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Abstract

Machine learning is an interdisciplinary approach in building mathematical models from known
inputs to make data-driven predictions and decisions. In this project, we provide a background for
the different forms of machine learning and the plethora of scientific applications it is used for. We
then narrow our view specifically to item recommendation systems and present the mathematical
and statistical methods used to generate predictive recommendations to a system’s users. The project
culminates in a sample recommendation system we programmed in MATLAB utilizing publicly available
movie and joke rating data sets.



Executive Summary

Today we live in an age abundant with data. Due to the increasing use of web and cloud based
services, as well as advances in computer and sensor technology, a wealth of new data is being gathered
throughout academia, business, and government. With there being such a large influx of data, the
term ’big data’ has been used as a common term to describe data sets which are so large in volume,
are generated very quickly, or are so complex that traditional data processing techniques are inade-
quate in revealing the underling patterns and trends. In order to handle this big data for use in a
variety of applications, many have utilized and built upon the methods and techniques developed in
a domain called machine learning. Machine learning focuses on making data-driven predictions and
decisions based on known and unknown properties in data collected. Machine learning algorithms take
techniques and theorems found in linear algebra, probability theory, statistics, and numerical analysis.

This paper serves to be an introduction into both the applications as well as some of the fundamen-
tal mathematical techniques underpinning various machine learning practices. In this paper, the three
major machine learning systems, supervised, unsupervised, and reinforcement learning are described.
These systems are categorized based on the type of feedback or knowledge the user has access to. The
applications of these systems are then discussed from varying perspectives. Applied mathematicians
can utilize machine learning to find near-optimal solutions to classical NP-hard problems such as the
traveling salesman problem. Game theorists can simulate or model finite evolutionary games using
these techniques as well. There have also been several medical and biological applications that can bet-
ter predict and prognose illnesses such as cancer in individuals. More lucrative applications to machine
learning in online advertising are also discussed such as the algorithms behind Google’s advertising

service AdWords.

Recommendation systems are yet another major application of machine learning, and as such, it is
the major application discussed in this paper. Mathematical and statistical methods for data analysis
are discussed within the scope of recommendation systems. Principal Component Analysis is one of
these methods which serves to help derive a low-dimensional uncorrelated set of features from a large
set of correlated variables. Singular Value Decomposition is a matrix factorization method that is used
within Principal Component Analysis to help minimize numerical error. In addition, neighborhood
formation is described for finding items that are similar to one another based upon some similarity
computation technique. The three techniques discussed are the Pearson correlation, cosine-based sim-
ilarity, and adjusted cosine similarity. To evaluate these systems for recommendation or prediction
accuracy, scientists utilize various predictive accuracy metrics. Two rating prediction measures, Mean
Absolute Error and Root Mean Squared error are discussed. Three usage prediction measures are
included as well: Precision, Recall, and the False Positive Rate.

In order to apply the knowledge above, we coded two recommendation algorithms in MATLAB,
[temSvdRec and [temSvdDemoRec. These algorithms utilize collaborative and content-based filtering
to predict the ratings users would give to certain items if given the opportunity to view or use them. The
main data sets tested over, MovieLens 100K and MovieLens 1M, are from the MovieLens online movie
recommender system website. We provide and discuss our results from the five predictive accuracy
metrics described above. We also provide results over an alternative data set, Jester 2, which has
ratings who differ in scale and complexity than the MovieLens data sets.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Today we live in an age abundant with data. Due to the increasing use of web and cloud based
services, as well as advances in computer and sensor technology, a wealth of new data is being gath-
ered throughout academia, business, and government. Following similar to that of Moore’s Law, it is
estimated that the total global volume of data collected and stored more than doubles every two years
[30]. The internet population today represents over 3.2 billion people who alone generate thousands
of petabytes (10'® bytes) of data every day [13]. Figure 1.1 is an infographic created by the software
company Domo depicting the shear volume of data that is processed every minute of every day online.
With there being such a large influx of data, the term ‘big data’ has been used as a common term
to describe data sets which are so large in volume, are generated very quickly, or are so complex that
traditional data processing techniques are inadequate in revealing the underling patterns and trends.
In order to handle this big data for use in a variety applications, many have utilized and built upon
the methods and techniques developed in a subfield of computer science called machine learning. Ma-
chine learning focuses on the study and construction of algorithms that can make predictions on data
through a learning process [23]. All machine learning algorithms take as input a training set, a data
set that is assumed true, to make data-driven predictions and decisions. How and whether or not the
training set is labeled defines what learning system type is used. Although typically classified as a
subfield of computer science, machine learning is an interdisciplinary field with strong fundamental ties
to pure and applied mathematics. Techniques and theorems found in linear algebra, probability theory,
statistics, and numerical analysis help form the basis of many popular machine learning algorithms and
applications.

1.2 Machine Learning Systems

The phrase “machine learning” can be described in a great deal of ways. Arthur Samuel, creator
of the first self-learning program The Samuel Checkers-playing Program, defines machine learning as
“a field of study that gives computers the ability to learn without being explicitly programmed” [41].
Another pioneer in machine learning and artificial intelligence, Tom Mitchell, provides a formal def-
inition of machine learning: “A computer program is said to learn from experience E with respect
to some class of tasks 7' and performance measure P if its performance at tasks in 7', as measured
by P, improves with experience E” [31]. The terms “machine learning” and “data mining” are often
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Figure 1.1: Data Never Sleeps 3.0 is an infographic created by the software company Domo depicting
the amount of data processed by popular internet sites and services every minute. It reflects just a small
fraction of the data being generated every day and reveals the need to utilize efficient machine learning
techniques to analyze it all. Taken from [13].



employed together. While data mining focuses on the discovery of previously unknown properties in
data, machine learning focuses on making new predictions based on known properties using accessible
training data. Essentially, the goal is to develop learning algorithms that can be programmed to solve
new problems using previous examples rather than directly programming algorithms to solve those
new problems as they arise. These learning algorithms, or the tasks they solve, are commonly divided
into three major categories depending on the type of feedback the learner has access to. These three
categories are supervised learning, unsupervised learning, and reinforcement learning.

Supervised learning falls on one end of the machine learning algorithm spectrum. Supervised learn-
ing is utilized when some set of data is already known to be classifiable, but one needs a classifier
or algorithm to actually sort through it. It is a learning system that utilizes labeled training data or
training examples. A training example is a data pair consisting of an input object and its corresponding
output object known generally as a label. The goal is to build a model of the distribution of class labels
in terms of some predictor features [25]. Thus, the model will generate a general rule that can map new
inputs with particular set of features to outputs or labels. A flow chart depicting a generalized process
of supervised learning is shown in Figure 1.2. For example, take the simple to describe yet complicated
task of text classification. One may want to develop a model that can classify handwritten text to be
read by a computer. First data samples of handwritten text must be collected to train the system.
Pre-processing of the data must be done such as digitizing samples, removing illegible writing, etc. Def-
initions or labels must be attributed to each data sample by some outside process. A machine learning
algorithm is then selected and training begins. The handwritten text samples are given as input to the
machine algorithm along with the known classifications of those samples. The algorithm must utilize
the characteristics of the text to distinguish between different letters or phrases. Once training is com-
plete, the algorithm is provided a variety of new samples without known classifications. The algorithm
should provide a label as output of what it classified the input as based on previous inputs. Evaluation
then occurs by comparing the algorithm’s guess, in this case output label, to the signal, the actual
known label. If a pre-defined amount and variety of the handwriting samples are correctly classified
by the algorithm, the system can be called a successful classifier. If not, the system must be modi-
fied in some way. Most individuals will turn to parameter tuning first. With most machine learning
algorithms, additional parameters are needed outside of the object to be classified. These parame-
ters are directly related to the algorithm being used, and vary from system to system. If tuning does
not better classification, a new algorithm may need to be selected or new data may need to be collected.

Unsupervised learning lies at the opposite end of supervised learning on the machine learning spec-
trum. Unsupervised learning attempts to find latent or underlying structures from unlabeled sets of
data. Unlike supervised learning, training data is not labeled and at times cannot be classified by some
simple external process. Thus, one uses this form of learning when they face the question of how to
best classify a set of data. Unsupervised learning follows a similar design process to supervised learning
except for a few key steps. Similarly, one must first identify, gather, and pre-process related data, but
now without utilizing labels. At times labels can help determine what data needs to be collected, to
validate the data’s usefulness, or even how to separate the data into a training set. Without labels,
these tasks can become more difficult and more care must be given to organizing your data before input
into the machine learning algorithm. In addition, due to this lack of output objects or labels, there is
no error or reward signal to arrive at a potential solution or classification. Instead, most unsupervised
learning algorithms seek to measure hidden similarities between data based upon some type of metric
[38]. Most unsupervised learning methods classify inputs through clustering. Data points within a
given cluster are said to have a higher measure in similarity, in terms of a defined metric, than data
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Figure 1.2: A generalized flow chart of supervised learning classification. A problem is first specified,
and then data is identified and pre-processed to form a labeled training data set. An algorithm is then
selected and uses inputs and their labels to learn or model features of the inputs. Different inputs with
similar features are then classified, given labels, by the system to evaluate its accuracy. Taken from [25].

in any other cluster. An example of a procedure to aid in the clustering of data, Principal Component
Analysis, can be found in Section 2.1. Evaluation of an unsupervised system also differs from its super-
vised counterpart. One cannot simply evaluate the system through comparing the number of successful
classifications of inputs by the system to the total number of inputs provided. Evaluation metrics must
reflect the type of data being classified and they tend to vary from system to system. Examples of alter-
native evaluation metrics related to unsupervised recommendation systems can be found in Section 2.4.

Reinforcement learning falls in the middle of the machine learning spectrum. Reinforcement learn-
ing is a system similar to that of supervised learning, but differs in that the training data provided
is of the form of a scalar reinforcement signal rather than a label. This numerical value constitutes a
measure of how well the system operates [42]. The general goal is to find the existence of and charac-
terize optimal solutions given a set of rules and scalar value feedback. Reinforcement learning is best
used when there is no simple way to classify the data, but one knows whether it is better or worse
than other data. A diagram for the reinforcement learning process can be seen in Figure 1.3. For
illustration purposes, suppose one wants to devise a reinforcement learning system to play tic-tac-toe.
In this game two players take turns on a three-by-three board. Players take turns placing their mark,
X or O, on the board until the board is filled or a player has placed three of their marks in a row on
the board. The player who marks an entire row wins. In terms of Figure 1.3, the players are agents
and the environment is encompassed by the game rules. At first an agent must choose an action to
take without knowledge of whether it is “good” or “bad.” Once the action is taken, the state of the
environment is changed and the agent receives some numerical, possibly negative, reward associated
with that action. This reward is calculated from some pre-defined metric set by the creator of the
algorithm. Once the opposing agent makes their move, the first agent must evaluate their environment
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Figure 1.3: The classical representation of a reinforcement learning algorithm. The algorithm serves to
map a situation in an environment to an action, and is popular in game theory. An agent or decision
maker takes an action. This action changes the state of the environment and the agent receives a, possibly
negative, reward associated with that action. The agent accumulates rewards for different actions and
will tend to chose actions that increase their overall reward more frequently over several iterations of the
algorithm. Reproduced from [42].

using the accumulation of the past rewards it received. Another action is then selected and the process
repeats until stopped by the game rules or the creator. In the case of tic-tac-toe and similar games,
one may use cumulative rewards from past games to gather more data.

1.3 Machine Learning Applications

Applied mathematics has begun to prosper from machine learning, providing near-optimal or suffi-
cient solutions to complex problems within reasonable time frames. Mathematicians have utilized ma-
chine learning to tackle various NP-hard problems that arise in operations research. A nondeterministic
polynomial (NP) time problem is one which is solvable in polynomial time by a nondeterministic Turing
machine. A NP-hard problem is one such that an algorithm solving it can be translated into another
solving any other NP-problem [9]. A classical NP-hard problem that has been investigated through the
lens of machine learning is the traveling salesman problem (TSP). In terms of graph theory, TSP is an
optimization problem for finding the least-cost cyclic route that passes through all vertices of a weighted
graph. TSP, and variations of it, commonly appear in planning, logistics, and vehicle routing problems.
Machine learning algorithms have been created and shown to outperform other heuristic techniques in
solving certain variations of the TSP. For example, Ant-Q is a family of algorithms shown to perform
very well on symmetric versions of the TSP. Symmetric TSP involves graphs that are undirected, or
in other words, the weight of the edge connecting vertex A to vertex B is the same as the weight from
B to A [14]. Another example includes the creation of a machine learning algorithm to help solve
the traveling repairman problem which is similar to TSP, but also includes a time-probabilistic failure
rate at each vertex [43]. Game theorists have used similar machine learning algorithms to identify
particular game-states and optimal strategies of a particular game. Evolutionary games where agents
mutate through each successive generation have been modeled through reinforcement machine learning
[32]. The computationally intensive solving for the nash equilibria of some finite turn graph-based
games, such as The Territorial Raider Game, can be done for very complex graphs using reinforcement
machine learning as well [16].

