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ABSTRACT 

 

The development of drone technologies is growing rapidly. Various types of drones and 

unmanned aerial vehicles are used in fields such as photography, transportation, military, and 

most importantly in search and rescue situations. The objective of this project is to evaluate the 

developments and applications of unmanned aerial vehicles (UAVs). The effort is mainly 

focused on the role of UAVs in the application of emergency medical services. A comparison of 

UAV designs is made in order to locate the most suitable UAV for emergency medical services. 

A number of UAV designs and their analyses are also evaluated. The designs include 

components such as UAV structures, flight control systems, instruments layout and applications 

of UAV heat transfer systems. A survey of various UAV applications in the market and related 

literature is also carried out. We compare UAV applications and functions in order to locate the 

most beneficial UAV and component designs for emergency medical services. This comparison 

provides us an opportunity to produce final design solutions. We use analytical methods such as 

mathematical molding, static analysis, and computer aided flow simulations to select and verify 

the design parameters. These methods are foundational for better understanding of UAV 

technologies and design techniques. The societal impact of this IQP is that it will enhance the 

quality of ambulatory care.  
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

1. Introduction  

 

Throughout the course of human history, harmful accidents, unpredictable attacks, and 

uncontrollable diseases have been a threat for citizens of the world. The value of human live has 

increased dramatically in the last Century. Therefore, the need for stronger security is of great 

concern for many societies around the world. Life expectancy in most of the Western World has 

nearly doubled in the last 200 years, especially after the Second World War. Governments do 

their best and spend enormous amounts of wealth to make sure that their citizens live in safe 

environments. Huge proportions of National budgets go towards medical related research in 

order to prevent the spread of diseases or find treatments for incurable illnesses. Substantial 

resources are also spent on the modernization and enforcement of safety systems and rescuing 

teams. This project focuses on incorporating UAVs into emergency medical services. The 

advantages of using a UAV include efficiency in terms of search time, risk management and cost 

reduction. These advantages increase the rate of survival and successful accomplishment of a 

rescue mission. 

The objectives of the IQP are to evaluate a number of UAVs and their applications.  The 

experienced gained from this evaluation is used to design a medical response UAV. The 

proposed UAV needs to have the ability to provide sufficient information to rescue teams by 

scanning the scene of an incident using sensors, cameras and other detection instruments. The 

scanning instruments provide data from the scene to an onboard computer, which builds a 3D 

image of the scene. Also, these instruments are able to distinguish between humans that need 

help and those facing possible threats from the surrounding area of the scene. The proposed 

UAV is capable of operating automatically, and carrying and delivering certain amount of 

payload to the victims on the scene. To achieve this objective, the IQP team evaluates a number 

of drones and UAV technologies, and then applies the knowledge gained to the designing of the 

proposed UAV for emergency medical services. To be more specific, the design process of the 

UAV involves several iterations. These iterations include, the detailed wing body design, power 

source selection, onboard electronic devices layout, and flight control mechanisms.  The problem 

statement of the IQP is to evaluate various UAV technologies and their applications, and design 

a UAV that is able to carry at least two kilograms of payload. This UAV should also have a 
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minimum operating time limit of thirty minutes, and is able to detect victims who are in danger 

on the scene of an incident.  

In the first Chapter of the report, the authors describe the motivation and the problem 

statement. The second Chapter introduces a selected number of UAV technologies based on 

UAV types, applications and capabilities. In order to provide an effective solution, our team 

analyze the performance of both commercial and military UAVs. In the third Chapter, based on 

the knowledge amassed in Chapters 1 and 2, the team presents design recommendations 

including instrument selection criteria, structural design, and flight control theories. We are 

hopeful that the proposed UAV will strengthen the work of emergency medical services. The 

medical response UAV can be used to deliver medical supplies such as plasmas, both in a 

crowded cities or facilities located faraway in the suburbs. In this case, people from different 

classes or living in different locations and conditions are able to receive the same quality of 

medical treatments and security. We believe that the proposed UAV design solutions will 

improve emergency medical services. 
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CHAPTER 2: BACKGROUND INFORMATION 

2. Introduction  

As mentioned in Chapter 1, our goal is to evaluate applications and designs of UAVs. It 

is essential to start with the analysis of UAV structures in order to understand the basic 

operations and functions. In this Chapter we discuss the different types of existing UAVs and 

what are the advantages and disadvantages in terms of applications and designs. Moreover, we 

discuss how the selected UAVs are built, and more specifically, what their outer shapes are and 

how they change relative to altitude, speed and load. Finally, we focus on the inner structure and 

computational system design of the UAVs. 

 

2.1 UAV Analysis 

2.1.1 Types and Usages of UAVs 

UAVs are becoming important applications for many fields and the market for UAVs is 

growing globally as there is a strong drive to expand the use of UAVs. According to Teal 

Group’s 2014 market study report, the estimate of UAV spending will double over the next 

decade from current worldwide UAV expenditures of $6.4 billion annually to $11.5 billion. A 

total of $91 billion is expected in the next ten years [2]. Under the huge amount of market 

demand, different types of UAV are invented that can be used in different areas such as in 

industry, commercial, military, searching and rescuing. UAVs have many different applications 

and they can be categorized in three main kinds: quadcopters (include those with six or eight 

rotors), fixed-wing aircraft and micro drones [3]. 

Figure 1 presents quadcopters, which are also called quadrotor helicopters or quadrotors 

which are multi-rotor helicopters lifted and propelled by four rotors. Quadcopters are mostly 

small, light weighted with medium speed and altitude. They are all powered by electrical powers. 

Quadcopters use four motors with four propellers to create thrust and lift force. Figure 2 shows 

two motors of quadcopters which rotate counter clockwise and the other two motors rotate 

clockwise. This configuration causes the torque from each motor to cancel by the corresponding 

motor rotating in the opposite direction. The features of the vertical takeoff and landing and as 

well as horizontal flight avoiding obstacles, both with characteristics of low speed and high 

precision, make the quadcopters able to complete missions which require high level of difficult 
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movement and stability [4].  

 

 

Figure 1: Inspire3 created by DJI Company 

 

 

Figure 2: The motor motion analysis of a quadcopter (top view). 

 

People take advantages of the quadcopters’ low cost and high stability regimes and utilize them 

in shooting films, taking pictures and collecting scientific data. For example, the Inspire 3 is a 

complete ready-to-fly system, with four carbon fiber arms and a full 360 unobstructed view [5]. 

The Inspire 3 can take 4k high resolution pictures and videos in a distance of five kilometers. It 

can deliver payloads in a more effective manner than humans are capable of doing.  

 A fixed-wing aircraft is an aircraft like an airplane shown in Figure 4, which applies 

Bernoulli’s principle by using the special shape of wings to gain lift force. According to the 
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Bernoulli’s principle the pressure in a stream of fluid is reduced as the speed of the flow is 

increased.  In the air stream, the air flows relatively faster at the upper layer of the wing than the 

lower layer. As a result, the pressure exerted on the upper surface of the wing is smaller than 

pressure exerted on the lower surface, which pushes the wings upward and makes the aircraft to 

fly [7]. 

 

 

Figure 3: The cross-section of wing and the air stream around 

 

Even though a fixed-wing UAV is difficult to take off and land, yet it has the advantages 

of flying faster, carrying more payload than quadcopters, staying in a relatively high altitude, and 

sustaining longer endurance than some other UAVs in the market and relevant literature. Thus, 

fixed-wing UAV can be used for long range detection, spraying pesticide for crops, providing 

combat ability for high risk mission. For example, the predator as shown in Figure 4, is medium 

altitude, long endurance, unmanned aerial vehicle which is used in risky areas where human life 

may be in danger. The predator is an asset for reconnaissance, surveillance and target acquisition 

in support of the Joint Force Commander of the United States Military [8]. 

 

Figure 4: An MQ-1B predator taxis at Creech air force base 
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A Micro drone or micro aerial vehicle (MAV) is the UAV with insect-size, and it is 

typically autonomous. There are two types of micro drone and they are: bird-like flight (see 

Figure 5) and insect-like flight (see Figure 6). The wings of the bird-like flight flaps have a 

low/medium frequency near vertical plane as seen in the Figure 5. Lift and thrust forces are 

generated mainly during the down stroke and the wings can fold back during the upstroke. Thus 

avoids the producing of any negative (downwards-oriented) lift. The wings of the insect-like 

flight flaps have a higher frequency within a horizontal or slightly inclined plane, which 

generates lift strokes in both directions (back and forth) [9]. 

 

Figure 5: Parkzone ® Ember modified with articulated wings 

 

 

Figure 6: RoboBee, an insect-like flight built by Harvard 

 

This kind of UAV has the advantages of small size and high agility. They can collect 

information from small holes or tunnels. In military use, they can also be used in reconnaissance 

without being noticed by enemies. Even though MAV has promising applications, its technology 

is not mature, and cannot be used in emergency medical services. 

2.1.2 UAV Shape Design Based on Speed, Altitude, Payload and Endurance 

Currently UAVs are known to have variable performance speed, altitude and payload to 

accomplish different tasks. Basically, the structure of a UAV is a good determinant of its speed, 

altitude, payload and endurance. In order to analyze the overall structure of a UAV, these 



  7  

 

characteristics and other variables such as the power of the engine should also be considered 

[10]. We evaluate UAVs which have the same power source. The structure consists of a wing, 

tail, fuselage and head. Since each UAV has several components and each component can be 

shaped in many ways, it is difficult to define a specific shape for a UAV. Basically, the wing is 

one of the most important shapes for the UAV. There are some basic wing shapes [11] as seen in 

Figure 7. The shapes in Figure 7 are the bases for selecting the case studies in this report. 

 

 

Figure 7: Examples of wing shapes 

 

The first case study of current large UAV is the Northrop Grumman X-47, as shown in Figure 8, 

which is now part of the United States Navy's UCAS-D program. The airframe is a stealthy 

platform design. It is diamond-kite shaped with a 55° backward sweep on the leading edge and a 

35° forward sweep on the trailing edge.  

The X-47A has a wingspan of 8.47m and is 8.5m long. It uses a delta wing. The feature 

of this shape design is that it allows the UAV to fly at high subsonic speeds (greater than 

305m/s) and with perfect stealth. However it has limited payload, attitude and endurance. 
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Figure 8: The overview of X-47A 

 

The second case study of current large UAV is Altair, as seen in Figure 9. It is a variant of 

the improved Predator B UAV, which is designed to perform scientific and commercial research 

and as well as military intelligence missions. The Altair has a wingspan of 86 ft, can attain an 

altitude up to 52,000 ft and can remain airborne for well over thirty hours. Also it has six wing 

stations for external carriage of payloads. It uses tapered wing. The feature of this shape design is 

that it has extremely high attitude and endurance, good payload but relatively low speed. 

 

 

Figure 9: The overview of Altair UAV 

 

The third case study of current large UAV is MQ-8B Fire Scout as seen in  

Figure 10. It provides unprecedented situation awareness and precision targeting support for the 

U.S. Navy. The feature of this rotary wing design is that it has the ability to autonomously take 

off and land from any aviation-capable warship and unprepared landing zones. 
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Figure 10: The overview of MQ-8 

 

The forth case study of current large UAV is Talarion MALE as seen in Figure 11, which 

is a medium altitude long endurance (MALE) unmanned air vehicle (UAV) designed and 

manufactured by EADS, which is The Airbus Group. The Talarion MALE has a shape different 

from the competing global Hawk. The fuselage utilizes a well-streamlined shape with a bulbous 

nose assembly housing avionics. The feature of this shape design is that it has large payload and 

relatively high speed. 

 

 

 

Figure 11: The overview of talarion MALE 
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The data, found in Table 1 is the performance of a selected number of UAVs . By using 

this table, our team obtain specific parameters contrast of differently shaped UAVshown in Figure 

11.  This graph is very useful for future selection of UAV shape. For example, if we want to have 

a UAV with a good endurance and payload, we can read the chart in Table 1 and find what 

matches the best to the specifications. The Talarion MALE is the best fit for the specifications. If 

the UAV environment is rugged and a vertically takeoff and landing are needed, the shape design 

of the MQ-8 is a good choice [12].  

 

Table 1: The performance of each large UAV 

UAV Speed Altitude Payload Endurance 

X-47 1100 km/h 40,000 ft  5,903 lb  9 hr 

Altair 411 km/h 52,000 ft 7,000 lb  30+ hr 

MQ-8 200 km/h 20,000 ft  3,150 lb 5-8 hr 

Talarion MALE 555 km /h  49,213 ft 15,432 lb 20 hr 

Barracuda 1,041 km/h 20,000 ft 7,165 lb 4 hr 

 

Figure 12 shows the speed contrast of each shapes of UAV. The shape of X-47 has better speed 

ranges than the others. It is a good reference of future shape selection. 

 

 

Figure 12: The speed contrast of each shapes of UAV 
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Figure 13 shows the altitude contrast of each shapes of UAV. The shape of Altair has an 

advantage of altitude. It is a good reference of future shape selection. 

 

Figure 13: The altitude contrast of each shapes of UAV 

 

Figure 14 presents the payload contrast of each shapes of UAV. The shape of the Talarion Male 

has an advantage of carrying large payload. It is a good reference of future shape selection. 

 

 

Figure 14: The payload contrast of each shapes of UAV 

 

Figure 15 indicates the endurance contrast of each shapes of UAV. The shape of Altair has an 

advantage of endurance. It is a good reference of future shape selection. 
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Figure 15: The endurance contrast of each shapes of UAV 

 

Since small UAVs are powered by a weaker electric motors, the speed, altitude, payload, 

and endurance are extremely lower than for UAV powered by fuel engine. The size of the UAVs 

are far smaller than the one powered by fuel engine. Therefore, the shape of UAVs are totally 

different than the large UAV except the Qinetiq Zephyr (lightweight solar-powered UAV). The 

first case study of current small UAV is the Qinetiq Zephyr as seen in Figure 16. Zephyr uses its 

state-of-the-art solar cells which spread across the wings of the UAV to recharge high-power 

lithium-Sulphur batteries and drive two propellers. At night, the energy stored in the batteries is 

sufficient to maintain Zephyr in the sky. An important characteristic of the shape of this UAV is 

that it has infinite endurance and very high altitude [13]. 

 

 

Figure 16: The overview of qinetiq zephyr 

 

The second case study of current small UAV is Phantom, the representative of small 

rotary drone, as seen in Figure 17. Phantom is a series of unmanned aerial vehicles (UAVs) 

developed by a Chinese company. The body frames are made of composite materials. Propulsion 
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is provided by four two-blade propellers driven by four electric engines mounted at the ends of 

the x-shaped body. The feature of the shape of this UAV is that it requires very small take-off 

and landing area and has good control mechanism.   

 

 

Figure 17: The overview of phantom 3 (UAV) 

 

The third case study of current UAV is the Hobby King™ Bix3 Trainer. This represents a 

small fix-wing drone.  It has 1550 mm large wing for better slow flight and weight capacity and 

two piece wings for easy transportation. The feature of this shape is that it is very light and has 

relatively low power and longer endurance. In addition it has higher speed than the shape of 

rotary wing UAV [14]. 

 

 

Figure 18: The overview of Hobby King™ Bix3 Trainer 
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Table 2: The performance of each small UAV 

UAV Speed Altitude Payload Endurance 

Zephyr 56 km/h 70,000 ft 117 lb  infinite 

Phantom3 25.6km/h 1,640 ft 2.82 lb 0.41 hr 

Hobby King™ Bix3 Trainer 45km/h 3,000 ft  1.96 lb 0.83 hr 

 

The datasheet as seen in Table 2 is the performance of small shaped UAVs. This Table is 

useful for the selection of the UAV shape and structure. For example, an electrically powered 

UAV can reach high speeds seen in Table 2. A good choice is to use a similar shape as the 

Hobby King™ Bix3 Trainer, which is a fixed-wing UAV [15]. 

 

2.1.3 Inner Structural Design of UAVs   

To be able to craft a fully functional UAV, it is necessary to have a deep knowledge on 

how aircrafts are structured. A drone’s structure differs from this of a conventional airplane as it 

doesn’t carry people. The inner body of a drone is filled with equipment which are necessary for 

the drone to fly, communicate and navigate itself. Detecting instruments will also be included in 

the UAV, as detection of people is the main desirable operation. The main question to be 

answered in this section is how UAV manufacturers decide to arrange all of the above equipment 

in their vehicle’s body [16]. 

The methods of building an aircraft are similar. However, there is a huge difference 

between the man-piloted aircrafts and UAVs. During the manufacturing process, a man-piloted 

aircraft structure is designed to protect human and also provide additional comfort. More 

specifically, the fuselage must provide a pressured environment with certain level of humidity, 

and also absorbs vibration generated by the high speed air flow. An UAV fuselage contains 

equipment and cargo, which means the inner frame is only required to handle stresses due to the 

air pressure. There are several types of UAV fuselage that are commonly being used in the field. 

They are high density foam fuselage, composite material hollow fuselage, composite material 

with inner frame fuselage, and pure metal frame fuselage. The high density foam fuselage and 

the composite material hollow fuselage are usually used for small remotely controlled aircrafts. 
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The composite material with inner frame fuselage and the pure metal frame fuselage are more 

often used for larger fixed-wing UAVs, because they are able to handle more stress while in the 

air, thereby allowing the aircraft to carry more weight and do high force load maneuvers [17].  

