.4)

Pk(+) = [I − K̄kHk]Pk(−), (1.5)

x̂k(−) = φk−1x̂(k−1)(+), (1.6)

x̂k(+) = x̂k(−) + K̄k[zk −Hkx̂k(−)]. (1.7)

The Kalman filter works only when the observation model is linear, and the noise is

Gaussian distributed, i.e., Hk doesn’t depend on xk and the covariance matrix Rk doesn’t

depend on xk in (1.2). In the next section, we present an application from finance and

show that Kalman filter only works for a very short time.

1.2 A Nonlinear Model – the S&P Model

Changes in the stock market have drawn people’s attention for a long time. It is natural

to use filters to predict trends in the stock market over time. Predicting dividend yield

and real return will be significantly important for investors if we have the historical
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observation. Consider a stochastic model of S&P with two variables, one variable is

dividend yield, and the other variable is the real return [4].

Zn =

Xn

δRn

 =

 1
1+k

Xn−1 + kθ
1+k

+ σ
1+k

√
Xn−1∆W1,n

µXn + a
√
Xn−1

(
ρ∆W1,n +

√
1− ρ2∆W2,n

)
 ,

Yn =

Y1,n
Y2,n

 =

 Xn +Q1B1,n

δRn +Q2B2,n.

 .

Here Xn is dividend yield, δRn is real return and Yn is a two-dimensional vector for

the observation of Xn and δRn. Noises ∆W1,n,∆W2,n are independent Brownian motion

increments with ∆Wi,n = Wi,n+1−Wi,n, i = 1, 2. B1,n, B2,n are also independent Brownian

motion increments. k, θ, σ, µ, a, ρ, Q1 and Q2 are parameters with the given values as

follows.

Table 1.1: Parameters for the S&P dividend yield and real return model, obtained by
applying a maximum likelihood estimation, see [6].

k θ σ µ a ρ Q1 Q2

2.0714 2.0451 0.3003 0.1907 0.9197 1.6309 0.0310 -0.8857

Historical observations of Yn from the year 1945 to 2010 can be found online. It

is natural for us to predict year-end yield and return by using observed data from the

previous year and to compare it with the real data such that we can clarify whether the

method is used to make precise predictions. In the following section, we present how we

use the Kalman filter for the S&P model.
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1.2.1 Rewrite the S&P Model

It is readily seen that our S&P model does not have the matrix form as shown in (1.1)

and (1.2). In order to use Kalman filter method, we rewrite it to matrix form as follows.

Zn = ΦZn−1 +D +M
√
Zn−1CWn, (1.8)

Yn = HZn + V Bn. (1.9)

Here we denote

Φ =

 1
1+k

0

µ
1+k

0

 , D =

 kθ
1+k

µkθ
1+k

 , M =

(
1 0

)
, C =

 σ
1+k

0

µσ
1+k

+ aρ a
√

1− ρ2

 , Wn =

∆W1,n

∆W2,n

 ,

and

H =

1 0

0 1

 , V =

Q1 0

0 Q2

 , Bn =

B1,n

B2,n

 .

We present how we rewrite observation and measurement model of dividend yield and

real return into matrix form in the following. When rewriting Zn, one can see that Xn

is represented by Zn−1, while δRn is represented by Zn. Thus, we should rewrite δRn in

terms of Zn−1 and

δRn =
µ

1 + k
Xn−1 +

µkθ

1 + k
+ (

µσ
√
xn−1

1 + k
+ aρ

√
Xn−1)∆W1,n + a

√
Xn−1

√
1− ρ2∆W2,n.

Then Zn becomes to the following,

Zn =

Xn

δRn

 =

 1
1+k

0

µ
1+k

0


Xn−1

δRn−1

+

 kθ
1+k

µkθ
1+k

+
√
Xn−1

 σ
1+k

0

µσ
1+k

+ aρ a
√

1− ρ2


∆W1,n

∆W2,n

 .

The rewriting of Yn in a matrix form is straightforward. We follow the presentation
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in [3] to derive a solution for our model. After we rewrite the S&P model, we are able to

obtain the updated equations.

1.2.2 Updated Equations for the S&P Model

Following the idea of Kalman filter of deriving Kalman gain, prior covariance, posterior

covariance, prior estimation and posterior estimation, one can generate the following

updated equations for our S&P model.

Pn(−) = Φn−1Pn−1(+)Φ
T
n−1 +MZn−1CC

T , (1.10)

K̄n = Pn(−)H
T
n (HnPn(−)H

T
n + V 2)−1, (1.11)

Pn(+) = (I − K̄nHn)Pn(−), (1.12)

Ẑn(−) = Φn−1Ẑn(+) +D, (1.13)

Ẑn(+) = Ẑn(−) + K̄n(−HnẐn(−) + Yn). (1.14)

Details of deriving these updated equations can be found in Appendix A. These equa-

tions from our S&P model are similar to (1.3) to (1.7), but some of them are different

because the noise parts of the S&P model is not strictly linear and rely on the previous

steps.

By plugging observed yield and return from the year 1945 to the year 2010 to Yn

and setting the initial prior covariance as zero, one can repeat the updated equations

from (1.10) to (1.14) for 65 times. Each time we update Kalman gain, prior & posterior

covariance and prior & posterior estimation for once, and record the posterior estimation

as the predicted value. The Matlab code for implementing Kalman filter on the S&P

model can be found in Appendix B. Figure 1.1 and 1.2 show the comparison between real

values and estimated values with the same time discretization.
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Figure 1.1: Kalman Filter for Real Return in Equation (1.8) and (1.9). Predicted return
can well capture the trend but there are gaps between predicted ones and real ones.

1.2.3 Results for the S&P Model

In Figure 1.1 and Figure 1.2, the x-axis represents the year, with year zero substituting

the initial year, which is the year 1945 in our model. And the 65th year (the year of 2010)

is the last year. The y-axis represents the value of return and yield respectively. The

results show that Kalman filter works well in the first five to six years with the same

trend of movement and approximated estimation. Although the patterns keep almost the

same trend between estimations and real ones after the fifth year, the values are not much

closer to each other. The reason for these deviations is that our S&P model is non-linear.

These results suggest that Kalman filter works for the first several steps for a non-linear

model, but do not have satisfactory performance for the longer term in a non-linear model.

In next two chapters, we consider nonlinear filters and focus on unscented Kalman
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Figure 1.2: Kalman Filter for Yield in Equation (1.8) and (1.9). For the first few years,
Kalman filter can well capture the trend of increasing.

filter for the S&P model in the next chapter.
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Chapter 2

Unscented Kalman Filter

As shown in last chapter, Kalman filter is inaccurate for nonlinear models with non-

Gaussian observations. The Unscented transformation (UT) [5] has been developed as an

improvement to utilize information of mean and covariance to accurate results and make

it easier to implement.

The UT method is to select sigma points from the distribution with mean µx and

variance σ2
x. In a scalar model, equispaced sigma points are chosen form the interval

[µx−2σx, µx+ 2σx]. Then mean and covariance can be updated using those sigma points.

Thus, we linearize non-linear models in some sense.

There are at least two advantages of using UT transformation. The first is that sigma

points are no longer randomly chosen and they contain the most important information

of an unknown distribution, which can be sufficient for statistic computation. The second

is that weights for sigma points can be adjusted in ways such that points around mean

can be weighted more.

2.1 Generating Sigma Points and Choosing Weights

Consider a set of sigma points S with given mean and covariance, which is often defined

as S = {i = 0, 1, ...2Nx : X(i),W (i)} with (2Nx + 1) points and their associated weights.
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Here we assume different points have different weights of calculating. By convention, W (0)

is the weight for the mean. i.e.

cX(0) = X̄(0), W (0) = W (0). (2.1)

Typically, the expected value holds the highest weights. The other 2Nx points are

randomly generated within 2
√
Nx standard deviation from the mean with half points on

the left side of the mean and half on the right side of the mean. i.e.

X(j) = X̄ −
(√ Nx

1−W 0
Σx

)
i
, W (j) =

1−W (0)

2Nx

. (2.2)

X(j+Nx) = X̄ +
(√ Nx

1−W 0
Σx

)
j
, W (j+Nx) =

1−W (0)

2Nx

. (2.3)

In the next section, we briefly present how to implement unscented Kalman filter,

which is the general algorithm of unscented Kalman filter.

2.2 General Algorithms for Unscented Kalman Filter

We present the algorithm of Unscented Kalman Filter following the presentation in [5].

• Step 1. Generating sigma points

The set of sigma points are generated by following (2.1) to (2.3).

• Step 2. Generating transformed set

The generating transformed set is usually the expectation of X in measurement

model,

X̂(i)
n = f [X(i)

n , µn].

9



• Step 3. Computing predicted mean and computing predicted covariance

µ̂n =

p∑
i=0

W (i)X̂(i)
n ,

K̂n =

p∑
i=0

W (i){X̂(i)
n − µ̂n}{X̂(i)

n − µ̂n}T .

• Step 4. Generating predicted observation

We get predicted observations by plugging each prediction points into observation

model,

Ŷ (i)
n = g[X(i)

n ].