Machine learning is particularly well-suited for analyzing the hard to detect patterns in large or
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noisy data sets found in medical and biological applications. Cancer researchers have been utilizing
machine learning techniques such as artificial neural networks and decision trees for cancer detection
and diagnosis since the 1980s [40]. Since then, machine learning techniques in cancer research has grown
considerably. According to the latest PubMed statistics, as of 2013 there are over 8400 papers published
on machine learning methods to identify, classify, detect, or distinguish tumors and other malignancies
[10]. Recently machine learning has expanded from primarily focusing on diagnosis and detection of
cancer to prediction and prognosis as well. One study formulated machine learning approaches to
predict lung cancer in patients based on mass spectrometry data [33]. Another study created a prog-
nostic model using statistical and machine learning techniques that makes quantitative estimates of the
probability of relapse for breast cancer patients [11]. A more detailed paper on several applications of
machine learning techniques to the detection, diagnosis, and management of cancer can be found in [28].
Another area that has accumulated large sets of data over the years is phylogenetics. Phylogenetics is
the study of evolutionary relationships between groups of organisms. Phylogenetic trees or represen-
tations of an organisms’ evolution were traditionally constructed based on different morphological or
metabolic features [26]. Over the past few decades however, there has been an astounding increase in
publicly available genome sequences through databases such as GenBank [5]. Figure 1.4 reveals the
exponential growth of GenBank’s data showing that from 1994 to 2008 GenBank acquired nearly 100
million nucleotide sequences [5]. Due to this abundance in genomic data, phylogenetic trees are now
computed through comparing various genomes through a process called multiple sequence alignment.
Machine learning optimization techniques have been shown to greatly aid in this process [3].
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Figure 1.4: The growth of GenBank from 1982 to 2008. GenBank is a comprehensive database that
contains publicly available nucleotide sequences for over 260,000 formally described species. The database
is used throughout genomics and phlyogenetics research and has provided massive amounts of data for
machine learning practices. Taken from [5].
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With the massive amount of web pages available to the average user, retrieving accurate and reliable
information from the Web has become a primary concern for companies. Of the several different forms
of information retrieval done on the Web, page ranking may be one of the most important. Page ranking
is a way to assign numerical weights to individual elements of some set of connected documents. In
terms of the Web, page ranking allows for a measurement of the relative importance of a web page
compared to all other accessible pages. PageRank was one of the first algorithms used by the Google
search engine, and it played a large role in Google’s success [6]. PageRank utilizes only the link
structure of the web to create a ranking. The PageRank of a web page P, PR(P), is given by the
recursive equation:

PR(TY) PR(T,)

PR(P) = (1—d)+d(m+...+m) (1.1)

where PR(T;) is the PageRank of page T; which links to page P, C(7;) is the total number of out-
bound links on page T;, and d is a damping factor fixed between 0 and 1. Although PageRank could be
thought of as an unsupervised machine learning algorithm, most would not classify it as such. Due to
the sheer volume of data collected on page visit frequency, click speeds, user feedback, and much more
in the recent years, search engines have begun to move away from solely using variations of the classical
PageRank algorithm and towards incorporating machine-learned ranking (MLR) into their engines. In
2005 Microsoft researchers unveiled RankNet, a MLR algorithm that utilized features independent from
the link structure of the Web to surpass previous versions of PageRank. A web pages’ features were
condensed into four categories: page-level, domain-level, anchor text and inlinks, and popularity. From
these four categories, not only did RankNet outperform PageRank on their ranking accuracy metric,
but also in computational time and memory usage [35]. Recently Google has incorporated a machine
learning algorithm called RankedBrain into their overall search query algorithm Hummingbird. Al-
though not much is known about the inner workings of RankedBrain, it is theorized it may associate
search queries with words correlated to similar queries made by other similar users based on a variety
of characteristics such as search history and demographics [7].

One of the most lucrative applications to machine learning is online advertising. There are sev-
eral different variations online advertising can take including: sponsored search advertising, contextual
advertising, and display advertising. In each case, when a user visits a web page or utilizes a search
engine, an auction mechanism determines which advertisements to display, what order they are shown
in, and what prices the advertisers pay if their advertisement is clicked. As such, a website wants to
display the best advertisement to that user in order to maximize the number of advertisement clicks
and therefore the money it receives from the advertisers. The ratio of advertisement clicks to displays
of the advertisement is referred to as the average click-through rate (CTR) [29]. Companies like Face-
book and Google have developed complex machine learning algorithms to optimize this ratio given the
vast amount of user information they collect as input data [21]. Figure 1.5 is an infographic reflecting
the general method for determining advertisement placement used by Google’s advertising service Ad-
Words. When an advertisement is to be generated for a user, first quality scores are created by one of
Google’s machine learning algorithms for each possible advertisement to be shown. This quality score
has components based on CTR, relevance to search query, and landing page. Advertisements with a
high enough quality score will be multiplied by the cost-per-click (CPC) bid that the the advertiser
is willing to pay in order to show their advertisement. The result is an AD Rank, and the advertise-
ment with the highest AD Rank is then shown to the user. Although the algorithms utilized by these
companies are kept private, it is likely that they use machine learning approaches similar to those to
solve the multi-armed bandit problem. The multi-armed bandit problem is a problem originally from
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Once you are entered into the auction, Google looks at two key
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Figure 1.5: Google’s Adwords, a method dictating ad placement through the Google search engine.
Google holds an auction whose winner is determined by the overall greatest Ad Rank. Ad Rank is the
product of an advertisers cost-per-click (CPC) bid and a machine learning algorithm generated quality
score. Reproduced from [47].

probability theory in which a gambler is trying to decide which set of k-arms of a series of slot ma-
chines (one-armed bandits) to pull in order to maximize their total reward. The gambler must decide
what arms to pull, how many pulls of an arm to make, and in what order to pull them all in. As one
can see, the multi-armed bandit problem can be seen as a generalized version of this targeted online
advertising problem. Thus, methods to optimize the reward from these machines can and have been
used to optimize click-through rates. Examples of popular machine learning algorithms to solve this
problem include SoftMax and Exp3 [44].

Recommendation or recommender systems is the main machine learning application that will be
focused on in this paper. Similar to targeted advertising, recommendation or recommender systems
have become increasingly vital to electronic commerce websites and services over the years. It is
commonplace for individuals to make choices about something before they personally acquire sufficient
information on the subject. Individuals thus rely on advice or recommendations from their peers,
reviews, or surveys. Recommendation systems have been created to augment this process for a variety
of applications including search queries, books, music, and movies. In simplest terms, a recommender
system aims to predict the rating or preference that a user would give to a certain item or service.
These systems most commonly use approaches taken from machine learning called collaborative and
content filtering. Collaborative filtering collects and analyzes large amounts of information on a user’s
behaviors, activities, or preferences and makes predictions based on similarity to other users. This
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data collection can be done explicitly by directly asking a user directly for their feedback or implicitly
by observing their views or habits. Content based filtering takes descriptors of an item and makes
predictions for a user based on the similarity to items they previously rated. Everyday most individuals
will contribute to a recommendation system and be recommended something by one. For example, all
popular social networking websites such as Facebook and LinkedIn utilize recommendation systems to
find user acquaintances. In addition, services such as Google, Amazon, Pandora, Yahoo!, and Netflix
are continuously seeking innovative machine learning algorithms to optimize their recommendation
systems and increase both their efficiency and revenue [34]. Recommendation systems moved into the
public spotlight when the online movie subscription rental service Netflix began a competition titled
““The Netflix Prize” [1]. The competition ran from October 2006 to September 2009, and challenged
the machine learning community to develop systems that could surpass the accuracy of their own
recommendation system, Cinematch. Netflix encourages its subscribers to rate the movies they watched
on a scale of one to five stars, indicating how much they liked or disliked a particular movie. Overall,
Cinematch utilized past ratings from individuals, ratings from other users, and both user and item
demographic data to predict and recommend movies each subscriber would be interested in. Since
Cinematch uses both collaborative and content based filtering, their recommendation system can be
considered a hybrid system. Netflix provided groups with over 100 million anonymous movie ratings
in the form of disjoint training and testing data sets. Groups would develop systems that learned from
the training data and attempt to predict the missing ratings stored in the test data. The group that
developed the best system under the constraint that it performed at least 10% better than the prediction
accuracy Cinematch could achieve would win a one-million dollar grand prize. The prediction accuracy
metric used for this contest was Root Mean Squared Error (RMSE), which is described in Section 2.4.
Over the three year period, 41 thousand teams from nearly two-hundred different countries submitted
over 44 thousand prediction sets into the contest. Only 650 teams submitted predictions exceeding
Cinematch’s accuracy, and only two teams exceeded it by 10%. These teams were named BellKor’s
Pragmatic Chaos and The Ensemble, both reaching a 10.06% improvement over Cinematch. BellKor’s
Pragmatic Chaos utilized several sophisticated mathematical algorithms to improve their predictions.
Those interested can find publicly available descriptions of their algorithms in [24]. Although those
specific algorithms are out of the scope of this paper, they encompass fundamental mathematical ideas
and theorems that not only underlie most recommendation systems, but also other machine learning
prediction algorithms. The two major fundamental ideas that will be discussed are matrix factorization
and neighborhood formation, which are described in Section 2.1 and Section 2.3 respectively.

1.4 Key Terms and Notation Review

Definition 1.4.1. Basis: A set of vectors {v1,...,v,} in a vector space V is called a basis for V' if the
vectors are linearly independent and the set of vectors spans V.

Definition 1.4.2. Diagonal Matrix: A matrix is said to be diagonal if all entries outside the main
diagonal are zero. For example:

5 0 0
A=10 -2 0
0 0 1

Definition 1.4.3. Eigenvalue and Eigenvector: Let A be a square n-by-n matrix representation of
some linear transformation. Then, if there exists a vector & € R™ # 0, such that Ax = \x. for some
scalar A, then A is called the eigenvalue of A with corresponding eigenvector .
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Definition 1.4.4. Identity Matrix: A n-by-n identity matriz I, is a diagonal matrix such that I,x = @
for all n-dimensional vectors . For example:

Iy =

o O =
O = O
_ O O

Definition 1.4.5. L?>-Norm: The L?-norm of a real valued vector & = [z1, ..., z,] is given as ||z|, =
Vr?+ ...+ 2. The L*norm of a real valued matrix A is the sum of the L?*norms of its columns. If
(ai,...,a,) are the columns of A, then:

n
1A= llaills -
=1

Definition 1.4.6. Linearly Independent: A set of vectors {vy, ..., v, } in a vector space V are linearly
independent if and only if the only linear combination which equals 0, is the trivial one. That is, if
a1v, + ... + a,v, =0, then a; = ... = a,, = 0.

Definition 1.4.7. Orthogonal Matrix: A n-by-n matrix A is said to be orthogonal if AAT = I, where
AT is the transpose of A and I is the n-by-n identity matrix. An orthogonal matrix is always invertible,
i.e. A7t = AT, For example:

-1 0 o01fo =1 o0 1 00
AAT =10 -1 0 1 0 0ofl=1010|=1I
0O 0 —-1/]0 0 -1 001

Definition 1.4.8. Orthonormal Basis: If a set of vectors {vy, ..., v, } of a vector space V' form a basis
for V, they form an orthonormal basis for V' if v; - v; = 0 when 7 # j and v; - v; = 1 when ¢ = j. In
other words, the vectors are mutually perpendicular and each have a length of one.

Definition 1.4.9. Symmetric Matrix: A symmetric matriz is a square matrix that satisfies AT = A.

For example:
_ar |61
A=A _[1 3]

Definition 1.4.10. Transpose: The transpose of a matrix A is denoted as AT and has elements given
by AZ]- = A, ;. For example:

1 2
A= |3 4 ,AT:E i 2}
5 6
Definition 1.4.11. Vector Space: A wector space V is a set of vectors that is closed under finite
vector addition and scalar multiplication. An example is the n-dimensional Euclidean space R™ where
each element is represented by a series of n real numbers, scalars are real numbers, addition is done

componentwise, and scalar multiplication is multiplication on each term individually.
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Chapter 2

Methods for Data Analysis:
Recommendation Systems

2.1 Principal Component Analysis

Analyzing large data sets in terms of the relationships between individual points can lead to very
slow and memory-intensive calculations. Recommendation systems today must operate on data sets
that can be on the order of hundreds of millions of both users and items [21]. This has led individuals
to seek methods to extract relevant information from big data sets while both retaining prediction ac-
curacy and speed in terms of computational time. Principal Component Analysis (PCA) is a statistical
and mathematical tool that can, with relatively minimal effort, reduce large data sets to those with
lower dimensions while retaining the overall simplified structure of the data. The following is a short
statistical and mathematical background of PCA.