For a small UAV, the main objective of body structure is lightweight. The material of 

body structure is plastic or wood. For example, Balsa wood provided a solid and light base for 

the access panels and tied the structure together, providing more strength than others. It is 

efficient to use glue or screw, nut to combine the fuselage together. Basically, the glue has the 

advantage of light, small space. The screw and net have the advantage of durable, stiffness. Both 

of these UAVs can play a significant role in linkage connection. However, for a large UAV, the 

material of fuselage becomes more complicated. In general, fuselage is built by metal frames 

improved the strength, which can finally led all-metal aircraft with metal covering all surfaces. 

On the other hand, some UAV fuselages are constructed with composite materials for main part. 

It allows a higher pressurization levels and lower weight. Because of the complexity of fuselage, 

the fuselage of a UAV should be constructed in basically three different methods and they are 

truss, stressed surface material.  

 

Figure 19: Aircraft Inner structural parts joined together 

There are several components that are used in a common aircraft fuselage frame which 

are skin, ribs, spears, doubters and membranes. Aircraft frames are able to handle different types 
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of forces such as shear force, tension, bending force, compression force and torsion, shown in 

Figure 20. Specifically, the skin is the outer surface of the aircraft, which allows the air to flow 

through smoothly while distributing air pressure loads evenly onto the inner frame. Ribs and 

spears are usually mounted vertically to each other and these two components are able to handle 

stresses while the aircraft is in the air. A doubler is a reinforcement for the ribs and spears of the 

aircraft. Additionally, it is able to amortize the air pressure load to the inner frame. A member is 

usually a connection on the rib or spear, which connects different components together while 

distributing the load evenly by either glue or rivets. Additionally, there are some areas of an 

aircraft frame which need special reinforcements such as the connection between wings and 

body structure, fuel tank and engines. There are several reinforcement methods for each case, 

shown in Figure 21. For the connection between wings and body, composite materials are often 

used to handle extra tension at the structure of the connections and also to reduce uncontrollable 

vibrations caused by turbulences. Fire proof materials are often used to protect the fuel tank. 

Heat resistant ceramics are often used to isolate heat generated components by the main engines 

[18].  

 

 

 

Figure 20: Stresses that the drone body experie nces 
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Figure 21: A general view of an airplane inner structure 

 

The design of the wings are the most complicated portion of an UAV. There are several 

types of wings that are used by a man-piloted aircraft such as vertical stabilizer, horizontal 

stabilizer and two major wings. Aircraft wings may also include elevators, rudders, flaps, 

ailerons, and speed brakes which handle most of the load of the aircraft and provide maneuver 

abilities to the aircraft. There are several types of inner structures that designers are able to 

choose from (see Figure 22). Four types of designs, which are commonly used in the field of 

aircraft design are rib-spare structure, composite material structure, hollow wing structure, and 

high density foam structure [19]. 

 

Figure 22: Types of wings inner structures (cross section) 

 

In order to design heavy duty wings, the first step is to find the airfoil shape that is 

preferred for the given specifications. Different airfoil shapes result to different lift and drag 

forces. We first have to know what the total weight of the proposed UAV should be. With this 

knowledge, we can calculate the lift force needed to get it in the air. XFLR5 is the software we 

use to analyze airfoil types and shapes to find the one that matches the design specifications. 

Using this software our team customize the shape of the airfoil of the UAV. An example of the 
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XFLR5 airfoil data processing is listed as follow. For the Boeing Commercial Airplane 

Company model 737 airfoils, the software generates the following shape [20]: 

 

 

Figure 23: An airfoil shape in the XFLR5 airfoil design software 

 

For the specific airfoil chosen, we generate a variety of plots of the lift coefficient and angle of 

attack for given Reynold’s numbers.  

 

 

Figure 24: Useful graphs can be plotted with the help of this software. 
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Our first concern though, is the lift we want our wings to generate. To do so we will be 

using two basic equations. The first and most basic equations used is related with the lift 

coefficient. The inner structures of an UAV’s wings are similar to an actual airplane, which 

include skin, ribs, spars, leading and trailing edges. More specifically, by analyzing each section 

individually and assuming the direction the aircraft goes is the X axis which is horizontal to the 

paper, the skin covers the entire inner structure of the wing, transforms the air pressure 

difference into lift and drag, and spreads the road of air pressure difference onto the inner 

structure of the wings. The ribs, which can be seen in Figure 25, handles most of the vertical loads 

due to the air pressure differences, usually lie almost vertically towards the X axis. The ribs also 

need to be patterned by the shape of the wings; specifically, no ribs that are in a wing structure 

must be placed all the way from the base to the tip of the wing. Spares are usually mounted 

vertical to the ribs of the aircraft and they must be placed perfectly perpendicular to the X axis. 

They handle most of the load from the air pressure which comes from the front of the wing and 

the turbulence generated at the tip of the wing. In another words, spars prevent the distortion of 

the wing structure. The leading and trailing edges are placed at the front and back of the wing. 

Specifically, the leading edge cuts through the air and spreads the load of front air flowing 

pressure evenly to spars and ribs, and the trailing edge smoothness the airflow. The wings of an 

aircraft not only handle the load due to the air pressure and also they carry multiple hydraulic 

systems. Also, the wings mount aerodynamic controlling components (flaps, ailerons, and speed 

brakes), and most commonly carrying fuel. The design of wings is indeed crucial for a high 

performance aircraft [21]. 

 

 

Figure 25: Inner structure of wing (whole wing) 
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2.2 Flight Control Systems of UAVs    

In the sections above, we describe some of the major functions of the components of 

UAVs. In this section, we describe the relationship between each component and the actual flight 

control mechanisms. There are three axes that an aircraft can rotate: x, y, z (Figure 26) [22].  

 

 

Figure 26: The airplane control parts labeled 

 

The ailerons control the rotation of the aircraft in y axis, elevators control the rotation in 

x axis, and rudders control the rotation in z axis. In other words, ailerons control the row 

rotation, elevators control the pitch rotation, and rudders control the yaw rotation. Additionally, 

the Y axis is in the direction of the nose of the aircraft, X axis points alone with the wings.  

 

2.2.1 Physical Aerodynamic Controlling System 

The physical aerodynamic controlling system is involved in controlling the aircraft either 

on the ground or while flying. The physical aerodynamic controlling components include flaps, 

slats, elevators, ailerons, spoiler panel, vortex generators, thrust reverser, and the wing tip. Each 

component plays a crucial role in controlling the aircraft. However, depending on the type of the 

aircraft which involves the size and the weight, some of the components could be combined 

together or even eliminated [23]. Specifically, two pairs of flaps can be combined as one. Flaps 
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are usually mounted at the end of the wings. The major role of the flaps is to increase the wing 

surface area, which helps the aircraft generates the larger amount of upward lift while flying at a 

lower speed. There are several types of flaps used on passenger planes, which are high-speed 

flaps and low-speed flaps. They are both called ailerons. The high-speed flaps are used to adjust 

aircraft’s position and direction. The low-speed flaps are generally used in the takeoff and 

landing process. Additionally, there are at least two sets of high and low-speed flaps which are 

installed into the main wing of an aircraft. High-speed flaps are able to maneuver upward and 

downward the wing. In the contrast, the low-speed flaps are only eligible of bending downward 

the aircraft. In other words, high-speed flaps can be used to reduce aircraft speed and generate 

more lift. Low speed flaps cannot be used to adjust the aircraft position. There is a speed limit of 

the low-speed flaps. If the low-speed flaps are extended under a high-speed flight condition, the 

connection between the flaps and the wings may be damaged and even tear off from the wings. 

The physical control theory of both types of the wings are the same. Once a set of flaps are 

extended, it increases the wing surface area and creates a low-pressure area above the wing, 

which pushes the aircraft maneuver towards that direction. Once a set of low-speed flaps of both 

wings are extended to the same direction, with a high angle of attack, the flaps creates an airbag 

above the aircraft. This generates a larger low pressure area above the wings and also allows the 

aircraft to maneuver at a much lower speed [24]. Slats are similar to the flaps. The only 

difference between them is that the slats are mounted at the front tip of the wings. Slats are often 

used during takeoff and the final lending process. They increase the wing surface by extending 

forward. The major difference between flaps and slats is only high-speed flaps can be used 

during the high-speed maneuver. However, the slats can be used under various conditions, 

especially for military aircraft during high-speed turning maneuver, slats are often extended to 

increase the wing surface area and reduce surface vortices due to the high angle of attack. 

There are usually two sets of wings on a single aircraft, the one mounted at the tail of the 

aircraft are the elevators. The elevators act like a smaller version of the main wings. However, 

elevators are able to rotate about the aircraft body in a certain angle no larger than 15 degrees. 

The main purpose of the elevators is to stabilize the aircraft horizontally and also to distribute the 

total gravitational force on the wings. The elevators allow the aircraft to handle sophisticated 

airflow conditions while flying in the air. In other words, angled elevators allow the aircraft flies 

with an angle of attack. This helps the wings to reduce to generate required lift in order to 
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maintain the altitude [25]. The vertical stabilizer is often used to balance the aircraft vertically, 

which is known as the rudder. The vertical stabilizer operates similar to the wings. The vertical 

stabilizer cuts through the air in a relevant speed and generate an equivalent amount of force to 

each side of the stabilizer in order to hold the aircraft in a steady position. While the rudder is 

being pushed to one direction, the vertical stabilizer generates a low-pressure area in the inverse 

direction, which will force the aircraft to turn into the low-pressure zone. For some special cases, 

the vertical stabilizer can be combined with the elevators in a smaller sized aircraft. One 

significant point must being mentioned and that is the vertical stabilizer cannot be used 

continuously back and force while flying. In the contrast, the tensile force exists on the 

connection of the vertical stabilizer will increase. This may cause overloading on the connection 

between the vertical stabilizer and the fuselage, which leads to mechanical failure [26].  

The spoiler panels are known as speed brakes. They can either be mounted onto the 

wings of the aircraft or the fuselage. The spoiler panels are used to increase the drag and 

decrease the upward lift of aircraft. The spoiler panels are often used to decrease altitude while in 

the air and increase the drag and downward force during the breaking process of the aircraft on 

the ground. The spoiler panel guides the airflow upward the aircraft, which increases the front 

surface area of the aircraft and generates a large amount of downward force to the aircraft. For a 

lighter and smaller aircraft, the spoiler panel can be eliminated due to the lower momentum the 

aircraft needs to handle. 

 

2.2.2 Physical Control for Each Component      

There are several factors that influence the performance of the aileron. They are the 

aileron platform area (Sa), aileron chord/span (Ca/ba), the maximum up and down aileron 

deflection (Aup) and (Adown) and the location of the inner edge of the aileron along the wing span 

(bai) see Figure 27 and 28. 

 

Figure 27: Top view of a wing with aileron 
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Figure 28: Section view of a wing with aileron 

 

The typical values get from “Air Flow Applications on Fighter Jets” for these factors are 

as follows: Sa/S = 0.05~0.1, ba/b = 0.2~0.3, Ca/C = 0.15~0.25, ba/b = 0.6~0.8 and Amax = +-30 

degrees. These represent the area of the aileron is between 5%~10% of the airfoil area. The 

aileron to wing chord ratio is between 15%~25%. [27]. 

Flaps of fixed wings UAV are used to increase and decrease the effective curvature of the 

wing. That can change the maximum lift coefficient of the aircraft and thereby reduce its stalling 

speed. The maximum lift coefficient is a dimensionless coefficient which is determined by the 

shape of the airfoil and the angle of attack in [28]. It is determined by the equation  

𝐶𝐿 =
𝐿

1
2 𝜌𝑣2𝑆

=
2𝐿

𝜌𝑣2𝑆
=

𝐿

𝑞𝑆
     

, 

Where L is the lift force,  is the fluid density, v is the true air speed, S is the relevant plan area. 

Therefore, we can find the fluid dynamic pressure is: 

𝑞 =
2

𝜌
∗ 𝑣2 

There are also many kinds of flaps, and all kinds of the flaps are changed or combined by four 

primary flaps: plain flap, split flap, slotted flap, and fowler flap [29]. The plain flap is a simple 

component. In figure 29 it shows an example of plain flap. The black line is the section view of a 

wing, the green dot line is the boundary layer of air and red line labels the weak pressure zone. 

The rear portion of the airfoil rotates downwards on a simple hinge mounted at the front of the 

flap. This can decrease the amount of lift created and create a large drag force backward. In this 

case, the aircraft can descend quickly without increasing the airspeed. This movement is used 

when an aircraft is in a relatively at high altitude and wants to land soon. 
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Figure 29: Section view of plain flaps  

 

The split flap is the rear portion of the lower surface of the airfoil which hinges 

downwards from the leading edge of the flap, while the upper surface remains immobile shown 

in figure 30. This can also create a large drag force toward backward but create a slightly more 

lift than plain flaps [30]. This kind of flaps sometimes has the same function as a spoiler, but 

pretty uncommon these days.  

 

 

Figure 30: Section view of split flaps 

 

In Figure 30, it is an example of slotted flap. The slotted flap has a gap between the flap 

and the wing. This gap forces high pressure air from below the wing over the flap. It helps the 

airflow remain attached to the flap, increases lift compare to the split flap and decreases the drag 

force created by the hinging of the flaps.     

 

 

Figure 31: Section view of slotted flaps  
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The fowler flap is a series of slotted flap combined together, as shown in Figure 32. At 

first stage of the extension, the flaps create a large amount of lift, but small drag force. As the 

flaps keep on extending, the lift force increases by small amount but creates a large amount of 

drag force [31]. This kind of flap can fit both for climbing and descending.  

 

 

Figure 32: Section view of fowler flaps  

 

The most commonly used flap is a combination of the fowler flap and slotted flap. This 

combinational flap has all the property the flaps above have. When all the flaps are not extended, 

as shown in Figure 33, the airfoil has good efficiency. This can be used when climbing, cruising 

and descent.  

 

Figure 33: Best efficiency - for climbing, cruising, descent 

 

When the flaps are extended and increased, as shown in Figure 34, the wing area without 

creating slots, they can create a high lift and low drag in low air speed. This can be used when 

takeoff and initial climb [32]. 

 

Figure 34: Increased wing area - for take-off and initial climb 
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When the flaps are fully extended, as shown in Figure 35, both the lift and drag forces reach 

their maximum point. This is used for landing. 

 

 

Figure 35: Maximum lift and high drag - approach to landing 

 

The spoiler is a device intended to reduce the lift and increase the drag of an airfoil. This 

is used when braking the aircraft on the runway and descending. When the aircraft flies in a 

relatively high altitude and wants to decrease altitude quickly, the spoiler is extended normally 

without exceeding 3-5 degrees. When the spoiler is fully extended, as shown in Figure 36, it can 

create a large force downward and press the aircraft on the ground. In this case, the aircraft can 

remain on the runway while decreasing its speed quickly [33]. 

 

 

Figure 36: Maximum drag and reduced lift - for braking on runway 

 

Rudder is a moveable surface located at the end of vertical stabilizer, as shown in Figure 

37. It is used to control rotation about the z axis. When the rudder is rotated, a lift force is created 

and rotation of the aircraft around the center of gravity occurs.  
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Figure 37: Directional control via rudder deflection (top view) 

 

There are two basic designs of the rudder. One is swept rudder, shown in Figure 38, another one 

is rectangular rudder, shown in Figure 39. There are also many parameters that must be 

determined when designing a rudder.  The rudder area (Sr), rudder chord (Cr), rudder span (br), 

the maximum rudder deflection (Rmax), and the location of inboard edge of the rudder (bri) are 

some of these parameters. 

 

 

Figure 38: Left is a swept rudder, Right is rectangular rudder (side view) 

 

Elevators are normally hinge to the tail plane or horizontal stabilizer, shown in figure 40 

and 41. Sometimes it can also be a stabilizer which means the whole horizontal stabilizer can 

rotate as elevators.  It controls the x axis rotation which is the angle of attack of the aircraft. For 

the designing of the elevators, four parameters determine the performance of the elevators and 

they are the elevator area (S), elevator chord (C), elevator span (bE), and maximum elevator 
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deflection (Emax). There are also several typical values for these parameters as follows:  SE/S = 

0.15 to 0.4, bE/b = 0.8-1, CE/C = 0.2-0.4, and 2 Emax_up = -25 degrees, Emax_down = +20 degrees 

[34]. 

 

 
 

Figure 39: The section view of a horizontal stabilizer with elevator 

 

 

 
Figure 40: The top view of a horizontal stabilizer with elevator 

 

According to the values shown above, the area of the elevator is 15% ~ 40% of the horizontal 

stabilizer. The length of span of the aircraft is 80% ~ 100% of the total span length. The 

elevators’ cord is 0.2 ~ 0.4 multiplier relative to the total cord length. And the angle limits are 25 

degrees to up and 20 degrees to down. 

 

2.2.3 Computational Control of Aerodynamic Control System 

For an UAV, the altitude and speed are two key elements in the control system. Figure 41 

is an example of negative feedback system, which is described in the frequency domain. R(s) is 

the input function, X(s) is the output function, H(s) is the transfer function in feedback path. 

Since the UAVs may be powered by electro-motor or fuel engine, the input function can be unit 

step input, unit impulse input, sinusoidal and cosine input, which can be a representative of 

voltage supply or valve switch. The output function can be speed or altitude. In addition, height 
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sensor and speed sensor in the UAV can obtain information about current speed or altitude, and 

send back such information to a PID controller [35]. 