• Step 5. Computing mean of observations Ŷn =
∑p

i=0W
(i)Ŷ

(i)
n .

• Step 6. Computing covariance of observations

Ŝn =

p∑
i=0

W (i){Ŷ (i)
n − Ŷn}{Ŷ (i)

n − Ŷn}T .

• Step 7. Updating normal Kalman filter equations

Vn = Yn − Ŷn, Wn = K̂nŜ
−1
n ,

µn = µ̂n +WnVn, Kn = K̂n −WnŜnW
T
n .

2.3 Implementations of Unscented Kalman Filter

Here we consider the unscented Kalman filter for two nonlinear models. One is S&P

model from [4] and the other is perturbed tumor growth model from [2]. Both examples

are non-linear discrete models, with non-Gaussian observation models. In the next two

subsections, we present how we implement the algorithm as well as the prediction results.

We start with the S&P model.
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2.3.1 Implementation and Results for the S&P Model

Here we use the same example of the two-dimensional S&P model which includes divi-

dend yield and real return. We describe the model at page 3. After rewriting the model

as standard matrix form, we have the following formula to represent measurement and

observation model, in which Zn is the two-dimensional measurement and Yn is the obser-

vation.

Zn = Φn−1Zn−1 +D +M
√
Zn−1CWn,

Yn = HnZn + V Bn.

Before we implement the algorithm, we need to set the initial value, in which we set

W (0) = 1
3
, 2Nx = 400 and K0 = 0. Then, one can repeat the algorithms by using steps

listed at section 2.2.

There are three points needed to be mentioned when implementing the algorithm

for our S&P model. When we generate sigma points, the mean point can be calculated

from equation µn = H−1
n (Yn − V Bn), which has the weight of 1

3
. The remaining 400

sigma points are generated randomly from the range of two standard deviations around

mean, and weight 2
3

in total. Standard deviation at time n comes from the factorization

of covariance of the previous step K̂n−1. We use the whole measurement function to

generate transformed set in our S&P model instead of using expectation because the

noisy parameters of Q1 and Q2 are relatively high. In each iteration, we need to grantee

Xn is positive since the
√
Xn has been used as a part of the real return.

We set the weight for mean as 1/3, total points as 400 and initial covariance for x0 as

0. When we are not able to factorize of covariance, we set L as the square root of x. By

plugging observed yield and return from the year 1945 to the year 2010 to Yn, one can

repeat the algorithm for 65 times. Each time we update predicted mean and predicted

covariance for once, and record the predicted mean as the predicted value. The specific

11



Matlab code for implementing unscented Kalman filter on the S&P model can be found

in Appendix C. Figure 2.1 and 2.2 show the comparison between real value and estimated

value with the same time discretization.

Results for the S&P model

0 10 20 30 40 50 60 70
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Dividend Yield for Unscented Kalman Filter
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Real yield

Figure 2.1: Unscented Kalman Filter for Dividend Yield in Equation (1.8) and (1.9).
Predicted yield successfully match with the real yield after the first few years.

We also calculate the mean squared error (MSE) each time after generating sigma

points. MSE is an estimator of sample variance by measuring the average of squares of

the deviations. If X
(i)
tj is the i-th sigma points at time tj, and X̄tj is the mean of the sigma

points at time tj, then the MSE of the predictor is computed as

MSE =

√√√√ 1

n(n− 1)

n∑
i=1

|(X(i)
tj )2 − (X̄tj)

2|. (2.4)
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Figure 2.2: Unscented Kalman Filter for Return in Equation (1.8) and (1.9). Predicted
return captures the most of trend and mismatch with the real return at some single points.

From Figure 2.1 and Figure 2.2, we see that predicted dividend yield matches highly

with the real yield after the first few years, which means the application of unscented

Kalman filter for predicting yield are pretty successful. Predicted real return captures the

most of trend with the little mismatch at some single points.

Reasons for the different behaviors for yield and return are listed below.

First, the variance for return is larger than yield which we can see from Figure 2.3.

The overall MSE for both yield and return are acceptably small, and MSE for return is

larger than MSE for yield. That means sigma points for yield are more intensive with the

more stable trend.

Second, return highly depends on the prediction of yield from the previous step. The

predicted error for yield can be exaggerated further in return.
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Figure 2.3: MSE for Yield and Return in Equation (1.8) and (1.9) with Unscented Kalman
Filter. The overall MSE for both yield and return are acceptably small and MSE for return
is larger than MSE for yield.

In the next section, we focus on an application from biology and show that unscented

Kalman filter also works well in that model.

2.3.2 Implementation and Results for the Perturbed Tumor Growth

Model

In this example, we consider the two-dimensional noise perturbed tumor growth model

[2]

dXt = F (Xt)dt+ σdWt, (2.5)

14



where Wt is a two-dimensional standard Brownian Motion with

σ = (0.01, 0.01)T , Xt = (X1
t , X

2
t )T , F (Xt) = (f1(Xt), f2(Xt))

T ,

and f1 and f2 are defined by

f1(Xt) = α1X
1
t ln(

X2
t

X1
t

),

f2(Xt) = α2X
1
t − α3X

2
t (X1

t )
2
3 .

Here f1 models the Gompertzian growth rate if the tumor and f2 gives the degree of

vascularization of the tumor. The measurement model reads

Yk = (X1
k , X

2
k)T +Rvk, (2.6)

where vk is a two-dimensional zero mean Gaussian white noise with covariance Λ = I∆,

I is an identity matrix and R = (0.1, 0.1)T . We are given the step size ∆ = 0.2, the

number of process K = 40, parameters value α1 = 1, α2 = 0.2, α3 = 0.2 and initial state

X0 = (0.8, 0.3)T .

We generate the ”observation data” from simulating sample paths by using the forward

Euler method which reads

Xk = F (Xk−1)∆ + σ
√

∆Wk−1. (2.7)

We set the weight for mean as 1/3, total points as 1500 and initial covariance for x0 as

0. When we are not able to factorize of covariance, we set L as the square root of x. By

plugging observed X1 and X2 from time 0 to time 8 to Yn, we can repeat the algorithm

for 40 times. In each iteration, we update predicted mean and predicted covariance for

once, and record the predicted mean as predicted values. The specific Matlab code for

implementing unscented Kalman filter on the perturbed tumor growth model can be found
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in Appendix D. Figure 2.4 and 2.5 show the comparison between real value and estimated

value with the same time discretization.

Results for Perturbed Tumor Growth Model
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X1 for Unscented Kalman Filter

Predicted X1
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Figure 2.4: Unscented Kalman Filter for X1 in Equation (2.5) and (2.6). Predicted X1
matches well with the real X1 especially during the first half of the time.

We also calculate the mean squared error(MSE) of X1 and X2 for unscented Kalman

filter following Equation (2.4) and present the values of MSE in Figure 2.6.

From Figure 2.4 and figure 2.5, we see that after time 3, predicted X1 is a little bit

higher than real X1 but predicted X1 matches well with the actual X1 before time 3, which

means the application of unscented Kalman filter for predicting X1 are pretty successful.

Predicted X2 pairs well with the actual X2 and predicted X2 fluctuates less than real

X2 because X2 has relatively low MSE from Figure 2.6, which means the majority of the
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Figure 2.5: Unscented Kalman Filter for X1 in Equation (2.5) and (2.6). Predicted X2
matches well with the real X2 and predicted X2 fluctuate less than real X2.

sigma points of X2 concentrate on the mean value. From Figure 2.6, we can find that

MSE has a sharp decreasing around time 1, which means the sigma points are concentrate

around mean and we update around mean for the most of the time, that explains why

predicted X2 value crosses the center of real X2.
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Figure 2.6: MSE for X1 and X2 in Equation (2.5) and (2.6). The MSE has a sharp
decreasing after the first time step.

18



Chapter 3

Particle Flow Filter

When dealing with non-linear discrete dynamic models, Particle filters are often used to

get predictions with Bayesian statistical inference. Particle Filters have the problem of

particle degeneracy caused by the Bayesian Rule, especially in dealing with high dimen-

sional state vectors.

Particle flow filter is derived from improving the estimation accuracy in high-dimensional

space by solving a transport map of particles and it significantly avoids the problem of

degeneracy. We set each particle in d-dimensional space as a function of λ denoting as

x(λ), in which lambda is continuously changing just and λ starts from 0 and ends up with

1 which represents the location of particle filters at the next time step.

In the next section, we present a particle flow filter for the two models in Chapter 2.

3.1 Generalized Method for Stochastic Particle Flow

Filters

We start by constructing the stochastic differential equation for the flow of particles [1].

dx = f(x, λ)dλ+Q(x)
1
2dWλ. (3.1)
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Here f(x, λ) is the particle flow function and Q(x) is the covariance matrix of the diffusion

Wλ. Wλ is the measurement noise generated according to λ.