PCA is popular tool used in unsupervised machine learning and in many other scientific fields
to derive a low-dimensional set of features from a large set of variables. When there exists a large
set of data containing a number of possibly correlated variables, PCA allows one to summarize the
data set with a smaller number of uncorrelated representative variables that together express a large
percentage of the variability in the original data set. These representative variables are called principal
components [21]. Principal components can be thought of as vectors that point in the directions of
most variability. Suppose one has a data set stored in a real valued m x n matrix A, where m is
the number of measurement types and n is the number of samples. In terms of a recommendation
system, m can be thought of as the total number of items being rated, while n can be thought of as the
number of users. Before beginning one may “pre-process” the matrix, or assess the missing values in
the data. One could ignore all rows with missing values, likely leading to data distortion, or estimate
them. A naive yet time efficient approach is to fill in missing values by some variation of row averages.
Other approaches use sophisticated multivariate statistical techniques to do this pre-processing. These
advanced approaches are outside the scope of this paper, but examples of them can be found in [27] and
[4]. In addition, in order to use PCA one must first center the data, i.e. subtract each column’s mean
from its respective column. This can be thought of as a translation of the data points that centers them
around the origin. If one treats each sample as an m-dimensional vector, then from linear algebra one
knows each of the n samples lie in an m-dimensional vector space V' which can be spanned by some
orthonormal basis. The idea is to find the “most meaningful” basis to re-express the data set. The
term most meaningful can depend on the individual data set being analyzed, however, to utilize PCA
one must make the assumption that the most meaningful dynamics of the data set are those with the
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largest variance. The term wvariance comes from statistics and it measures how far a set of numbers is
spread out from its mean. Consider the set X = {1, xs, ..., 2} with zero mean. Then the variance of
X is defined as

k
1
vary = oy = z fo : (2.1)
i=1

With this in mind, one can then define the covariance between two equal sized sets. The covariance
measures the degree of the linear relationship between two variables. If one considers the two equal
sized sets of measurements with zero means X = {z1,z9,...,xx} and Y = {y1,v2, ..., yx}, then their
covariance is defined as

k
1
CoVxy = O%y = z leyl ) (2.2)
i=1

Thus, a large positive covariance indicates positively correlated data, a large negative covariance in-
dicates negatively correlated data, and a covariance of zero indicates no correlation in the data. If
one stores the data from sets X and Y inside of row vectors @ = [, Za, ..., x| and y = [y1, Y2, .-, Yk
respectively, then one can express the covariance as the dot product

1 1
COVgy = 0oy = E(az ‘yY) = EwyT : (2.3)
One can expand this definition of covariance to the centered measurements stored in the m x n
data matrix A defined previously. Each of the m rows of A can be considered the n measurements of
a particular type, or all the ratings for a particular item. With this expansion one arrives at a central

concept of PCA, the covariance matrix. The covariance matriz is defined as

Cy= Laar (2.4)
n

C'x encompasses the covariance between all pairs of measurements since Cy = TAAT = (2AAT)T = CF
Cy4 is a square and symmetric m x m matrix. The 5" element of C is the dot product between the
vector of the i measurement type with the vector of the j* measurement type. When i = j, Cy;; is
the variance of a measurement type. When ¢ # j, then Cy;; is the covariance between two different
measurement types. If a diagonal value is relatively large then there exists an important structure
or pattern in the data based on our assumption that large variance is meaningful. If an off-diagonal
value is relatively large in absolute value, then there exists a large level of redundancy in the data.
This would indicate that one or more variables are directly correlated to another variable. In terms
of recommendation systems, knowing about how one item is rated may lead to direct insight on how
individuals rate another similar item.

The objective now is to optimize the covariance matrix C4 to both minimize the redundancy in
the data as well as retain the underlying structure or signal of the data indicated by the variance. An
optimized covariance matrix C'z would have off-diagonal elements of zero, i.e. no redundancy. In other
words C'p would be a diagonal matrix and the matrix B would then be decorrelated. In addition, the
diagonals of Cz should be ranked in descending order according to variance to see where the most
meaningful structures lie in the data. Specifically one must find an orthonormal matrix P such that
B = PA under the constraint that Cz = 1BB” is a diagonal matrix. The rows of P are then the

T on
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principal components of A. Using elementary matrix manipulation techniques, by re-writing Cp we
find

1
Cp = =-BB"
n

= (PA)(PAY
1

n
1
= P(—AA")P"
n
Cp = PC,P" .
Thus, it is shown one can relate the optimized covariance matrix C'g to the original covariance ma-
trix C'y and the principal components of A. One may remember that Cy is symmetric, and therefore
one can utilize its symmetric eigenvalue decomposition.

Theorem: Let A be a real symmetric n X n matrix with n linearly independent eigenvectors,
q1,q2,---,qn. Then A has a symmetric eigenvalue decomposition of the form

A=QAQ" = QAQ™ (2.6)

where @ is an orthogonal n x n matrix whose i column is the eigenvector g; of A and A is the diagonal
matrix whose diagonal elements are the corresponding real eigenvalues, A; = A;.

Hence by writing C4 = QAQT, one can write Cp as P(QAQT)PT. Since A is a diagonal matrix, it
makes sense to select P to be a matrix where each row p; is an eigenvector of C4. Thus, set P = Q7.
It then follows that

Cp = PCyP
= P(QAQT)P"
= P(PTAP)PT
= (PP")A(PPT)
= (PP HA(PP™)
Cp=A

(2.7)

One can now conclude that the principle components of A are nothing more than the eigenvectors
of Oy = %AAT, and that the i"* diagonal value of Cg is the variance of A along the 7*" principal
component p;. Even more, we know these eigenvectors are orthogonal to each other since P = Q7
is orthogonal and one can order them by variance. One now has the required information about the
data set to reduce its dimensionality while retaining the overall underlying structure. This dimension
reduction, however, will be discussed in Section 2.2. Principal Component Analysis and Singular Value
Decomposition (SVD) are two intimately related approaches to achieve dimension reduction, and are
often called and used interchangeably. SVD is a type of factorization that can be done on any matrix.
It is a way to manipulate a data matrix to reveal simpler and more meaningful structures in the
data. Techniques in using SVD can lead to a more stable solution and analysis of C'4 without actually
computing it.
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2.2 Singular Value Decomposition

Recommendation systems suffer from a number of fundamental problems which reduces overall
quality of predictive ratings such as sparsity and scalability. Storing and comparing users under very
large data sets can lead to slow and memory-intensive calculations. This has led individuals to seek
methods to decrease the number of dimensions of their data while retaining prediction accuracy. Singu-
lar Value Decomposition (SVD), alike Principal Component Analysis (PCA), serves to retain prediction
accuracy and speed up computational time when dealing with large data sets stored in matrices. As
will be shown later in this section, SVD and PCA are interconnected and the dimensionality reduction
techniques done by computing the SVD directly relates to those techniques in PCA.

When attempting to conduct a dimension reduction, one may find it useful to convert the data
stored in a matrix into a form that reveals more about the data’s structure. First, one must pre-
process the data as mentioned in Section 2.1. One may think back to an introductory linear algebra
class and attempt to find an eigendecomposition of the matrix. Through eigendecomposition one can
represent a matrix solely in terms of its eigenvalues and eigenvectors [15].

Theorem: Let A be a square n X n matrix with n linearly independent eigenvectors, qi, qa2, ..., Gn.
Then A has an eigendecomposition of the form

A=QAQ! (2.8)

where ) is a n x n matrix whose i column is the eigenvector g; of A and A is the diagonal matrix
whose diagonal elements are the corresponding eigenvalues, A;; = ;.

Although an intuitive thought, one can notice that eigendecomposition only works with square
matrices. In terms of recommendation systems, rating matrices are almost never square as there are
usually more items than users or vice-versa. To work around this, an alternative form of matrix de-
composition is used, namely Singular Value Decomposition [45].

Theorem: Let A be an arbitrary real m x n matrix. Then A has a Singular Value Decomposition
of the form

A=USVT = Z S UVT (2.9)
i=1

where U and V' are two orthogonal matrices with dimensions m x m and n X n respectively, and S
has diagonal entries consisting of non-negative real numbers in descending order of magnitude. When
S has r < n zero diagonal entries, it is common to remove the last n — r columns and rows of S
to achieve an economy SVD. This economy SVD reduces computational time without sacrificing un-
derlying structure. The dimensions of U, S, and V' become mxr, rxr, and r xn respectively in this case.

S is referred to as the singular matriz and its diagonal entries, (s, So, ..., S;), are called the singular
values of A. The first r singular values, (s1, S2, ..., s, ), are such that s; > 0 and s1 > s5 > ... > s,.
These first r singular values correspond to the square roots of the non-zero eigenvalues of both AA” and
AT A. The first 7 columns of U correspond to the eigenvectors of AAT and are called the left singular
vectors of A. The first r columns of V correspond to the eigenvectors of AT A and are called the right
singular vectors of A. For each singular value s; of A there exists a left-singular and right-singular
vector u; and v; such that Av; = s;u; and ATu; = s;v; [45].
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A reader may notice that SVD provides both the square roots of the eigenvalues as well as the
eigenvectors of AAT. We set the covariance matrix in section 2.1 to be Cy = %AAT. Thus, by
decomposing A into its SVD, one finds that the principal components of A are equivalent to the left-
singular vectors of the SVD of A. Also, the singular values, as defined above, provide a ranking in
descending order of the variation in the data alike PCA. One can see this connection mathematically
through basic matrix manipulation.

A=USVT thus
AAT = (USVTy(usvh)T
= (USvVhy(vstuT)
=Usv'vstur (2.10)
=USsTu”
AAT = US?UT,  therefore

1
Cy= E(USZUT)

A similar manipulation of the matrix AT A will result in ATA = V.S?VT. It then follows that if one
would like to conduct PCA on AT, they can simply observe the right-singular vectors of the SVD of A.

SVD and PCA have primarily been used to take a high dimensional and highly variable sets of
data points and reduce it to a lower dimensional space. Since, in both cases, the data is ordered based
on variation, one can ignore all variation below a defined threshold and still be assured that major
relationships in the data will be preserved. In terms of the SVD, [15] proved that no other matrix of
rank at most k is closer to A in the L*norm than the rank-k approzimation of A, Ay = UpSpV,!.

Eckart-Young Theorem: Let the SVD of a m x n matrix A, with rank r, be given by Equation
29. If0 <k <rand A, = U, S,V = Zle s;uvl, then

ol A= Bll2 = [[A = All2 = sk (2.11)

A proof by contradiction is the quickest way to prove this theorem. In short, one can make the
assumption that there exists a matrix B with rank(B) < k that better approximates A. One can show
through dimensional analysis of B that for this to be true (dim(null(B)) + rank(B)) > n, which is
impossible. A full proof of the theorem can be found in [18].

Methods to calculate the SVD of a matrix greatly vary depending on the size and complexity of the
matrix. To form the SVD of a m x n matrix A, one needs the eigenvectors of AT A and AAT and the
eigenvalues of AT A or AAT. This is analogous to how one would conduct PCA on A. When computing
the SVD of a relatively small matrix by hand one can follow the following straight forward algorithm
[15]:

1. Form ATA

2. Find the eigenvalues and orthonormalized eigenvectors of AT A, i.e.,

ATA=VAVT
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3. Sort the eigenvalues in descending order according to their magnitude, and set
si=+\,fori=1:n
4. Find the first r columns of U via
u; = s; ' Av;, fori=1:7r
5. Find remaining m — r columns such that U is unitary, i.e.,
Ut =0UT =1

Here is an example of this algorithm. Given the matrix

A:

NN

2
2
1

1 2
1 2 2 9 8
T A _ _
AA—{QQJ g?—{ég 9}

2. The eigenvectors of AT A are defined by AT Av = \w, also written as (ATA — AI)v = 0. Thus
we solve the characteristic equation

©9-\) 8

det(ATA — \I) = ‘ g (9— )

-
which becomes

9—-XN)H9—-)N)—-8-8=0
A2 —18A+17=0
A—17)(A—1) =0.