 

 

Figure 41: Negative feedback closed loop for transfer function 

 

From Figure 41, it is easy to get the open loop, closed loop and error transfer functions. These 

transfer functions are the basis for the simulation and are very important in control system. 

Open loop transfer function is given by 

 

                                                                          
𝐵(𝑠)

𝐸(𝑠)
= 𝐺(𝑠)𝐻(𝑠)                                                                 (2) 

 

It is the ratio of the measured feedback to the error signal with all the initial conditions being 

zero. Closed loop transfer function is defined by 

 

                                                               
𝑋(𝑠)

𝑅(𝑠)
= 

𝐺(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
                                                         (3) 

 

It is the ratio of output X(s) to the input R(s). Error transfer function is defined by 

                                                                        
𝐸(𝑠)

𝑅(𝑠)
= 

1

1 + 𝐺(𝑠)𝐻(𝑠)
                                                            (4) 

 

It is the ratio of error signal to the output with all the initial conditions being zero. The next part 

is to analyze the PID controller and influence of damping on the output response. The PID 

controller consists of proportional, integral and derivative elements. P is the value of the error, I 

is the past values of the error and D is the possible future values of the error according to its 

current rate of change. The PID equation, which is shown in equation (5), states that 𝐾𝑝  is 

proportional gain, Ki is the integral gain and Kd is the derivative gain. It is widely used in the 
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feedback control study of systems. Some applications might require using only one or two terms 

of the PID to provide the appropriate system control. This can be done by setting the other 

parameters to zero. A PID controller may be called a PI, PD, P or I controller in the absence of 

the respective control actions [37].  

 

                                   u(t) =  𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

𝑡

0
                           (5) 

 

PID equation shown in equation (6) can be changed into transfer function, which can be used in 

the control analysis: 

                                                          𝐺𝑃𝐼𝐷(𝑠) = 
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝+ 

𝑘𝑖

𝑠
 +𝑘𝑑𝑠                                                    (6) 

     

This is the example of operational-amplifier circuits design period from the circuit seen in 

Table4 we can get the value of  𝐾𝑝 in (7),  𝐾𝑖in (8),  𝐾𝑑 in (9) for resistance and capacitance. 

 

                                                      𝑘𝑝= 
𝑅4(𝑅1𝐶1 + 𝑅2𝐶2)

𝑅1𝑅3𝐶2
                                                                          (7) 

            

                                                      𝑘𝑖= 
𝑅4(𝑅1𝐶1 + 𝑅2𝐶2)

𝑅1𝑅3𝐶2
 (

1

(𝑅1𝐶3 + 𝑅2𝐶2)
)                                          (8) 

 

                                                      𝑘𝑑= 
𝑅4(𝑅1𝐶1 + 𝑅2𝐶2)

𝑅1𝑅3𝐶2
 (

𝑅1𝑅2𝐶1𝐶2

(𝑅1𝐶1 + 𝑅2𝐶2)
)                                         (9) 

 

The following table is the feedback controller and gain: 

Table 3: Feedback Controller and Gain 

Operational – Amplifier Circuits  
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The UAV system can control the speed and altitude by adjusting values of 𝐾𝑝, 𝐾𝑖,  𝐾𝑑 The Figure 

42 is an example of PID simulation. From this graph, amplitude performs underdamped, 

undamped and overdamped by different value of   𝐾𝑝, 𝐾𝑖 ,  𝐾𝑑. When 𝐾𝑝 = 100,  𝐾𝑖 =5,  𝐾𝑑 = 

50, it is overdamped, which is a good example of controlling UAV at certain speed or altitude 

[38]. 

 

 

Figure 42: PID simulation 

 

The damping analysis can be therefore carried out. The equation in (10) is an example of a 

second order transfer function. All the second order equations can be used by this model. It is a 

basic analysis and model of control systems.  

 

                                            x ̈(t)+2ξω𝑥̇(𝑡) + 𝜔2
𝑛𝑥(𝑡) =  𝜔2

𝑛𝑟(𝑡)                          (10) 
 

There are several cases from this equation and they are: overdamping, critical damping, 

underdamping and undamped. First one is underdamping case, from the calculation below, ξ 

should be in the interval 0 and 1 to make the system stable. 
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Equation (1) is the underdamping response to a unit step function. Second one is critical 

damping, from the calculation below where ξ should be exactly 1 to make the system in critical 

damping in (12). 

 

   

 

Third case is overdamping and from the calculation below ξ should be greater than.  

  

 

The last case is undamped, and ξ should be exactly 0. Each case has different response as seen in 

Figure 43. Simulation shows that for ξ being in the interval 0 and 1, the system is stable. 
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Figure 43: Damping ratio simulation 

 

2.2.4 UAV Route Design 

The UAV route design plays a critical role in UAV designs. The selection of routings is 

directly related to the efficiency of UAVs. Under real search and rescue operations, less effective 

operation procedure may cause the life of survivors. This is the reason for our team to think 

about route design carefully. Typically, there are two main ways to control the path of UAV. 

First is manually controlling the UAV through a computer. Second is by presetting the path, such 

as a set of GPS location and let the UAV automatically circle along the path. Choosing between 

these two ways depends on different situations. Specifically, when the range of the searching 

location is not known, some locations with high possibilities of finding survivors will be 

assumed. Additionally, switching to manual operation at the base station is when signals of   

survivors are detected [41]. Once an UAV is operated manually, it can be controlled by the real-

time video streaming system and directional instructions which in turn adjust the direction and 

altitude of the UAV. Figure 45 shows the components which support the communication 

between the UAV and base station.  
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Figure 44: Relation between UAV and Back-End 

 

There are several advantages of using manual mode. First of all, people can discover the 

real-time situations through watching the video stream sent back from the UAV. Detailed 

information can help the UAV operator and rescuers to make timely and effective decisions. 

Second, the base station may notice some details that the sensors on the scene may not recognize. 

The disadvantages of manual mode are the high cost of systems management and security. For 

some manual operations, operating time could be several hours and weeks. Long time highly 

concentrated working distribution would decrease the sensitivity of operators. This is critical to 

rescuing missions. In order to minimize manual mode operations, auto mode, which is known to 

have several features, is used. While an UAV is operated under automatic mode, there is no need 

of operators to manage the operating procedures. The UAV will fly along the designed path and 

keep searching for the survivors on the ground through many powerful sensors mounted on it. 

On the other hand automatic operation requires user inputs and operating procedures such a path 

information control the UAV [42]. Figure 46 presents the paths of the UAV of an accident scene 

where the red points indicate the location of the UAV along the path.  
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Figure 45: Example of UAV Orbit (red) 

 

The UAV will automatically calculate the angle and altitude for the next point in its orbit. 

Although there are many sensors on UAV, some large algorithms and machine cannot be carried 

by UAV because of size limit.  According to that, when flying, UAV will continue to send real 

time images and video streaming back to the station in order to be analyzed by experts and other 

powerful tools. 

While the UAV is running the auto mode, accuracy is one of the biggest problem. The 

UAV is easily out of its orbit by environmental factor such as wind and rain. Only one subtle 

error on direction will cause huge uncertainty on its air route. However, GPS gives the great help 

to fix the uncertainty. Even the UAV is beyond its original route, when it comes to the next 

coordinate, the UAV will fix the error between the current route and the original route. This 

feature guarantees the accuracy of flying in auto mode [43]. After the operator has set up the 

destination points, the UAV therefore needs to calculate the shortest path among these points. 

There are many graph searching algorithms are often being applied such as Dijkstra’s algorithm. 
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Specifically, given a graph with V, the number of nodes, and E, the number of edges. Dijkstra’s 

algorithm has O(V^2) running time. Actually this complexity can be improved by using min-

priority queue structure. The implementation based on a min-priority queue implemented by a 

Fibonacci heap and running in O(E + Vlog(V)) [44].  

 

2.3 Power Components, Instruments and Sources of UAVs 

The selection of electrical power source for an in-flight computer and operation depend 

upon weight, efficiency, flexibility, quality, stability, and cost. Weight is a crucial factor when 

considering a power system on UAV.  The UAV, subtle difference on weight can lead significant 

effects on efficiency. Especially, the power system mainly runs on battery, and weight can 

decide the capacity of the whole power system. Efficiency is calculated by actual electrical 

output divided by total electrical output. As a component of the whole system, improving 

efficiency as much as possible can benefit system’s operation. Less redundant waste on transition 

and rational power arrangement are two ways to improve whole system. Flexibility in power 

system is regarded as an ability to respond to the change in demand. The UAV is a highly multi-

used vehicle. Electrical power source for the UAV should have ability to meet different 

requirements in different environment. The quality of a power system is important for stability. 

During an operation, unexpected collision or vibration caused by extreme weather conditions 

may damage the physical structure. High quality structure material ensures the UAV working 

properly in different environment so that support stable power to let every component in system 

working. The cost of these materials are spread from several dollars to thousand dollars. 

Different price of power source has different ways to use. However, our team chooses a power 

source according to how much it is suitable for the UAV and related operation but no depending 

on high cost [45]. 

Solar power system is not an ideal power solution for UAV. For capacity, while operating 

in daytime, solar power system can use the sun to operate the UAV without limit. However, solar 

energy is not available at all times. It ensures the operation of the UAV being executed without 

additional fuel input. This kind of time limit will influence the utilization of an UAV. When the 

emergency occurs in night time, power will be the biggest problem for the UAV. However, if the 

solar system cooperate with the power system based on chemical battery, the problem can be 

solved. Tradeoffs are the cost and weight. Using solar system means we should incorporate some 

https://en.wikipedia.org/wiki/Fibonacci_heap
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solar panels into the UAV. In order to get the maximum utilization of the sun, suitable solar 

panels on top of the wings are required. The body area must be increased that the UAV can get 

maximum irradiating area. The disadvantage of this is more solar panel will increase the weight 

of the UAV. This means consumed rate of power will increasing so that operating time will be 

decreasing. We have to make a tradeoff between the utilization and weight. So under limit 

irradiating area to maximize the utilization of solar power is the problem we are facing. 

Maximize the utility of solar power when it’s available is one way to improve efficiency of 

power system, such as maximum receiving power from solar panel [46].  

 

 

Figure 46: Basic structure of solar power system 

 

According to the Figure 46, solar system is divided into three parts. First part is maximum 

power point tricking, second part is communication between battery management and battery 

modules. Third part is the transfer of the solar power to the electrical power in order to support 

the whole system. Maximum power point tracking (MPPT) algorithm, can support help on 

tracking the maximum power point. Detailed structure of the power system is shown as follows 

[47]:  
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Figure 47: Structure of MPPT algorithm 

 

The effects with basic solar system with MPPT is shown in Figure 49. 

 

 

Figure 48: Contrast basic solar system(Left) and solar system with MMPT(Right) 

 

As shown in Figure 48, the solar system with MMPT can produce large power output. Fuel 

is a traditional and popular way to generate power. The use of fuel cell in UAVs can give UAV 

stable and abundant power. Chemical generator has pretty high efficiency and utilization. It 

allows UAV flying at much higher altitude, typically, five thousands meters. Strong power also 

can support UAV carrying more heavy equipment such as high resolution camera, powerful 

embedded system or sophisticating flying control devices.  Another advantage is stability. Fuel 

cell can sustain harsh environmental conditions such as cold, hot and humidity [48]. 
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Figure 49: Fuel cell system construction 

 

As shown in Figure 49, the principle fuel cell system is presented. The fuel tanks transfer the 

chemical energy by reacting with hydrogen gas and produce electricity through the PEMFC 

which is a turbine converts flow energy to electrons. 

 

Figure 50: Fuel cell system 

 

Usually, only using videos and photos captured by a UAV is not suitable for operator to 

mastering a typical situation. A three dimensional map can help people analyze situation in a 

forwarding and precise way.  The goal is to scam a large area to three dimensional map from an 

UAV or groups of UAVs flight instruments. Usually, using one single depth camera, an UAV is 
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able to obtain a three dimensional model from a specific object. Specifically, the UAV needs at 

least 4 images from 4 different directions (front, rear, sides), even a 360 degree video. However, 

if there are multiple camera working together, the situation will be much different [49].  

In a common three dimensional scanning system, setting proper light condition, stable 

movement of camera and measured camera degrees are required conditions. There are various 

situations needs be considered. Especially, scanning large area from a UAV will not have these 

comfortable condition. When flying, camera, which is tightly set up on the UAV, will endure 

unpredictable shaking because of unstable air current. This will cause the images or videos being 

recorded from unexpected degree, which increase the difficulty for distracting 3 dimensional 

information [50]. Lighting condition is also a factor that cannot be ignored. Well-setting lighting 

condition will reduce complexity of analyzing images. One of the most important problem is that 

lighting can easily impact result returned by the algorithm which used to distract depth 

information from images. In this project, camera will face infinitely different lighting condition. 

Factors like sunlight, weather, humidity and haze can influence quality of recordings, which can 

lead to imprecise information. 

The number of cameras plays an important role in this project. There are two different 

combination. First is that let each UAV’s independently scan a part of an area then combine 

them together after scanning. Second is use group of UAV scan an area together at the same time 

then keep going to the next area. Each combination will use different algorithm to deal with 

different data. For now, it is hard to say which one is better than the other without numerical 

experiments [51]. For single camera, there are several ways to achieve third model. These 

include:  

1. Use Time-of-Flight camera, which can measure depth at some specific rates 

(Reconstruction). 

2. Use laser distance measuring and regular high resolution camera (Reconstruction). 

3. Use regular high resolution camera and connect them together (Non-reconstruction). 

For 1, Time-of-Flight camera, which as known as depth camera, can use laser light to get 

distance information in the real time. Its cost is more expansive than that of regular high solution 

camera. For 2, cost is low, but difficulty for mapping depth to images and parsing them is higher 

than 1. For 3, cost is lowest, but there is no guarantee on precise of result. Small changes in 

environment conditions will cause unexpected result. Furthermore, non-reconstruction merely 
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give us something seems like three dimensional model. We can directly measure length or 

position precisely by using this method [52]. 

The three dimensional Time-of-Flight (TOF) technology is revolutionizing the machine 

vision industry by providing 3D imaging using a low-cost CMOS pixel array together with an 

active modulated light source. Compact construction, easy-of-use, together with high accuracy 

and frame-rate makes TOF cameras an attractive solution for a wide range of applications. 

 

 

Figure 51: TOF camera abstraction 

 

Figure 52: MESA imaging 3D TOF Camera SR4000 (ETH, 5m range) 
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Figure 53: Effects of TOF camera 

 

 

Figure 54: Camera function analysis 

 

One of this largest problems on the TOF camera is its cost, which is normally above 

$2300. The low cost approach is to actually use a regular camera, which is usually under $300 

with 1080p resolution. This is used to record and use algorithm and laser light simultaneously 

analyze depth information. The cost of laser sensor is depending on its type. Different type has 

different maximum supported receiving range, which is actual flying height of UAV. When a 

regular camera is working, laser sensor works at the same time. Theoretically, if we know actual 

depth of one pixel on image, we can know the rest of them. There are two kinds of 3D 

algorithms: reconstruction and non-reconstruction. Reconstruction means at first transfer data to 

point cloud, and use algorithm to reconstruct 3D model from point cloud data.  

 

 

 

 

 



  43  

 

 

Equation for Reconstruction Map from Video: 

 

Non-construction way is directly using continuous data from regular camera connect them 

together. However, this way can give us precise vector position, which is fatal factor in this 

project.  

 

2.3.2 Electric Motor 

The electrical motor is a device that brought about one of the largest advancements in the 

engineering field. In the field of UAV, it is commonly applied in the small size of UAV. The 

electrical motor consists of DC motor, AC motor and special motor. And the AC motor consists 

of synchronous motor, one phase induction motor, and three phase induction motor. Figure 

56shows the image of T-motor, the structure of DC motor, which is widely used in UAV power 

source. There are many parts in it [53]: 



  44  

 

 

Figure 55: Fuel cell system construction 

 

The motor that used by UAV will be supplied by the DC power supply source. To the DC 

motor we have a shaft which is attached to it. At the end of the shaft we have the pin which have 

the rotor attached to it. It may or may not have the bearings to it. Let internal resistance of the 

motor by 𝑅𝑎 . And 𝐾𝑡  torque constant, which is the ratio of motor output torque to input 

current.  Ka is back EMF constant, which is the ratio of voltage to angular speed. Vt is the 

terminate voltage. The relationship is 

 

                                                                   𝜏𝑜𝑢𝑡= 
𝐾𝑎𝐾𝑡

𝑅𝑎
+

𝐾𝑡

𝑅𝑎
𝑉𝑡                                                        (14) 

 

The total current with load is proportional to the output torque like equation (13). 

 

                                                                         𝐼𝑙𝑜𝑎𝑑= 
𝜏𝑜𝑢𝑡

𝐾𝑡
                                                               (13) 

 

The total torque is therefore  

 

                                                                ∑ 𝜉= 𝜉
𝑚

−𝜉
𝑑

− 𝜉
𝑠
                                                           (14) 

 

Where Td is the damping Torque, and where ζd = Ct , and ζs = Kt θ 
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So the equation is like equation (15) 

 

                                                        J𝜃̈ + 𝑐𝑡𝜃̇ + 𝑘𝑡 =  𝐾𝑚𝑖                                      (15)     
 

The motor torque has relationships with motor current, efficiency, speed and output power, 

which is showing in the Figure 56. The torque is proportional to the current, inversely proportional 

to speed. The output power is maximum at the mid of the torque. This graph can help us for the 

future UAV motor selection. The axis represents the number of elements and torque output. 