In order to get the solution of f(x, λ) and Q(x), probability density function P (x, λ)

is essential to be introduced. We set

log P (x, λ) = log g(x) + λ log h(x)− log K(λ). (3.2)

The generalized probability density function has the form of

p(x, λ) =
g(x)h(x)λ∫

Rd g(x)h(x)λ dx
=
g(x)h(x)λ

K(λ)
, (3.3)

in which h(x) is the likelihood function, g(x) is the prior density of x and K(λ) is the

integration of product of g(x) and h(x)λ with respect to x. The purpose of incorporating

K(λ) is to normalize the conditional probability density.

By Equation (3.2), one can solve f(x, λ) by setting specific Q(x) to simplify the partial

differentiation equation (PDE) for f(x, λ), which is of the following form.

∂log h

∂x
= −fT ∂

2 log P

∂x2
− ∂div(f)

∂x
− ∂ log P

∂x

∂f

∂x
+
∂[div(Q∂P

∂x
)/2P ]

∂x
. (3.4)

The simplest way is to set one part of the equation equals to zero,which is

− ∂div(f)

∂x
− ∂ log P

∂x

∂f

∂x
+
∂[div(Q∂P

∂x
)/2P ]

∂x
= 0. (3.5)

Then f(x, λ) has the form

f(x, λ) = −[
∂2 log P (x, λ)

∂x2
]−1(

∂ log h(x)

∂x
)T . (3.6)
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According to Equation (3.5), the corresponding covariance function Q(x) has the form

Q = [P − λPHT (R+ λHPHT )−1HP ]HTR−1H[P − λPHT (R+ λHPHT )−1HP ], (3.7)

where R is the measurement noise covariance matrix, P is the prior covariance matrix,

and H is the sensitive matrix in the measurement model. To make sure the solution

of Q(x) from equation (3.7) is a symmetric matrix, one should implement the following

method to symmetry Q, which is

Q̂ =
Q+QT

2
. (3.8)

We always use Q to substitute Q̂ in this work.

Algorithm 3.1. (Algorithm for implementing particle flow Filter with diffusion)

• a. Use Monte Carlo method randomly choose N particles around observation, and

generate particle density function g(x) as prior density function.

• b. Choose a suitable h(x) as likelihood function.

• c. Compute p(x, λ) according to (3.3), that is, p(x, λ) = g(x)h(x)λ

K(λ)
, where K(λ) =∫

Rd g(x)h(x)λ dx .

• d. Solve function f(x, λ) and measurement covariance matrix Q(x) according to

(3.6) and (3.7), which is

f(x, λ) = −[
∂2 log P (x, λ)

∂x2
]−1(

∂ log h(x)

∂x
)T ,

Q(x) = [P − λPHT (R + λHPHT )−1HP ]HTR−1H[P − λPHT (R + λHPHT )−1HP ].

• e. Plugging the value of f(x, λ) and Q(x), one can derive x by solving the PDE:
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dx = f(x, λ)dλ+ LdWλ, where L = chol(Q). Use forward Euler scheme

x(n+1) = x(n) + f(x(n), λn)∆λ+ L∆Wλ,

or implicit Euler scheme

x(n+1) = x(n) + f(x(n+1), λn+1)∆λ+ L∆Wλ.

• f. For updating each point, repeat steps from a to e.

Remark 3.2. Here h(x) can be any distribution, but we consider normal distribution with

estimated mean and covariance.

Remark 3.3. The use of either explicit or implicit Euler method depends on the shape

of f(x, λ).

3.2 Implementations of Particle Flow Filter

Here we consider the particle flow filter for two nonlinear models. One is the S&P model

from [4] and the other is a perturbed tumor growth model from [2]. Both of the examples

are non-linear discrete models, with non-Gaussian distributed noise term. In the next two

sections, we present how we implement the algorithms and numerical results.

3.2.1 Implementation and Results for the S&P model

In our previous dividend yield and S&P real return model, we have the measurement

models in the form of

Zn =

Xn

δRn

 =

 1
1+k

Xn−1 + kθ
1+k

+ σ
1+k

√
Xn−1∆W1,n

µXn + a
√
Xn−1

(
ρ∆W1,n +

√
1− ρ2∆W2,n

)
 ,
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and measurement model in the form of

Yn =

Y1,n
Y2,n

 =

Xn +Q1B1,n

δRn +Q2B2,n

 .

The prior density function which is

g(x1, x2) =
1

2πσ1σ2
√

1− ρ2
e−

(x−µ)TΣ−1
1 (x−µ)

2 , (3.9)

where µ is sample mean, and Σ1 is sample covariance with

Σ1 =

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 .

We assume a normally distributed likelihood function as

h(x1, x2) =
1

2π
√
|Σ2|

e−
(x−m)TΣ−1

2 (x−m)

2 , (3.10)

where m is probability mean and Σ2 is probability covariance. Therefore, the conditional

probability density function P (x, λ) in our S&P model has the following equation, which

is

p(x, λ) =
g(x)h(x)λ

K(λ)
=

1

K(λ)
e−

(x−µ)TΣ−1
1 (x−µ)+λ(x−m)TΣ−1

2 (x−m)

2 , (3.11)

where

K(λ) =

∫
R
g(x)h(x)λ dx =

1

(2π)2
√
|Σ1|

√
|Σ2|

∫
R
e−

(x−µ)TΣ−1
1 (x−µ)+λ(x−m)TΣ−1

2 (x−m)

2 dx.
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By implementing log function on both side of P (x, λ) in (3.11), we get

logP (x, λ) = −(x− µ)TΣ−1
1 (x− µ) + λ(x−m)TΣ−1

2 (x−m)

2
− log(K(λ)). (3.12)

By implementing log function on both side of h(x) in (3.21), we get

log h(x) = log(
1

2π(Σ2)1/2
)− (x−m)TΣ−1

2 (x−m)

2
. (3.13)

Then one can get the particle flow function f(x) with the following form

f(x, λ) = −[
∂2 log P (x, λ)

∂2x
]−1(

∂ log h(x)

∂x
) = −[−Σ−1

1 − λΣ−1
2 ]−1[−Σ−1

2 (x−m)], (3.14)

where ∂2(logP (x,λ))
∂x2 = −Σ−1

1 − λΣ−1
2 , ∂(log h(x))

∂x
= −Σ−1

2 (x−m).

According to equation (3.7), the corresponding Q(x), in this case, has the following

form

Q(x) = [P − λP (V + λP )−1P ]V −1[P − λP (V + λP )−1P ], (3.15)

where P is the prior covariance, which has the form from Kalman filter (1.11)

Pn(−) = ΦPn−1(+)Φ
T +MZ(n−1)CCT .

Then we can update x with respect to λ by using Backward Euler

x(n+1) = x(n) + f(x(n+1), λn+1)∆λ+ L(x(n))∆Wλ, (3.16)

where L(x) =
√
Q(x).

Subtracting m from each side of the equation (3.24), one can get

x(n+1) −m = (x(n) −m)− [Σ−1
1 + λn+1Σ

−1
2 ]−1Σ−1

2 (x(n+1) −m)∆λ+ L(x(n))∆Wλ.
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Set y(n+1) = x(n+1) −m, y(n) = x(n) −m, and the equation becomes

y(n+1) = y(n) − [Σ−1
1 + λΣ−1

2 ]−1Σ−1
2 y(n+1)∆λ+ L(x)∆Wλ.

Finally we can calculate x(n+1) as

x(n+1) = (I + ∆λ[Σ−1
1 + λΣ−1

2 ]−1Σ−1
2 )−1(x(n) −m+ L(x)∆Wλ) +m. (3.17)

We set the total points to 100, and time discretization to 0.02 and the initial covariance

for x0 to 0. When we are not able to factorize of covariance, we set L as the square root

of x. By plugging observed yield and return from the year 1945 to the year 2010 to Yn,

one can repeat the algorithm for 65 times. Each time we update mean and covariance of

g(x), mean and covariance of h(x) and covariance matrix Q(x), and record x(n+1) each

step as the predicted value. The specific Matlab code for implementing particle flow filter

on the S&P model can be found in Appendix E. Figure 3.1 and 3.2 show the comparison

between real value and estimated value with the same time discretization.

We present the results of particle flow particle method (3.17) in the next section.

Results of S&P model

We also calculate the mean squared error(MSE) of yield and return for particle flow

filter and follow the equation (2.4) and present the values of MSE in Figure 3.3.

From Figure 3.1 and Figure 3.2, one can see that the predicted yield matches perfectly

with the real yield, and prediction for return has excellent performance at the years with

significant fluctuation but less well at the year with lower variation. The reason is that the

MSE for predicted return is much larger than the MSE for predicted yield, which means

the range for sigma points of return is much broader. Therefore, the prediction has more

substantial covariance. In summary, by involving the function of f(x, λ), the accuracy of

predictions have been highly increased, and it perform better than the unscented filter.
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Figure 3.1: Particle Flow Filter for Yield in Equation (1.8) and (1.9). Prediction of yield
captures real yield well with few mismatches.