Thus the eigenvalues of AT A are \; = 17 and Ay = 1. Plugging \; back into (ATA — A\I)v = 0 and
solving for v; we get the system of equations

(9 — 17)v1(1) 4 8v4(2) = —8v1 (1) + 8v1(2) = 0
8v1(1) + (9 — 17)v1(2) = 8v1(1) — 8vy(2) = 0

and we find,

v1(1) = v1(2)

1
V1 = f
V2

By plugging in A; and following the same procedure, we find

Thus we choose the normalized vector
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Now the matrix V can be constructed
1 1
V= |:’U1 ’l)2:| = \{i \/51 .
NV
3. S1 = \//\1 =V 17 and SS9 = \//\2 = 1, so that

V1T

S=120
0

S = O

4. The first two columns of U can be computed with

1 2] ra 3
_ 1 -1 V2| — 1
ul—\/ﬁAvl_m22 [L]_\/ﬂ4
2 1| Lv2 3
and
1 2 1 -1
’U,ZZ%A’U2:% 2 2 [_\/i]:%
2 1 V2 1
Thus a partial construction for U is
G w0
U=|ur uy ug|= \%—4 0 wus(2)
i

5. U must be unitary, which implies ug must satisfy

ui-u3:IZ~3, fOTi:1,2,3

and thus,
2
1
’U,3—\/—1—7 —3
2
In which we arrive at
3 -1 2
Vsl V2 v | | VIT O rL
A=USVT= | 0 -2 | 0 1| |¥ 3|
V34 W 1 1
S5 L 2 0 o0f Lv2 V2
V34 V2 V1T



The above algorithm should work in theory for all real matrices, however in practice it is
solely used for small matrices that can be done by hand. When a computer calculates the covariance
matrix (either through AT A or AAT) of a matrix A on the order of millions or trillions of data points,
numerical rounding error in the eigenvalues and eigenvectors is almost always guaranteed. For this
reason individuals have created methods to compute the SVD of a matrix without directly calculating
the covariance matrix. This is the largest factor for many scientists to utilize SVD within or as an
alternative to PCA. There are a great deal of algorithms to compute the SVD each with their own
optimizations for different types of data sets. Some utilize numerical iterative methods such as classical
bisection method or the Guass-Seidel method [8] within their algorithms. MATLABs basic function svd
computes the singular value decomposition of a real valued matrix by calling a routine called SGESVD
from the LAPACK library. The routine has some modifications in case singular values are extremely
small, but implements variations of the following algorithms in tandem: Householder reduction and
Golum-Reinsch SVD [8]. The documentation for SGESVD can be found in [2], but pseudo-code for
both the Householder reduction and Golum-Reinsch SVD can be found in Figure 2.1.

2.3 Neighborhood Formation

At the core of every recommendation system is the idea of similarity within users and or items.
For example, if a certain movie is highly rated by most individuals, then the system may recommend
new movies with similar characteristics, such as genre or starring actors, to that item. The same goes
for users. If a series of users with the same demographics really enjoy a certain type of movie, then
the system may recommend that movie to other users with similar demographics. In each case, there
needs to be a way to find if there is a dependence in the characteristic data collected that can be used
to relate certain items or users together. In other words, one needs to find the nearest neighbors or
form a neighborhood around each user or item that are most similar to them in order to maximize
overall predictive accuracy. A group of users or items with the greatest similarity to one another form
a neighborhood. The methods for computing the similarity between two items or two users are intrinsi-
cally the same. Given a ratings matrix A, one can calculate the similarity, sim;; between two arbitrary
items, ¢ and 7, by first isolating users that have rated both of these items. Then one applies a similarity
computation technique over all of these similar users and arrives at sim;;. This process is illustrated
in Figure 2.2. Any similarity computation technique can also utilize the rank-k approximation of A
as described in Section 2.2. By choosing a number of singular values k that captures some majority
of the variance in the ratings data, one can significantly reduce the amount of pair comparisons made
when calculating similarities. By forming A, = UkSkaT, one can then form Qitems = v/ SiVi, the
k-by-n matrix that represents all n items in a k dimensional space of psuedo-users. Since k tends to be
significantly smaller than the total number of users that rated each pair of items, the overall similarity
computational time is drastically reduced while prediction accuracy is maintained. It should be said
that a similar matrix, P,gers = Ury/Sk, representing n psuedo-items in a k dimensional space can also
be used for finding similarity in users. Whether a system chooses to utilize rank-k approximation or
not, recommender systems typically use one of three different similarity computation techniques. These
are Pearson correlation, cosine-based similarity, and adjusted cosine similarity [37].

The Pearson correlation is a classical method for looking for dependence between variables. From
statistics, the Pearson correlation measures the linear relationship between two variables. The measure
produced, the Pearson correlation coefficient, is between positive and negative one inclusive. One
indicates a total positive correlation, zero indicates no correlation, and negative one is total negative
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Algorithm 1a: Householder reduction to bidiagonal form:

Input: m,n, A where A1sm x n.

Output: B, U, V sothat B is upper bidiagonal, U7 and V are products of Householder matrices,
and A=UBVT.

L. B « A.(This step can be omitted if A is to be overwritten with B.)
2 U=1Iy,,.
3. V= Lixa.
4 Fork=1,. . .,n
a. Determine Householder matrix Q; with the property that:
* Left multiplication by Qy, leaves components 1,... ,k — 1 unaltered, and
1] 1]
0 0
br_1p b [,
. = , wheres ==, /3~ B,
Qk b R where s ||'| Z:A k
bris 0
Do 0
b. B «— Q;B.
c U+ UQ.

d. Ifk = n — 2, determine Householder matrix Py with the property that:
+ Right multiplication by Py leaves components 1,... ,k unaltered, and
[0 0 by bigsr Biggr b Pn=[0 -0 0 By s 0.0 0],
where s = i\;‘:z',":“] bi;
e B« BPy,,.
£V e PV,

Algorithm 1b: Golub-Reinsch SVD:
Input: m,n, A where Aism x n.
Output: £, U, V so that E is diagonal, U and V have orthonormal columns, U is m x n, V is
nxmand A=UZVT,
L. Apply Algorithm la to obtain B, U, V so that B is upper bidiagonal, U and V are products of
Houscholder matrices,and A = UBVT.
2. Repeat:
a Ifforanyi=1,...,0— L|biisi| < & (|bis| + |Bigriga ), set biisn = 0.
b. Determine the smallest p and the largest g so that B can be blocked as

By, O 0 P
B=|0 By 0 n—p—q
0 0 Bss q

where Bj3 is diagonal and B;; has no zero superdiagonal entry.
If ¢ = n, set L = the diagonal portion of B STOP.
Iffori=p+1,...,n—q —1,bj; =0, then
Apply Givens rotations so that b;; 4, = 0 and B, is still
upper bidiagonal. (For details, see [GL96, p. 454].)

o

B

else
Apply Algorithm lcton, B, U, V, p,q.

Algorithm 1c: Golub-Kahan SVD step:

Input: n, B, Q, P, p,q where B is n x n and upper bidiagonal, Q and P have orthogonal
columns, and A = QBPT.

Output: B, , P sothat Bisupperbidiagonal, A = QBPT,Qand P have orthogonal columns,
and the output B has smaller off-diagonal elements than the input B. In storage, B, Q, and P
are overwritten.

. Let B, be the diagonal block of B with row and column indices p + 1,... ,n —gq.
Set C = lower, right 2 x 2 submatrix of BL Bss.
. Obtain eigenvalues Ay, A of C. Set g = whichever of 4y, A3 that is closer to 2.
k=p+la=bi —up=bibiisr
. Fork=p+1,...,n—g—1

a. Determine ¢ = cos(#) and s = sin(f) with the property that:

la m[_z j=[m 0.

oW

b. B « BRi;4+i(c,s) where Ryyqi(c,s) is the Givens rotation matrix that acts on columns k
and k + 1 during right multiplication.
P« PRygai(c,s).
a=bf = b
Determine ¢ = cos(#) and s = sin(f) with the property that:
|
s ol |s o |

gon

[

-

B « Rigs1(c,—s)B, where Ry 441(c, —s) is the Givens rotation matrix that acts on rows k
and k + 1 during left multiplication.

Q + QRyppale,s).

ifk = n—q —la=by, f = by

kel

Figure 2.1: Pseudo-code using both the Householder Reduction (la) and Golum-Reinsch (1b & 1lc)
algorithms for decomposing a matrix into its Singular Value Decomposition (SVD). These algorithms
form the most popular basis for other advanced methods for finding the SVD of a matrix quickly and
efficiently. Taken from [25].
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Figure 2.2: The isolation of co-rated items and similarity computation for neighborhood formation.
Ratings from m users and n items are stored in an m-by-n matrix. The similarity of items ¢ and j are
computed by comparing ratings by users that rated both items. These ratings are then input into a
similarity computation such as the Pearson or Cosine correlation. Taken from [37].

correlation. This correlation is calculated by dividing the covariance of the two variables by the product
of their standard deviations. The covariance between two variables is calculated by Equation 2.2, and
the standard deviation of a variable is given by the square root of the variance given by Equation 2.1.
In terms of a ratings matrix of data, the Pearson similarity of two items can be described by

o >uer (Bui — Ri)(Ruj — Ry)
= pPij = — —
Vv Fus = RS e (R — )

where R is either the ratings matrix A or the pseudo-user matrix Qitems = v/ SkVk, U is the set of all
co-rated users u of items 7 and j of R, and R; is the average rating of the i** item in terms of R.

(2.12)

SZ'TTI,Z'J'

Another form of similarity computation is cosine-based similarity. Cosine similarity is a measure
of similarity between two vectors that computes the cosine of the angle between two vectors. It too
ranges between positive and negative one alike the Pearson correlation. If one thinks of the two items,
1 and j, as being represented by two vectors, ¢ and 7, in an m or k dimensional user-space stored in A
or Qitems respectively, one can compute the cosine similarity between any two items by

-]

lell2llgll2

One does not need to first isolate the co-rated cases for cosine similarity as performing the dot
product on vectors ¢ and j results in an addition of zero for any non co-rated case. Although cosine
similarity can be used for user-based neighborhood formation, it is not an optimal method for forming
item-based neighborhoods. Individual users tend to have different rating biases when rating a collection
of items. For example, on average a user may rate items significantly higher than another user although
the two users may have the same tastes. Thus, adjusted cosine similarity is used to offset this drawback

8im;; = 0S5 = (2.13)
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Figure 2.3: The process for predicting a rating for an item ¢ for a user u using item-based collaborative
filtering. Known ratings are stored in a matrix with m users and n items. The similarity sim; ; is used
as a weight for each neighbor’s rating where j is one of the five neighbors pictured. The sum of these
weighted ratings are then averaged and form the prediction for item 4 for user u. Reproduced from [37].

by subtracting the corresponding user average from each co-rated item pair. It then follows that one
must again isolate all co-rated cases as in the Pearson correlation. Utilizing the same descriptors as for
Equation 2.12; the formal equation for the adjusted cosine similarity is given by

Ssep (Rus = R Py = R -
Vweo(Rui = B S (Rug — Fu)?

where R, is the average of the u'® user’s ratings.

sim; j = adjcos; j =

With one of these methods to compute the similarity between items in hand, one can formulate
predictions on a non-rated item ¢ for some user u. This can be done by restricting the number of
neighbors an item should have and using the similarity between the item and those neighbors as
weights. Each rating is weighted by the corresponding similarity sim,; for items ¢ and j. This process
is pictured in Figure 2.3. A basic prediction for pred,; for an item i of a user u can be given by

stmy; i * Ry,
2onen (31 * Rur) (2.15)

pred,; = :
o 2 _nen; |simil

where N; is the set of all neighbors of item 4.

2.4 Predictive Accuracy Metrics

Prediction accuracy is a frequently discussed topic within recommendation system literature. The
ultimate goal of any recommender is, in some form, to produce accurate predictions of how a user
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will view a given item. One of the fundamental assumptions of a recommendation system is that the
more accurate the predictions it can produce about a user, the more likely that user will prefer that
system and the services it may provide. As such, creators of these systems search for algorithms that
can provide the best predictions. However, the methods to evaluate various algorithms are inherently
difficult. For example, different algorithms may perform very well on one specific data set, but poorly
on another. In addition, the specific task or goals of a prediction system can differ. It may be very
valuable that a system minimizes leading a user to a wrong choice, while another may want to provide
a descriptive yet simplified explanation of a recommendation to a user. These goals may be mutually
exclusive and one metric may fail to capture a system’s unique goals. As such, I will be limiting this
paper to two classes of popularly used accuracy measures as identified in [22] and [39]. These two
general classes are: ratings prediction measures, and usage or ranking prediction measures.

Ratings prediction is when one purely wants to predict the ratings a user would give to an item.
This is the most common used version of predictive accuracy metrics. The most widely used ratings
prediction measures involve some variation of the Mean Squared Error (MSE). A recommender system
will generate predicted ratings !, for some test set of user-item pairs (u, ¢) for which the actual ratings
rwi are known yet hidden from the system while predicting. This test set can be represented by a
matrix 77 C A where A is a m-by-n (user-by-item) known ratings matrix and A,; = r,;. With this
information, the MSE is calculated by

1
MSE = — wi — )2 2.16
7] Dy (7~ ) (2.16)

where |T'| is the number of rated elements in the test set 7. The most common variation of MSE is
the Root Mean Square Error (RMSE). RMSE is simply the square root of MSE and is given by

— — 1 !/ \2
RMSE =VMSE = \/ il ZW)GT(W 2 (2.17)
A popular alternative to MSE and RMSE is the Mean Absolute Error (MAE). The MAE is calculated
by

1 /
MAFE = il ZW)GT rui — 7] (2.18)

One can also produced normalized versions of these measures known as Normalized RMSE (NM-
RMSE) and Normalized MAE (NMAE). These alternative measures are produced by dividing their
respective measures by the range of the data set being used (7naz — Tmin). NMRMSE and NMAE are
used commonly to allow comparisons between data sets with different rating scales to be made more
clearly. The MSE and RMSE measures penalize large errors by squaring each individual error. Thus
these measures will be minimized on systems which have small inaccuracies over several predictions
rather than only a few large inaccuracies over a few. On the other hand, MAE penalizes consistently
small inaccuracies over a large set of predictions. To see this difference a small example is provided.
Suppose a user-by-item known ratings matrix A and a predicted ratings matrix A’ on a 1-5 rating
scale are given by

A=

s

I
~ W
Ot = DN
DN W DN
NN
- N W
_ N DN
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We find that these matrices produce an RMSE and NMRMSE of 0.8819 and 0.2205 respectively,
and an MAE and NMMAE of 0.7778 and 0.1945 respectively. Since the the MAE measure is less than
the RMSE, we are lead to believe that the recommender system that generated these predicted values
under this data set produces ratings consistently close to the actual ratings rather than producing
relatively large errors over a small subset of ratings.