 

Figure 56: The relationship between UAV motor’s torque and elements 

 

The power source is one of the most importance aspects for the UAV motor, so our team 

did the case study and found that relationship between the UAV power and other performance. 

The source of these data is collected from many datasheets of UAV. Figure 56 is the result of that. 

Figure 57 is the relationship between UAV power and altitude. It is a good reference of the future 

motor power selection base on the altitude. 
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Figure 57: The relationship between UAV power and altitude 

 

Figure 58 is the relationship between UAV power and speed. It is a good reference of the future 

motor power selection base on the speed. 

 

Figure 58: The relationship between UAV power and speed 

 

Figure 59 shows the relationship between UAV power and payload. It is a good reference of the 

future motor power selection base on the payload. 
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Figure 59: The relationship between UAV power and payload 

 

Figure 60 is the relationship between UAV power and weight. It is a good reference of the future 

motor power selection base on the weight. 

 

Figure 60: The relationship between UAV power and weight 

 

2.3.3 Internal Combustion and Jet Engines 

From the very beginning of aviation history, airplanes used internal combustion engines 

to turn propellers and generate thrust. Internal combustion engines were used for the first flight 

in human history, this of the Write brothers, and still in our days, many private airplanes and 

general aviation aircrafts use the same principle. These engines are similar to the ones used in 

automobiles and in this section I will be discussing the fundamentals of their function.  When 

studying such engines, we are interested in two kinds of operations, the mechanical and 

thermodynamics. Both processes make the engines to produce the useful work we are looking 

for. The mechanical design of these engines is similar to the ones that are used in automobile 

industry, most widely known to engineers as four stroke or four cylinder engines. In order for 

these engines to work, a mixture of fuel and air has to enter in the cylinder where the combustion 
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process will occur, forcing the pistons to move back and forth. This motion is then transferred to 

the power stroke where the piston turns a crank which converts the linear piston motion into 

circular, which is connected to the propellers through shafts. This repeated cycle motion was 

developed by the German engineer Dr. N. A. Otto and that why we also refer to it as the Otto 

Cycle. The general and complete view of the engine is the one that follows: 

 

 

Figure 61: Full combustion engine diagram 

 

As we can clearly see at the design picture above, the engine is composed of several 

parts. Starting from the fuel storage tank, a hose called fuel line goes to the intake manifold in 

order to supply it with fuel. The intake manifold is the part where the fuel is distributed evenly 

into the four cylinders, and the carburetor is the component that blend the fuel with air -supplied 

from the air intake- and inject this mixture into the cylinders. The cylinders also known as 

combustion chambers, is the place where the burning of the fuel occurs in order to convert 

chemical energy to mechanical. Other parts are the crankcase where the crankshaft is located. 

The crankshaft is the mechanical part that converts the reciprocating motion of the pistons to 

rotational motion. The timing chain is a belt that synchronizes the rotation of the crankshaft and 

the camshaft so that the engine's valves open and close at the proper times during each cylinder's 

intake and exhaust strokes. The last two main parts are the flywheel and the magneto. The 

flywheel is rotating mechanical device which stores rotational energy in order for the system to 

continue rotating even when the pistons are in the process of compressing a fresh charge of air 
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and fuel. Finally, the magneto is an electrical device that provides current for the ignition system 

of the pistons. 

There is a variety of reciprocating piston engines that were mainly used to power 

aircrafts. The different types of engines depend mostly on the formation of the pistons around the 

crankshaft. Thus, we have the in-line engine, where the cylinders are located in a line on top of 

the crankshaft, the V-engine where the cylinders have a V shape on top of the crankshaft and the 

horizontally opposed engine where the cylinders are connected horizontally to the crankshaft. 

The last two categories are the radial and the rotary engine, where the combustion chambers are 

placed around the crankshaft and the main difference is that for the rotary engine, the crankshaft 

is fixed to the airframe and the propeller is fixed to the engine case, so that the crankcase and 

cylinders rotate. 

 

 

Figure 62: 2002 BMW 5-Series Inline-6 Engine 

 

 

Figure 63: Ferrari 360 3586cc Alloy V8 Engine 
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Figure 64: Jabiru 3300cc Aircraft Engine 

 

 

Figure 65: Pratt & Whitney R-1340 Radial Engine 

 

Concluding, internal combustion engines were widely used in military and commercial 

aviation, but when it comes into smaller aircrafts, their increased weight makes it difficult to be 

carried by a drone, and so electrical engines are preferred. There has been an effort though to 

supply drones with internal combustion engines. A team of German engineers recently launched 

a project on the Kickstarter website, where they built a UAV which uses both an electrical motor 

and small fuel combustion engines to power the aircraft. They claim that this innovation 

increases air time, speed and payload [54].  

There are four different kinds of turbo engines that are directly powered by the thermal 

expansion of the fuel, which are turbofan, turbojet, turboprop, and ramjet engines. Based on the 

internal structures and physical application of these four types of power sources, the turbofan, 

turbojet, turboprop engines can be placed under the same category and the ramjet engine can be 

placed in another. Although there are a large difference on the performances of these engines, 

some engines can be combined in certain specific usage and application. 

First and foremost, the turbofan, turbojet, turboprop engines are called turbo engines. All 

turbo engines uses similar structure in order to provide the aircraft relevant thrust; specifically, 

they all involve a compressor, combustion chambers, and turbines. The operation theories of 
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these components of any kind of turbo engine is equivalent as the cylinder engines. Specifically, 

the gas chamber opening operation is equivalent as the front opening of a turbo engine; while the 

piston moves upwards which compress the air is equivalent as the compressor; the firing 

operation is equivalent as the fuel burning in the combustion chamber; and the piston moves 

towards the center of the engine is equivalent as the high-temperature air pushes the turbine 

blades.  

On the other hand, there are several categories under the same engine type. Also, all three 

types of turbo engines are applicable to UAVs based on the physical specifications. By only 

looking at the active mechanical portion the engine, which are the compressor, combustion 

chambers, and turbines. There are three main types of structures that are being used fairly often 

in the field, which are centrifugal, single shaft, and double shaft. The centrifugal turbofan engine 

is often used in the smaller aircraft with reverently slower air speed. As shown in Figure 66 the 

airflow is being deviated to outside boundary of the engine by the centripetal force generated by 

the compressor [55].  

 

 

Figure 66: Centrifugal Turbo Engine 

 

The advantage of this engine is this structure allows the engineers to design a shorter and 

smaller engine with less mechanical components. However, due to the shape of the compressor 

and the path of the airflow the engine has a chamber inside which has no use; in other words, this 

structure may cause large air resistance and excessive space occupation inside of the aircraft. The 

single and double shaft turbo engines both has a linear airflow, air enters straight to the engine, 

compressed by the compressor, ignited in the combustion chamber, pushes the turbine blades and 

exist the engine from the exit nozzle under maximum velocity. The difference between the single 
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and double shaft turbo engines is in the single shaft turbofan engine, the front fan, compressor, 

and the turbine are mounted on a single shaft; in the contrast, the double shaft turbo engine has 

two shafts are mounted on the same axis one over another. More specifically, there are two sets 

of turbine blades in the turbine stage, which are high-pressure turbine and low-pressure turbine; 

the compressor and the high-pressure turbine are mounted on the same shaft called high-pressure 

shaft; the front fan and the low-pressure turbine are mounted on one shaft called low-pressure 

shaft. The major reason using the double shaft turbo engine is crucial; the single shaft turbo 

engines has the same turbine-compressor speed, which causes vibration and reach velocity limit 

while operating under a high air thickness or density. The double shaft turbo engine allows a 

differential speed between the compressor and the turbine disk, which provides the front fan 

consistent power and rotation [56]. 

 

 

Figure 67: Turbo-Thrust Engine 

 

 

Figure 68: Turbo-Prop Engine 
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Figure 69: Turbofan Engine 

 

2.3.4 Fuel Engine Power Source 

There are multiple types of energy power supply. Fuel energy plays an essential role in 

the energy field. With the same weight and size, fuel normally can provide more energy than 

other kind of energy source. Fuel engine can transfer the chemical energy in the fuel to the 

mechanical energy. By reacting with oxygen, liquid fuel can react violently and create 

combustion. There are several types of liquid fuel: gasoline, diesel, and kerosene [57]. Gasoline 

also known as petrol, is a transparent, petroleum-derived flammable liquid. When it is mixed 

with air and ignited, it has the reaction: 

2 C8H18 + 25 O2 → 16 CO2 + 18 H2O 

Where both CO2 and H2O are in gaseous. Gasoline contains about 42.4MJ/kg with the density of 

range from 0.71-0.77kg/L.  Diesel fuel is widely used and can be categorized by the way it is 

produced as petroleum diesel, synthetic diesel, and biodiesel. The diesel normally used for aerial 

engine is petroleum diesel. This kind of diesel is the mixture of multiple components with mostly 

of saturated hydrocarbons, also called alkane, and aromatic hydrocarbons. When it mixed with 

air and compressed ignited, it produce gaseous carbon dioxide and water. Diesel has the heating 

value of 43.1ML/kg with the density of 0.832kg/L. Kerosene is a thin, clear flammable liquid 

formed from hydrocarbons obtained from fractional distillation of petroleum between 150C and 

275C. This kind of fuel is widely used in airlines and can be categorized in several grades such 

as Avtur, Jet A, Jet A-1, etc.The combustion reaction can be approximated as follows: 

2 C12H26(l) + 37 O2(g) → 24 CO2(g) + 26 H2O(g); ∆H˚ = -7513 kJ 

https://en.wikipedia.org/wiki/Enthalpy
https://en.wikipedia.org/wiki/Joule
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It has the density of 0.78-0.81kg/L. Kerosene sometimes is used as an additive in diesel fuel to 

prevent gelling or waxing in code temperatures [58]. 

 

2.4 Cumulative UAV Comparison 

In this section, our team analyzed many different types of UAVs that exist in the market or are 

being used by companies or the military. Our team collected some useful information from each UAV, 

like the UAV name, type, use, physical properties, physical capabilities and hardware. These parameters 

will be useful for designing our future UAV design. Following are the tables for each UAV: Table 5 is the 

datasheet of the Yeair UAV. It is Quad-copter and Dual Powered (Fuel Combustion & Electric Motor), 

which can delivery services. It is a good reference of quad-copter. 

Table 4: The datasheet of Yeair 

UAV Name Yeair 

Type - Quad-copter 
- Dual Powered (Fuel Combustion & Electric Motor) 

Usage - Delivery services (carrier) 
- Motion Picture Productions 
- Documentaries 

Physical 
properties 

- Weight: 4.9 kg 
- Size: 0.9 x 0.75 x 0.5 m 
- Fuel tank: 1.5 Liters 

Physical 
capabilities 

- Speed: 100 km/h 
- Range: 55 km  
- Payload: 5 kg  
- Fuel Engine: 8.6 hp / 6.4 kW 
- Electrical Motor: 4s 1250mA/h Lippo-Battery for 
starting the engine 
- Endurance: 1 hour 

Hardware - GPS: Next  
- generation GPS chip for highest accuracy and quick 
readiness for use. 
- WIFI: Integrated WLAN with 100m range for 
connection with Tablet or Smartphone. 

 

Table 6 is the datasheet of MQ-8. It is UAV helicopter and turbine powered, which is Military 

use and Reconnaissance. This is a good reference of UAV helicopter. 

Table 5: The datasheet of MQ-8  

UAV Name Northrop Grumman MQ-8 Fire Scout 

Type - UAV helicopter 
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- Turbine/ Jet Fuel/ Biofuel 

Use - Military use 

- Reconnaissance 

- Situational awareness 

- Aerial fire support  

- Precision targeting support 

Physical 
properties 

- Size: 7.3 x 1.9 x 2.9 m 
- Weight: 1,430 kg 

Physical 
capabilities 

- Payload: 272kg 
- Speed: 213 km/h 
- Range: 203.7 km 
- Endurance: 5-8 hours 
- Altitude: 6,100 m 
- Engine: Rolls-Royce 250, 313 kW / 420 hp 

Hardware - Radar: Telephonics  AN/ZPY-4 
- Other Hardware: TSAR with Moving Target 
Indicator (MTI) capability, multispectral sensor, 
SIGINT module, Target Acquisition Minefield 
Detection System (ASTAMIDS), Tactical Common 
Data Link (TCDL) 

 

Table 7 is the datasheet of MQ-9. It is Fixed Wing and powered by Turbine, which is Military 

use and long-endurance. This is a good reference of fixed wing.  

Table 6: The datasheet of MQ-9 

UAV Name General Atomics MQ-9 Reaper (formerly named 
Predator B) 

Type - Fixed Wing 
- Turbine/ Jet Engine 

Use - Military Use 

- Long-endurance 

- High altitude surveillance 

Physical 
properties 

- Crew: 0 onboard, 2 in ground station 

- Length: 36 ft 1 in (11 m) 

- Wingspan: 65 ft 7 in (20 m) 

- Height: 12 ft 6 in (3.81 m) 

- Empty weight: 4,901 lb (2,223 kg) 

- Max takeoff weight: 10,494 lb (4,760 kg) 

- Fuel capacity: 4,000 lb (1,800 kg) 

- Payload: 3,800 lb (1,700 kg) 
- Internal: 800 lb (360 kg) 

Physical 
capabilities 

- Power plant: 1 × Honeywell TPE331-10 turboprop, 
900 hp (671 kW) with Digital Electronic Engine 
Control (DEEC) 
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- Maximum speed: 300 mph; 260 kn (482 km/h) 

- Cruising speed: 194 mph; 169 kn (313 km/h) 

- Range: 1,151 mi; 1,852 km (1,000 nmi) 

- Endurance: 14 hours fully loaded 

- Service ceiling: 50,000 ft (15,240 m) 

- Operational altitude: 25,000 ft (7.5 km) 

Hardware - AN/DAS-1 MTS-B Multi-Spectral Targeting System 

- AN/APY-8 Lynx II radar 

- Raytheon SeaVue Marine Search Radar (Guardian 
variants) 

 

Table 8 is the datasheet of CH-3. It is mid-range and mid-altitude UAV, which is Military use 

and farming use. It is a good reference of self-operation system. 

Table 7: The datasheet of CH-3 

UAV Name CH-3 

Type - Capable of radio control and self-operation 
- Mid range 
- Mid altitude 
- Large size 

Use - Military use (carry weapons, and investigation with 

cameras) 

- Farming 

Physical 
properties 

- 8m in wingspread  
- 5.5m in length  
- Piston engine with propeller 
- Three-pointed lending gear 

Physical 
capabilities 

- 2400 km non-return, with 12 hours operation time 
without refueling 
- Maximum payload 100 kg 
- Maximum takeoff weight 640kg 
- Altitude 3000m - 5000m, maximum altitude 6000m 
- Capable of takeoff both from runway and cat shot  
- Speed 220km/h 
- Remote range 200km  

Hardware - Control panels are classified 
- AR-1 missile, high definition camera and 
investigation pot under both wings 

 

Table 9 is the datasheet of RQ-21. It is mid-range and mid-altitude UAV, which is Military use 

only. It is a good reference of radio control system. 

Table 8: The datasheet of RQ-21 

UAV Name RQ-21 



  57  

 

Type - Capable of radio control and self-operation 
- Mid range  
- Mid altitude 
- Mid size 

Use - Military use only(carry weapons, and investigation with 

cameras) 

Physical 
properties 

- 4.8m in wingspread 
- 2.5m in length 
- Piston engine with 2 propeller blades 
- Three-pointed lending gear 
- Power: 8 horse power/5.97KW 
- Power dissipation: 350W 

Physical 
capabilities 

- 13 hours operation time without refueling 
- Maximum payload 17kg 
- Maximum takeoff weight 61kg 
- Minimum takeoff weight 36kg 
- Maximum altitude 5944 m 
- Capable of take off by cat shot 
- Speed 110km/h, max speed 164.7km/h 
- Remote range 200km 

Hardware Control panels are classified 
 

Table 10 is the datasheet of EHANG 184. It is short-range and low-altitude UAV, which is 

personal use only. It is a good reference of short range and low altitude UAV. 

Table 9: The datasheet of EHANG 184 

UAV Name EHANG 184 

Type - Capable of radio control and self-operation 
- Short range 
- Low altitude 
- Mid size 

Use - Personal use only 

Physical 
properties 

- Personal use only 
- 4 foldable arms with 4 motors and each with 2 
propellers   
- High performance electrical motor 
- Two bar landing gear 
- Power dissipation: 106kW 

Physical 
capabilities 

- 23 minutes operation time (without wind) 
- Maximum payload 100 kg 
- Maximum takeoff weight 300kg 
- Maximum altitude 5944 m 
- Maximum speed (in theory) 100 km/h 
- Maximum speed (in theory) 100 km/h 
- cCarrying a person 
- 2-4 hour recharging time 
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Hardware N/A 
 

Table 11 is the datasheet of Phantom3. It is short-range and low-altitude UAV, which is can be 

used in recreational and commercial aerial cinematography and photography. It is a good 

reference of electric Quad copters. 

 
Table 10: The datasheet of Phantom3 

UAV Name Phantom3 

Type - Quad copters or drones  
- Powered by electric motor 
- Short range  
- Short altitude 
- Capable of radio control and self-operation 

Use - Recreational and commercial aerial cinematography and 

photography. 