3.2.2 Implementation and Results for Perturbed Tumor Growth

Model

In our previous perturbed tumoral growth model, we have the measurement models in

the form of

dXt = F (Xt)dt+ σdWt, (3.18)

where f1 and f2 are defined by

f1(Xt) = α1X
1
t ln(

X2
t

X1
t

),

f2(Xt) = α2X
1
t − α3X

2
t (X1

t )
2
3 ,

and measurement model has the form of

Yk = (X1
k , X

2
k)T +Rvk. (3.19)

26



0 10 20 30 40 50 60 70

Year

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Real Return for Particle Flow Filter

Predicted return

Real return

Figure 3.2: Particle Flow Filter Results for Yield in Equation (1.8) and (1.9). Predicted
return captures the real return well with larger fluctuations.

In the particle flow particle method, we have

g(x1, x2) =
1

2πσ1σ2
√

1− ρ2
e−

(x−µ)TΣ−1
1 (x−µ)

2 , (3.20)

and we set h(x) as

h(x1, x2) =
1

2π
√
|Σ2|

e−
(x−m)TΣ−1

2 (x−m)

2 , (3.21)

Then we can derive f(x, λ) as follows

f(x, λ) = −[
∂2 log P (x, λ)

∂2x
]−1(

∂ log h(x)

∂x
) = −[−Σ−1

1 − λΣ−1
2 ]−1[−Σ−1

2 (x−m)], (3.22)

and Q(x)

Q(x) = [P − λP (V + λP )−1P ]V −1[P − λP (V + λP )−1P ]. (3.23)

Thus, the updated equation for x is

x(n+1) = x(n) + f(x(n+1), λn+1)∆λ+ L(x(n))∆Wλ. (3.24)
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Figure 3.3: MSE for Yield and Return in Equation (1.8) and (1.9) with Particle Flow
filter. The MSE for return is much higher than the MSE for yield.

where L(x) =
√
Q(x).

We set the total points to be 1500, and time discretization to 0.04 and the initial

covariance for x0 to 0. When we are not able to factorize of covariance, we set L as the

square root of x. By plugging observed X1 and X2 from time 0 to 8 to Yn, one can repeat

the algorithm for 40 times. Each time we update mean and covariance of g(x), mean

and covariance of h(x) and covariance matrix Q(x), and record x(n+1) each step as the

predicted value. The specific Matlab code for implementing particle flow filter on the S&P

model can be found in Appendix F. Figure 3.4 and 3.5 show the comparison between real

value and estimated value with the same time discretization.
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Figure 3.4: Particle Flow Filter for X1 in Equation (2.5) and (2.6). Predicted X1 captures
real X1 well with few mismatches.

Results for perturbed tumor growth model

We also calculate the mean squared error(MSE) of X1 and X2 by using particle flow

filter and we follow the equation (2.4). The result is given in Figure 3.6.

From Figure 3.4 and Figure 3.5, one can see that the predicted X1 and X2 match

perfectly with the real X1 and X2. The MSE of X1 and X2 are reliably acceptable.

The MSE for both X1 and X2 with particle flow filter are much smaller than the MSE

for X1 and X2 with unscented Kalman filter, which means the particles in particle flow

filter are more concentrated. The choice of the function f(x, λ) increases the accuracy of

predictions and suggests the validity of the particle flow particle method.
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Figure 3.5: Particle Flow Filter for X2 in Equation (2.5) and (2.6). Predicted X2 captures
real X2 well with few mismatches.
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Figure 3.6: MSE for X1 and X2 in Equation (2.5) and (2.6) with Particle Flow filter. The
MSE is acceptably small.
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Chapter 4

Conclusion

In this paper, we mainly discuss three types of filters: Kalman filter, unscented Kalman

filter, and particle flow filters. We implement them on the two dynamically non-linear

models and make comparison among the three methods.

In Chapter 1, we implement Kalman filter on the S&P model to predict dividend yield

and real return from the year 1945 to the year 2010. We applied the Kalman filter but

Kalman filter performs well only in the first steps with capturing the pattern of change for

our S&P model because the observation model is a non-linear model, i.e., a non-Gaussian

one.

In Chapter 2 and 3, we use non-linear filters to improve the prediction, which are

unscented Kalman filter and particle flow filter respectively. We perform the two models

for each of the method: the S&P model and the perturbed tumor growth model. For

unscented Kalman filter, the key is to generate sigma points around the priori mean, and

then update predicted mean and covariance at each iteration. The result of implementing

S&P model with unscented Kalman filter is better than those by the Kalman filter. Pre-

dicted yield capture most of the trend for whole process with single points mismatched

with the real values. But the predicted return does not match the real return so well. For

two-dimensional tumor growth model, unscented Kalman filter outperforms the Kalman
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filter.

In Chapter 3, we perform the same two models with particle flow filter as in Chapter

2. Particle flow filter is moving the particles by particle flow function which is generated

properly from partial differentiation equations with properly chosen likelihood functions.

By solving the partial differentiation equations, we can construct the explicit dynamic

model on how to move particles. For the the S&P model, the particle flow filter outper-

forms Kalman filter and unscented Kalman filter. For the two-dimensional tumor growth

model, particle flow filter performs better than Kalman filter. The predicted X1 and X2

match the real values well with stable MSE.

In conclusion, Kalman filter does not works so well in our S&P model as the model is

non-linear, which matches our expectation and is long known. It seems that particle flow

filter works better than unscented filter for our two models. It is a bit surprising that

the particle flow filter works so well in our S&P model even though we chose a Gaussian

likelihood function with mean and variance the same as the prior. The reason why it

works so well is not clear to us. Also, the effects of different likelihood function h(x) is

unknown. We would like to investigate such issues in the future and apply the particle

flow filters to more complicated non-linear models in high dimension.
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Appendix A

Steps to Solve S&P Model with

Kalman Filter

In this section, we present the details of deriving the Kalman filter for the the S&P Model
described in Chapter 1.

A.1 Step 1. Solving for Kalman Gain

Kalman gain can be expressed as

K̄n = Pn(−)H
T
n (HnPn(−)H

T
n + V 2)−1.

Below we present how we derive Kalman Gain. The optimal updated estimate Ẑn(+)

is a linear function of a priori estimate Ẑn(−) and measurement Yk, that is,

Ẑn(+) = K1
nẐn(−) + K̄nYn,

where K1
n and K̄n are unknown yet. We seek values of K1

n and K̄n such that the estimate
Ẑn(+) satisfies the orthogonality principle:

E〈[Zn − Ẑn(+)]Y
T
i 〉 = 0, i = 1, 2, ...n− 1.

If one expands Zn from (1.2) and Zn(+) from (1.1) into (A.1), then one will observe

E〈[ΦZn−1 +D +M
√
Zn−1CWn −K1

nẐn(−) − K̄nYn]Y T
i 〉 = 0, for i = 1, 2, ...n− 1.

Since Wn and Vn are uncorrelated, it follows that E〈WnY
T
i 〉 = 0 for 1 ≤ i ≤ n − 1.
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Using this result, one can obtain the following,

E〈[ΦZn−1 +D −K1
nẐn(−) − K̄nYn]Y T

i 〉 = 0, for i = 1, 2, ...n− 1.

By substituting Yn using (1.9), one can get

E〈[ΦZn−1 +D −K1
nẐn(−) − K̄nHZn − K̄nV Bn]Y T

i 〉 = 0, i = 1, 2, ...n− 1.

Expanding the expectation, we will have

ΦE〈Zn−1Y
T
i 〉+DE〈Y T

i 〉−K1
nE〈Ẑn(−)Y

T
i 〉−K̄nHE〈ZnY T

i 〉−K̄nV E〈BnY
T
i 〉 = 0.

(A.1)
We also know that

E〈BnY
T
i 〉 = 0, for i = 1, 2, ...n− 1.

Thus, (A.1) can be rewrite as:

Φn−1E〈Zn−1Y
T
i 〉+DE〈Y T

i 〉 −K1
nE〈Ẑn(−)Y

T
i 〉 − K̄nHnE〈ZnY T

i 〉 = 0.

And can be simplified as

E〈[I −K1
n − K̄nHn]〉E〈ZnY T

i 〉 = 0.

(A.1) can be satisfied for any given Zn if

K1
n = I − K̄nH,

Thus, K1
n in (A.1) satisfied with (A.1).

We define estimation errors as

Z̃n(+) , Ẑn(+) − Zn,
Z̃n(−) , Ẑn(−) − Zn,
Ỹn , Ŷn(−) − Yn = HnZn(−) + Yn.

Since Ỹn(−) depends linearly on Yn, from (A.2), we have

E〈[Zn − Ẑn(+)]Ỹ
T
n 〉 = 0.

Substitute Zn, Ẑn(+), and Ỹn from (1.8), (A.1), and (A.2) respectively. Then

E〈Φn−1Zn−1 +D +M
√
Zn−1CWn −K1

nẐn(−) − K̄nYn][HnẐn(−) − Yn]T 〉 = 0.

By the orthogonality of
E〈WnY

T
n 〉 = E〈WnX

T
n(−)〉 = 0,

we obtain
E〈Φn−1Zn−1 +D −K1

nẐn(−) − K̄nYn][HnẐn(−) − Yn]T 〉 = 0.
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Substituting for K1
n, Yn and using (A.1)

E〈Φn−1Zn−1 +D− Ẑn(−) + K̄HnẐn(−)− K̄nZn− K̄nV Bn][HnẐn(−)−HnZn−V Bn]T 〉 = 0.