Usage prediction attempts to recommend items to users that they may be interested in. The pre-
dictive ratings of these movies are not what is important, but rather if the user will use these selected
items. For example, if a user watches a particular movie, a movie recommender may provide a list
of similar movies the user may like to watch. To evaluate usage prediction it is common to select a
random test user, hide a subset of their ratings, and use a recommender to predict a set of items the
user will actually use. Thus, there will be four possible scenarios for the recommendations and the
hidden items as shown in Table 2.1.

In order to conduct usage recommendation evaluation with the above classification one must as-
sume that unused items would not be used even if they had been recommended to the user. In practice
this may be false and a user may in fact use an item that they were incorrectly recommended. Thus,
the total number of false positives (fp) can be over estimated. In addition, in order to evaluate the
performance of recommender systems that generate predictive ratings, one may choose to map these
ratings into a binary scale to predict the usage of an item by a user. For example, if a system predicts
ratings on a 1-5 scale, a map may be such that items rated 1-3 by a user would be considered not to
be used, and 4-5 would be used.

Recommended | Not Recommended
Used True Positive (tp) | False Negative (fn)
Not Used | False Positive (fp) | True Negative (tn)

Table 2.1: A classical recommender item usage table. For every potential item that can be recommended
to some user, it can be classified by this table depending on whether the recommendation system did or
did not recommend the item as well as if it was actually used by a user or not.

Given the items a known user has used in a group of items, one can evaluate the usage recommen-
dation of a system through first counting the number of each tp, fn, fp, and tn that occurred in the
testing phase. These will be denoted as TP, FN, FP, and TN. With this information one can then
compute the following three quantities.

TP

Precision = —— 2.1
recision = 7o (2.19)
TP
= —— 2.2
Reca TP + FN (2.20)
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FP
False Positive Rate = —— 2.21
alse Positive Rate = Lm0 (2.21)

Precision, as shown in Equation 2.19 is the ratio of used items chosen for recommendation to all
items recommended. Precision is thus the measure for efficiency of used item selection and is commonly
cited as the most useful measure of interest [39]. Recall, shown in Equation 2.20, is the ratio of used
items recommended to all used items. The False Positive Rate, shown in Equation 2.21, is simply the
ratio of unused recommended items to all unused items.

When the size of the amount of potential item recommendations presented to the user is not fixed,
it is useful to evaluate an algorithm over a range of recommendation list lengths. When this is done
one can generate Precision-Recall Curves that compare precision to recall as well as Receiver Operating
Characteristic (ROC) Curves which are taken from signal detection theory to compare true positive
rates to false positive rates [39]. The selection of which curve to use is once again based on the overall
goal of the application. There are several measures to summarize these curves into a single metric.
The most common methods are the F-measure of the Precision-Recall Curves and the Area Under the

ROC Curve (AUC). An in depth construction of these curves and summarizing metrics can be found
in [46] and [36].
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Chapter 3
Results: MATLAB Models

3.1 Coded Algorithm Descriptions

In order to apply the knowledge gained from writing this paper, we coded two recommenda-
tion algorithms in MATLAB. The two algorithms are “item_SVD _recommender” (ItemSvdRec) and
“item_SVD_demo_recommender” (ItemSvdDemoRec), and their code can be found in Section A.1 and
Section A.2 respectively. Both of these algorithms are modifications of the pseudo-code described in
the paper Applying SVD on Generalized Item-based Filtering [45]. As their names suggest, both of
these algorithms utilize collaborative and content-based item filtering enhanced by SVD to predict the
ratings that users will give to certain items.

ItemSvdRec requires a m-by-n ratings matrix (ratings) with m-users and n-items, a number of
singular values (k < m) to create the k" SVD approximation of the ratings matrix, and the neigh-
borhood size (num_neigh) for the number of neighbors each item can have. The ratings matrix can
have any real valued element to indicate a rating, but missing or non-rated elements must be of the
form ‘NaN.” If this ratings matrix is labeled as A then element A;; refers to the rating, or lack there
of, user @ gave to item j. The code provided in Section A.1 is well documented, but the following is
a short overview of how the algorithm operates. ItemSvdRec works by first pre-processing the rating
matrix to eliminate all non-rated data points. It does this by replacing all NaN values with their cor-
responding column or item average (col_avg). Then individual user bias is removed by subtracting the
corresponding row or user average (row_avg) from each row. This creates a normalized ratings matrix
(ratings_norm) which is then reduced to a k* SVD approximation in order to reduce dimensionality.
The matrix Qjjems, as described in Section 2.3, is then created representing the meta ratings given by
each of the k pseudo-users. Neighborhood formation is done through conducting the Adjusted Cosine
Similarity between each pair of items stored in Qiems. A n-by-n item similarity matrix (sim_matrix)
is produced at the end of this formation. Finally, prediction generation is conducted and results in
a completely filled predicted ratings matrix (ratings_predicted). ItemSvdRec has been optimized in
MATLAB to utilize a function called bsxfun, which applies an element-by-element binary operation
specified by various function handles on two arrays. This enables ItemSvdRec to generate predictions
for all users one item at a time rather than generating predictions for each user-item pair one at a time.
Although this speeds up the algorithm, it makes the code difficult to interpret at first glance. This
prediction generation begins at line 68, however, the generalized prediction for user w; on item i; can
be described by the following weighted sum:
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> nen, sim-matriz(i,n) x (ratings_norm(i,n) + row-avg(i))

ratings_predicted(i, j) = (3.1)

> nen, |sim-matriz(i,n)|
where Nj is the set of all neighbor indices of item 7;.

ItemSvdDemoRec is very similar to ItemSvdRec, but it includes the additional feature of utilizing
item demographics to increase overall ratings prediction. ItemSvdDemoRec takes as parameters a
ratings matrix (ratings), a number of singular values (k) to conduct SVD on ratings, and an item
neighborhood size (num_neigh) as described above. In addition, it takes in a x-by-n demographics
matrix (item_demographics) where z is the number of item features or characteristics each of the n
items have. Each element of this matrix must be either a 1, indicating an item has a specific feature,
or a 0, an item does not possess that specific feature. This matrix must contain no missing values.
In addition, ItemSvdDemoRec estimates this demographics matrix utilizing a d** SVD approximation
with d < x singular values. The overall algorithm’s procedure is alike [temSvdRec, but differs on
neighborhood formation. Once the d* SVD approximation is completed, a demographic version of
Qitems 18 created representing the d demographic meta features of the n items. Since there is no need to
remove bias in the demographic features, demographic correlation is done through a Pearson Correlation
and stored in a matrix (demo_cor_matrix). The similarity matrix (sim_matrix) is then calculated by
the sum of the similarities in rating history of pairs of items and the demographic similarities of the
same pairs of items stored in demo_cor_matrix. This results in item neighbors similar to one another
in terms of demographics as well as rating histories. The generalized prediction for user w; on item ¢;
is also described by Equation 3.1.

3.2 MovieLens Data Sets

In order to utilize our coded machine learning algorithms, we needed to select data sets that were
well documented, organized, and accurate. Of the many publicly available data sets, we chose to use a
subset of data from the popular MovieLens System. The MovieLens online recommender system is a
website where users provide personal movie ratings in order to receive personalized movie recommen-
dations. Since 1997, MovieLens has collected user ratings data and stored them in various data sets
depending on the time period collected and the total number of provided ratings. These data sets have
been widely used in education, research, as well as in industry. In 2014 the MovieLens data sets were
downloaded over 140,000 times alone, and were referenced in over 7,500 pieces of research literature
[20]. For our models we chose to look at the MovieLens 100K data set, and the MovieLens 1M data set.
These data sets are publicly available to download from the MovieLens website [19]. We believed these
data sets to be large enough to find underlying structure in the data, yet small enough to complete our
computations in a reasonable amount of time.

The MovieLens 100K data set was released in 1998 and contains rating, item, and user data con-
tained in a downloadable zip-file, “ml-100k.zip.” The ratings data is contained in “u.data” and en-
compasses 100,000 ratings from 943 users and 1682 movies. Movie preference is provided by a rating
ranging from integers 1 to 5, 1 meaning a strong dislike and 5 a strong like. Each user in the data set
has rated at least 20 movies. This data is provided in the form of tab separated lists of ‘user id |item id
[rating |timestamp.’ Since this data has a small sparsity or coverage of 6.3%, as is depicted in Figure
3.1, a tab separated list of values minimizes storage space over a matrix. All MovieLens ratings data
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Figure 3.1: Sparsity of the MovieLens 100K data set with 100,000 movie ratings. A blue dot indicates
a rated movie by a particular user. The data set has a 6.3 percent sparsity or in other words, 6.3 percent
of all possible ratings of movies that can be given by all users is known. This is an average sparsity many
movie recommendation systems must operate over.

is stored in a similar fashion to “u.data,” and manipulation of the data into matrix form needed to
be done prior to running our recommendation algorithms. As an example, the code to download and
manipulate “u.data” is provided in Section A.3.

In addition to ratings, the MovieLens 100K data set contains demographic information. Item de-
mographics are stored in “u.item,” and are also in a tab separated list. Item demographics consist
of movie id, movie title, release date, video release date, IMDb URL, and a list of movie genres. A
movie’s genre is described by one or more of 19 genre fields such as Action, Comedy, Drama, Mystery,
etc. Of these demographics, only movie id, movie title, and movie genres were incorporated to utilize
in our ItemSvdDemoRec algorithm. Once again, pre-processing needed to be conducted to store these
demographics into a matrix. Each column of this demographics matrix becomes a 19-by-1 demographic
feature vector for each movie. A 1 in a demographic feature field indicates the movie is of that genre,
while a 0 indicates it is not. Movies can be in several genres at the same time. It should be mentioned
that there also exists user demographic information such as age, gender, and occupation, but this was
not utilized in either of our algorithms.

Training and testing data subsets are also provided by MovieLens in the 100K zip file. It is common
to conduct a five fold cross validation when evaluating the performance of a recommendation algorithm.
If one tries to evaluate a recommendation system against the data it learned from, the result could lead
to overfitting. Qverfitting occurs when a statistical model describes the noise in the data instead of
the underlying relationship [12]. With five fold cross validation one can avoid overfitting by evaluating
against new yet already known data. This validation process requires five random and disjoint testing
subsets each representing 20% of all known recommendation data. For each testing subset, the remain-
ing 80% of the data is used as training data for the system. The system is then evaluated by some test
metric over the testing subset. The five evaluations are then averaged and the result is considered to
be an accurate measure of prediction performance. MovieLens stores sample training and testing data
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sets for the 100K ratings in “ul.base” and “ul.test” through “u5.base” and “ub.test.”

The MovieLens 1M data set is very similar to the 100K data set. As more data was collected over
the years some users changed some of their previous ratings, but the overall known rating data con-
tained in the 100K data set is enveloped in the 1M data set. The data is stored in “ml-1m.zip” and is
also freely downloadable from the MovieLens website [19]. Ratings are stored in colon separated format
within “ratings.data.” As such, pre-proccessing needed to be done to store the data into a matrix. The
data set contains 1,000,209 ratings from 6040 users over 3952 movies. Ratings are once again on a 1 to
5 integer scale and each user has rated at least 20 movies. Although there are roughly ten times the
number of ratings stored in the MovieLens 1M data set compared to the 100K data set, the sparsity
of the data matrix is actually slightly smaller at 4.2%. This is because there is a significant increase in
both users and movies between the two data sets.

Movie demographic data is again provided in the MovieL.ens 1M data set. This data can be found
in “movies.data” and is in the form of colon separated values. The movie id, title, and list of genres
are given. The genres are the same 19 found in the MovieLens 100K data set. The same pre-processing
methods were used to change this item demographic data into a usable format.

Unlike the 100K data set, the 1M data set does not contain training and testing subsets to conduct
a five fold cross validation. In order to avoid overfitting and compare data sets in the same manner, we
developed our own code to generate both testing and training data. In short, a random permutation
of all rated entry indices are generated, which are then separated into five disjoint intervals, and
finally the known ratings with those indices are then populated into five fully non-rated (NaN) testing
matrices. Training data matrices were then created by removing the rated entries in each respective
testing matrix from a copy of the original ratings matrix. The code for generating these five fold cross
validation training and testing data sets can be found in Section A.4.