Physical 
properties 

- Four electric motors mounted at the ends of the x-
shaped body. 
- Rise speed: 5m/s 
- Fall speed: 3m/s 
- Maximum speed: 16m/s 
- Working environmental temperature: 0°C-40°C 

Physical 
capabilities 

- Endurance: 23mins 
- Weight: 1.28kg 
- Payload: 0kg 
- Maximum flying altitude: 6000m 

Hardware - The body frames are made of composite materials. 
- Control a maximum range of 2,000 meters 
- Battery capacity: 4480 mAh 

 

Table 12 is the datasheet of Spreading Wings S1000+. It is Octo-rotor UAV, which is can be 

used in Professional aerial photography and cinematography. It is a good reference of electric 

Octo-rotor UAV. 

Table 11: The datasheet of S1000+ 

UAV Name Spreading Wings S1000+ 

Type - Octo-rotor Aircraft 
- Powered by electric motor 
- Short range  
- Short altitude 
- Capable of radio control and self-operation 

Use - Professional aerial photography and cinematography. 

Physical 
properties 

- Frame Arm length 

- Landing Gear Size: 
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460mm(length)*511mm(width)*305mm(height) 

- Working environmental temperature: -10°C-40°C 

Physical 
capabilities 

- Takeoff weight : 6kg-11kg 
- Total weight: 4.4kg 
- Endurance: 15min 

Hardware - Motor Max power: 500W 
- Weight of Motor :158g 
- A 40A electronic speed controller  
- 6S 15000mAh battery 

 

Table 13 is the datasheet of Precision hawk. It is powered by single electric motor, which is can 

be used in Agriculture. It is a good reference of electric UAV. 

Table 12: The datasheet of Precision hawk 

UAV Name Precision hawk 

Type - Single electric motor(fixed wing) 
- Mid range  
- Mid altitude 
- Capable of radio control and self-operation 

Use - Agriculture 

- Energy & Mining 

- Insurance & Emergency Response 

- Environment Monitor 

Physical 
properties 

- Wingspan: 1.5m 
- Maximum speed: 22m/s 
- Max operating temperature: 40°C 
- Max operating altitude: 2500m 
- Communication range 

Physical 
capabilities 

- Takeoff weight : 3.55kg 
- Total weight: 2.4kg 
- Endurance: 45min 

Hardware - Power source 7000 mA/ hr 
 

Table 14 is the datasheet of Zephyr. It is High Altitude Pseudo-Satellite which is can be used in 

Environmental surveillance and Maritime & Border surveillance. It is a good reference of solar 

energy UAV. 

Table 13: The datasheet of Zephyr 

UAV Name Zephyr 

Type - High Altitude Pseudo-Satellite (HAPS) UAS/UAV, 
running exclusively on solar power 

Use - Maritime & Border surveillance 
- Environmental surveillance 
- In-theatre C4ISTAR relay 
- Missile detection 
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- Navigation 
- SIGINT 
- Ad-hoc communication bandwidth 
- Continuous imagery 

Physical 
properties 

- Capacity: 2.5 kg (5.5 lb) payload 
- Wingspan: 73 ft 10 in (22.50 m) 
- Gross weight: 117 lb (53 kg) 
- Power plant: 2 × Newcastle University custom 
permanent-magnet synchronous motor, 0.60 hp 
(0.45 kW) each 

Physical 
capabilities 

- Max altitude (ASL) : 21 562 m 
- Having already been airborne permanently for more 
than 14 days 
- Cruise speed: 30 kn (35 mph; 56 km/h) 
- Service ceiling: 70,000 ft (21,000 m) 

Hardware - Stores solar energy collected during the day and 
- Uses it at night to keep the vehicle in the sky and 
the payload running. 
- Stay focused on a specific area of interest and 
- Provide satellite-like communications and earth 
observation services over long periods of time 
without interruption. 

 

Table 14 is the datasheet of NASA Helios Prototype. It is solar electric- powered flying wing 

designed to operate at high altitudes for long duration flight It is a good reference of solar energy 

UAV. 

Table 14: The datasheet of Helios 

UAV Name NASA Helios Prototype 

Type - Proof-of-concept solar electric- powered flying wing 
designed to operate at high altitudes for long duration 
flight 
- Ultra-lightweight flying wing aircraft 

Use - Two different ways. First, designated HP01, focused on 

achieving the altitude goals and powered the aircraft with 

batteries and solar cells. The second configuration, HP03, 

optimized the aircraft for endurance, and used a 

combination of solar cells, storage batteries and a modified 

commercial hydrogen–air fuel cell system for power at 

night. In this configuration, the number of motors was 

reduced from 14 to ten 

Physical 
properties 

- Wingspan: 247 ft 

- Length: 12 ft 

- Wing Chord: 8 ft 

- Wing Thickness: 11.5 in. (12 percent of chord) 
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- Wing area: 1,976 sq. ft. 

- Aspect Ratio: 30.9 to 1 

- Empty Weight: 1,322 lb 

- Gross Weight: Up to 2,048 lb, varies depending on 

power availability and mission profile. 

Physical 
capabilities 

- Payload: Up to 726 lb, 
- Propulsion: 14 brushless direct-current electric 
motors, each rated at 2 hp. (1.5 kW) 
- 50,000 to 70,000 ft., 

Hardware N/A 

 

Table 15 is the datasheet of Lockheed Martin Hale-D. It is High-Altitude Long Endurance 

(HALE) and Re-usable. It is a good reference of solar energy UAV. 

Table 15: The datasheet of Hale-D 

UAV Name Lockheed Martin Hale-D 

Type High-Altitude Long Endurance (HALE) 

Use - Multi-payload, multi-mission platform, 

- Reusable,  

- Solar-based regenerative power system 

Physical 
properties 

- Length: 240 ft; Diameter: 70 ft 
- Volume: 500,000 ft3 
- Demo duration goal: 5 days 
- 80 lb payload (commons & camera)  

Physical 
capabilities 

- 100’s kW – 200 kW solar 
- Developed and flew a very large 40 kw/hr lithium 
ion 

Hardware - Solar Cell 
- Hull Materials 
- Regenerative 
- Fuel cell 
- Rechargeable batteries 

 

Table 17 is the datasheet of Penguin B. It is fixed wing and high performance unmanned 

airframe. It is a good reference of fixed wing UAV. 

Table 16: The datasheet of Penguin B 

UAV Name Penguin B 

Type - Fixed Wing 

Use - High performance unmanned airframe 

Physical 
properties 

- Length 2.27 m 
- Height 0.9 m 
- Stall Speed <13 m/s 
- Cruise Speed 22 m/s 
- Max Speed 36 m/s 
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Physical 
capabilities 

- Empty Weight 10 kg 
- Endurance 26.5 hour 
- Payload 4 kg 
- Payload with fuel 11.5 kg 
- Takeoff Run 30 m 

Hardware - Portable Ground Control Station 
- Fuel injected engine 

 

Table 18 is the datasheet of Global Hawk. It is fixed wing and provides a broad overview and 

systematic surveillance using high-resolution synthetic aperture radar. It is a good reference of 

fixed wing UAV. 

Table 17: The datasheet of Global Hawk 

UAV Name Global Hawk 

Type - Fixed Wing 

Use - Provides a broad overview and systematic surveillance 

using high-resolution synthetic aperture radar (SAR) 

Physical 
properties 

- Length 14.5 m 
- Height 4.7 m 
- Stall Speed <176km/h 
- Cruise Speed 310 km/h 
- Max Speed 629 km/h 

Physical 
capabilities 

- Empty Weight 6781 kg 
- Endurance 32+ hour 
- Payload 3000 lb 
- Takeoff Run 1128 m 

Hardware N/A 

 

From these tables, our team created useful tables that will help us compare the UAV 

specs. The (Figure 70,Figure 71,Figure 72,Figure 73,Figure 74) are depicting the UAV comparisons on 

speed, weight, endurance, altitude, and range. These charts will play a significant role in the 

future UAV design, and it is a good reference point for us to start. For example, if our team 

wants to design a high speed and endurance UAV for rescue operations, the global Hawk design 

will be a good reference to start with. In addition, by reading these tables our team found that 

there was no UAV that was good at all the parameters we studied. After deciding which design 

fits our needs, we can move to Chapter 3 and start designing our own UAV. Figure 70 shows the 

speed performance of each UAV, the highest speed of these UAVs is 629km/h. This chart can be 

used in the future speed reference. 
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Figure 70: The speed performance of each UAV  

Figure 71 is the weight performance of each UAV, the largest weight of these UAVs is 6781kg. 

This chart can be used in the future weight reference. 

 

 

Figure 71: The weight performance of each UAV 

 

Figure 72 is the endurance performance of each UAV, the longest endurance of these UAVs is 32 

hours. Some of UAVs are power by the solar energy, which is not listed above. This chart can be 

used in the future endurance reference. 
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Figure 72: The endurance performance of each UAV 

Figure 73 shows the altitude performance of each UAV, the highest altitude of these UAVs is 

27200 m. This chart can be used in the future altitude reference. 

 

Figure 73: The altitude performance of each UAV 

 

Figure 74 is the communication range performance of each UAV, the highest communication 

range of these UAVs is 1852 km. This chart can be used in the communication range reference.
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Figure 74:  The range performance of each UAV 

 

Below is a cumulative chart of all the UAVs and their specs.  
Table 18: Cumulative UAV chart 

UAV Application Payload 
Weight(kg) 

Speed(km/h) Endurance(min) Altitude(m) 

Precisionhawk Mid-range and 
mid altitude 

3.55 79 45 2500 

Zephyr High altitude 
pseudo-satellite 
UAV 

2.5 56 20160(14 days) 21562 

Spreading 
Wings S1000+ 

Short range and 
short altitude 

11 - 15 - 

NASA Helios 
Prototype 

solar electric-
powered flying 
operates at high 
altitude and long 
duration 

334 - - 21000 

Lockheed 
Martin Hale-D 

High-altitude long 
endurance  

36 - 7200 15240 

Penguin B High 
performance 
unmanned 
airframe 

4 130 1590 - 

Global Hawk Provide a broad 
overview and 
systematic 
surveillance  

1360 692 1920 - 

Yeair Delivery services 
and motion 
picture 
productions 

5 100 60 - 

Northrop 
Grumman MQ-
8 Fire Scout 

Military, 
reconnaissance, 
Aerial fire support 

272 213 480 6100 

General Military, long 1700 313 840 7500 
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atomics MQ-9 
Reaper 

endurance and 
high altitude 
surveillance 

CH-3 Military use(carry 
weapon) and 
farming  

100 220 720 3000-5000 

RQ-21 Military use only 17 160 780 5944 

EHANG 184 Personal use 100 100 120-240 5944 

Phantom 3 Recreational and 
commercial aerial 
cinematography 

0 606 23 6000 
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CHAPTER 3. UAV DESIGN SOLUTIONS 

3. Introduction  

After having completed an extensive research on the topic of Unmanned Aerial Vehicles 

and Remote Control Aerial Vehicles, it is time to select a type of UAV and based on that design 

our vehicle. To do so, it is of high importance to define the details of its operation. As we 

described at the introduction of Chapter 1, the purpose of our drone is to help on rescue 

operations. To do that, we need it to be able to carry a sufficient amount of payload. This rescue 

payload can be consisted by life detecting instruments, communication devices and the 

propulsion systems that will make the vehicle able to fly. Since out team did not receive research 

funding our design will not include complex detecting and expensive instruments. The team is 

going to be working on a simplified version of the starting idea, in order to just fulfill the 

objectives of an Interactive Qualifying Project.  

More specifically, our team decided upon an aircraft-like drone, which will carry a 

battery connected to the propulsion system, a camera with a resolution which will give operators 

the capability to detect human like objects, and a communications system to transmit the video 

data from the drone to the operators. The general specifications our team decided that should be 

matched are the following. The aircraft will be flying in a low speed and altitude as we just need 

it to scan a given area, and make it possible for operators to detect human life while watching the 

video transmitted to them. On the other hand, we need a relatively high lift in respect with the 

size of the UAV, as we want to mount on it instruments that are relatively heavy for the size and 

power of our battery.  

 The team will be split in two sub-teams, one responsible for the inner part of the drone, 

namely, the electrical and computer systems described above, and another team responsible for 

the outer shape and configuration of the aircraft. In the chapter that follows, we will describe 

extensively all of the above specifications and designs, as we will end up connecting all the parts 

together to get our final drone design.  
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3.1 Preliminary Design and Design Methodology 

3.1.1 Wings design 

Wing Area: We decided to focus on a large wing area in order to generate enough lift for 

carrying the payload consisted by the electronics and battery. This led to a total wing area of 0.2 

m2 with a 0.6 m wingspan and 0.35 m chord length. 

Aspect Ratio and Camber: The wing was designed with a fairly high aspect ratio of 

approximately 1.8 in order to make for more efficient flight, while having a high camber to 

increase the lift – to – drag ratio and get a higher lift coefficient.  The formula to compute the 

Aspect Ratio of a wing is the following shown in equation 16: 

𝐴. 𝑅. =  
𝑏2

𝐴
       

Where b is the wing span (the length of the wings) and A is the area of the wings. So in our case 

we get an Aspect Ratio of:  

𝐴. 𝑅. =  
(0.6 𝑚)2

0.2 𝑚2
= 1.8 

On the following picture we have two examples of the same wing with different Aspect Ratio.

 

Figure 75: Examples of wings with different aspect ratio. 

 

The wing span at the two airplanes is the same, but the right design has a smaller wing 

area, thus has a higher aspect ratio. Our design will look more like it the right sketch as we want 

a high A.R. [59]. The cathedral or dihedral angle is the downward or upward angle of the wing 

respectively. This angle influences the amount of roll moment on the aircraft when in turn, and is 

an important stability factor. In our design, we will not take in consideration these effects as we 

don’t need our aircraft to execute complex maneuvers, thus, we will design our wings with the 

most simple angle configuration, the 0 degrees one.  

（16） 

（17） 
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Figure 76: Examples of the three different wing angle cases 

 

On the left graph is an airplane design that has a dihedral wing angle, and on the right is a 

design that has a configuration. Our design will be similar to the middle one where the angle is 0 

degrees. As described above, we need our wing to have a large aspect ratio, which means that the 

wings are going to be long. That means that in order to support not only the aircraft’s weight, but 

also their own weight, they have to be made out of a material that is strong and light weighted at 

the same time. Materials with these specifications are most of the times expensive, but in our 

case, we can assume that our budget is big enough to include these materials. Using the Granta 

CES Edu Pack materials software, we plotted all the available aerospace materials in respect 

with the weight and tensile strength and we ended up selecting the Epoxy/aramid fiber as it is the 

material that is less dense (1,380 kg/m3) but has a relatively high tensile strength (about 1.24*109 

Pa). The only drawback is that the material is more expensive than other in market, as it costs 

approximately 63.3 USD/kg [59]. 
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Figure 77: The plot of aerospace materials with respect to strength and density 

 

Our primary goal is to select the proper airfoil that is effective in low speeds and generate 

enough lift force for the aircraft. For our research, we will use the standardized NACA airfoil 

and I will modify it to meet our criteria. A key part to get the aircraft flying is our airfoil to 

generate enough lift when in low speeds. As we will not use flaps and slats to control our 

aircraft, we will be choosing a standard angle of attack for our airfoil. This is going to be 

determined using the XFLR5 software. This is our most valuable tool for our airfoil analysis as it 

simulates the airflow on the foil and it provides us with useful graphs for Lift Coefficient vs. 

Drag Coefficient and Lift Coefficient vs. Angle of Attack. Based. To get started with our 

calculations, we will assume and try to build our airplane having as given a -standard for RC 

aircraft- cruise speed of 70 km/h or approximately 20 m/s. 

The next step for our wing design is to figure out which airfoil we will use. Before we 

model our airfoil in XFLR5 and get accurate measurements for the lift coefficient, we need to 

calculate the proper Reynold’s number and Mach number which will be the inputs for the 

software calculations. To do so we will use the equation in (2). 
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In order to provide an accurate lift coefficient (CL), the proper Reynold’s number and 

Mach number are located. Before XFLR5 modeling could be completed, Reynold’s number and 

Mach number are calculated using the equations 2 and 3: 

 

𝑅𝑒 =
𝑉𝑐

𝑣
         

 

where v is the flight speed, which in our case is 20 
𝑚

𝑠
), c is the chord length (in our case 0.35 m) 

and the kinematic viscosity of the fluid which the airfoil operates, which is equal to 

1.460×10−5 
𝑚2

𝑠
 for air at the sea level (a good approximation for our design as we are looking on 

low altitude flights). To calculate the Reynolds number, we chose a chord length of 0.35 m in 

order to increase surface area, without making an exceedingly thick airfoil. Thin airfoils are 

considered to be more effective at low speeds. [59]  

 

𝑅𝑒 =
20

𝑚
𝑠 𝑥 0.35𝑚

1.4 x 10−5 𝑚2

𝑠

= 5𝑥105 

For the Mach number we have:  

 

𝑀𝑎𝑐ℎ =
𝑉

𝑐
        

 

Where V is the fight speed (in our case 20 m/s) and c is the speed of sound (343 m/s for 

the air at 20 degrees Celsius), thus we get:  

 

𝑀𝑎𝑐ℎ =  
20 

𝑚
𝑠

343
𝑚
𝑠

= 0.0583 

 

The Reynolds number and Mach number values are set as inputs to XFLR5 software. For 

an angle of attack from -10 degrees to +20 degrees we run the software to get data for a variety 

（18） 

（19） 

（20） 
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of NACA airfoils. 