Then combine terms of Zn − Ẑn(−), we get

E〈[−Z̃n(−) + K̄nHnZ̃n(−) − K̄nV Bn][HnZ̃n(−) − V Bn]T 〉 = 0.

Using the fact that E〈Z̃n(−)B
T
n 〉 = E〈BT

n Z̃
T
n(−)〉 = 0, the last result will be as following:

(−I + K̄nHn)E〈Z̃n(−)Z̃
T
n(−)〉HT

n + K̄nV E〈BnB
T
n 〉V T = 0. (A.2)

For the second term of (A.2), K̄nV E〈BnB
T
n 〉V T have the matrix form:

K̄n

(
Q1 0
0 Q2

)
E

(
B2

1n B2nB1n

B1nB2n B2
2n

)(
Q1 0
0 Q2

)
= K̄n

(
Q1 0
0 Q2

)(
1 0
0 1

)(
Q1 0
0 Q2

)
= K̄nV

2.

Plugging the value of (A.1) to (A.2):

(−I + K̄nHn)E〈Z̃n(−)Z̃
T
n(−)〉HT

n + K̄nV
2 = 0.

By definition, the error covariance matrix is Pn(−) = E〈Z̃n(−)Z̃
T
n(−)〉, it satisfies the equa-

tion:
(−I + K̄nHn)Pn(−)H

T
n + K̄nV

2 = 0,

further we have
K̄n(HnPn(−)H

T
n + V 2) = Pn(−)H

T
n .

Therefore, Kalman gain can be expressed as

K̄n = Pn(−)H
T
n (HnPn(−)H

T
n + V 2)−1. (A.3)

which is the solution we want to seek as a function of priori covariance before update.

A.2 Step 2. Solving for Priori and Posterior Estima-

tion

By definition, the priori estimation

Ẑn(−) = Φn−1Ẑn(+) +D.

By substituting (A.1) into (A.1), one can obtain the equations

Ẑn(+) = (I − K̄nHn)Ẑn(−) + K̄nYn.
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Therefore, the posterior estimation we want to seek is a function of priori estimation and
Kalman gain.

Ẑn(+) = Ẑn(−) + K̄n(−HnẐn(−) + Yn). (A.4)

A.3 Step 3. Solving for Priori and Posterior Covari-

ance

The priori and posterior covariance have the form of

Pn(−) = Φn−1Pn−1(+)Φ
T
n−1 +Xn−1CC

T ,

and
Pn(+) = (I − K̄nHn)Pn(−).

Below is the process of how we derive these two equations.
One can derive a formula for posterior covariance, which is

Pn(+) = E〈Z̃n(+)Z̃
T
n(+)〉.

By plugging equation (A.4) to (A.1), one can obtain the equations

Z̃n(+) = Ẑn(+) − Zn = Ẑn(−) − K̄nHnẐn(−) + K̄nYn − Zn
= Ẑn(−) − K̄nHnẐn(−) + K̄nHnZn − K̄nV Bn − Zn
= (Ẑn(−)Zn)− K̄nHn(Ẑn(−) − Zn) + K̄nV Bn

= (I − K̄nHn)Z̃n(−) + K̄nV Bn.

By substituting (A.5) into (A.3) and noting that E〈Z̃n(−)B
T
n 〉 = 0, one obtains

Pn(+) = E〈[(I − K̄nHn)Z̃n(−) + K̄nV Bn][(I − K̄nHn)Z̃n(−) + K̄nV Bn]T 〉
= E〈(I − K̄nHn)Z̃n(−)Z̃

T
n(−)(I − K̄nHn)T + K̄nV BnB

T
n V

T K̄T
n 〉

= (I − K̄nHn)Pn(−)(I − K̄nHn)T + K̄nV
2K̄T

n

= Pn(−) − K̄nHnPn(−) − Pn(−)H
T
n K̄

T + K̄nHnPn(−)H
T
n K̄

T
n + K̄nV

2K̄T
n

= (I − K̄nHn)Pn(−) − Pn(−)H
T
n K̄

T
n + K̄n(HnPn(−)H

T
n + v2)K̄T

= (I − K̄nHn)Pn(−) − Pn(−)H
T
n K̄

T
n + Pn(−)H

T
n K̄

T
n

= (I − K̄nHn)Pn(−).

This is the final form of posterior covariance, which shows the effects of Kalman gains
on priori covariance. Respectively, the definition of prior covariance

Pn(−) = E〈Z̃n(−)Z̃
T
n(−)〉.
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By plugging (1.8) into (A.2), one can obtain the equations

Z̃n(−) = Φn−1Ẑn−1(+) +D − Zn
= Φn−1Ẑn−1(+) +D − Zn − Φn−1Zn−1 −D −M

√
Zn−1CWn

= Φn−1Z̃n−1(+) −M
√
Zn−1CWn.

Using the fact that E〈Z̃n−1W
T
n−1〉 to obtain the results

Pn(−) = E〈[Φn−1Z̃n−1(+) −M
√
Zn− 1CWn][Φn−1Z̃n−1(+) −M

√
Zn− 1CWn]T 〉

= Φn−1E〈Z̃n−1(+)Z̃
T
n−1(+)〉ΦT

n−1 +
√
Xn−1CE〈WnW

T
n 〉CT

√
Xn−1

= Φn−1Pn−1(+)Φ
T
n−1 +Xn−1CC

T ,

which gives a prior value of the covariance matrix as a function of the previous posterior
covariance.

39



Appendix B

Matlab Code for the S&P Model
with Kalman Filter

% Min ipro j ec t f o r Kalman F i l t e r
c l e a r ; c l o s e a l l ; c l c ;
rng (50 , ’ tw i s t e r ’ )
%% I n i t i a l s
%parameters
Q1 = 2 . 0 7 1 4 ; Q2 = 2 . 0 4 5 1 ;
k = 0 . 3 0 0 3 ; theta = 0 . 1 9 0 7 ;
sigma = 0 . 9 1 9 7 ; mu = 1 . 6 3 0 9 ;
alpha = 0 . 0 3 1 0 ; rho = −0.8857;

%matr i ce s :
%Zn = Phi∗Zn−1 + D + s q r t (Xn−1)∗C∗W
Phi = [1/(1+k ) 0 ; mu/(1+k ) 0 ] ;
D = [ k∗ theta /(1+k ) ; mu∗k∗ theta /(1+k ) ] ;
C = [ sigma/(1+k ) 0 ; mu∗ sigma/(1+k)+alpha∗ rho alpha∗ s q r t (1−rho ˆ 2 ) ] ;

%Yn = Hn∗Zn + V∗B
%Hn = eye ( 2 , 2 ) ;
V = [Q1 0 ; 0 Q2 ] ;
%obse rvat i on data
Y obs (1 , : ) = x l s r e ad ( ’ S h i l l e r data . x lsx ’ , ’ Sheet4 ’ , ’G3 : G67 ’ ) ; %y i e l d
Y obs (2 , : ) = x l s r e ad ( ’ S h i l l e r data . x lsx ’ , ’ Sheet4 ’ , ’ E3 : E67 ’ ) ; %r e a l r e turn
%I n i t i a l Z0
Z = [ Y obs (1 ,1)−Q1∗ randn ; Y obs (2 ,1)−Q2∗ randn ] ;

%% Kalman f i l t e r
Z post = ze ro s ( 2 , 6 6 ) ; %Set Z p o s t e r i o r vec to r to s t o r e r e s u l t s
Z post ( : , 1 ) = Z ;
P post = ze ro s ( 2 , 2 ) ; %I n i t i a l P p o s t e r i o r
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f o r i = 2 :66
%Step1 : Compute var iance P p r i o r from year 1946 to 2010
%Pn(−) = Phi∗Pn−1(+)∗Phi ’ + (Xn−1)∗C∗C’
P pr io r = Phi ∗ P post ∗ Phi ’ + Z post (1 , i −1).∗ C∗C’ ;

%Step2 : Compute kalman gain K
%K = Pn(−)∗Hn’ ∗ [ Hn∗Pn(−)∗Hn’ + Vˆ2]ˆ(−1) where Hn i s an i d e n t i t y matrix
K = P pr io r ∗ inv ( P pr io r + Vˆ 2 ) ;

%Step3 : Compute var iance P p o s t e r i o r
%Pn(+)=(I−K∗Hn)∗Pn(−) where Hn i s an i d e n t i t y matrix
I = eye ( 2 , 2 ) ;
P post = ( I−K)∗ P pr io r ;

%Step4 : Compute Z p r i o r
%Zn(−) = Phi (n−1)∗Zn−1(+) +D
Z p r i o r = Phi∗Z post ( : , i −1) + D;