3.3 Prediction Evaluation Metric Results

Before beginning prediction evaluation, we wished to look at the total variance captured by the
singular values of both the training rating and demographic data matrices. These singular values play a
vital role in the parameter tuning and therefore also the overall performance, under various metrics, of
the recommender system. After all missing rating values are filled in during the pre-processing phase of
the algorithms, roughly 85.06% =+ 0.53% and 87.14% 4 0.74% of variance in the training rating subsets
of MovieLens 100K and 1M respectively were captured in the first singular value. The second singular
values captured 11.12% + 0.37% and 12.10% = 0.49% of the variance, indicating about 96% and 99%
of the data’s variance are stored in the first two singular values. After the second singular value, the
variance quickly drops off to less than 0.1% for each of the remaining singular values. The variance
captured in the demographic data was much more dispersed among the singular values compared to
the rating training data. The first singular values capture 28.26% and 29.52% of the demographic
information of the MovieLens 100K and 1M demographic data sets respectively. In comparison, one
would need 15 demographic singular values to capture the same amount of variance captured in the first
two singular values of the average rating training matrix. Bar charts depicting these stored variances
of both the MovieLens 100K and 1M data sets can be found in Figure 3.2 and Figure 3.3 respectively.

The goal of these experiments was to find the optimal parameters for our two machine learning
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Figure 3.2: The average total variance captured by the singular values of the training rating data. The
average was taken of the five training rating sets “ul_base” through “u5_base” and “ul_base_1m” through
“ub_base_1m” respectively. The sum of the variance captured in all singular values past 10 are shown in

the last bar for each chart.
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Figure 3.3: The total variance captured by the demographic singular values for each MovieLens data set
tested. The sum of the variance captured in all singular values past 15 are shown in the last bar for each
chart.

recommendation algorithms (ItemSvdRec and ItemSvdDemoRec) that optimized one of our evaluation
metrics. The evaluation metric selected was Mean Absolute Error (MAE). We also wanted to view
how the algorithms performed given the found optimized parameters for MAE under various other
evaluation metrics. The three other metrics tested were Root Mean Squared Error (RMSE), Precision,
and Recall. All of these evaluation metrics are described in detail in Section 2.4.

For ItemSvdRec the parameters needed are the number of singular values (k) used to make a k'
approximation of the training matrix, and the number of neighbors (num_neigh) to formulate neighbor-
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hoods around each item. To visualize how much £ and num_neigh affected various evaluation metrics,
we decided to display this three-dimensional data into a two-dimensional surface. For each plot the
x-axis represents the number of neighbors ranging from 1 to 30, and the y-axis represents the number
of used rating singular values ranging from 1 to 20. Each pixel of the image represents the third di-
mensional evaluation metric. These scales differ by range for each evaluation metric in order to capture
the nuances of each metric.

For ItemSvdDemoRec, k and num_neigh are also parameters, but there is an addition of the number
of singular values (d) used to make a d* approximation of the demographic matrix. We decided to
again utilize a two-dimensional surface for visualization. Since ItemSvdDemoRec differs from ItemSv-
dRec by additional item demographics used in neighborhood formation, we fixed k£ to be the optimal
value found in our tests on ItemSvdRec that maximized the MAE. For these plots the x-axis repre-
sents the number of neighbors ranging from 1 to 30, and the y-axis represents the number of used
demographic singular values ranging from 1 to 20. Each pixel of the image once again represents the
third dimensional evaluation metric. In total this provides 600 data points or pixels for each individual
plot. The remainder of this section is the collection of all evaluation plots created and their descriptions.
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(a) MovieLens 100K: MAE of ItemSvdRec (b) MovieLens 100K: MAE of ItemSvdDemoRec

Figure 3.4: The average Mean Absolute Error (MAE) of predictions generated for five disjoint rating
testing subsets of the MovieLens 100K data set. Overall, lower MAE values (darker) indicate better per-
formance. (a) Each pixel represents the MAE for each pair of parameters (num_neigh, k) for ItemSvdRec.
Optimal parameters of (1,15) provided an MAE of 0.7780. (b) Each pixel represents the MAE for each
parameter pair (num_neigh,d) for ItemSvdDemoRec with a fixed k value of 15, the optimal k value for
MAE found in (a). Optimal parameters of (8,20) provided an MAE of 0.7740.
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Figure 3.5: The average Mean Absolute Error (MAE) of predictions generated for five disjoint rating
testing subsets of the MovieLens 1M data set. Overall, lower MAE values (darker) indicate better perfor-
mance. (a) Each pixel represents the MAE for each pair of parameters (num_neigh, k) for ItemSvdRec
over a 1 to 5 integer rating scale. Optimal parameters of (1,20) provided an MAE of 0.7317. (b) Each
pixel represents the MAE for each parameter pair (num_neigh,d) for ItemSvdDemoRec with a fixed k
value of 20, the optimal k value for MAE found in (a). Optimal parameters of (14,20) provided an MAE
of 0.7234.
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Figure 3.6: The average Root Mean Squared Error (RMSE) of predictions generated for five disjoint
rating testing subsets of the MovieLens 100K data set. Overall, lower RMSE values (darker) indicate
better performance. (a) Each pixel represents the RMSE for each pair of parameters (num_neigh, k) for
ItemSvdRec over a 1 to 5 integer rating scale. Optimal parameters of (1,10) provided an RMSE of 0.9815.
(b) Each pixel represents the RMSE for each parameter pair (num_neigh,d) with a fixed k value of 15,
the optimal k value for MAE found in (a) of Figure 3.4. Optimal parameters of (8,20) give an RMSE of
0.9814.
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Figure 3.7: The average Root Mean Squared Error (RMSE) of predictions generated for five disjoint
rating testing subsets of the MovieLens 1M data set. Overall, lower RMSE values (darker) indicate
better performance. (a) Each pixel represents the RMSE for each pair of parameters (num_neigh, k) for
ItemSvdRec. Optimal parameters of (1,20) gave an RMSE of 0.9223. (b) Each pixel represents the RMSE
for each parameter pair (num_neigh,d) with a fixed k value of 20, the optimal k& value for MAE found in
(a) of Figure 3.5. Optimal parameters of (14,20) gave an RMSE of 0.9125.
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Figure 3.8: The average Precision of the rating prediction rankings generated for five disjoint testing
subsets of the MovieLens 100K data set. Overall, higher Precision ranking values (darker) indicate better
performance. (a) Each pixel represents the Precision for each pair of parameters (num_neigh,k) for
ItemSvdRec. Optimal parameters of (1,14) provide a Precision of 0.7972. (b) Each pixel represents the
Precision for each parameter pair (num_neigh,d) with a fixed k value of 15, the optimal k£ value for MAE
found in (a) of Figure 3.4. Optimal parameters of (8,20) gave a Precision of 0.7967.

37



2 2f
0708 0.706
4 = 47
6 0.704 & of 0.704
%8 > g
o T
E 0.702 = 0702
g 10 E) w0k
S(G 1]
S 12 © 12h
E 07 s 07
9 14 5 14T
[=]
E
s 0.608 & 10f 0.608
18 181
0.69 069
20 ‘ , , , 20¢ , , ,
10 15 20 2% 30 5 10 15 20 25 30
Neighbors (num_neigh) Demographic Enhanced Neighbors (num_neigh)
(a) MovieLens 1M: Precision of ItemSvdRec (b) MovieLens 1M: Precision of ItemSvdDemoRec

Figure 3.9: The average Precision of the rating prediction rankings generated for five disjoint testing
subsets of the MovieLens 1M data set. Overall, higher Precision ranking values (darker) indicate better
performance. (a) Each pixel represents the Precision for each pair of parameters (num_neigh,k) for
ItemSvdRec. Optimal parameters of (1,18) gave a Precision of 0.7067. (b) Each pixel represents the
Precision for each parameter pair (num_neigh, d) with a fixed k value of 20, the optimal k value for MAE
found in (a) of Figure 3.5. Optimal parameters of (14,20) gave a Precision of 0.7074.
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Figure 3.10: The average Recall of the rating prediction rankings generated for five disjoint testing
subsets of the MovieLens 100K data set. Overall, higher Recall ranking values (darker) indicate better
performance. (a) Each pixel represents the Recall for each pair of parameters (num_neigh, k) for ItemSv-
dRec. Optimal parameters of (1,14) gave a Recall of 0.3937. (b) Each pixel represents the Recall for each
parameter pair (num_neigh,d) with a fixed k value of 15, the optimal k value for MAE found in (a) of
Figure 3.4. Optimal parameters of (8,10) gave a Recall of 0.3935.
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Figure 3.11: The average Recall of the rating prediction rankings generated for five disjoint testing subsets
of the MovieLens 1M data set. Overall, higher Recall ranking values (darker) indicate better performance.
(a) Each pixel represents the Recall for each pair of parameters (num_neigh, k) for ItemSvdRec. Optimal
parameters of (1,20) gave a Recall of 0.2868. (b) Each pixel represents the Recall for each parameter
pair (num_neigh,d) with a fixed k value of 20, the optimal k value for MAE found in (a) of Figure 3.5.
Optimal parameters of (14,20) gave a Recall of 0.2870.
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Chapter 4

Discussion

The prediction evaluations over the MovieLens’s data sets will be discussed from two major per-
spectives. The first involves comparisons between the performances of the two algorithms, ItemSvdRec
and ItemSvdDemoRec. How the inclusion or exclusion of item demographics in a recommendation
system affects its prediction accuracy can help lead to better the overall performance of the system.
The second perspective involves how the data sets themselves affect system performance. As described
in Section 3.2, the MovieLens 100K and MovieLens 1M data sets are similar in terms of sparsity. How-
ever, MovieLens 1M has roughly six times more users and there are over twice the number of movies
available for recommendation than that of MovieLens 100K. How the algorithms behave when sparsity
is preserved, but operation occurs over a larger scale is yet another interesting investigation. These
perspectives are intertwined and findings from one view help to understand the other. In addition to
these investigations, an additional section discussing results from an alternative data set, Jester 2, is
provided. We wished to discuss this alternative data to reflect that these algorithms can operate over
data sets with continuous and varying rating scale values.

4.1 Performance over MovielLens Data Sets

One must first discuss the parameter tuning of the algorithms. From the average evaluation metric
results in Section 3.3, one clearly notices that the optimal number of neighbors (num_neigh) for all
metrics is 1 under ItemSvdRec. As we increased the number of neighbors, all metrics steadily became
sub-optimal. Plot (a) from Figures 3.4 to 3.11 indicate that when item neighbors are solely generated
by similarity to other items in terms of past ratings, it is optimal for each item to have only themselves
as neighbors. In other words, to predict the ratings of an item, ItemSvdRec does not find it useful take
into account the adjusted cosine similarity between other items. As such, unless specified, the following
assumes a fixed num_neigh value for ItemSvdRec of 1.

Mean Absolute Error (MAE) was selected to be the primary metric to optimize in our research, and
as such, it will be the main metric focused on in the following paragraphs. The results for ItemSvd-
DemoRec were obtained using the optimal number of rating singular values (k) as found through
parameter tuning when optimizing the MAE evaluation of ItemSvdRec. These k values showed to be
slightly different then those which optimize other performance metrics. Table 4.1 provides the evalua-
tion metrics of [temSvdRec over MovieLens 100K for their individual optimal k value as well as for the
optimal MAE k value. The results showed that optimizing the system for one evaluation metric, overall
system performance for each other evaluation metric decreased. Recall decreased the most using a k
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equal to 14 rather than 15 with a -0.10% overall improvement. This change in performance may seem
small to some, and they would be correct. Essentially, if one wishes to optimize the recommendation
system for MAE, they may do so without severely compromising other metrics. However, with the
many different factors that go into recommendation systems, even small improvements can be signif-
icant. For illustration, the difference between the top two and third place team’s algorithms in the
“Netflix Prize” one-million dollar competition in terms of percent improvement by Root Mean Squared
Error (RMSE) over Cinematch was 0.16% [1]. It should also be reminded that although experimental
errors do exist in this and all other evaluation techniques, the five fold cross evaluation serves to help
minimize these types of errors.

Evaluation Optimal k: Evalua- Optimal k: Evalua- Percent
Metric Metric tion MAE tion Improvement
MAE 15 0.7780 15 0.7780 0.00%
RMSE 10 0.9815 15 0.9819 —0.04%
Precision 14 0.7972 15 0.7966 —0.08%
Recall 14 0.3937 15 0.3933 —0.10%

Table 4.1: Comparison of average prediction evaluation metrics over the MovieLens 100K data set from
the TtemSvdRec algorithm. This table’s values reflect the change in improvement from using the number
of rating singular values, k, that optimizes MAE rather than the k£ values that optimize each alternative
evaluation metric. The number of neighbors parameter, num neigh, was fixed at one. When compounded
upon one another, small pertubations in percent change, like the ones shown, can lead to a significant
change in overall recommendation system success.