 

Figure 78: The XFLR5 analysis procedure for the given Reynolds and Mach numbers 

 

We started with the NACA 4412 which is one of the best and most utilized airfoils in 

aerospace. NACA airfoils are airfoil designs for wings developed by the National Advisory 

Committee for Aeronautics and their shape is described using a series of digits, each representing 

a different shape property. NACA 4412 means that the airfoil has a maximum camber of 4% 

located 40% (0.4 chords) from the leading edge, with a maximum thickness of 12% of the chord. 

These airfoil specifications work great for simple UAVs like ours, as they are the most standard 

one is aerospace bibliography, so the only detail we looked on is the camber. As we discussed 

above, higher camber results to higher Lift Coefficients as shown in the tables below. 
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Figure 79: The lift coefficient to angle of attack graph for the four NACA airfoils 

 

Table 19: The values of the maximum lift coefficients for selected airfoil 

 Max Lift Coefficient 

𝐶𝐿 

Angle of Attack α 

(deg) 

NACA 9412 

(a) 

1.97 12 

NACA 7412 

(b) 

1.77 11 

NACA 5512 

(c) 

1.57 14.5 

NACA 4412 

(d) 

1.53 14.5 

 

To generate as much lift as we can, we selected the NACA 9412 airfoil, which cross 

section is shown below in green. A concern that was raised while analyzing the lift coefficients 

for all the airfoils was if by picking the airfoil with the higher lift coefficient, we will get a 

smaller lift to drag ratio. Plotting on XFLR5 the 𝐶𝐿/𝐶𝑑 with respect to the angle of attack, we saw 

that the NACA 9412 airfoil gives us a slightly bigger ratio. [60] 
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Figure 80: The lift to drag ratio for NACA 4412 and NACA 9412 UAVs 

 

Below is the cross sections of the NACA 4412 in red and the NACA 9412 is green. It is easy to 

observe how significant the difference in camber for these two airfoils is. 

 

Figure 81: The cross sections of NACA 4412 and NACA 9412 in XFLR5 

 

As previously stated, the most important aspect of our project is our UAV to be able to 

lift all the payload we want it to carry. As we will discuss further down, at the electronics and 

communication part of our project, the weight estimate for all the devices on board is going to be 

approximately 3.5 kg, and adding the weight of the wings and body itself, our UAV will not 

weight more than 5 kg, so our lift calculations will be based on the assumption that our aircraft’s 

maximum weight is 5kg. Thus, using Newton’s first Law (equations 21 and 22):  

 

𝛴𝐹 = 0           
（21） 
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𝑊 − 𝑚𝑔 =  0    

𝑊 = 𝑚𝑔 = 5𝑘𝑔 𝑥 9.81
𝑚

𝑠2
= 49.05 𝑁 

 

We need our wings to generate 49.06 Newtons of force in order to be able to fly. Using 

the lift equation we can finally calculate the area of our wing and knowing the chord length we 

can solve for the wingspan, and thus we can proceed to the next step, which is designing it. For 

lift we have equation 6 [60]:  

 

𝐿 =
1

2
 𝜌 𝑣 𝐶𝐿 𝐴    

 

In this case, ρ is the air density which is 1.225 
𝑘𝑔

𝑚3 for air at the sea level, v is the UAV’s speed 

which we agreed to set as 20 
𝑚

𝑠
, 𝐶𝐿 is the lift coefficient which for the NACA 9412 at an angle of 

attack of 12 degrees is 1.97 and A is the wing area, which is our unknown parameter. Thus, we 

are solving for A:  

𝐴 =  
2 𝐿

𝜌 𝑣 𝐶𝐿
=

2𝑥5 𝑁

1.225 
𝑘𝑔
𝑚3 𝑥 20 

𝑚
𝑠  𝑥 1.97

= 0.2 𝑚2 

 

As we previously mentioned, our chord length is going to be 0.35 m and because we have a 

rectangular wing, our area equation 25 is simply: 

 

𝐴 = 𝑏𝑐      

 

So our aircraft’s wingspan b will be shown in Equation 26: 

 

𝑏 =  
𝐴

𝑐
=

0.2 𝑚2

0.35 𝑚
= 0.6 𝑚 

 

As soon as we defined all the parameters we needed, we exported the airfoil data to the 

SolidWorks software, in order to get the cross section of our airfoil which is depicted below. 

（22） 

（23） 

（24） 

（25） 

（26） 
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Figure 82: The cross section of NACA 9412 in SolidWorks 

 

Using the Extruded Boss/Base feature in SolidWorks, we converted the 2D sketch into a 

3D airfoil, with a wingspan of 600mm (0.6 meters as calculated above). This design has its real 

dimensions, so it is ready to get assembled with the body. The format of the file allows us to 3D 

print a sample airfoil. Below are 3 views of the airfoil, each one from a different angle.   

 

 

Figure 83: The top back view of NACA 9412 and its wingspan length 
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Figure 84:  The bottom view of NACA 9412 and its wingspan length 

 

 

 

 

Figure 85: The top front view of NACA 9412 

 

 

 

3.1.2 Body Design 

Below is a fixed wing UAV model with a length of 46 cm and a width of 50 cm. It has 

two engines and each has the power of 5W. This UAV can fly within a range of 50 km and have 

average speed of 100km/h. It can deliver up to 3kg weight and drop 15m above the ground. 

We put the engine above the wings because at the bottom of the UAV a payload box can be 

mounted which can carry cameras and other medical supplies. At the front of the UAV it has a 
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tube shape device. That is a pitot tube used to measure the relative speed between UAV and wind. 

Another function for that is to break the air and decrease the air resistance. The V shape elevator 

design is to decrease the number of elevators from 3 to 2 in order to save materials and energy. 

 

 

Figure 86: The design of UAV model  
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Figure 87: Our model seen from another angle 

 

 

 
 

Figure 88: Additional top and side views of the model 
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3.2 Search and Rescue Methodologies 

3.2.1 Transducers and Sensors Descriptions 

In this section, sensors and transducers are discussed. In order to make the drone flies in a 

stable manner, the drone needs to keep sensing the environment and its operating conditions. 

Sensors such as encoders, potentiometers, oil scale are necessary; however, the exteroptive 

sensors will be the main focus. It is very important to keep the drone sensing the environment 

and take actions to different situations. The discussion of some specific sensors will be carried 

out which are pitot tubes, weather sensors, GPS, accelerometer, gyroscope, and the specific 

usages. An accelerometer is a device that measures the proper acceleration. That means when the 

accelerometer is in stationary, the net acceleration is pointing up with the amount of 9.8 m/s^2. 

When the accelerometer is in free fall state, the acceleration is 0 m/s^2. An accelerometer on a 

UAV can helps it know in which direction is the ground. It also helps the onboard computer to 

know the acceleration in X, Y, and Z axis. In real situation, the calculations of the actual 

acceleration are needed especially during flying, raising, or landing. Because the acceleration is 

proportional to the force, a close loop structural is reasonable to control the UAV and the 

propeller.  

For the structure of the accelerometer, the most common type is a 3D-MEMS (Three-

Dimensional Micro Electro Mechanical System) accelerometer. This make use of the 

piezoelectricity. Piezoelectricity is when a force exerted on a crystal, a current can be created. 

Inside the accelerometer it is a structure similar to Figure 89. When a force exerted, the mass in 

the middle moves and each pair of green structure locates at top and bottom are charged and 

have the same function as a capacitor. The ammeter senses the current and can calculate the 

corresponding force.  
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Figure 89: One Dimensional Structure of an Accelerometer 

Gyroscope is a devise to measure the angular velocity and angle displacement in X, Y, 

and Z axis. While the UAV is flying, it is necessary to know the angle in each axis. For example, 

the attack angle can be directly measured by gyroscope. When controlling the UAV, the UAV 

must keep stable and remain in the same attack angle when it is flying in straight line.  

The most common used gyroscope is also a MEMS [61] (Micro Electro Mechanical 

System) which also takes advantages of the piezoelectricity. This kind of gyroscope is called 

vibrating gyroscope. There is a drive arm that keeps a special designed (Double-T shape, tuning 

fork, H-shape tuning fork) structure crystal keep on vibrating. When a rotational acceleration 

exerted, the crystal will twist in different direction and amplitude. The crystal is in the middle of 

a capacitor, so when the voltage potential changes, the current change will be sensed by the 

ammeter connected with the capacitor.   

A pitot tube [62] is a pressure measurement device that used to measure fluid flow 

velocity. When a UAV is flying, it is important to know what is the velocity related to the air. 

Sometimes, calculation of the velocity according the data is collected by accelerometer. 

However, this is the velocity relative to the earth or ground. When the UAV is flying in a steady 

velocity, most of the forces acting on the UAV is exerted on air. Therefore, in order to control 

the UAV well, the relative velocity to the air is much more important compare to the ground 

speed.  

A pitot tube is a tube with one open end and one close end. Inside the tube, it cannot 

measure the flow of the air. However, according to Bernoulli’s equations: 
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Stagnation pressure = static pressure + dynamic pressure 

Equations are listed as follow:  

𝑃𝑡 = 𝑃𝑠 +
1

2
𝜌𝑉2 

Therefore the velocity is shown in Equation 28.  

𝑉 =  √
2(𝑃𝑡 − 𝑃𝑠)

𝜌
 

Where V is flow velocity in m/s, Pt is the stagnation pressure in Pascal, Ps is static 

pressure Pascal, and rho is the fluid density in kg/m. According to the equations above, the 

velocity of the UAV reverent to the air can be easily retained. 

GPS is known as Global Positioning System. It is a global navigation satellite system that 

can provide location and time in all weather conditions. When the UAV flying by its own, it is 

necessary to constantly report its precise locations. In addition, while searching for survivors, it 

has high possibility to search in extreme environment such as heavily rain, extreme cold, and lots 

of mountains or forest. It is necessary to find a reliable device to find the exact location. GPS just 

fit for all these requirements. For a GPS receiver modular, crucial properties must be selected 

such as, size, update rate, power requirement, channels, antennas, and accuracy. These will be 

discussed more into detail in the next section. 

Weather sensors include a lot of sensors. In order to search and save in most efficient 

way, UAV need to know if the environment is out of its working limit. For example, if UAV 

searching in polar zone, the temperature could lower than -40 C degrees. That can make the oil 

freeze, and UAV can fly. Also, in order to save in most efficient way, UAV should report the 

current weather, so people back at station can decided, when and how to save. Just as the 

example raised above, UAV needs to check the environment temperature to keep itself safe. 

Especially, when it is working in extreme cold or warm environment. A thermometer is normally 

a thermoreceptor with an ammeter. As the resistance of the resistor changes with the 

temperature, the current changes. 

Humidity is the percentage of water in air. The amount of water in air can strongly affect 

the performance of precise devices. Therefore, the humidity sensing is critical in order to keep 

the UAV function well. If a UAV enters extreme high moisture zone the UAV should try its best 

to exit that zone and try not enter next time to keep UAV in good performance. There are two 

（27） 

（28） 
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kinds of humidity measuring units. One is the relevant humidity and another one is absolute 

humidity. Although there are more than twenty kinds of methods to measure the humidity in air, 

it is still a hard unsolved task if high precision is required [63]. The extremely high precision for 

humidity measurement is not necessary. The humidity sensing is just a way to keep UAV safe. 

One adaptable kind of humidity sensor based on resistive effect. A thick film conductor is shaped 

to form an electrode. The change of impedance of the conductor is caused by the amount of 

humidity which is movable ions. In real life, humidity is relevant to the temperature. There is a 

special device that can measure both temperature and humidity which is called 

hygrothermograph or thermohygrograph. However, the size of that devise is too large for an 

UAV, we just use the thermometer and hygrograph separately. 

There are also some other sensors that didn’t mentioned above. For example, at the joint 

between the rotatable propellers and the wings both an encoder and potentiometer is needed to 

control the rotation of the direction of propeller. An infrared camera is need to send the real time 

image back to saving station to find survivors. Overall, in this section, sensors and transducers 

needed for UAV are described. In next section, we are going to discuss more about the precision, 

range, and cost of different kinds and brands of sensors.  

 

3.2.2 Specific Performance Evaluation 

The performance of each sensor is directly related to the performance of the UAV. The 

properties of each sensor also limits the performance of UAV. Therefore, the comparing between 

sensors is crucial for UAV. We are going to compare the sensors from the following properties: 

resolution, measuring range, stability, operating temperature, and required input voltage. The 

chart below is three kinds of different accelerometer that can fit in our UAV.  

 

Table 20: Data description of onboard accelerometers of the UAV [64, 65, 66] 

Accelerometer AKE398B AKE390 T356M98 

Measuring Range 
(gravity) 

±2,±4,±8 ±2,±4,±8 ±5 

Resolution (mg) 1,5,15 1,5,15 0.05 

Operating Temperature -40C to +85C -40 C to +85C -20 C to +170C 

Input Voltage 9V – 36V 9V – 36V 8-12 V 

Max Sample Rate 400 Hz 400 Hz 2000 Hz 

Output Signal 4-20 mA 0-5V 8-12V 

Cost 250 250 1200 
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 Specific data needs be collected and verified from the data sheet of each accelerometer 

and build a table that easy for us to compare. First the ranges must be well selected based off of 

the requirements of the UAV. Because the UAV is not designed to be flying in a constant 

velocity. In other words, our design does not require difficult high-velocity maneuver. The 

estimated range of acceleration for our UAV is between -1g to +3g, and all the accelerometer 

above are fit. For the resolution, it is true that smaller resolution is more precise. However, in 

some situations, too much decimal of data some times are useless. The resolution usually 

proportional to the price of device. The first two is absolutely win on this part. Then when the 

temperature is checked, the first two cases do not fit for the desired requirements. Inside the 

UAV, the air friction and heat dissipated by the motor is huge, it might go excess the temperature 

limit. If we want to use the first two accelerometers, we have to build a cooling system. For the 

output signal, there are two types of output signal. One is current output and another one is 

voltage output. Therefore, we think voltage output is more stable and reliable. The voltage signal 

will change less while working in a weak electric field since we can use pull-up resisters to 

stabilize the voltage signals. In conclusion, we are going to use AKE390 produced by Rion-tech. 

The following chart is data for different kinds of gyroscope.  

 

Table 21: Three kinds of gyroscopes that fit for the UAV [67, 68, 69] 

Gyroscope TL732D SDI500 QRS28 

Resolution/Range(degree/s) 0.1 0.1-1000 0.02 

Input Voltage  9V-36V 10V-42V -4.75V-5.35V 

Operating Temperature -40C-+85C -55C-+85C -55C-+85C 

Bias 10 degree/hr 1 degree/hr  N/A 

Random Noise degree/s  N/A 0.0003 0.0005 

 

As the same way carried out for accelerometer, chose three best fit gyroscopes are 

chosen, shown in Table 22. The gyroscope on UAV is just for assisting the UAV maintain its 

balance and aware of its own position. All the resolution is fit for this UAV. For the input 

voltage, the second one might require too much voltage, and is very power consuming. All the 
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working temperature is fit for UAV too. When it comes to bias and noise, even though the exact 

price cannot be found on internet, it is not hard to get the conclusion that the more precise the 

more expensive a device is. As I mentioned above, in order to reduce the cost of UAV, TL732D 

is chosen for our application which is also produced by Rion-tech. 

Most pitot tubes are similar and the main differences are size and range. It is fairly 

reasonable to pick a pitot tube that is commonly used for UAV. It is produced by UAV factory 

and called Heated Pitot – Static Probe [70]. This has the weight of 58 grams and length of 

238mm with the working temperature of -50 C to +85 C. Because this is a digital pitot tube, the 

operating voltage is 12V and signal output is 5V. 

GPS is also an important sensor on UAV because it can send the location of the UAV 

back to ground station. There are lots of GPS receiver modular selling on internet, the main 

difference is the sample rate and the number of channels. The Venus GPS [71] produced by 

SparkFun is selected. This modular has up to 20Hz update rate and precision of 2.5 meter. This is 

a low power consuming device with only 3.3V required power supply.  

The thermos sensor is very cheap and the only thing needs be considered is its operating 

temperatures. The ideal range should be lower than -70C and higher than 200C. However, the 

digital thermometers are also need for the electrical wire and chips. It is hard to find a 

thermometer that works at a temperature lower than -40C. Therefore, temperature lower bound 

can be assumed as 40C. We choose the cheapest one which is produced by SparkFun called 

TMP36 [72]. 

The hydro sensor is a little bit complicated, and it is hard to find a small device that 

measure precise humidity. The humidity sensor needed is just for protect the devices inside the 

UAV. HH10D [73] is selected which also produced by SparkFun. It requires 2.7-3.3 volts and 

with the accuracy of +-3%. 

 

3.2.3 UAV Cooling System 

The cooling system on the UAV is very important because all the electrical devices, the 

motor and the air fraction all produce a lot of heat. It will be a problem that can burn all the chips 

in UAV if there is a management issue. Therefore, our team decided to use a thermoelectric 

cooling device that transfer the heat around the chip to the air that going to flow into the turbo 

engine.  
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This device takes advantage of thermoelectric effect. When a current is made to flow 

through a junction between two conductors, heat may be generated or removed at the junction. 