%Step5 : Compute Z p o s t e r i o r
%Zn(+)=Zn(−)+K∗(Yn−Hn∗Zn(−)) where Hn i s an i d e n t i t y
Z post ( : , i ) = Z p r i o r + K∗( Y obs ( : , i −1) − Z p r i o r ) ;

end

f i g u r e ( 1 ) ;
p l o t ( Z post (1 ,2 :66) , ’∗ − ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
t i t l e ( ’ Dividend y i e l d f o r Kalman F i l t e r ’ ) ;
p l o t ( Y obs ( 1 , : ) , ’∗− ’ , ’ l inewidth ’ , 2 ) ;
l egend ( ’ Estimated y i e ld ’ , ’ Real y i e ld ’ , ’ l o ca t i on ’ , ’ best ’ ) ;
g r i d on ;
g r i d minor ;
hold o f f ;
x l a b e l ( ’ Year ’ ) ;
%saveas ( gcf , ’ Yield ’ , ’ epsc ’ ) ;

f i g u r e ( 2 ) ;
p l o t ( Z post (2 ,2 : 66 ) , ’∗ − ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
t i t l e ( ’ Real r e turn f o r Kalman F i l t e r ’ ) ;
p l o t ( Y obs ( 2 , : ) , ’ o− ’ , ’ l inewidth ’ , 2 ) ;
l egend ( ’ Estimated return ’ , ’ Real return ’ ) ;
g r i d on ;
g r i d minor ;
hold o f f ;
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x l a b e l ( ’ Year ’ ) ;
%saveas ( gcf , ’ Return ’ , ’ epsc ’ ) ;
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Appendix C

Matlab Code for the S&P model
with Unscented Kalman Filter

%Unscented Kalman f i l t e r f o r S&P model
c l o s e a l l ; c l e a r ; c l c ;
rng (50 , ’ tw i s t e r ’ )
%% I n i t i a l s
%parameters :
Q1 = 0 . 0 0 0 2 ; Q2 = 0 . 5 ;
k = 0 . 0 8 8 ; theta = 0 . 0 3 5 ;
sigma = 0 . 0 0 0 5 ; mu=1.5;
a = 0 . 5 ; rho= −0.16;

%matr i ce s :
%Zn = Phi∗Zn−1 + D + s q r t (Xn−1)∗C∗W
Phi = [1/(1+k ) 0 ; mu/(1+k ) 0 ] ;
D = [ k∗ theta /(1+k ) ; mu∗k∗ theta /(1+k ) ] ;
C = [ sigma/(1+k ) 0 ; mu∗ sigma/(1+k)+a∗ rho a∗ s q r t (1−rho ˆ 2 ) ] ;

%obse rvat i on data :
Y( : , 1 ) = x l s r e ad ( ’ S h i l l e r data . x lsx ’ , ’ Sheet4 ’ , ’G2 : G65 ’ ) ; % div idend y i e l d
Y( : , 2 ) = x l s r e ad ( ’ S h i l l e r data . x lsx ’ , ’ Sheet4 ’ , ’ E2 : E65 ’ ) ; %r e a l r e turn

%Set weights
omega = 1/3 ; N = 400 ; w = (1−omega )/N;
weights = [ omega , ones (1 ,N)∗w ] ;

%% unscented f i l t e r
%I n i t i a l mean and covar iance
mu X = [Y(1 , 1 ) − Q1∗ randn ( 1 ) ; Y(2 , 1 ) − Q2 ∗ randn ( 1 ) ] ;
var X=ze ro s ( 2 , 2 ) ;
W 1 = randn (1 , l ength (Y) ) ;
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W 2 = randn (1 , l ength (Y) ) ;
X n = ze ro s (2 , l ength (Y) ) ;
MSE = ze ro s (2 , l ength (Y) ) ;

f o r i = 1 : l ength (Y)

%step 1−− generate sigma po in t s
L= cholcov ( var X ) ; %f a c o t r i z a t i o n o f covar iance
i f s i z e (L , 1 ) <2

L=s q r t ( abs ( var X ) ) ;
end

P a r t i c l e X f u l l = [ mu X, repmat (mu X, 1 ,N) + 4∗L∗( rand (2 ,N) −0 . 5 ) ] ;

% step 2 −− p r e d i c t i o n
x hat = fx (k , theta ,mu, sigma , a , rho ,W 1( i ) ,W 2( i ) , P a r t i c l e X f u l l ) ;
x hat ( : , 1 ) = abs ( x hat ( : , 1 ) ) ;

%step 3 −− pred i c t ed mean
mu pred = sum( weights .∗ x hat , 2 ) ;

%step 4 −− pred i c t ed covar iance
x hat rem = ( x hat − repmat ( mu pred , 1 ,N+1)) ;
cov pred = ze ro s ( 2 , 2 ) ;
f o r j =1:N+1

cov pred= cov pred + weights ( j ) . ∗ x hat rem ( : , j )∗ x hat rem ( : , j ) ’ ;
end

% step 5 −− get p r e d i c t i o n po in t s
points Y = x hat + diag ( [ Q1 Q2 ] ) ∗ randn (2 ,N+1);

%step 6 −− obse rvat i on mean
est Y ( i , : ) = sum( weights .∗ points Y , 2 ) ;

%step 7 −− obse rvat i on covar iance
po int s y rem =points Y −[ est Y ( i , 1 )∗ ones (1 ,N+1); est Y ( i , 2 )∗ ones (1 ,N+1) ] ;
cov neu = ze ro s ( 2 , 2 ) ;
f o r j =1:N+1

cov neu= cov neu + weights ( j ) . ∗ po int s y rem ( : , j )∗ po ints y rem ( : , j ) ’ ;
end

%step 8 −− update
neu = Y( i , : ) − est Y ( i , : ) ;
W n = cov pred / cov neu . ’ ;
mu X= mu pred + W n ∗ neu . ’ ;
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var X = cov pred − W n∗ cov neu∗W n . ’ ;

X n ( : , i )= mu X ;

%extra s tep : c a l c u l a t i n g MSE
sum square = 0 ;
f o r j = 1 :N

sum square = sum square + abs ( P a r t i c l e X f u l l ( : , j ) . ˆ 2 − mean( P a r t i c l e X f u l l , 2 ) . ˆ 2 ) ;
end
MSE( : , i ) = s q r t (1/(N∗(N−1)) ∗ sum square ) ;

end

%% Plot s
f i g u r e ( 1 ) ;
p l o t ( X n (1 , : ) , ’ −∗ ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
g r i d on ;
p l o t (Y(1 :64 ,1) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
x l a b e l ( ’ Year ’ ) ;
l egend ( ’ Pred ic ted y i e ld ’ , ’ Real y i e ld ’ ) ;
t i t l e ( ’ Dividend Yie ld f o r Unscented Kalman F i l t e r ’ ) ;

%saveas ( gcf , ’ UYield ’ , ’ epsc ’ ) ;

f i g u r e ( 2 ) ;
p l o t ( X n ( 2 , : ) , ’−∗ ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
g r i d on ;
p l o t (Y(1 :64 ,2) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
x l a b e l ( ’ Year ’ ) ;
l egend ( ’ Pred ic ted return ’ , ’ Real return ’ ) ;
t i t l e ( ’ Real Return f o r Unscented Kalman F i l t e r ’ ) ;

%saveas ( gcf , ’ Ureturn ’ , ’ epsc ’ ) ;

f i g u r e (3 )
p l o t (MSE( 1 , : ) , ’ l inewidth ’ , 2 ) ;
g r i d on ;
hold on ;
p l o t (MSE( 2 , : ) , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Year ’ ) ;
l egend ( ’MSE f o r y i e ld ’ , ’MSE f o r return ’ ) ;
t i t l e ( ’MSE f o r S&P model ’ ) ;
hold o f f ;
%saveas ( gcf , ’ U MSE1’ , ’ epsc ’ ) ;
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Appendix D

Matlab Code for the Tumor Growth
Model with Unscented Kalman
Filter

%Unscented Kalman f i l t e r f o r tumoral growth model
c l o s e a l l ; c l e a r ; c l c ;
rng (50 , ’ tw i s t e r ’ )

%% Simulat ion o f samples
% Parameters
sigma = 0 . 0 1 ; R = 0 . 1 ;
alpha1 = 1 ; alpha2 = 0 . 2 ; alpha3 = 0 . 2 ;
T N = 8 ; d e l t a t = 0 . 0 4 ; n= T N/ d e l t a t ;

X = ze ro s (n+1, 2 ) ;
X( 1 , : ) = [ 0 . 8 0 . 3 ] ;
Y = ze ro s (n+1, 2 ) ;
Y( 1 , : ) = X( 1 , : ) ;

f o r i = 2 : n+1
F x = F( alpha1 , alpha2 , alpha3 , X( i −1 ,1) , X( i −1 ,2)) ;
X( i , : ) = X( i −1 , : ) + d e l t a t ∗ F x ’ + sigma ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;
Y( i , : ) = X( i , : ) + R ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;

end
Y = Y( 1 : 5 : n +1 , : ) ;