In each of the (a) plots from Figure 3.4 to 3.11, we see that having too few singular values results in
very poor prediction accuracy metrics for ItemSvdRec. In both the MovieLens 100K and 1M data sets,
once the variance stored in the first two singular values are encompassed into the creation of pseudo-
users in [temSvdRec, increasing k leads to a much smaller yet still important increase in performance.
This is supported by our findings from the Principal Component Analysis (PCA) utilizing Singular
Value Decomposition (SVD) to find total average variance captured in the singular values of these data
sets. Figure 3.2 depicts that roughly 96 and 99 percent of the total variance in the MovieLens 100K
and 1M data sets respectively are stored within the first two singular values. By setting k equal to 2,
an MAE of 0.7996 is produced over MovieLens 100K. Doing the same over MovieLens 1M provides an
MAE of 0.7672. The optimal k values for these two data sets of 15 and 20 respectively give a much
lower MAE of 0.7780 and 0.7317. This can be seen to occur with RMSE, Precision, and Recall as well.
This implies that even though the first two singular values capture almost the entirety of the variance,
it is still not enough to achieve optimal system performance. However, this does not imply simply
increasing k indefinitely leads to better performance. Within our tested parameter ranges, increasing
k past 15 actually increased MAE over MoveLens 100K. A k value of 20 produced a MAE of 0.7786,
a small yet measurable increase. The optimal k value for MovieLens 1M was 20, and a similar trend
would have likely been seen if the testing parameter range for this data set was increased. In short, it is
difficult to find the exact optimal number of singular values without performing prediction evaluation,
and that variance captured is not an exact indicator of system performance.
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Two observations are apparent from the collection of (b) plots from Figures 3.4 to 3.11. First is that
the number of singular values used in the SVD of the item demographic matrix in ItemSvdDemoRec
does not significantly impact performance. Although Figure 3.4 (b) and Figure 3.5 (b) indicate a small
performance increase after setting the number of demographic singular values, d, to 3, any additional
increase in d results in stagnant MAE performance. The second observation is that ItemSvdDemoRec
actually utilizes some number of neighbors when optimized. This version of num_neigh not only takes
into consideration the similarity between items based on past ratings, but is also enhanced through
item similarity in terms of item demographics through a Pearson correlation. ItemSvdDemoRec is
optimal for all tested prediction metrics with a neighborhood of 8 over MovieLens 100K, and a neigh-
borhood of 14 over MovieLens 1M. This indicates that the combination of using item rating histories
and demographic information in neighborhood formulation works better than rating histories alone.
MAE over MovieLens 100K dropped from a previously optimal 0.7780 in ItemSvdRec to 0.7740 in
ItemSvdDemoRec, a 0.51% improvement. Similarly, MAE over MovieLens 1M decreased from a previ-
ously optimal 0.7317 to 0.7234, a 1.13% improvement.

As mentioned previously, RMSE, Precision, and Recall all behaved similarly as parameter tuning
was done to minimize MAE. There were, however, some key differences that should be noted. MAE
and RMSE were the two rating prediction measures used to evaluate the algorithms. The average
RMSE was much greater than the MAE for every parameter set tested, which is common for movie
recommendation systems. The best RMSE achieved over the MovieLens 100K data set was 0.9815
through ItemSvdRec and 0.9814 through ItemSvdDemoRec as can be seen in Figure 3.6. Compara-
tively, the MovieLens 1M data set had a best RMSE of 0.9223 through ItemSvdRec and 0.9125 through
[temSvdDemoRec as can be seen in Figure 3.7. It is interesting that the larger of the two data sets
had a much more significant improvement by including item demographics. The reason for this may
be two fold. First, the range tested for the parameter £ may have been too small for the parameter
tuning over MovieLens 1M. Table 4.1 shows that, for MovieLens 100K, the optimal k& for MAE was
much greater than the optimal k& for RMSE. This is likely the same case for MovieLens 1M. Due to the
fact that the optimal k for MAE and RMSE happen to both be 20, the upper extrema of our testing
range, we may have used a k closer to the optimal k£ for RMSE than MAE. Second, MovieLens 1M has
over twice the number of items and item demographics available over MovieLens 100K. Since there are
more movies that are similar in terms of ratings and demographics, better and larger neighborhoods
are formed using this data set.

Precision and Recall were the two usage or ranking measures used to evaluate the two algorithms.
As can be seen in Figures 3.8 to 3.11, optimal Precision and Recall between algorithms remained almost
unchanged. This does not necessarily reflect negatively on the addition of item demographics. As the
k used in ItemSvdDemoRec was not optimized for either Precision nor Recall, it is surprising that
these measures did not decrease. Both algorithms performed significantly better in Precision than in
Recall over each data set. Precision was consistently within the score range of 0.68 to 0.80, while Recall
consistently had scores between 0.27 and 0.40. Typically, Precision is weighted more important than
Recall. Thus, these algorithms have a favorable Precision to Recall ratio. However, if one wanted to
value Recall more, then the number of movies ranked for each user would have to increase significantly.
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Data Set Algorithm MAE NMAE RMSE NRMSE Precision Recall
MovieLens 100K  ItemSvdRec 0.7780  0.1945  0.9815 0.2454 0.7972 0.3937
ItemSvdDemoRec 0.7740  0.1935  0.9814 0.2454 0.7967 0.3935
MovieLens 1M ItemSvdRec 0.7317 0.1829  0.9223 0.2306 0.7067 0.2868
ItemSvdDemoRec 0.7234  0.1809  0.9125 0.2281 0.7074 0.2870
Jester 2 ItemSvdRec 3475  0.1737 4.405 0.2203 0.9500 0.7625

Table 4.2: The optimal evaluation metrics found for each data set and algorithm pair tested. Since the
MovieLens and Jester data sets have different scales for rating, Normalized MAE (NMAE) and Normalized
RMSE (NRMSE) are provided for ease of comparison. Overall, temSvdDemoRec outperforms ItemSvdRec
over the MovieLens data sets. ItemSvdRec over Jester 2 outperforms all metrics from either algorithm
over the MovieLens data sets.

4.2 Alternative Data Set: Jester Online Joke Recommender

We also wanted to express that these algorithms, and the mathematical techniques within them,
can operate over alternative data sets outside that of the common five star movie rating system. As
such, we ran ItemSvdRec over one of the publicly available data sets from Jester, the online joke rec-
ommending system. Jester has collected millions of joke ratings from thousands of users, and has been
used in several prominent papers on collaborative filtering algorithms [17]. We used Jester Dataset 2,
which has roughly 1.7 million ratings from 63,978 users over 150 jokes. Rather than a 1 to 5 integer
rating scale, this data set has continuous ratings between —10.00 and 10.00. This data set does not
include joke demographics, and thus ItemSvdDemoRec could not be ran using this data. In addition,
pre-processing had be done first in order to manipulate the data into matrix form as well as create five
fold cross validation training and testing subsets. This process was similar to that described in Section
3.2.

Once again in Figure 4.1, we see that the first two singular vectors encompass the majority of the
variation in the data. This time, roughly 82.5% of the data is stored here. This however is not enough
variation captured for optimal system performance. MAE and RMSE both attain their minimums with
a k value of 4 and a num_neigh value of 1. Precision and Recall attain their maximums with a k value
of 20 and a num_neigh of 1. Since the MovieLens and Jester data sets have different ratings scales,
we normalized the best MAE and RMSE of each data set and algorithm. These values are given in
Table 4.2. One can see that ItemSvdRec over Jester 2 achieved the best performance in all categories,
even outperforming ItemSvdDemoRec over the MovieLens data sets. This is because Jester 2 has a
higher user to movie ratio as well as more known ratings than either of the MovieLens data sets. For
comparison, Jester 2 had a sparsity of about 17.7% while MovieLens 100K and 1M had sparsities of
6.3% and 4.2% respectively. In addition, the usage metrics over Jester 2 are large because there are
only 150 total jokes to recommend to any given user. The algorithms must operate over thousands of
items in the MovieLens data sets, so they must predict the top ten movies from a much larger set of
possible choices.
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Figure 4.1: Average total variance captured by the singular values of training rating subsets from the
Jester 2 data set. The first two singular values encompass on average roughly 82.5% of the data. The sum
of the variance captured in all singular values past 10 are shown in the last bar of the chart.

4.3 Conclusion and Future Research

Machine learning is a vast field. It encompasses several different disciplines including mathematics,
statistics, and computer science. It does not provide an answer to every data driven question, but
it rather gives us the ability to explore and understand the data we produce and collect like never
before. Whether these learning algorithms are supervised, unsupervised, or reinforcement driven, they
each help us make data-driven decisions and predictions. Recommendation systems are one small yet
meaningful application of machine learning. They provide a positive feedback loop in the recommen-
dation process. The better the recommendation system, the more users utilize it. The more users,
the more data is given to the system to then learn from. The system internalizes that data and the
process repeats itself. Mathematical techniques such as PCA, SVD, and neighborhood formation are
just a few examples of how many of these systems process this plethora of data in a manageable time
frame. Rating evaluation methods, such as MAE or RMSE, and usage prediction methods, such as
Precision and Recall, serve as a way to gauge the learning performance of the system. Whether we
wish to recommend something as simple as a movie or joke, or something as complex as a treatment
or medication to someone, machine learning and recommendation systems are powerful ideas that can
better the individual and in turn society as a whole.

This paper just scratches the surface of both machine learning and recommendation systems. Fu-

ture work can, and is, being done in both these domains. In terms of this paper, one could extend
upon both ItemSvdRec and ItemSvdDemoRec to utilize user demographics, time stamps, and other
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Figure 4.2: The average rating prediction metrics, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), produced from the predictions generated by ItemSvdRec over five disjoint rating testing
subsets of the Jester 2 joke data set. Each pixel represents the metric for each parameter pair (num_neigh,
k) using a -10.00 to 10.00 continuous rating scale. Overall, lower MAE and RMSE values (darker) indicate
better performance. (a) Optimal parameters of (1,4) provided an MAE of 3.475. (b) Optimal parameters
of (1,4) provided an RMSE of 4.405.
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Figure 4.3: The average usage prediction metrics, Precision and Recall, produced from the predictions
generated by ItemSvdRec over five disjoint rating testing subsets of the Jester 2 joke data set. Each pixel
represents the metric for each parameter pair (num_neigh, k). Overall, greater Precision and Recall values
(darker) indicate better performance. (a) Optimal parameters of (1,20) provided an Precision of 0.9500.
(b) Optimal parameters of (1,20) provided an Recall of 0.7625.

additional information provided in the MovieLens data sets. Alternative data sets could also be studied
such as the Book-Crossing Data Set found in Improving Recommendation Lists Through Topic Diversi-
fication [48]. Individuals with a strong background in computer science could generate their own data
through web crawling and other data extraction techniques on websites such as Twitter. Those with
a strong mathematical or statistical background could attempt alternative matrix factorization and
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neighborhood formation techniques as well.
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Appendix A
MATLAB Code

A.1 TItem Filtering with SVD Recommender (ItemSvdRec)

function [ratings_predicted] = item_SVD_recommender(ratings, k, num_neigh)
%% ItemSvdRec An algorithm that uses item—based filtering enhanced by SVD.
% A mxn ratings matrix (ratings) with m—users and n—items.

% Preprocessing eliminates all missing data (100% coverage) using user—item
% averages (ratings_norm ). The k—th approximation SVD of the filled matrix
% is taken (ratings_reduced), and both user and

% item characterization matrices (pu and qi) are created. Neighborhood

% formation of items is done through Adjusted Cosine Similarity , and final
% prediction generation (ratings_predicted) is achieved.

% The pseudo—code for the algorithim outline can be found in:

% Applying SVD on Generalized Item—based Filtering

% — (http://www. tmrfindia.org/ijcsa /V3I34.pdf)

%% Parameters

5|% ratings : A user—by—item ratings matrix. Ratings can be any value, but
% null values must be of the form NaN.

% k : Integer <= rank(ratings). Gives kth—approximation of SVD.

% num_neigh: Number <= size (ratings ,2) i.e. number of total items.

% When finding similar neighbors, only the first num_neigh

% neighbors will be considered similar enough.