The cooling side of the modular is attached to the electrical devices. On another side of the 

cooling device, which the warm side, we use copper to transduce heat. Shown in Figure 91. Our 

team decided to use 12V 60W cooler called TEC1-12706 [74] cooling Peltier plate.  

 

 

Figure 90: The cooling system in the UAV 

 

3.3 UAV Control and Electric Parts 

3.3.1 UAV Control Elements 

In this section, the first part is to introduce the relationship between Chapter 3.1, 3.2, 3.3 

and 3.4 seen in Figure 91. From the Figure 91, the embedded board receives all the sensor data and 

processes to achieve the reliability, safety, motion and tasks. Specifically, for the motion, the 

GPS, accelerometer, pilot tube and Gyroscope data are sent to the embedded board. The data 

from GPS includes the altitude of UAV. The data from accelerometer includes the acceleration 

of UAV. The data from pilot tube includes the velocity of UAV. The data from Gyroscope 

includes the pose of UAV. These values are important feedback in control system. 
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Figure 91: The relationship between each element in UAV 

 

 

From the concept in the Figure 91, the Figure 92 is brief relationship between devices. 

Sensor data is discussed in the Chapter 3.2. Data transmission and real-time image will be 

analyzed in Chapter 3.4. The following section will introduce the electric board battery and 

control in detail. 



  88  

 

 
Figure 92: The relationship between each device 

 

The second part is to introduce the electricity our team used in the UAV and discuss them 

with model our team built. This is important to build 3D model of electrical parts, because these 

electrical parts can be placed within the UAV in order.  

 

 

Figure 93: 3D angle of view of the UAV control board 
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Figure 94: Application of NVIDIA Jetson TK1 

 

The main board the team choose is NVIDIA Jetson TK1. The reason to choose it is that 

this gives a completely functional NVIDIA CUDA® platform for rapidly developing and 

deploying compute-intensive systems for computer vision, robotics, medicine, and more. The 

function of this board is to dispose the data from camera and send the useful data to the station, 

for example the position of rescue point. From the model our team have, the NVIDIA Jetson 

TK1 seen in Figure 93 is like a 136mm* 123mm * 37mm rectangle. The mass is 120g. The power 

of the board is approximately 7W. The practical application of NVIDIA Jetson TK1 is extensive. 

For example, it is used in prototype Axiom Gamma 4K open source camera hardware seen in 

Figure 94. And it is widely used in the deep learning, because the computing power of this board 

is strong. Since there are lots of image computing in UAV, NVIDIA Jetson TK1 would 

definitely be a good choice. [75] The specific kit content is showing in the Table 23. This table 

would be helpful for the board communication. 

 

Table 22: NVIDIA Jetson TK1 kit content [76] 

Memory  Port Others 

-2 GB x16 Memory with 64-

bit Width 

-16 GB 4.51 eMMC Memory 

-1 Full-Size HDMI Port 

-1 USB 2.0 Port, Micro AB 

-1 USB 3.0 Port, A 

-1 RS232 Serial Port 

 

-1 ALC5639 Realtek 

Audio Codec with Mic In 

and Line Out 

-1 Full-Size SD/MMC 

Connector 
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Figure 95:  3D angle of view of battery 

 

 

Figure 96: Application of battery 

 

Since the UAV is powered by the fuel engine, the battery just provides power of board in 

emergency. The size of battery seen in Figure 95 should be small with low capacity. It is a 

103mm*32mm*21mm rectangle. The capacity of this battery is 4000mAh, and the weight is 

244g. There are many applications of this battery, which show in the Figure 96. It is widely used 

in the electric car. It has enough power to drive the motor and servo. Other specification is 

showing in Table 24. This table would be a good material for electrical analysis. 
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Table 23: The datasheet of the battery of the UAV  

Minimum Capacity: 4000mAh 

Configuration: 3S1P / 11.1V / 3Cell 

Constant Discharge: 10C 

Peak Discharge (10sec): 20C 

Pack Weight: 244g 

Charge Plug: JST-XH 

Discharge Plug: XT60 

Weight (g) 244 

 

 

Figure 97: The 3D angle of view of Arduino Mega 

 

The assistant board the research choose is Arduino Mega seen in Figure 97. The reason 

selecting Arduino Mage is that it is light, small and easy to control the UAV. The main function 

of this board is to control the UAV, like brain, getting the value from the sensors on the UAV 

and outputting signal to the fuel engine and servo. The size of board is 102×54 mm from the 

Figure 97. Weight is 37g, which is very light. The table 25 is contrast of two similar board. From 

this table, Microcontroller ATmega2560 has more pin, better to control the servo and more serial 

port, so ATmega2560 would be better. 
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Table 24: The data contrast of two small electrical board 

Microcontroller ATmega2560 

Operating Voltage 5V 

Input Voltage (recommended)7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 54 (of which 15 

provide PWM output) 

Analog Input Pins 16 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 256 KB of which 

8 KB used by bootloader 

SRAM 8 KB 

EEPROM 4 KB 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Microcontroller ATmega328P 

Operating Voltage 5V 

Input Voltage (recommended)7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 14 (of which 6 

provide PWM output) 

Analog Input Pins 6 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 32 KB 

(ATmega328P) 

of which 0.5 KB used by bootloader 

SRAM 2 KB (ATmega328P) 

EEPROM 1 KB (ATmega328P) 

Clock Speed 16 MHz 

LED_BUILTIN 13 

 

And the camera our team used is like hemispheroid with 69.7mm radius seen in Figure 98. 

The more specific application of this camera will be analyzed in Chapter 3.4 

 

Figure 98: 3D angle of view of the UAV camera 
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3.3.2 UAV Control Analysis  

The importance and theory of PID is analyzed in the Chapter 2.2. In this chapter, it is 

suggested that gain scheduling has a significant role in the PID controller. Gain scheduling is a 

PID enhancement that helps the control of a process with gains and time constants that vary 

according to the current value of the process variable. 

A gain scheduler provides the best of both worlds. It allows the controller to be tuned for 

any number of operating ranges so that an optimal set of tuning parameters can be downloaded 

into the controller depending on the current value of the process variable [77]. All of the UAV 

controls are processed by the Arduino Mega. Therefore, it is not allowed to apply the Matlab 

algorithm directly, for example the PID controller. It supposes to have independent function and 

library in the Arduino Mega. The Table 26 is an example of how to apply own control function 

into UAV board. 

 

Table 25: Example code for PID speed and altitude controller in C programming 

// struct: 
pidData pid_Data; 
 
// functions: 
void setConst(char Mode, double Kp, double Ki, double Kd); 
double calcPID(char Mode, int setPoint, int actPos); 
void initPID(unsigned char Mode); 
 
void setConst(char Mode, double Kp, double Ki, double Kd){ 
 // the function to update the gain settings 
 if (Mode == 'A'){   // altitude PID 
  pid_Data.Kp_H = Kp; 
  pid_Data.Ki_H = Ki; 
  pid_Data.Kd_H = Kd; 
 
 } else if (Mode == 'S'){ // speed PID 
  pid_Data.Kp_L = Kp; 
  pid_Data.Ki_L = Ki; 
  pid_Data.Kd_L = Kd; 
 } 
} 
 
void initPID(unsigned char Mode){ 
 // the function to initial the PID variable 
 if (Mode == 'A') {   // altitude PID 
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  pid_Data.prev_err_H = 0; 
  pid_Data.sum_err_H = 0; 
    } 
 else if(Mode == 'S') { // speed PID 
     pid_Data.prev_err_L = 0; 
     pid_Data.sum_err_L = 0; 
 
 } 
} 
 
double calcPID(char Mode, double setPoint, double actPos){ 
 double u; 
 double err = setPoint - actPos;; // calculate error 
 if (Mode == 'A'){   // altitude PID 
  pid_Data.sum_err_H = pid_Data.sum_err_H + err; // 
calculate sum of error 
  u = (pid_Data.Kp_H * err) + (pid_Data.Kd_H * (err 
- pid_Data.prev_err_H)) + (pid_Data.Ki_H * 
(pid_Data.sum_err_H)); 
  pid_Data.prev_err_H = err;  // store the last 
error 
 } 
 else if (Mode == 'S'){  // speed PID 
  pid_Data.sum_err_L = pid_Data.sum_err_L + err;  // 
calculate sum of error 
  u = (pid_Data.Kp_L * err) + (pid_Data.Kd_L * (err 
- pid_Data.prev_err_L)) + (pid_Data.Ki_L * 
(pid_Data.sum_err_L)); 
  pid_Data.prev_err_L = err;// store the last error 
 } 
 else u = 0; 
 return u;  // return PID output 
} 

 

Ziegler-Nichols would be a good method to determine the 𝐾𝑝 , 𝐾𝑖 , 𝐾𝑑 value in the 

programming. The Ziegler–Nichols tuning method seen in Table 27 is a heuristic method of 

tuning a PID controller. The "P" (proportional) gain,  𝐾𝑝 is then increased (from zero) until it 

reaches the ultimate gain Ku, at which the output of the control loop has stable and consistent 

oscillations. 
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Table 26: PID gain according to Ziegler-Nichols method 

PID parameter  𝐾𝑝 𝐾𝑝/𝐾𝑖 𝐾𝑑/𝐾𝑝 

P Time/delay time infinite 0 

PI 0.9TC/delay time Delay time/0.3 0 

PID 1.2TC/delay time 2 delay time  0.5 delay time 

 

There are three modes for this UAV: vertical, horizontal and transition seen in Table 28. 

The horizontal flight mode is most efficient and UAV can take long term operations above a high 

speed. The transition mode ensures stationary operation. Vertical mode is used to take off and 

land. 

 

Table 27: The fight mode and speed of the UAV 

Fight Mode Horizontal speed 

Vertical  0 – 1.4m/s 

Transition 0- 16m/s 

Horizontal 10m/s- 35m/s 

 

  

 

Figure 99: The free body diagram of the UAV 

 

The coordinate system of UAV is depicted in Figure 99. The adaptive control law is designed by 

taking the pitch channel is 

          𝑢1̅̅ ̅ =  𝑘𝑟 + 𝑓0𝑦𝑝 + 𝑓1𝑦̇𝑝                                                       (29) 



  96  

 

In this case, k is the feedforward gain, r is the reference input, 𝑓0 and 𝑓1 are feedback gains. The 

way is to adjust parameter k, 𝑓0 and 𝑓1 so that the system output can track the simulation. The 

following is the differential equation 

                                                             𝑧̈ + 𝑎1𝑧̇ + 𝑎0𝑧 = 𝑏𝑟                                                             (30) 

Coefficients 𝑎0 𝑎1 and b should be gotten bash on control performance index of pitch channel. 

 

The equation below is the common two-order system: 

                                                   φ(s) =  
𝜔𝑛

2

𝑠2+2𝜀𝜔2+𝜔𝑛
2                                                             (31) 

The damping analysis and simulation can be done after that 

 

The MatLab Simulink seen in Figure 100 is very important in the UAV control analysis. 

The reason is that the UAV flight system is complicated. There are a lot of elements 

 

Figure 100: Basic sketch of MatLab Simulink for speed control 

 

3.4 UAV Data Transmission  

3.4.1 Long Range Remote Control Description 

 Different long range remote control systems are suitable for different scenarios. When the 

required range is below 100 meters, 2.4/5 GHz RC(Radio Control) is the most common solution. 

 



  97  

 

 

Figure 101: 2.4GHz/5.8GHz frequency wireless communication structure 

 

As Figure 101 shows Phantom 2 which uses 2.4 GHz to control the UAV and 5.8 GHz to 

stream video data. Portable NX Pocket Drone, Parrot Disco FPV all used 2.4 GHz wireless 

communication protocol. Wi-Fi family is one of the most famous protocols on this frequency, 

which support stable transmission and 10-105 Mbps speed. Modified Wi-Fi, which is an 

experimental project in UCLA, can support at most 5000 meters range. However, flying range 

for an UAV usually is larger than that. Satellite communication has very long communication 

distance, which supports over 1500 kilometers range according NASA 2009 technical report.  
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Figure 102: Structure of UAV-Satellite Communication 

 

Figure 102 shows the structure of UAV-Satellite communication. Safe UAV operation is 

key to operations in shared airspace. Reliable communications between the control station and 

the aircraft are essential for operators to have feedback control. The CNPC-1000 data link 

implements the Control and Non-Payload Communications (CNPC) waveform in an optimized 

package for the small to large unmanned aircraft. This technology is used and recommended by 

NASA. 
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Figure 103: Ranges for various radio frequency 

 

Shown in Figure 103, RF (Radio Frequency) control on public band is our best choice for 

long range control transmission.  Range of Wi-Fi is not enough to support long distance for our 

operation. The real rescuing situation is complex and unpredictable. A distance of 200 meters 

cannot give relative high probability for rescuing patients in the scene of an incident. Modified 

Wi-Fi is able to handle the UAV data transmission but lack of stabilities. In rescuing operation, 

stable communication with base station plays an unsubstituted role. Receiving real time 

information, including video streaming of circumambient scenario and thermal image, can 

support the critical clue that shows where the survivals are. Satellite solution, from figure 104, 

out team believe it is best solution due to its stability. However, huge cost and fundamental 

setups will make the cost incredibly high. In the other hand, satellite can support almost the best 

effect among these solutions in summary.    
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Figure 104: Speed for various radio solution 

 

Figure 104 indicates one problem for RF control. The problem is the effect of low speed 

data transmission. The RF controlling method is relatively slower than the other two solutions. 

However, controlling an UAV only require low level of data transmission, only 50 kbps ensured 

rate can support stable UAV control. Stable video and image transmissions need larger 

transferring rate of data. To be more specific, a stable 720p video needs transferring rate at least 

larger than 800 kbps; therefore, 1 mbps would be the ideal rate. Although Wi-Fi protocol can 

easily achieve this goal, the available communication distance is a critical. Our team self-

developed a wireless protocol or wireless module used in wireless transmission which is relied 

by UAV. Highly customized ability can perfectly fits the complex requirements needed by 

searching and recurring operation.  
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Figure 105: Power consumption for different frequency 

 

From the power consumption point of view, Wi-Fi and other RF family protocols have 

similar power requirements, because they are all on 2.4 GHz or 5 GHz. Satellite has larger power 

consumption requirements because it needs signal amplifier to send signal to satellite. In same 

power consumption requirements, Wi-Fi and RF solutions have better performance and relatively 

low latency. Low latency is another important factor that affects the quality of wireless 

communication systems. If the video and the images received by base station are five or 10 

earlier, base station will make the decision slower than the expected time. This our team believe 

will increase the probability of successful search and rescue operations.  

 

3.4.2 On Board Computational Systems 

             Jetson TK1 embedded system. Support high performance GPU and CPU computation. 

Powerful port system provides us high scalable ability to extend the functions using sensors 

attached to the embedded system. 

 

 

 

 

 



  102  

 

Table 28: List of components onboard the UAV 

Items Port 

Time of Flight 3D Camera Gigabit Ethernet  

Thermal Imaging Camera Gigabit Ethernet  

Accelerator USB 

RC Receiver USB 

Battery  Power Port 

360 Degree Camera(Panoramic 360° HD 

Video Camera - Black) 

Gigabit Ethernet  

Gyroscope USB 

 

The Table above shows the sensors that are connected to the embedded system. Multiple 

cameras are used to ensure high probability of finding survivals. The accelerator gives real time 

feedback about the current status of the UAV.  

 

 

Figure 106: Different weights for different components 
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According to the Figure 106, embedded system takes the most part of weight. It contains 

many units such as computing unit, wireless unit and storage unit. Compared to embedded 

system, battery only takes 8.7% of total weight. It means drone can easily extends its power 

capacity. 

 

 

Figure 107: Relations among components in UAV 

 

According to the Figure 107, the core of the embedded system is Jetson TK1, which is a 

kind of Linux embedded system with a strong ability of GPU and CPU computation. One of the 

most important reasons for choosing Jetson TK1 is its high GPU computing performance. Object 

detection algorithm and other computer vision related algorithms will get accelerated by using 

GPU computing. Parallel GPU programming can significantly speed up the processing of the 

algorithm which support parallel programming. Quicker process speed of graph algorithm 

performs better understanding of real time situation. Low latency and low delay can help base 

station quicker and more precise to find possible survivals.   
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Figure 108: Speed Comparison between CPU and GPU 

 

Gyroscope and GPS are mainly use to detect the status of the UAV. Gyroscope can 

support the detection of acceleration, rotating angle, and speed. GPS gives base station the global 

position of the UAV. Combination of these two components would let the base station monitor 

the status of the UAV in real time. Also, the embedded system will support other critical 

information systems like battery life and the status of other components such as cameras, 

wireless communication.  
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Figure 109: Visual Representation of Power Flow[3333] 

 

 Figure 109 shows that although multiple components can support abundant functions that 

needed by rescuing operations, complexity of system is increasing at the same time, especially 

for energy transmission.  The structure of all of those component connected to the embedded 

system means all the power output is supported by embedded system. The highly custom ability 

of Linux kernel support voltage management system. Kernel Regulator framework is designed to 

solve this problem. This framework provides a standard kernel interface to control voltage and 

current regulators. It allows systems to dynamically control the power output in order to save 

power and prolong battery life. The framework is divided into four separate interfaces, namely: 

consumer interface for device drivers, regulator driver interface for regulator drivers, machine 

interface for board configuration and sysfs interface for user space. In Linux, kernel space and 

user space are spate from each other. The reason for that is to protect system stability and give 

user high scalability to extend the original system kernel at the same time. 