%% Unscented Kalman F i l t e r
%Set weights
omega = 1/3 ; N = 1500 ; w = (1−omega )/N;
weights = [ omega , ones (1 ,N)∗w ] ;
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%I n i t i a l mean and covar iance
mu X = Y( 1 , : ) ’ − R ∗ s q r t ( 0 . 2 )∗ randn ( 2 , 1 ) ;
var X=rand ( 2 , 2 ) ;
X n = ze ro s (2 , l ength (Y) ) ;

count =0;
f o r i = 1 : l ength (Y)

%step 1−− generate sigma po in t s
var X = ( var X+var X . ’ ) / 2 ;
L= cholcov ( var X ) ; %f a c o t r i z a t i o n o f covar iance
i f s i z e (L , 1 ) <2

L=s q r t ( abs ( var X ) ) ;
count =count +1;
d i sp ( ’ i= ’ ) ;
d i sp ( i ) ;

end

P a r t i c l e X f u l l = [ mu X, repmat (mu X, 1 ,N) + 4∗L∗( rand (2 ,N) −0 . 5 ) ] ;

% step 2 −− p r e d i c t i o n
x hat = P a r t i c l e X f u l l + F( alpha1 , alpha2 , alpha3 , P a r t i c l e X f u l l ( 1 , : ) , P a r t i c l e X f u l l ( 2 , : ) ) ∗ 0 . 2 ;
x hat = abs ( x hat ) ;

%step 3 −− pred i c t ed mean
mu pred = sum( weights .∗ x hat , 2 ) ;

%step 4 −− pred i c t ed covar iance
x hat rem = ( x hat − repmat ( mu pred , 1 ,N+1)) ;
cov pred = ze ro s ( 2 ) ;
f o r j =1:N+1

cov pred= cov pred + weights ( j ) . ∗ x hat rem ( : , j )∗ x hat rem ( : , j ) ’ ;
end

% step 5 −− get p r e d i c t i o n po in t s
points Y = x hat + R∗ s q r t ( 0 . 2 ) ∗ randn (2 ,N+1);

%step 6 −− obse rvat i on mean
est Y ( i , : ) = sum( weights .∗ points Y , 2 ) ;

%step 7 −− obse rvat i on covar iance
po int s y rem =points Y −[ est Y ( i , 1 )∗ ones (1 ,N+1); est Y ( i , 2 )∗ ones (1 ,N+1) ] ;
cov neu = ze ro s ( 2 , 2 ) ;
f o r j =1:N+1
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cov neu= cov neu + weights ( j ) . ∗ po int s y rem ( : , j )∗ po ints y rem ( : , j ) ’ ;
end

%step 8 −− update
neu = Y( i , : ) − est Y ( i , : ) ;
W n = cov pred / cov neu . ’ ;
mu X= mu pred + W n ∗ neu . ’ ;
var X = cov pred − W n∗ cov neu∗W n . ’ ;

X n ( : , i )= mu X ;

%extra s tep : c a l c u l a t i n g MSE
sum square = 0 ;
f o r j = 1 :N

sum square = sum square + abs ( P a r t i c l e X f u l l ( : , j ) . ˆ 2 − mean( P a r t i c l e X f u l l , 2 ) . ˆ 2 ) ;
end
MSE( : , i ) = s q r t (1/(N∗(N−1)) ∗ sum square ) ;

end

%% Plot s
x = [ 0 : 0 . 2 : 8 ] ’ ;
f i g u r e ( 1 ) ;
p l o t (x , X n (1 , : ) , ’ −∗ ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
g r i d on ;
p l o t (x , Y(1 :41 ,1) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
x l a b e l ( ’ Time ’ ) ;
l egend ( ’ Pred ic ted X1 ’ , ’ Real X1 ’ ) ;
t i t l e ( ’X1 f o r Unscented Kalman F i l t e r ’ ) ;

%saveas ( gcf , ’UX1’ , ’ epsc ’ ) ;

f i g u r e ( 2 ) ;
p l o t (x , X n ( 2 , : ) , ’−∗ ’ , ’ l inewidth ’ , 2 ) ;
hold on ;
g r i d on ;
p l o t (x , Y(1 :41 ,2) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
x l a b e l ( ’ Time ’ ) ;
l egend ( ’ Pred ic ted X2 ’ , ’ Real X2 ’ , ’ Location ’ , ’ best ’ ) ;
t i t l e ( ’X2 f o r Unscented Kalman F i l t e r ’ ) ;

%saveas ( gcf , ’UX2’ , ’ epsc ’ ) ;

f i g u r e (3 )
p l o t (x , MSE( 1 , : ) , ’ l inewidth ’ , 2 ) ;
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g r id on ;
hold on ;
p l o t (x , MSE( 2 , : ) , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
l egend ( ’MSE f o r X1 ’ , ’MSE f o r X2 ’ ) ;
t i t l e ( ’MSE f o r Tumoral Growth Model ’ ) ;
hold o f f ;
%saveas ( gcf , ’ U MSE2’ , ’ epsc ’ ) ;

f unc t i on [ x hat ] = F( alpha1 , alpha2 , alpha3 , x1 , x2 )
x hat ( 1 , : ) = alpha1 .∗ x1 .∗ l og ( x2 . / x1 ) ;
x hat ( 2 , : ) = alpha2 .∗ x1 − alpha3 .∗ x2 .∗ x1 . ˆ ( 2 / 3 ) ;

end
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Appendix E

Matlab Code for the S&P Model
with Particle Flow Filter

%P a r t i c l e Flow F i l t e r
c l o s e a l l ; c l e a r ; c l c ;
rng (50 , ’ tw i s t e r ’ )

%% Simulat ion o f samples
%Parameters
sigma = 0 . 0 1 ; R = 0 . 1 ;
alpha1 = 1 ; alpha2 = 0 . 2 ; alpha3 = 0 . 2 ;
N = 8 ; d e l t a t = 0 . 0 4 ; n= N/ d e l t a t ;

X = ze ro s (n+1, 2 ) ;
X( 1 , : ) = [ 0 . 8 0 . 3 ] ;
Y = ze ro s (n+1, 2 ) ;
Y( 1 , : ) = X( 1 , : ) ;

f o r i = 2 : n+1
[ f1 , f 2 ] = F( alpha1 , alpha2 , alpha3 , X( i −1 ,1) , X( i −1 ,2)) ;
X( i , : ) = X( i −1 , : ) + d e l t a t ∗ [ f 1 f 2 ] + sigma ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;
Y( i , : ) = X( i , : ) + R ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;

end
Y = Y( 1 : 5 : n +1 , : ) ;

%% P a r t i c l e Flow F i l t e r
record ing X = ze ro s ( l ength (Y) , 2 ) ;
record ing X ( 1 , : ) = Y( 1 , : ) − R∗ s q r t ( 0 . 2 )∗ randn ( 1 , 2 ) ;
updated X = ze ro s (2 , n+1);
MSE = ze ro s ( l ength (Y)−1 ,2) ;

N p a r t i c l e = 1500 ;

50



delta lambda = 0 . 0 4 ;
syms lambda

f o r i = 2 : l ength (Y)

% Step 1 : Ca l cu la te covar iance matrix f o r p r i o r dens i ty
% Generate p a r t i c l e s
Par t i c l e X = repmat (Y( i , : ) , N par t i c l e , 1 ) − R ∗ s q r t ( 0 . 2 ) ∗ randn ( N par t i c l e , 2 ) ;

% Generate p a r t i c l e p r o b a b i l i t y dens i ty f u n c t i o n s
u = Par t i c l e X ( : , 1 ) ;
v = Par t i c l e X ( : , 2 ) ;
u = ksdens i ty (u , u , ’ funct ion ’ , ’ cdf ’ ) ;
v = ksdens i ty (v , v , ’ funct ion ’ , ’ cdf ’ ) ;
[ Rho , nu ] = c o p u l a f i t ( ’ t ’ , [ u v ] , ’ Method ’ , ’ ApproximateML ’ ) ;

% Step 2 : Set mean and covar iance f o r l i k e l i h o o d func t i on h( x )
% Set mean
m = mean( Par t i c l e X ) ’ ;

% Set covar iance
Sigma = Rho ;

% Step 3 : Generate covar iance matrix o f the d i f f u s i o n
P = [ sigma 0 ; 0 sigma ] ;
R matrix = [R 0 ; 0 R ] ;
Q( lambda)= (P−lambda∗P∗( R matrix +lambda∗P)ˆ(−1)∗P)∗R matrix ˆ(−1)∗(P−lambda∗P∗( R matrix+lambda∗P)ˆ(−1)∗P) ;
new Q( lambda)= 1/2∗(Q( lambda)+Q( lambda ) ’ ) ;

% Step 4 : I m p l i c i t i t e r a t i o n
updated X ( : , 1 ) = record ing X ( i −1 , : ) ;
f o r j = 1 : n

updated X ( : , j +1) = inv ( eye (2 ) + delta lambda ∗ inv ( inv (Rho) + ( j /n)∗ inv ( Sigma ) ) ∗ inv ( Sigma ) ) ∗ ( updated X ( : , j )− m + diag ( cho l (new Q( j /n ) ) )∗ s q r t (1/n)∗ randn ) + m;
end

record ing X ( i , : ) = updated X ( : , n+1);