%% Item—based Filtering Enhanced by SVD (ItemSvdRec)
9% 1: Define user—item matrix ratings
[m,n] = size(ratings); % m is number of users, n is number of items

%% 2: Preprocessing (solving sparsity problem)
% 2(a): Compute row (user) average and column (item) average.

row_avg = nanmean(ratings ,2); % size l—by—m, computes average of all rows/users
row_avg(isnan (row_avg) )= nanmean(row_avg); % if a user did not rate any movie set
% to the overall user average
col_avg = nanmean(ratings ,1); % size 1—by-mn, computes average of all columns/items
col_avg (isnan(col_avg))= nanmean(col_avg); % if a movie was not rated by any user set

% to the overall item average

5% 2(b): Replace all entries with missing values (NaN) with corresponding col_avg

ratings_norm = ratings; % initialize normalized ratings matrix

7l for i = 1:n % loops through all columns and replaces all

%  NaN with corresponding columns average
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39 ratings_norm (isnan (ratings_norm (:,i)),i) = col_avg(i);
end

41
% 2(c): Subtracts corresponding row average from all entries
13|% bsxfun applies element—by—element operations on two arrays
ratings_norm = bsxfun (@minus, ratings_norm , row.avg);

9% 3 & 4: Compute the SVD of ratings_norm and obtain k—th approximation
17| [Uk,Sk,Vk] = svds(ratings_norm, k); % rank k SVD approximation
ratings_reduced = UkxSkxVk’; % reduced k—approx ratings matrix

%% 5: Compute user and item characteristic vectors, pu and qi
51| pu Ukxsqrt (Sk) 7; % size m—by—k, user associated vector of characterizations
qi sqrt (Sk)«Vk’; % size k—by-n, item associated vector of characteristics

%% 6: Neighborhood Formation (similar item neighbors)

55/% 6(a): Adjusted Cosine Similarity (NOTE: This differs from plain adjusted
% cosine similarity as the bias in different rating scales was taken into
57|% cosideration when normal—ization to create ratings_norm)

sim_matrix = zeros(n,n); % initialize similarity matrix

59 for j=1:n % loop through all items

%size 1—by-n, summation of product of item j ratings and each other
61 %  item ratings

numerator = sum(bsxfun (Qtimes, qi(:,j), qi),1);

63 %size 1—by-n, normalize
denominator = sqrt (sum(qi(:,j)."2,1) .%sum(qi."2,1));
65 sim_matrix(j,:) = numerator./denominator; % update similarity matrix
end

67
%% 6(b) & 7: Isolate most similar items & Prediction Generation
6| ratings_predicted = zeros(m,n); % initialize predicted ratings matrix

71| for j=1:n %loop through all items
% sort similar items to item j, and find their indices

73 [T, sort_itemj_indices] = sort(sim_matrix(:,j), descend’);
% best num_neigh neighbors to item j

75 sel_items = sort_itemj_-indices (l:num_neigh);

77 % Add user row average to item j mneighbors from reduced ratings matrix,
% multiply by similarity of each neighbor, sum ratings up and divide

79 % by total similar neighbors. The reduced ratings of the closest item
% meighbors with the user average added back in.

81 ratings_red_j_plus_row_avg = bsxfun(@plus,ratings_reduced (:,sel_items) ,row_avg);
% similarity to closest mneighbors

83 sim_vector_j = sim_matrix(j,sel_items);
% sum of absolute values of similarity to item ]

85 sim_vector_abs_sum = sum(abs(sim_vector_j));
% predicted ratings for item j for all users

87 ratings_predicted (:,j) = sum(bsxfun (@times,ratings_red_j_plus_row_avg ,...

sim_vector_j),2)./sim_vector_abs_sum;
so| end
end
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A.2 Item Filtering with SVD and Item Demographics Rec-
ommender (ItemSvdDemoRec)

function [ratings_predicted] = item_SVD_demo.recommender(ratings , k, item_demographics,
d, num_neigh)

%% TtemSvdDemoRec An algorihm that uses item—based filtering , item demographics, and
SVD.

% A m by n ratings matrix (ratings) with m—users and n—items, and an x by n item

% demographics matrix (item_demographics) where x is the number of tested

% demographics are input. SVD is conducted on the item demographics with d

;|% singular values. Preprocessing eliminates all missing data (100% coverage)

% using user—item averages (ratings_norm) in the ratings matrix. The k—th

% approximation SVD of the filled matrix is taken (ratings_reduced), and both

% user and item characterization matrices (pu and qi) are created. Neighborhood

% formation of items is done through Adjusted Cosine Similarity of the items and
% the demographic correlation between each item. The final neighborhood similarity
% is the addition of the two similarities. The final prediction generation

% (ratings_predicted) is then achieved.

% The pseudo—code for the algorithim outline can be found in:

% Applying SVD on Generalized Item—based Filtering

% — (http://www. tmrfindia.org/ijcsa /V3I34. pdf)

%% Parameters

% ratings : A user—by—item ratings matrix. Ratings can be any value, but

% null values must be NaN.

% k : Integer <= rank(ratings). Gives kth—approximation of SVD for ratings matrix.
% item_demographics : A demographic—by—item demographics matrix. Each

% demographic must be either 0 (item does not have) or

% 1 (item does have).

% d : Integer <= rank(item_demographics). Gives dth—approximation of SVD

% for the item_demographics matrix

% num_neigh: Number <= size (ratings ,2) i.e. items. When finding similar

% neighbors, only the first num_neigh neighbors will be considered
% similar enough. This is the addition of the adjusted cosine

% similarity and the demographic correlation of the items.

%% Item—based Filtering Enhanced by SVD and Item—Demographics

%% 1(a) : Construct demographic vectors for m users and n items and collect
) these demographic vectors in array

% item_demographics should be inputed in this form. See parameters.

%% 1(b)(case 2) : Perform SVD on Item Demographic matrix (item_demographics)
[Ud,Sd,Vd] = svds(item_demographics,d); % Rank d SVD approximation
qid = sqrt(Sd)«Vd’; % size d—by-n, item d latent demographic characteristic vectors

%% 2: Construct user—item ratings matrix of size m-by-n
% ratings should already be in this form. See parameters.
[m,n] = size(ratings); % m is number of users, n is number of items

%% 3 (case 2): Neighborhood Formation
% 3(a) Preprocessing (fixing sparsity problem)
% : Compute row (user) average and column (item) average.

% NOTE: Other preprocessing methods exist, this is one method
row_avg = nanmean(ratings ,2); % size l—by—m, computes average of all rows/users
row_avg(isnan (row_avg) )= nanmean(row_avg) ; % if a user did not rate any movie set
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% to the overall user average
col_avg = nanmean(ratings ,1); % size 1—by-n, computes average of all columns/items
col_avg (isnan(col_avg))= nanmean(col_avg); % if a movie was not rated by any user set
%  to the overal item average
% 3(b): Replace all matrix entries with no values (NaN) with corresponding col_avg

ratings_norm = ratings; % initialize normalized ratings matrix
for i = 1:n % loops through all columns and replaces all
%  NaN with corresponding columns average
ratings_norm (isnan (ratings_norm (:,i)),i) = col_avg(i);
end

% 3(c): Subtracts corresponding row average from all entries
% bsxfun applies element—by—element operations on two arrays
ratings_norm = bsxfun (@minus, ratings_norm , row_avg);

%% 3(d): Compute the SVD of ratings_-norm and obtain k—th approximation
Y%k = 6; % Size of dimensonality reduced space, matlab defaults to first
% 6 singular values, increasing k (generally) betters
% accuracy but increases computational time
[Uk,Sk,Vk] = svds(ratings_norm, k); % rank k SVD approximation
ratings_reduced = UkxSkxVk’; % reduced k—approx ratings matrix

%% 3(e): Compute user and item characteristic vectors, pu and qi
pu = Ukxsqrt (Sk) ’; % size m-by—k, user associated vector of characterizations
qi = sqrt (Sk)*Vk’; % size k—by-n, item associated vector of characteristics

%% 3(f): Item Correlation (find similarity and item neighbors)
%  Adjusted Cosine Similarity (NOTE: This differs from plain adjusted
% cosine similarity as the bias in different rating scales was taken into
% cosideration when normal—ization to create ratings_norm)
sim_matrix = zeros(n,n); % initialize similarity matrix
for j=1:n % loop through all items
% size 1—by-n, summation of product of item j ratings and each other
%  item ratings
numerator = sum(bsxfun (Qtimes, qi(:,j), qi),1);
%size 1—by-n, normalize
denominator = sqrt (sum(qi(:,j)."2,1) . %sum(qi."2,1));

sim_matrix (j,:) = numerator./denominator; % update similarity matrix
end
%% 4 (case 2) : Calculate Demographic Correlation
% (find similarity of psuedo item demographic vectors)
dem_cor_matrix = zeros(n,n);

for x=1:n % loop through all items
% computes dot product of current column vec and all other column vecs
numerator = sum(bsxfun (Qtimes, qid (:,x), qid),1);
denominator = norm(qid).*sqrt(sum(qid."2,1)); % finds L2 norm of each
% column vector
dem_cor_matrix (x,:) = numerator./denominator;
end

%% 5 : Calculate the Enhanced Correlation

% (based from both sim_matrix and dem_cor_matrix)

% NOTE: Chose Enhanced Correlation to be of the form ratings similarity +

% demographic correlation. There exists other forms of weighing.
enhanced_cor = sim_matrix + dem_cor_matrix;
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%% 6(b) & 7: Isolate most similar items & Prediction Generation
ws| ratings_predicted = zeros(m,n); % initialize predicted ratings matrix

10| for j=1:n %loop through all items
% sort similar items to item j, and find their indices

112 [T, sort_-itemj_indices] = sort(enhanced_cor(:,j), descend’);

sel_items = sort_itemj_indices (1:num-neigh); % best num_neigh neighbors
114

% Add user row average to item j mneighbors from reduced ratings matrix,
116 % multiply by similarity of each mneighbor, sum ratings up and divide

% by total similar neighbors. The reduced ratings of the closest item
118 % mneighbors with the user average added back in.

enh_corr_sel_item_vec = enhanced_cor(j,sel_items);

120 ratings_reduced_plus_rowavg = bsxfun(@plus,ratings_reduced (:, sel_items) ,row_avg);
122 ratings_predicted (:,j) = sum(bsxfun(Q@times, ratings_reduced_plus_rowavg,
enh_corr_sel_item_vec) ,2)./sum(abs(enh_corr_sel_item_vec));

124 end
end

A.3 Data to Matrix: MovieLens 100K Example

1|%% load_ml_100k_dataset_ratings Overview:

% Loads in MovieLens 100k Dataset of ratings for movies and creates a ratings matrix
3% "ml_100k_dataset_ratings ’. This ratings matrix is users—by—items with a

% null rating described by NaN.

5% ml—100k (5MB) contains 100,000 integer ratings between 1 and 5 on

% 943 users and 1682 movies.

~

9% Acknowledgment of source:

9% MovieLens data sets were collected by the GroupLens Research Project

% at the University of Minnesota.

11|% URL: http://grouplens.org/datasets/movielens/

% Paper: F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
13| % History and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article
% 19 (December 2015), 19 pages. DOI=http://dx.doi.org/10.1145/2827872

15
9% load_ml_100k_dataset_ratings
17| data_dir = 'ml—-100k’;

0| if exist (data_dir,’dir’) "= 7 % download and unzip dataset if directory
% folder if does not exist
21 unzip ( "http:// files .grouplens.org/datasets/movielens/ml—100k. zip ’)
end
23
if “exist(’ml_100k_dataset_ratings’,’var’) % load dataset if does not exist

25| data = readtable(fullfile (data_dir, ’u.data’), FileType’, "text’ ,...
"ReadVariableNames ', false , ’Format ', "%t%t%{%f ) ;
27| data. Properties . VariableNames = {’user_id ', ’movie_id ’, ’rating ', ’timestamp’ };

29|% create ratings matrix
ml_100k_dataset_ratings = accumarray ([data.user_id , data.movie_id],...
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31 data.rating ,[] ,[] ,NaN);

33 clear data ml_100k_demographics
end

A.4 5 Fold Cross Validation Data Sets Creation

9% createTrainingData Overview

2|% This function takes in a ratings matrix and creates training and testing
% subsets for a five fold cross validation. A random permutation of all
1]% rated indices is created and separated into five intervals of equal

% length. These intervals are then used to populate NaN matrices with the
6/% ratings in each interval from the ratings matrix. The test and training
% data is stored in a m—by-n—by—5 multidimensional array where m and n are
s|% the dimensions of the ratings matrix.

%% Parameters

10|% ratings: An m-by-n ratings matrix. Entries with no ratings must contain
% NaN.
12
%% createTrainingData
14| function [u-test, u_training] = createTrainingData(ratings)
% initialize array to store all 5 test subsets
16 u_test = NaN(size(ratings,1), size(ratings,2), 5);
% initialize array to store all 5 training subsets
18 u_training = NaN(size (ratings ,1), size(ratings,2), 5);
20 alllndices = find (“isnan(ratings)); % finds all indices that are rated
randVec = alllndices (randperm(size (alllndices ,1))); % randomly permutes indices
22 intervalSize = floor (size (randVec,1)/5); % size of "20% interval
interval = 1l:intervalSize; % 20% interval of indices
24
for n = 1:5 % for each test/training set to be created
26 % initialize temporary storage for test data
u_test_temp = NaN(size(ratings));
28 % initialize temporary storage for training data
u_train_temp = ratings;
30
% find current 20% interval of indices to use
32 randVec20 = randVec(interval + (n—1)xintervalSize);
% add ratings in 20% interval to testing matrix
34 u-test_temp (randVec20) = ratings (randVec20);
u_test (:,:,n) = u_test_temp;
36 % remove all added ratings from training matrix (100—20=80%)

u_train_temp (“isnan(u_test_temp)) = NaN;
38
% store test and training data into multi—dimensional arrays for
40 % later access

u_training (:,:,n) = u_train_temp;
42 u_test (:,:,n) = u_test_temp;
end
11| end
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