 Consumers are client device drivers that user regulators to control their power supply. 

Consumers are constrained by the constraints of the power domain. For view of stability and 
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scalability, consumers can’t request power setting that may damage themselves, other 

consumers, or the system. If consumers have right to access and change these key information of 

the system, whole UAV system is vulnerable. This is unexpected when the UAV is in operation. 

 

Table 29: Functions used to control voltage in Linux 

Regulator Access: regulator_get(dev, name) regulator_put(regulator) 

Regulator Control: regulator_enable(regulator) regulator_disable(regulator) 

 regulator_set_voltage(regulator *, int 

min_voltage, int max_voltage) 

regulator_force_disable(regulator) 

 regulator_set_current_limit(regulator *, 

int min_a, int max_a) 

 

Regulator Status: regulator_is_enabled(regulator) regulator_get_voltage(regulator*) 

 regulator_get_current_limit(regulator *)  

 

From Table 30, Linux system kernel give developers a complete tool chain to control the 

voltage between component and system port. Depending on those robust application program 

interface (API), system can customize the output voltage for different component connected to 

itself. 
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3.4.3 UAV Data and Signal Transmission 

 

Figure 110: UAV signal transmission structure 

 

         UAV data and signal transmission are two independent phases, non-interacting systems. 

This ensures the stability and security of the UAV when one of them occurs unexpected problem, 

such as loss of data transmission. If data stream is offline or broken, base station still have 

backup stream system which is command stream to ensure that the UAV can be properly 

controlled. Show in Figure 111, the data transmission is established by 5 GHz wireless 

transmission with security protocol SSL; also, there will be two such transmission established 

between the base and the UAV for failure prove purposes. Specifically, the flight parameters will 

be transmitted to base station in real time, as well as the thermal image data stream, large data 

stream like high resolution video and 3D data will be cached directly on storage which is inside 

the UAV.  
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CHAPTER 4. CONCLUSION 

Based upon research background on UAV applications and designs, our team successfully 

design a UAV system that can be remotely controlled and operated at a radius of about 50 

kilometers. This UAV would provide an opportunity for emergency medicine services teams to 

respond to a scene of an incident in a timely manner. The UAV is also designed for search and 

rescue purposes, and delivering medical supplies. It is the understanding of our team that the 

Rwanda Zip-line UAV has the capability operating within a radius of 30 kilometers and able to 

maintain a 30 minutes operation time. In the contrast, the UAV designed from this project is able 

to carry more payload, stay in the air for longer time period, and also equipped with life 

detecting abilities than the Rwanda Zip-line UAV 

Overall this project can be viewed as an improvement with respect to current technologies. 

However, there are number of areas that can be improved in the future. First and foremost, the 

UAV design needs to be improved by using wind tunnel examination or air flow simulations. 

Second, improving the security protocol on wireless transmission is also necessary. This 

promises a successful search and rescue operation. Finally, an energy recycling system can also 

be developed in the future. The proposed UAV uses butane as the fuel. Our team hope that 

renewable forms of energy can be used to enhance the functions and efficiency of the 

UAV.  However, among the design and reasoning given in this IQP, the solution is reasonably 

acceptable. We believe our suggestions and solutions will enhance the quality of emergency 

medical UAVs.   

 

 

 

 

 

 

 

 



  109  

 

REFERENCES 

[1] A. Idries and N. Mohamed, "Towards Risk Knowledge Management in Unmanned Aerial 

Vehicles Applications Development," Collaboration Technologies and Systems Conference 

(CTS), June 2015.  

 [4] S. Jesse, "How a Quadcopter Works | Clay Allen," 20 January 2015. http://ffden-

2.phys.uaf.edu/webproj/212_spring_2014/Clay_Allen/clay_allen/works.html.  

[5] J. Villbrandt, "Illumin - The Quadrotor’s Coming of Age," 1 July 2010. 

[6] V. Olivares, F. Cordova, J. M. Sepulveda and I. Derpich, "Modeling Internal Logistics by 

Using Drones on the Stage of Assembly of Products,"  3rd International Conference on 

Information Technology and Quantitative Management (ITQM), Chile, 2015. 

[8] M. S. Fofana, "Calculating Feedback Controller and Compensator," MyWPI Control 

Engineering, Class Notes, 15 April 2011. 

[9] T. Takotomamonjy, M. Ouladsine and T. L. Moing, "Longitudinal modelling and control of a 

flapping-wing micro aerial vehicle," Control Engineering Practice, vol. 18, no. 7, pp. 679-690, 

July 2010. 

[10] Airforce Technology.com, "X-47 Pegasus UCAV." Accessed April 21, 2016 

http://www.airforce-technology.com/projects/x47/. http://www.airforce-

technology.com/projects/x47/. 

[12] "The UAV - The Future of the Sky," 21 April 2016. Website | 

http://www.theuav.com/fire_scout_uav.html. 

[13] "EADS Talarion - Development and Operational History, Performance Specifications and 

Picture Gallery," Website | http://www.militaryfactory.com/aircraft/detail.asp?aircraft_id=1087. 

[Accessed 21 April 2016]. 

[14] G. Rob, "Solar Plane Aims for New Record: Three Months Aloft Without a Pilot or Fuel," 7 

July 2010. https://www.element14.com/community/docs/DOC-43347/l/solar-plane-aims-for-

new-record-3-months-aloft-without-a-pilot-or-fuel 

[15] "Official Phantom UAVs specifications.," 

http://research.omicsgroup.org/index.php/Phantom_(UAV), Accessed 7 March 2015 

[18] "Rapid Manufactured Fixed Wing Powered UAV," AMRC Design and Prototyping Group, 

Available: http://www.amrc.co.uk/wp-content/uploads/AMRC_DPG_PoweredUAV-v2.pdf. 

http://research.omicsgroup.org/index.php/Phantom_(UAV)


  110  

 

[19] “Adhesively Bonded Joints in Aircraft Structures," Available: 

http://link.springer.com/referenceworkentry/10.1007/978-3-642-01169-6_44. [Accessed 21 April 

2016]. 

[20] "Design Analysis of the Zeke 32 (Hamp - Mitsubishi A6M3)," [Online]. Available: 

http://rwebs.net/avhistory/history/zeke32.htm. [Accessed 21 April 2016]. 

 [24] H. Chen, X. Dong, X. Xu and M. Mir, "3D Scanning Based on Computer Vision", Quora 

2012. 

[25] H.-U. Meier, “Die Pfeilflügelentwicklung in Deutschland bis, Einspruch 1984”, Gegen US-

Patentschrift NASA über, 1945. 

[26] L. S. PhD, “Common Application of Airplane Wing Tips”, ZhiHu Inc, October 17, 2014.  

[27] M. Y. a. A. C, “Air Flow Applications on Fighter Jets”, ZhiHu Inc, September 5, 2015.  

[28] S. Ye, “Engine and Propeller Location Applications”, ZhiHu Inc, July 25, 2014.  

[29] S. L. a. Z. C. “Changsong Xie, Engine Application Difference for Aircrafts”, ZhiHu Inc, 

May 27, 2013.  

[30] M. Wei, “Structure Difference Between UAVs and Commercial Aircraft”, ZhiHu Inc, 

August 11, 2014.  

[31] A. Salehian, “Vibration Analysis for Quadrotor Arm in an Unmanned Aerial Vehicle 

(UAV)”, University of Waterloo, ON, Canada: Technical report, submitted to Aeryon Labs, 

December 19. 2012. 

[32] A. Salehian, “System Identification and Active Isolation of a High Altitude Reconecense  

Camera”, Illinois, USA: Phase III Technical report, submitted to Recon Optical Inc, March 10, 

2005, http://www.airforce-technology.com/projects/u2/ 

[33] A. Salehian, “System Identification and Active Isolation of a High Altitude Recon Cense 

Camera”, Illinois, USA: Phase I and II Technical report, submitted to Recon Optical Inc, January 

7, 2005. http://www.airforce-technology.com/projects/u2/ 

[34] B. Gunston, “The Cambridge Aerospace Dictionary Cambridge”, Cambridge University 

Press, 2004.  

[37] M. Sadraey, “Aircraft Design: A System Engineering Approach”, Wiley Publication, 

Rudder Design Chapter 12 Design of Control Surfaces, September 2012.  

[38] NASA, National Aeronautics and Space Administration, 5 May 2015. Available: 

https://www.grc.nasa.gov/www/k-12/airplane/trbtyp.html. 



  111  

 

 [40] G. W. J. H. G. PinYing Yang, “Design of a Solar Power Management System for an 

Experimental UAV”, Tamkang University, Taiwan, October, 2009.  

[41] "Fuel Cell System with Sodium Borohydride as Hydrogen source for Unmanned Aerial 

Vehicles," in Fuel Cells Science & Technology, vol. 196, 2011, pp. 9069-9075. 

[42] "Energy Information Administration," , US Department of Energy, 29 July 2015, Available: 

http://www.eia.gov/Energyexplained/?page=about_energy_units. 

[43] "Lead-Free gasoline Material Safety Data Sheet," NOAA., 2008.  

[45] C. Collins, "Implementing Phytoremediation of Petroleum Hydrocarbons," Methods in 

Biotechnology (Humana Press), pp. 99-108, 2007.  

[46] "Fuel Oil Combustion," Kerosene Blending.  

[47] " Emissions Inventory Testing at Long Beach Turbine Combustion Turbine No. 3. 

CARNOT," Tustin, 1989. 

[49] "GAO-13-294SP, Defense Acquisitions Assessments of Selected Weapon Programs," US 

Government Accountability Office, Northrop Grumman USAF, 2013, pp. 113-114. 

[50] N. Grumman, "Global Hawk, Specifications (Multi-INT and Wide Area Surveillance 

Models)," Northrop Grumman Corporation, 2016. [Online]. Available: http://www.north 

ropgrumman.com/Capabilities/GlobalHawk/Pages/default.aspx. 

[51] C. R. W. Wilson, "Eyes in the Sky Aerial Systems," Military Intelligence Professional 

Bulletin, 1996. 

[52] Northtrop Grummnan, "Global Hawk," Aeronautical Systems Center Laboratory, United 

States Air Force, USA. 

http://www.northropgrumman.com/Capabilities/RQ4Block20GlobalHawk/Pages/default.aspx 

[53] Northrop Grumman, "Precisionhawk," PrecisionHawk 2016, Aeronautical Systems Center 

Laboratory, United States Air Force, USA, Available: http://www.precisionhawk.com/lancaster. 

[54] "Official Phantom UAVs Specifications.," Dà-Jiāng Innovations (DJI) Science and 

Technology Co., China , 2015.  

[55] B. Coxworth, "DJI Announces Stabilized HERO Mount, and Camera-Equipped Phantom 

Quadcopter"n New Atlas, 2015. 

[56] A. Fitzpatrick, "Finally, a Drone You Can Own," 30 January 2014, 

http://techland.time.com/2014/01/30/dji-phantom-vision-quadcopter-drone-review/ 

[57] "Spreading-Wings s1000 Plus," DJI Technology. [Online]. [Accessed 2 March 2015]. 



  112  

 

[58] "Spreading-Wings s1000 Plus," 22 January 2015. [Online]. Available: 

http://wiki.dji.com/en/index.php/Spreading_Wings_S1000%2B. 

 [59] "Design Build Fly Master Qualifying Project" WPI Aerospace Engineering,  2014. 

[60] J. G. Fairman, "Lift Formula," NASA, [Online]. Available: 

https://www.grc.nasa.gov/www/k-12/WindTunnel/Activities/lift_formula.html. 

[61] Y. Tan, Y. Dong and X. Wang, "Review of MEMS Electronmagnetic Vibration Energy 

Harvester," Journal of Microelectromechanical Systems, vol. PP, no. 99, pp. 1-16, 2016. 

[62] A. Cho, J. Kim, S. Lee and C. Kee, "Wind Estimation and Airspeed Calibration Using a 

UAV with a Single-Antenna GPS Receiver and Pitot Tube," IEEE Transactions on Aerospace 

and Electronic Systems, vol. 47, no. 1, pp. 109-117, 2011. 

[63] O. He, Z. Wang and J. He, "Temperature and Humidity Profiles Retrieving Over Land 

Using Clear Sky Measurements of Microwave Humidity-Temperature Sounder on Chinese FY-

3C Satellite," IEEE International Geoscience and Remote Sensing Symposium, pp. 4161-4164, 

2016. 

[64] "MEMS Current Type Accelerometer," RION Tech. http://en.rion-

tech.net/products_detail/productId=75.html 

[65] "MEMS Voltage Type Accelerometer," RION Tech. http://en.rion-

tech.net/products_detail/productId=75.html 

[66] "Low Outgassing Triaxle ICP Accelerometer Installation and Operating Manual," PCB 

Piezotronics Inc.. http://www.imi-sensors.com/Products.aspx?m=356M208_NC 

[68] "MEMS Quartz Tactical Inertial Measurement Unit," Syttron Donner Inc., 

http://www.systron.com/sites/default/files/sdi510_b.pdf 

[69] "MEMS Quartz Dual Axis Rate Sensor," Syttron Donner Inc., 

http://www.systron.com/sites/default/files/sdi510_b.pdf 

[70] Static Pressure Probe A-520 Datasheet, DN520.5, MAMAC System.  

[71] Channel Low Power GPS Receiver VENUS634FLPx 65 Datasheet, Version 0.5, Sky Traq 

Technology, Inc., Taiwan 

[72] Low Voltage Temperature Sensors TMP36 Datasheet, Analog Devices.  

[73] H. RF, Humidity Sensor Module HH10D Datasheet, Version 2.0.  

[74] L. Hebei, Thermoelectric Cooler., I.T Co., Shanghai, China 

http://peltiermodules.com/peltier.datasheet/TEC1-12705.pdf 



  113  

 

[75] Antmicro, “Antmicro at Embedded World 2016 – Sneak Peek”, 18 February, 2016.  

[76] Nvidia,”Kitcontents”, 2016. Available: http://www.nvidia.com/object/jetson-tk1-embedded-

dev-kit.html. 

[77] P. Vance VanDoren, “Back to Basics: How gain scheduling works”, 21 December, 2010.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  114  

 

APPENDICE  

Dijkstra Functions 

 

2 

3      create vertex set Q 

4 

5      for each vertex v in Graph:      // Initialization 

6          dist[v] ← INFINITY               // Unknown distance from source to v 

7          prev[v] ← UNDEFINED          // Previous node in optimal path from source 

8          add v to Q                           // All nodes initially in Q (unvisited nodes) 

9 

10      dist[source] ← 0                        // Distance from source to source 

11       

12      while Q is not empty: 

13          u ← vertex in Q with min dist[u]    // Source node will be selected first 

14          remove u from Q  

15           

16          for each neighbor v of u:           // where v is still in Q. 

17              alt ← dist[u] + length(u, v) 

18              if alt < dist[v]:               // A shorter path to v has been found 

19                  dist[v] ← alt  

20                  prev[v] ← u  

21 

22      return dist[], prev[] 

 

Any little improvements in this searching algorithm will benefits the UAV to auto-generating 

flying route.  

 

However, dijkstra’s algorithm only can solve problem in idea scenario. When UAV meets some 

obstacles so that it need to change its direction or altitude. Keeping changing state of UAV will 

accurate loosing power. What we want is to let UAV can fly in given route as long as possible. 

In order to avoid that, A-star search algorithm is introduced to solve this problem.  
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function A*(start, goal) 

   // The set of nodes already evaluated. 

   closedSet := {} 

   // The set of currently discovered nodes still to be evaluated. 

   // Initially, only the start node is known. 

   openSet := {start} 

   // For each node, which node it can most efficiently be reached from. 

   // If a node can be reached from many nodes, cameFrom will eventually contain the 

   // most efficient previous step. 

   cameFrom := the empty map 

 

   // For each node, the cost of getting from the start node to that node. 

   gScore := map with default value of Infinity 

   // The cost of going from start to start is zero. 

   gScore[start] := 0  

   // For each node, the total cost of getting from the start node to the goal 

   // by passing by that node. That value is partly known, partly heuristic. 

   fScore := map with default value of Infinity 

   // For the first node, that value is completely heuristic. 

   fScore[start] := heuristic_cost_estimate(start, goal) 

 

   while openSet is not empty 

       current := the node in openSet having the lowest fScore[] value 

       if current = goal 

           return reconstruct_path(cameFrom, goal) 

 

       openSet.Remove(current) 

       closedSet.Add(current) 

       for each neighbor of current 

           if neighbor in closedSet 

               continue        // Ignore the neighbor which is already evaluated. 

           // The distance from start to a neighbor 

           tentative_gScore := gScore[current] + dist_between(current, neighbor) 

           if neighbor not in openSet    // Discover a new node 

               openSet.Add(neighbor) 

           else if tentative_gScore >= gScore[neighbor] 
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               continue        // This is not a better path. 

 

           // This path is the best until now. Record it! 

           cameFrom[neighbor] := current 

           gScore[neighbor] := tentative_gScore 

           fScore[neighbor] := gScore[neighbor] + heuristic_cost_estimate(neighbor, goal) 

 

   return failure 

 

function reconstruct_path(cameFrom, current) 

   total_path := [current] 

   while current in cameFrom.Keys: 

       current := cameFrom[current] 

       total_path.append(current) 

   return total_path 

 

A-star algorithm use heuristic way to evaluate the cost of edges. It only keep edge with smallest 

cost in final route.   

 

 