%extra s tep : c a l c u l a t i n g MSE
sum square = 0 ;
f o r j = 1 : N p a r t i c l e

sum square = sum square + abs ( Par t i c l e X ( j , : ) . ˆ 2 − m’ . ˆ 2 ) ;
end
MSE( i −1 , : ) = s q r t (1/( N p a r t i c l e ∗( N par t i c l e −1)) ∗ sum square ) ;

end
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%% Plot s
x = [ 0 . 2 : 0 . 2 : 8 ] ’ ;
f i g u r e ( 1 ) ;
p l o t (x , record ing X (2 :41 ,1 ) , ’ −∗ ’ , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
hold on ;
g r i d on ;
p l o t (x , Y(2 :41 ,1) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
l egend ( ’ Pred ic ted X1 ’ , ’ Real X1 ’ , ’ Location ’ , ’ Best ’ ) ;
t i t l e ( ’X1 f o r P a r t i c l e Flow F i l t e r ’ ) ;

%saveas ( gcf , ’PX1’ , ’ epsc ’ ) ;

f i g u r e ( 2 ) ;
p l o t (x , record ing X ( 2 : 4 1 , 2 ) , ’−∗ ’ , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
hold on ;
g r i d on ;
p l o t (x , Y(2 :41 ,2) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
l egend ( ’ Pred ic ted X2 ’ , ’ Real X2 ’ , ’ Location ’ , ’ Best ’ ) ;
t i t l e ( ’X2 f o r P a r t i c l e Flow F i l t e r ’ ) ;

%saveas ( gcf , ’PX2’ , ’ epsc ’ ) ;

f i g u r e (3 )
p l o t (MSE( : , 1 ) , ’ l inewidth ’ , 2 ) ;
g r i d on ;
hold on ;
p l o t (MSE( : , 2 ) , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
l egend ( ’MSE f o r X1 ’ , ’MSE f o r X2 ’ ) ;
t i t l e ( ’MSE f o r tumoral growth model ’ ) ;
hold o f f ;
%saveas ( gcf , ’ P MSE2 ’ , ’ epsc ’ ) ;

f unc t i on [ f1 , f 2 ] = F( alpha1 , alpha2 , alpha3 , x1 , x2 )
f 1 = alpha1 ∗ x1 ∗ l og ( x2/x1 ) ;
f 2 = alpha2 ∗ x1 − alpha3 ∗ x2 ∗ x1 ˆ ( 2 / 3 ) ;

end
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Appendix F

Matlab Code for the Tumor Growth
Model with Particle flow Filter

%P a r t i c l e Flow F i l t e r
c l o s e a l l ; c l e a r ; c l c ;
rng (50 , ’ tw i s t e r ’ )

%% Simulat ion o f samples
%Parameters
sigma = 0 . 0 1 ; R = 0 . 1 ;
alpha1 = 1 ; alpha2 = 0 . 2 ; alpha3 = 0 . 2 ;
N = 8 ; d e l t a t = 0 . 0 4 ; n= N/ d e l t a t ;

X = ze ro s (n+1, 2 ) ;
X( 1 , : ) = [ 0 . 8 0 . 3 ] ;
Y = ze ro s (n+1, 2 ) ;
Y( 1 , : ) = X( 1 , : ) ;

f o r i = 2 : n+1
[ f1 , f 2 ] = F( alpha1 , alpha2 , alpha3 , X( i −1 ,1) , X( i −1 ,2)) ;
X( i , : ) = X( i −1 , : ) + d e l t a t ∗ [ f 1 f 2 ] + sigma ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;
Y( i , : ) = X( i , : ) + R ∗ s q r t ( d e l t a t ) ∗ randn ( 1 , 2 ) ;

end
Y = Y( 1 : 5 : n +1 , : ) ;

%% P a r t i c l e Flow F i l t e r
record ing X = ze ro s ( l ength (Y) , 2 ) ;
record ing X ( 1 , : ) = Y( 1 , : ) − R∗ s q r t ( 0 . 2 )∗ randn ( 1 , 2 ) ;
updated X = ze ro s (2 , n+1);
MSE = ze ro s ( l ength (Y)−1 ,2) ;

N p a r t i c l e = 1500 ;
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delta lambda = 0 . 0 4 ;
syms lambda

f o r i = 2 : l ength (Y)

% Step 1 : Ca l cu la te covar iance matrix f o r p r i o r dens i ty
% Generate p a r t i c l e s
Par t i c l e X = repmat (Y( i , : ) , N par t i c l e , 1 ) − R ∗ s q r t ( 0 . 2 ) ∗ randn ( N par t i c l e , 2 ) ;

% Generate p a r t i c l e p r o b a b i l i t y dens i ty f u n c t i o n s
u = Par t i c l e X ( : , 1 ) ;
v = Par t i c l e X ( : , 2 ) ;
u = ksdens i ty (u , u , ’ funct ion ’ , ’ cdf ’ ) ;
v = ksdens i ty (v , v , ’ funct ion ’ , ’ cdf ’ ) ;
[ Rho , nu ] = c o p u l a f i t ( ’ t ’ , [ u v ] , ’ Method ’ , ’ ApproximateML ’ ) ;

% Step 2 : Set mean and covar iance f o r l i k e l i h o o d func t i on h( x )
% Set mean
m = mean( Par t i c l e X ) ’ ;

% Set covar iance
Sigma = Rho ;

% Step 3 : Generate covar iance matrix o f the d i f f u s i o n
P = [ sigma 0 ; 0 sigma ] ;
R matrix = [R 0 ; 0 R ] ;
Q( lambda)= (P−lambda∗P∗( R matrix +lambda∗P)ˆ(−1)∗P)∗R matrix ˆ(−1)∗(P−lambda∗P∗( R matrix+lambda∗P)ˆ(−1)∗P) ;
new Q( lambda)= 1/2∗(Q( lambda)+Q( lambda ) ’ ) ;

% Step 4 : I m p l i c i t i t e r a t i o n
updated X ( : , 1 ) = record ing X ( i −1 , : ) ;
f o r j = 1 : n

updated X ( : , j +1) = inv ( eye (2 ) + delta lambda ∗ inv ( inv (Rho) + ( j /n)∗ inv ( Sigma ) ) ∗ inv ( Sigma ) ) ∗ ( updated X ( : , j )− m + diag ( cho l (new Q( j /n ) ) )∗ s q r t (1/n)∗ randn ) + m;
end

record ing X ( i , : ) = updated X ( : , n+1);

%extra s tep : c a l c u l a t i n g MSE
sum square = 0 ;
f o r j = 1 : N p a r t i c l e

sum square = sum square + abs ( Par t i c l e X ( j , : ) . ˆ 2 − m’ . ˆ 2 ) ;
end
MSE( i −1 , : ) = s q r t (1/( N p a r t i c l e ∗( N par t i c l e −1)) ∗ sum square ) ;

end
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%% Plot s
x = [ 0 . 2 : 0 . 2 : 8 ] ’ ;
f i g u r e ( 1 ) ;
p l o t (x , record ing X (2 :41 ,1 ) , ’ −∗ ’ , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
hold on ;
g r i d on ;
p l o t (x , Y(2 :41 ,1) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
l egend ( ’ Pred ic ted X1 ’ , ’ Real X1 ’ , ’ Location ’ , ’ Best ’ ) ;
t i t l e ( ’X1 f o r P a r t i c l e Flow F i l t e r ’ ) ;

%saveas ( gcf , ’PX1’ , ’ epsc ’ ) ;

f i g u r e ( 2 ) ;
p l o t (x , record ing X ( 2 : 4 1 , 2 ) , ’−∗ ’ , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
hold on ;
g r i d on ;
p l o t (x , Y(2 :41 ,2) , ’ − o ’ , ’ l inewidth ’ , 2 ) ;
hold o f f ;
l egend ( ’ Pred ic ted X2 ’ , ’ Real X2 ’ , ’ Location ’ , ’ Best ’ ) ;
t i t l e ( ’X2 f o r P a r t i c l e Flow F i l t e r ’ ) ;

%saveas ( gcf , ’PX2’ , ’ epsc ’ ) ;

f i g u r e (3 )
p l o t (MSE( : , 1 ) , ’ l inewidth ’ , 2 ) ;
g r i d on ;
hold on ;
p l o t (MSE( : , 2 ) , ’ l inewidth ’ , 2 ) ;
x l a b e l ( ’ Time ’ ) ;
l egend ( ’MSE f o r X1 ’ , ’MSE f o r X2 ’ ) ;
t i t l e ( ’MSE f o r tumoral growth model ’ ) ;
hold o f f ;
%saveas ( gcf , ’ P MSE2 ’ , ’ epsc ’ ) ;

f unc t i on [ f1 , f 2 ] = F( alpha1 , alpha2 , alpha3 , x1 , x2 )
f 1 = alpha1 ∗ x1 ∗ l og ( x2/x1 ) ;
f 2 = alpha2 ∗ x1 − alpha3 ∗ x2 ∗ x1 ˆ ( 2 / 3 ) ;

end
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